WO2017049886A1 - 一种位相编码的宽带光子筛 - Google Patents

一种位相编码的宽带光子筛 Download PDF

Info

Publication number
WO2017049886A1
WO2017049886A1 PCT/CN2016/077040 CN2016077040W WO2017049886A1 WO 2017049886 A1 WO2017049886 A1 WO 2017049886A1 CN 2016077040 W CN2016077040 W CN 2016077040W WO 2017049886 A1 WO2017049886 A1 WO 2017049886A1
Authority
WO
WIPO (PCT)
Prior art keywords
photon sieve
sieve
broadband
light
photon
Prior art date
Application number
PCT/CN2016/077040
Other languages
English (en)
French (fr)
Inventor
王钦华
赵效楠
许峰
胡敬佩
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Publication of WO2017049886A1 publication Critical patent/WO2017049886A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems

Definitions

  • the present invention relates to an optical component, and more particularly to a photonic sieve, and more particularly to a phase-encoded broadband photon sieve.
  • a photonic sieve is a diffractive optical element proposed by Kipp in 2001, similar to a Fresnel zone plate, which transmits light to an odd or even Fresnel zone.
  • the adjacent wave band is opaque.
  • the photon sieve designs the light-transmissive wave band as a light-transmitting micro-hole, and the micro-hole is located on the wave band, and the difference between the distance that the light wave reaches the focus through the center of each micro-hole and the distance from the optical axis to the focus is an integral multiple of the wavelength, and Focus and imaging for high-resolution microscopy, spectral imaging, X-ray imaging, UV lithography, etc.
  • a photonic sieve As a diffractive optical element, a photonic sieve has a large chromatic aberration. In general, for a photon screen with a focal length f, only the design wavelength ⁇ is clearly imaged. Therefore, when the incident light wavelength is ⁇ + ⁇
  • the design of the photon screen is designed for three different wavelengths to design three sets of non-overlapping holes for imaging three wavelengths. However, it has a lower diffraction efficiency and only images the three wavelengths of the design.
  • the Chinese patent of CN104865627A discloses a wideband photon sieve based on wavefront coding technology.
  • the broadband photon sieve has a one-phase encoder plate. One surface of the phase-encoding plate is a phase-encoded surface, and the other surface is a plane, after the plane. Close to the photon screen. A phase-encoding plate is placed before the photon screen, and the structure is slightly complicated.
  • a wide-band photon screen is generated, which not only has the focusing function of the conventional photon screen, but also has the encoding function of the phase-encoding board, and the structure is simple, obviously Has a positive practical significance.
  • the technical solution adopted by the present invention is: a phase-encoded broadband photon sieve
  • a diameter D comprising a transparent planar substrate and an opaque metal film plated on the transparent planar substrate, wherein the opaque metal film is provided with a ring-shaped distribution of light-passing apertures, the light-passing apertures Position distribution satisfies the equation
  • f is the focal length of the broadband photon sieve
  • n is the ringband number of the passband
  • is the operating wavelength of the photon sieve
  • R is the radius of the broadband photon sieve
  • is the cubic coding coefficient
  • k is the wavenumber
  • X m is the center position of the mth small hole on the nth pass ring
  • m l, 2, 3, ..., num
  • the three-time coding coefficient ⁇ 20 ⁇ .
  • the transparent planar substrate is glass and has a thickness of 2 mm.
  • the opaque metal film is an opaque chrome film having a thickness of 100 nm.
  • the present invention has the following advantages over the prior art:
  • the inventive invention introduces a phase-encoding phase in a conventional photon sieve focusing formula, and designs a width photon sieve having a phase-encoding plate coding function and a conventional photon sieve focusing function, which is largely reduced.
  • the sensitivity of the photon sieve to the wavelength is small, and the bandwidth of the photon sieve is broadened without affecting the resolution of the photonic sieve, and the energy efficiency is improved;
  • the invention has a simple structure, is light and easy to process.
  • FIG. 1 is a schematic structural view of a broadband photon sieve in Embodiment 1;
  • FIG. 2 is a schematic view showing a small hole distribution of the broadband photon sieve of FIG. 1;
  • FIG. 3 is a schematic view showing a small hole distribution of a conventional photon sieve
  • FIG. 4 is a schematic diagram of an apparatus for testing the imaging performance of a conventional photon sieve
  • FIG. 5 is an experimental test result of a conventional photon sieve at a design wavelength of 632.8 nm
  • FIG. 6 is a schematic diagram of an apparatus for testing imaging performance of a broadband photon sieve
  • FIG. 8 is an imaging result of a conventional photon sieve under a broadband light source
  • FIG. 9 is an imaging result of a broadband photon sieve under a broadband light source
  • FIG. 11 is a graph showing MTF curves of conventional photon sieves and broadband photon sieves at different wavelengths;
  • Embodiment 1 Referring to FIG. 1, a phase-encoded broadband photon sieve having a diameter D, comprising a transparent planar substrate and an opaque metal film plated on the transparent planar substrate, an opaque metal film There is a light-transmitting small hole with a ring-shaped distribution, and the position distribution of the light-passing small hole satisfies the equation
  • f is the focal length of the broadband photon sieve
  • n is the ringband number of the passband
  • is the operating wavelength of the photon sieve
  • R is the radius of the broadband photon sieve
  • is the cubic coding coefficient
  • k is the wavenumber
  • X m is the center position of the mth small hole on the nth pass ring
  • m l, 2, 3 ... num
  • the three-time coding coefficient ⁇ is 20 ⁇ .
  • the transparent planar substrate is glass and has a thickness of 2 mm.
  • the opaque metal film is an opaque chrome film having a thickness of 100 nm.
  • FIG. 2 a schematic diagram of a small hole distribution of the broadband photon sieve of the present embodiment is shown.
  • a broadband photon sieve having a focal length of 500 nm, a diameter of 50 mm, a working center wavelength of 632.8 ⁇ m, and a coding coefficient of 20 ⁇ was designed by using a UV lithography technique.
  • FIG. 4 is a schematic diagram of a device for testing the imaging performance of a conventional photon sieve.
  • the incident laser beam emitted by the laser 3 having a wavelength of 632.8 nm is focused by the beam expander 4 to the small hole of the filter 5 for filtering.
  • the hole-filtered laser beam passes through the scattering carousel 6 to eliminate the block.
  • An imaging test with a focal length of 550 mm, a 55 mm aperture, and a CCD 9 with a cell size of 4.54 ⁇ (AVT Prosilica GX2750C) were used for display on the display 10.
  • FIG. 5 shows experimental test results of a conventional photon sieve at a design wavelength of 632.8 nm, in which (a) is a PSF characteristic, (b) is a resolution ⁇ test result, and (c) is a test result (b) The enlargement of the central area. After careful inspection, the resolution limit of the photon sieve is about 501p/mm.
  • FIG. 6 a schematic diagram of a device for testing the imaging performance of a broadband photon sieve
  • the beam emitted by the broadband source 11 passes through a bandpass filter 12 (THORLABS company FL632.8-10) having a center wavelength of 632.8 nm and FWHMlOnm.
  • the broadband photon sieve 13 is irradiated with the same collimator 7, and an imaging test is performed with the CCD 9, and display is performed on the display 10.
  • Figure 7 is a graph showing the transmittance of the band pass filter of Figure 6.
  • FIG. 6 The broadband photon sieve of FIG. 6 is replaced by a conventional photon sieve, and the imaging result is shown in FIG. 8, wherein ( a ) is a PSF characteristic, (b) is a resolution ⁇ test result, and (c) is a resolution ⁇ ( b) The enlarged view of the central area,
  • conventional photon sieves have a large chromatic aberration. When the center wavelength is 632.8nm, the bandwidth of FWHMlOnm is incident.
  • FIG. 9 shows the results of a broadband photon sieve tested at a center wavelength of 632.8 nm and a bandwidth of FWHMlOnm.
  • Experimental Results Figure 9 (a) shows that the PSF images measured in the laboratory have the same "L" shape, Figure 9 (b) shows the intermediate blurred image of the broadband photon sieve, and Figure 9 (c) shows the final restored image.
  • Figure 9 (d) is an enlargement of the central area of Figure 9 (c) of the restored image.
  • the intermediate blurred image is restored to a sharp image by an appropriate filtering function to achieve substantially the same resolution as the conventional photon sieve at a design wavelength of 632.8 nm.
  • the resolution of the broadband photon sieve is 501 p/nm.
  • the conventional photon sieve and the broadband photon sieve of the present embodiment are respectively compared under different wavelength photo illuminations, and the comparison is performed by computer simulation, and the results are as follows:
  • FIG. 11 shows MTF (Fourier Transform of PSF) curves of conventional photon sieves and broadband photon sieves at different wavelengths, respectively.
  • MTF Fastier Transform of PSF
  • the intermediate blurred image at all wavelengths can be well restored, with substantially the same resolution as the conventional photon screen at the design wavelength.
  • the MTF drops slightly, resulting in a slight deviation of the final restored image.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Filters (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

一种位相编码的宽带光子筛,直径为D,包括透明平面基底(1)和镀在透明平面基底(1)上的不透光金属薄膜(2),不透光金属薄膜(2)上设有环带状分布的通光小孔,通光小孔的位置分布满足方程(I),式中,f为宽带光子筛的焦距,n为通光环带的环带序号,λ为光子筛的工作波长,R为宽带光子筛的半径,α为三次编码系数,k为波数,x m和y m是第n个通光环带上第m个小孔的中心位置,m=1, 2, 3, …, num,其中(II),(III),小孔半径(IV)。这种宽带光子筛同时具有位相编码板的编码功能和传统光子筛的聚焦功能,很大程度上减小了光子筛对波长的敏感性,且在不影响光子筛分辨率的情况下,拓宽了光子筛的带宽,同时提高了能量效率。

Description

说明书 发明名称:一种位相编码的宽带光子筛 技术领域
[0001] 本发明涉及一种光学元件, 具体涉及一种光子筛, 尤其是一种位相编码的宽带 光子筛。
背景技术
[0002] 现有技术中, 光子筛是由 Kipp在 2001年提出的一种衍射光学元件, 和菲涅耳 波带片相似, 都是使奇数或偶数菲涅耳波带透光, 而使相邻的波带不透光。 光 子筛将透光的波带设计成透光的微孔, 微孔位于波带上, 光波通过各微孔中心 到达焦点的距离与通过光轴到达焦点的距离之差为波长的整数倍, 可以实现聚 焦和成像, 用于高分辨率显微镜, 光谱成像, X射线成像, UV光刻等。
[0003] 作为衍射光学元件, 光子筛具有很大的色差。 一般而言, 对于一个焦距 f的光 子筛, 只对设计波长 λ清晰成像。 因此, 当入射光波长为 λ+Δλ
吋, 将聚焦到 f+Af位置, 在原始焦平面位置产生背景噪音。
[0004] 为解决上述问题, Gimenez等在文献" F. Gimenez, J. A. Monsoriu, W. D.Furlan, and A. Pons,"Fractal photon sieve," Opt. Express 14(25), 11958— 11963(2006)"中提出 了一种分形光子筛去拓展焦深并且减小色差。 但是, 该光子筛是以降低设计波 长在对焦位置的分辨率为代价的。 Andersen等人在文献" G. Andersen, andD. Tullson, "Broadband antihole photon sieve telescope," Appl. Opt. 46( 18), 3706-3708 (2007)"中提出了一种由光子筛作为主镜的望远***。 在***中, 另一个衍射光 学元件被设计去补偿光子筛的色差特性, 达到了一定的宽光谱成像效果。 但其 有两个大于光子筛主镜的反射镜用于准直光路并聚焦, 这种方式结构相对复杂 。 周等人在文献 "C.X.Zhou,X.C.Dong, L.F.Shi,C.T.Wang,and CL.Du,"Experimental study of a multiwavelength photon sieve designed by random-area-divided
approach,"Appl.Opt.48(8), 1619-1623(2009)"中设计并加工了一块三波长光子筛。 该光子筛的设计对于三个不同的波长分别设计三套不重叠的孔, 用于对三个波 长成像。 但是, 其具有较低的衍射效率并且只对设计的三个波长成像。 申请公 布号 CN104865627A的中国专利公幵了一种基于波前编码技术的宽带光子筛, 该 宽带光子筛具有一位相编码板, 位相编码板的一个表面为位相编码面, 另一个 表面为平面, 平面后紧贴有光子筛。 在该光子筛之前设置位相编码板, 结构略 微复杂。
[0005] 因此, 为了上述现有技术中的缺点, 幵发一种宽带光子筛, 使其不仅具有传统 光子筛的聚焦功能, 同吋还具备了位相编码板的编码功能, 而且结构简单, 显 然具有积极的现实意义。
技术问题
问题的解决方案
技术解决方案
[0006] 本发明的发明目的是提供一种位相编码的宽带光子筛, 在不影响光子筛分辨率 的前提下, 拓宽光子筛的带宽。
[0007] 为达到上述发明目的, 本发明采用的技术方案是: 一种位相编码的宽带光子筛
, 直径为 D, 包括透明平面基底和镀在该透明平面基底上的不透光金属薄膜, 所 述不透光金属薄膜上设有环带状分布的通光小孔, 所述通光小孔的位置分布满 足方程
Figure imgf000004_0001
, 式中, f为宽带光子筛的焦距, n为通光环带的环带序号, λ为光子筛的工作 波长, R为宽带光子筛的半径, α为三次编码系数, k为波数 ,X
Figure imgf000004_0002
m是第 η个通光 环带上第 m个小孔的中心位置, m=l, 2, 3, ..., num, 其中
Figure imgf000004_0003
、 = f„ i¾¾,
, 小孔半径
Figure imgf000005_0001
[0008] 上述技术方案中, 所述三次编码系数 α〉20。
[0009] 进一步的技术方案中, 所述三次编码系数 α=20π。
[0010] 上述技术方案中, 所述透明平面基底为玻璃, 其厚度为 2mm。
[0011] 上述技术方案中, 所述不透光金属薄膜为不透光铬膜, 其厚度为 100nm。
发明的有益效果
有益效果
[0012] 由于上述技术方案运用, 本发明与现有技术相比具有下列优点:
[0013] 1.本发明创造性的在传统光子筛聚焦公式中引入了位相编码相, 设计了一种同 吋具有位相编码板编码功能和传统光子筛聚焦功能的宽度光子筛, 很大程度上 减小了光子筛对波长的敏感性, 且在不影响光子筛分辨率的情况下, 拓宽了光 子筛的带宽, 同吋提高了能量效率;
[0014] 2.本发明结构简单、 轻便, 易于加工。
对附图的简要说明
附图说明
[0015] 图 1是实施例一中宽带光子筛的结构示意图;
[0016] 图 2是图 1宽带光子筛的小孔分布示意图;
[0017] 图 3是传统光子筛的小孔分布示意图;
[0018] 图 4是测试传统光子筛的成像性能的装置示意图;
[0019] 图 5是传统光子筛在设计波长 632.8nm的实验测试结果;
[0020] 图 6是测试宽带光子筛的成像性能的装置示意图;
[0021] 图 7是图 6中带通滤光片的透过率曲线
[0022] 图 8是传统光子筛在宽带光源下的成像结果;
[0023] 图 9是宽带光子筛在宽带光源下的成像结果;
[0024] 图 10是实施例一传统光子筛和宽带光子筛在 (α=20Π) 的 PSF对比图; [0025] 图 11为传统光子筛和宽带光子筛在不同波长下的 MTF曲线图;
[0026] 图 12为传统光子筛在不同波长 λ=625.8〜639.8ηηι下的成像结果图;
[0027] 图 13为宽带光子筛在不同波长 λ=625.8〜639.8ηηι的中间模糊图像;
[0028] 图 14为宽带光子筛在不同波长 λ=625.8〜639.8ηηι的最终复原图像。
[0029] 其中: 1、 透明平面基底; 2、 不透光金属薄膜; 3、 波长为 632.8nm的激光器 ; 4、 扩束镜; 5、 滤波器; 6、 散射转盘; 7、 平行光管; 8、 传统光子筛; 9、 C CD ; 10、 显示器; 11、 宽带光源; 12、 带通滤光片; 13、 宽带光子筛。
本发明的实施方式
[0030] 下面结合附图及实施例对本发明作进一步描述:
[0031] 实施例一: 参见图 1所示, 一种位相编码的宽带光子筛, 直径为 D, 包括透明平 面基底和镀在该透明平面基底上的不透光金属薄膜, 不透光金属薄膜上设有环 带状分布的通光小孔, 通光小孔的位置分布满足方程
Figure imgf000006_0001
, 式中, f为宽带光子筛的焦距, n为通光环带的环带序号, λ为光子筛的工作 波长, R为宽带光子筛的半径, α为三次编码系数, k为波数 ,X
Figure imgf000006_0002
m是第 η个通光 环带上第 m个小孔的中心位置, m=l,2,3 ...num, 其中 翻 =
:¾ =: ¾3 :+ , 小孔半径
Figure imgf000006_0003
[0032] 本实施例中, 三次编码系数 α为 20π。
[0033] 本实施例中, 透明平面基底为玻璃, 其厚度为 2mm。
[0034] 本实施例中, 不透光金属薄膜为不透光铬膜, 其厚度为 100nm。
[0035] 在上述公幵内容的基础上, 设计具体的光子筛, 如图 2所示是本实施例宽带光 子筛的小孔分布示意图。
[0036] 如图 3所示, 是传统光子筛的小孔分布示意图, 可以看出传统光子筛的结构是 同心圆环, 而本实施例宽带光子筛从图 1可以看出不再是同心圆环, 而是关于y=
X对称的结构形式, 由于本实施例中引入的编码项在数值上相对较小, 所以图像 关于 y=x对称不是很明显。
[0037] 利用 UV光刻技术加工设计一个焦距 500nm, 直径 50mm, 工作中心波长 632.8η m, 编码系数 20π的宽带光子筛。
[0038] 对上述获得的宽带光子筛与传统光子筛进行性能测试对比, 其中传统光子筛的 设计波长为 632.8nm。
[0039] 作为对比, 图 4是测试传统光子筛的成像性能的装置示意图, 波长为 632.8nm的 激光器 3发出的入射激光束通过扩束镜 4聚焦到滤波器 5的小孔进行滤波, 经过小 孔滤波后的激光束通过散射转盘 6消除块。 使用一个焦距 550mm, 口径 55mm的 平行光管 7和像元大小为 4.54μηι (AVT Prosilica GX2750C) 的 CCD9进行成像测 试,在显示器 10上进行显示。
[0040] 图 5给出了传统光子筛在设计波长 632.8nm的实验测试结果, 图中, (a) 为 PSF 特性, (b) 为分辨率耙测试结果, (c) 为测试结果 (b) 的中心区域的放大。 仔细检査后, 光子筛的分辨率极限约为 501p/mm。
[0041] 如图 6所示, 为测试宽带光子筛的成像性能的装置示意图, 宽带光源 11发出的 光束通过中心波长 632.8nm, FWHMlOnm的带通滤光片 12 (THORLABS company FL632.8-10) , 使用相同的平行光管 7照射宽带光子筛 13, 用 CCD9进行 成像测试, 在显示器 10上进行显示。 图 7是图 6中带通滤光片的透过率曲线。
[0042] 用传统光子筛替换图 6中的宽带光子筛, 成像结果如图 8所示, 其中 (a)为 PSF特 性, (b) 为分辨率耙测试结果, (c) 为分辨率耙 (b) 的中心区域放大图, 显 然传统光子筛具有很大的色差。 当中心波长 632.8nm, FWHMlOnm的带宽入射吋
, 使得传统光子筛在成像平面产生了很强的背景噪音。
[0043] 图 9给出了宽带光子筛在中心波长 632.8nm, FWHMlOnm的带宽入射下测试结 果。 实验结果图 9 (a) 表明, 实验室测得的 PSF图像具有相同的" L"形特征, 图 9 (b) 给出了宽带光子筛的中间模糊图像, 图 9 (c) 为最终复原图像, 图 9 (d) 为复原图像图 9 (c) 的中心区域的放大。 中间模糊图像通过适当的滤波函数复原 成清晰图像, 达到和传统光子筛在设计波长 632.8nm基本相同的分辨率。 在中心 波长 632.8nm, FWHMlOnm照明下, 宽带光子筛的分辨率为 501p/nm。
[0044] 为了进一步验证本发明获得的光子筛的宽带性能, 分别在不同波长照片照明下 对本实施例的传统光子筛和宽带光子筛进行对比, 对比采用计算机模拟仿真进 行, 结果如下:
[0045] 图 10显示了不同波长照明下 (λ=625.8〜639.8ηιη) 传统光子筛和宽带光子筛 ( α=20Π) 的 PSF情况。 从图 10 (a) 中可以看出, 传统光子筛在设计波长 λ=632.8η m处具有较强的聚焦能力, 但随着波长的偏离, 聚焦能力大大减弱, 不能清晰 成像。 然而, 图 10 (b) 中宽带光子筛的 PSF在波长 =625.8nm〜639.8nm范围内 保持了很好的一致性。 当λ<627.8nm和λ>637.8nm吋, PSF—致性略微发生了偏离
[0046] 图 11分别展示了传统光子筛和宽带光子筛在不同波长下的 MTF (PSF的傅里叶 变换) 曲线。 随着波长偏离于设计波长, 传统光子筛的 MTF曲线迅速下降, 并 出现零点, 造成空间频率丧失。 相反, 宽带光子筛在波长 λ=625.8〜639.8ηηι范围 内保持很好的一致性, 当λ<627.8nm和λ>637.8nm吋略微降低。 由于 MTF在不同 波长具有很好的一致性, 并且从高频到低频没有出现零点, 所以, 可以通过设 计适当的滤波器将中间模糊图像复原。 因此, 光子筛聚焦公式中位相编码项的 引入能够很大程度上减小光子筛对波长的敏感性, 达到拓展带宽的目的。
[0047] 图 12给出了传统光子筛在不同波长 λ=625.8〜639.8ηηι下的成像结果。 随着波长 偏离于设计波长 632.8nm, 成像模糊加剧。 传统光子筛的带宽为
ΆΛ y: 應 M [0048] 图 13给出了宽带光子筛在不同波长 (λ=625.8〜639.8ηηι) 下的中间模糊图像, 所有图像在不同的波长下具有几乎相同的模糊特性。
[0049] 图 14给出了宽带光子筛在不同波长 (λ=625.8〜639.8ηηι) 的最终复原图像。 所 有波长下的中间模糊图像都能够得到很好的复原, 具有和传统光子筛在设计波 长基本相同的分辨率。 当波长很大程度的偏离于设计波长 (λ<627.8ηη^Πλ>637.8 nm) 吋, MTF略有下降, 导致最终复原图像略有偏离。 对于以口径 50mm, 焦距 500mm, 编码系数 α=20Π制备的本实施例的宽带光子筛的带宽约经测试为 14nm , 宽带光子筛带宽约为传统光子筛带宽的 88倍。

Claims

权利要求书
[权利要求 1] 一种位相编码的宽带光子筛, 直径为 D, 包括透明平面基底和镀在该 透明平面基底上的不透光金属薄膜, 其特征在于: 所述不透光金属薄 膜上设有环带状分布的通光小孔, 所述通光小孔的位置分布满足方程
] '-ί'^: 3 + : ,
, 式中, f为宽带光子筛的焦距, n为通光环带的环带序号, λ为光子 筛的工作波长, R为宽带光子筛的半径, α为三次编码系数, k为波数 , x j¾y m是第 n个通光环带上第 m个小孔的中心位置, m=l, 2, 3, ... , num, 其中
Figure imgf000010_0001
Figure imgf000010_0002
、孔半径
Figure imgf000010_0003
[权利要求 2] 根据权利要求 1所述的位相编码的宽带光子筛, 其特征在于: 所述三 次编码系数 α〉 20。
[权利要求 3] 根据权利要求 2所述的位相编码的宽带光子筛, 其特征在于: 所述 α=
20π。
[权利要求 4] 根据权利要求 1所述的位相编码的宽带光子筛, 其特征在于: 所述透 明平面基底为玻璃, 其厚度为 2mm。
[权利要求 5] 根据权利要求 1所述的位相编码的宽带光子筛, 其特征在于: 所述不 透光金属薄膜为不透光铬膜, 其厚度为 100nm。
PCT/CN2016/077040 2015-09-23 2016-03-22 一种位相编码的宽带光子筛 WO2017049886A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510610910.6A CN105137513B (zh) 2015-09-23 2015-09-23 一种位相编码的宽带光子筛
CN201510610910.6 2015-09-23

Publications (1)

Publication Number Publication Date
WO2017049886A1 true WO2017049886A1 (zh) 2017-03-30

Family

ID=54722918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077040 WO2017049886A1 (zh) 2015-09-23 2016-03-22 一种位相编码的宽带光子筛

Country Status (2)

Country Link
CN (1) CN105137513B (zh)
WO (1) WO2017049886A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137513B (zh) * 2015-09-23 2018-06-26 苏州大学 一种位相编码的宽带光子筛
CN105404017B (zh) * 2015-12-21 2017-12-08 哈尔滨工业大学 光子筛主镜双色成像光学***及其应用
CN106054297A (zh) * 2016-08-01 2016-10-26 苏州大学 一种大视场衍射光子筛
CN107152998B (zh) * 2017-04-20 2019-09-20 苏州大学 一种基于检测波前编码***的光子筛对准方法
CN110501768A (zh) * 2018-05-17 2019-11-26 苏州大学 一种多光谱、大带宽光子筛
CN108761606A (zh) * 2018-05-30 2018-11-06 苏州大学 一种拼接大口径光子筛的制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430427A (zh) * 2008-11-25 2009-05-13 中国科学院微电子研究所 超分辨光子筛
CN101923182A (zh) * 2009-06-17 2010-12-22 中国科学院微电子研究所 基于hsq工艺的制作位相型光子筛的方法
CN103018808A (zh) * 2011-09-23 2013-04-03 中国科学院微电子研究所 光子筛及其制作方法
CN104865627A (zh) * 2015-05-30 2015-08-26 苏州大学 一种基于波前编码技术的宽带光子筛
CN105137513A (zh) * 2015-09-23 2015-12-09 苏州大学 一种位相编码的宽带光子筛
CN205003310U (zh) * 2015-09-23 2016-01-27 苏州大学 一种位相编码的宽带光子筛

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954310B2 (en) * 2003-09-25 2005-10-11 University Of Florida Research Foundation, Inc. High resolution multi-lens imaging device
CN101694532B (zh) * 2009-10-22 2011-08-03 中国科学院光电技术研究所 一种位相型光子筛
CN103293677B (zh) * 2012-02-24 2016-06-29 中国科学院微电子研究所 匀光器及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101430427A (zh) * 2008-11-25 2009-05-13 中国科学院微电子研究所 超分辨光子筛
CN101923182A (zh) * 2009-06-17 2010-12-22 中国科学院微电子研究所 基于hsq工艺的制作位相型光子筛的方法
CN103018808A (zh) * 2011-09-23 2013-04-03 中国科学院微电子研究所 光子筛及其制作方法
CN104865627A (zh) * 2015-05-30 2015-08-26 苏州大学 一种基于波前编码技术的宽带光子筛
CN105137513A (zh) * 2015-09-23 2015-12-09 苏州大学 一种位相编码的宽带光子筛
CN205003310U (zh) * 2015-09-23 2016-01-27 苏州大学 一种位相编码的宽带光子筛

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOU, CHANGLUN ET AL.: "Binary Photon Sieve", INFRARED AND LASER ENGINEERING, vol. 40, no. 3, 31 March 2011 (2011-03-31), pages 484 - 486 and 505, ISSN: 1007-2276 *
JIANG, WENBO ET AL.: "Design and application of phase photon sieve", OPTIK, vol. 121, no. 7, 30 April 2010 (2010-04-30), pages 637 - 640, XP026938291, ISSN: 0030-4026 *
TANG, YA N ET AL.: "Design of Quasi-Phase Photon Sieve", ACTA OPTICA SINICA, vol. 32, no. 10, 31 October 2012 (2012-10-31), pages 1022007 - 1 -1022007-5, ISSN: 0253-2239 *

Also Published As

Publication number Publication date
CN105137513A (zh) 2015-12-09
CN105137513B (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
WO2017049886A1 (zh) 一种位相编码的宽带光子筛
JP7328232B2 (ja) フルカラー撮像のためのメタ表面およびシステムならびに撮像の方法
Park et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography
CN110376665B (zh) 一种超透镜及具有其的光学***
Huang et al. Design and analysis of extended depth of focus metalenses for achromatic computational imaging
WO2018142339A1 (en) Multilayer optical element for controlling light
Banerji et al. Imaging over an unlimited bandwidth with a single diffractive surface
WO2016154537A1 (en) Compact non-mechanical zoom lens
WO2003042728A2 (en) Achromatic fresnel optics for ultraviolet and x-ray radiation
TW201319614A (zh) 相位物體顯微系統
US11640040B2 (en) Simultaneous focal length control and achromatic computational imaging with quartic metasurfaces
KR102542986B1 (ko) 반사 굴절 렌즈 및 이러한 렌즈를 포함하는 광학 시스템
JP2014182239A (ja) 超解像顕微鏡
CN205003310U (zh) 一种位相编码的宽带光子筛
CN205787191U (zh) 一种位相编码折衍射元件
TWI514097B (zh) 可由偏振調控重建影像的多光學維度超穎全像片
JP6253830B2 (ja) 超解像顕微鏡
CN104865627B (zh) 一种基于波前编码技术的宽带光子筛
JP2013174844A (ja) 等倍反射型結像光学系
TWI521242B (zh) An optical filter element that corrects spectral aberration
JP2019511743A (ja) 複屈折レンズ干渉計
Baroni et al. Nanostructured surface fabricated by laser interference lithography to attenuate the reflectivity of microlens arrays
Burmeister et al. Binary blazed reflection grating for UV/VIS/NIR/SWIR spectral range
Martinez et al. Halftoning for high-contrast imaging: developments for the SPHERE and EPICS instruments
US20220326499A1 (en) Ghost imaging second harmonic generation microscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16847768

Country of ref document: EP

Kind code of ref document: A1