WO2017047559A1 - エチレン-ビニルアルコール系共重合体、エチレン-ビニルアルコール系共重合体の製造方法、樹脂組成物及び多層構造体 - Google Patents

エチレン-ビニルアルコール系共重合体、エチレン-ビニルアルコール系共重合体の製造方法、樹脂組成物及び多層構造体 Download PDF

Info

Publication number
WO2017047559A1
WO2017047559A1 PCT/JP2016/076899 JP2016076899W WO2017047559A1 WO 2017047559 A1 WO2017047559 A1 WO 2017047559A1 JP 2016076899 W JP2016076899 W JP 2016076899W WO 2017047559 A1 WO2017047559 A1 WO 2017047559A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
vinyl alcohol
evoh
alcohol copolymer
carboxylic acid
Prior art date
Application number
PCT/JP2016/076899
Other languages
English (en)
French (fr)
Inventor
友則 吉田
伸昭 佐藤
谷口 雅彦
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to JP2016557158A priority Critical patent/JP6878892B2/ja
Publication of WO2017047559A1 publication Critical patent/WO2017047559A1/ja
Priority to US15/913,069 priority patent/US11401355B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • C08F8/16Lactonisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B21/00Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board
    • B32B21/04Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B21/08Layered products comprising a layer of wood, e.g. wood board, veneer, wood particle board comprising wood as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/14Layered products comprising a layer of natural or synthetic rubber comprising synthetic rubber copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/103Metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/308Heat stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/516Oriented mono-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2410/00Agriculture-related articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/02Open containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains

Definitions

  • the present invention relates to an ethylene-vinyl alcohol copolymer, and more specifically, an ethylene-vinyl alcohol copolymer excellent in thermal stability at high temperature as well as gas barrier properties, a method for producing the same, and a method using the same
  • the present invention relates to a resin composition and a multilayer structure.
  • An ethylene-vinyl alcohol copolymer (hereinafter sometimes abbreviated as EVOH), in particular, an ethylene-vinyl acetate copolymer saponified product, has excellent properties such as gas barrier properties and mechanical strength. Therefore, it is widely used for various applications such as films, sheets, containers, and fibers.
  • the saponified product is produced by copolymerizing ethylene and vinyl acetate, removing unreacted vinyl acetate, and then saponifying the obtained ethylene-vinyl acetate copolymer.
  • melt molding such as extrusion molding and injection molding is performed, but when EVOH is melt-molded, the molding temperature is usually as high as 200 ° C or higher. Therefore, the quality of the molded product may be deteriorated such that heat deterioration is likely to occur, and fish eyes and bumps are generated.
  • Patent Document 1 has an improvement effect on thermal deterioration
  • the evaluation method is such that the film after 50 hours is sampled and the gel-like irregularities in the film are confirmed with the naked eye.
  • EVOH that is excellent in suppressing thermal decomposition even at high temperatures and has no off-flavors or coloring even when processed at high temperatures.
  • the present invention provides EVOH having excellent thermal stability, such as excellent thermal decomposition suppression even at high temperatures, and having no off-flavor or coloring even when processed at high temperatures.
  • the gist of the present invention is that the lactone ring content ratio (Y / Z) is 55 mol with respect to the total amount (Z) of the carboxylic acid content (X) and the lactone ring content (Y) in the terminal structure of EVOH. It is about EVOH which is more than%. Furthermore, the present invention also provides a resin composition containing the EVOH and a multilayer structure having at least one layer containing the EVOH or the resin composition.
  • the EVOH production method is a saponification step [I] in which an ethylene-vinyl ester copolymer is saponified to obtain an EVOH intermediate, and the EVOH intermediate is chemically treated with a chemical solution.
  • the weight ratio of the carboxylic acid concentration to the metal ion concentration in the chemical solution (carboxyl)
  • the present invention also provides a method for producing EVOH having an acid concentration / metal ion concentration of 3.7 or more.
  • EVOH of this invention means what was obtained as a final product.
  • the heat resistance is further improved.
  • the heat resistance is further improved.
  • the present invention also includes a saponification step [I] for obtaining an EVOH intermediate, a chemical treatment step [II] for chemically treating the EVOH intermediate with a chemical solution, and a drying step [III] for drying the chemically treated EVOH intermediate.
  • the chemical treatment step [II] the weight ratio of the carboxylic acid concentration to the metal ion concentration in the chemical solution (carboxylic acid concentration / metal ion concentration) is 3.7 or more. For this reason, it is excellent in thermal stability at high temperature, and even when processed at high temperature, it is possible to produce EVOH having no off-flavor or coloring.
  • a chemical treatment step [II] in which an EVOH intermediate is chemically treated with a chemical solution is a multi-step process in which a plurality of chemical solutions having different carboxylic acid concentrations are prepared, and the EVOH intermediate is chemically treated in multiple stages using each of the plurality of chemical solutions.
  • the weight ratio (carboxylic acid concentration / metal ion concentration) of the carboxylic acid concentration to the metal ion concentration in the chemical solution having the highest carboxylic acid concentration among the plurality of chemical solutions is 3.7 or more, EVOH excellent in thermal stability in can be efficiently produced.
  • FIG. 1 is a chart of H-NMR measurement in a typical EVOH DMSO solvent.
  • FIG. 2 is a chart of H-NMR measurement of a typical EVOH in water / ethanol solvent.
  • the present invention is described in detail below.
  • the EVOH of the present invention has a lactone ring content ratio (Y / Z) of 55 mol% or more with respect to the total amount (Z) of the carboxylic acid content (X) and the lactone ring content (Y) in the terminal structure of EVOH. It is characterized by being.
  • the EVOH of the present invention is usually a resin obtained by copolymerization of ethylene and a vinyl ester monomer and then saponification, and is a water-insoluble thermoplastic resin.
  • the polymerization method any known polymerization method such as solution polymerization, suspension polymerization, and emulsion polymerization can be used. Generally, solution polymerization using a lower alcohol such as methanol or ethanol, preferably methanol as a solvent is used. Used. Saponification of the obtained ethylene-vinyl ester copolymer can also be performed by a known method. That is, EVOH (intermediate as a raw material) used in the present invention mainly comprises an ethylene structural unit and a vinyl alcohol structural unit, and contains a slight amount of vinyl ester structural unit remaining without saponification.
  • vinyl ester-based monomer vinyl acetate is typically used because it is easily available from the market and has high efficiency in treating impurities during production.
  • aliphatic vinyl esters such as vinyl formate, vinyl propionate, vinyl valerate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl versatate, and benzoic acid.
  • aromatic vinyl esters such as vinyl acid, which are usually aliphatic vinyl esters having 3 to 20 carbon atoms, preferably 4 to 10 carbon atoms, and particularly preferably 4 to 7 carbon atoms. These are usually used alone, but a plurality of them may be used simultaneously as necessary.
  • the content of the ethylene structural unit in the EVOH is a value measured based on ISO 14663, and is usually 20 to 60 mol%, preferably 25 to 50 mol%, particularly preferably 25 to 35 mol%. If the content is too small, the gas barrier property and melt moldability at high humidity tend to decrease in the case of a gas barrier property, and conversely if too large, the gas barrier property tends to decrease.
  • the saponification degree of the vinyl ester component in the EVOH is a value measured based on JIS K6726 (however, EVOH is a solution uniformly dissolved in water / methanol solvent) and is usually 90 to 100 mol%, preferably It is 95 to 100 mol%, particularly preferably 99 to 100 mol%. If the degree of saponification is too low, gas barrier properties, thermal stability, moisture resistance and the like tend to decrease.
  • the melt flow rate (MFR) (210 ° C., load 2160 g) of the EVOH is usually 0.5 to 100 g / 10 minutes, preferably 1 to 50 g / 10 minutes, particularly preferably 3 to 35 g / 10 minutes. It is. If the MFR is too large, the film forming property tends to be unstable, and if it is too small, the viscosity tends to be too high and melt extrusion tends to be difficult.
  • the EVOH of the present invention may further contain structural units derived from the following comonomer within a range not inhibiting the effects of the present invention (for example, 10 mol% or less).
  • Examples of the comonomer include olefins such as propylene, 1-butene, isobutene, 2-propen-1-ol, 3-buten-1-ol, 4-penten-1-ol, and 5-hexen-1-ol.
  • olefins such as propylene, 1-butene, isobutene, 2-propen-1-ol, 3-buten-1-ol, 4-penten-1-ol, and 5-hexen-1-ol.
  • Hydroxy group-containing ⁇ -olefins such as 3,4-dihydroxy-1-butene, 5-hexene-1,2-diol, and esterified products thereof, such as 3,4-diacyloxy-1-butene, especially 3 2,4-diacetoxy-1-butene, 2,3-diacetoxy-1-allyloxypropane, 2-acetoxy-1-allyloxy-3-hydroxypropane, 3-acetoxy-1-allyloxy-2-hydroxypropane, glycerol mono Vinyl ether, glycerin monoisopropenyl ether, etc., acylated derivatives, acrylic acid, methacrylic acid, etc.
  • 3,4-diacyloxy-1-butene especially 3 2,4-diacetoxy-1-butene, 2,3-diacetoxy-1-allyloxypropane, 2-acetoxy-1-allyloxy-3-hydroxypropane, 3-acetoxy-1-allyloxy-2-hydroxypropane,
  • Crotonic acid (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid and other unsaturated acids or salts thereof, mono- or dialkyl esters having 1 to 18 carbon atoms, acrylamide, 1 to 18 carbon atoms N-alkylacrylamide, N, N-dimethylacrylamide, 2-acrylamidepropanesulfonic acid or its salt, acrylamide such as acrylamidopropyldimethylamine or its acid salt or its quaternary salt, methacrylamide, N having 1 to 18 carbon atoms -Methacrylamides such as alkylmethacrylamide, N, N-dimethylmethacrylamide, 2-methacrylamidepropanesulfonic acid or its salt, methacrylamideamidopropylamine or its acid salt or quaternary salt thereof, N-vinylpyrrolidone, N -Bi N-vinylamides such as formamide and N-vinylacetamide, vinyl
  • post-modified EVOH (intermediate as a raw material) such as urethanization, acetalization, cyanoethylation, oxyalkyleneation, etc. can also be used.
  • EVOH copolymerized with a hydroxy group-containing ⁇ -olefin is preferable in view of good secondary moldability.
  • EVOH having a primary hydroxyl group in the side chain, particularly a 1,2-diol structure on the side. EVOH in the chain is preferred.
  • the EVOH having the 1,2-diol structure in the side chain contains a 1,2-diol structural unit in the side chain, and the most preferred structure is EVOH containing a structural unit represented by the following structural formula (1). It is.
  • a 1,2-diol structural unit when a 1,2-diol structural unit is contained, its content is usually 0.1 to 20 mol%, more preferably 0.5 to 15 mol%, and particularly preferably 1 to 10 mol%.
  • EVOH there are usually those having a terminal structure of a lactone ring and those having a carboxylic acid.
  • the content of carboxylic acids in the terminal structure is the same.
  • the greatest feature is that the lactone ring content (Y / Z) with respect to the total amount (Z) of (X) and the content (Y) of the lactone ring is 55 mol% or more.
  • the lactone ring content (Y / Z) is 55 mol% or more, more preferably 56 to 90 mol%, particularly 57 to 80 mol%, particularly 58, from the viewpoint of thermal stability at high temperatures. It is preferably ⁇ 70 mol%. If this content ratio (Y / Z) is too small, the heat resistance will be lowered. In addition, when the content ratio is too large, the adhesiveness tends to decrease.
  • the total amount (Z) of the carboxylic acid content (X) and the lactone ring content (Y) in the terminal structure of EVOH is 0.01 to 0 relative to the total amount of EVOH monomer units. From the viewpoint of thermal stability, it is preferably from 0.03 to 0.28 mol%, more preferably from 0.05 to 0.25 mol%, especially from 0.1 to 0.24. A mol%, particularly 0.17 to 0.23 mol% is preferred. When the content is too small, the adhesiveness tends to decrease, and when the content is too large, the heat resistance tends to decrease.
  • the monomer unit means an ethylene unit represented by the following chemical formula (2), a vinyl alcohol unit represented by the following chemical formula (3), a vinyl acetate unit represented by the following chemical formula (4), and other copolymerized monomer units. Refers to the total number of moles of each unit.
  • the content (X) of the carboxylic acids relative to the total amount of such EVOH monomer units is preferably 0.01 to 0.3 mol% from the viewpoint of heat resistance, in particular 0.02 to 0.25 mol%, Furthermore, 0.03 to 0.2 mol%, particularly 0.05 to 0.10 mol% is preferable. When the content is too small, the adhesiveness tends to decrease, and when the content is too large, the heat resistance tends to decrease.
  • the lactone ring content (Y) with respect to the total amount of such EVOH monomer units is preferably 0.01 to 0.3 mol% from the viewpoint of heat resistance, in particular 0.02 to 0.25 mol%, Further, 0.03 to 0.2 mol%, particularly 0.05 to 0.15 mol% is preferable. When the content is too small, the adhesiveness tends to decrease, and when the content is too large, the heat resistance tends to decrease.
  • the carboxylic acid content (X), lactone ring content (Y), and lactone ring content ratio (Y / Z) are measured by NMR measurement.
  • ⁇ Analysis method> (1-1) Measurement of terminal methyl amount
  • the terminal methyl amount is calculated using H-NMR measurement (DMSO-D6, measured at 50 ° C.). That is, as shown in the chart of FIG. 1, 0.7 to 0.95 ppm of terminal methyl integral value (I Me-1 ), 0.95 to 1.85 ppm of methylene other than terminal groups (ethylene unit, vinyl) Integrated value of alcohol unit and vinyl acetate unit methylene) (I CH2 ), integrated value of terminal methyl in vinyl acetate unit of 1.9 to 2 ppm (I OAc ), 3.1 to 4.3 ppm of vinyl alcohol Using the integral value (I CH ) of methine in the unit, the amount of terminal methyl is calculated according to the following (formula 1).
  • Terminal methyl content (mol%) (I Me-1 / 3) / [(I Me-1 / 3) + (I OAc / 3) + I CH + ⁇ I CH2 -2 ⁇ I CH -2 ⁇ (I OAc / 3) -2 ⁇ (I Me-1/3) ⁇ / 4]
  • Lactone ring content (Y) (mol%) Terminal methyl amount (mol%) ⁇ (I Y / 2 ) / (I Me-2/3)
  • EVOH in which the lactone ring content (Y / Z) in the terminal structure of EVOH with respect to the total amount (Z) of the carboxylic acid content (X) and the lactone ring content (Y) satisfies the above range.
  • a saponification step [I] for saponifying an ethylene-vinyl ester copolymer to obtain an EVOH intermediate
  • a chemical treatment step [II] for chemically treating the EVOH intermediate with a chemical solution
  • the EVOH production method including the drying step [III] for drying the chemically treated EVOH intermediate, (1) a method for increasing the drying temperature in the drying step [III], and (2) a longer drying time in the drying step [III].
  • the weight ratio of the carboxylic acid concentration to the metal ion concentration in the chemical solution is determined.
  • These methods (1) to (3) may be employed alone or in appropriate combinations.
  • the concentration of carboxylic acid in the chemical solution is preferably high as described later.
  • the concentration of carboxylic acid in the chemical solution is preferably A method of increasing the weight ratio of the carboxylic acid concentration to the metal ion concentration (carboxylic acid concentration / metal ion concentration) to 3.7 or higher is preferable from the viewpoint of thermal stability at high temperatures.
  • the saponification step [I] is a step of saponifying an ethylene-vinyl ester copolymer obtained by copolymerizing ethylene and a vinyl ester monomer by a commonly known method.
  • the chemical treatment step [II] is a step of chemically treating the EVOH intermediate using a chemical solution, and this step is performed for the purpose of imparting thermal stability and adhesiveness.
  • a chemical solution contains a metal salt such as a carboxylic acid and an inorganic acid, and an inorganic acid.
  • examples of the compound in the chemical solution include metal salts (alkali metal salts) such as inorganic acids such as boric acid, carboxylic acids such as acetic acid, fatty acids such as propionic acid and stearic acid, and inorganic acids such as phosphoric acid. , Alkaline earth metal salts, etc.).
  • metal salts alkali metal salts
  • inorganic acids such as boric acid, carboxylic acids such as acetic acid, fatty acids such as propionic acid and stearic acid, and inorganic acids such as phosphoric acid. , Alkaline earth metal salts, etc.
  • alkali metal and alkaline earth metal examples include sodium, potassium, calcium, magnesium, manganese, copper, cobalt, zinc and the like, among which sodium, potassium, calcium, magnesium and zinc are preferable.
  • these metals can be contained as metal salts such as fatty acids such as acetic acid, propionic acid and stearic acid, and inorganic acids such as phosphoric acid.
  • phosphoric acid when phosphoric acid is contained, hydrogen phosphate and phosphoric acid can be used in addition to the alkali metal or alkaline earth metal phosphate metal salt. These may be used alone or in combination of two or more.
  • the chemical solution is preferably an aqueous solution containing a metal salt such as the fatty acid (acetic acid or the like) or an inorganic acid (phosphoric acid or the like) or boric acid.
  • an EVOH intermediate solution having a water content of 20 to 80% by weight is preferable in that it can uniformly and rapidly contain the above-mentioned compound and the like.
  • the concentration of the aqueous solution of the compound, the contact treatment time, the contact treatment temperature, the stirring speed during the contact treatment and the EVOH intermediate to be treated The water content can be controlled.
  • the weight ratio of the carboxylic acid concentration to the metal ion concentration in the chemical solution is preferably 3.7 or more from the viewpoint of thermal stability at high temperatures.
  • it is preferably 4 or more, more preferably 5 or more, and particularly preferably 10 or more. If the ratio is too small, the thermal stability tends to be lowered.
  • the upper limit of this ratio is 100 normally.
  • the chemical treatment step [II] for chemically treating the EVOH intermediate with a chemical solution may be a one-step chemical treatment step using a chemical solution containing a high concentration of carboxylic acid, or a plurality of different carboxylic acid concentrations.
  • the chemical treatment step may be a multi-step chemical treatment step using the chemical solution in each chemical treatment step.
  • the weight ratio of the carboxylic acid concentration to the metal ion concentration in the chemical solution is 3.7 or more.
  • the weight ratio of the carboxylic acid concentration to the metal ion concentration (carboxylic acid concentration / metal ion concentration) in the chemical solution containing the high concentration carboxylic acid to be used is 3.7 or more.
  • the weight ratio of the carboxylic acid concentration to the metal ion concentration in the chemical solution having the highest carboxylic acid concentration among the plurality of chemical solutions used (carboxylic acid concentration / metal ion) The density) is 3.7 or more.
  • the multi-step chemical treatment step is performed as follows. First, a plurality of chemical solutions having different carboxylic acid concentrations are prepared. In addition, there is a multi-stage chemical treatment process in which the plurality of chemical solutions are used in each chemical treatment process (multi-stage chemical treatment process) and the EVOH intermediate is chemically treated step by step.
  • the weight ratio (carboxylic acid concentration / metal ion concentration) of the carboxylic acid concentration to the metal ion concentration in the chemical solution having the highest carboxylic acid concentration among the plurality of chemical solutions is 3.7 or more.
  • the carboxylic acid concentration in the chemical solution is 1 to 50000 ppm, particularly 10 to 10000 ppm, particularly 400 to 5000 ppm, and the metal ion concentration is 1 to 50000 ppm, particularly 10 to 10000 ppm. It is preferable in terms of processing efficiency and cost.
  • the carboxylic acid concentration refers to the carboxylic acid concentration in the chemical solution determined by quantitative analysis
  • the metal ion concentration refers to the carboxylic acid metal salt in the chemical solution determined by quantitative analysis. It is the metal ion concentration.
  • the carboxylic acid concentration can be quantified by titration analysis using an alkali.
  • the metal ion concentration can be quantified based on a calibration curve of metal ions prepared in advance using ion chromatography.
  • the treatment temperature in the chemical treatment step [II] is usually 10 to 100 ° C., preferably 15 to 80 ° C., more preferably 20 to 60 ° C. If the treatment temperature is too low, it tends to be difficult to contain a predetermined amount of acid or a salt thereof in the EVOH intermediate, and if it is too high, handling of the solution tends to be difficult and disadvantageous in production.
  • the treatment time in the chemical treatment step [II] is usually 1 hour or longer, preferably 1.5 hours to 48 hours, more preferably 2 hours to 24 hours. If the treatment time is too low, color unevenness of the EVOH pellets (intermediate) tends to occur or the thermal stability tends to decrease, and if too long, the EVOH pellets (intermediate) tend to be colored.
  • the drying step [III] is a step of drying the chemically treated EVOH intermediate.
  • the drying temperature is preferably 80 to 150 ° C., more preferably 90 to 140 ° C., and particularly preferably 100 to 130 ° C. It is preferable that it is ° C. If the drying temperature is too low, the drying time tends to be long, and if it is too high, coloring tends to occur.
  • the drying time is preferably 3 hours or more, more preferably 5 hours or more, and particularly preferably 8 hours or more. If the drying time is too short, drying tends to be insufficient.
  • the upper limit of the drying time is usually 1000 hours.
  • drying methods can be adopted as the drying method.
  • fluidized drying in which a substantially pellet-shaped chemically treated EVOH intermediate is stirred or dispersed mechanically or with hot air, or a substantially pellet-shaped chemically treated EVOH intermediate is stirred or dispersed.
  • stationary drying performed without giving a typical effect.
  • the dryer for performing fluidized drying include a cylindrical / grooved stirring dryer, a circular tube dryer, a rotary dryer, a fluidized bed dryer, a vibrating fluidized bed dryer, and a conical rotary dryer.
  • examples of the dryer for performing stationary drying include a batch box dryer as the material stationary type, and a band dryer, a tunnel dryer, and a vertical dryer as the material transfer type.
  • fluidized drying and stationary drying can be performed in combination.
  • fluidized drying is performed from the viewpoint of suppressing fusion of chemically treated EVOH pellets (intermediate), and then stationary drying is performed. preferable.
  • Air or an inert gas nitrogen gas, helium gas, argon gas, etc.
  • the temperature of the heating gas depends on the volatile content of the chemical treatment EVOH intermediate. Any temperature of 40 to 150 ° C. can be selected, but considering that the chemically treated EVOH pellet (intermediate) is fused at a high temperature, it is preferably 40 to 100 ° C., more preferably 40 to 90 ° C.
  • the speed of the heated gas in the dryer is preferably 0.7 to 10 m / sec, more preferably 0.7 to 5 m / sec, and particularly preferably 1 to 3 m / sec.
  • the time for fluid drying is usually 5 minutes to 36 hours, more preferably 10 minutes to 24 hours, although it depends on the amount of chemically treated EVOH pellets (intermediate).
  • the chemically treated EVOH pellets (intermediate) are fluidized and dried under the above conditions.
  • the volatile content of EVOH after the drying treatment is preferably 5 to 60% by weight, more preferably 10 to 55% by weight. .
  • the volatile content is too high, fusion of the chemically treated EVOH pellet (intermediate) is likely to occur during the subsequent stationary drying process, and if it is too low, the energy loss increases and this tends to be unfavorable industrially. Further, in such fluid drying treatment, it is preferable to lower the volatile content by 5% by weight or more, more preferably 10 to 45% by weight before the treatment, and when EVOH obtained when the decrease in the volatile content is too small is melt-molded Tend to generate fine fish eyes.
  • the chemically treated EVOH intermediate (pellet) is dried under the above conditions.
  • the moisture content of the EVOH after the drying treatment is preferably 0.001 to 5% by weight, particularly 0.01 to It is preferably 2% by weight, more preferably 0.1 to 1% by weight. If the water content is too low, the long-run moldability tends to decrease, and if it is too high, foaming tends to occur during extrusion molding.
  • the melt flow rate (MFR) (210 ° C., load 2160 g) of the EVOH of the present invention is usually 0.1 to 100 g / 10 minutes, particularly preferably 0.5 to 50 g / 10 minutes, more preferably 1-30 g / 10 min. If the melt flow rate is too small, the inside of the extruder tends to be in a high torque state at the time of molding and extrusion processing tends to be difficult, and if it is too large, the appearance and gas barrier properties at the time of heat stretch molding tend to be lowered. In adjusting the MFR, it is only necessary to adjust the degree of polymerization of EVOH, and it is also possible to adjust by adding a crosslinking agent or a plasticizer.
  • saturated aliphatic amides eg stearic acid amide
  • unsaturated fatty acid amides eg oleic acid amide
  • bis fatty acid amides eg Lubricants such as ethylene bis-stearic acid amide
  • fatty acid metal salts for example, calcium stearate, magnesium stearate, etc.
  • low molecular weight polyolefins for example, low molecular weight polyethylene having a molecular weight of about 500 to 10,000, or low molecular weight polypropylene
  • inorganic Salts for example, hydrotalcite
  • plasticizers for example, aliphatic polyhydric alcohols such as ethylene glycol, glycerin, and hexanediol
  • oxygen absorbers for example, reduced iron powders as inorganic oxygen absorbers, and further Added water-absorbing substances and electrolytes , Aluminum powder, potassium sulfite, photocatalytic titanium oxide, etc., as an organic compound-based oxygen absorb
  • the EVOH or EVOH resin composition of the present invention thus obtained can be applied to various molded products.
  • molded products include single-layer films containing the EVOH or EVOH resin composition of the present invention, EVOH.
  • it can be practically used as a multilayer structure having at least one layer containing the EVOH resin composition.
  • thermoplastic resin or the like is laminated on one or both sides of the layer containing the EVOH or EVOH resin composition of the present invention.
  • a method of melt extrusion laminating another substrate to a film, sheet or the like containing the EVOH or EVOH resin composition of the present invention and conversely melt extrusion of the EVOH or EVOH resin composition of the present invention to another substrate
  • Laminating method, EVOH or EVOH resin composition of the present invention and other substrate co-extruded, EVOH or EVOH resin composition (layer) of the present invention and other substrate (layer) of organic titanium compound Dry lamination using known adhesives such as isocyanate compounds, polyester compounds, polyurethane compounds, and the like.
  • the melt molding temperature at the time of melt extrusion is often selected from the range of 150 to 300 ° C.
  • thermoplastic resins are useful. Specifically, linear low density polyethylene, low density polyethylene, ultra-low density polyethylene, medium density polyethylene, high density polyethylene and other various polyethylenes, ethylene- Vinyl acetate copolymer, ionomer, ethylene-propylene (block or random) copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polypropylene, propylene- ⁇ -olefin (4 to 20 carbon atoms) ⁇ -olefin) copolymers, polybutenes, polypentenes and other olefins alone or copolymers, or those olefins alone or copolymers grafted with unsaturated carboxylic acids or their esters to broadly define polyolefins Resin, polyester resin, polyamide resin (Including copolymerized polyamides), polyvinyl chloride, polyvinylidene chloride, acrylic resins, polystyrene,
  • polypropylene ethylene-propylene (block or random) copolymer, polyamide resin, polyethylene, ethylene-vinyl acetate copolymer, polystyrene, polyethylene terephthalate ( PET) and polyethylene naphthalate (PEN) are preferably used.
  • any base material paper, metal foil, uniaxial or biaxially stretched plastic film or sheet and its inorganic deposit, woven fabric, non-woven fabric, metallic cotton, wood, etc. ) Can also be used.
  • the layer structure of the multilayer structure is such that a layer containing the EVOH or EVOH resin composition of the present invention is a (a1, a2,%), And another substrate, for example, a thermoplastic resin layer is b (b1, b2,.
  • the a layer is the innermost layer, and not only a two-layer structure of [inner side] a / b [outer side] (the same applies hereinafter), for example, a / b / a, a1 / Arbitrary combinations such as a2 / b, a / b1 / b2, a1 / b1 / a2 / b2, a1 / b1 / b2 / a2 / b2 / b1, etc.
  • the regrind layer is R, for example, a / R / b, a / R / a / b, a / b / R / a / R / b, a / b / a / R / a / b, It may be a / b / R / a / R / a / R / b or the like.
  • an adhesive resin layer can be provided between the respective layers as necessary, and various adhesive resins can be used, and the stretchability is excellent. It is preferable in that a multilayer structure can be obtained, and differs depending on the type of resin b. It cannot be generally stated, but an unsaturated carboxylic acid or its anhydride is added to an olefin polymer (the above-mentioned broadly defined polyolefin resin) by addition reaction or graft The modified olefin polymer containing the carboxyl group obtained by chemically combining by reaction etc. can be mentioned.
  • maleic anhydride graft-modified polyethylene maleic anhydride graft-modified polypropylene, maleic anhydride graft-modified ethylene-propylene (block and random) copolymer, maleic anhydride graft-modified ethylene-ethyl acrylate copolymer, anhydrous
  • the amount of the unsaturated carboxylic acid or anhydride thereof contained in the thermoplastic resin is preferably 0.001 to 3% by weight, more preferably 0.01 to 1% by weight, and particularly preferably 0.03%. 0.5% by weight. If the amount of modification in the modified product is too small, the adhesiveness tends to decrease, and conversely if too large, a crosslinking reaction occurs and the moldability tends to decrease.
  • these adhesive resins may be blended with the EVOH or EVOH resin composition of the present invention, other EVOH, polyisobutylene, rubber / elastomer components such as ethylene-propylene rubber, and b layer resin. Is possible. In particular, blending a polyolefin resin different from the base polyolefin resin of the adhesive resin is useful because the adhesiveness may be improved.
  • each layer of the multilayer structure cannot be generally specified depending on the layer structure, the type of b, the application and container form, the required physical properties, etc., but usually the a layer is 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m, b
  • the layer is selected from the range of 10 to 5000 ⁇ m, preferably 30 to 1000 ⁇ m
  • the adhesive resin layer is selected from the range of 5 to 400 ⁇ m, preferably 10 to 150 ⁇ m.
  • the multilayer structure is used in various shapes as it is, but it is also preferable to perform a heat stretching treatment in order to improve the physical properties of the multilayer structure.
  • the heat-stretching treatment is a uniform film, sheet, or parison-like laminate that is heated uniformly in a cup, tray, tube, or film by chucking, plugging, vacuum, pneumatic, or blowing.
  • This stretching may be either uniaxial stretching or biaxial stretching, and it is better to perform stretching at as high a magnification as possible, and pinholes, cracks, stretching during stretching.
  • a stretched molded article having excellent gas barrier properties and free from unevenness, uneven thickness, delamination and the like can be obtained.
  • a roll stretching method a tenter stretching method, a tubular stretching method, a stretching blow method, a vacuum / pressure forming method, or the like having a high stretching ratio
  • biaxial stretching both a simultaneous biaxial stretching method and a sequential biaxial stretching method can be employed.
  • the stretching temperature is selected from the range of about 60 to 170 ° C, preferably about 80 to 160 ° C. It is also preferable to perform heat setting after the completion of stretching.
  • the heat setting can be carried out by a known means, and the stretched film is heat-treated at 80 to 170 ° C., preferably 100 to 160 ° C. for about 2 to 600 seconds while keeping the stretched state.
  • the film when used for heat shrink packaging applications such as raw meat, processed meat, cheese, etc., after heat stretching after stretching, it is a product film, and after storing the above raw meat, processed meat, cheese, etc. in the film,
  • the film is heat-shrinked at 50 to 130 ° C., preferably 70 to 120 ° C. for about 2 to 300 seconds, so that the film is heat-shrinked to be tightly packed.
  • the shape of the multilayer structure thus obtained may be any shape, and examples thereof include films, sheets, tapes, and modified cross-section extrudates.
  • the obtained multilayer structure can be subjected to heat treatment, cooling treatment, rolling treatment, printing treatment, dry laminating treatment, solution or melt coating treatment, bag making processing, deep drawing processing, box processing, tube processing, splitting as necessary. Processing etc. can be performed.
  • Containers made of cups, trays, tubes, etc. obtained as described above and bags and lids made of stretched films are useful as various packaging materials such as foods, beverages, pharmaceuticals, cosmetics, industrial chemicals, detergents, agricultural chemicals, and fuels. .
  • the integral values (I Me-1 ), (I CH2 ), (I OAc ), (I CH ) are respectively the terminal methyl, the methylene other than the terminal group, the terminal methyl in the vinyl acetate unit, and the vinyl alcohol unit. It relates to the peak derived from methine.
  • Terminal methyl content (mol%) (I Me-1 / 3) / [(I Me-1 / 3) + (I OAc / 3) + I CH + ⁇ I CH2 ⁇ 2 ⁇ I CH ⁇ 2 ⁇ (I OAc / 3) ⁇ 2 ⁇ (I Me ⁇ 1 / 3) ⁇ / 4]
  • the integrated value (I Y ) of the peak of ⁇ 2.7 ppm the following (Formula 2) and (Formula 3) show the content of carboxylic acids (X) (mol%) and the content of lactone rings (Y) (Mol%) was calculated respectively.
  • the integral value (I Me-2) relates to (I X), (I Y ) , respectively, terminal methyl, peaks derived from carboxylic acids and terminal lactone ring.
  • Thermal stability was evaluated based on the temperature when the weight was reduced to 95% of the original weight, measured by a thermogravimetric apparatus (Pyris 1 TGA, manufactured by Perkin Elmer) using about 5 mg of EVOH pellets. .
  • TGA thermogravimetric apparatus
  • the measurement by TGA was performed under the conditions of nitrogen atmosphere: 20 mL / min, heating rate: 10 ° C./min, temperature range: 30 ° C. to 550 ° C.
  • Example 1 Porous precipitate of water / methanol solution of EVOH (A) (intermediate) having an ethylene content of 32 mol% and a saponification degree of 99.5 mol% (containing 100 parts of water with respect to 100 parts of EVOH (intermediate)) was added to an aqueous solution containing 350 ppm acetic acid, 370 ppm sodium acetate, 15 ppm calcium dihydrogen phosphate, and 57 ppm boric acid, and stirred at 30 to 35 ° C. for 1 hour. Five stirring treatments were performed (first-stage chemical treatment step).
  • the weight ratio of the carboxylic acid concentration to the metal ion concentration in the aqueous solution used in the first-stage chemical treatment step was 3.0.
  • the resulting EVOH intermediate porous precipitate was then charged into an aqueous solution containing 700 ppm acetic acid, 370 ppm sodium acetate, 15 ppm calcium dihydrogen phosphate, and 57 ppm boric acid at 30-35 ° C.
  • the amount of acetic acid in acetic acid in the porous precipitate of EVOH intermediate was adjusted by stirring for 4 hours at the second stage (second stage chemical treatment step).
  • the weight ratio of the carboxylic acid concentration to the metal ion concentration in the aqueous solution used in the second stage chemical treatment step was 6.7.
  • the obtained porous precipitate of EVOH intermediate was dried at 121 ° C. for 10 hours to obtain an EVOH composition (EVOH pellet) of the present invention.
  • Table 1 shows various measurement results of the obtained EVOH composition (EVOH pellets).
  • Example 2 In the adjustment of the amount of acetic acid in Example 1, the amount of acetic acid in the aqueous solution was 1400 ppm, and the weight ratio of the carboxylic acid concentration to the metal ion concentration in the aqueous solution used in the second-stage chemical treatment step (carboxylic acid concentration / metal ion concentration). ) was carried out in the same manner except that it was 13.5 to obtain an EVOH composition (EVOH pellet) of the present invention. Table 1 shows various measurement results of the obtained EVOH composition (EVOH pellets).
  • Example 3 In the adjustment of the amount of acetic acid in Example 1, the amount of acetic acid in the aqueous solution was 2450 ppm, and the weight ratio of the carboxylic acid concentration to the metal ion concentration in the aqueous solution used in the second-stage chemical treatment step (carboxylic acid concentration / metal ion concentration). ) was changed to 23.6 in the same manner to obtain an EVOH composition (EVOH pellet) of the present invention. Table 1 shows various measurement results of the obtained EVOH composition (EVOH pellets).
  • Example 4 In the adjustment of the amount of acetic acid in Example 1, the amount of acetic acid in the aqueous solution was 2450 ppm, and the weight ratio of the carboxylic acid concentration to the metal ion concentration in the aqueous solution used in the second-stage chemical treatment step (carboxylic acid concentration / metal ion concentration). ) was set to 23.6 and the drying temperature was set to 150 ° C. to obtain an EVOH composition (EVOH pellet) of the present invention. Table 1 shows various measurement results of the obtained EVOH composition (EVOH pellets).
  • Example 5 In adjusting the amount of acetic acid in Example 1, the amount of acetic acid in the aqueous solution was 3500 ppm, and the weight ratio of the carboxylic acid concentration to the metal ion concentration in the aqueous solution used in the second-stage chemical treatment step (carboxylic acid concentration / metal ion concentration). ) was changed to 33.7 in the same manner to obtain an EVOH composition (EVOH pellet) of the present invention. Table 1 shows various measurement results of the obtained EVOH composition (EVOH pellets).
  • Example 6 In adjusting the amount of acetic acid in Example 1, the amount of acetic acid in the aqueous solution was 3500 ppm, and the weight ratio of the carboxylic acid concentration to the metal ion concentration in the aqueous solution used in the second-stage chemical treatment step (carboxylic acid concentration / metal ion concentration). ) was set to 33.7, and the same procedure was performed except that the drying temperature was set to 150 ° C., to obtain the EVOH composition (EVOH pellets) of the present invention. Table 1 shows various measurement results of the obtained EVOH composition (EVOH pellets).
  • the EVOH of the present invention has a specific range of lactone ring content to the total content of carboxylic acids and lactone rings, and therefore has excellent thermal stability such as excellent thermal decomposition suppression even at high temperatures. Even when processed with, it has no off-flavor or coloring. Therefore, the EVOH of the present invention can be formed into a container made of a cup, a tray, a tube or the like, or a bag or lid made of a stretched film, such as a food, beverage, pharmaceutical, cosmetic, industrial chemical, detergent, agricultural chemical, fuel, etc. It can be effectively used as various packaging materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

エチレン含有量が20~60モル%のエチレン-ビニルアルコール系共重合体であって、該共重合体の末端構造における、カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)が55モル%以上であるエチレン-ビニルアルコール系共重合体である。したがって、高温でも熱分解抑制に優れるなど熱安定性に優れ、高温で加工した場合であっても異臭や着色のないエチレン-ビニルアルコール系共重合体が得られる。

Description

エチレン-ビニルアルコール系共重合体、エチレン-ビニルアルコール系共重合体の製造方法、樹脂組成物及び多層構造体
 本発明は、エチレン-ビニルアルコール系共重合体に関し、更に詳しくは、ガスバリア性はもとより、高温での熱安定性に優れたエチレン-ビニルアルコール系共重合体及びその製造方法、並びにそれを用いた樹脂組成物、多層構造体に関するものである。
 エチレン-ビニルアルコール系共重合体(以下、EVOHと略記することがある。)、とりわけ、エチレン-酢酸ビニル系共重合体ケン化物は、ガスバリア性、機械的強度等の諸性質に優れていることから、フィルム、シート、容器、繊維等の各種用途に多用されている。
 なお、該ケン化物は、エチレンと酢酸ビニルを共重合し、未反応の酢酸ビニルを除去した後、得られたエチレン-酢酸ビニル共重合体をケン化することによって製造される。
 かかるEVOHを用いて、各種の成形品を製造するためには、押出成形、射出成形のような溶融成形が行われるが、EVOHを溶融成形する際には、通常成形温度が200℃以上もの高温となるため、熱劣化が生じやすく、フィッシュアイやブツが生じるなど、成形品の品質を低下させることがあった。
 このような高温での熱劣化を改善する方法として、例えば、EVOH中のエチレン単位、ビニルアルコール単位、ビニルエステル単位の合計に対する、EVOHの重合体末端におけるカルボン酸類単位とラクトン環単位の合計の比率が0.12モル%以下であるEVOHが提案されている(例えば、特許文献1参照。)。
国際公開WO2004/092234号公報
 しかしながら、上記特許文献1の開示技術では、熱劣化に対して改善効果はあるものの、その評価方法が50時間後のフィルムをサンプリングし、フィルム中のゲル状ブツを肉眼で確認する程度のものであり、近年の技術の高度化に伴って更なる改善が求められている。例えば、高温でも熱分解抑制に優れ、高温で加工した場合であっても異臭や着色のないEVOHが求められている。
 そこで、本発明ではこのような背景下において、高温でも熱分解抑制に優れるなど熱安定性に優れ、高温で加工した場合であっても異臭や着色のないEVOHを提供する。
 しかるに、本発明者等はかかる事情に鑑み鋭意研究を重ねた結果、EVOHの末端構造において、カルボン酸類よりもラクトン環をより多く含有させることにより、熱安定性に優れ、高温で加工した場合であっても異臭や着色のないEVOHが得られることを見出した。
 すなわち、本発明の要旨は、EVOHの末端構造における、カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)が55モル%以上であるEVOHに関するものである。
 更に、本発明においては、前記EVOHを含有してなる樹脂組成物、及び、前記EVOHまたは上記樹脂組成物を含有する層を少なくとも1層有する多層構造体も提供するものである。
 また、本発明においては、前記EVOHの製造方法であって、エチレン-ビニルエステル系共重合体をケン化してEVOH中間体を得るケン化工程[I]、前記EVOH中間体を薬液で化学処理する化学処理工程[II]、前記化学処理EVOH中間体を乾燥する乾燥工程[III]を含み、更に、前記化学処理工程[II]において、薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)が3.7以上であるEVOHの製造方法をも提供するものである。
 本発明によれば、EVOHの末端構造において、ラクトン環をカルボン酸類よりも多く含有させることにより、高温での熱安定性に優れ、高温で加工した場合であっても異臭や着色のないEVOHが得られるものである。なお、本発明のEVOHは最終製品として得られたものをいう。
 カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)がEVOHのモノマーユニットの合計量に対して0.01~0.3モル%であると、熱安定性に一層優れるようになる。
 ラクトン環の含有量(Y)がEVOHのモノマーユニットの合計量に対して0.01~0.3モル%であると、耐熱性に一層優れるようになる。
 カルボン酸類の含有量(X)がEVOHのモノマーユニットの合計量に対して0.01~0.3モル%であると、耐熱性に一層優れるようになる。
 また、本発明は、EVOH中間体を得るケン化工程[I]、前記EVOH中間体を薬液で化学処理する化学処理工程[II]、前記化学処理EVOH中間体を乾燥する乾燥工程[III]を含むEVOHの製造方法であって、前記化学処理工程[II]において、薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)が3.7以上である。このため、高温での熱安定性に優れ、高温で加工した場合であっても異臭や着色のないEVOHを製造することが可能となる。
 EVOH中間体を薬液で化学処理する化学処理工程[II]が、カルボン酸濃度の異なる複数の薬液を準備し、複数の薬液を各々用いて多段階にてEVOH中間体を化学処理する多段階の化学処理工程からなり、上記複数の薬液のうちカルボン酸濃度が最も高い薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)が3.7以上であると、高温での熱安定性に優れたEVOHを効率良く製造することが可能となる。
 上記乾燥工程[III]において、乾燥温度が80~150℃であると、着色のないEVOHを効率良く製造することが可能となる。
図1は、典型的なEVOHのDMSO溶媒でのH-NMR測定のチャート図である。 図2は、典型的なEVOHの水/エタノール溶媒でのH-NMR測定のチャート図である。
 以下に、本発明を詳細に説明する。
 本発明のEVOHは、EVOHの末端構造における、カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)が55モル%以上であることを特徴とするものである。
 本発明のEVOHは、通常、エチレンとビニルエステル系モノマーを共重合させた後にケン化させることにより得られる樹脂であり、非水溶性の熱可塑性樹脂である。重合法も公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合を用いることができるが、一般的にはメタノールやエタノール等の低級アルコール、好ましくはメタノールを溶媒とする溶液重合が用いられる。得られたエチレン-ビニルエステル系共重合体のケン化も公知の方法で行ない得る。
 すなわち、本発明で用いるEVOH(原料となる中間体)は、エチレン構造単位とビニルアルコール構造単位を主とし、ケン化されずに残存した若干量のビニルエステル構造単位を含むものである。
 上記ビニルエステル系モノマーとしては、市場からの入手のしやすさや製造時の不純物の処理効率がよい点から、代表的には酢酸ビニルが用いられる。この他、例えば、ギ酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、バーサチック酸ビニル等の脂肪族ビニルエステル、安息香酸ビニル等の芳香族ビニルエステル等があげられ、通常炭素数3~20、好ましくは炭素数4~10、特に好ましくは炭素数4~7の脂肪族ビニルエステルである。これらは通常単独で用いるが、必要に応じて複数種を同時に用いてもよい。
 上記EVOHにおけるエチレン構造単位の含有量は、ISO14663に基づいて測定した値であり、通常20~60モル%、好ましくは25~50モル%、特に好ましくは25~35モル%である。かかる含有量が少なすぎると、ガスバリア性用途の場合、高湿時のガスバリア性、溶融成形性が低下する傾向があり、逆に多すぎると、ガスバリア性が低下する傾向がある。
 上記EVOHにおけるビニルエステル成分のケン化度は、JIS K6726(ただし、EVOHは水/メタノール溶媒に均一に溶解した溶液にて)に基づいて測定した値であり、通常90~100モル%、好ましくは95~100モル%、特に好ましくは99~100モル%である。かかるケン化度が低すぎるとガスバリア性、熱安定性、耐湿性等が低下する傾向がある。
 また、上記EVOHのメルトフローレート(MFR)(210℃、荷重2160g)は、通常0.5~100g/10分であり、好ましくは1~50g/10分、特に好ましくは3~35g/10分である。かかるMFRが大きすぎると、製膜性が不安定となる傾向があり、小さすぎると、粘度が高くなり過ぎて溶融押出が困難となる傾向がある。
 また、本発明のEVOHは、本発明の効果を阻害しない範囲(例えば10モル%以下)で、以下に示すコモノマーに由来する構造単位が、さらに含まれていてもよい。
 上記コモノマーは、例えば、プロピレン、1-ブテン、イソブテン等のオレフィン類や、2-プロペン-1-オール、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、3,4-ジヒドロキシ-1-ブテン、5-ヘキセン-1,2-ジオール等のヒドロキシ基含有α-オレフィン類や、そのエステル化物である、3,4-ジアシロキシ-1-ブテン、特に、3,4-ジアセトキシ-1-ブテン等、2,3-ジアセトキシ-1-アリルオキシプロパン、2-アセトキシ-1-アリルオキシ-3-ヒドロキシプロパン、3-アセトキシ-1-アリルオキシ-2-ヒドロキシプロパン、グリセリンモノビニルエーテル、グリセリンモノイソプロペニルエーテル等、アシル化物等の誘導体、アクリル酸、メタクリル酸、クロトン酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸類あるいはその塩あるいは炭素数1~18のモノまたはジアルキルエステル類、アクリルアミド、炭素数1~18のN-アルキルアクリルアミド、N,N-ジメチルアクリルアミド、2-アクリルアミドプロパンスルホン酸あるいはその塩、アクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のアクリルアミド類、メタアクリルアミド、炭素数1~18のN-アルキルメタクリルアミド、N,N-ジメチルメタクリルアミド、2-メタクリルアミドプロパンスルホン酸あるいはその塩、メタクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のメタクリルアミド類、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド等のN-ビニルアミド類、アクリルニトリル、メタクリルニトリル等のシアン化ビニル類、炭素数1~18のアルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、アルコキシアルキルビニルエーテル等のビニルエーテル類、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、臭化ビニル等のハロゲン化ビニル化合物類、トリメトキシビニルシラン等のビニルシラン類、酢酸アリル、塩化アリル等のハロゲン化アリル化合物類、アリルアルコール、ジメトキシアリルアルコール等のアリルアルコール類、トリメチル-(3-アクリルアミド-3-ジメチルプロピル)-アンモニウムクロリド、アクリルアミド-2-メチルプロパンスルホン酸等のコモノマーがあげられる。これらは単独でもしくは2種以上併せて用いることができる
 さらに、ウレタン化、アセタール化、シアノエチル化、オキシアルキレン化等の「後変性」されたEVOH(原料となる中間体)を用いることもできる。
 特に、ヒドロキシ基含有α-オレフィン類を共重合したEVOHは、二次成形性が良好になる点で好ましく、中でも側鎖に1級水酸基を有するEVOH、特には、1,2-ジオール構造を側鎖に有するEVOHが好ましい。
 上記1,2-ジオール構造を側鎖に有するEVOHは、側鎖に1,2-ジオール構造単位を含むものであり、最も好ましい構造として、下記構造式(1)で示される構造単位を含むEVOHである。
Figure JPOXMLDOC01-appb-C000001
 特に、1,2-ジオール構造単位を含有する場合、その含有量は通常0.1~20モル%、さらには0.5~15モル%、特には1~10モル%のものが好ましい。
 一般的なEVOHは、通常、その末端構造がラクトン環となっているものや、カルボン酸類となっているものが存在するのであるが、本発明においては、その末端構造における、カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)が55モル%以上であることが最大の特徴である。
 すなわち、EVOHの末端構造における、ラクトン環をカルボン酸類よりも多く含有させることにより、高温での熱安定性に優れ、高温で加工した場合であっても異臭や着色のないEVOHを得ることができるのである。
 本発明において、上記ラクトン環含有割合(Y/Z)は、高温での熱安定性の点から55モル%以上、更には56~90モル%、特には57~80モル%、殊には58~70モル%であることが好ましい。かかる含有割合(Y/Z)が小さすぎると耐熱性が低下することとなる。なお、含有割合が大きすぎる場合には接着性が低下する傾向がある。
 また、本発明において、EVOHの末端構造におけるカルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)がEVOHのモノマーユニットの合計量に対して0.01~0.3モル%であることが熱安定性の点で好ましく、特には0.03~0.28モル%、更には0.05~0.25モル%、殊には0.1~0.24モル%、特に0.17~0.23モル%が好ましい。かかる含有量が少なすぎると接着性が低下する傾向があり、多すぎると耐熱性が低下する傾向がある。
 ここで、モノマーユニットとは、下記化学式(2)のエチレンユニット、下記化学式(3)のビニルアルコールユニット、下記化学式(4)の酢酸ビニルユニット、その他の共重合されたモノマーユニットを指し、合計量とは、各々のユニットのモル数の合計量を指す。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 かかるEVOHのモノマーユニットの合計量に対するカルボン酸類の含有量(X)が0.01~0.3モル%であることが耐熱性の点で好ましく、特には0.02~0.25モル%、更には0.03~0.2モル%、殊には0.05~0.10モル%が好ましい。かかる含有量が少なすぎると接着性が低下する傾向があり、多すぎると耐熱性が低下する傾向がある。
 かかるEVOHのモノマーユニットの合計量に対するラクトン環の含有量(Y)が0.01~0.3モル%であることが耐熱性の点で好ましく、特には0.02~0.25モル%、更には0.03~0.2モル%、殊には0.05~0.15モル%が好ましい。かかる含有量が少なすぎると接着性が低下する傾向があり、多すぎると耐熱性が低下する傾向がある。
 なお、上記カルボン酸類の含有量(X)、ラクトン環の含有量(Y)、ラクトン環含有割合(Y/Z)は、NMR測定により測定される。
 上記NMR測定は、下記のようにして行なわれる。
<測定条件>
 装置名:(AVANCEIII Bruker社製)
 観測周波数:400MHz
 溶媒:水/エタノール(重量比=水(35):エタノール(65))、DMSO(ジメチルスルホキシド)-D6
 ポリマー濃度:5%
 測定温度:水/エタノール 70℃、DMSO-D6 50℃
 積算回数:16回
 パルス繰り返し時間:4秒
 サンプル回転速度:20Hz
 添加剤:トリフルオロ酢酸
<解析方法>
(1-1)末端メチル量の測定
 末端メチル量はH-NMR測定(DMSO-D6、50℃で測定)を用いて算出する。すなわち、図1のチャート図に示すように、0.7~0.95ppmの末端メチルの積分値(I Me-1 )、0.95~1.85ppmの末端基以外のメチレン(エチレンユニット、ビニルアルコールユニット、酢酸ビニルユニットのメチレンの合計)の積分値(I CH2 )、1.9~2ppmの酢酸ビニルユニット中の末端メチルの積分値(I OAc )、3.1~4.3ppmのビニルアルコールユニット中のメチンの積分値(I CH )を用いて、下記の(式1)により末端メチル量を算出する。
(式1)
末端メチル量(モル%)
=(I Me-1 / 3 )/[(I Me-1 /3)+(I OAc/3)+I CH
 +{I CH2 -2×I CH -2×(I OAc /3)-2×(I Me-1 /3)}/4]
(1-2)カルボン酸類の含有量(X)とラクトン環の含有量(Y)の測定
 重合体末端のカルボン酸類およびラクトン環の含有量は、(1-1)で得られた末端メチル量(モル%)をもとに、H-NMR測定(水/エタノール溶媒、70℃で測定)を用いて算出する。すなわち、図2のチャート図に示すように、0.7~1ppmの末端メチルの積分値(I Me-2)、2.15~2.32ppmのピークの積分値(IX)、2.5~2.7ppmのピークの積分値(IY)を用いて、下記の(式2)、(式3)によりカルボン酸類の含有量(X)(モル%)及びラクトン環の含有量(Y)(モル%)をそれぞれ算出する。
(式2)
カルボン酸類の含有量(X)(モル%)
=末端メチル量(モル%)×(IX/2)/(I Me-2/3)
(式3)
ラクトン環の含有量(Y)(モル%)
=末端メチル量(モル%)×(IY/2)/(I Me-2/3)
(1-3)末端構造における、カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)の算出
 上記で得られたカルボン酸類の含有量(X)とラクトン環の含有量(Y)から下記(式4)によりラクトン環含有割合(Y/Z)を算出する。
(式4)
 カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)(モル%)
={Y/(X+Y)}×100(%)
 本発明において、EVOHの末端構造における、カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)が上記範囲を満足するEVOHを製造するに際しては、例えば、エチレン-ビニルエステル系共重合体をケン化してEVOH中間体を得るケン化工程[I]、前記EVOH中間体を薬液で化学処理する化学処理工程[II]、前記化学処理EVOH中間体を乾燥する乾燥工程[III]を含むEVOHの製造方法において、(1)乾燥工程[III]の乾燥温度を高くする方法、(2)乾燥工程[III]の乾燥時間を長くする方法、(3)前記化学処理工程[II]において、薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)を3.7以上とする方法等が挙げられる。これら方法(1)~(3)は単独で採用してもよいし、適宜組み合わせてもよい。特には、
(3)エチレン-ビニルエステル系共重合体をケン化してEVOH中間体を得るケン化工程[I]、前記EVOH中間体を薬液で化学処理する化学処理工程[II]、前記化学処理EVOH中間体を乾燥する乾燥工程[III]を含み、更に、前記化学処理工程[II]において、薬液中のカルボン酸濃度が後述のように高いことが好ましく、具体的には、薬液中のカルボン酸濃度が高く、かつ金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)を3.7以上とする方法が高温時の熱安定性の点で好ましい。
 上記ケン化工程[I]は、エチレンとビニルエステル系モノマーを共重合させてなるエチレン-ビニルエステル系共重合体を、通常の公知の方法によりケン化する工程である。
 上記化学処理工程[II]は、前記EVOH中間体を、薬液を用いて化学処理する工程であり、かかる工程は、熱安定性や接着性付与を目的として行うものである。かかる薬液は、カルボン酸、無機酸等の金属塩、無機酸を含有するものである。具体的に、上記薬液中の化合物としては、例えば、ホウ酸等の無機酸、酢酸等のカルボン酸、プロピオン酸やステアリン酸等の脂肪酸やリン酸等の無機酸等の金属塩(アルカリ金属塩、アルカリ土類金属塩等)等が挙げられる。
 アルカリ金属、アルカリ土類金属としては、例えば、ナトリウム、カリウム、カルシウム、マグネシウム、マンガン、銅、コバルト、亜鉛等が挙げられ、中でもナトリウム、カリウム、カルシウム、マグネシウム、亜鉛が好ましい。これらの金属を含有させるに当たっては、酢酸、プロピオン酸、ステアリン酸等の脂肪酸やリン酸等の無機酸等の金属塩として含有させることができる。また、リン酸を含有させるに当たっては、上記アルカリ金属またはアルカリ土類金属のリン酸金属塩を用いる他にも、リン酸水素塩やリン酸を用いることができる。これらは単独でもしくは2種以上併せて用いることができる。そして、上記薬液としては、好ましくは、具体的には、上記脂肪酸(酢酸等)や無機酸(リン酸等)等の金属塩、ホウ酸を含有する水溶液があげられる。
 更には、含水率20~80重量%のEVOH中間体溶液が、上記の化合物等を均一にかつ迅速に含有させることができる点で好ましい。また、かかる化合物の含有量の調整にあたっては、前述の薬液との接触処理において、かかる化合物の水溶液濃度、接触処理時間、接触処理温度、接触処理時の撹枠速度や処理されるEVOH中間体の含水率等をコントロールすることができる。
 かかる化学処理工程[II]において、薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)が3.7以上であることが高温時の熱安定性の点で好ましく、特には4以上、更には5以上、殊には10以上が好ましい。かかる比率が小さすぎると熱安定性が低下する傾向がある。なお、かかる比率の上限は通常100である。
 上記EVOH中間体を薬液で化学処理する化学処理工程[II]は、高濃度のカルボン酸を含有する薬液を用いた一段階での化学処理工程であってもよいし、カルボン酸濃度の異なる複数の薬液をそれぞれの化学処理工程で用いてなる、多段階での化学処理工程であってもよい。なお、前述の化学処理工程[II]において、薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)が3.7以上であるとは、上記一段階での化学処理工程においては、使用する高濃度のカルボン酸を含有する薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)が3.7以上であるという趣旨である。また、上記多段階での化学処理工程においては、後述のとおり、使用する複数の薬液のうちカルボン酸濃度が最も高い薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)が3.7以上であるという趣旨である。
 熱安定性に優れたEVOHを効率良く製造するという観点から、好ましくは、カルボン酸濃度の異なる複数の薬液をそれぞれの化学処理工程で用いてなる、多段階での化学処理工程があげられる。EVOH中間体を薬液で化学処理する化学処理工程[II]において、上記多段階での化学処理工程は、つぎのようにして行なわれる。まず、カルボン酸濃度の異なる複数の薬液を準備する。そして、上記複数の薬液をそれぞれの化学処理工程(多段階の化学処理工程)で用い、段階的にEVOH中間体を化学処理する多段階の化学処理工程があげられる。この場合、上記複数の薬液のうちカルボン酸濃度が最も高い薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)が3.7以上であることが好ましい。
 また、本発明においては、薬液中の、カルボン酸濃度を1~50000ppm、特には10~10000ppm、殊には400~5000ppmとし、金属イオン濃度を1~50000ppm、特には10~10000ppmとすることが処理効率とコストの点で好ましい。
 なお、本発明において、カルボン酸濃度とは、定量分析により求められた薬液中のカルボン酸濃度のことであり、金属イオン濃度とは、定量分析により求められた薬液中のカルボン酸金属塩中の金属イオン濃度のことである。
 上記カルボン酸濃度については、アルカリを用いた滴定分析により定量することができる。また、上記金属イオン濃度については、イオンクロマトグラフィーを用いて、あらかじめ作成した金属イオンの検量線を基に定量することができる。
 化学処理工程[II]における処理温度は、通常10~100℃、好ましくは15~80℃、更に好ましくは20~60℃である。かかる処理温度が低すぎると所定量の酸やその塩をEVOH中間体中に含有させることが困難となる傾向があり、高すぎると溶液の取り扱いが難しく生産上不利となる傾向がある。
 化学処理工程[II]における処理時間は、通常1時間以上、好ましくは1.5時間~48時間、更に好ましくは2時間~24時間である。かかる処理時間が低すぎるとEVOHペレット(中間体)の色ムラが発生したり熱安定性が低下する傾向があり、長すぎるとEVOHペレット(中間体)が着色する傾向がある。
 化学処理工程[II]を行うに際しては、通常、上記ケン化工程[I]の後に、成型工程を経てEVOHペレット(中間体)としてから化学処理を行うことが加工性の点で好ましい。
 上記乾燥工程[III]は、化学処理EVOH中間体を乾燥する工程であり、かかる乾燥条件については、乾燥温度80~150℃であることが好ましく、更には90~140℃、特には100~130℃であることが好ましい。かかる乾燥温度が低すぎると乾燥時間が長くなる傾向があり、高すぎると着色が発生する傾向がある。また、乾燥時間は3時間以上であることが好ましく、更には5時間以上、特には8時間以上であることが好ましい。かかる乾燥時間が短すぎると乾燥不充分となる傾向がある。なお、乾燥時間の上限は通常1000時間である。
 乾燥方法としては、種々の乾燥方法を採用することが可能である。例えば、実質的にペレット状の化学処理EVOH中間体が、機械的にもしくは熱風により撹拌分散されながら行われる流動乾燥や、実質的にペレット状の化学処理EVOH中間体が、撹拌、分散などの動的な作用を与えられずに行われる静置乾燥が挙げられる。流動乾燥を行うための乾燥器としては、円筒・溝型撹拌乾燥器、円管乾燥器、回転乾燥器、流動層乾燥器、振動流動層乾燥器、円錐回転型乾燥器等が挙げられる。また、静置乾燥を行うための乾燥器として、材料静置型としては回分式箱型乾燥器が、材料移送型としてはバンド乾燥器、トンネル乾燥器、竪型乾燥器等を挙げることができる。また、流動乾燥と静置乾燥を組み合わせて行うこともでき、本発明においては、化学処理EVOHペレット(中間体)の融着抑制の点から流動乾燥を行った後、静置乾燥を行うことが好ましい。
 上記乾燥方法について説明する。
 該流動乾燥処理時に用いられる加熱ガスとしては、空気または不活性ガス(窒素ガス、ヘリウムガス、アルゴンガス等)が用いられ、該加熱ガスの温度としては、化学処理EVOH中間体の揮発分に応じて40~150℃の任意の温度を選択出来るが、高温で化学処理EVOHペレット(中間体)が融着することを考慮すれば40~100℃、更には40~90℃が好ましい。さらに、乾燥器内の加熱ガスの速度は、0.7~10m/秒、更には0.7~5m/秒、特には1~3m/秒とすることが好ましく、かかる速度が遅すぎると化学処理EVOHペレット(中間体)の融着が起こりやすく、逆に速すぎると化学処理EVOHペレット(中間体)の欠けや微紛の発生が起こりやすくなる傾向がある。また、流動乾燥の時間としては、化学処理EVOHペレット(中間体)の処理量にもよるが、通常は5分~36時間、更には10分~24時間が好ましい。上記の条件で化学処理EVOHペレット(中間体)が流動乾燥処理されるのであるが、該乾燥処理後のEVOHの揮発分は5~60重量%、更には10~55重量%とすることが好ましい。かかる揮発分が高すぎると後の静置乾燥処理時に化学処理EVOHペレット(中間体)の融着が起こりやすくなり、低すぎるとエネルギーロスが大きくなり工業的には好ましくない傾向がある。また、かかる流動乾燥処理において、揮発分を該処理前より5重量%以上、更には10~45重量%低くすることが好ましく、該揮発分の低下が小さすぎると得られるEVOHを溶融成形した場合に微小フィッシュアイが発生する傾向にある。
 上記の条件で化学処理EVOH中間体(ペレット)が乾燥処理されるのであるが、該乾燥処理後のEVOHの含水率は0.001~5重量%であることが好ましく、特には0.01~2重量%、更には0.1~1重量%であることが好ましい。該含水率が少なすぎるとロングラン成形性が低下する傾向があり、多すぎると押出成形時に発泡が発生する傾向がある。
 また、本発明のEVOHのメルトフローレート(MFR)(210℃、荷重2160g)については、通常0.1~100g/10分であり、特に好ましくは0.5~50g/10分、更に好ましくは1~30g/10分である。該メルトフローレートが小さすぎると成形時に押出機内が高トルク状態となって押出加工が困難となる傾向にあり、大きすぎると加熱延伸成形時の外観性やガスバリア性が低下する傾向にある。
 かかるMFRの調整にあたっては、EVOHの重合度を調整すればよく、さらには架橋剤や可塑剤を添加して調整することも可能である。
 また、本発明においては、得られるEVOHに本発明の目的を阻害しない範囲において、飽和脂肪族アミド(例えばステアリン酸アミド等)、不飽和脂肪酸アミド(例えばオレイン酸アミド等)、ビス脂肪酸アミド(例えばエチレンビスステアリン酸アミド等)、脂肪酸金属塩(例えばステアリン酸カルシウム、ステアリン酸マグネシウム等)、低分子量ポリオレフィン(例えば分子量500~10,000程度の低分子量ポリエチレン、又は低分子量ポリプロピレン等)などの滑剤、無機塩(例えばハイドロタルサイト等)、可塑剤(例えばエチレングリコール、グリセリン、ヘキサンジオール等の脂肪族多価アルコールなど)、酸素吸収剤(例えば無機系酸素吸収剤として、還元鉄粉類、さらにこれに吸水性物質や電解質等を加えたもの、アルミニウム粉、亜硫酸カリウム、光触媒酸化チタン等が、有機化合物系酸素吸収剤として、アスコルビン酸、さらにその脂肪酸エステルや金属塩等、ハイドロキノン、没食子酸、水酸基含有フェノールアルデヒド樹脂等の多価フェノール類、ビス-サリチルアルデヒド-イミンコバルト、テトラエチレンペンタミンコバルト、コバルト-シッフ塩基錯体、ポルフィリン類、大環状ポリアミン錯体、ポリエチレンイミン-コバルト錯体等の含窒素化合物と遷移金属との配位結合体、テルペン化合物、アミノ酸類とヒドロキシル基含有還元性物質の反応物、トリフェニルメチル化合物等が、高分子系酸素吸収剤として、窒素含有樹脂と遷移金属との配位結合体(例:MXDナイロンとコバルトの組合せ)、三級水素含有樹脂と遷移金属とのブレンド物(例:ポリプロピレンとコバルトの組合せ)、炭素-炭素不飽和結合含有樹脂と遷移金属とのブレンド物(例:ポリブタジエンとコバルトの組合せ)、光酸化崩壊性樹脂(例:ポリケトン)、アントラキノン重合体(例:ポリビニルアントラキノン)等や、さらにこれらの配合物に光開始剤(ベンゾフェノン等)や過酸化物捕捉剤(市販の酸化防止剤等)や消臭剤(活性炭等)を添加したものなど)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、帯電防止剤、界面活性剤、抗菌剤、アンチブロッキング剤、スリップ剤、充填材(例えば無機フィラー等)、他樹脂(例えばポリオレフィン、ポリアミド等)等を配合しても良い。これら化合物は単独でもしくは2種以上併せて用いることができる。
 かくして得られた本発明のEVOHまたはEVOH樹脂組成物は、各種成形物に適用することができ、かかる成形物としては、本発明のEVOHまたはEVOH樹脂組成物を含む単層フィルムをはじめとして、EVOHまたはEVOH樹脂組成物を含有する層を少なくとも1層有する多層構造体として実用に供することができる。
 以下、かかる多層構造体について説明する。
 本発明の多層構造体を製造するにあたっては、本発明のEVOHまたはEVOH樹脂組成物を含む層の片面または両面に、他の基材(熱可塑性樹脂等)を積層するのであるが、積層方法としては、例えば、本発明のEVOHまたはEVOH樹脂組成物を含むフィルム、シート等に他の基材を溶融押出ラミネートする方法、逆に他の基材に本発明のEVOHまたはEVOH樹脂組成物を溶融押出ラミネートする方法、本発明のEVOHまたはEVOH樹脂組成物と他の基材とを共押出する方法、本発明のEVOHまたはEVOH樹脂組成物(層)と他の基材(層)とを有機チタン化合物、イソシアネート化合物、ポリエステル系化合物、ポリウレタン化合物等の公知の接着剤を用いてドライラミネートする方法等が挙げられる。上記の溶融押し出し時の溶融成形温度は、150~300℃の範囲から選ぶことが多い。
 かかる他の基材としては、熱可塑性樹脂が有用で、具体的には、直鎖状低密度ポリエチレン、低密度ポリエチレン、超低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン等の各種ポリエチレン、エチレン-酢酸ビニル共重合体、アイオノマー、エチレン-プロピレン(ブロックまたはランダム)共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリプロピレン、プロピレン-α-オレフィン(炭素数4~20のα-オレフィン)共重合体、ポリブテン、ポリペンテン等のオレフィンの単独又は共重合体、或いはこれらのオレフィンの単独又は共重合体を不飽和カルボン酸又はそのエステルでグラフト変性したものなどの広義のポリオレフィン系樹脂、ポリエステル系樹脂、ポリアミド系樹脂(共重合ポリアミドも含む)、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、ポリスチレン、ビニルエステル系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー、塩素化ポリエチレン、塩素化ポリプロピレン、芳香族または脂肪族ポリケトン、更にこれらを還元して得られるポリアルコール類、さらには本発明のEVOH以外の他のEVOH等が挙げられる。多層構造体の物性(特に強度)等の実用性の点から、ポリプロピレン、エチレン-プロピレン(ブロック又はランダム)共重合体、ポリアミド系樹脂、ポリエチレン、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が好ましく用いられる。
 さらに、本発明のEVOHまたはEVOH樹脂組成物を含有するフィルムやシート等の成形物に他の基材を押出コートしたり、他の基材のフィルム、シート等を接着剤を用いてラミネートする場合、かかる基材としては、前記の熱可塑性樹脂以外に任意の基材(紙、金属箔、一軸又は二軸延伸プラスチックフィルム又はシートおよびその無機物蒸着物、織布、不織布、金属綿状、木質等)も使用可能である。
 多層構造体の層構成は、本発明のEVOHまたはEVOH樹脂組成物を含有する層をa(a1、a2、・・・)、他の基材、例えば熱可塑性樹脂層をb(b1、b2、・・・)とするとき、かかるa層を最内層とする構成で、〔内側〕a/b〔外側〕(以下同様)の二層構造のみならず、例えば、a/b/a、a1/a2/b、a/b1/b2、a1/b1/a2/b2、a1/b1/b2/a2/b2/b1等任意の組み合わせが可能であり、さらには、少なくともEVOHと熱可塑性樹脂の混合物からなるリグラインド層をRとするとき、例えば、a/R/b、a/R/a/b、a/b/R/a/R/b、a/b/a/R/a/b、a/b/R/a/R/a/R/b等とすることも可能である。
 なお、上記の層構成において、それぞれの層間には、必要に応じて接着性樹脂層を設けることができ、かかる接着性樹脂としては、種々のものを使用することもでき、延伸性に優れた多層構造体が得られる点で好ましく、bの樹脂の種類によって異なり一概に言えないが、不飽和カルボン酸またはその無水物をオレフィン系重合体(上述の広義のポリオレフィン系樹脂)に付加反応やグラフト反応等により化学的に結合させて得られるカルボキシル基を含有する変性オレフィン系重合体を挙げることができる。
 具体的には、無水マレイン酸グラフト変性ポリエチレン、無水マレイン酸グラフト変性ポリプロピレン、無水マレイン酸グラフト変性エチレン-プロピレン(ブロックおよびランダム)共重合体、無水マレイン酸グラフト変性エチレン-エチルアクリレート共重合体、無水マレイン酸グラフト変性エチレン-酢酸ビニル共重合体等から選ばれた1種または2種以上の混合物が好適なものとして挙げられる。このときの、熱可塑性樹脂に含有される不飽和カルボン酸又はその無水物の量は、0.001~3重量%が好ましく、さらに好ましくは0.01~1重量%、特に好ましくは0.03~0.5重量%である。該変性物中の変性量が少なすぎると接着性が低下する傾向があり、逆に多すぎると架橋反応を起こし、成形性が低下する傾向がある。
 また、これらの接着性樹脂には、本発明のEVOHまたはEVOH樹脂組成物や他のEVOH、ポリイソブチレン、エチレン-プロピレンゴム等のゴム・エラストマー成分、さらにはb層の樹脂等をブレンドすることも可能である。特に、接着性樹脂の母体のポリオレフィン系樹脂と異なるポリオレフィン系樹脂をブレンドすることにより、接着性が向上することがあり有用である。
 多層構造体の各層の厚みは、層構成、bの種類、用途や容器形態、要求される物性などにより一概に言えないが、通常は、a層は5~500μm、好ましくは10~200μm、b層は10~5000μm、好ましくは30~1000μm、接着性樹脂層は5~400μm、好ましくは10~150μm程度の範囲から選択される。
 多層構造体は、そのまま各種形状のものに使用されるが、さらに該多層構造体の物性を改善するためには加熱延伸処理を施すことも好ましい。ここで加熱延伸処理とは、熱的に均一に加熱されたフィルム、シート、パリソン状の積層体をチャック、プラグ、真空力、圧空力、ブローなどにより、カップ、トレイ、チューブ、フィルム状に均一に成形する操作を意味し、かかる延伸については、一軸延伸、二軸延伸のいずれであってもよく、できるだけ高倍率の延伸を行ったほうが物性的に良好で、延伸時にピンホールやクラック、延伸ムラや偏肉、デラミ等の生じない、ガスバリア性に優れた延伸成形物が得られる。
 延伸方法としては、ロール延伸法、テンター延伸法、チューブラー延伸法、延伸ブロー法、真空圧空成形等のうち延伸倍率の高いものも採用できる。二軸延伸の場合は同時二軸延伸方式、逐次二軸延伸方式のいずれの方式も採用できる。延伸温度は60~170℃、好ましくは80~160℃程度の範囲から選ばれる。延伸が終了した後、次いで熱固定を行うことも好ましい。熱固定は周知の手段で実施可能であり、上記延伸フィルムを緊張状態を保ちながら80~170℃、好ましくは100~160℃で2~600秒間程度熱処理を行う。
 また、生肉、加工肉、チーズ等の熱収縮包装用途に用いる場合には、延伸後の熱固定は行わずに製品フィルムとし、上記の生肉、加工肉、チーズ等を該フィルムに収納した後、50~130℃、好ましくは70~120℃で、2~300秒程度の熱処理を行って、該フィルムを熱収縮させて密着包装をする。
 かくして得られた多層構造体の形状としては任意のものであってよく、フィルム、シート、テープ、異型断面押出物等が例示される。また、得られる多層構造体は、必要に応じて、熱処理、冷却処理、圧延処理、印刷処理、ドライラミネート処理、溶液又は溶融コート処理、製袋加工、深絞り加工、箱加工、チューブ加工、スプリット加工等を行うことができる。
 上記の如く得られたカップ、トレイ、チューブ等からなる容器や延伸フィルムからなる袋や蓋材は食品、飲料、医薬品、化粧品、工業薬品、洗剤、農薬、燃料等各種の包装材料として有用である。
 以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
 尚、例中「部」、「%」とあるのは、重量基準を意味する。
 また、各物性については下記の通り行った。
(1)EVOHの一次構造の定量(NMR法)
<測定条件>
 装置名:(AVANCEIII Bruker社製)
 観測周波数:400MHz
 溶媒:水/エタノール(重量比=水(35):エタノール(65))、DMSO-D6
 ポリマー濃度:5%
 測定温度:水/エタノール 70℃、DMSO-D6 50℃
 積算回数:16回
 パルス繰り返し時間:4秒
 サンプル回転速度:20Hz
 添加剤:トリフルオロ酢酸
<解析方法>
(1-1)末端メチル量の測定
 末端メチル量はH-NMR測定(DMSO-D6、50℃で測定)を用いて算出した(化学シフト値は DMSOのピーク 2.50ppmを基準とした。)。図1のチャート図に示すように、0.7~0.95ppmの末端メチルの積分値(I Me-1 )、0.95~1.85ppmの末端基以外のメチレン(エチレンユニット、ビニルアルコールユニット、酢酸ビニルユニットのメチレンの合計)の積分値(I CH2 )、1.9~2ppmの酢酸ビニルユニット中の末端メチルの積分値(I OAc )、3.1~4.3ppmのビニルアルコールユニット中のメチンの積分値(I CH )を用いて、下記の(式1)により末端メチル量を算出した。ここで積分値(I Me-1 )、(I CH2 )、(I OAc)、(I CH )はそれぞれ、末端メチル、末端基以外のメチレン、酢酸ビニルユニット中の末端メチル、ビニルアルコールユニット中のメチン由来のピークに関するものである。
(式1)
末端メチル量(モル%)
=(I Me-1 / 3 )/[(I Me-1 /3)+(I OAc/3)+I CH
 +{I CH2 -2×I CH -2×(I OAc /3)-2×(I Me-1 /3)}/4]
(1-2)カルボン酸類の含有量(X)とラクトン環の含有量(Y)の測定
 重合体末端のカルボン酸類およびラクトン環の含有量は、(1-1)で得られた末端メチル量(モル%)をもとに、H-NMR測定(水/エタノール溶媒、70℃で測定)を用いて算出した(化学シフト値はTMSのピーク0ppmを基準とした。)。
 すなわち、図2のチャート図に示すように、0.7~1ppmの末端メチルの積分値(I Me-2)、2.15~2.32ppmのピークの積分値(IX)、2.5~2.7ppmのピークの積分値(IY)を用いて、下記の(式2)、(式3)によりカルボン酸類の含有量(X)(モル%)及びラクトン環の含有量(Y)(モル%)をそれぞれ算出した。ここで、積分値(I Me-2)、(IX)、(IY)はそれぞれ、末端メチル、カルボン酸類及び末端ラクトン環由来のピークに関するものである。
(式2)
カルボン酸類の含有量(X)(モル%)
=末端メチル量(モル%)×(IX/2)/(I Me-2/3)
(式3)
ラクトン環の含有量(Y)(モル%)
=末端メチル量(モル%)×(IY/2)/(I Me-2/3)
(1-3)末端構造における、カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)の算出
 上記で得られたカルボン酸類の含有量(X)とラクトン環の含有量(Y)から下記(式4)によりラクトン環含有割合(Y/Z)を算出した。
 なお、EVOHとは異なる添加物、不純物等により、上述の計算が不可能な場合は、サンプルの洗浄等を適宜行ってもよい。サンプルの洗浄としては、たとえば、以下のような方法を用いることができる。すなわち、試料を凍結粉砕したのち、水に浸けて超音波洗浄を行い、濾過後、濾残を乾燥することで行うことができ、かかる乾燥ののちにNMR測定を行う。
(式4)
 カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)(モル%)
={Y/(X+Y)}×100(%)
(熱安定性)
 熱安定性は、EVOHペレット約5mgを用い、熱重量測定装置(Pyris 1 TGA、Perkin Elmer社製)により測定される、重量がもとの重量の95%まで減少したときの温度に基づき評価した。ここで、TGAによる測定は、窒素雰囲気下:20mL/min、昇温速度:10℃/min、温度範囲:30℃~550℃の条件下で行った。
〔実施例1〕
 エチレン含有量32モル%、ケン化度99.5モル%のEVOH(A)(中間体)の水/メタノール溶液の多孔性析出物(EVOH(中間体)100部に対して水100部含有)を350ppmの酢酸、370ppmの酢酸ナトリウム、15ppmのリン酸二水素カルシウム、及び57ppmのホウ酸を含有する水溶液中に投入し、30~35℃で1時間撹拌した後、水溶液を入れ替え、同様に計5回の撹拌処理を施した(一段階目の化学処理工程)。上記一段階目の化学処理工程にて使用した水溶液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)は3.0であった。次いで、得られたEVOH中間体の多孔性析出物を、700ppmの酢酸、370ppmの酢酸ナトリウム、15ppmのリン酸二水素カルシウム、及び57ppmのホウ酸を含有する水溶液中に投入し、30~35℃で4時間撹拌することでEVOH中間体の多孔性析出物中の酢酸中の酢酸量を調整した(二段階目の化学処理工程)。上記二段階目の化学処理工程にて使用した水溶液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)は6.7であった。得られたEVOH中間体の多孔性析出物を121℃で10時間乾燥を行って、本発明のEVOH組成物(EVOHペレット)を得た。
 得られたEVOH組成物(EVOHペレット)の各種測定結果を表1に示す。
〔実施例2〕
 実施例1の酢酸量調整において、水溶液中の酢酸量を1400ppmとし、二段階目の化学処理工程にて使用した水溶液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)を13.5とした以外は同様に行って、本発明のEVOH組成物(EVOHペレット)を得た。
 得られたEVOH組成物(EVOHペレット)の各種測定結果を表1に示す。
〔実施例3〕
 実施例1の酢酸量調整において、水溶液中の酢酸量を2450ppmとし、二段階目の化学処理工程にて使用した水溶液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)を23.6とした以外は同様に行って、本発明のEVOH組成物(EVOHペレット)を得た。
 得られたEVOH組成物(EVOHペレット)の各種測定結果を表1に示す。
〔実施例4〕
 実施例1の酢酸量調整において、水溶液中の酢酸量を2450ppmとし、二段階目の化学処理工程にて使用した水溶液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)を23.6とし、乾燥温度を150℃とした以外は同様に行って、本発明のEVOH組成物(EVOHペレット)を得た。
 得られたEVOH組成物(EVOHペレット)の各種測定結果を表1に示す。
〔実施例5〕
 実施例1の酢酸量調整において、水溶液中の酢酸量を3500ppmとし、二段階目の化学処理工程にて使用した水溶液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)を33.7とした以外は同様に行って、本発明のEVOH組成物(EVOHペレット)を得た。
 得られたEVOH組成物(EVOHペレット)の各種測定結果を表1に示す。
〔実施例6〕
 実施例1の酢酸量調整において、水溶液中の酢酸量を3500ppmとし、二段階目の化学処理工程にて使用した水溶液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)を33.7とし、乾燥温度を150℃とした以外は同様に行って、本発明のEVOH組成物(EVOHペレット)を得た。
 得られたEVOH組成物(EVOHペレット)の各種測定結果を表1に示す。
〔比較例1〕
 実施例1の酢酸量調整において、水溶液中の酢酸量を350ppmとし、二段階目の化学処理工程にて使用した水溶液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)を3.4とし、乾燥温度を118℃とした以外は同様に行って、EVOH組成物(EVOHペレット)を得た。
 得られたEVOH組成物(EVOHペレット)の各種測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 上記の結果より、EVOHの末端構造における、カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)を満足する実施例においては、高温での熱安定性に優れたものであるのに対して、かかるラクトン環含有割合(Y/Z)を満足しない比較例では、熱安定性に劣るものであった。なお、熱安定性の評価において、実施例1~6では361~363℃であるのに対して、比較例1では343℃であり、その差は約20℃程度であるが、樹脂の酸化劣化や熱分解等は化学反応であり、通常、化学反応の反応速度は温度の上昇に伴い指数関数的に上昇するため、特に今回のような高温での20℃の差異は反応速度論の点から、非常に大きな差異となるものである。
 上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。当業者に明らかな様々な変形は、本発明の範囲内であることが企図されている。
 本発明のEVOHは、カルボン酸類の含有量とラクトン環の含有量の合計量に対するラクトン環の含有割合が特定範囲のものであるため、高温でも熱分解抑制に優れるなど熱安定性に優れ、高温で加工した場合であっても異臭や着色のないものである。従って、本発明のEVOHは、カップ、トレイ、チューブ等からなる容器や延伸フィルムからなる袋や蓋材に成形することができ、食品、飲料、医薬品、化粧品、工業薬品、洗剤、農薬、燃料等各種の包装材料として有効的に利用することができる。

Claims (9)

  1.  エチレン-ビニルアルコール系共重合体の末端構造における、カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)に対するラクトン環含有割合(Y/Z)が55モル%以上であることを特徴とするエチレン-ビニルアルコール系共重合体。
  2.  カルボン酸類の含有量(X)とラクトン環の含有量(Y)の合計量(Z)がエチレン-ビニルアルコール系共重合体のモノマーユニットの合計量に対して0.01~0.3モル%であることを特徴とする請求項1記載のエチレン-ビニルアルコール系共重合体。
  3.  ラクトン環の含有量(Y)がエチレン-ビニルアルコール系共重合体のモノマーユニットの合計量に対して0.01~0.3モル%であることを特徴とする請求項1または2記載のエチレン-ビニルアルコール系共重合体。
  4.  カルボン酸類の含有量(X)がエチレン-ビニルアルコール系共重合体のモノマーユニットの合計量に対して0.01~0.3モル%であることを特徴とする請求項1~3のいずれか一項に記載のエチレン-ビニルアルコール系共重合体。
  5.  請求項1~4のいずれか一項に記載のエチレン-ビニルアルコール系共重合体の製造方法であって、エチレン-ビニルエステル系共重合体をケン化してエチレン-ビニルアルコール系共重合体中間体を得るケン化工程[I]、前記エチレン-ビニルアルコール系共重合体中間体を薬液で化学処理する化学処理工程[II]、前記化学処理エチレン-ビニルアルコール系共重合体中間体を乾燥する乾燥工程[III]を含み、更に、前記化学処理工程[II]において、薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)が3.7以上であることを特徴とするエチレン-ビニルアルコール系共重合体の製造方法。
  6.  エチレン-ビニルアルコール系共重合体中間体を薬液で化学処理する化学処理工程[II]が、カルボン酸濃度の異なる複数の薬液を準備し、複数の薬液を各々用いて多段階にてエチレン-ビニルアルコール系共重合体中間体を化学処理する多段階の化学処理工程からなり、上記複数の薬液のうちカルボン酸濃度が最も高い薬液中の金属イオン濃度に対するカルボン酸濃度の重量比率(カルボン酸濃度/金属イオン濃度)が3.7以上であることを特徴とする請求項5記載のエチレン-ビニルアルコール系共重合体の製造方法。
  7.  前記乾燥工程[III]において、乾燥温度を80~150℃とすることを特徴とする請求項5または6記載のエチレン-ビニルアルコール系共重合体の製造方法。
  8.  請求項1~4のいずれか一項に記載のエチレン-ビニルアルコール系共重合体を含有してなることを特徴とする樹脂組成物。
  9.  請求項1~4のいずれか一項に記載のエチレン-ビニルアルコール系共重合体または請求項8記載の樹脂組成物を含有する層を少なくとも1層有することを特徴とする多層構造体。
PCT/JP2016/076899 2015-09-15 2016-09-13 エチレン-ビニルアルコール系共重合体、エチレン-ビニルアルコール系共重合体の製造方法、樹脂組成物及び多層構造体 WO2017047559A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016557158A JP6878892B2 (ja) 2015-09-15 2016-09-13 エチレン−ビニルアルコール系共重合体、エチレン−ビニルアルコール系共重合体の製造方法、樹脂組成物及び多層構造体
US15/913,069 US11401355B2 (en) 2015-09-15 2018-03-06 Ethylene-vinyl alcohol copolymer, method of producing ethylene-vinyl alcohol copolymer, resin composition, and multilayer structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015181881 2015-09-15
JP2015-181881 2015-09-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/913,069 Continuation US11401355B2 (en) 2015-09-15 2018-03-06 Ethylene-vinyl alcohol copolymer, method of producing ethylene-vinyl alcohol copolymer, resin composition, and multilayer structure

Publications (1)

Publication Number Publication Date
WO2017047559A1 true WO2017047559A1 (ja) 2017-03-23

Family

ID=58288797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076899 WO2017047559A1 (ja) 2015-09-15 2016-09-13 エチレン-ビニルアルコール系共重合体、エチレン-ビニルアルコール系共重合体の製造方法、樹脂組成物及び多層構造体

Country Status (4)

Country Link
US (1) US11401355B2 (ja)
JP (1) JP6878892B2 (ja)
TW (1) TWI732782B (ja)
WO (1) WO2017047559A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116766A1 (ja) * 2016-12-20 2018-06-28 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体ペレット、樹脂組成物および多層構造体
EP3560994A4 (en) * 2016-12-20 2019-12-25 Mitsubishi Chemical Corporation ETHYLENE VINYL ALCOHOL COPOLYMER RESIN COMPOSITION AND MULTILAYER STRUCTURE
CN110637059A (zh) * 2017-06-27 2019-12-31 三菱化学株式会社 乙烯-乙烯醇系共聚物组合物、粒料及多层结构体
CN113698695A (zh) * 2021-03-18 2021-11-26 长春石油化学股份有限公司 具良好氧气阻隔性的乙烯-乙烯醇共聚物组成物
WO2022030465A1 (ja) * 2020-08-04 2022-02-10 株式会社クラレ 多層構造体、それを用いた包装材、回収組成物及び回収組成物の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7415232B2 (ja) * 2019-03-26 2024-01-17 三菱ケミカル株式会社 多層構造体及び包装体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987811A (ja) * 1972-12-28 1974-08-22
JPH0971620A (ja) * 1995-06-26 1997-03-18 Kuraray Co Ltd 酢酸ビニル系重合体の製法、酢酸ビニル系重合体ケン化物の製法および樹脂組成物
JPH09100318A (ja) * 1995-10-02 1997-04-15 Kuraray Co Ltd エチレン−ビニルエステル共重合体ケン化物の製法
JP2000178396A (ja) * 1998-12-18 2000-06-27 Kuraray Co Ltd 溶融成形用ポリビニルアルコール系樹脂組成物
JP2001163921A (ja) * 1999-12-14 2001-06-19 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物の連続処理方法
JP2002080606A (ja) * 2000-09-07 2002-03-19 Kuraray Co Ltd エチレン−ビニルアルコール共重合体ペレットの製造方法
WO2004092234A1 (ja) * 2003-03-31 2004-10-28 Kuraray Co., Ltd. エチレンービニルアルコール系共重合体およびその製造方法
WO2013005807A1 (ja) * 2011-07-07 2013-01-10 株式会社クラレ エチレン-ビニルアルコール共重合体樹脂組成物及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520624B (zh) * 2012-08-02 2016-06-22 日本合成化学工业株式会社 高压气体用软管或贮存容器
US10407706B2 (en) * 2014-10-17 2019-09-10 Suntory Holdings Limited Mogrol glycosyltransferase and gene encoding same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4987811A (ja) * 1972-12-28 1974-08-22
JPH0971620A (ja) * 1995-06-26 1997-03-18 Kuraray Co Ltd 酢酸ビニル系重合体の製法、酢酸ビニル系重合体ケン化物の製法および樹脂組成物
JPH09100318A (ja) * 1995-10-02 1997-04-15 Kuraray Co Ltd エチレン−ビニルエステル共重合体ケン化物の製法
JP2000178396A (ja) * 1998-12-18 2000-06-27 Kuraray Co Ltd 溶融成形用ポリビニルアルコール系樹脂組成物
JP2001163921A (ja) * 1999-12-14 2001-06-19 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体ケン化物の連続処理方法
JP2002080606A (ja) * 2000-09-07 2002-03-19 Kuraray Co Ltd エチレン−ビニルアルコール共重合体ペレットの製造方法
WO2004092234A1 (ja) * 2003-03-31 2004-10-28 Kuraray Co., Ltd. エチレンービニルアルコール系共重合体およびその製造方法
WO2013005807A1 (ja) * 2011-07-07 2013-01-10 株式会社クラレ エチレン-ビニルアルコール共重合体樹脂組成物及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018116766A1 (ja) * 2016-12-20 2018-06-28 日本合成化学工業株式会社 エチレン-ビニルアルコール系共重合体ペレット、樹脂組成物および多層構造体
JPWO2018116766A1 (ja) * 2016-12-20 2019-10-24 三菱ケミカル株式会社 エチレン−ビニルアルコール系共重合体ペレット、樹脂組成物および多層構造体
EP3560994A4 (en) * 2016-12-20 2019-12-25 Mitsubishi Chemical Corporation ETHYLENE VINYL ALCOHOL COPOLYMER RESIN COMPOSITION AND MULTILAYER STRUCTURE
US11292860B2 (en) 2016-12-20 2022-04-05 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer pellets, resin composition, and multilayer structure
US11884806B2 (en) 2016-12-20 2024-01-30 Mitsubishi Chemical Corporation Ethylene-vinyl alcohol copolymer resin composition, and multilayer structure
CN110637059A (zh) * 2017-06-27 2019-12-31 三菱化学株式会社 乙烯-乙烯醇系共聚物组合物、粒料及多层结构体
CN110637059B (zh) * 2017-06-27 2022-11-04 三菱化学株式会社 乙烯-乙烯醇系共聚物组合物、粒料及多层结构体
WO2022030465A1 (ja) * 2020-08-04 2022-02-10 株式会社クラレ 多層構造体、それを用いた包装材、回収組成物及び回収組成物の製造方法
CN113698695A (zh) * 2021-03-18 2021-11-26 长春石油化学股份有限公司 具良好氧气阻隔性的乙烯-乙烯醇共聚物组成物

Also Published As

Publication number Publication date
TWI732782B (zh) 2021-07-11
JPWO2017047559A1 (ja) 2018-08-02
US20180194876A1 (en) 2018-07-12
US11401355B2 (en) 2022-08-02
TW201718750A (zh) 2017-06-01
JP6878892B2 (ja) 2021-06-02

Similar Documents

Publication Publication Date Title
WO2017047559A1 (ja) エチレン-ビニルアルコール系共重合体、エチレン-ビニルアルコール系共重合体の製造方法、樹脂組成物及び多層構造体
WO2018116765A1 (ja) エチレン-ビニルアルコール系共重合体樹脂組成物および多層構造体
JP7119357B2 (ja) エチレン-ビニルアルコール系共重合体樹脂組成物および多層構造体
JP5046430B2 (ja) 樹脂組成物および積層体
JP6984497B2 (ja) エチレン−ビニルアルコール系共重合体樹脂組成物および溶融成形用材料ならびに多層構造体
JP7119354B2 (ja) エチレン-ビニルアルコール系共重合体樹脂組成物および多層構造体
WO2016171278A1 (ja) エチレン-ビニルアルコール系共重合体及びその製造方法、並びに積層体
JP4549270B2 (ja) 多層シュリンクフィルム
JP6743387B2 (ja) エチレン−ビニルエステル系共重合体ケン化物を含有する層を有する積層体、その二次成形品及び有底容器を製造する方法
JP2018131543A (ja) エチレン−ビニルエステル系共重合体ケン化物ペレットの製造方法
JP2001200123A (ja) 樹脂組成物ペレットおよび成形物
CN110036060B (zh) 乙烯-乙烯醇系共聚物粒料、树脂组合物及多层结构体
JP3907360B2 (ja) 樹脂組成物および積層体
JP2006123534A (ja) 多層延伸フィルム
JP7119356B2 (ja) エチレン-ビニルアルコール系共重合体樹脂組成物および多層構造体
JP6292838B2 (ja) 変性エチレン−ビニルエステル系共重合体ケン化物組成物及びその製造方法
JP6572557B2 (ja) 樹脂組成物
JP4634554B2 (ja) 樹脂組成物および積層体
JP4634555B2 (ja) 樹脂組成物および積層体
JP7119355B2 (ja) エチレン-ビニルアルコール系共重合体樹脂組成物および多層構造体
JP2023153000A (ja) エチレン-ビニルアルコール系共重合体組成物、ぺレット、多層構造体、エチレン-ビニルアルコール系共重合体組成物の製造方法、及び多層構造体の製造方法
JP6292827B2 (ja) 変性エチレン−ビニルエステル系共重合体ケン化物樹脂組成物、およびその製造方法
JP2019007005A (ja) 樹脂組成物、溶融成形用材料および多層構造体
JP2001019712A (ja) エチレン−酢酸ビニル共重合体ケン化物および積層体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016557158

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846430

Country of ref document: EP

Kind code of ref document: A1