WO2017047327A1 - 円すいころ軸受用保持器及びその製造方法 - Google Patents

円すいころ軸受用保持器及びその製造方法 Download PDF

Info

Publication number
WO2017047327A1
WO2017047327A1 PCT/JP2016/074338 JP2016074338W WO2017047327A1 WO 2017047327 A1 WO2017047327 A1 WO 2017047327A1 JP 2016074338 W JP2016074338 W JP 2016074338W WO 2017047327 A1 WO2017047327 A1 WO 2017047327A1
Authority
WO
WIPO (PCT)
Prior art keywords
cage
tapered roller
column
punching
roller bearing
Prior art date
Application number
PCT/JP2016/074338
Other languages
English (en)
French (fr)
Inventor
崇 川井
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017047327A1 publication Critical patent/WO2017047327A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/54Cages for rollers or needles made from wire, strips, or sheet metal

Definitions

  • the present invention relates to a cage incorporated in a tapered roller bearing and a manufacturing method thereof.
  • Tapered roller bearings used in automobiles, industrial machinery, etc. hold inner rings, outer rings, a plurality of tapered rollers that are arranged to roll between them, and a plurality of tapered rollers at predetermined circumferential intervals. It is composed of a cage.
  • Patent Document 1 discloses a cage manufacturing method including the following steps. (1) Punching process for punching a circular blank from a steel plate (2) Squeezing process for squeezing the circular blank to form a truncated cone-shaped cup (cage original shape) (3) Punching a center guide hole and a rotating guide hole at the bottom of the cup Centering step (4) Pocket punching step of punching a pocket on the side of the cup (5) Column pushing step (6) Cup for forming guide surfaces on both end surfaces of the pocket in the circumferential direction (side surfaces on both sides in the circumferential direction of the column) Inner diameter punching process that removes the bottom of the metal leaving a little edge
  • the pocket removing process has been conventionally performed by punching the side portion of the cup from the inner diameter side to the outer diameter side with a punch.
  • the tapered cylindrical side portion 101 of the cup 100 is supported by the die 110 from the outer diameter side, and the punch 120 is disposed on the inner periphery of the side portion 101 of the cup 100.
  • the punch 120 is moved to the outer diameter side, and the side portion 101 of the cup 100 is punched in the radial direction by the punch 120 to form a pocket P ′.
  • a pillar portion 102 is formed between the circumferential directions of adjacent pockets P ′.
  • a shearing surface is formed in a region on the initial side of punching, and a fracture surface is formed in a region on the late side of punching.
  • a shear surface 102 a is formed along the punching direction of the punch 120, and on the outer diameter side region on both side surfaces in the circumferential direction of the column part 102, the die 110 side ( A fractured surface 102b inclined to the side away from the punch 120 is formed.
  • the circumferential width W ⁇ b> 1 ′ of the inner diameter end of the pillar portion 102 is defined by the shear surface 102 a, and therefore substantially coincides with the circumferential interval between the adjacent punches 120.
  • the circumferential width W2 ′ of the outer diameter end of the pillar portion 102 is defined by the fracture surface 102b, the circumferential clearance CL ′ between the die 110 and the punch 120 (specifically, twice the clearance CL ′). ), The distance between the adjacent punches 120 in the circumferential direction is narrower, and the strength of the column part 102 may be reduced.
  • the circumferential clearance CL ′ between the die 110 and the punch 120 is reduced, it is considered that the reduction in the circumferential width W2 ′ of the outer diameter end of the column portion 102 can be suppressed and the strength reduction of the column portion can be suppressed.
  • the clearance CL ′ between the die 110 and the punch 120 is too small, the processing quality of the cut surface is deteriorated, and in the worst case, the die 110 and the punch 120 may interfere with each other. There is a limit to securing the strength of the pillar part by doing.
  • a substantially right angle corner is formed at the boundary between the inner diameter surface 102c of the column portion 102 and the shearing surfaces 102a on both sides in the circumferential direction formed in the pocket removing step.
  • a step of forming a guide surface by the column pressing step is indispensable, thereby increasing the manufacturing cost and the crushing portion by column pressing processing. There is a concern about the shape collapse accompanying the material movement.
  • the problem to be solved by the present invention is that in the tapered roller bearing retainer, avoiding a decrease in the strength of the column part due to the fracture surface due to the punching process of the pocket, and the shape collapse due to the column pushing process.
  • the purpose of this is to prevent the quality deterioration associated with the process and to reduce the manufacturing cost.
  • the present invention includes a small-diameter annular portion, a large-diameter annular portion, a plurality of column portions that connect these in the axial direction, and a plurality of pockets provided between the circumferential directions of the plurality of column portions.
  • the drawing process of drawing a metal plate to form a cage original shape having a tapered cylindrical side, and the side of the cage original shape is supported by a die from the inner diameter side and removed by a punch.
  • a method for manufacturing a tapered roller bearing retainer including a pocket punching step of forming the plurality of pockets in a side portion of the retainer original shape by punching from the diameter side to the inner diameter side.
  • the punching direction of the punch is set in the outer diameter side regions (regions on the initial punching side) on both sides in the circumferential direction of the column portion.
  • a shear plane is formed along Thereby, since the circumferential direction width
  • retainer is ensured.
  • fracture surfaces that are inclined with respect to the punching direction of the punch are formed in the inner diameter side regions (regions on the punching late side) on both circumferential sides of the column part.
  • this fracture surface is inclined toward the center in the circumferential direction of the column portion toward the inner diameter side. Therefore, the guide surface can be easily formed by using the fracture surface to form the guide surface. Manufacturing cost is reduced.
  • the inclination angle ⁇ (see FIG. 6) with respect to the radial direction of the fracture surface can be adjusted by adjusting the circumferential clearance between the die and the punch. Therefore, normally, in punching, the clearance between the die and the punch is set to about 5 to 10% of the plate thickness. However, in the above manufacturing method, the clearance in the circumferential direction between the die and the punch is set larger in the pocket punching process. By doing so, the inclination angle ⁇ of the fracture surface can be made equal to that of the guide surface. Specifically, the circumferential clearance CL between the die and the punch is 25% or more of the plate thickness TK of the cage (0.25 ⁇ CL / TK).
  • a guide surface can be formed. For example, if the guide surface is formed by performing injection processing on the fracture surface, the column surface pressing step for forming the guide surface can be omitted, and thus the manufacturing cost is further reduced.
  • the cage is incorporated in a tapered roller bearing and is made of a metal plate, and includes a small-diameter annular portion, a large-diameter annular portion, a plurality of column portions that connect them in the axial direction, and a plurality of columns.
  • a plurality of pockets for receiving tapered rollers one by one in the circumferential direction of each of the column parts, and injecting the fracture surface by punching in the inner diameter side region on both sides in the circumferential direction of each column part
  • a tapered roller bearing retainer having a guide surface that is inclined toward the center in the circumferential direction of the column portion as it goes to the inner diameter side.
  • the tapered roller bearing having the above tapered rollers and the above cage that holds the plurality of tapered rollers at predetermined intervals in the circumferential direction can be expected to have a long life because the strength of the cage is high.
  • the column pushing process for forming the guide surface can be omitted or simplified, so that it is possible to prevent deterioration in quality due to shape collapse caused by the column pushing process and to reduce the manufacturing cost.
  • FIG. 6 is an enlarged view showing the vicinity of a column part in FIG. 5.
  • the tapered roller bearing 1 of the present embodiment includes an inner ring 2 having a tapered raceway surface 2a on the outer peripheral surface, and an outer ring 3 having a tapered raceway surface 3a on the inner peripheral surface.
  • a plurality of tapered rollers 4 having a tapered rolling surface 4a on the outer peripheral surface, and a tapered roller 4 in the circumferential direction, etc., are arranged so as to roll freely between the raceway surface 2a of the inner ring 2 and the raceway surface 3a of the outer ring 3. It is comprised with the holder
  • the tapered roller bearing 1 is incorporated in a power transmission system such as an automobile transmission or a differential.
  • the “axial direction” refers to the rotational axis directions of the inner ring 2 and the outer ring 3.
  • the inner ring 2, the outer ring 3, and the tapered roller 4 are made of steel, for example, bearing steel, carburized steel, stainless steel, or the like.
  • the inner ring 2 has a small flange portion 2b provided on the small diameter side (left side in FIG. 1) of the raceway surface 2a and a large collar portion 2c provided on the large diameter side (right side in FIG. 1) of the raceway surface 2a.
  • the raceway surface 2 a of the inner ring 2, the raceway surface 3 a of the outer ring 3, and the rolling surface 4 a of the tapered roller 4 are tapered surfaces where the busbars are linear, or crowned surfaces where the axially central portion of the busbars bulges.
  • the retainer 5 has a small-diameter annular portion 5a, a large-diameter annular portion 5b, and a plurality of column portions 5c that connect the small-diameter annular portion 5a and the large-diameter annular portion 5b in the axial direction.
  • the tapered rollers 4 are accommodated one by one in the pocket P surrounded by the small-diameter annular portion 5a, the large-diameter annular portion 5b, and the pair of column portions 5c (see FIG. 2).
  • the cage 5 is disposed on the outer diameter side of the center of the tapered roller 4 and at a position not in contact with the outer ring 3.
  • a guide surface 5d that slides with the tapered roller 4 is provided on the side surfaces on both sides in the circumferential direction of each column portion 5c of the cage 5. As shown in FIG. 3, the guide surface 5d is provided in an inner diameter side region on both sides in the circumferential direction of each column portion 5c, and an inner diameter end thereof reaches an inner diameter surface of each column portion 5c. 5 d of guide surfaces incline in the circumferential direction center side of the column part 5c as it goes to an inner diameter side (lower side in the figure).
  • the guide surface 5d is a surface obtained by performing shot processing such as shot blasting on a fractured surface by punching (pocket punching described later).
  • Flat surfaces 5e parallel to the radial direction are provided in the outer diameter side regions of both side surfaces in the circumferential direction of each column portion 5c.
  • the flat surface 5e is a surface obtained by performing shot processing such as shot blasting on a sheared surface by punching.
  • the lower end of the flat surface 5e is continuous with the upper end of the guide surface 5d.
  • the upper end of the flat surface 5e is continuous with the outer diameter surface of the column portion 5c through a sag (not shown).
  • each tapered roller 4 revolves along the circumferential direction of the inner ring 2 and the outer ring 3 while rotating in the pocket of the cage 5.
  • the large diameter side end surface 4b of each tapered roller 4 and the large flange portion 2c of the inner ring 2 slide, and the rolling surface 4a of each tapered roller 4 and the guide surface 5d of the cage 5 slide.
  • the cage 5 is formed by pressing a metal plate.
  • the cage 5 of the present embodiment includes (1) a blanking process, (2) a drawing process, (3) an edge cutting process, (4) a pocket punching process, (5) an inner diameter punching process, and (6) a finishing process. It is manufactured after.
  • the diameter near the small-diameter side end portion of the pillar portion of the cage original shape is set so that the tapered roller can get over the small collar portion of the inner ring.
  • a bottom expanding process is performed. This bottom expanding step is performed simultaneously with the inner diameter removing step (5), for example.
  • each process will be described in detail.
  • a circular blank is punched from a metal plate, for example, a steel plate, particularly a cold or hot rolled steel plate of low carbon steel having a carbon content of 2.5 wt% or less.
  • the tapered side portion 15 a of the retainer original shape 15 is supported by the die 21 from the inner periphery, and the outer periphery of the side portion 15 a of the retainer original shape 15 is provided.
  • a plurality of punches 22 are arranged.
  • each punch 22 is moved to the inner diameter side, and the side portion 15 a of the cage original shape 15 is punched in the radial direction with each punch 22.
  • a plurality of pockets P are formed in the side portion 15a of the cage original shape 15, and a column portion 15b is formed between the adjacent pockets P.
  • the cage original shape 15 includes the small-diameter annular portion 5a and the large-diameter annular shape.
  • the shape is substantially the same as the cage 5 having the portion 5b and the plurality of column portions 5c.
  • the shear surface 15c is formed in the outer diameter side area
  • the shearing surface 15 c is a flat surface parallel to the punching direction (radial direction) of the punch 22. On the surface of the shear surface 15c, fine streaks (processing marks) along the punching direction of the punch 22 are formed.
  • a fracture surface 15d is formed in the inner diameter side region on both sides in the circumferential direction of the column portion 15b.
  • the fracture surface 15d is configured by a surface that is inclined with respect to the punching direction of the punch 22, specifically, a surface that is inclined toward the center in the circumferential direction of the column portion 15b toward the inner diameter side.
  • the fracture surface 15d in the illustrated example is constituted by a surface connecting the lower end of the shearing surface 15c and the corner of the die 21.
  • the fracture surface 15d is not a surface cut by the cutting edge of the punch 22, but a surface in which a crack on the punch 22 side and a crack on the die 21 side are connected to each other, and thus has a surface from which the meat has been stripped.
  • the fracture surface 15d is a surface having a rougher surface roughness than the shearing surface.
  • the fracture surface 15d is a flat surface linearly extending from the inner diameter end of the shear surface 15c toward the corner of the die 21, but the actual fracture surface 15d is a curved surface with a slightly uneven center. Often it is.
  • the inclination angle ⁇ with respect to the radial direction of the fracture surface 15 d can be adjusted by changing the circumferential clearance CL between the die 21 and the punch 22. Specifically, when the clearance CL is increased, the inclination angle ⁇ of the fracture surface 15d is increased, and when the clearance CL is decreased, the inclination angle ⁇ of the fracture surface 15d is decreased. Therefore, the circumferential clearance CL between the die 21 and the punch 22 may be set so that the guide surface 5d of the cage 5 has a desired angle (an angle that functions as a guide surface). In the present embodiment, the clearance CL is set so that the inclination angle ⁇ of the fracture surface 15d is in the range of 15 to 55 °.
  • the circumferential clearance CL between the dies 21 and 22 punches is 25% or more (0.25 ⁇ CL / TK) of the plate thickness TK of the cage 5, preferably 30% or more, more preferably 40 % Is set to be at least%. If the circumferential clearance CL between the dies 21 and 22 punches is too large, the circumferential width of the inner diameter end of the column portion 5c becomes too narrow, leading to a decrease in strength. Accordingly, the circumferential clearance CL between the dies 21 and 22 punches is 65% or less (0.65 ⁇ CL / TK) of the plate thickness TK of the cage 5, preferably 60% or less, more preferably 50% or less. Is set to be
  • the bottom of the cage original shape 15 that has undergone the pocket punching step is punched out with a little edge left.
  • the (6) finishing step is performed on the cage original form 15.
  • an injection process for example, shot blasting
  • flash especially the burr
  • the retainer original form 15 is removed.
  • shot blasting on the fracture surface 15d formed on both side surfaces in the circumferential direction of the column portion 15b of the cage original shape 15, the surface of the fracture surface 15d becomes smooth and the hardness is increased by work hardening.
  • the final guide surface 5d is formed by spraying the fracture surface 15d.
  • the cage 5 is completed.
  • the outer diameter of the side surfaces on both sides in the circumferential direction of the column portion 15b is obtained by punching the side portion 15a of the retainer original shape 15 with the punch 22 from the outer diameter side toward the inner diameter side.
  • a shear surface 15 c is formed in the side region along the punching direction of the punch 22.
  • the circumferential width W2 of the outer diameter end of the column portion 15b is defined by the shear surface 15c, and is substantially equal to the circumferential interval between adjacent punches 22 (the circumferential interval at the radial position of the outer diameter end of the column portion 15b). Therefore, the circumferential width W2 of the outer diameter end of the column portion 15b is sufficiently secured, and a decrease in strength of the cage is avoided.
  • the punch 22 is punched into the inner diameter side regions on both sides in the circumferential direction of the column portion 15b.
  • a fracture surface 15d inclined with respect to the direction is formed. Since the fracture surface 15d is inclined toward the inner diameter side toward the center in the circumferential direction of the column portion 15b, the guide surface 5d is formed by using the fracture surface 15d. The processing amount for forming the surface 5d is reduced, and the formation of the guide surface 5d is facilitated.
  • the circumferential clearance CL between the die 21 and the punch 22 is adjusted so that the inclination angle ⁇ with respect to the radial direction of the fracture surface 15d is equal to the inclination angle of the guide surface 5d. Since the mold forming process (column pushing process) for forming the film becomes unnecessary, the dimensional quality is improved and the manufacturing cost is reduced.
  • the circumferential width W1 of the inner diameter end of the column portion 15b is defined by the fracture surface 15d, it becomes smaller than the target value (the circumferential interval of the pockets 22 at the radial position of the outer diameter end of the column portion 15b). .
  • this portion is a portion where the guide surface 5d is formed, the reduction in the circumferential width W1 of the column portion 15d due to the formation of the fracture surface 15d results in the circumferential direction of the column portion 5c of the cage 5 as a finished product. The width is not affected.
  • the present invention is not limited to the above embodiment.
  • the case where the column pressing step for forming the guide surface 5d is omitted has been described.
  • the present invention is not limited to this, and a column pressing step may be provided after the (4) pocket removing step.
  • the fracture surface 15d made of an inclined surface is formed in the inner diameter side region on both sides in the circumferential direction of the column portion 15b of the retainer original shape 15. Is reduced, molding is facilitated, and molding accuracy can be increased.
  • the clearance CL in the circumferential direction between the die 21 and the punch 22 is set so that the fracture surface 15d is arranged on the outer side in the circumferential direction from the guide surface 5d (that is, the molding allowance by the column pushing process remains).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

保持器(5)の製造方法は、金属板に絞り加工を施して、テーパ筒状の側部(15a)を有する保持器原形(15)を成形する絞り工程と、保持器原形(15)の側部(15a)を、内径側からダイス(21)で支持した状態で、パンチ(22)で外径側から内径側に打ち抜くことにより、保持器原形(15)の側部(15a)に複数のポケット(P)を形成するポケット抜き工程とを備える。ダイス(21)とパンチ(22)との周方向のクリアランスをCL、保持器(5)の板厚をTKとしたとき、0.25≦CL/TKを満たす。

Description

円すいころ軸受用保持器及びその製造方法
 本発明は、円すいころ軸受に組み込まれる保持器及びその製造方法に関する。
 自動車や産業機械等に使用される円すいころ軸受は、内輪と、外輪と、これらの間に転動自在に配された複数の円すいころと、複数の円すいころを所定の円周方向間隔で保持する保持器とで構成される。
 円すいころ軸受の保持器は、例えば鋼板をプレス加工することにより形成される。例えば特許文献1には、以下の工程からなる保持器の製造方法が示されている。
(1)鋼板から円形ブランクを打ち抜く打ち抜き工程
(2)円形ブランクを絞って円すい台状のカップ(保持器原形)を形成する絞り工程
(3)カップの底に中心ガイド孔及び回転ガイド孔を打ち抜く芯抜き工程
(4)カップの側部にポケットを打ち抜くポケット抜き工程
(5)ポケットの周方向両側の端面(柱部の周方向両側の側面)に案内面を形成する柱押し工程
(6)カップの底を、縁を少し残して抜き落とす内径抜き工程
特開2004-293698号公報
 上記の保持器の製造方法のうち、(4)ポケット抜き工程は、従来、カップの側部をパンチで内径側から外径側に向けて打ち抜くことで行われていた。具体的には、まず、図7に示すように、カップ100のテーパ筒状の側部101を外径側からダイス110で支持すると共に、カップ100の側部101の内周にパンチ120を配置する。そして、図8に示すように、パンチ120を外径側に移動させ、パンチ120でカップ100の側部101を径方向に打ち抜いてポケットP’が形成される。隣接するポケットP’の周方向間には、柱部102が形成される。
 一般に、金属板をパンチで打ち抜いて形成された切断面のうち、打ち抜き初期側の領域にはせん断面が形成され、打ち抜き後期側の領域には破断面が形成される。具体的に、上記の保持器のポケット抜き工程では、カップ100の側部101をパンチ120で内径側から外径側に打ち抜くことにより、図9に示すように、柱部102の周方向両側面の内径側領域には、パンチ120の打ち抜き方向に沿ったせん断面102aが形成され、柱部102の周方向両側面の外径側領域には、パンチ120の打ち抜き方向に対してダイス110側(パンチ120から離反する側)に傾斜した破断面102bが形成される。この場合、柱部102の内径端の周方向幅W1’は、せん断面102aで規定されるため、隣接するパンチ120の周方向間隔とほぼ一致する。一方、柱部102の外径端の周方向幅W2’は、破断面102bで規定されるため、ダイス110とパンチ120の周方向のクリアランスCL’の分(詳しくはクリアランスCL’の2倍分)だけ、隣接するパンチ120の周方向間隔よりも狭くなり、柱部102の強度低下を招く恐れがある。
 例えば、ダイス110とパンチ120の周方向のクリアランスCL’を小さくすれば、柱部102の外径端の周方向幅W2’の縮小を抑え、柱部の強度低下を抑えることができるとも考えられる。しかし、ダイス110とパンチ120とのクリアランスCL’を小さくしすぎると、切断面の加工品質が低下し、最悪の場合、ダイス110とパンチ120とが干渉する恐れがあるため、クリアランスCL’を小さくすることによる柱部の強度確保には限界がある。
 また、上記の保持器の製造方法では、(4)ポケット抜き工程で形成された柱部102の内径面102cと周方向両側面のせん断面102aとの境界に、略直角の角部が形成される。この場合、円すいころと柱部とのエッジ当たりを回避するために、(5)柱押し工程により案内面を形成する工程が必須となり、これにより製造コストが嵩むと共に、柱押し加工による押し潰し部の材料移動に伴う形状崩れの懸念がある。
 以上の事情から、本発明が解決すべき課題は、円すいころ軸受の保持器において、ポケットの打ち抜き加工による破断面に起因した柱部の強度低下を回避すると共に、柱押し加工に起因した形状崩れに伴う品質低下を防ぎ、さらに、製造コストの低減を図ることにある。
 前記課題を解決するために、本発明は、小径環状部、大径環状部、これらを軸方向に連結する複数の柱部、及び複数の柱部の周方向間に設けられた複数のポケットを有し、各柱部の周方向両側面に、内径側に行くにつれて各柱部の周方向中央側に傾斜した案内面が設けられた円すいころ軸受用保持器を製造するための方法であって、金属板に絞り加工を施して、テーパ筒状の側部を有する保持器原形を成形する絞り工程と、前記保持器原形の側部を、内径側からダイスで支持した状態で、パンチで外径側から内径側に打ち抜くことにより、前記保持器原形の側部に前記複数のポケットを形成するポケット抜き工程とを備えた円すいころ軸受用保持器の製造方法を提供する。
 このように、保持器原形の側部をパンチで外径側から内径側に打ち抜くことにより、柱部の周方向両側面の外径側領域(打ち抜き初期側の領域)には、パンチの打ち抜き方向に沿ったせん断面が形成される。これにより、柱部の外径端の周方向幅がせん断面で規定されるため、ねらい値(隣接するパンチの周方向間隔)とほぼ一致し、保持器の強度が確保される。一方、柱部の周方向両側面の内径側領域(打ち抜き後期側の領域)には、パンチの打ち抜き方向に対して傾斜した破断面が形成される。この破断面は、案内面と同様に、内径側に向けて柱部の周方向中央側に傾斜しているため、破断面を利用して案内面を形成することで、案内面の形成が容易化され、製造コストが低減される。
 上記の製造方法では、ダイスとパンチの周方向のクリアランスを調整するにより、破断面の径方向に対する傾斜角度θ(図6参照)を調整することができる。従って、通常、打ち抜き加工では、ダイスとパンチのクリアランスは板厚の5~10%程度に設定されるが、上記の製造方法において、ポケット抜き工程におけるダイスとパンチの周方向のクリアランスを大きめに設定することで、破断面の傾斜角度θを案内面と同等にすることが可能となる。具体的に、ダイスとパンチの周方向のクリアランスCLは、保持器の板厚TKの25%以上とされる(0.25≦CL/TK)。
 ポケット抜き工程で形成される破断面が案内面として機能し得る形状となるように、加工条件(ダイスとパンチの周方向のクリアランス等)を調整すれば、破断面に仕上げ加工を施すだけで、案内面を形成することができる。例えば、破断面に噴射加工を施して案内面を形成すれば、案内面を成形するための柱面押し工程を省略できるため、製造コストがさらに低減される。
 上記の製造方法によれば、円すいころ軸受に組み込まれ、金属板からなる保持器であって、小径環状部と、大径環状部と、これらを軸方向に連結する複数の柱部と、複数の柱部の円周方向間に設けられ、円すいころを一つずつ収容する複数のポケットとを有し、各柱部の周方向両側面の内径側領域に、打ち抜き加工による破断面に噴射加工が施された面からなり、内径側に行くにつれて前記柱部の周方向中央側に傾斜した案内面を有する円すいころ軸受用保持器が得られる。
 外周面にテーパ状の軌道面を有する内輪と、内周面にテーパ状の軌道面を有する外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配された複数の円すいころと、前記複数の円すいころを所定の円周方向間隔で保持する上記の保持器を有する円すいころ軸受は、保持器の強度が高いため、長寿命が期待できる。
 以上のように、本発明によれば、円すいころ軸受用保持器の柱部の周方向幅が確保されるため、柱部の強度低下を回避することができる。また、本発明によれば、案内面を形成するための柱押し加工を省略あるいは簡略化することができるため、柱押し加工に起因した形状崩れに伴う品質低下を防ぐと共に、製造コストの低減が図られる。
円すいころ軸受の軸方向断面図である。 上記円すいころ軸受の軸直交方向断面図である。 上記円すいころ軸受に組み込まれる保持器の柱部の軸直交方向断面図である。 上記保持器の製造方法(ポケット抜き工程)を示す軸直交方向断面図であり、ポケットを打ち抜く前の状態を示す。 上記保持器の製造方法(ポケット抜き工程)を示す軸直交方向断面図であり、ポケットを打ち抜いた状態を示す。 図5の柱部付近を示す拡大図である。 従来の保持器の製造方法(ポケット抜き工程)を示す軸直交方向断面図であり、ポケットを打ち抜く前の状態を示す。 従来の保持器の製造方法(ポケット抜き工程)を示す軸直交方向断面図であり、ポケットを打ち抜いた状態を示す。 図8の柱部付近を示す拡大図である。
 以下、本発明の一実施形態に係る円すいころ軸受を、図面に基づいて説明する。
 本実施形態の円すいころ軸受1は、図1及び図2に示すように、外周面にテーパ状の軌道面2aを有する内輪2と、内周面にテーパ状の軌道面3aを有する外輪3と、内輪2の軌道面2aと外輪3の軌道面3aの間に転動自在に配され、外周面にテーパ状の転動面4aを有する複数の円すいころ4と、円すいころ4を周方向等間隔に保持する保持器5とで構成される。この円すいころ軸受1は、例えば自動車のトランスミッションやデファレンシャル等の動力伝達系に組み込まれる。尚、本明細書で「軸方向」とは、内輪2及び外輪3の回転軸方向のことを言う。
 内輪2、外輪3、及び円すいころ4は鋼材で形成され、例えば軸受鋼、浸炭鋼、ステンレス鋼等で形成される。内輪2は、軌道面2aの小径側(図1の左側)に設けられた小鍔部2bと、軌道面2aの大径側(図1の右側)に設けられた大鍔部2cとを有する。内輪2の軌道面2a、外輪3の軌道面3a、及び円すいころ4の転動面4aは、母線が直線状のテーパ面、あるいは、母線の軸方向中央部を膨出させたクラウニング面とされる。
 保持器5は、小径環状部5aと、大径環状部5bと、小径環状部5aと大径環状部5bとを軸方向につなぐ複数の柱部5cとを有する。小径環状部5a、大径環状部5b、及び一対の柱部5cで囲まれるポケットPに、円すいころ4が一つずつ収容される(図2参照)。保持器5は、円すいころ4の中心よりも外径側で、且つ、外輪3とは接触しない位置に配される。
 保持器5の各柱部5cの周方向両側の側面には、円すいころ4と摺動する案内面5dが設けられる。案内面5dは、図3に示すように、各柱部5cの周方向両側面の内径側領域に設けられ、その内径端は各柱部5cの内径面まで達している。案内面5dは、内径側(図中下側)に行くにつれて柱部5cの周方向中央側に傾斜している。案内面5dは、打ち抜き加工(後述するポケット抜き加工)による破断面に、ショットブラスト等の噴射加工が施された面である。各柱部5cの周方向両側面の外径側領域には、径方向と平行な平坦面5eが設けられる。平坦面5eは、打ち抜き加工によるせん断面に、ショットブラスト等の噴射加工が施された面である。平坦面5eの下端は、案内面5dの上端と連続している。平坦面5eの上端は、図示しないダレを介して柱部5cの外径面と連続している。
 円すいころ軸受1の内輪2と外輪3とが相対回転すると、各円すいころ4は、保持器5のポケット内で自転しながら、内輪2及び外輪3の周方向に沿って公転する。このとき、各円すいころ4の大径側端面4bと内輪2の大鍔部2cとが摺動すると共に、各円すいころ4の転動面4aと保持器5の案内面5dとが摺動する。
 以下、上記の構成を有する保持器5の製造方法を説明する。
 保持器5は、金属板にプレス加工を施すことで形成される。本実施形態の保持器5は、(1)ブランク抜き工程、(2)絞り工程、(3)縁切工程、(4)ポケット抜き工程、(5)内径抜き工程、及び(6)仕上げ工程を経て製造される。尚、上記工程の他、円すいころを組み込んだ保持器を内輪に組付ける際、円すいころが内輪の小鍔部を乗り越えられるように、保持器原形の柱部の小径側端部付近の径を拡げる底拡げ工程を行うことがある。この底拡げ工程は、例えば(5)の内径抜き工程と同時に行われる。以下、各工程を詳しく説明する。
 (1)ブランク抜き工程では、金属板、例えば鋼板、特に炭素含有量が2.5wt%以下の低炭素鋼の冷間又は熱間圧延鋼板から、円形ブランクが打ち抜かれる。
 (2)絞り工程では、円形ブランクに絞り加工を施すことにより、テーパ筒状の側部及び該側部の小径側端部に設けられた底部を一体に有するカップ状の保持器原形が成形される。こうして成形された保持器原形のうち、側部の大径側端部の余剰部分を、(3)縁切工程で切断する。尚、特に必要の無い場合は、縁切り工程を省略することもある。
 (4)ポケット抜き工程では、まず、図4に示すように、保持器原形15のテーパ状の側部15aを内周からダイス21で支持すると共に、保持器原形15の側部15aの外周に複数のパンチ22を配する。そして、図5に示すように、各パンチ22を内径側に移動させ、各パンチ22で保持器原形15の側部15aを径方向に打ち抜く。これにより、保持器原形15の側部15aに複数のポケットPが形成されると共に、隣接するポケットPの間に柱部15bが形成され、保持器原形15が、小径環状部5a、大径環状部5b、及び複数の柱部5cを有する保持器5と略同形状とされる。
 このように、保持器原形15の側部15aをパンチ22で外径側から内径側に打ち抜く際、打ち抜き初期には、パンチ22の刃先で保持器原形15の側部15aが径方向に切断される。これにより、図6に示すように、柱部15bの周方向両側面の外径側領域にはせん断面15cが形成される。せん断面15cは、パンチ22の打ち抜き方向(径方向)と平行な平坦面である。せん断面15cの表面には、パンチ22の打ち抜き方向に沿った細かい筋(加工痕)が形成される。
 そして、打ち抜き後期には、柱部15bの周方向両側面の内径側領域に、破断面15dが形成される。破断面15dは、パンチ22の打ち抜き方向に対して傾斜した面、具体的には、内径側に行くにつれて柱部15bの周方向中央側に傾斜した面で構成される。図示例の破断面15dは、せん断面15cの下端とダイス21の角とをつなぐ面で構成される。破断面15dは、パンチ22の刃先で切断された面ではなく、パンチ22側のクラックとダイス21側のクラックとがつながって破断した面であるため、肉がむしり取られたような表面を有する。従って、破断面15dは、せん断面よりも表面粗さが粗い面となっている。尚、図6では、破断面15dが、せん断面15cの内径端からダイス21の角へ向けて直線的に延びる平坦面であるが、実際の破断面15dは、中央が僅かに凸凹した湾曲面であることが多い。
 破断面15dの径方向に対する傾斜角度θは、ダイス21とパンチ22との周方向のクリアランスCLを変えることで調整できる。具体的には、クリアランスCLを大きくすると破断面15dの傾斜角度θが大きくなり、クリアランスCLを小さくすると破断面15dの傾斜角度θが小さくなる。従って、保持器5の案内面5dが所望の角度(案内面として機能する角度)となるように、ダイス21とパンチ22との周方向のクリアランスCLを設定すればよい。本実施形態では、破断面15dの傾斜角度θが15~55°の範囲内となるように、クリアランスCLが設定される。具体的には、ダイス21と22パンチとの周方向のクリアランスCLが、保持器5の板厚TKの25%以上(0.25≦CL/TK)、好ましくは30%以上、より好ましくは40%以上となるように設定される。また、ダイス21と22パンチとの周方向のクリアランスCLが大きすぎると、柱部5cの内径端の周方向幅が狭くなりすぎ、強度低下を招く。従って、ダイス21と22パンチとの周方向のクリアランスCLは、保持器5の板厚TKの65%以下(0.65≧CL/TK)、好ましくは60%以下、より好ましくは50%以下となるように設定される。
 (5)内径抜き工程では、ポケット抜き工程を経た保持器原形15の底部を、縁を少し残して打ち抜く。その後、保持器原形15に対して(6)仕上げ工程が施される。本実施形態では、保持器原形15に対して、仕上げ加工として、噴射加工(例えばショットブラスト)が施される。これにより、保持器原形15のバリ(特に柱部5cの内径面の周方向両端のバリ)が除去される。また、保持器原形15の柱部15bの周方向両側面に形成された破断面15dにショットブラストを施すことで、破断面15dの表面が滑らかになると共に、加工硬化により硬度が高められる。こうして破断面15dに噴射加工を施すことにより、最終的な案内面5dが形成される。以上により、保持器5が完成する。
 上記のように、(4)ポケット抜き工程において、保持器原形15の側部15aをパンチ22で外径側から内径側に向けて打ち抜くことにより、柱部15bの周方向両側の側面の外径側領域に、パンチ22の打ち抜き方向に沿ったせん断面15cが形成される。これにより、柱部15bの外径端の周方向幅W2がせん断面15cで規定され、隣接するパンチ22の周方向間隔(柱部15bの外径端の径方向位置における周方向間隔)とほぼ一致するため、柱部15bの外径端の周方向幅W2が十分に確保され、保持器の強度低下が回避される。
 一方、上記のように保持器原形15の側部15aをパンチ22で外径側から内径側に向けて打ち抜くことにより、柱部15bの周方向両側の側面の内径側領域に、パンチ22の打ち抜き方向に対して傾斜した破断面15dが形成される。この破断面15dは、案内面5dと同様に、内径側に向けて柱部15bの周方向中央側に傾斜しているため、破断面15dを利用して案内面5dを形成することで、案内面5dを形成するための加工量が減じられ、案内面5dの形成が容易化される。特に、上記のように、ダイス21とパンチ22の周方向のクリアランスCLを調整して、破断面15dの径方向に対する傾斜角度θを案内面5dの傾斜角度と同等にすることで、案内面5dを形成するための型成形工程(柱押し工程)が不要となるため、寸法品質が向上すると共に製造コストが低減される。
 尚、柱部15bの内径端の周方向幅W1は、破断面15dで規定されるため、ねらい値(柱部15bの外径端の径方向位置におけるポケット22の周方向間隔)よりも小さくなる。しかし、この部分は、案内面5dが形成される部分であるため、破断面15dの形成による柱部15dの周方向幅W1の縮小が、完成品となる保持器5の柱部5cの周方向幅に影響することはない。
 本発明は、上記の実施形態に限られない。例えば、上記の実施形態では、案内面5dを成形する柱押し工程を省略した場合を示したが、これに限らず、(4)ポケット抜き工程の後に、柱押し工程を設けてもよい。この場合、(4)ポケット抜き工程において、保持器原形15の柱部15bの周方向両側面の内径側領域に、傾斜面からなる破断面15dが形成されているため、柱押し工程における成形量が減じられ、成形が容易化されると共に、成形精度を高めることができる。このとき、破断面15dが案内面5dよりも周方向外側に配される(すなわち、柱押し工程による成形代が残る)ように、ダイス21とパンチ22の周方向のクリアランスCLが設定される。
1     円すいころ軸受
2     内輪
3     外輪
4     円すいころ
5     保持器
5a   小径環状部
5b   大径環状部
5c   柱部
5d   案内面
5e   平坦面
15   保持器原形
15a 側部
15b 柱部
15c せん断面
15d 破断面
21   ダイス
22   パンチ
CL   クリアランス
P     ポケット
TK   板厚
 

Claims (4)

  1.  小径環状部、大径環状部、これらを軸方向に連結する複数の柱部、及び複数の柱部の周方向間に設けられた複数のポケットを有し、各柱部の周方向両側面に、内径側に行くにつれて各柱部の周方向中央側に傾斜した案内面が設けられた円すいころ軸受用保持器を製造するための方法であって、
     金属板に絞り加工を施して、テーパ筒状の側部を有する保持器原形を成形する絞り工程と、前記保持器原形の側部を、内径側からダイスで支持した状態で、パンチで外径側から内径側に打ち抜くことにより、前記保持器原形の側部に前記複数のポケットを形成するポケット抜き工程とを備え、
     前記ダイスと前記パンチとの周方向のクリアランスをCL、前記保持器の板厚をTKとしたとき、0.25≦CL/TKを満たす円すいころ軸受用保持器の製造方法。
  2.  前記ポケット抜き工程により各柱部の周方向両側面の内径側領域に形成された破断面に、噴射加工を施すことにより、前記案内面を形成する請求項1記載の円すいころ軸受用保持器の製造方法。
  3.  円すいころ軸受に組み込まれ、金属板からなる保持器であって、
     小径環状部と、大径環状部と、これらを軸方向に連結する複数の柱部と、複数の柱部の円周方向間に設けられ、円すいころを一つずつ収容する複数のポケットとを有し、
     各柱部の周方向両側面の内径側領域に、打ち抜き加工による破断面に噴射加工が施された面からなり、内径側に行くにつれて前記柱部の周方向中央側に傾斜した案内面を有する円すいころ軸受用保持器。
  4.  外周面にテーパ状の軌道面を有する内輪と、内周面にテーパ状の軌道面を有する外輪と、前記内輪の軌道面と前記外輪の軌道面との間に転動自在に配された複数の円すいころと、前記複数の円すいころを所定の円周方向間隔で保持する請求項3記載の保持器を有する円すいころ軸受。
     
PCT/JP2016/074338 2015-09-15 2016-08-22 円すいころ軸受用保持器及びその製造方法 WO2017047327A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-181827 2015-09-15
JP2015181827A JP2017057895A (ja) 2015-09-15 2015-09-15 円すいころ軸受用保持器及びその製造方法

Publications (1)

Publication Number Publication Date
WO2017047327A1 true WO2017047327A1 (ja) 2017-03-23

Family

ID=58288875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074338 WO2017047327A1 (ja) 2015-09-15 2016-08-22 円すいころ軸受用保持器及びその製造方法

Country Status (2)

Country Link
JP (1) JP2017057895A (ja)
WO (1) WO2017047327A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263759A (ja) * 2003-02-28 2004-09-24 Nakanishi Metal Works Co Ltd ころ軸受用保持器及びその製造方法。
JP2008540932A (ja) * 2006-04-28 2008-11-20 エムエーエヌ・ディーゼル・エーエス 大型2サイクルディーゼルエンジンの主軸受支え
KR20110067746A (ko) * 2009-12-15 2011-06-22 (주)삼호엔지니어링 테이퍼 롤러 베어링 리테이너 제조시스템용 리테이너 파지장치
JP2013185679A (ja) * 2012-03-09 2013-09-19 Ntn Corp 転がり軸受用保持器、転がり軸受及び保持器の加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263759A (ja) * 2003-02-28 2004-09-24 Nakanishi Metal Works Co Ltd ころ軸受用保持器及びその製造方法。
JP2008540932A (ja) * 2006-04-28 2008-11-20 エムエーエヌ・ディーゼル・エーエス 大型2サイクルディーゼルエンジンの主軸受支え
KR20110067746A (ko) * 2009-12-15 2011-06-22 (주)삼호엔지니어링 테이퍼 롤러 베어링 리테이너 제조시스템용 리테이너 파지장치
JP2013185679A (ja) * 2012-03-09 2013-09-19 Ntn Corp 転がり軸受用保持器、転がり軸受及び保持器の加工方法

Also Published As

Publication number Publication date
JP2017057895A (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
US9056375B2 (en) Manufacturing method for bearing outer ring
WO2018016488A1 (ja) 円筒状リング部材、軸受、クラッチ、車両、及び機械の製造方法
JP2009279627A (ja) 転がり軸受の内外輪の製造方法
JP2008196690A (ja) 軸受外輪の製造方法
JP2005147364A (ja) ころ軸受用保持器及びその製造方法
US8591119B2 (en) Method for producing a flanged disk for a spherical roller bearing and spherical roller bearing having a flanged disk produced according to the method
JP2014024091A (ja) 車輪用軸受ユニットの軌道輪部材の製造方法
JP2007130673A (ja) 軸受鋼管を用いたベアリングレースの外輪および内輪の製造方法
JP2006123003A (ja) 高精度リングの製造方法及び製造装置
JP4483365B2 (ja) スラスト円筒ころ軸受用保持器とその製造方法
JP5034684B2 (ja) 転がり軸受用軌道輪の製造方法
JP2006181638A (ja) ラジアル玉軸受用軌道輪及びその製造方法
JP2005233317A (ja) ラジアルニードル軸受用保持器とその製造方法
US20180238390A1 (en) Method for producing a tapered roller assembly, tapered roller assembly and tapered roller bearing
WO2017047327A1 (ja) 円すいころ軸受用保持器及びその製造方法
JP2007092766A (ja) ころ軸受用保持器およびその製造方法
JP2007009989A (ja) 円錐ころ軸受用保持器及びその製造方法
WO2022163642A1 (ja) プレス成形品、転がり軸受、車両、機械、プレス成形品の製造方法、転がり軸受の製造方法、車両の製造方法及び機械の製造方法
JP5012038B2 (ja) 金属製リングの製造方法
US10525522B2 (en) Molding device for manufacturing cylindrical rolling body, manufacturing method for cylindrical rolling body, manufacturing method for rolling bearing, manufacturing method for vehicle, and manufacturing method for mechanical apparatus
JP4978552B2 (ja) リング状軌道輪素材の製造方法
WO2015079684A1 (ja) 環状部材の製造方法
CN110486378A (zh) 推力滚子轴承
US11253907B2 (en) Roll-forming methods for manufacturing roller bearing seal case
JP2016142278A (ja) 円すいころ軸受及びこれに用いられる保持器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846198

Country of ref document: EP

Kind code of ref document: A1