WO2017049519A1 - 三维打印机、三维打印方法和装置 - Google Patents

三维打印机、三维打印方法和装置 Download PDF

Info

Publication number
WO2017049519A1
WO2017049519A1 PCT/CN2015/090504 CN2015090504W WO2017049519A1 WO 2017049519 A1 WO2017049519 A1 WO 2017049519A1 CN 2015090504 W CN2015090504 W CN 2015090504W WO 2017049519 A1 WO2017049519 A1 WO 2017049519A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
predetermined
single layer
material tray
printer
Prior art date
Application number
PCT/CN2015/090504
Other languages
English (en)
French (fr)
Inventor
孙玉春
王勇
陈科龙
吕培军
宋杨
Original Assignee
北京大学口腔医院
北京实诺泰克科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学口腔医院, 北京实诺泰克科技有限公司 filed Critical 北京大学口腔医院
Priority to PCT/CN2015/090504 priority Critical patent/WO2017049519A1/zh
Priority to CN201580002572.6A priority patent/CN107107460B/zh
Publication of WO2017049519A1 publication Critical patent/WO2017049519A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to the field of three-dimensional printing, and more particularly to a three-dimensional printer, a three-dimensional printing method and apparatus.
  • Rapid Prototyping Manufacturing also known as 3D printing
  • 3D printing is a high-tech manufacturing technology based on material stacking method.
  • the 3D model data of parts or objects the physical objects or models are created by means of molding equipment. . Due to the characteristics of greatly reducing production costs and being customized according to requirements, 3D printing technology has gradually developed rapidly in recent years.
  • the basic principle of 3D printing is layered processing and superposition molding.
  • the 3D entity is generated by adding materials layer by layer.
  • the 3D model of the object to be printed is first obtained by computer through design, scanning, etc., and then assisted by computer.
  • Design techniques such as CAD (Computer Aided Design)
  • CAD Computer Aided Design
  • the thin layer plane is printed, and the continuous thin layer planes are stacked until a solid object is formed to form a three-dimensional solid object to complete 3D printing.
  • DLP Digital Light Processing
  • DMD Digital Micromirror Device
  • DMD is a semiconductor switch that integrates multiple microlenses based on CMOS silicon-based wafers. Each microlens represents one pixel.
  • DLP three-dimensional printer is a rapid prototyping equipment based on DLP technology with liquid light curing resin as molding material, which has the advantages of high forming speed and high molding precision.
  • DLP 3D printers can also be used to print photosensitive properties.
  • Biomedical materials which are applied to medical small and medium-sized medical aids and direct three-dimensional modeling of human body replacement prosthesis three-dimensional digital models, can improve manufacturing efficiency, precision, and reduce costs.
  • a three-dimensional printer comprising a material disk, a molding platform, a projector and a motion mechanism, the motion mechanism comprising a horizontal movement mechanism for driving the material disk to reciprocate in a horizontal direction; and a filter mechanism in the material disk
  • the filtering mechanism is used to move relative to the material tray in the horizontal direction to filter the solid residue in the material tray.
  • the filtering mechanism comprises a filter mesh.
  • the filter mechanism further includes a squeegee for securing the filter screen and scraping off debris from the inner surface of the material tray.
  • a separation layer is included between the bottom of the squeegee and the bottom of the material tray for preventing the squeegee from damaging the inner surface of the bottom of the material tray.
  • the bottom of the material tray includes a residue sedimentation tank for precipitating the residue filtered by the filtration mechanism.
  • the horizontal motion mechanism is a crank slider mechanism for sliding the other end of the crank in the limiting slot on one side of the material disc by rotating with one end of the crank as an axis, so that the material disc reciprocates along the filtering direction of the filtering mechanism. motion.
  • a light engine filtering mechanism is further included for filtering the light of the projector.
  • the light engine filter mechanism has a transmission wavelength of 350 to 420 nm.
  • the light engine filter mechanism is an optical glass at the bottom of the material tray.
  • the method further includes: a data interface, configured to acquire print data from the computer.
  • the data interface comprises: a USB interface for acquiring mechanism control information for controlling movement of the motion mechanism and the work of the projector from the computer; a high definition multimedia interface HDMI and/or a serial interface for acquiring a layered image from the computer information.
  • the method further includes: a control panel for controlling the motion of the motion mechanism and the projection of the layered image by the projector according to the print data.
  • the method further includes: a heat dissipation mechanism for dissipating heat from the printer.
  • the method further includes: a protective cover for isolating external light of the printer; and a power supply mechanism and a switch.
  • Such a three-dimensional printer has a horizontal movement mechanism and a filtering mechanism.
  • the horizontal movement mechanism can drive the material tray to move in the horizontal direction to improve the fluidity of the material.
  • the relative movement of the filter mechanism and the material tray can filter the residue generated during the printing process. Thereby, the effect of cleaning the printing material is achieved, and the printing material quality is improved, and the printing quality is also improved.
  • a three-dimensional printing method comprising: acquiring print data including hierarchical image information and mechanism control information. Completing the single layer printing according to the printing data, comprising: controlling the projector to project to the bottom of the material tray according to the mechanism control information and the layered image information; controlling the motion mechanism to drive the forming platform to move upward by the predetermined single layer height according to the mechanism control information; controlling according to the mechanism control information
  • the moving mechanism drives the material disc to reciprocate horizontally, wherein the material disc has a filtering mechanism inside, and the filtering mechanism is used for moving in a horizontal direction with the material disc to filter the solid residue in the material disc.
  • the next layer of printing is completed based on the print data until the printing is completed.
  • the predetermined single layer height is 10 ⁇ m, 25 ⁇ m, 50 ⁇ m or 100 ⁇ m.
  • controlling the projection of the projector to the bottom of the material tray according to the mechanism control information and the layered image information comprises: controlling the projector to project a fixed image to the bottom of the material tray according to the type of the photosensitive material.
  • the predetermined duration is 1 to 50 s.
  • the method further includes: initializing the printer before starting printing, including initializing the molding platform at an initial position of the predetermined molding platform, and initializing the material tray at an initial position of the predetermined material tray.
  • the initial position of the predetermined forming platform is: the distance between the molding platform and the bottom of the material disc is 0.05-0.2 mm; the initial position of the predetermined material disc is: the light-transmitting area at the bottom of the material disc is located in the projection area of the projector.
  • the method further includes: generating print data according to the model data in a vertical direction according to a predetermined single layer height slice.
  • generating the print data according to the predetermined single layer height in the vertical direction according to the model data further includes: adding support to the model data, and generating print data according to the added model data.
  • generating the print data according to the model data in a vertical direction according to a predetermined single layer height further comprising: setting print parameters according to the type of the photosensitive material in the material tray, the print parameters including a single layer printing duration and/or a predetermined single layer height According to the printing parameters, the model data is sliced in the vertical direction according to a predetermined single layer height to generate print data.
  • the horizontal motion mechanism can drive the material disk to move in the horizontal direction to improve the fluidity of the material; at the same time, the relative movement of the filter mechanism and the material disk can filter the printing process.
  • the residue achieves the effect of cleaning the printed material, and improves the print material quality while improving the print quality.
  • a three-dimensional printing apparatus comprising: a data acquisition unit for acquiring print data, the print data comprising layered image information and mechanism control information.
  • a single layer printing unit for performing single layer printing according to print data comprising: a projection subunit for controlling projection of the projector to the bottom of the material tray according to the mechanism control information and the layered image information; and a vertical movement subunit for the mechanism
  • the control information controls the moving mechanism to drive the forming platform to move upward by a predetermined single layer height;
  • the horizontal motion subunit is configured to control the moving mechanism to drive the horizontal reciprocating movement of the material disc according to the mechanism control information, wherein the material disc has a filtering mechanism inside, and the filtering mechanism is used for The material tray moves relative to each other in the horizontal direction, filtering the solid residue in the material tray.
  • the predetermined single layer height is 10 ⁇ m, 25 ⁇ m, 50 ⁇ m or 100 ⁇ m.
  • the projection subunit is further configured to control the projector to project a fixed image to the bottom of the material tray for a predetermined period of time according to the type of the photosensitive material.
  • the predetermined duration is 1 to 50 s.
  • the method further includes: an initialization unit, configured to initialize the printer before starting to print, including initializing the molding platform at an initial position of the predetermined molding platform, and initializing the material tray is located The initial position of the material tray is predetermined.
  • an initialization unit configured to initialize the printer before starting to print, including initializing the molding platform at an initial position of the predetermined molding platform, and initializing the material tray is located The initial position of the material tray is predetermined.
  • the initial position of the predetermined forming platform is: the distance between the molding platform and the bottom of the material disc is 0.05-0.2 mm; the initial position of the predetermined material disc is: the light-transmitting area at the bottom of the material disc is located in the projection area of the projector.
  • the method further includes: a data generating unit, configured to generate print data according to the model data in a vertical direction according to a predetermined single layer height.
  • the data generating unit is further configured to add support to the model data, and generate print data according to the model data after the support is added.
  • the data generating unit is further configured to: set the printing parameters according to the kind of the photosensitive material in the material tray, the printing parameters include a single layer printing duration and/or a predetermined single layer height; and generate print data according to the printing parameters and the model data.
  • the material disk moves in the horizontal direction to improve the fluidity of the material; at the same time, the relative movement of the filtering mechanism and the material disk can filter the residue generated during the printing process to achieve the cleaning of the printing material.
  • the effect is to improve the print quality while improving the print material usage.
  • FIG. 1 is a schematic view of one embodiment of a three-dimensional printer of the present invention.
  • FIG. 2 is a schematic diagram of one embodiment of a portion of a three-dimensional printer of the present invention.
  • FIG. 3 is a schematic diagram of another embodiment of a portion of a three-dimensional printer of the present invention.
  • 4A is a top plan view of an embodiment of a three-dimensional printer of the present invention with the material tray in a printing position.
  • 4B is a top plan view of one embodiment of the three-dimensional printer of the present invention with the material tray moved horizontally to another position.
  • Figure 5 is a side elevational view of one embodiment of a three dimensional printer of the present invention.
  • Figure 6 is a perspective view of an embodiment of the three-dimensional printer of the present invention in a viewing angle.
  • Figure 7 is a perspective view of an embodiment of the three-dimensional printer of the present invention in another perspective.
  • Figure 8 is a schematic illustration of another embodiment of a three dimensional printer of the present invention.
  • Figure 9 is a flow chart of one embodiment of a three-dimensional printing method of the present invention.
  • Figure 10 is a schematic illustration of one embodiment of a three-dimensional printing apparatus of the present invention.
  • FIG. 1 is a material disc for holding a photosensitive material in a liquid state
  • the bottom of the material disc is a light transmissive material
  • the liquid photosensitive material can be cured under the irradiation of light projected from the bottom of the material disc
  • 2 is a molding platform, in the printing process
  • the print model will be formed layer by layer on the forming platform 2.
  • 31 is a vertical motion mechanism capable of driving the molding platform 2 to move in the vertical direction. During the printing process, each time a layer of printing is completed, the vertical motion mechanism 31 drives the molding platform 2 to move upward by a predetermined height to perform the next layer printing.
  • the vertical motion mechanism 31 can be a high precision roller screw module.
  • 32 is a horizontal motion mechanism capable of driving the material disk 1 to move in the horizontal direction. As shown in FIG. 1, the material disk 1 is driven to move left and right in the horizontal direction.
  • 4 is a projector capable of projecting light of a corresponding pattern toward the bottom of the material tray 1 according to the print data of each layer.
  • 5 is a filtering mechanism. When the material disk 1 is moved in the horizontal direction by the horizontal motion mechanism 32, the material disk 1 will have a relative movement with the filtering mechanism 5, and the filtering mechanism 5 can filter the material disk 1 in the printing process. The residue produced.
  • Such a three-dimensional printer has a horizontal movement mechanism and a filtering mechanism.
  • the horizontal movement mechanism can drive the material tray to move in the horizontal direction to improve the fluidity of the material.
  • the relative movement of the filter mechanism and the material tray can filter the residue generated during the printing process. The effect of cleaning the printed material is achieved, and the use of the printed material is improved, and the print quality is also improved.
  • the filter mechanism includes a filter screen 51.
  • the horizontal motion mechanism 32 drives the material disk 1 to move in the horizontal direction, due to the position of the filter 51
  • the filter 51 is moved relative to the material tray 1 to effect filtration of the photosensitive material in the material tray 1.
  • Such a filter mechanism has a simple and easy to implement structure, and can achieve a good filtering effect, which is advantageous for popularization and application.
  • the filter mechanism also includes a squeegee 52.
  • the squeegee 52 can fix the periphery of the filter screen 51 to ensure the filtering of the photosensitive material through the filter screen 51.
  • the squeegee 52 can also remove the residue adhering to the inner wall of the material disk by contacting with the inner wall of the material disk to improve the filtering effect.
  • Such a filter mechanism has a simple and easy to implement structure, and can effectively improve the filtering effect and further clean the printing material.
  • a separate layer is provided between the bottom of the squeegee 52 and the bottom of the material tray 1 to prevent the squeegee from damaging the inner surface of the bottom of the material tray, increasing the useful life of the material tray.
  • the bottom of the material tray 1 also has a residue sedimentation tank 6.
  • the filter mechanism 5 can push the residue to the position of the residue sedimentation tank.
  • the residue settling tank 6 is a recessed area at the bottom of the material pan 1.
  • projector 4 is a UV (Ultra Violet) projector.
  • the UV projector can use 1920*1080 resolution, UV wavelength is 300nm to 410nm, the physical direction of the forming physical body can achieve 1920*1080 resolution, and the horizontal plane forming area can reach 96*54mm.
  • Such a three-dimensional printer can increase printing accuracy and can print a model with a large volume.
  • the bottom of the material tray 1 has a light engine filtering mechanism 7 capable of filtering the light projected by the projector toward the bottom of the material tray 1.
  • the light engine filter mechanism is an optical glass having a transmission wavelength of from 350 nm to 410 nm.
  • Such a three-dimensional printer can filter out part of the interference light through the light engine filtering mechanism, reduce the influence of the interference light on the curing of the photosensitive material, and can improve the printing precision.
  • the position of the material tray 1 is as shown in FIG. 4A.
  • the molding platform 2 is located above the light engine filtering mechanism 7
  • the filter mechanism 5 is located at one end of the low beam engine filter mechanism 7 of the material disk 1.
  • the horizontal motion mechanism 32 drives the material disk 1 to move in the horizontal direction, as shown in Fig. 4A, in the left and right direction in the drawing.
  • the material tray 1 can be moved to the position shown in Fig. 4B.
  • the filter mechanism 5 is located at the opposite end of the material disk light engine filter mechanism 7, and pushes the residue to the position during the movement to achieve the effect of filtering the residue.
  • the horizontal motion mechanism 32 Upon completion of the filtration, the horizontal motion mechanism 32 will drive the material tray 1 back to the position shown in Figure 4A for the next print.
  • the horizontal motion mechanism 32 is as shown in Figure 4B.
  • One side of the material tray has a limit groove.
  • the horizontal motion mechanism 32 is a crank slider mechanism. The crank rotates with one end (the left end in the figure) as the axis, and the other end slides in the limiting groove, thereby driving the material disk 1 to reciprocate in the horizontal direction along the bottom track.
  • Such a horizontal motion mechanism can convert a circular motion into a linear motion, which is small in size and is suitable for installation in a three-dimensional printer.
  • the three-dimensional printer further includes a reduction motor 8 coupled to the rotational axis of the horizontal motion mechanism 32 to provide motion power to the horizontal motion mechanism.
  • a power supply module 9 is also included, and the power supply module 9 is capable of connecting a power source to power the entire printer.
  • a control panel 10 is also included that is capable of controlling the printing of the three-dimensional printer based on the print data.
  • a motor driver 11 is also included that is capable of driving the motion of the motion mechanism in accordance with control of the control board 10.
  • Such a three-dimensional printer can drive various parts of the printer according to the print data, and complete 3D printing.
  • Figure 6 is a perspective view of an embodiment of the three-dimensional printer of the present invention in a viewing angle
  • Figure 7 is a perspective view of an embodiment of the three-dimensional printer from another perspective.
  • the projector 4 is capable of projecting a pattern to the light engine filtering mechanism 7 at the bottom of the material tray 1, and solidifying and attaching the photosensitive material at the projection position to the molding platform 2 to realize single layer printing.
  • the three-dimensional printer further includes a shield 12 that blocks external light and prevents external light from affecting the curing of the photosensitive material, thereby improving printing accuracy.
  • the shield 12 is a UV shield that enhances the barrier to ultraviolet light, thereby providing a targeted barrier to the effect of ultraviolet light on the curing of the photosensitive material in the case of a UV projector.
  • the three-dimensional printer further includes a data interface for obtaining print data from the computer.
  • a data interface for obtaining print data from the computer.
  • the data interface includes a USB interface and also includes a high definition multimedia interface HDMI or serial interface.
  • the USB interface is used to obtain the mechanism control information for controlling the motion of the motion mechanism and controlling the work of the projector from the computer;
  • the HDMI interface or the serial interface is used for acquiring layered image information from the computer, and projecting the corresponding image according to the layered image information.
  • the mechanism control information and the layered image information are respectively acquired from two ports, which reduces the difficulty of data analysis, improves the efficiency of data analysis, and improves printing efficiency.
  • the three-dimensional printer has a heat dissipation mechanism capable of dissipating heat for the printer, which is advantageous for increasing the single-use duration of the three-dimensional printer and increasing the service life of the three-dimensional printer.
  • the heat dissipating mechanism is a fan located in the lower space of the three-dimensional printer, and can effectively dissipate heat for each structure including the projector, the motor, and the control panel in the lower space.
  • FIG. 1 A flow chart of one embodiment of the three-dimensional printing method of the present invention is shown in FIG.
  • step 901 the three-dimensional printer acquires print data from a computer.
  • the print data includes layered image information and mechanism control information.
  • the three-dimensional printer controls the projector to project toward the bottom of the material tray based on the mechanism control information, and controls the pattern projected by the projector based on the layered image information.
  • the material tray contains a liquid photosensitive material which is poured in advance, and the pouring amount may be 200 ml.
  • the photosensitive material in the material tray that is projected by the projector is cured to achieve single layer printing.
  • step 903 after completing the single layer printing, the three-dimensional printer controls the motion mechanism to drive the forming platform upward to move the predetermined single layer height according to the mechanism control information.
  • the predetermined single layer height is the height of the single layer printing.
  • step 904 the three-dimensional printer controls the horizontal motion mechanism to drive the horizontal reciprocation of the material tray according to the mechanism control information.
  • the material tray has a filtering mechanism inside.
  • the filter mechanism filters the solid residue in the material disk by the relative movement in the horizontal direction with the material disk.
  • step 905 when the printing of all the layers in the print data is completed, the printing is ended.
  • the 3D printer completes the printing of each layer
  • the horizontal motion machine The structure can drive the material disc to move in the horizontal direction to improve the fluidity of the material; at the same time, the relative movement of the filter mechanism and the material disc can filter the residue generated during the printing process, thereby achieving the effect of cleaning the printing material and improving the use of the printing material. At the same time, the print quality is also improved.
  • the predetermined single layer height is 10 ⁇ m, 25 ⁇ m, 50 ⁇ m or 100 ⁇ m, and the predetermined single layer height can be set according to the required printing precision and printing time length, making the three-dimensional printing more flexible.
  • the predetermined duration of time during which the projector projects a fixed image toward the bottom of the material tray can be controlled based on the type of photosensitive material used in the printing. In one embodiment, the predetermined length of time can be selected between 1 and 50 s.
  • Such a three-dimensional printing method can set a single-layer printing duration according to the kind of the photosensitive material, and saves the printing time while ensuring the curing of the photosensitive material.
  • the printer prior to printing, the printer needs to be initialized, including adjusting the forming platform to a predetermined molding platform initial position, and adjusting the material tray to a predetermined material tray initial position.
  • the predetermined forming platform initial position is: the distance between the forming platform and the bottom of the material tray is 0.05-0.2 mm; the initial position of the predetermined material disc is: the light transmitting area at the bottom of the material tray is located in the projection area of the projector.
  • the three-dimensional printing method of the present invention further includes generating print data based on the model data.
  • the print data is generated by slicing the model data in a vertical direction in accordance with a predetermined single layer height.
  • Such a method can generate corresponding print data according to the model data that needs to be printed, and fully satisfy the user's printing requirements.
  • support when generating print data from model data, support needs to be added to the model data. Due to the layering of the three-dimensional printing, based on the characteristics of the model itself, it is necessary to add supporting data to the position of the model to ensure that the part can be attached to the forming platform through the supporting data. After the printing is completed, the printed support material can be removed by post-processing.
  • Print parameters which can be set according to the required printing efficiency, printing accuracy, and type of printed material.
  • the print parameters may include a single layer print duration, and the mechanism control information in the print data will control the projector to continuously project a fixed image for a single layer of print duration.
  • the print parameters may also include a predetermined single layer height, and the three-dimensional printer will print the corresponding model according to a predetermined single layer height set by the user. Such a method can set printing parameters according to the type of photosensitive material used and user requirements, thereby improving the flexibility of three-dimensional printing and more fully satisfying the printing requirements of users.
  • the photosensitive material may be a biomedical material having photosensitive properties, such as a dental photocurable material, which can print three-dimensional printing requirements for high-precision products such as dental dentures, and can be applied to oral repair casting wax type, medical small and medium-sized medical treatment.
  • a dental photocurable material which can print three-dimensional printing requirements for high-precision products such as dental dentures, and can be applied to oral repair casting wax type, medical small and medium-sized medical treatment.
  • the direct three-dimensional shaping of the auxiliary device and the human body instead of the three-dimensional digital model of the prosthesis facilitates the manufacture of a personalized medical model or device quickly, efficiently and at low cost.
  • FIG. 101 is a data acquisition unit capable of acquiring print data from a computer.
  • the print data includes layered image information and mechanism control information.
  • 102 is a single-layer printing unit for layered printing, printing one layer at a time.
  • the single layer printing unit 102 includes a projection subunit 1021, a vertical motion subunit 1022, and a horizontal motion subunit 1023.
  • the projection subunit 1021 controls the projector to project toward the bottom of the material tray according to the mechanism control information, and controls the pattern projected by the projector according to the layered image information.
  • the photosensitive material in the material tray is solidified by the projection, and the printing of the single layer is realized.
  • the vertical motion subunit 1022 controls the motion mechanism to drive the forming platform upward to move the predetermined single layer height according to the mechanism control information, and the predetermined single layer height is The height of the print for a single layer.
  • the horizontal motion subunit 1023 controls the horizontal motion mechanism to drive the horizontal reciprocation of the material disc according to the mechanism control information.
  • the material disc has a filtering mechanism inside. When the material disc moves horizontally, the filtering mechanism passes through the relative movement of the material disc in the horizontal direction to filter the material disc. Solid residue.
  • the single layer printing unit 102 prints layer by layer in accordance with the print data acquired from the data acquiring unit 101 until the printing is completed.
  • the material disk moves in the horizontal direction to improve the fluidity of the material; at the same time, the relative movement of the filtering mechanism and the material disk can filter the residue generated during the printing process to achieve the cleaning of the printing material.
  • the effect is to improve the fight
  • the use of printed materials also improves print quality.
  • the predetermined single layer height is 10 ⁇ m, 25 ⁇ m, 50 ⁇ m or 100 ⁇ m, and the predetermined single layer height can be set according to the required printing precision and printing time length, making the three-dimensional printing more flexible.
  • the predetermined duration of time during which the projector projects a fixed image toward the bottom of the material tray can be controlled based on the type of photosensitive material used in the printing. In one embodiment, the predetermined length of time can be selected between 1 and 50 s.
  • Such a three-dimensional printing apparatus can set a single-layer printing duration according to the kind of photosensitive material, and saves printing time while ensuring curing of the photosensitive material.
  • an initialization unit is further included that is capable of initializing the position of portions of the printer prior to initiating printing, including adjusting the forming platform to a predetermined molding platform initial position, and adjusting the material tray to a predetermined material tray initial position.
  • the predetermined forming platform initial position is a distance of the forming platform from the bottom of the material tray of 0.05-0.2 mm; the predetermined material disc initial position is: the light transmitting area at the bottom of the material tray is located in the projection area of the projector.
  • a data generating unit is further included that is capable of generating print data based on the model data.
  • the print data is generated by slicing the model data in a vertical direction in accordance with a predetermined single layer height.
  • Such a device can generate corresponding print data according to the model data that needs to be printed, and fully satisfy the user's printing requirements.
  • the data generation unit needs to first add support to the model data when generating print data from the model data. Since the three-dimensional printing is layered, based on the characteristics of the model itself, it is necessary to add supporting data to the position of the model to ensure that the part can be attached to the forming platform through the supporting data, thereby increasing the type of model data that can be printed. After the printing is completed, the printed support material can be removed by post-processing.
  • the data generating unit may be provided by the user to set the printing parameters, and the user may set the printing parameters according to the required printing efficiency, printing accuracy, and kind of printing material.
  • the print parameters may include a single layer print duration, and the mechanism control information in the print data will control the projector to continuously project a fixed image for a single layer of print duration.
  • the print parameters may also include a predetermined single layer height, and the three-dimensional printer will print the corresponding model according to a predetermined single layer height set by the user.
  • Such a device can set printing parameters according to the type of photosensitive material used and user requirements, thereby improving the flexibility of three-dimensional printing and more fully satisfying the printing requirements of users.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)

Abstract

公开了一种三维打印机、三维打印方法和装置。三维打印机包括材料盘(1)、成型平台(2)、投影仪(4)和运动机构,运动机构包括用于带动材料盘(1)在水平方向往复运动的水平运动机构(32);材料盘(1)内具有过滤机构(5),当运动机构带动材料盘(1)在水平方向往复运动时,过滤机构(5)用于与材料盘(1)在水平方向相对运动,过滤材料盘(1)中的固体残渣。这样的三维打印机具有水平运动机构和过滤机构,水平运动机构能够带动材料盘在水平方向运动,改善材料的流动性;通过过滤机构与材料盘的相对运动能够过滤打印过程中产生的残渣,达到清洁打印材料的效果,在提高打印材料的使用率的同时,也提高了打印质量。

Description

三维打印机、三维打印方法和装置 技术领域
本发明涉及三维打印领域,特别是一种三维打印机、三维打印方法和装置。
背景技术
快速成型技术(Rapid Prototyping Manufacturing,RPM),又称3D打印,是基于材料堆积法的一种高新制造技术,根据零件或者物体的三维模型数据,通过成型设备以材料累加的方式制造出实物或者模型。由于具有大幅降低生产成本、可根据需求定制的特点,3D打印技术近年来逐渐得到较快发展。
3D打印的基本原理是分层加工、叠加成型,通过逐层增加材料来生成3D实体,在进行3D打印时,首先由计算机通过设计、扫描等方式得到待打印物体的三维模型,再通过电脑辅助设计技术(如CAD(Computer Aided Design,计算机辅助设计))沿某个方向完成一系列数字切片,将这些切片的信息传送到三维打印机上,由计算机根据切片生成机器指令,三维打印机根据该机器指令打印出薄层平面,并将连续的薄层平面堆叠起来,直到一个固态物体成型,形成三维立体实物,完成3D打印。
DLP(Digital Light Processing,数字光处理)是一种基于DMD(Digital Micromirror Device,数字微镜晶片)的新型投影技术,DMD为一个半导体开关,在CMOS硅基晶片的基础上集成多个微镜片,每一微镜片代表一个像素。当一个微镜片处于“开”状态时,入射光将被反射并通过投影镜将影像投射至屏幕上;当一个微镜片处于“关”状态时,入射光将被反射至光吸收器而被吸收。DLP三维打印机是一种基于DLP技术,以液态光固化树脂为成型材料的快速成型设备,具有成型速度快、成型精度高的优点。
在医学领域,也可以采用DLP三维打印机打印具有光敏特性的 生物医用材料,应用于医疗中小型诊疗辅助装置、人体替代假体三维数字模型的直接三维成型,能够提高制造效率、精度,且能够降低成本。
发明内容
本发明的目的在于提出一种带有循环清洁打印材料功能的三维打印机。
根据本发明的一个方面,提出一种三维打印机,包括材料盘、成型平台、投影仪和运动机构,运动机构包括水平运动机构,用于带动材料盘在水平方向往复运动;材料盘内具有过滤机构,当运动机构带动材料盘在水平方向往复运动时,过滤机构用于与材料盘在水平方向相对运动,过滤材料盘中的固体残渣。
可选地,过滤机构包括过滤网。
可选地,过滤机构还包括刮板,用于固定过滤网,以及刮掉材料盘内表面的残渣。
可选地,刮板底部与材料盘底部之间包括分离层,用于防止刮板损伤材料盘底部内表面。
可选地,材料盘底部包括残渣沉淀池,用于沉淀经过滤机构过滤的残渣。
可选地,水平运动机构为曲柄滑块机构,用于通过以曲柄一端为轴的转动带动曲柄的另一端在材料盘一侧的限位槽内滑动,使材料盘沿过滤机构的过滤方向往复运动。
可选地,还包括光引擎过滤机构,用于过滤投影仪的光线。
可选地,光引擎过滤机构的透射波长为350~420nm。
可选地,光引擎过滤机构为材料盘底部的光学玻璃。
可选地,还包括:数据接口,用于从计算机获取打印数据。
可选地,数据接口包括:USB接口,用于从计算机获取控制运动机构运动和投影仪工作的机构控制信息;高清晰度多媒体接口HDMI和/或串行接口,用于从计算机获取分层图像信息。
可选地,还包括:控制板,用于根据打印数据控制运动机构的运动和投影仪投射分层图像。
可选地,还包括:散热机构,用于为打印机散热。
可选地,还包括:防护罩,用于隔绝打印机的外部光线;和供电机构和开关。
这样的三维打印机具有水平运动机构和过滤机构,水平运动机构能够带动材料盘在水平方向运动,改善材料的流动性;同时,通过过滤机构与材料盘的相对运动能够过滤打印过程中产生的残渣,从而达到清洁打印材料的效果,在提高打印材料使用率的同时,也提高了打印质量。
根据本发明的另一个方面,提出一种三维打印方法,包括:获取打印数据,打印数据包括分层图像信息和机构控制信息。根据打印数据完成单层打印,包括:根据机构控制信息和分层图像信息控制投影仪向材料盘底部投影;根据机构控制信息控制运动机构带动成型平台向上运动预定单层高度;根据机构控制信息控制运动机构带动材料盘水平往复运动,其中,材料盘内部具有过滤机构,过滤机构用于与材料盘在水平方向相对运动,过滤材料盘中的固体残渣。根据打印数据完成下一层打印,直至打印完成。
可选地,预定单层高度为10μm,25μm,50μm或100μm。
可选地,根据机构控制信息和分层图像信息控制投影仪向材料盘底部投影包括:根据光敏材料的种类,控制投影仪持续预定时长向材料盘底部投射固定图像。
可选地,预定时长为1~50s。
可选地,还包括:在开始打印前初始化打印机,包括初始化成型平台位于预定成型平台初始位置,初始化材料盘位于预定材料盘初始位置。
可选地,预定成型平台初始位置为:成型平台与材料盘底部的距离为0.05~0.2mm;预定材料盘初始位置为:材料盘底部的透光区域位于投影仪的投射区域。
可选地,还包括:根据模型数据在垂直方向按照预定单层高度切片,生成打印数据。
可选地,根据模型数据在垂直方向按照预定单层高度切片,生成打印数据还包括:对模型数据添加支撑,根据添加支撑后的模型数据生成打印数据。
可选地,根据模型数据在垂直方向按照预定单层高度切片,生成打印数据还包括:根据材料盘中的光敏材料的种类设置打印参数,打印参数包括单层打印时长和/或预定单层高度;根据打印参数,将模型数据在垂直方向按照预定单层高度切片,生成打印数据。
通过这样的方法,三维打印机在完成每层的打印后,水平运动机构能够带动材料盘在水平方向运动,改善材料的流动性;同时,通过过滤机构与材料盘的相对运动能够过滤打印过程中产生的残渣,达到清洁打印材料的效果,在提高打印材料使用率的同时,也提高了打印质量。
根据本发明的再一个方面,提出一种三维打印装置,包括:数据获取单元,用于获取打印数据,打印数据包括分层图像信息和机构控制信息。单层打印单元,用于根据打印数据完成单层打印,包括:投影子单元,用于根据机构控制信息和分层图像信息控制投影仪向材料盘底部投影;垂直运动子单元,用于根据机构控制信息控制运动机构带动成型平台向上运动预定单层高度;水平运动子单元,用于根据机构控制信息控制运动机构带动材料盘水平往复运动,其中,材料盘内部具有过滤机构,过滤机构用于与材料盘在水平方向相对运动,过滤材料盘中的固体残渣。
可选地,预定单层高度为10μm,25μm,50μm或100μm。
可选地,投影子单元,还用于根据光敏材料的种类,控制投影仪持续预定时长向材料盘底部投射固定图像。
可选地,预定时长为1~50s。
可选地,还包括:初始化单元,用于在开始打印前初始化打印机,包括初始化成型平台位于预定成型平台初始位置,初始化材料盘位于 预定材料盘初始位置。
可选地,预定成型平台初始位置为:成型平台与材料盘底部的距离为0.05~0.2mm;预定材料盘初始位置为:材料盘底部的透光区域位于投影仪的投射区域。
可选地,还包括:数据生成单元,用于根据模型数据在垂直方向按照预定单层高度切片,生成打印数据。
可选地,数据生成单元,还用于对模型数据添加支撑,根据添加支撑后的模型数据生成打印数据。
可选地,数据生成单元还用于:根据材料盘中的光敏材料的种类设置打印参数,打印参数包括单层打印时长和/或预定单层高度;根据打印参数和模型数据生成打印数据。
这样的三维打印装置在完成每层的打印后,材料盘在水平方向运动,改善材料的流动性;同时,通过过滤机构与材料盘的相对运动能够过滤打印过程中产生的残渣,达到清洁打印材料的效果,在提高打印材料使用率的同时,提高了打印质量。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的三维打印机的一个实施例的示意图。
图2为本发明的三维打印机的一部分的一个实施例的示意图。
图3为本发明的三维打印机的一部分的另一个实施例的示意图。
图4A为本发明的三维打印机的材料盘位于打印位置时一个实施例的俯视图。
图4B为本发明的三维打印机的材料盘水平运动到另一个位置时一个实施例的俯视图。
图5为本发明的三维打印机的一个实施例的侧视图。
图6为本发明的三维打印机在一个视角下一个实施例的立体图。
图7为本发明的三维打印机在另一个视角下一个实施例的立体图。
图8为本发明的三维打印机的另一个实施例的示意图。
图9为本发明的三维打印方法的一个实施例的流程图。
图10为本发明的三维打印装置的一个实施例的示意图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
本发明的三维打印机的一个实施例的示意图如图1所示。其中,1为材料盘,用于盛放液体状态的光敏材料,材料盘底部为透光材料,液体光敏材料在从材料盘底部投射的光线的照射下能够固化;2为成型平台,在打印过程中,打印模型将在成型平台2上逐层成型。31为垂直运动机构,能够带动成型平台2在垂直方向上运动,在打印过程中,每完成一层打印,垂直运动机构31带动成型平台2向上运动预定高度,进行下一层打印。在一个实施例中,垂直运动机构31可以为高精度滚柱丝杠模组。32为水平运动机构,能够带动材料盘1在水平方向上运动,如图1中,带动材料盘1在水平方向上左右运动。4为投影仪,能够根据每层的打印数据向材料盘1的底部投射对应图案的光线。5为过滤机构,当材料盘1在水平运动机构32的带动下在水平方向上运动时,材料盘1会发生与过滤机构5的相对运动,过滤机构5能够过滤材料盘1中在打印过程中产生的残渣。
这样的三维打印机具有水平运动机构和过滤机构,水平运动机构能够带动材料盘在水平方向运动,改善材料的流动性;同时,通过过滤机构与材料盘的相对运动能够过滤打印过程中产生的残渣,达到清洁打印材料的效果,在提高打印材料的使用率的同时,也提高了打印质量。
在一个实施例中,如图2所示,过滤机构包括过滤网51。当水平运动机构32带动材料盘1在水平方向上运动时,由于过滤网51的位 置不变,过滤网51会发生与材料盘1的相对运动,从而实现对材料盘1中光敏材料的过滤。这样的过滤机构结构简单易实现,且能够达到好的过滤效果,利于推广应用。
在一个实施例中,过滤机构还包括刮板52。刮板52能够固定过滤网51的四周,保证光敏材料经过过滤网51的过滤;刮板52还能够通过与材料盘内壁的接触,清除材料盘内壁附着的残渣,提高过滤效果。这样的过滤机构结构简单易实现,且能够有效提升过滤效果,进一步清洁了打印材料。
在一个实施例中,刮板52的底部与材料盘1的底部之间具有分离层,能够防止刮板损伤材料盘底部内表面,提高了材料盘的使用寿命。
在一个实施例中,如图3所示,材料盘1底部还具有残渣沉淀池6。当水平运动机构32带动材料盘1与过滤机构5相对运动时,过滤机构5能够推动残渣到达残渣沉淀池的位置。当材料盘1恢复单层打印位置时,由于残渣沉淀池的阻挡,残渣会留在残渣沉淀池的位置,从而进一步提高了过滤效果。在一个实施例中,残渣沉淀池6为材料盘1底部的凹陷区域。
在一个实施例中,投影仪4为UV(Ultra Violet,紫外线)投影仪。UV投影仪可以采用1920*1080分辨率,UV波长为300nm到410nm,成型物理实体水平方向可以实现1920*1080分辨率,水平方向平面成型面积可以达到96*54mm。这样的三维打印机能够增加打印精度,且能够打印体积较大的模型。
在一个实施例中,如图4A所示,材料盘1底部具有光引擎过滤机构7,能够过滤投影仪向材料盘1底部投射的光线。在一个实施例中,光引擎过滤机构为光学玻璃,其透射波长为350nm~410nm。这样的三维打印机,能够通过光引擎过滤机构滤掉部分干扰光线,降低干扰光线对光敏材料固化的影响,能够提高打印精度。
在一个实施例中,当三维打印机处于单层打印状态时,材料盘1的位置如图4A所示。成型平台2位于光引擎过滤机构7的上方,过 滤机构5位于材料盘1近光引擎过滤机构7的一端。当完成单层打印后,水平运动机构32带动材料盘1在水平方向上运动,如图4A中,在图中左右方向运动。材料盘1能够运动到如图4B所示的位置。过滤机构5位于材料盘光引擎过滤机构7的对端,在运动过程中将残渣推到该位置,达到过滤残渣的效果。完成过滤后,水平运动机构32会带动材料盘1恢复如图4A所示的位置,以便进行下一次打印。
在一个实施例中,水平运动机构32如图4B中所示。材料盘的一侧具有限位槽。水平运动机构32为曲柄滑块机构。曲柄以其一端(图中左端)为轴转动,另一端在限位槽内滑动,从而带动材料盘1沿底部轨道在水平方向上往复运动。这样的水平运动机构能够将圆周运动转化为直线运动,体积小,利于安装于三维打印机中。
在一个实施例中,如图5所示,三维打印机还包括减速电机8,连接水平运动机构32的转动轴,为水平运动机构提供运动动力。在一个实施例中,还包括供电模块9,供电模块9能够连接电源,为整个打印机供电。在一个实施例中,还包括控制板10,能够根据打印数据控制三维打印机的打印。在一个实施例中,还包括电机驱动器11,能够根据控制板10的控制驱动运动机构的运动。这样的三维打印机能够根据打印数据实现对打印机各个部分的驱动,完成3D打印。
图6为本发明的三维打印机在一个视角下一个实施例的立体图,图7为三维打印机在另一个视角下一个实施例的立体图。投影仪4能够向材料盘1底部的光引擎过滤机构7投射图案,使投射位置的光敏材料固化并附着在成型平台2上,实现单层的打印。在一个实施例中,如图8所示,三维打印机还包括防护罩12,能够阻隔外部的光线,防止外部光线对光敏材料固化的影响,从而提高打印精度。在一个实施例中,防护罩12为UV防护罩,增强对紫外线的阻隔效果,从而在投影仪为UV投影仪的情况下,有针对性的阻隔环境中的紫外线对光敏材料固化的影响。
在一个实施例中,三维打印机还包括数据接口,用于从计算机获取打印数据。这样的三维打印机能够实时从计算机获取打印数据,根 据获取的打印数据进行打印。在一个实施例中,数据接口包括USB接口,还包括高清多媒体接口HDMI或串行接口。USB接口用于从计算机获取控制运动机构运动以及控制投影仪工作的机构控制信息;HDMI接口或串行接口用于从计算机获取分层图像信息,按照分层图像信息投射对应图像。这样的三维打印机,其机构控制信息和分层图像信息分别从两个端口获取,降低了数据解析的难度,能够提高数据解析的效率,提高打印效率。
在一个实施例中,三维打印机中具有散热机构,能够为打印机散热,有利于提高三维打印机的单次使用时长,也能够增加三维打印机的使用寿命。在一个实施例中,散热机构为位于三维打印机下部空间内的风扇,能够有效为下部空间内包括投影仪、电机、控制板在内的各个结构散热。
本发明的三维打印方法的一个实施例的流程图如图9所示。
在步骤901中,三维打印机从计算机获取打印数据。打印数据包括分层图像信息和机构控制信息。
在步骤902中,三维打印机根据机构控制信息控制投影仪向材料盘底部投影,根据分层图像信息控制投影仪投射的图案。材料盘中盛放有预先倒入的液态的光敏材料,倒入量可以为200ml。材料盘内经投影仪投射光线的光敏材料固化,实现单层的打印。
在步骤903中,在完成单层打印后,三维打印机根据机构控制信息控制运动机构带动成型平台向上运动预定单层高度。预定单层高度即为单层打印的高度。
在步骤904中,三维打印机根据机构控制信息控制水平运动机构带动材料盘水平往复运动。材料盘内部具有过滤机构。当材料盘水平运动时,过滤机构通过与材料盘在水平方向的相对运动,过滤材料盘中的固体残渣。当材料盘位置恢复时,若未完成打印,则重复步骤902~904的过程。
在步骤905中,当完成打印数据中全部层的打印时,结束打印。
通过这样的方法,三维打印机在完成每层的打印后,水平运动机 构能够带动材料盘在水平方向运动,改善材料的流动性;同时,通过过滤机构与材料盘的相对运动能够过滤打印过程中产生的残渣,从而达到清洁打印材料的效果,在提高打印材料的使用率的同时,也提高了打印质量。
在一个实施例中,预定单层高度为10μm,25μm,50μm或100μm,可以根据需要的打印精度和打印时长设置预定单层高度,使三维打印更加灵活。
在一个实施例中,可以根据打印中使用的光敏材料的种类,控制投影仪向材料盘底部投射固定图像持续的预定时长。在一个实施例中,预定时长可以在1~50s之间选择。这样的三维打印方法,能够根据光敏材料的种类设置单层打印时长,在保证光敏材料固化的同时,节省了打印时间。
在一个实施例中,在进行打印之前,需要初始化打印机,包括将成型平台调整到预定成型平台初始位置,将材料盘调整到预定材料盘初始位置。在一个实施例中,预定成型平台初始位置为:成型平台与材料盘底部的距离为0.05-0.2mm;预定材料盘初始位置为:材料盘底部的透光区域位于投影仪的投射区域。这样的方法能够保证光敏材料按照分层图像信息固化且附着在成型平台上,有效提高了三维打印的成功率。
在一个实施例中,本发明的三维打印方法还包括根据模型数据生成打印数据。通过将模型数据在垂直方向上按照预定单层高度切片处理,生成打印数据。这样的方法能够根据需要打印的模型数据生成对应的打印数据,充分满足用户的打印需求。
在一个实施例中,在根据模型数据生成打印数据时,需要先对模型数据添加支撑。由于三维打印分层进行,基于模型自身的特点,需要对模型部分位置添加支撑数据,保证该部分能够通过支撑数据附着在成型平台上。在完成打印后,可以通过后期处理清除打印出的支撑材料。
在一个实施例中,在根据模型数据生成打印数据时,需要设置打 印参数,可以根据需要的打印效率、打印精度和打印材料的种类设置打印参数。在一个实施例中,打印参数可以包括单层打印时长,打印数据中的机构控制信息会控制投影仪按照单层打印时长持续投射固定图像。在一个实施例中,打印参数还可以包括预定单层高度,三维打印机会根据用户设定的预定单层高度打印对应的模型。这样的方法能够根据使用的光敏材料种类和用户需求设置打印参数,从而提高了三维打印的灵活性,能够更加充分的满足用户的打印需求。
在一个实施例中,光敏材料可以为具有光敏特性的生物医学材料,如牙科光固化材料,打印满足口腔义齿等高精度制品的三维打印需求,能够适用于口腔修复铸造蜡型、医疗中小型诊疗辅助装置、人体替代假体三维数字模型的直接三维成型,有利于快速、高效且低成本的制造个性化的医用模型或装置。
本发明的三维打印装置的一个实施例的示意图如图10所示。其中,101为数据获取单元,能够从计算机获取打印数据。打印数据包括分层图像信息和机构控制信息。102为单层打印单元,用于分层打印,每次完成一层的打印。单层打印单元102包括投影子单元1021、垂直运动子单元1022和水平运动子单元1023。其中,投影子单元1021根据机构控制信息控制投影仪向材料盘底部投影,根据分层图像信息控制投影仪投射的图案。材料盘内经投影投射的光敏材料固化,实现单层的打印;在完成单层打印后,垂直运动子单元1022根据机构控制信息控制运动机构带动成型平台向上运动预定单层高度,预定单层高度即为单层打印的高度。水平运动子单元1023根据机构控制信息控制水平运动机构带动材料盘水平往复运动,材料盘内部具有过滤机构,当材料盘水平运动时,过滤机构通过与材料盘在水平方向的相对运动过滤材料盘中的固体残渣。单层打印单元102根据从数据获取单元101获取的打印数据逐层打印,直至打印完成。
这样的三维打印装置在完成每层的打印后,材料盘在水平方向运动,改善材料的流动性;同时,通过过滤机构与材料盘的相对运动能够过滤打印过程中产生的残渣,达到清洁打印材料的效果,在提高打 印材料的使用率的同时,也提高了打印质量。
在一个实施例中,预定单层高度为10μm,25μm,50μm或100μm,可以根据需要的打印精度和打印时长设置预定单层高度,使三维打印更加灵活。
在一个实施例中,可以根据打印中使用的光敏材料的种类,控制投影仪向材料盘底部投射固定图像持续的预定时长。在一个实施例中,预定时长可以在1~50s之间选择。这样的三维打印装置,能够根据光敏材料的种类设置单层打印时长,在保证光敏材料固化的同时,节省了打印时间。
在一个实施例中,还包括初始化单元,能够在开始打印前初始化打印机各部分的位置,包括将成型平台调整到预定成型平台初始位置,以及将材料盘调整到预定材料盘初始位置。在一个实施例中,预定成型平台初始位置为成型平台与材料盘底部的距离为0.05-0.2mm;预定材料盘初始位置为:材料盘底部的透光区域位于投影仪的投射区域。这样的装置能够保证光敏材料按照分层图像信息固化且附着在成型平台上,有效提高了三维打印的成功率。
在一个实施例中,还包括数据生成单元,能够根据模型数据生成打印数据。通过将模型数据在垂直方向上按照预定单层高度切片处理,生成打印数据。这样的装置能够根据需要打印的模型数据生成对应的打印数据,充分满足用户的打印需求。
在一个实施例中,数据生成单元在根据模型数据生成打印数据时,需要先对模型数据添加支撑。由于三维打印为分层进行,基于模型自身的特点,需要对模型部分位置添加支撑数据,保证该部分能够通过支撑数据实现对成型平台的附着,从而增加了可以打印的模型数据种类。在完成打印后,可以通过后期处理清除打印出的支撑材料。
在一个实施例中,数据生成单元可以供用户设置打印参数,用户可以根据需要的打印效率、打印精度和打印材料的种类设置打印参数。在一个实施例中,打印参数可以包括单层打印时长,打印数据中的机构控制信息会控制投影仪会按照单层打印时长持续投射固定图像。在 一个实施例中,打印参数还可以包括预定单层高度,三维打印机会根据用户设定的预定单层高度打印对应的模型。这样的装置能够根据使用的光敏材料种类和用户需求设置打印参数,从而提高了三维打印的灵活性,能够更加充分的满足用户的打印需求。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制;尽管参照较佳实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本发明技术方案的精神,其均应涵盖在本发明请求保护的技术方案范围当中。

Claims (29)

  1. 一种三维打印机,包括材料盘、成型平台、投影仪和运动机构,其特征在于:
    所述运动机构包括水平运动机构,用于带动所述材料盘在水平方向往复运动;
    所述材料盘内具有过滤机构,当所述运动机构带动所述材料盘在水平方向往复运动时,所述过滤机构用于与所述材料盘在水平方向相对运动,过滤所述材料盘中的固体残渣。
  2. 根据权利要求1所述的打印机,其特征在于,所述过滤机构包括过滤网。
  3. 根据权利要求2所述的打印机,其特征在于,所述过滤机构还包括刮板,用于固定所述过滤网,以及刮掉所述材料盘内表面的残渣。
  4. 根据权利要求3所述的打印机,其特征在于,所述刮板底部与所述材料盘底部之间包括分离层,用于防止所述刮板损伤所述材料盘底部内表面。
  5. 根据权利要求1所述的打印机,其特征在于,所述材料盘底部包括残渣沉淀池,用于沉淀经所述过滤机构过滤的残渣。
  6. 根据权利要求1所述的打印机,其特征在于,
    所述水平运动机构为曲柄滑块机构,用于通过以曲柄一端为轴的转动带动曲柄的另一端在所述材料盘一侧的限位槽内滑动,使所述材料盘沿所述过滤机构的过滤方向往复运动。
  7. 根据权利要求1所述的打印机,其特征在于,还包括光引擎过滤机构,用于过滤所述投影仪的光线。
  8. 根据权利要求7所述的打印机,其特征在于,所述光引擎过滤机构的透射波长为350~420nm;
    和/或,
    所述光引擎过滤机构为所述材料盘底部的光学玻璃。
  9. 根据权利要求1所述的打印机,其特征在于,还包括:
    数据接口,用于从计算机获取打印数据。
  10. 根据权利要求9所述的打印机,其特征在于,所述数据接口包括:
    USB接口,用于从计算机获取控制所述运动机构运动和所述投影仪工作的机构控制信息;
    高清晰度多媒体接口HDMI和/或串行接口,用于从计算机获取分层图像信息。
  11. 根据权利要求1所述的打印机,其特征在于,还包括:
    控制板,用于根据打印数据控制所述运动机构的运动和所述投影仪投射分层图像;和/或
    散热机构,用于为所述打印机散热;
    防护罩,用于隔绝打印机的外部光线;和
    供电机构和开关。
  12. 一种三维打印方法,其特征在于,包括:
    获取打印数据,所述打印数据包括分层图像信息和机构控制信息;
    根据所述打印数据完成单层打印,包括:
    根据所述机构控制信息和所述分层图像信息控制投影仪向材料盘底部投影;
    根据所述机构控制信息控制运动机构带动成型平台向上运动预定单层高度;
    根据所述机构控制信息控制运动机构带动材料盘水平往复运动,其中,所述材料盘内部具有过滤机构,所述过滤机构用于与所述材料盘在水平方向相对运动,过滤所述材料盘中的固体残渣;
    根据所述打印数据完成下一层打印,直至打印完成。
  13. 根据权利要求12所述的方法,其特征在于,所述预定单层高度为10μm,25μm,50μm或100μm。
  14. 根据权利要求12所述的方法,其特征在于,所述根据所述 机构控制信息和所述分层图像信息控制投影仪向材料盘底部投影包括:
    根据光敏材料的种类,控制所述投影仪持续预定时长向材料盘底部投射固定图像。
  15. 根据权利要求14所述的方法,其特征在于,所述预定时长为1~50s。
  16. 根据权利要求12所述的方法,其特征在于,还包括:
    在开始打印前初始化所述打印机,包括初始化所述成型平台位于预定成型平台初始位置,初始化所述材料盘位于预定材料盘初始位置。
  17. 根据权利要求16所述的方法,其特征在于,
    所述预定成型平台初始位置为:所述成型平台与所述材料盘底部的距离为0.05-0.2mm;
    所述预定材料盘初始位置为:所述材料盘底部的透光区域位于所述投影仪的投射区域。
  18. 根据权利要求12所述的方法,其特征在于,还包括:
    根据模型数据在垂直方向按照预定单层高度切片,生成打印数据。
  19. 根据权利要求18所述的方法,其特征在于,所述根据模型数据在垂直方向按照预定单层高度切片,生成打印数据还包括:对所述模型数据添加支撑,根据添加支撑后的模型数据生成打印数据。
  20. 根据权利要求18所述的方法,其特征在于,
    所述根据模型数据在垂直方向按照预定单层高度切片,生成打印数据还包括:根据材料盘中的光敏材料的种类设置打印参数,所述打印参数包括单层打印时长和/或预定单层高度;根据所述打印参数,将所述模型数据在垂直方向按照预定单层高度切片,生成所述打印数据。
  21. 一种三维打印装置,其特征在于,包括:
    数据获取单元,用于获取打印数据,所述打印数据包括分层图像信息和机构控制信息;
    单层打印单元,用于根据所述打印数据完成单层打印,包括:
    投影子单元,用于根据所述机构控制信息和所述分层图像信息控制投影仪向材料盘底部投影;
    垂直运动子单元,用于根据所述机构控制信息控制运动机构带动成型平台向上运动预定单层高度;
    水平运动子单元,用于根据所述机构控制信息控制运动机构带动材料盘水平往复运动,其中,所述材料盘内部具有过滤机构,所述过滤机构用于与所述材料盘在水平方向相对运动,过滤所述材料盘中的固体残渣。
  22. 根据权利要求21所述的装置,其特征在于,所述预定单层高度为10μm,25μm,50μm或100μm。
  23. 根据权利要求21所述的装置,其特征在于,
    所述投影子单元,还用于根据光敏材料的种类,控制所述投影仪持续预定时长向材料盘底部投射固定图像。
  24. 根据权利要求23所述的装置,其特征在于,所述预定时长为1~50s。
  25. 根据权利要求24所述的装置,其特征在于,还包括:
    初始化单元,用于在开始打印前初始化所述打印机,包括初始化所述成型平台位于预定成型平台初始位置,初始化所述材料盘位于预定材料盘初始位置。
  26. 根据权利要求25所述的装置,其特征在于,
    所述预定成型平台初始位置为:所述成型平台与所述材料盘底部的距离为0.05-0.2mm;
    所述预定材料盘初始位置为:所述材料盘底部的透光区域位于所述投影仪的投射区域。
  27. 根据权利要求21所述的装置,其特征在于,还包括:
    数据生成单元,用于根据模型数据在垂直方向按照预定单层高度切片,生成打印数据。
  28. 根据权利要求27所述的装置,其特征在于,所述数据生成单元,还用于对所述模型数据添加支撑,根据添加支撑后的模型数据 生成打印数据。
  29. 根据权利要求27所述的装置,其特征在于,
    所述数据生成单元还用于:根据材料盘中的光敏材料的种类设置打印参数,所述打印参数包括单层打印时长和/或预定单层高度;根据所述打印参数和所述模型数据生成所述打印数据。
PCT/CN2015/090504 2015-09-24 2015-09-24 三维打印机、三维打印方法和装置 WO2017049519A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/090504 WO2017049519A1 (zh) 2015-09-24 2015-09-24 三维打印机、三维打印方法和装置
CN201580002572.6A CN107107460B (zh) 2015-09-24 2015-09-24 三维打印机、三维打印方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090504 WO2017049519A1 (zh) 2015-09-24 2015-09-24 三维打印机、三维打印方法和装置

Publications (1)

Publication Number Publication Date
WO2017049519A1 true WO2017049519A1 (zh) 2017-03-30

Family

ID=58385667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090504 WO2017049519A1 (zh) 2015-09-24 2015-09-24 三维打印机、三维打印方法和装置

Country Status (2)

Country Link
CN (1) CN107107460B (zh)
WO (1) WO2017049519A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109397471A (zh) * 2018-12-17 2019-03-01 东莞理工学院 一种下曝式陶瓷光固化成型机
CN115107272A (zh) * 2022-07-04 2022-09-27 湖南大学 一种多材质构件体积打印成形方法及***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108081611B (zh) * 2017-12-29 2024-05-10 深圳长朗智能科技有限公司 光固化三维打印设备及打印方法
CN113681900B (zh) * 2021-08-31 2023-06-16 安徽创融增材制造技术有限公司 一种基于3d打印技术的个性化汽车格栅定制***与设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081795A (ja) * 1994-06-24 1996-01-09 Asahi Chem Ind Co Ltd 三次元物体の製造装置
JP2005047096A (ja) * 2003-07-31 2005-02-24 Mitsubishi Motors Corp 光造形装置
CN103522546A (zh) * 2013-09-26 2014-01-22 瑞安市麦田网络科技有限公司 一种高精度激光光固3d打印机
CN104527065A (zh) * 2014-12-18 2015-04-22 宁波高新区泰博科技有限公司 一种具有刮平功能的激光3d打印机及其光固化打印方法
CN104589651A (zh) * 2015-01-19 2015-05-06 中国科学院物理研究所 光固化打印设备及方法
CN104723560A (zh) * 2015-03-19 2015-06-24 珠海天威飞马打印耗材有限公司 Dlp三维打印机及三维打印方法
CN104749803A (zh) * 2015-04-21 2015-07-01 京东方科技集团股份有限公司 一种3d打印装置的成像***、成像方法及3d打印装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017596B2 (en) * 2013-01-31 2015-04-28 Siemens Energy, Inc. Slag removal apparatus and method
TWI526321B (zh) * 2014-01-28 2016-03-21 三緯國際立體列印科技股份有限公司 具有刮料機構的裝置及三維印表機
CN103935037B (zh) * 2014-04-09 2016-01-20 西安交通大学 一种集成式粉末彩色3d打印机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081795A (ja) * 1994-06-24 1996-01-09 Asahi Chem Ind Co Ltd 三次元物体の製造装置
JP2005047096A (ja) * 2003-07-31 2005-02-24 Mitsubishi Motors Corp 光造形装置
CN103522546A (zh) * 2013-09-26 2014-01-22 瑞安市麦田网络科技有限公司 一种高精度激光光固3d打印机
CN104527065A (zh) * 2014-12-18 2015-04-22 宁波高新区泰博科技有限公司 一种具有刮平功能的激光3d打印机及其光固化打印方法
CN104589651A (zh) * 2015-01-19 2015-05-06 中国科学院物理研究所 光固化打印设备及方法
CN104723560A (zh) * 2015-03-19 2015-06-24 珠海天威飞马打印耗材有限公司 Dlp三维打印机及三维打印方法
CN104749803A (zh) * 2015-04-21 2015-07-01 京东方科技集团股份有限公司 一种3d打印装置的成像***、成像方法及3d打印装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109397471A (zh) * 2018-12-17 2019-03-01 东莞理工学院 一种下曝式陶瓷光固化成型机
CN109397471B (zh) * 2018-12-17 2020-11-17 东莞理工学院 一种下曝式陶瓷光固化成型机
CN115107272A (zh) * 2022-07-04 2022-09-27 湖南大学 一种多材质构件体积打印成形方法及***
CN115107272B (zh) * 2022-07-04 2023-07-14 湖南大学 一种多材质构件体积打印成形方法及***

Also Published As

Publication number Publication date
CN107107460B (zh) 2019-06-21
CN107107460A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
WO2017049519A1 (zh) 三维打印机、三维打印方法和装置
US10399272B2 (en) Continuous pull three-dimensional printing
KR102217967B1 (ko) 개선된 공간 해상도를 갖는, 리소그래피에 의한 체적 물체의 생산
US7614866B2 (en) Solid imaging apparatus and method
EP2996852B1 (en) Apparatus for fabrication of three dimensional objects
US8221671B2 (en) Imager and method for consistent repeatable alignment in a solid imaging apparatus
US8105066B2 (en) Cartridge for solid imaging apparatus and method
WO2017219618A1 (zh) 一种成型方法
CN103934940B (zh) 一种应用于光固化快速成型的后处理装置及三维打印机
TWI566918B (zh) 立體列印系統
WO2017088796A1 (zh) 高速往复式彩色3d打印机
CN203831648U (zh) 一种应用于光固化快速成型的后处理装置及三维打印机
US20080170112A1 (en) Build pad, solid image build, and method for building build supports
CN204869689U (zh) 数字光处理三维打印机
CN103203875B (zh) 一种平面光固化快速成型装置及方法
CN105216319A (zh) 3d立体投影式光固化3d打印机
CN104842565A (zh) 一种快速液体界面3d打印***
CN108248020A (zh) 一种水平式dlp投影技术面曝光成型装置及方法
CN108724430A (zh) 一种陶瓷光固化3d打印***及方法
CN105563839A (zh) Dlp三维打印装置及其成型方法
CN206011737U (zh) 一种基于ldi技术的激光3d打印机
CN109822890A (zh) 一种便携式桌面dlp打印机
CN108177338A (zh) 一种基于dlp投影技术的快速面曝光成型***及方法
CN206230878U (zh) 一种基于dlp投影技术的快速面曝光成型装置
CN206124213U (zh) 一种高精度3d打印装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904406

Country of ref document: EP

Kind code of ref document: A1