WO2017047671A1 - Connection material - Google Patents

Connection material Download PDF

Info

Publication number
WO2017047671A1
WO2017047671A1 PCT/JP2016/077197 JP2016077197W WO2017047671A1 WO 2017047671 A1 WO2017047671 A1 WO 2017047671A1 JP 2016077197 W JP2016077197 W JP 2016077197W WO 2017047671 A1 WO2017047671 A1 WO 2017047671A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
particles
conductive film
film
resin
Prior art date
Application number
PCT/JP2016/077197
Other languages
French (fr)
Japanese (ja)
Inventor
達朗 深谷
朋之 石松
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020237001742A priority Critical patent/KR20230013642A/en
Priority to KR1020187006192A priority patent/KR20180036770A/en
Priority to CN201680050992.6A priority patent/CN107925175A/en
Priority to KR1020207018568A priority patent/KR20200080337A/en
Publication of WO2017047671A1 publication Critical patent/WO2017047671A1/en
Priority to HK18110689.5A priority patent/HK1251356A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal

Definitions

  • the present invention relates to a connection material for electrically connecting circuit members with conductive particles.
  • Patent Documents 1 and 2 describe a technique for reducing resistance by providing protrusions on conductive particles.
  • the conductive particles described in Patent Document 1 since the protruding core material is directly attached to the base material (resin particles), the protruding core material is buried in the base material by the pressure during mounting, and the pressure applied to the electrode Decrease. For this reason, for example, in an IZO electrode having a smooth surface, it is difficult to obtain a low connection resistance value.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a connection material capable of obtaining a low connection resistance value.
  • connection material according to the present invention includes resin particles, a first conductive film covering the resin particles, and a plurality of the conductive materials disposed on the first conductive film, and has a Vickers hardness. Containing conductive particles having a protruding core material having a thickness of 1500 to 5000, a second conductive film covering the first conductive film and the protruding core material, and having a minimum melt viscosity of 1 to 100000 Pa. -S.
  • connection structure which concerns on this invention mounts a 2nd circuit member on the 1st circuit member through the connection material containing electroconductive particle, The said 2nd circuit member Heating and pressing with a crimping tool to cure the connection material, wherein the conductive particles are resin particles, a first conductive coating covering the resin particles, and the first metal coating.
  • the conductive particles are resin particles, a first conductive coating covering the resin particles, and the first metal coating.
  • a plurality of projecting core members arranged on the top and having a Vickers hardness of 1500 to 5000, and a second conductive film covering the first metal layer and the projecting core material; The melt viscosity is 1 to 100,000 Pa ⁇ s.
  • a connection structure includes a first circuit member, a second circuit member, and a connection cured film that connects the first circuit member and the second circuit member,
  • the connection cured film includes a resin particle, a first conductive film covering the resin particle, a plurality of disposed on the first metal film, and a protruding core material having a Vickers hardness of 1500 to 5000; Conductive particles having a first metal layer and a second conductive film covering the protruding core material are provided.
  • the binder between the conductive particles and the electrode is sufficiently eliminated, and the pressure applied to the electrode is sufficiently obtained, so that a low connection resistance value can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of conductive particles.
  • connection material 2. Manufacturing method of connection structure Example
  • connection material includes resin particles, a first conductive film covering the resin particles, and a plurality of disposed cores on the first conductive film, and a protruding core material having a Vickers hardness of 1500 to 5000 And conductive particles having a first conductive coating and a second conductive coating covering the protruding core material, and a minimum melt viscosity of 1 to 100,000 Pa ⁇ s.
  • connection material is not particularly limited, and can be appropriately selected according to the application such as a film shape or a paste shape.
  • the connection material include an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), and the like.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • examples of the curing type of the conductive material include a thermosetting type, a photocuring type, a photothermal combined curing type, and the like, and can be appropriately selected depending on the application.
  • thermosetting anisotropic conductive film containing conductive particles will be described as an example.
  • thermosetting type for example, a cationic curing type, an anion curing type, a radical curing type, or a combination thereof can be used.
  • an anion curing type anisotropic conductive film will be described.
  • the anion curable anisotropic conductive film contains a film-forming resin, an epoxy resin, and an anionic polymerization initiator as a binder.
  • the blending amount of the conductive particles in the anisotropic conductive film is preferably 5 to 15% by volume with respect to the binder volume.
  • the film-forming resin corresponds to, for example, a high-molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
  • the film-forming resin include various resins such as phenoxy resin, polyester resin, polyurethane resin, polyester urethane resin, acrylic resin, polyimide resin, and butyral resin. These may be used alone or in combination of two or more. May be used. Among these, it is preferable to use a phenoxy resin from the viewpoints of film formation state, connection reliability, and the like.
  • the trade name “YP-50” of Nippon Steel & Sumikin Chemical Co., Ltd. can be cited.
  • the epoxy resin forms a three-dimensional network structure and imparts good heat resistance and adhesiveness, and it is preferable to use a solid epoxy resin and a liquid epoxy resin in combination.
  • the solid epoxy resin means an epoxy resin that is solid at room temperature.
  • the liquid epoxy resin means an epoxy resin that is liquid at room temperature.
  • the normal temperature means a temperature range of 5 to 35 ° C. defined by JIS Z 8703.
  • the solid epoxy resin is not particularly limited as long as it is compatible with a liquid epoxy resin and is solid at room temperature.
  • Bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyfunctional type epoxy resin, dicyclopentadiene type epoxy resin , Novolak phenol type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, and the like are examples of Bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyfunctional type epoxy resin, dicyclopentadiene type epoxy resin , Novolak phenol type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, and the like. Among these, one kind can be used alone, or two or more kinds can be used in combination.
  • the liquid epoxy resin is not particularly limited as long as it is liquid at normal temperature, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac phenol type epoxy resin, naphthalene type epoxy resin, and the like. Can be used alone or in combination of two or more. In particular, it is preferable to use a bisphenol A type epoxy resin from the viewpoint of film tackiness and flexibility. As a specific example available on the market, a trade name “EP828” of Mitsubishi Chemical Corporation may be mentioned.
  • anionic polymerization initiator a commonly used known curing agent can be used.
  • one kind can be used alone, or two or more kinds can be used in combination.
  • microcapsule type latent curing agent having an imidazole-modified product as a core and a surface thereof coated with polyurethane.
  • a trade name “Novacure 3941” of Asahi Kasei E-Materials Co., Ltd. can be cited.
  • a silane coupling agent examples include epoxy, methacryloxy, amino, vinyl, mercapto sulfide, ureido and the like.
  • the stress relaxation agent examples include a hydrogenated styrene-butadiene block copolymer and a hydrogenated styrene-isoprene block copolymer.
  • the inorganic filler examples include silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like.
  • the minimum melt viscosity of the anisotropic conductive film is 1 to 100,000 Pa ⁇ s, more preferably 10 to 10,000 Pa ⁇ s.
  • the optimization of the minimum melt viscosity depends on the compression deformation characteristics of the conductive particles, but if the minimum melt viscosity is too high, the binder between the conductive particles and the electrode cannot be sufficiently eliminated during thermocompression bonding. Resistance tends to increase. In particular, it is difficult for the conductive particles having protrusions to sufficiently eliminate the binder between the conductive particles and the electrode during thermocompression bonding.
  • connection resistance increases immediately after thermocompression bonding or bubbles are generated in the connection portion.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of conductive particles.
  • the conductive particles include a resin core particle 10, a first conductive layer 11 covering the resin core particle 10, a plurality of protruding core members 12 attached to the surface of the conductive layer 11, the first conductive layer 11 and the protruding core. And a second conductive layer 13 covering the material 12.
  • the resin core particle 10 examples include a benzoguanamine resin, an acrylic resin, a styrene resin, a silicone resin, and a polybutadiene resin.
  • the resin core particle 10 has a structure in which at least two kinds of repeating units based on monomers constituting these resins are combined.
  • a copolymer is mentioned. Among these, it is preferable to use a copolymer of tetramethylolmethane tetraacrylate and divinylbenzene.
  • the resin core particle 10 preferably has a compression recovery rate of 30% or more after being compressed with a load of 5 mN. If the compression recovery rate is too low, the resistance value tends to increase after the reliability test (high temperature and high humidity test). This is because the adhesiveness of the binder is lowered by being exposed to a high-temperature and high-humidity test, and the distance between opposing terminals that are anisotropically connected is increased. If the compression recovery rate is low, the sandwiched conductive particles may not be able to follow satisfactorily and the resistance value may increase.
  • the compression recovery rate is the relationship between the load value and compression displacement when the resin particles are compressed from the center to 5 mN at a speed of 0.33 mN / sec and then the load is reduced at a speed of 0.33 mN / sec. It is obtained by measuring.
  • the ratio (L1 / L2) of the displacement (L1) from the point of reversing the load to the final unloading value and the displacement (L2) from the point of reversal to the initial unloading value is expressed in% as a compression recovery rate. It is.
  • the average particle diameter of the resin core particle 10 is preferably 1 to 10 ⁇ m, and more preferably 2 to 5 ⁇ m. If the average particle size of the resin core particle 10 is too small, the resistance value tends to increase after the reliability test (high temperature and high humidity test), and if the average particle size of the resin core particle 10 is too large, the insulating property tends to decrease. is there.
  • the average particle diameter of the resin core particles 10 can be measured using, for example, a particle size distribution measuring apparatus (trade name: Microtrac MT3100, manufactured by Nikkiso Co., Ltd.).
  • the first conductive layer 11 is preferably a metal plating layer that covers the resin core particles 10.
  • the Vickers hardness of the metal plating layer is preferably 300 to 1200. If the Vickers hardness of the metal plating layer is too low, it becomes difficult to prevent the protrusion core material 12 from being embedded in the resin core particles 10 during mounting. If the Vickers hardness of the metal plating layer is too high, there is a concern that the plating may break.
  • P Load [N]
  • d Average length of the diagonal of the dent [mm]
  • the metal plating layer is preferably nickel or a nickel alloy (HV: 500 to 700).
  • the nickel alloy include Ni—WB, Ni—WP, Ni—W, Ni—B, and Ni—P.
  • the film thickness of the first conductive layer 11 is preferably 5 nm or more. When the film thickness of the first conductive layer 11 is less than 5 nm, it becomes difficult to prevent the protruding core member 12 from being embedded in the resin core particles 10 during mounting.
  • the thickness of the plating layer can be determined, for example, by conducting cross-sectional polishing of conductive particles using a focused ion beam processing observation apparatus (FB-2100, Hitachi High-Technology Co., Ltd.), and a transmission electron microscope (H-9500, Hitachi High-Technology). The average value can be obtained by observing the cross section of any 20 conductive particles and measuring the thickness of the five plated coatings for each particle.
  • a plurality of protrusion core materials 12 are attached to the surface of the first conductive layer 11 to form protrusions 14.
  • the protruding core material 12 has a Vickers hardness of 1500 to 5000, preferably 1800 to 3300. If the Vickers hardness of the protruding core material 12 is too low, for example, in an IZO electrode having a smooth surface, the resistance value tends to increase after a reliability test (high temperature and high humidity test), and the protruding core material 12 has a high Vickers hardness. If it is too large, the first conductive layer 11 may be broken.
  • the protrusion core material 12 is preferably a metal carbide, metal carbonitride, or cermet containing one or more selected from tungsten, titanium, tantalum, and boron.
  • Specific examples include tungsten carbide (HV: 1800), tungsten carbide-titanium carbide-tantalum carbide (HV: 2400), titanium carbide (HV: 3500), titanium carbonitride (HV: 1800), boron carbide (HV: 3300). Etc. These may be used alone or in combination of two or more.
  • the average particle diameter of the protruding core material 12 is preferably 50 nm or more and 300 nm or less, more preferably 100 nm or more and 250 nm or less.
  • the number of protrusions formed on the surface of the first conductive layer 11 is preferably 50 to 200, more preferably 100 to 200. Thereby, the connection resistance between electrodes can be reduced effectively.
  • the second conductive layer 13 covers the first conductive layer 11 and the protruding core material 12 and forms the protrusions 14 raised by the plurality of first conductive layers 11.
  • the second conductive layer 13 is preferably palladium, nickel, or a nickel alloy. Examples of the nickel alloy include Ni—WB, Ni—WP, Ni—W, Ni—B, and Ni—P.
  • the total thickness of the second conductive layer 13 and the first conductive layer 11 is preferably 100 nm or more and 500 nm or less, and more preferably 50 nm or more and 200 nm or less. If the total film thickness of the first conductive layer 11 and the second conductive layer 13 is small, the plating layer is not formed and a sea-island structure is formed, so that the resistance value tends to increase. When the total film thickness of the layer 11 and the second conductive layer 13 is large, the conductive particle diameter becomes large and the insulation tends to be lowered.
  • the conductive particles having such a structure can be obtained by a method in which the first conductive layer 11 is formed on the surface of the resin core particle 10 and then the protruding core material 12 is attached to form the second conductive layer 13. it can. Moreover, as a method of attaching the protruding core material 12 on the surface of the first conductive layer 12, for example, the protruding core material 12 is placed in a dispersion of the resin core particles 10 on which the first conductive layer 11 is formed. For example, the protrusion core material 12 is accumulated on the surface of the first conductive layer 11 by, for example, van der Waals force and attached.
  • Examples of the method for forming the first conductive layer 11 and the second conductive layer 13 include a method by electroless plating, a method by electroplating, and a method by physical vapor deposition. Among these, the method by electroless plating is preferable because the formation of the conductive layer is simple.
  • the manufacturing method of the connection structure according to the present embodiment includes a step of mounting the second circuit member on the first circuit member via a connection material containing conductive particles, and the second circuit member. Heating and pressing with a crimping tool to cure the connecting material.
  • the conductive particles are a plurality of resin particles, a first conductive film covering the resin particles, and a plurality of protrusions disposed on the first metal film and having a Vickers hardness of 1500 to 5000. It has a core material and a second conductive film covering the first metal layer and the protruding core material, and the minimum melt viscosity of the connecting material is 1 to 100,000 Pa ⁇ s.
  • the first circuit member and the second circuit member are not particularly limited and can be appropriately selected according to the purpose.
  • the first circuit member include a plastic substrate, a glass substrate, a printed wiring board (PWB), and the like for LCD (Liquid Crystal Display) panel use and plasma display panel (PDP) use.
  • the second circuit member include a flexible substrate (FPC: Flexible Printed Circuit) such as an IC (Integrated Circuit), COF (Chip On Film), a tape carrier package (TCP) substrate, and the like.
  • the predetermined pressure at the time of the main pressure bonding is preferably 1 MPa or more and 150 MPa or less from the viewpoint of preventing the wiring crack of the circuit member.
  • the predetermined temperature is the temperature of the anisotropic conductive film at the time of pressure bonding, and is preferably 80 ° C. or higher and 230 ° C. or lower. Further, irradiation with light such as UV may be used in combination.
  • a thermal compression may be performed by interposing a cushioning material between the crimping tool and the second circuit member.
  • the buffer material is made of a sheet-like elastic material or plastic, and for example, Teflon (trademark), silicon rubber, or the like is used.
  • connection structure manufactured by this method has low resistance, and can reduce power consumption.
  • Example> Examples of the present invention will be described below.
  • a protruding core material is attached to metal-coated resin particles in which resin particles are coated with a first conductive coating, and this is further coated with a second conductive coating, and conductive particles having protrusions.
  • the connection structure was produced using the anisotropic conductive film containing electroconductive particle, and the conduction resistance of the connection structure was evaluated.
  • the present invention is not limited to these examples.
  • Coating process of first conductive film Resin particles having an average particle diameter of 3 ⁇ m made of a copolymer of tetramethylolmethane tetraacrylate and divinylbenzene were used as a base material. The compression recovery rate after the resin particles were compressed at a load of 5 mN was 45%. The resin particles were subjected to alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing with a tin dichloride solution. Thereafter, activation with a palladium dichloride solution was performed. After filtration and washing, the substrate particles are diluted with water and a plating stabilizer is added.
  • a mixed solution of nickel sulfate, sodium hypophosphite, sodium citrate, and plating stabilizer is added to this aqueous solution with a metering pump. Electroless plating was performed so as to obtain a nickel plating film having a predetermined thickness. Then, it stirred until pH became stable and it confirmed that hydrogen firing stopped. Then, the plating solution is filtered, and the filtrate is washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain metal-coated resin particles in which the resin particles are coated with a nickel plating film as a first conductive film. It was.
  • Protrusion core material adhesion process After the metal-coated resin particles were dispersed by stirring with deionized water, a protruding core material was added to the aqueous solution to obtain particles having a protruding core material adhered on the nickel plating film. The number of projecting core materials adhered per particle was about 150.
  • Step of coating the second conductive film Next, alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing with a tin dichloride solution were performed on the particles to which the protruding core material was adhered. Thereafter, activation with a palladium dichloride solution was performed. After filtration and washing, the substrate particles are diluted with water and a plating stabilizer is added. Then, a mixed solution of nickel sulfate, sodium hypophosphite, sodium citrate, and plating stabilizer is added to this aqueous solution with a metering pump. Electroless plating was performed so as to obtain a nickel plating film having a predetermined thickness.
  • the plating solution was filtered and the filtrate was washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain particles coated with a nickel plating film as a second conductive film.
  • the film thickness of the plating film was determined by conducting cross-sectional polishing of conductive particles using a focused ion beam processing observation device (FB-2100, Hitachi High-Technology Co., Ltd.), and a transmission electron microscope (H-9500, Hitachi High-Technology Co., Ltd. )) was used to observe the cross section of 20 arbitrary conductive particles, and the average value was calculated by measuring the thickness of the plated coating at five locations for each particle.
  • FB-2100 focused ion beam processing observation device
  • H-9500 Hitachi High-Technology Co., Ltd.
  • the minimum melt viscosity of the anisotropic conductive film was measured using a rotary rheometer (TA Instruments) under the conditions of a temperature rising rate of 10 ° C./min; a force during measurement of 1N constant;
  • a mounting body of IZO wiring was produced.
  • COF (Dexerials Co., Ltd. COF for evaluation, 50 ⁇ m pitch, Cu 8 ⁇ mt-Sn plating 38 ⁇ m) and IZO solid glass (Dexerials Co., Ltd. IZO solid glass, IZO thickness 300 nm, glass thickness 0.7 mm) Connected.
  • an anisotropic conductive film slit to a width of 1.5 mm on an IZO solid glass using a Teflon (trademark) with a crimping machine tool width of 1.5 mm and a buffer material thickness of 70 ⁇ m, a temperature of 80 ° C., a pressure of 1 MPa, 2
  • Temporarily affixing was performed under the second temporary pressing condition, and the peeled PET film was peeled off.
  • the COF was temporarily fixed with the same pressure bonding machine under the temperature fixed temperature of 80 ° C., the pressure of 0.5 MPa, and the time of 0.5 seconds.
  • pressure bonding was performed at a temperature of 190 ° C., a pressure of 3 MPa, and a pressure of 10 seconds to obtain a mounting body.
  • maintains a mounting body in an 85 degreeC85% RH constant temperature and humidity chamber for 500 hours was performed, Then, the resistance value of the mounting body was measured by the 4-terminal method using the digital multimeter.
  • the connection resistance was evaluated as “A” (best) when the resistance value was less than 2.0 ⁇ , and “C” (defective) when the resistance value was 2.0 ⁇ or more.
  • a mounted body of ITO wiring was produced.
  • IC Serials Corporation evaluation IC, 1.5 mm ⁇ 130 mm, 0.5 mm thickness, gold-plated bump, bump space 10 ⁇ m, bump height 15 ⁇ m
  • glass substrate Dexerials Corporation evaluation
  • a glass substrate, a comb-tooth pattern, a space between bumps of 10 ⁇ m, and a glass thickness of 0.5 mm were connected.
  • an anisotropic conductive film slit to a width of 1.5 mm on a glass substrate using a Teflon (trademark) with a crimping machine tool width of 1.5 mm and a buffer material of 70 ⁇ m, a temperature of 80 ° C., a pressure of 1 MPa, Temporarily affixing was performed under the second temporary pressing condition, and the peeled PET film was peeled off.
  • the IC was temporarily fixed with the same crimping machine under the temporary fixing conditions of a temperature of 80 ° C., a pressure of 0.5 MPa, and a time of 0.5 seconds.
  • pressure bonding was performed at a temperature of 190 ° C., a pressure of 3 MPa, and a pressure of 10 seconds to obtain a mounting body.
  • the resistance value between adjacent bumps of the mounting body was measured by the two-terminal method, and 10 ⁇ 8 ⁇ or less was counted as a short circuit.
  • the evaluation IC 8 electrode patterns composed of 10 sets of bumps were formed, and the number of electrode patterns in which one or more sets of 10 shorts occurred was counted. Insulation evaluation is “A” (best) when the number of shorted electrode patterns is 0, and “B” (normal) when the number of shorted electrode patterns is 2 or less. The case where there were three or more electrode patterns was “C” (defect).
  • conductive particles A were prepared using tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) as the protrusion core material.
  • the film thickness of the nickel plating film as the first conductive film of the conductive particles A was 20 nm, and the film thickness of the nickel plating film as the second conductive film was 100 nm.
  • thermosetting binder conductive particles A are dispersed so as to have a volume ratio of 10%, and this is coated on a peeled PET film treated with silicon so as to have a thickness of 20 ⁇ m. A film was prepared. The minimum melt viscosity of this anisotropic conductive film was 100 Pa ⁇ s. Table 1 shows the evaluation results of connection resistance and insulation.
  • Example 2 Conductive particles B having the same configuration as in Example 1 except that tungsten carbide-titanium carbide-tantalum carbide particles having an average particle diameter of 200 nm (Vickers hardness 2400) were used as the protrusion core material in the production of the conductive particles described above. And an anisotropic conductive film was produced. Table 1 shows the evaluation results of connection resistance and insulation.
  • Example 3 In the preparation of the conductive particles described above, conductive particles C having the same configuration as in Example 1 were prepared except that titanium carbide particles having an average particle diameter of 200 nm (Vickers hardness 3500) were used as the protrusion core material. Conductive film was prepared. Table 1 shows the evaluation results of connection resistance and insulation.
  • Example 4 In the preparation of the conductive particles described above, conductive particles D having the same configuration as in Example 1 were prepared except that cermet particles (Vickers hardness 2800) having an average particle diameter of 200 nm were used as the protrusion core material. A conductive film was produced. Table 1 shows the evaluation results of connection resistance and insulation.
  • Example 5 In the preparation of the conductive particles described above, conductive particles E having the same configuration as in Example 1 were prepared except that boron carbide particles having an average particle diameter of 200 nm (Vickers hardness 3300) were used as the protrusion core material. Conductive film was prepared. Table 1 shows the evaluation results of connection resistance and insulation.
  • conductive particles F having the same configuration as in Example 1 were prepared except that nickel particles having an average particle diameter of 200 nm (Vickers hardness 500) were used as the protrusion core material, and anisotropy was obtained. A conductive film was produced. Table 1 shows the evaluation results of connection resistance and insulation.
  • ⁇ Comparative Example 2> In the preparation of the conductive particles described above, the resin particles are sensitized and activated, filtered and washed, dispersed by stirring with deionized water, and then the tungsten carbide particle slurry is added to the aqueous solution. Tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) were adhered onto the particles as a protruding core material, and the particles were coated with a nickel plating film in the second conductive film coating step to produce conductive particles G. The thickness of the nickel plating film as the second conductive film of the conductive particles G was 120 nm. Then, similarly to Example 1, an anisotropic conductive film was produced using the conductive particles G. Table 1 shows the evaluation results of connection resistance and insulation.
  • conductive particles H were prepared using tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) as the protrusion core material.
  • the film thickness of the nickel plating film as the first conductive film of the conductive particles H was 5 nm, and the film thickness of the nickel plating film as the second conductive film was 100 nm.
  • An anisotropic conductive film was produced in the same manner as in Example 1 except that the conductive particles H were used. Table 1 shows the evaluation results of connection resistance and insulation.
  • conductive particles I were prepared using tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) as the protrusion core material.
  • the film thickness of the nickel plating film as the first conductive film of the conductive particles I was 100 nm, and the film thickness of the nickel plating film as the second conductive film was 100 nm.
  • An anisotropic conductive film was produced in the same manner as in Example 1 except that the conductive particles I were used. Table 1 shows the evaluation results of connection resistance and insulation.
  • conductive particles J were prepared using tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) as the protrusion core material.
  • the film thickness of the nickel plating film as the first conductive film of the conductive particles J was 150 nm, and the film thickness of the nickel plating film as the second conductive film was 350 nm.
  • An anisotropic conductive film was produced in the same manner as in Example 1 except that the conductive particles J were used. Table 1 shows the evaluation results of connection resistance and insulation.
  • the conductive particles K were prepared using tungsten carbide particles (Vickers hardness 1800) having an average particle diameter of 200 nm as the protrusion core material.
  • the film thickness of the nickel plating film as the first conductive film of the conductive particles K was 150 nm, and the film thickness of the nickel plating film as the second conductive film was 500 nm.
  • An anisotropic conductive film was produced in the same manner as in Example 1 except that the conductive particles K were used. Table 1 shows the evaluation results of connection resistance and insulation.
  • conductive particles L were prepared using tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) as the protrusion core material.
  • the film thickness of the nickel plating film as the first conductive film of the conductive particles L was 20 nm, and the film thickness of the palladium plating film as the second conductive film was 100 nm.
  • An anisotropic conductive film was produced in the same manner as in Example 1 except that the conductive particles L were used. Table 1 shows the evaluation results of connection resistance and insulation.
  • thermosetting binder was prepared in the same manner as in Example 1, and the conductive particles A were dispersed therein so that the volume ratio was 10%, and the resin was prepared under the solid content concentration and drying conditions of the resin.
  • the minimum melt viscosity was 1,000,000 Pa ⁇
  • the anisotropic conductive film which is s was produced. Table 1 shows the evaluation results of connection resistance and insulation.
  • thermosetting binder was prepared in the same manner as in Example 1, and the conductive particles A were dispersed therein so that the volume ratio was 10%, and the resin was prepared under the resin solid content concentration and drying conditions.
  • the minimum melt viscosity was 100,000 Pa ⁇
  • the anisotropic conductive film which is s was produced. Table 1 shows the evaluation results of connection resistance and insulation.
  • thermosetting binder was prepared in the same manner as in Example 1, and conductive particles A were dispersed therein so that the volume ratio was 10%, and the resin was prepared under the resin solid content concentration and drying conditions.
  • the minimum melt viscosity was 1 Pa ⁇
  • the anisotropic conductive film which is s was produced. Table 1 shows the evaluation results of connection resistance and insulation.
  • thermosetting binder was prepared in the same manner as in Example 1, and conductive particles A were dispersed therein so as to have a volume ratio of 10%, and were prepared according to the solid content concentration and drying conditions of the resin.
  • An anisotropic conductive film of 1 Pa ⁇ s was produced. Table 1 shows the evaluation results of connection resistance and insulation.
  • the first conductive layer and the second conductive layer contains conductive particles in which a plurality of protruding core materials having high Vickers hardness are arranged on a nickel plating film that covers resin particles as in Examples 1 to 12, and a binder with an optimized minimum melt viscosity.
  • the resistance value could be reduced by using the connecting material.
  • the total film thickness of the first conductive layer and the second conductive layer is 100 nm or more and 500 nm or less and the film thickness of the first conductive layer is 5 nm or more, excellent insulating properties are obtained. It turns out that it is obtained.

Abstract

Provided is a connection material capable of obtaining low connection resistance. The connection material contains conductive particles which comprise: resin particles; a first conductive film that covers the resin particles; multiple protruding core materials which are disposed on the first conductive film and which have a Vickers hardness of 1,500 to 5,000; and a second conductive film that covers the first conductive film and protruding core materials. The minimum melt viscosity of the connection material is 1 to 100,000 Pa·s. Due to this configuration, low connection resistance can be obtained because a binder is thoroughly removed from between the conductive particles and an electrode, and a sufficient amount of the pressure applied to the electrode can be obtained.

Description

接続材料Connecting material
 本発明は、導電性粒子により回路部材同士を電気的に接続する接続材料に関する。本出願は、日本国において2015年9月18日に出願された日本特許出願番号特願2015-185238を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。 The present invention relates to a connection material for electrically connecting circuit members with conductive particles. This application claims priority on the basis of Japanese Patent Application No. 2015-185238 filed on Sep. 18, 2015 in Japan. This application is incorporated herein by reference. Incorporated.
 近年、携帯やタブレットにおいて、消費電力の低下が求められている。消費電力を抑えるためには、接続抵抗値を低く抑える必要がある。 In recent years, there has been a demand for lower power consumption in mobile phones and tablets. In order to reduce power consumption, it is necessary to keep the connection resistance value low.
 特許文献1、2には、導電性粒子に突起を設けることにより、低抵抗化を図る技術が記載されている。しかしながら、特許文献1に記載の導電性粒子は、基材(樹脂粒子)に直接突起芯材が付着されているため、実装時の圧力により突起芯材が基材に埋没し、電極にかかる圧力が減少する。このため、例えば表面が平滑であるIZO電極において、低い接続抵抗値を得るのが困難となる。 Patent Documents 1 and 2 describe a technique for reducing resistance by providing protrusions on conductive particles. However, in the conductive particles described in Patent Document 1, since the protruding core material is directly attached to the base material (resin particles), the protruding core material is buried in the base material by the pressure during mounting, and the pressure applied to the electrode Decrease. For this reason, for example, in an IZO electrode having a smooth surface, it is difficult to obtain a low connection resistance value.
特開2012-134156号公報JP 2012-134156 A WO2014/054572号公報WO2014 / 054572
 本発明は、このような実情に鑑みてなされたものであり、低い接続抵抗値を得ることができる接続材料を提供することを目的とする。 The present invention has been made in view of such a situation, and an object thereof is to provide a connection material capable of obtaining a low connection resistance value.
 前述した課題を解決するために、本発明に係る接続材料は、樹脂粒子と、前記樹脂粒子を被覆する第1の導電性被膜と、前記第1の導電性被膜上に複数配置され、ビッカース硬度が1500~5000である突起芯材と、前記第1の導電性被膜と前記突起芯材とを被覆する第2の導電性被膜とを有する導電性粒子を含有し、最低溶融粘度が1~100000Pa・sである。 In order to solve the above-described problems, the connection material according to the present invention includes resin particles, a first conductive film covering the resin particles, and a plurality of the conductive materials disposed on the first conductive film, and has a Vickers hardness. Containing conductive particles having a protruding core material having a thickness of 1500 to 5000, a second conductive film covering the first conductive film and the protruding core material, and having a minimum melt viscosity of 1 to 100000 Pa. -S.
 また、本発明に係る接続構造体の製造方法は、第1の回路部材上に、導電性粒子を含有する接続材料を介して第2の回路部材を搭載する工程と、前記第2の回路部材を圧着ツールによって加熱押圧し、前記接続材料を硬化させる工程とを有し、前記導電性粒子が、樹脂粒子と、前記樹脂粒子を被覆する第1の導電性被膜と、前記第1の金属被膜上に複数配置され、ビッカース硬度が1500~5000である突起芯材と、前記第1の金属層と前記突起芯材とを被覆する第2の導電性被膜とを有し、前記接続材料の最低溶融粘度が1~100000Pa・sである。 Moreover, the manufacturing method of the connection structure which concerns on this invention mounts a 2nd circuit member on the 1st circuit member through the connection material containing electroconductive particle, The said 2nd circuit member Heating and pressing with a crimping tool to cure the connection material, wherein the conductive particles are resin particles, a first conductive coating covering the resin particles, and the first metal coating. A plurality of projecting core members arranged on the top and having a Vickers hardness of 1500 to 5000, and a second conductive film covering the first metal layer and the projecting core material; The melt viscosity is 1 to 100,000 Pa · s.
 また、本発明に係る接続構造体は、第1の回路部材と、第2の回路部材と、前記第1の回路部材と前記第2の回路部材とを接続する接続硬化膜とを備え、前記接続硬化膜が、樹脂粒子と、前記樹脂粒子を被覆する第1の導電性被膜と、前記第1の金属被膜上に複数配置され、ビッカース硬度が1500~5000である突起芯材と、前記第1の金属層と前記突起芯材とを被覆する第2の導電性被膜とを有する導電性粒子を備える。 In addition, a connection structure according to the present invention includes a first circuit member, a second circuit member, and a connection cured film that connects the first circuit member and the second circuit member, The connection cured film includes a resin particle, a first conductive film covering the resin particle, a plurality of disposed on the first metal film, and a protruding core material having a Vickers hardness of 1500 to 5000; Conductive particles having a first metal layer and a second conductive film covering the protruding core material are provided.
 本発明によれば、導電性粒子と電極との間のバインダーが十分に排除されるとともに、電極にかかる圧力が十分に得られるため、低い接続抵抗値を得ることができる。 According to the present invention, the binder between the conductive particles and the electrode is sufficiently eliminated, and the pressure applied to the electrode is sufficiently obtained, so that a low connection resistance value can be obtained.
図1は、導電性粒子の構成の概略を示す断面図である。FIG. 1 is a cross-sectional view schematically showing the configuration of conductive particles.
 以下、本発明の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.接続材料
2.接続構造体の製造方法
3.実施例
Hereinafter, embodiments of the present invention will be described in detail in the following order with reference to the drawings.
1. 1. Connection material 2. Manufacturing method of connection structure Example
 <1.接続材料>
 本実施の形態に係る接続材料は、樹脂粒子と、樹脂粒子を被覆する第1の導電性被膜と、第1の導電性被膜上に複数配置され、ビッカース硬度が1500~5000である突起芯材と、第1の導電性被膜と突起芯材とを被覆する第2の導電性被膜とを有する導電性粒子を含有し、最低溶融粘度が1~100000Pa・sである。これにより、導電性粒子と電極との間のバインダーが十分に排除されるとともに、電極にかかる圧力が十分に得られるため、低い接続抵抗値を得ることができる。
<1. Connection material>
The connection material according to the present embodiment includes resin particles, a first conductive film covering the resin particles, and a plurality of disposed cores on the first conductive film, and a protruding core material having a Vickers hardness of 1500 to 5000 And conductive particles having a first conductive coating and a second conductive coating covering the protruding core material, and a minimum melt viscosity of 1 to 100,000 Pa · s. Thereby, while the binder between electroconductive particle and an electrode is fully excluded, since the pressure concerning an electrode is fully obtained, a low connection resistance value can be obtained.
 接続材料の形状は、特に限定されず、フィルム状、ペースト状など用途に応じて適宜選択することができる。接続材料としては、例えば、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを挙げることができる。また、導電材料の硬化型としては、熱硬化型、光硬化型、光熱併用硬化型などが挙げられ、用途に応じて適宜選択することができる。 The shape of the connection material is not particularly limited, and can be appropriately selected according to the application such as a film shape or a paste shape. Examples of the connection material include an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), and the like. In addition, examples of the curing type of the conductive material include a thermosetting type, a photocuring type, a photothermal combined curing type, and the like, and can be appropriately selected depending on the application.
 以下、導電性粒子を含有す熱硬化型の異方性導電フィルムを例に挙げて説明する。また、熱硬化型としては、例えば、カチオン硬化型、アニオン硬化型、ラジカル硬化型、又はこれらを併用することができるが、ここでは、アニオン硬化型の異方性導電フィルムについて説明する。 Hereinafter, a thermosetting anisotropic conductive film containing conductive particles will be described as an example. In addition, as the thermosetting type, for example, a cationic curing type, an anion curing type, a radical curing type, or a combination thereof can be used. Here, an anion curing type anisotropic conductive film will be described.
 アニオン硬化型の異方性導電フィルムは、バインダーとして、膜形成樹脂と、エポキシ樹脂と、アニオン重合開始剤とを含有する。異方性導電フィルム中の導電性粒子の配合量は、バインダー体積に対して5~15体積%であることが好ましい。これにより、ショートを防止するとともに高い導通信頼性を得ることができる。 The anion curable anisotropic conductive film contains a film-forming resin, an epoxy resin, and an anionic polymerization initiator as a binder. The blending amount of the conductive particles in the anisotropic conductive film is preferably 5 to 15% by volume with respect to the binder volume. Thereby, while preventing a short circuit, high conduction | electrical_connection reliability can be acquired.
 [バインダー]
 膜形成樹脂は、例えば平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、フェノキシ樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ブチラール樹脂等の種々の樹脂が挙げられ、これらは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。これらの中でも、膜形成状態、接続信頼性等の観点からフェノキシ樹脂を好適に用いることが好ましい。市場で入手可能な具体例としては、新日鉄住金化学(株)の商品名「YP-50」などを挙げることができる。
[binder]
The film-forming resin corresponds to, for example, a high-molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation. Examples of the film-forming resin include various resins such as phenoxy resin, polyester resin, polyurethane resin, polyester urethane resin, acrylic resin, polyimide resin, and butyral resin. These may be used alone or in combination of two or more. May be used. Among these, it is preferable to use a phenoxy resin from the viewpoints of film formation state, connection reliability, and the like. As a specific example available on the market, the trade name “YP-50” of Nippon Steel & Sumikin Chemical Co., Ltd. can be cited.
 エポキシ樹脂は、3次元網目構造を形成し、良好な耐熱性、接着性を付与するものであり、固形エポキシ樹脂と液状エポキシ樹脂とを併用することが好ましい。ここで、固形エポキシ樹脂とは、常温で固体であるエポキシ樹脂を意味する。また、液状エポキシ樹脂とは、常温で液状であるエポキシ樹脂を意味する。また、常温とは、JIS Z 8703で規定される5~35℃の温度範囲を意味する。 The epoxy resin forms a three-dimensional network structure and imparts good heat resistance and adhesiveness, and it is preferable to use a solid epoxy resin and a liquid epoxy resin in combination. Here, the solid epoxy resin means an epoxy resin that is solid at room temperature. The liquid epoxy resin means an epoxy resin that is liquid at room temperature. The normal temperature means a temperature range of 5 to 35 ° C. defined by JIS Z 8703.
 固形エポキシ樹脂としては、液状エポキシ樹脂と相溶し、常温で固体状であれば特に限定されず、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙られ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。 The solid epoxy resin is not particularly limited as long as it is compatible with a liquid epoxy resin and is solid at room temperature. Bisphenol A type epoxy resin, bisphenol F type epoxy resin, polyfunctional type epoxy resin, dicyclopentadiene type epoxy resin , Novolak phenol type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, and the like. Among these, one kind can be used alone, or two or more kinds can be used in combination.
 液状エポキシ樹脂としては、常温で液状であれば特に限定されず、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラックフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂などが挙げられ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。特に、フィルムのタック性、柔軟性などの観点から、ビスフェノールA型エポキシ樹脂を用いることが好ましい。市場で入手可能な具体例としては、三菱化学(株)の商品名「EP828」などを挙げることができる。 The liquid epoxy resin is not particularly limited as long as it is liquid at normal temperature, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac phenol type epoxy resin, naphthalene type epoxy resin, and the like. Can be used alone or in combination of two or more. In particular, it is preferable to use a bisphenol A type epoxy resin from the viewpoint of film tackiness and flexibility. As a specific example available on the market, a trade name “EP828” of Mitsubishi Chemical Corporation may be mentioned.
 アニオン重合開始剤としては、通常用いられる公知の硬化剤を使用することができる。例えば、有機酸ジヒドラジド、ジシアンジアミド、アミン化合物、ポリアミドアミン化合物、シアナートエステル化合物、フェノール樹脂、酸無水物、カルボン酸、三級アミン化合物、イミダゾール、ルイス酸、ブレンステッド酸塩、ポリメルカプタン系硬化剤、ユリア樹脂、メラミン樹脂、イソシアネート化合物、ブロックイソシアネート化合物などが挙げられ、これらの中から1種を単独で、又は2種以上を組み合わせて用いることができる。これらの中でも、イミダゾール変性体を核としその表面をポリウレタンで被覆してなるマイクロカプセル型潜在性硬化剤を用いることが好ましい。市場で入手可能な具体例としては、旭化成イーマテリアルズ(株)の商品名「ノバキュア3941」などを挙げることができる。 As the anionic polymerization initiator, a commonly used known curing agent can be used. For example, organic acid dihydrazide, dicyandiamide, amine compound, polyamidoamine compound, cyanate ester compound, phenol resin, acid anhydride, carboxylic acid, tertiary amine compound, imidazole, Lewis acid, Bronsted acid salt, polymercaptan curing agent , Urea resin, melamine resin, isocyanate compound, block isocyanate compound, and the like. Among these, one kind can be used alone, or two or more kinds can be used in combination. Among these, it is preferable to use a microcapsule type latent curing agent having an imidazole-modified product as a core and a surface thereof coated with polyurethane. As a specific example that can be obtained on the market, a trade name “Novacure 3941” of Asahi Kasei E-Materials Co., Ltd. can be cited.
 また、バインダーとして、必要に応じて、シランカップリング剤、応力緩和剤、無機フィラー等を配合してもよい。シランカップリング剤としては、エポキシ系、メタクリロキシ系、アミノ系、ビニル系、メルカプト・スルフィド系、ウレイド系等を挙げることができる。また、応力緩和剤としては、水添スチレン-ブタジエンブロック共重合体、水添スチレン-イソプレンブロック共重合体等を挙げることができる。また、無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を挙げることができる。 Further, as a binder, a silane coupling agent, a stress relaxation agent, an inorganic filler, or the like may be blended as necessary. Examples of the silane coupling agent include epoxy, methacryloxy, amino, vinyl, mercapto sulfide, ureido and the like. Examples of the stress relaxation agent include a hydrogenated styrene-butadiene block copolymer and a hydrogenated styrene-isoprene block copolymer. Examples of the inorganic filler include silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like.
 また、異方性導電フィルムの最低溶融粘度は、1~100000Pa・sであり、より好ましくは、10~10000Pa・sである。最低溶融粘度の適性化は、導電性粒子の圧縮変形特性にも依存するが、最低溶融粘度が高すぎると、熱圧着時に導電性粒子と電極との間のバインダーが十分に排除できないため、接続抵抗が上昇する傾向にある。特に、突起を有する導電性粒子は、熱圧着時に導電性粒子と電極との間のバインダーを十分に排除するのが困難となる。一方、最低溶融粘度が低すぎると、熱圧着時の加重による異方性導電フィルムの変形が大きくなるため、加圧解放時に異方性導電フィルムの復元力が接続部界面等に剥離方向の力として加わる。このため、熱圧着直後に接続抵抗が上昇したり、接続部に気泡が発生したりする傾向がある。 The minimum melt viscosity of the anisotropic conductive film is 1 to 100,000 Pa · s, more preferably 10 to 10,000 Pa · s. The optimization of the minimum melt viscosity depends on the compression deformation characteristics of the conductive particles, but if the minimum melt viscosity is too high, the binder between the conductive particles and the electrode cannot be sufficiently eliminated during thermocompression bonding. Resistance tends to increase. In particular, it is difficult for the conductive particles having protrusions to sufficiently eliminate the binder between the conductive particles and the electrode during thermocompression bonding. On the other hand, if the minimum melt viscosity is too low, the deformation of the anisotropic conductive film due to the load during thermocompression bonding increases, so the restoring force of the anisotropic conductive film at the time of releasing the pressure causes a force in the peeling direction at the interface of the connection part. Join as. For this reason, there is a tendency that the connection resistance increases immediately after thermocompression bonding or bubbles are generated in the connection portion.
 [導電性粒子]
 図1は、導電性粒子の構成の概略を示す断面図である。導電性粒子は、樹脂コア粒子10と、樹脂コア粒子10被覆する第1の導電層11と、導電層11の表面に複数付着される突起芯材12と、第1の導電層11及び突起芯材12を被覆する第2の導電層13とを備える。
[Conductive particles]
FIG. 1 is a cross-sectional view schematically showing the configuration of conductive particles. The conductive particles include a resin core particle 10, a first conductive layer 11 covering the resin core particle 10, a plurality of protruding core members 12 attached to the surface of the conductive layer 11, the first conductive layer 11 and the protruding core. And a second conductive layer 13 covering the material 12.
 樹脂コア粒子10としては、ベンゾグアナミン樹脂、アクリル樹脂、スチレン樹脂、シリコーン樹脂、ポリブタジエン樹脂などが挙げられ、また、これらの樹脂を構成するモノマーに基づく繰り返し単位の少なくとも2種以上を組み合わせた構造を有する共重合体が挙げられる。これらの中でも、テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合体を用いることが好ましい。 Examples of the resin core particle 10 include a benzoguanamine resin, an acrylic resin, a styrene resin, a silicone resin, and a polybutadiene resin. The resin core particle 10 has a structure in which at least two kinds of repeating units based on monomers constituting these resins are combined. A copolymer is mentioned. Among these, it is preferable to use a copolymer of tetramethylolmethane tetraacrylate and divinylbenzene.
 また、樹脂コア粒子10は、荷重5mNで圧縮させた後の圧縮回復率が30%以上であることが好ましい。圧縮回復率が低すぎると信頼性試験(高温高湿試験)後に抵抗値が上昇する傾向にある。これは、高温高湿試験にさらされることでバインダーの密着性が低下し、異方性接続された対向した端子間の距離が広がることに起因する。圧縮回復率が低いと、挟持された導電粒子が満足に追随できずに抵抗値が上昇してしまうことがある。圧縮回復率は、樹脂粒子を中心から0.33mN/秒の速度で5mNまで圧縮した後、逆に0.33mN/秒の速度で荷重を減らして行く際の、荷重値と圧縮変位との関係を測定して得られる。荷重を反転させる点から最終除荷値までの変位(L1)と、反転の点から初期荷重値までの変位(L2)との比(L1/L2)を%にて表した値が圧縮回復率である。 The resin core particle 10 preferably has a compression recovery rate of 30% or more after being compressed with a load of 5 mN. If the compression recovery rate is too low, the resistance value tends to increase after the reliability test (high temperature and high humidity test). This is because the adhesiveness of the binder is lowered by being exposed to a high-temperature and high-humidity test, and the distance between opposing terminals that are anisotropically connected is increased. If the compression recovery rate is low, the sandwiched conductive particles may not be able to follow satisfactorily and the resistance value may increase. The compression recovery rate is the relationship between the load value and compression displacement when the resin particles are compressed from the center to 5 mN at a speed of 0.33 mN / sec and then the load is reduced at a speed of 0.33 mN / sec. It is obtained by measuring. The ratio (L1 / L2) of the displacement (L1) from the point of reversing the load to the final unloading value and the displacement (L2) from the point of reversal to the initial unloading value is expressed in% as a compression recovery rate. It is.
 また、樹脂コア粒子10の平均粒子径は、1~10μmであることが好ましく、2~5μmであることがより好ましい。樹脂コア粒子10の平均粒子径が小さすぎると信頼性試験(高温高湿試験)後に抵抗値が上昇する傾向にあり、樹脂コア粒子10の平均粒子径が大きすぎると絶縁性が低下する傾向にある。樹脂コア粒子10の平均粒子径は、例えば、粒度分布測定装置(日機装社製、商品名:マイクロトラックMT3100)を用いて測定することができる。 The average particle diameter of the resin core particle 10 is preferably 1 to 10 μm, and more preferably 2 to 5 μm. If the average particle size of the resin core particle 10 is too small, the resistance value tends to increase after the reliability test (high temperature and high humidity test), and if the average particle size of the resin core particle 10 is too large, the insulating property tends to decrease. is there. The average particle diameter of the resin core particles 10 can be measured using, for example, a particle size distribution measuring apparatus (trade name: Microtrac MT3100, manufactured by Nikkiso Co., Ltd.).
 第1の導電層11は、樹脂コア粒子10被覆する金属メッキ層であることが好ましい。また、金属メッキ層のビッカース硬度は、300~1200であることが好ましい。金属メッキ層のビッカース硬度が低すぎると、実装時に突起芯材12の樹脂コア粒子10への埋没を防ぐのが困難となり、金属メッキ層のビッカース硬度が高すぎると、メッキが割れる懸念が生じる。ビッカース硬度HVは、対面角が136°のダイヤモンド四角すい圧子を用いて、試験面にピラミッド形状のくぼみをつけたときの荷重を、くぼみの対角線の長さで割った値であり、次のように算出される。
HV=0.18909×(P/d2)
P:荷重[N]、d:くぼみの対角線の平均長さ[mm]
The first conductive layer 11 is preferably a metal plating layer that covers the resin core particles 10. The Vickers hardness of the metal plating layer is preferably 300 to 1200. If the Vickers hardness of the metal plating layer is too low, it becomes difficult to prevent the protrusion core material 12 from being embedded in the resin core particles 10 during mounting. If the Vickers hardness of the metal plating layer is too high, there is a concern that the plating may break. The Vickers hardness HV is a value obtained by dividing the load when a pyramid-shaped depression is made on the test surface by using a diamond square cone indenter with a diagonal angle of 136 ° and divided by the length of the diagonal line of the depression. Is calculated.
HV = 0.188909 × (P / d2)
P: Load [N], d: Average length of the diagonal of the dent [mm]
 金属メッキ層としては、ニッケル又はニッケル合金(HV:500~700)であることが好ましい。ニッケル合金としては、Ni-W-B、Ni-W-P、Ni-W、Ni-B、Ni-Pなどが挙げられる。 The metal plating layer is preferably nickel or a nickel alloy (HV: 500 to 700). Examples of the nickel alloy include Ni—WB, Ni—WP, Ni—W, Ni—B, and Ni—P.
 第1の導電層11の膜厚は、5nm以上であることが好ましい。第1の導電層11の膜厚が5nm未満であると、実装時に突起芯材12の樹脂コア粒子10への埋没を防ぐのが困難となる。メッキ層の膜厚は、例えば、導電性粒子を収束イオンビーム加工観察装置(FB-2100、日立ハイテクノロジー(株))を用いて断面研磨を行い、透過電子顕微鏡(H-9500、日立ハイテクノロジー(株))を用いて、任意の20個の導電性粒子の断面を観察し、各粒子につきメッキ被膜の5箇所の厚みを測定することによりその平均値とすることができる。 The film thickness of the first conductive layer 11 is preferably 5 nm or more. When the film thickness of the first conductive layer 11 is less than 5 nm, it becomes difficult to prevent the protruding core member 12 from being embedded in the resin core particles 10 during mounting. The thickness of the plating layer can be determined, for example, by conducting cross-sectional polishing of conductive particles using a focused ion beam processing observation apparatus (FB-2100, Hitachi High-Technology Co., Ltd.), and a transmission electron microscope (H-9500, Hitachi High-Technology). The average value can be obtained by observing the cross section of any 20 conductive particles and measuring the thickness of the five plated coatings for each particle.
 突起芯材12は、第1の導電層11の表面に複数付着され、突起14を形成する。突起芯材12のビッカース硬度は、1500~5000であり、好ましくは1800~3300である。突起芯材12のビッカース硬度が低すぎると、例えば表面が平滑であるIZO電極において、信頼性試験(高温高湿試験)後に抵抗値が上昇する傾向にあり、突起芯材12のビッカース硬度が高すぎると、第1の導電層11を突き破ってしまう虞がある。 A plurality of protrusion core materials 12 are attached to the surface of the first conductive layer 11 to form protrusions 14. The protruding core material 12 has a Vickers hardness of 1500 to 5000, preferably 1800 to 3300. If the Vickers hardness of the protruding core material 12 is too low, for example, in an IZO electrode having a smooth surface, the resistance value tends to increase after a reliability test (high temperature and high humidity test), and the protruding core material 12 has a high Vickers hardness. If it is too large, the first conductive layer 11 may be broken.
突起芯材12としては、タングステン、チタン、タンタル、ホウ素から選ばれる1種以上を含む金属炭化物、金属炭窒化物、又はサーメットであることが好ましい。具体例として、炭化タングステン(HV:1800)、炭化タングステン-炭化チタン-炭化タンタル(HV:2400)、炭化チタン(HV:3500)、炭窒化チタン(HV:1800)、炭化ホウ素(HV:3300)などが挙げられる。これらは単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The protrusion core material 12 is preferably a metal carbide, metal carbonitride, or cermet containing one or more selected from tungsten, titanium, tantalum, and boron. Specific examples include tungsten carbide (HV: 1800), tungsten carbide-titanium carbide-tantalum carbide (HV: 2400), titanium carbide (HV: 3500), titanium carbonitride (HV: 1800), boron carbide (HV: 3300). Etc. These may be used alone or in combination of two or more.
 また、突起芯材12の平均粒子径は、好ましくは50nm以上300nm以下、より好ましくは100nm以上250nm以下である。また、第1の導電層11の表面に形成された突起の個数は、好ましくは50~200、より好ましくは100~200である。これにより、電極間の接続抵抗を効果的に低下させることができる。 Further, the average particle diameter of the protruding core material 12 is preferably 50 nm or more and 300 nm or less, more preferably 100 nm or more and 250 nm or less. The number of protrusions formed on the surface of the first conductive layer 11 is preferably 50 to 200, more preferably 100 to 200. Thereby, the connection resistance between electrodes can be reduced effectively.
 第2の導電層13は、第1の導電層11及び突起芯材12を被覆し、複数の第1の導電層11により***された突起14を形成する。第2の導電層13は、パラジウム、ニッケル、又はニッケル合金であることが好ましい。ニッケル合金としては、Ni-W-B、Ni-W-P、Ni-W、Ni-B、Ni-Pなどが挙げられる。 The second conductive layer 13 covers the first conductive layer 11 and the protruding core material 12 and forms the protrusions 14 raised by the plurality of first conductive layers 11. The second conductive layer 13 is preferably palladium, nickel, or a nickel alloy. Examples of the nickel alloy include Ni—WB, Ni—WP, Ni—W, Ni—B, and Ni—P.
 また、第2の導電層13の膜厚は、第1の導電層11との合計が100nm以上500nm以下であることが好ましく、50nm以上200nm以下であることがより好ましい。第1の導電層11と第2の導電層13との合計の膜厚が小さいと、メッキ層が形成されず海島構造となってしまうため、抵抗値が上昇する傾向にあり、第1の導電層11と第2の導電層13との合計の膜厚が大きいと、導電性粒子径が大きくなってしまい、絶縁性が低下する傾向にある。 Further, the total thickness of the second conductive layer 13 and the first conductive layer 11 is preferably 100 nm or more and 500 nm or less, and more preferably 50 nm or more and 200 nm or less. If the total film thickness of the first conductive layer 11 and the second conductive layer 13 is small, the plating layer is not formed and a sea-island structure is formed, so that the resistance value tends to increase. When the total film thickness of the layer 11 and the second conductive layer 13 is large, the conductive particle diameter becomes large and the insulation tends to be lowered.
 このような構成の導電性粒子は、樹脂コア粒子10の表面に第1の導電層11を形成した後、突起芯材12を付着させ、第2の導電層13を形成する方法により得ることができる。また、第1の導電層12の表面上に突起芯材12を付着させる方法としては、例えば、第1の導電層11が形成された樹脂コア粒子10の分散液中に、突起芯材12を添加し、第1の導電層11の表面に突起芯材12を、例えば、ファンデルワールス力により集積させ、付着させることなどが挙げられる。また、第1の導電層11及び第2の導電層13を形成する方法としては、例えば、無電解メッキによる方法、電気メッキによる方法、物理的蒸着による方法などが挙げられる。これらの中でも導電層の形成が簡便である無電解メッキによる方法が好ましい。 The conductive particles having such a structure can be obtained by a method in which the first conductive layer 11 is formed on the surface of the resin core particle 10 and then the protruding core material 12 is attached to form the second conductive layer 13. it can. Moreover, as a method of attaching the protruding core material 12 on the surface of the first conductive layer 12, for example, the protruding core material 12 is placed in a dispersion of the resin core particles 10 on which the first conductive layer 11 is formed. For example, the protrusion core material 12 is accumulated on the surface of the first conductive layer 11 by, for example, van der Waals force and attached. Examples of the method for forming the first conductive layer 11 and the second conductive layer 13 include a method by electroless plating, a method by electroplating, and a method by physical vapor deposition. Among these, the method by electroless plating is preferable because the formation of the conductive layer is simple.
 <2.接続構造体の製造方法>
 本実施の形態に係る接続構造体の製造方法は、第1の回路部材上に、導電性粒子を含有する接続材料を介して第2の回路部材を搭載する工程と、第2の回路部材を圧着ツールによって加熱押圧し、接続材料を硬化させる工程とを有する。ここで、導電性粒子は、前述のように、樹脂粒子と、樹脂粒子を被覆する第1の導電性被膜と、第1の金属被膜上に複数配置され、ビッカース硬度が1500~5000である突起芯材と、第1の金属層と突起芯材とを被覆する第2の導電性被膜とを有し、接続材料の最低溶融粘度は、1~100000Pa・sである。これにより、導電性粒子と電極との間のバインダーが十分に排除されるとともに、電極にかかる圧力が十分に得られるため、低い接続抵抗値を得ることができる。
<2. Manufacturing method of connection structure>
The manufacturing method of the connection structure according to the present embodiment includes a step of mounting the second circuit member on the first circuit member via a connection material containing conductive particles, and the second circuit member. Heating and pressing with a crimping tool to cure the connecting material. Here, as described above, the conductive particles are a plurality of resin particles, a first conductive film covering the resin particles, and a plurality of protrusions disposed on the first metal film and having a Vickers hardness of 1500 to 5000. It has a core material and a second conductive film covering the first metal layer and the protruding core material, and the minimum melt viscosity of the connecting material is 1 to 100,000 Pa · s. Thereby, while the binder between electroconductive particle and an electrode is fully excluded, since the pressure concerning an electrode is fully obtained, a low connection resistance value can be obtained.
 第1の回路部材及び第2の回路部材は、特に制限はなく、目的に応じて適宜選択することができる。第1の回路部材としては、例えば、LCD(Liquid Crystal Display)パネル用途、プラズマディスプレイパネル(PDP)用途などのプラスチック基板、ガラス基板、プリント配線板(PWB)などが挙げられる。また、第2の回路部材としては、例えば、IC(Integrated Circuit)、COF(Chip On Film)などのフレキシブル基板(FPC:Flexible Printed Circuits)、テープキャリアパッケージ(TCP)基板などを挙げることができる。 The first circuit member and the second circuit member are not particularly limited and can be appropriately selected according to the purpose. Examples of the first circuit member include a plastic substrate, a glass substrate, a printed wiring board (PWB), and the like for LCD (Liquid Crystal Display) panel use and plasma display panel (PDP) use. Examples of the second circuit member include a flexible substrate (FPC: Flexible Printed Circuit) such as an IC (Integrated Circuit), COF (Chip On Film), a tape carrier package (TCP) substrate, and the like.
 第1の回路部材の端子と第2の回路部材の端子との圧着では、第2の回路部材上から、所定温度に加温された圧着ツールによって、所定の圧力及び所定の時間、熱加圧され、本圧着される。これにより、異方性導電フィルムのバインダーが流動し、第1の回路部材の端子と第2の回路部材の端子との実装部の間から流出するとともに、バインダー中の導電性粒子が第1の回路部材の端子と第2の回路部材の端子との間に挟持されて押し潰され、この状態でバインダーが硬化する。 In the crimping of the terminal of the first circuit member and the terminal of the second circuit member, heat pressing is performed for a predetermined pressure and for a predetermined time from the second circuit member by a crimping tool heated to a predetermined temperature. And this is crimped. Thereby, the binder of the anisotropic conductive film flows, flows out from between the mounting portions of the terminals of the first circuit member and the terminals of the second circuit member, and the conductive particles in the binder are the first. It is pinched between the terminal of a circuit member and the terminal of a 2nd circuit member, and is crushed, and a binder hardens | cures in this state.
 本圧着時の所定の圧力は、回路部材の配線クラックを防止する観点から、1MPa以上150MPa以下であることが好ましい。また、所定温度は、圧着時における異方性導電フィルムの温度であり、80℃以上230℃以下であることが好ましい。また、UVなどの光照射を併用してもよい。 The predetermined pressure at the time of the main pressure bonding is preferably 1 MPa or more and 150 MPa or less from the viewpoint of preventing the wiring crack of the circuit member. The predetermined temperature is the temperature of the anisotropic conductive film at the time of pressure bonding, and is preferably 80 ° C. or higher and 230 ° C. or lower. Further, irradiation with light such as UV may be used in combination.
 圧着ツールとしては、特に制限はなく、目的に応じて適宜選択することができ、押圧対象よりも大面積である押圧部材を用いて押圧を1回で行ってもよく、また、押圧対象よりも小面積である押圧部材を用いて押圧を数回に分けて行ってもよい。圧着ツールの先端形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平面状、曲面状などが挙げられる。なお、先端形状が曲面状である場合、曲面状に沿って押圧することが好ましい。 There is no restriction | limiting in particular as a crimping | compression-bonding tool, According to the objective, it can select suitably, You may perform a press once using the pressing member which is a larger area than a press target, The pressing may be performed in several times using a pressing member having a small area. There is no restriction | limiting in particular as a front-end | tip shape of a crimping | compression-bonding tool, According to the objective, it can select suitably, For example, planar shape, curved surface shape, etc. are mentioned. In addition, when the tip shape is a curved surface shape, it is preferable to press along the curved surface shape.
 また、圧着ツールと第2の回路部材との間に緩衝材を介装して熱圧着してもよい。緩衝材を介装することにより、押圧ばらつきを低減できると共に、圧着ツールが汚れるのを防止することができる。緩衝材は、シート状の弾性材又は塑性体からなり、例えばテフロン(商標)、シリコンラバーなどが用いられる。 Also, a thermal compression may be performed by interposing a cushioning material between the crimping tool and the second circuit member. By interposing the cushioning material, it is possible to reduce pressure variation and prevent the crimping tool from becoming dirty. The buffer material is made of a sheet-like elastic material or plastic, and for example, Teflon (trademark), silicon rubber, or the like is used.
 本実施の形態に係る接続構造体の製造方法によれば、硬い突起を有する導電性粒子を用いているため、例えば表面が平滑であるIZO電極でも十分に圧力を加えることができ、抵抗値を低下させることができる。このため、本法により製造された接続構造体は、低抵抗であり、消費電力を低下させることができる。 According to the method for manufacturing a connection structure according to the present embodiment, since conductive particles having hard protrusions are used, for example, an IZO electrode having a smooth surface can be sufficiently applied with a resistance value. Can be reduced. For this reason, the connection structure manufactured by this method has low resistance, and can reduce power consumption.
 <3.実施例>
 以下、本発明の実施例について説明する。本実施例では、樹脂粒子が第1の導電性被膜で被覆されてなる金属被膜樹脂粒子に突起芯材を付着させ、これをさらに第2の導電性被膜で被覆し、突起を有する導電性粒子を作製した。そして、導電性粒子を含有する異方性導電フィルムを用いて接続構造体を作製し、接続構造体の導通抵抗について評価した。なお、本発明はこれらの実施例に限定されるものではない。
<3. Example>
Examples of the present invention will be described below. In this embodiment, a protruding core material is attached to metal-coated resin particles in which resin particles are coated with a first conductive coating, and this is further coated with a second conductive coating, and conductive particles having protrusions. Was made. And the connection structure was produced using the anisotropic conductive film containing electroconductive particle, and the conduction resistance of the connection structure was evaluated. The present invention is not limited to these examples.
 [導電性粒子の作製]
 第1の導電性被膜の被覆工程:
 テトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合体からなる平均粒子径3μmの樹脂粒子を基材として使用した。樹脂粒子の荷重5mNで圧縮させた後の圧縮回復率は45%であった。この樹脂粒子に、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化錫溶液によるセンシタイジングを行った。その後、二塩化パラジウム溶液によるアクチベイチングを行った。濾過洗浄後、基材粒子を水で希釈し、メッキ安定剤を添加後、この水溶液に硫酸ニッケル、次亜リン酸ナトリウム、クエン酸ナトリウム、及びメッキ安定剤の混合溶液を定量ポンプにて添加し、所定厚みのニッケルメッキ被膜となるように無電解メッキを行った。その後、pHが安定するまで攪拌し、水素の発砲が停止するのを確認した。そして、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥し、樹脂粒子が第1の導電性被膜としてニッケルメッキ被膜で被覆された金属被膜樹脂粒子を得た。
[Preparation of conductive particles]
Coating process of first conductive film:
Resin particles having an average particle diameter of 3 μm made of a copolymer of tetramethylolmethane tetraacrylate and divinylbenzene were used as a base material. The compression recovery rate after the resin particles were compressed at a load of 5 mN was 45%. The resin particles were subjected to alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing with a tin dichloride solution. Thereafter, activation with a palladium dichloride solution was performed. After filtration and washing, the substrate particles are diluted with water and a plating stabilizer is added. Then, a mixed solution of nickel sulfate, sodium hypophosphite, sodium citrate, and plating stabilizer is added to this aqueous solution with a metering pump. Electroless plating was performed so as to obtain a nickel plating film having a predetermined thickness. Then, it stirred until pH became stable and it confirmed that hydrogen firing stopped. Then, the plating solution is filtered, and the filtrate is washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain metal-coated resin particles in which the resin particles are coated with a nickel plating film as a first conductive film. It was.
 突起芯材の付着工程:
 金属被膜樹脂粒子を脱イオン水で攪拌により分散させた後、その水溶液に突起心材を添加し、ニッケルメッキ被膜上に突起芯材を付着させた粒子を得た。粒子1つ当たりに付着した突起芯材の個数は、約150であった。
Protrusion core material adhesion process:
After the metal-coated resin particles were dispersed by stirring with deionized water, a protruding core material was added to the aqueous solution to obtain particles having a protruding core material adhered on the nickel plating film. The number of projecting core materials adhered per particle was about 150.
 第2の導電性被膜の被覆工程:
 次に、突起芯材が付着された粒子に、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化錫溶液によるセンシタイジングを行った。その後、二塩化パラジウム溶液によるアクチベイチングを行った。濾過洗浄後、基材粒子を水で希釈し、メッキ安定剤を添加後、この水溶液に硫酸ニッケル、次亜リン酸ナトリウム、クエン酸ナトリウム、及びメッキ安定剤の混合溶液を定量ポンプにて添加し、所定厚みのニッケルメッキ被膜となるように無電解メッキを行った。その後、pHが安定するまで攪拌し、水素の発砲が停止するのを確認した。そして、メッキ液を濾過し、濾過物を水で洗浄した後、80℃の真空乾燥機で乾燥し、第2の導電性被膜としてニッケルメッキ被膜で被覆された粒子を得た。
Step of coating the second conductive film:
Next, alkali degreasing with an aqueous sodium hydroxide solution, acid neutralization, and sensitizing with a tin dichloride solution were performed on the particles to which the protruding core material was adhered. Thereafter, activation with a palladium dichloride solution was performed. After filtration and washing, the substrate particles are diluted with water and a plating stabilizer is added. Then, a mixed solution of nickel sulfate, sodium hypophosphite, sodium citrate, and plating stabilizer is added to this aqueous solution with a metering pump. Electroless plating was performed so as to obtain a nickel plating film having a predetermined thickness. Then, it stirred until pH became stable and it confirmed that hydrogen firing stopped. Then, the plating solution was filtered and the filtrate was washed with water, and then dried with a vacuum dryer at 80 ° C. to obtain particles coated with a nickel plating film as a second conductive film.
 [メッキ被膜の膜厚の測定]
 メッキ被膜の膜厚は、導電性粒子を収束イオンビーム加工観察装置(FB-2100、日立ハイテクノロジー(株))を用いて断面研磨を行い、透過電子顕微鏡(H-9500、日立ハイテクノロジー(株))を用いて、任意の20個の導電性粒子の断面を観察し、各粒子につきメッキ被膜の5箇所の厚みを測定することによりその平均値を算出した。
[Measurement of plating film thickness]
The film thickness of the plating film was determined by conducting cross-sectional polishing of conductive particles using a focused ion beam processing observation device (FB-2100, Hitachi High-Technology Co., Ltd.), and a transmission electron microscope (H-9500, Hitachi High-Technology Co., Ltd. )) Was used to observe the cross section of 20 arbitrary conductive particles, and the average value was calculated by measuring the thickness of the plated coating at five locations for each particle.
 [異方性導電フィルムの最低溶融粘度の測定]
 異方性導電フィルムの最低溶融粘度を、回転式レオメータ(TA Instruments社)を用い、昇温速度 10℃/分;測定時の力 1N一定;使用測定プレート直径8mmという条件で測定した。
[Measurement of minimum melt viscosity of anisotropic conductive film]
The minimum melt viscosity of the anisotropic conductive film was measured using a rotary rheometer (TA Instruments) under the conditions of a temperature rising rate of 10 ° C./min; a force during measurement of 1N constant;
 [接続抵抗の評価]
 IZO配線の実装体の作製を行った。評価基材として、COF(デクセリアルズ(株)評価用COF、50μmピッチ、Cu8μmt-Snメッキ38μm)と、IZOベタガラス(デクセリアルズ(株)評価用IZOベタガラス、IZO厚300nm、ガラス厚0.7mm)との接続を行った。先ず、IZOベタガラス上に、1.5mm幅にスリットされた異方性導電フィルムを、圧着機ツール幅1.5mm、緩衝材70μm厚テフロン(商標)を用いて、温度80℃、圧力1MPa、2秒の仮圧着条件で仮貼りし、剥離PETフィルムを剥がした。続いて、COFを同圧着機で、温度80℃、圧力0.5MPa、0.5秒の仮固定条件で仮固定を行った、最後に、本圧着として、圧着機ツール幅1.5mm、緩衝材70μm厚テフロン(商標)を用いて、温度190℃、圧力3MPa、10秒の圧着条件で圧着を行い、実装体を得た。
[Evaluation of connection resistance]
A mounting body of IZO wiring was produced. As an evaluation substrate, COF (Dexerials Co., Ltd. COF for evaluation, 50 μm pitch, Cu 8 μmt-Sn plating 38 μm) and IZO solid glass (Dexerials Co., Ltd. IZO solid glass, IZO thickness 300 nm, glass thickness 0.7 mm) Connected. First, an anisotropic conductive film slit to a width of 1.5 mm on an IZO solid glass, using a Teflon (trademark) with a crimping machine tool width of 1.5 mm and a buffer material thickness of 70 μm, a temperature of 80 ° C., a pressure of 1 MPa, 2 Temporarily affixing was performed under the second temporary pressing condition, and the peeled PET film was peeled off. Subsequently, the COF was temporarily fixed with the same pressure bonding machine under the temperature fixed temperature of 80 ° C., the pressure of 0.5 MPa, and the time of 0.5 seconds. Using a material 70 μm thick Teflon (trademark), pressure bonding was performed at a temperature of 190 ° C., a pressure of 3 MPa, and a pressure of 10 seconds to obtain a mounting body.
 実装体を85℃85%RHの恒温恒湿槽中に500時間保持する高温高湿試験を行った後、実装体の抵抗値を、デジタルマルチメータを用いて4端子法で測定した。接続抵抗の評価は、抵抗値が2.0Ω未満の場合を「A」(最良)、抵抗値が2.0Ω以上の場合を「C」(不良)とした。 The high temperature and high humidity test which hold | maintains a mounting body in an 85 degreeC85% RH constant temperature and humidity chamber for 500 hours was performed, Then, the resistance value of the mounting body was measured by the 4-terminal method using the digital multimeter. The connection resistance was evaluated as “A” (best) when the resistance value was less than 2.0Ω, and “C” (defective) when the resistance value was 2.0Ω or more.
 [絶縁性の評価]
 ITO配線の実装体の作製を行った。評価基材として、IC(デクセリアルズ(株)評価用IC、1.5mm×130mm、0.5mm厚、金メッキバンプ、バンプ間スペース10μm、バンプ高さ15μm)と、ガラス基板(デクセリアルズ(株)評価用ガラス基板、櫛歯パターン、バンプ間スペース10μm、ガラス厚0.5mm)との接続を行った。先ず、ガラス基板上に、1.5mm幅にスリットされた異方性導電フィルムを、圧着機ツール幅1.5mm、緩衝材70μm厚テフロン(商標)を用いて、温度80℃、圧力1MPa、2秒の仮圧着条件で仮貼りし、剥離PETフィルムを剥がした。続いて、ICを同圧着機で、温度80℃、圧力0.5MPa、0.5秒の仮固定条件で仮固定を行った、最後に、本圧着として、圧着機ツール幅1.5mm、緩衝材70μm厚テフロン(商標)を用いて、温度190℃、圧力3MPa、10秒の圧着条件で圧着を行い、実装体を得た。
[Evaluation of insulation]
A mounted body of ITO wiring was produced. As an evaluation substrate, IC (Dexerials Corporation evaluation IC, 1.5 mm × 130 mm, 0.5 mm thickness, gold-plated bump, bump space 10 μm, bump height 15 μm) and glass substrate (Dexerials Corporation evaluation) A glass substrate, a comb-tooth pattern, a space between bumps of 10 μm, and a glass thickness of 0.5 mm were connected. First, an anisotropic conductive film slit to a width of 1.5 mm on a glass substrate, using a Teflon (trademark) with a crimping machine tool width of 1.5 mm and a buffer material of 70 μm, a temperature of 80 ° C., a pressure of 1 MPa, Temporarily affixing was performed under the second temporary pressing condition, and the peeled PET film was peeled off. Subsequently, the IC was temporarily fixed with the same crimping machine under the temporary fixing conditions of a temperature of 80 ° C., a pressure of 0.5 MPa, and a time of 0.5 seconds. Using a material 70 μm thick Teflon (trademark), pressure bonding was performed at a temperature of 190 ° C., a pressure of 3 MPa, and a pressure of 10 seconds to obtain a mounting body.
 実装体の隣接するバンプ間の抵抗値を2端子法にて測定し、10^8Ω以下をショートとしてカウントした。評価用ICには10組のバンプからなる電極パターンが8か所形成され、10組中1組以上のショートが発生した電極パターンの数をカウントした。絶縁性の評価は、ショートが発生した電極パターンの数が0の場合を「A」(最良)、ショートが発生した電極パターンが2か所以下の場合を「B」(普通)、ショートが発生した電極パターンが3か所以上の場合を「C」(不良)とした。 The resistance value between adjacent bumps of the mounting body was measured by the two-terminal method, and 10 ^ 8Ω or less was counted as a short circuit. In the evaluation IC, 8 electrode patterns composed of 10 sets of bumps were formed, and the number of electrode patterns in which one or more sets of 10 shorts occurred was counted. Insulation evaluation is “A” (best) when the number of shorted electrode patterns is 0, and “B” (normal) when the number of shorted electrode patterns is 2 or less. The case where there were three or more electrode patterns was “C” (defect).
 <実施例1>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmの炭化タングステン粒子(ビッカース硬度1800)を用いて導電性粒子Aを作製した。導電性粒子Aの第1の導電性被膜としてのニッケルメッキ被膜の膜厚は20nmであり、第2の導電性被膜としてのニッケルメッキ被膜の膜厚は100nmであった。尚、突起芯材は以下に記載するものも含めて、PVD法やCVD法など公知の手法で調整したものを適宜用いた。突起芯材の粒子径は、電子顕微鏡によりN=200以上を計測して求めた。
<Example 1>
In the preparation of the conductive particles described above, conductive particles A were prepared using tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) as the protrusion core material. The film thickness of the nickel plating film as the first conductive film of the conductive particles A was 20 nm, and the film thickness of the nickel plating film as the second conductive film was 100 nm. In addition, what was adjusted by well-known methods, such as PVD method and CVD method, was suitably used for the protrusion core material also including what is described below. The particle diameter of the protrusion core material was determined by measuring N = 200 or more with an electron microscope.
 マイクロカプセル型潜在性硬化剤(ノバキュアHX3941、旭化成ケミカルズ(株))を50質量部、液状エポキシ樹脂(EP828、三菱化学(株))を14質量部、フェノキシ樹脂(YP50、新日鉄住金化学(株)製)を35質量部、シランカップリング剤(KBE403、信越化学工業(株))を1質量部配合し、熱硬化性バインダーを作製した。この熱硬化性バインダーに、導電性粒子Aを体積比率10%になるように分散させ、これをシリコン処理された剥離PETフィルム上に厚み20μmになるように塗布し、シート状の異方性導電フィルムを作製した。この異方性導電フィルムの最低溶融粘度は、100Pa・sであった。表1に、接続抵抗及び絶縁性の評価結果を示す。 Microcapsule type latent curing agent (Novacure HX3941, Asahi Kasei Chemicals Corporation) 50 parts by mass, liquid epoxy resin (EP828, Mitsubishi Chemical Co., Ltd.) 14 parts by mass, phenoxy resin (YP50, Nippon Steel & Sumikin Chemical Co., Ltd.) 35 parts by mass and 1 part by mass of a silane coupling agent (KBE403, Shin-Etsu Chemical Co., Ltd.) were blended to prepare a thermosetting binder. In this thermosetting binder, conductive particles A are dispersed so as to have a volume ratio of 10%, and this is coated on a peeled PET film treated with silicon so as to have a thickness of 20 μm. A film was prepared. The minimum melt viscosity of this anisotropic conductive film was 100 Pa · s. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例2>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmの炭化タングステン-炭化チタン-炭化タンタル粒子(ビッカース硬度2400)を用いた以外は、実施例1と同様の構成の導電性粒子Bを作製し、異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 2>
Conductive particles B having the same configuration as in Example 1 except that tungsten carbide-titanium carbide-tantalum carbide particles having an average particle diameter of 200 nm (Vickers hardness 2400) were used as the protrusion core material in the production of the conductive particles described above. And an anisotropic conductive film was produced. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例3>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmの炭化チタン粒子(ビッカース硬度3500)を用いた以外は、実施例1と同様の構成の導電性粒子Cを作製し、異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 3>
In the preparation of the conductive particles described above, conductive particles C having the same configuration as in Example 1 were prepared except that titanium carbide particles having an average particle diameter of 200 nm (Vickers hardness 3500) were used as the protrusion core material. Conductive film was prepared. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例4>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmのサーメット粒子(ビッカース硬度2800)を用いた以外は、実施例1と同様の構成の導電性粒子Dを作製し、異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 4>
In the preparation of the conductive particles described above, conductive particles D having the same configuration as in Example 1 were prepared except that cermet particles (Vickers hardness 2800) having an average particle diameter of 200 nm were used as the protrusion core material. A conductive film was produced. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例5>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmの炭化ホウ素粒子(ビッカース硬度3300)を用いた以外は、実施例1と同様の構成の導電性粒子Eを作製し、異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 5>
In the preparation of the conductive particles described above, conductive particles E having the same configuration as in Example 1 were prepared except that boron carbide particles having an average particle diameter of 200 nm (Vickers hardness 3300) were used as the protrusion core material. Conductive film was prepared. Table 1 shows the evaluation results of connection resistance and insulation.
 <比較例1>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmのニッケル粒子(ビッカース硬度500)を用いた以外は、実施例1と同様の構成の導電性粒子Fを作製し、異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Comparative Example 1>
In the preparation of the conductive particles described above, conductive particles F having the same configuration as in Example 1 were prepared except that nickel particles having an average particle diameter of 200 nm (Vickers hardness 500) were used as the protrusion core material, and anisotropy was obtained. A conductive film was produced. Table 1 shows the evaluation results of connection resistance and insulation.
 <比較例2>
 前述の導電性粒子の作製において、樹脂粒子にセンシタイジング、及びアクチベイチングを行い、濾過洗浄後、脱イオン水で攪拌により分散させた後、その水溶液に炭化タングステン粒子スラリーを添加し、樹脂粒子上に突起芯材として平均粒子径200nmの炭化タングステン粒子(ビッカース硬度1800)を付着させ、第2の導電性被膜の被覆工程にてニッケルメッキ被膜で被覆し、導電性粒子Gを作製した。導電性粒子Gの第2の導電性被膜としてのニッケルメッキ被膜の膜厚は120nmであった。そして、実施例1と同様に、導電性粒子Gを用いて異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Comparative Example 2>
In the preparation of the conductive particles described above, the resin particles are sensitized and activated, filtered and washed, dispersed by stirring with deionized water, and then the tungsten carbide particle slurry is added to the aqueous solution. Tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) were adhered onto the particles as a protruding core material, and the particles were coated with a nickel plating film in the second conductive film coating step to produce conductive particles G. The thickness of the nickel plating film as the second conductive film of the conductive particles G was 120 nm. Then, similarly to Example 1, an anisotropic conductive film was produced using the conductive particles G. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例6>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmの炭化タングステン粒子(ビッカース硬度1800)を用いて導電性粒子Hを作製した。導電性粒子Hの第1の導電性被膜としてのニッケルメッキ被膜の膜厚は5nmであり、第2の導電性被膜としてのニッケルメッキ被膜の膜厚は100nmであった。導電性粒子Hを用いた以外は、実施例1と同様にして異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 6>
In the preparation of the conductive particles described above, conductive particles H were prepared using tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) as the protrusion core material. The film thickness of the nickel plating film as the first conductive film of the conductive particles H was 5 nm, and the film thickness of the nickel plating film as the second conductive film was 100 nm. An anisotropic conductive film was produced in the same manner as in Example 1 except that the conductive particles H were used. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例7>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmの炭化タングステン粒子(ビッカース硬度1800)を用いて導電性粒子Iを作製した。導電性粒子Iの第1の導電性被膜としてのニッケルメッキ被膜の膜厚は100nmであり、第2の導電性被膜としてのニッケルメッキ被膜の膜厚は100nmであった。導電性粒子Iを用いた以外は、実施例1と同様にして異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 7>
In the preparation of the conductive particles described above, conductive particles I were prepared using tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) as the protrusion core material. The film thickness of the nickel plating film as the first conductive film of the conductive particles I was 100 nm, and the film thickness of the nickel plating film as the second conductive film was 100 nm. An anisotropic conductive film was produced in the same manner as in Example 1 except that the conductive particles I were used. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例8>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmの炭化タングステン粒子(ビッカース硬度1800)を用いて導電性粒子Jを作製した。導電性粒子Jの第1の導電性被膜としてのニッケルメッキ被膜の膜厚は150nmであり、第2の導電性被膜としてのニッケルメッキ被膜の膜厚は350nmであった。導電性粒子Jを用いた以外は、実施例1と同様にして異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 8>
In the preparation of the conductive particles described above, conductive particles J were prepared using tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) as the protrusion core material. The film thickness of the nickel plating film as the first conductive film of the conductive particles J was 150 nm, and the film thickness of the nickel plating film as the second conductive film was 350 nm. An anisotropic conductive film was produced in the same manner as in Example 1 except that the conductive particles J were used. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例9>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmの炭化タングステン粒子(ビッカース硬度1800)を用いて導電性粒子Kを作製した。導電性粒子Kの第1の導電性被膜としてのニッケルメッキ被膜の膜厚は150nmであり、第2の導電性被膜としてのニッケルメッキ被膜の膜厚は500nmであった。導電性粒子Kを用いた以外は、実施例1と同様にして異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 9>
In the preparation of the conductive particles described above, the conductive particles K were prepared using tungsten carbide particles (Vickers hardness 1800) having an average particle diameter of 200 nm as the protrusion core material. The film thickness of the nickel plating film as the first conductive film of the conductive particles K was 150 nm, and the film thickness of the nickel plating film as the second conductive film was 500 nm. An anisotropic conductive film was produced in the same manner as in Example 1 except that the conductive particles K were used. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例10>
 前述の導電性粒子の作製において、突起芯材として平均粒子径200nmの炭化タングステン粒子(ビッカース硬度1800)を用いて導電性粒子Lを作製した。導電性粒子Lの第1の導電性被膜としてのニッケルメッキ被膜の膜厚は20nmであり、第2の導電性被膜としてのパラジウムメッキ被膜の膜厚は100nmであった。導電性粒子Lを用いた以外は、実施例1と同様にして異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 10>
In the preparation of the conductive particles described above, conductive particles L were prepared using tungsten carbide particles having an average particle diameter of 200 nm (Vickers hardness 1800) as the protrusion core material. The film thickness of the nickel plating film as the first conductive film of the conductive particles L was 20 nm, and the film thickness of the palladium plating film as the second conductive film was 100 nm. An anisotropic conductive film was produced in the same manner as in Example 1 except that the conductive particles L were used. Table 1 shows the evaluation results of connection resistance and insulation.
 <比較例3>
 実施例1と同様に熱硬化性バインダーを作製し、これに導電性粒子Aを体積比率10%になるように分散させ、樹脂の固形分濃度や乾燥条件で調製し、最低溶融粘度が1000000Pa・sである異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Comparative Example 3>
A thermosetting binder was prepared in the same manner as in Example 1, and the conductive particles A were dispersed therein so that the volume ratio was 10%, and the resin was prepared under the solid content concentration and drying conditions of the resin. The minimum melt viscosity was 1,000,000 Pa · The anisotropic conductive film which is s was produced. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例11>
 実施例1と同様に熱硬化性バインダーを作製し、これに導電性粒子Aを体積比率10%になるように分散させ、樹脂の固形分濃度や乾燥条件で調製し、最低溶融粘度が100000Pa・sである異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 11>
A thermosetting binder was prepared in the same manner as in Example 1, and the conductive particles A were dispersed therein so that the volume ratio was 10%, and the resin was prepared under the resin solid content concentration and drying conditions. The minimum melt viscosity was 100,000 Pa · The anisotropic conductive film which is s was produced. Table 1 shows the evaluation results of connection resistance and insulation.
 <実施例12>
 実施例1と同様に熱硬化性バインダーを作製し、これに導電性粒子Aを体積比率10%になるように分散させ、樹脂の固形分濃度や乾燥条件で調製し、最低溶融粘度が1Pa・sである異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Example 12>
A thermosetting binder was prepared in the same manner as in Example 1, and conductive particles A were dispersed therein so that the volume ratio was 10%, and the resin was prepared under the resin solid content concentration and drying conditions. The minimum melt viscosity was 1 Pa · The anisotropic conductive film which is s was produced. Table 1 shows the evaluation results of connection resistance and insulation.
 <比較例4>
 実施例1と同様に熱硬化性バインダーを作製し、これに導電性粒子Aを体積比率10%になるように分散させ、樹脂の固形分濃度や乾燥条件で調製し、最低溶融粘度が0.1Pa・sである異方性導電フィルムを作製した。表1に、接続抵抗及び絶縁性の評価結果を示す。
<Comparative Example 4>
A thermosetting binder was prepared in the same manner as in Example 1, and conductive particles A were dispersed therein so as to have a volume ratio of 10%, and were prepared according to the solid content concentration and drying conditions of the resin. An anisotropic conductive film of 1 Pa · s was produced. Table 1 shows the evaluation results of connection resistance and insulation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 比較例1のように突起芯材のビッカース硬度が低い場合、抵抗値を低下させることができなかった。また、比較例2のように樹脂粒子に直接突起芯材を配置した場合も、抵抗値を低下させることができなかった。また、比較例3、4のようにバインダーの最低溶融粘度が最適範囲内にない場合も、抵抗値を低下させることができなかった。 When the Vickers hardness of the protruding core material is low as in Comparative Example 1, the resistance value could not be reduced. In addition, when the protruding core material was directly arranged on the resin particles as in Comparative Example 2, the resistance value could not be reduced. Further, even when the minimum melt viscosity of the binder was not within the optimum range as in Comparative Examples 3 and 4, the resistance value could not be reduced.
 一方、実施例1~12のように樹脂粒子を被覆するニッケルメッキ被膜上にビッカース硬度が高い突起芯材が複数配置された導電性粒子と、最低溶融粘度が最適化されたバインダーとを含有する接続材料を用いることにより、抵抗値を低下させることができた。また、第1の導電層と第2の導電層との合計の膜厚が、100nm以上500nm以下であり、第1の導電層の膜厚が、5nm以上であることにより、優れた絶縁性が得られることが分かった。 On the other hand, it contains conductive particles in which a plurality of protruding core materials having high Vickers hardness are arranged on a nickel plating film that covers resin particles as in Examples 1 to 12, and a binder with an optimized minimum melt viscosity. The resistance value could be reduced by using the connecting material. Further, since the total film thickness of the first conductive layer and the second conductive layer is 100 nm or more and 500 nm or less and the film thickness of the first conductive layer is 5 nm or more, excellent insulating properties are obtained. It turns out that it is obtained.
 10 コア粒子、11 第1の金属層、12 突起芯材、13 第2の導電層、14 突起
 
10 Core particles, 11 First metal layer, 12 Projection core material, 13 Second conductive layer, 14 Projection

Claims (7)

  1.  樹脂粒子と、前記樹脂粒子を被覆する第1の導電性被膜と、前記第1の導電性被膜上に複数配置され、ビッカース硬度が1500~5000である突起芯材と、前記第1の導電性被膜と前記突起芯材とを被覆する第2の導電性被膜とを有する導電性粒子を含有し、
     最低溶融粘度が1~100000Pa・sである接続材料。
    Resin particles, a first conductive film covering the resin particles, a plurality of cores disposed on the first conductive film and having a Vickers hardness of 1500 to 5000, and the first conductive film Containing conductive particles having a coating and a second conductive coating covering the protruding core material;
    A connecting material having a minimum melt viscosity of 1 to 100,000 Pa · s.
  2.  前記突起芯材が、タングステン、チタン、タンタル、ホウ素から選ばれる1種以上を含む金属炭化物、金属炭窒化物、又はサーメットである請求項1記載の接続材料。 The connection material according to claim 1, wherein the protruding core material is a metal carbide, metal carbonitride, or cermet containing at least one selected from tungsten, titanium, tantalum, and boron.
  3.  前記第1の導電性被膜と第2の導電性被膜との合計の膜厚が、100nm以上500nm以下であり、
     前記第1の導電性被膜の膜厚が、5nm以上である請求項1又は2記載に記載の接続材料。
    The total film thickness of the first conductive film and the second conductive film is 100 nm or more and 500 nm or less,
    The connection material according to claim 1, wherein the first conductive film has a thickness of 5 nm or more.
  4.  前記第1の導電性被膜のビッカース硬度が、300~1200である請求項1乃至3のいずれか1項に記載の接続材料。 4. The connection material according to claim 1, wherein the first conductive film has a Vickers hardness of 300 to 1200.
  5.  前記第1の導電性被膜が、ニッケルメッキである請求項1乃至4のいずれか1項に記載の接続材料。 The connection material according to claim 1, wherein the first conductive coating is nickel plating.
  6.  第1の回路部材上に、導電性粒子を含有する接続材料を介して第2の回路部材を搭載する工程と、
     前記第2の回路部材を圧着ツールによって加熱押圧し、前記接続材料を硬化させる工程とを有し、
     前記導電性粒子が、樹脂粒子と、前記樹脂粒子を被覆する第1の導電性被膜と、前記第1の金属被膜上に複数配置され、ビッカース硬度が1500~5000である突起芯材と、前記第1の金属層と前記突起芯材とを被覆する第2の導電性被膜とを有し、
     前記接続材料の最低溶融粘度が1~100000Pa・sである接続構造体の製造方法。
    Mounting the second circuit member on the first circuit member via a connecting material containing conductive particles;
    Heating and pressing the second circuit member with a crimping tool, and curing the connection material,
    A plurality of conductive particles, resin particles, a first conductive film covering the resin particles, a plurality of the conductive particles disposed on the first metal film, and a protruding core material having a Vickers hardness of 1500 to 5000; A second conductive film covering the first metal layer and the protruding core material;
    A method for producing a connection structure, wherein the connection material has a minimum melt viscosity of 1 to 100,000 Pa · s.
  7.  第1の回路部材と、第2の回路部材と、前記第1の回路部材と前記第2の回路部材とを接続する接続硬化膜とを備え、
     前記接続硬化膜が、樹脂粒子と、前記樹脂粒子を被覆する第1の導電性被膜と、前記第1の金属被膜上に複数配置され、ビッカース硬度が1500~5000である突起芯材と、前記第1の金属層と前記突起芯材とを被覆する第2の導電性被膜とを有する導電性粒子を備える接続構造体。
     
    A first circuit member, a second circuit member, and a connection cured film that connects the first circuit member and the second circuit member;
    A plurality of the connection cured films, resin particles, a first conductive film covering the resin particles, a plurality of disposed on the first metal film, and a protruding core material having a Vickers hardness of 1500 to 5000; A connection structure comprising conductive particles having a first metal layer and a second conductive film covering the protruding core material.
PCT/JP2016/077197 2015-09-18 2016-09-14 Connection material WO2017047671A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237001742A KR20230013642A (en) 2015-09-18 2016-09-14 Connection material
KR1020187006192A KR20180036770A (en) 2015-09-18 2016-09-14 Connecting material
CN201680050992.6A CN107925175A (en) 2015-09-18 2016-09-14 Connecting material
KR1020207018568A KR20200080337A (en) 2015-09-18 2016-09-14 Connection material
HK18110689.5A HK1251356A1 (en) 2015-09-18 2018-08-21 Connection material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015185238A JP2017059471A (en) 2015-09-18 2015-09-18 Connection material
JP2015-185238 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047671A1 true WO2017047671A1 (en) 2017-03-23

Family

ID=58288944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077197 WO2017047671A1 (en) 2015-09-18 2016-09-14 Connection material

Country Status (5)

Country Link
JP (1) JP2017059471A (en)
KR (3) KR20200080337A (en)
CN (2) CN107925175A (en)
HK (1) HK1251356A1 (en)
WO (1) WO2017047671A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068067A (en) * 2017-09-20 2022-02-18 积水化学工业株式会社 Metal-containing particle, connecting material, connecting structure and method for producing same, conduction test member, and conduction test device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614852A (en) * 2019-03-19 2021-11-05 积水化学工业株式会社 Conductive particle, conductive material, and connection structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010768A1 (en) * 2008-07-24 2010-01-28 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particle, anisotropic conductive film, joined body, and connecting method
JP2011175846A (en) * 2010-02-24 2011-09-08 Hitachi Chem Co Ltd Circuit member connecting adhesive film, and circuit member connecting structure and method of manufacturing the same
WO2012098929A1 (en) * 2011-01-19 2012-07-26 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film
JP2015057757A (en) * 2013-08-09 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5529901B2 (en) 2012-01-10 2014-06-25 積水化学工業株式会社 Conductive particles and anisotropic conductive materials
JP5636118B2 (en) 2012-10-02 2014-12-03 積水化学工業株式会社 Conductive particles, conductive materials, and connection structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010768A1 (en) * 2008-07-24 2010-01-28 ソニーケミカル&インフォメーションデバイス株式会社 Conductive particle, anisotropic conductive film, joined body, and connecting method
JP2011175846A (en) * 2010-02-24 2011-09-08 Hitachi Chem Co Ltd Circuit member connecting adhesive film, and circuit member connecting structure and method of manufacturing the same
WO2012098929A1 (en) * 2011-01-19 2012-07-26 ソニーケミカル&インフォメーションデバイス株式会社 Anisotropic conductive film
JP2015057757A (en) * 2013-08-09 2015-03-26 積水化学工業株式会社 Conductive particle, conductive material and connection structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114068067A (en) * 2017-09-20 2022-02-18 积水化学工业株式会社 Metal-containing particle, connecting material, connecting structure and method for producing same, conduction test member, and conduction test device

Also Published As

Publication number Publication date
CN107925175A (en) 2018-04-17
KR20200080337A (en) 2020-07-06
HK1251356A1 (en) 2019-01-25
KR20230013642A (en) 2023-01-26
KR20180036770A (en) 2018-04-09
JP2017059471A (en) 2017-03-23
CN113410671A (en) 2021-09-17

Similar Documents

Publication Publication Date Title
JP7100088B2 (en) Conductive material
TWI757326B (en) Adhesive composition
CN101689410A (en) Circuit connection material, the syndeton of circuit member of using it and the method for attachment of circuit member
JP4640531B2 (en) Conductive particles
JP7420883B2 (en) Conductive film, connection body manufacturing method, and connection body
JP2011060502A (en) Conductive particle with insulating particles, anisotropic conductive material, and connection structure
JP2011029180A (en) Coated conductive particle
TW201337959A (en) Bonding method using anisotropic conductive material, and anisotropic conductive bonded structure
WO2017047671A1 (en) Connection material
JP7193512B2 (en) connecting material
JP5796232B2 (en) Conductive particles, anisotropic conductive materials, and connection structures
KR102545861B1 (en) Conductive material
JP2016076338A (en) Conductive particle
WO2018139552A1 (en) Insulation covered conductive particles, anisotropic conductive film, method for producing anisotropic conductive film, connection structure and method for producing connection structure
JP6398416B2 (en) Connection structure manufacturing method and connection structure
JP2016178029A (en) Anisotropic conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846542

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20187006192

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846542

Country of ref document: EP

Kind code of ref document: A1