WO2017047240A1 - Automated analysis device - Google Patents

Automated analysis device Download PDF

Info

Publication number
WO2017047240A1
WO2017047240A1 PCT/JP2016/071948 JP2016071948W WO2017047240A1 WO 2017047240 A1 WO2017047240 A1 WO 2017047240A1 JP 2016071948 W JP2016071948 W JP 2016071948W WO 2017047240 A1 WO2017047240 A1 WO 2017047240A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction container
reaction
unit
reaction vessel
automatic analyzer
Prior art date
Application number
PCT/JP2016/071948
Other languages
French (fr)
Japanese (ja)
Inventor
央 上路
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to CN201680050816.2A priority Critical patent/CN108027380B/en
Priority to JP2017539747A priority patent/JP6698665B2/en
Publication of WO2017047240A1 publication Critical patent/WO2017047240A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system

Definitions

  • the present invention relates to an automatic analyzer that automatically analyzes a component contained in a biological sample such as blood, and more particularly to an automatic analyzer that includes a disposal unit that houses a used reaction container.
  • light from a light source has a single or multiple wavelengths obtained by irradiating the reaction mixture, which is the sample to be analyzed, mixed with the sample.
  • Automatic analyzers that measure the amount of transmitted light and scattered light are widely used.
  • Automatic analyzers include devices for biochemical analysis that perform quantitative and qualitative analysis of target components in biological samples in the fields of biochemical tests and hematology tests, and blood coagulation that measures the coagulation ability of blood samples. There are devices for analysis.
  • reaction container for storing the reaction solution used for the analysis for disposal.
  • reaction containers etc. are collected in the disposal part by natural fall, the reaction containers accumulate in a specific place of the disposal part, which spills out, and furthermore this spilled out If the reaction container is picked up by a human hand, it may cause a secondary infection.
  • Patent Document 1 as a technique for preventing such accumulation of reaction containers and the like in a specific place, after collecting used chips and vessels into a disposable storage container by natural fall, the storage container itself is removed.
  • An apparatus having a mechanism for leveling a chip and a vessel accommodated therein by vibrating back and forth, left and right or up and down by a reciprocating linear motion is described.
  • An object of the present invention relates to realizing highly reliable analysis that prevents accumulation of used reaction vessels while maintaining space saving and suppresses the influence on measurement results due to noise such as vibration.
  • a sample dispensing mechanism that dispenses a sample into a reaction container, a reagent dispensing mechanism that dispenses a reagent into the reaction container, and a reaction container holding unit that holds the reaction container;
  • a measurement unit including a light source for irradiating light to the mixed solution of the sample and the reagent contained in the held reaction container, and a detection unit for detecting the irradiated light, and the measurement is completed
  • a reaction container discarding unit that discards the reaction container, a reaction container transfer mechanism that transfers the reaction container from the reaction container holding unit to the reaction container disposal unit, and discards the reaction container to the reaction container disposal unit, and the reaction container
  • a control unit for controlling the operation of the transfer mechanism, wherein the control unit is configured to prevent the reaction vessel discarding unit from being continuously discarded at a predetermined position in the reaction vessel discarding unit. Characterized by controlling the operation That automatic analyzer, and to provide an analytical method using the device.
  • the reaction container transfer mechanism operates so as not to overlap the point and timing of disposal to the disposal part of the reaction container, the used reaction container in the disposal part is maintained while saving space. It is possible to realize highly reliable analysis that prevents accumulation at a specific location and suppresses the influence of noise such as vibration on measurement results.
  • the figure which shows the basic composition of the automatic analyzer which concerns on this Embodiment The figure which shows the structure of the reaction container disposal part which does not have a cover part based on this Embodiment (1st Embodiment). The figure which shows the structure of the reaction container disposal part which has a cover part provided with the several opening part based on this Embodiment (2nd Embodiment). The figure which shows the structure of the reaction container disposal part which has a cover part provided with the groove-shaped opening part which concerns on this Embodiment (3rd Embodiment). The figure which shows the structure of the reaction container disposal part which is equipped with the cover part provided with the several opening part based on this Embodiment (4th Embodiment), and has the storage space divided into plurality inside.
  • FIG. 1 shows a basic configuration of an automatic analyzer according to the present embodiment.
  • the automatic analyzer 100 mainly includes a sample disk 102, a reagent disk 104, a sample dispensing mechanism 105, a sample dispensing mechanism cleaning unit 106, a reaction container installation unit 108, a reaction container transfer mechanism 109, a reaction container.
  • a supply unit 110 a detection unit 111, a reagent dispensing mechanism 112, a reagent dispensing mechanism cleaning unit 113, a reaction container discarding unit 114, an operation unit 115, a control unit 116, a storage unit 117, an interface 118, and the like.
  • the sample disk 102 is a disk-shaped unit that can be rotated clockwise or counterclockwise, and a plurality of sample containers 101 holding samples or quality control samples can be arranged on the circumference thereof.
  • the reagent disk 104 is a disk-shaped unit that can be rotated clockwise and counterclockwise, and contains a reagent containing a component that reacts with a component of each inspection item included in the sample.
  • a plurality of reagent containers 103 can be arranged on the circumference thereof.
  • the reagent disk 104 can be configured to be able to cool the reagent in the arranged reagent container 103 by providing a cold insulation mechanism or the like.
  • the sample dispensing mechanism 105 sucks the sample in the sample container 101 held on the sample disk 102 and discharges it into the reaction container 107 installed in the sample dispensing port 119.
  • the operation of the sample dispensing mechanism 105 is controlled based on an instruction from the control unit 116 in accordance with an operation of a sample syringe pump (not shown).
  • the sample dispensing mechanism washing unit 106 is a mechanism for washing the sample dispensing mechanism 105 with washing water.
  • the timing of water washing is controlled based on an instruction from the control unit 116.
  • the reagent dispensing mechanism 112 sucks the reagent in the reagent container 103 held on the reagent disk 104 and installs the reagent in the reaction container 107 in which the sample is dispensed, which is installed in the reaction container installation unit 108 of the detection unit 111. Do dispensing.
  • the operation of the reagent dispensing mechanism 112 is controlled based on an instruction from the control unit 116 in accordance with an operation of a reagent syringe pump (not shown).
  • the reagent dispensing mechanism washing unit 113 is a mechanism for washing the reagent dispensing mechanism 112 with washing water.
  • the timing of water washing is controlled based on an instruction from the control unit 116.
  • the reaction container supply unit 110 is configured to hold a plurality of reaction containers 107 before analysis.
  • the reaction container transfer mechanism 109 transfers the reaction container 107 used for analysis from the reaction container supply unit 110 to the sample dispensing port 119 and carries it in.
  • the reaction container 107 after the sample is dispensed is unloaded from the sample dispensing port 119, and transferred to and loaded into the reaction container installation unit 108 of the detection unit 111.
  • the reaction vessel 107 is taken out from the reaction vessel setting unit 108, transferred to the reaction vessel discarding unit 114, and discarded.
  • the detection unit 111 includes one or more reaction container installation units 108 for installing the reaction container 107 (in this embodiment, six cases are shown as an example), a light source and a photodiode (not shown).
  • An optical system including a detection unit (photosensor).
  • the light source is produced by a reaction that occurs in the reaction solution by irradiating light to the reaction vessel 107 that contains the reaction solution that is a mixed solution of the sample to be analyzed and the reagent inserted in the reaction vessel installation unit 108. Measurement of light intensity such as scattered light and transmitted light obtained by the material. For example, when detecting scattered light, each reaction container installation part 108 has the light source arrange
  • the detection unit performs light / current conversion on the received scattered light, thereby outputting a photometric signal indicating the received light intensity to an A / D converter (not shown).
  • the light intensity measurement signal A / D converted by the A / D converter is sent to the control unit 116 and the storage unit 117 via the interface 118.
  • the amount of fibrinogen (Fbg) in the sample can be determined.
  • other blood coagulation test items such as prothrombin time (PT) and activated partial thromboplastin time (APTT) can be analyzed. .
  • PT prothrombin time
  • APTT activated partial thromboplastin time
  • the reaction container discarding unit 114 is a unit for discarding the reaction container 107 that has been used for analysis. More specifically, it has an opening which is a waste outlet into which the reaction vessel 114 is charged, and a storage box (not shown) arranged below the opening.
  • the operation unit 115 has an input terminal such as a keyboard and mouse as an input means and an operation screen displayed on the display unit, and inputs analysis items of the sample to be analyzed from the keyboard and operation screen, and inputs them to the control unit 116.
  • an input terminal such as a keyboard and mouse as an input means and an operation screen displayed on the display unit, and inputs analysis items of the sample to be analyzed from the keyboard and operation screen, and inputs them to the control unit 116.
  • the control unit 116 is based on the input from the operation unit 115, the sample disk 102, the reagent disk 104, the sample dispensing mechanism 105, the sample dispensing mechanism cleaning unit 106, the reaction container transfer mechanism 109, the detection unit 111, and the reagent dispensing mechanism 112. Then, the operation of the reagent dispensing mechanism cleaning unit 113 is controlled, and the overall control of the operation and condition setting of various components constituting the automatic analyzer 100 is performed. In addition, the control unit processes the measurement signal input from the detection unit 111 via the interface 118, performs calculation for obtaining the concentration of the target component and the blood coagulation time based on the detection result, and data processing such as specifying an abnormal part. Etc. Details will be described later.
  • the storage unit 117 stores input information from the operation unit 115, operation information of the sample disk 102 and the like, reagent, sample information, and the like.
  • the interface 118 mediates operation information of the sample disk 102 and the like, input information from the operation unit 115, operation information from the control unit 116, and information stored in the storage unit 117.
  • the sample analysis in the automatic analyzer 100 is performed in the order of sample dispensing, reagent dispensing, photometry, disposal of the reaction vessel 107, and data processing.
  • the basic analysis flow is described in detail below.
  • a plurality of reagent containers 103 are arranged side by side on the circumference.
  • the target reagent container 103 Upon receiving an analysis item selection and analysis start instruction from the operation unit 115, the target reagent container 103 is set according to the analysis item. It is rotated clockwise or counterclockwise to the bottom of the reagent dispensing mechanism 112 and conveyed.
  • a predetermined amount of the reagent in the reagent container 103 is dispensed by a reagent syringe (not shown) connected to the reagent dispensing mechanism 112.
  • a plurality of reaction vessels 107 are arranged vertically and horizontally on the reaction vessel supply unit 110.
  • the reaction container transfer mechanism 109 transfers and carries the reaction container 107 from the reaction container supply unit 110 to the reaction container installation unit 108 via the reagent dispensing port 119 in a predetermined order.
  • a plurality of sample containers 101 are arranged on the circumference of the sample disk 102 and rotated clockwise or counterclockwise according to the order of the samples to be analyzed, and conveyed to the bottom of the sample dispensing mechanism 105. To do.
  • the sample in the sample container 101 is dispensed into a reaction container 107 installed in the sample dispensing port 119 by a sample syringe (not shown) connected to the sample dispensing mechanism 105.
  • the reagent dispensing mechanism 112 aspirates the reagent from the reagent container 103 and dispenses it into the reaction container 107 containing the sample installed in the reaction container installation unit 108 of the detection unit 111.
  • the progress of the reaction in the reaction solution which is a mixed solution of the sample and the reagent contained in the reaction vessel 107, is collected by the detection unit configured by the photodiode described above, and is detected by the detection unit. Detected at 111.
  • the detected data, use detection unit number, use sample type and installation position on the sample disk 102, use reagent type and installation position on the reagent disk 104 are stored in the storage unit 117.
  • reaction vessel 107 When the reaction and measurement of the reaction liquid held in the reaction vessel 107 is completed, the reaction vessel 107 is discarded to the reaction vessel disposal unit 114 by the reaction vessel transfer mechanism 109 while holding the mixed solution after the reaction.
  • FIG. 2 is a diagram showing a configuration of a reaction container discarding unit that does not have a lid according to the present embodiment.
  • the reaction container discarding unit 114 shown in FIG. 1 includes an open storage box 201 in the present embodiment.
  • the reaction container transfer mechanism 202 transports the used reaction container 203, which has been analyzed, to the storage box 201 via the transport path 204 and discards it.
  • the reaction container transfer mechanism 202 arbitrarily determines a disposal point on the storage box 201 so that the disposal operation of the reaction container 203 is not continuously performed at a predetermined position. be able to. If it is on the storage box 201, there is no restriction
  • the reaction container 203 is prevented from accumulating at a specific location in the storage box 201 while suppressing the influence of noise due to vibration. be able to.
  • the accumulation of the reaction vessels 203 in the storage box 201 can be leveled in the automatic analyzer that maintains the reliability of the measurement results and realizes space saving.
  • reaction container discarding unit that does not include a lid and has a storage box whose upper surface is open has been described.
  • configuration of a reaction container discarding unit including a storage box having a lid having a plurality of openings will be described with reference to FIG.
  • the reaction container transfer mechanism 302 conveys the used reaction container 303, which has been analyzed, to the plurality of openings 304 formed in the lid portion 305 of the storage box 301 via the conveyance path 306, Discard.
  • the number of the opening parts 304 formed in the cover part 305 is five is shown, this number is not limited and can be changed as needed.
  • the reaction container transfer mechanism 302 holds the used reaction container 303 installed on the reaction container installation unit 108 shown in FIG. It moves right above any one of the openings, and the reaction vessel 303 is discarded.
  • the order of discarding can be set according to a certain sequence, for example, opening 1 ⁇ opening 2 ⁇ opening 3 ⁇ opening 4 ⁇ opening 5 ⁇ opening 1 ⁇ ... It can also be changed as necessary. In this way, by changing the order of discarding the plurality of openings formed in accordance with a certain sequence, it is possible to prevent the reaction vessel 303 from being accumulated at a certain location in the storage box 301 and stored.
  • the height of the reaction vessel 303 can be made uniform.
  • the lid 305 it is possible to prevent fallen objects other than the reaction vessel 303 from falling into the storage box 301.
  • the reaction vessel 303 holds a reaction solution that is a mixed solution of a specimen and a reagent, and a precipitate produced after the reaction, but some specimens include a risk of dangerous infection. Yes. Therefore, if anything other than the reaction container 303 is collected in the storage box 301, there is a risk of secondary infection due to the user accessing the storage box 303.
  • by providing the lid portion 305 it is possible to prevent such a risk from being collected inside the storage box 301 other than the reaction vessel 303, and thus such a risk can be avoided.
  • the configuration of the reaction container discarding section having a lid portion having a groove-shaped opening according to the present embodiment will be described.
  • the configuration in which the plurality of openings 304 are formed in the lid portion 305 has been described.
  • the lid portion 405 is formed in a groove shape and includes a single disposal point.
  • One opening 404 is provided.
  • the reaction container transfer mechanism 402 has a single opening 404 formed in a groove shape in the lid 405 of the storage box 401 for the used reaction container 403 that has been analyzed via the transport path 406. And is discarded at a plurality of disposal points included in the opening 404.
  • the order of discarding can be set according to a certain sequence, for example, P1-> P2-> P3-> P4-> P5-> P6-> ... in the opening 404 in the figure, and if necessary, It can also be changed.
  • a plurality of disposal points are formed on one opening 405 by making the shape of the opening 405 into a groove shape instead of a circular shape matching the reaction container 403 as in the second embodiment. Can be included.
  • the reaction container transfer unit 402 can discard the reaction container 403 at any point as long as it is on the opening 404. After discarding the reaction container 403 at a certain point, the distance between the disposal points is increased by taking a longer moving distance. It is also possible to increase the distance, and conversely, it is possible to shorten the moving distance so that the distance between the disposal points is several millimeters.
  • the reaction vessel 403 can be discarded into the storage box 401 over a wide range on the single opening 404.
  • the heights of the reaction containers 403 in the storage box 401 can be made uniform.
  • the degree of freedom of the disposal point increases. Thereby, equalization of the height of the reaction container 403 in the storage box 401 can be executed with higher accuracy.
  • a configuration of a reaction container discarding section that includes a lid section having a plurality of openings and further has a storage space partitioned into a plurality of sections, and using this configuration, depending on the state of the sample An aspect of changing the storage space in the storage box for discarding the reaction container will be described with reference to FIG.
  • the reaction container transfer mechanism 502 conveys the used reaction container 503, which has been analyzed, to the plurality of openings 604 formed in the lid 505 of the storage box 501 via the conveyance path 506, It is discarded in one of a plurality of storage spaces partitioned by the partition member 505 in the storage box 501.
  • the interior of the storage box 501 is divided into two spaces, a first space 501a and a second space 501b, by the partition member 505.
  • the blood sample that is the sample reacts with the reagent in a few seconds at the earliest, and the mixture begins to coagulate.
  • the specimen does not start to coagulate within a few seconds after mixing with the reagent, and may not coagulate even after several minutes.
  • the automatic analyzer has a maximum time for continuing the measurement, such as a maximum measurement time.
  • a maximum measurement time When this time has elapsed, the measurement is terminated without obtaining the blood coagulation time as the analysis result.
  • the specimen is held in the reaction container 503 almost as a liquid.
  • the storage container 501 is moved by the reaction container transfer mechanism 502 in the same manner as the other reaction container 503, that is, the reaction container 503 in which the blood coagulation reaction is completed and the mixture changed into a solid is stored in the reaction container 503 holding the liquid specimen. If it is discarded in the common space, the liquid in the reaction vessel 503 may spill and contaminate the storage box 501.
  • the reaction container 503 accommodated in a state in which the mixed liquid of the specimen and the reagent does not coagulate even when the maximum measurement time is reached is from the position 5 or 6 of the opening 504. Discard and collect in the first space 501a in the storage box 501. On the other hand, when the mixed solution of the specimen and the reagent is solidified and changed into a solid as usual, the reaction container 503 is discarded from any one of the positions 1 to 4 of the opening 504, and the inside of the storage box 501 is disposed. Collect in the second space 501b.
  • the control unit 116 Determines that the liquid mixture accommodated in the reaction vessel 503 used for this analysis is in a liquid state, and controls the operation of the reaction vessel transfer mechanism 502 so as to collect it in the first space 501a as described above. .
  • the liquid in the reaction container 503 can be obtained. And the solidified mixture can be recovered separately.
  • the contamination in the storage box 501 can be reduced. Further, it is possible to reduce the risk of contact with the liquid mixture spilled from the inside when the reaction vessel 503 is discarded.
  • reaction container discarding unit having a detector for detecting the accumulation state of the internal reaction vessel
  • the accumulation state of the reaction vessel in the storage box is detected
  • the reaction container transfer mechanism 602 conveys the used reaction container 603 whose analysis is completed to a plurality of openings 604 formed in the lid 605 of the storage box 601 via the conveyance path 606. Discard.
  • a plurality of detectors 607 capable of detecting the accumulation state of the collected reaction container 603 are installed inside the storage box 601.
  • the type of the detector 607 is not particularly limited as long as the presence of the reaction vessel 603 recovered from the corresponding opening 604 can be detected.
  • the detector 607 is desirably provided below the position of the corresponding opening 604.
  • the collection information of the reaction container 603 stored in the storage unit 117 is read (step 701).
  • the collection information of the reaction vessel 603 is information including the time when the previous reaction vessel 603 was discarded and the position of the opening 604 used.
  • the reaction vessel 603 is transferred by the reaction vessel transfer mechanism 602 and is continuously discarded in the storage box 601, the reaction vessel 603 is accumulated immediately below the used opening 604.
  • the detector 607 detects the presence of the accumulated reaction vessel 603 (step 702).
  • the number of detectors 607 that can be detected is not limited to one, and accumulation can be detected by a plurality of detectors 607. If the presence of the reaction vessel 603 is detected by at least one of the plurality of detectors 607, the process proceeds to step 703.
  • the reaction container 603 When the detector 607 detects the accumulation state of the reaction container 603 in the storage box 601, the reaction container 603 is most determined from the previous disposal time stored in the storage unit 117 and the position information of the detector 607. The opening 604 with less accumulation is determined (step 703).
  • the opening 604 with the smallest accumulation in the reaction vessel 603 corresponds to the opening 604 in which the presence of the reaction vessel 603 was not detected in step 702.
  • the opening at the location where the previous discard time acquired in step 701 and the current time are the most deviated.
  • the part 604 is determined to be the opening 604 in which the accumulation of the reaction vessel 603 is small.
  • the reaction container transfer mechanism 602 transfers the reaction container 603 to the determined position of the opening 604 and stores it through the opening 604. It is discarded in the box 601 (step 704).
  • the control unit 116 determines that the accumulation amount of the reaction vessel 603 is still small. In this case, among the plurality of openings 604, the opening 604 at the position where the previously used discard time and the current time are most different is determined as the next discard location.
  • a plurality of openings 604 are similarly provided. Among these, the opening 604 at the position where the discard time used last time and the current time are most different is determined as the next discard location (step 705). After determining the opening 604 for discarding the reaction vessel 603, the process proceeds to step 704.
  • the position of the used opening 604 and the discarded time are stored in the storage unit 117 (step 706).
  • the collection information regarding the opening 604 stored at the previous use is overwritten and stored, and the discarding operation is terminated.
  • the storage box 601 can be disposed. It can be determined more accurately whether or not the heights of the recovered reaction vessels 603 can be made uniform.
  • the present embodiment can be applied to a configuration having a plurality of disposal points in one opening 604 as in the third embodiment described above.
  • an apparatus for performing blood coagulation analysis which is an example of an automatic analyzer, has been described using, in particular, a stand-alone type configuration that is operated as a single independent apparatus.
  • clinical analyzers have several types of bioanalytical analysis, immunological analysis, blood coagulation analysis, etc.
  • FIG. 8 is a diagram showing a basic configuration of an automatic analyzer including a two-module blood coagulation analyzer according to the present embodiment.
  • the module type automatic analyzer 800 includes a first blood coagulation analysis unit 812 and a second blood coagulation analysis, which are a plurality of analysis units that analyze a reaction solution that is a mixed solution of a sample and a reagent.
  • the unit 817 includes transport lines 804 and 805 for transporting a sample rack 801 on which a sample container for storing the sample is mounted.
  • a rack sorting mechanism 809 that sorts the destination of the upper rack, and the sorted sample label Information such as a rack return mechanism 808 that moves the rack 801 to the rack storage unit 803, an emergency sample rack input unit 810 that inputs a sample rack 801
  • the transport system of the first blood coagulation analysis unit 812 arranged along the transport line 804 is a reading unit (first blood coagulation unit for collating analysis request information for the sample stored in the sample rack 901 from the transport line 804.
  • the 1st dispensing line 813 and the 1st rack handling mechanism 815 which conveys the sample rack 801 after sample dispensing to the conveyance lines 804 and 805 are provided.
  • the transport system of the second blood coagulation analyzer 817 arranged along the transport line 804 is also accommodated in the sample rack 801 from the transport line 804 in the same manner as the transport system of the first blood coagulation analyzer 812 described above.
  • a reading unit (second blood coagulation analysis unit) 821 for collating analysis request information for a sample a second rack carry-in mechanism 819 for receiving the sample rack 801 from the transfer line 804, and a sampling area where the sample is dispensed
  • a second rack handling mechanism 820 that transports the sample rack 801 after sample dispensing to the transport line 805.
  • the second rack handling mechanism 820 transports the sample rack 801 after sample dispensing to the transport line 805.
  • control unit 822 performs the blood coagulation based on the detection results such as the above-described transport operation of the sample rack 801, the dispensing operation of the sample and the reagent, the sorting of the sample rack 801 based on the read information, and the loading / unloading operation.
  • control unit 822 includes various data related to analysis conditions, an input unit 825 such as a keyboard for inputting instructions from the operator, information read from input information, samples, reagents, and information about detection results.
  • control unit 822 is connected to each component unit and controls the entire automatic analyzer. However, each component unit may be provided with an independent control unit.
  • reaction container transfer mechanism 830 in the first blood coagulation analysis unit 812 the reaction container discarding unit 829 in the second blood coagulation analysis unit 817, and the reaction container transfer mechanism 831, the first described above.
  • the fifth embodiment can be applied.
  • a sample dispensing port 916 that can be disposed, a standby unit 911 that includes a plurality of standby ports 910 that accommodate reaction vessels in a standby state, a reaction vessel magazine 902 in which a plurality of reaction vessels 901 are stocked, and a reaction vessel 901 are transferred, A reaction container transfer mechanism 912 that carries in and out of each position as required, and a pretreated sample that has been temperature adjusted to 37 ° C. and subjected to processing such as sample and dilution immediately before the measurement of blood coagulation time
  • a preheat unit 909 having a plurality of preheat ports 908 for raising the temperature of the sample, and an analysis port 910 for measuring the blood coagulation time by adjusting the temperature to 37 ° C.
  • a plurality of analysis units 907, a reagent cassette 903 containing a reagent bottle in which a reagent is sealed are arranged circumferentially, a reagent disk 904 whose temperature is adjusted to about 10 ° C., and a reagent cassette supply unit 913
  • Container disposal unit 923 and sample dispensing mechanism washing unit 91 for washing the sample dispensing mechanism When provided with a first reagent system cleaning unit 920 for cleaning the first reagent dispensing system, a second reagent dispensing mechanism cleaning unit 922 for cleaning the second reagent dispensing mechanism 921, a.
  • the measurement of the blood coagulation time is obtained by calculation in the control unit 922 based on the detected light data.
  • the first to fifth embodiments described above can be applied to the configuration of the reaction container discarding unit 923 and the reaction container transfer mechanism 912 in the drawing.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function.
  • Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, or a DVD.
  • information lines and control lines indicate what is considered necessary for explanation, and not all information lines and control lines on the product are necessarily shown. In practice, it can be considered that almost all the components are connected to each other.
  • Reagent cassette 904 ... Reagent disc 905 ... Reagent information reading part 906 ... Analysis port 907 ... Analysis unit 908 ... Preheat port 909 ... Preheat unit 910 ... Standby port 911 ... Standby unit 912 ... Reaction container transfer mechanism 913 ... Reagent cassette supply unit 914 ... Reagent Cassette storage unit 915... Reagent cassette transfer mechanism 916... Sample dispensing port 917... Sample dispensing mechanism 918. 919 ... First reagent dispensing mechanism 920 ... First reagent dispensing mechanism washing unit 921 ... Second reagent dispensing mechanism 922 ... Second reagent dispensing mechanism washing unit 923 ... Reaction container Waste department

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

This automated analysis device radiates light from a light source onto a mixed solution containing a specimen and a reagent in a reaction vessel, and analyzes the sample on the basis of information relating to the resulting light. Disposable reaction vessels are collected together after analysis in a disposal unit, but if the reaction vessels accumulate in a cluster in part of the disposal unit, there is a risk that the contents may spill out, for example. Further, if the disposal unit itself is caused to vibrate in order to make the height of the reaction vessels more uniform, noise resulting from the vibration may impact measurement results, causing the analysis reliability to deteriorate. This automated analysis device is provided with: a reaction vessel disposal unit for disposal of reaction vessels for which measurement has been completed; a reaction vessel transferring mechanism which transfers the reaction vessels from a reaction vessel holding unit to the reaction vessel disposal unit and disposes of the reaction vessels in the reaction vessel disposal unit; and a control unit. The control unit controls the operation of the reaction vessel transferring mechanism in such a way that disposal of the reaction vessels in the reaction vessel disposal unit does not occur continuously in a certain location. The present invention thus provides an automated analysis device with which it is possible for an accumulation of used reaction vessels to be made uniform, while maintaining a high analysis reliability.

Description

自動分析装置Automatic analyzer
本発明は、血液等の生体サンプルに含まれる成分を自動的に分析する自動分析装置に係り、特に、使用済みの反応容器を収容する廃棄部を備えた自動分析装置に関する。 The present invention relates to an automatic analyzer that automatically analyzes a component contained in a biological sample such as blood, and more particularly to an automatic analyzer that includes a disposal unit that houses a used reaction container.
 血液等の生体サンプルに含まれる目的の成分を分析する装置として、光源からの光を、分析対象である、サンプルと試薬とが混合した反応液に照射して得られる単一または複数の波長の透過光や散乱光の光量を測定する自動分析装置が広く用いられている。 As a device for analyzing target components contained in biological samples such as blood, light from a light source has a single or multiple wavelengths obtained by irradiating the reaction mixture, which is the sample to be analyzed, mixed with the sample. Automatic analyzers that measure the amount of transmitted light and scattered light are widely used.
 自動分析装置には、生化学検査や血液学検査の分野等で生体サンプル中の目的成分の定量、定性分析を行う生化学分析用の装置や、サンプルである血液の凝固能を測定する血液凝固分析用の装置等がある。 Automatic analyzers include devices for biochemical analysis that perform quantitative and qualitative analysis of target components in biological samples in the fields of biochemical tests and hematology tests, and blood coagulation that measures the coagulation ability of blood samples. There are devices for analysis.
 後者の分析では特に、血液の凝固反応によって反応液が液体状態から固体状態へと変化するため、分析に使用した反応液を収容する反応容器は、廃棄のために回収する必要がある。ここで、使用済みの反応容器等を自然落下により廃棄部に回収した場合には、廃棄部のある特定の場所へ反応容器が集積してしまい、これがこぼれ落ちしてしまうこと、さらにはこのこぼれ落ちた反応容器を人の手によって拾った場合に二次感染を引き起こしてしまうこと等のおそれがある。 Especially in the latter analysis, since the reaction solution changes from a liquid state to a solid state due to blood coagulation reaction, it is necessary to collect the reaction container for storing the reaction solution used for the analysis for disposal. Here, when used reaction containers etc. are collected in the disposal part by natural fall, the reaction containers accumulate in a specific place of the disposal part, which spills out, and furthermore this spilled out If the reaction container is picked up by a human hand, it may cause a secondary infection.
 特許文献1では、このようなある特定の場所への反応容器等の集積を防ぐための技術として、自然落下によって使用済みのチップやベッセルを使い捨ての収納容器へ回収したのちに、収納容器自体を往復直線運動により前後左右あるいは上下に振動させ、この振動によって内部に収容されたチップやベッセルを平らに均す機構を備えた装置について説明されている。 In Patent Document 1, as a technique for preventing such accumulation of reaction containers and the like in a specific place, after collecting used chips and vessels into a disposable storage container by natural fall, the storage container itself is removed. An apparatus having a mechanism for leveling a chip and a vessel accommodated therein by vibrating back and forth, left and right or up and down by a reciprocating linear motion is described.
特開平9-127127号公報JP-A-9-127127
 しかしながら、特許文献1に記載された手法においては、収納容器自体の振動によって内部のチップやベッセルの高さを平均化することができるものの、収納容器を振動させるための専用の機構を別途設置する必要があり、装置の複雑化、大型化を招く。さらに、収納容器自体の振動が光学系の検出部にも伝わることによって測定結果に影響がでるおそれがある。 However, in the technique described in Patent Document 1, although the height of the internal chip or vessel can be averaged by the vibration of the storage container itself, a dedicated mechanism for vibrating the storage container is separately installed. It is necessary, and the apparatus becomes complicated and large. Furthermore, the measurement result may be affected by the vibration of the storage container itself being transmitted to the detection unit of the optical system.
 本発明の目的は、省スペース化を維持しつつ使用済みの反応容器の集積を防ぎ、かつ、振動等のノイズによる測定結果への影響を抑えた信頼性の高い分析を実現することに関する。 An object of the present invention relates to realizing highly reliable analysis that prevents accumulation of used reaction vessels while maintaining space saving and suppresses the influence on measurement results due to noise such as vibration.
 上記課題を解決するための一態様として、試料を反応容器に分注する試料分注機構と、試薬を反応容器に分注する試薬分注機構と、前記反応容器を保持する反応容器保持部と、当該保持された反応容器に収容された試料と試薬との混合液に光を照射する光源と、当該照射された光を検出する検出部と、から構成される測定部と、当該測定が終了した反応容器が廃棄される反応容器廃棄部と、当該反応容器を、前記反応容器保持部から前記反応容器廃棄部へ移送し、当該反応容器廃棄部へ廃棄する反応容器移送機構と、前記反応容器移送機構の動作を制御する制御部と、を備え、前記制御部は、前記反応容器廃棄部における前記反応容器の廃棄が所定の位置で連続して行われないように、前記反応容器移送機構の動作を制御することを特徴とする自動分析装置、及び当該装置を用いた分析方法を提供する。 As one aspect for solving the above problems, a sample dispensing mechanism that dispenses a sample into a reaction container, a reagent dispensing mechanism that dispenses a reagent into the reaction container, and a reaction container holding unit that holds the reaction container; , A measurement unit including a light source for irradiating light to the mixed solution of the sample and the reagent contained in the held reaction container, and a detection unit for detecting the irradiated light, and the measurement is completed A reaction container discarding unit that discards the reaction container, a reaction container transfer mechanism that transfers the reaction container from the reaction container holding unit to the reaction container disposal unit, and discards the reaction container to the reaction container disposal unit, and the reaction container A control unit for controlling the operation of the transfer mechanism, wherein the control unit is configured to prevent the reaction vessel discarding unit from being continuously discarded at a predetermined position in the reaction vessel discarding unit. Characterized by controlling the operation That automatic analyzer, and to provide an analytical method using the device.
 上記一態様によれば、反応容器移送機構が反応容器の廃棄部への廃棄のポイント、タイミングを重複させないように動作するため、省スペース化を維持しつつ廃棄部内での使用済みの反応容器の特定の場所での集積を防ぎ、かつ、振動等のノイズによる測定結果への影響を抑えた信頼性の高い分析を実現することができる。 According to the above aspect, since the reaction container transfer mechanism operates so as not to overlap the point and timing of disposal to the disposal part of the reaction container, the used reaction container in the disposal part is maintained while saving space. It is possible to realize highly reliable analysis that prevents accumulation at a specific location and suppresses the influence of noise such as vibration on measurement results.
本実施の形態に係る自動分析装置の基本構成を示す図。The figure which shows the basic composition of the automatic analyzer which concerns on this Embodiment. 本実施の形態(第1の実施の形態)に係る、蓋部を有さない反応容器廃棄部の構成を示す図。The figure which shows the structure of the reaction container disposal part which does not have a cover part based on this Embodiment (1st Embodiment). 本実施の形態(第2の実施の形態)に係る、複数の開口部を備えた蓋部を有する反応容器廃棄部の構成を示す図。The figure which shows the structure of the reaction container disposal part which has a cover part provided with the several opening part based on this Embodiment (2nd Embodiment). 本実施の形態(第3の実施の形態)に係る、溝状の開口部を備えた蓋部を有する反応容器廃棄部の構成を示す図。The figure which shows the structure of the reaction container disposal part which has a cover part provided with the groove-shaped opening part which concerns on this Embodiment (3rd Embodiment). 本実施の形態(第4の実施の形態)に係る、複数の開口部を備えた蓋部を備え、内部に複数に区切られた収納スペースを有する反応容器廃棄部の構成を示す図。The figure which shows the structure of the reaction container disposal part which is equipped with the cover part provided with the several opening part based on this Embodiment (4th Embodiment), and has the storage space divided into plurality inside. 本実施の形態(第5の実施の形態)に係る、内部の反応容器の蓄積状況を検知する検知器を有する反応容器廃棄部の構成を示す図。The figure which shows the structure of the reaction container disposal part which has the detector which detects the accumulation | storage state of an internal reaction container based on this Embodiment (5th Embodiment). 本実施の形態(第5の実施の形態)に係る、内部の反応容器の蓄積状況に応じた反応容器移送機構の動作を説明するフローチャート。The flowchart explaining operation | movement of the reaction container transfer mechanism according to the accumulation | storage condition of an internal reaction container based on this Embodiment (5th Embodiment). 本実施の形態(第6の実施の形態)に係る2モジュールの血液凝固分析部を備えた自動分析装置の基本構成を示す図。The figure which shows the basic composition of the automatic analyzer provided with the two-module blood coagulation analyzer based on this Embodiment (6th Embodiment). 本実施の形態(第6の実施の形態)に係る自動分析装置における血液凝固分析部の構成を示す図。The figure which shows the structure of the blood coagulation analysis part in the automatic analyzer which concerns on this Embodiment (6th Embodiment).
 以下、本発明を実施するための形態について図面を用いて詳細に説明する。なお、全体を通して、各図における同一の機能を有する各構成部分については説明を省略することがある。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. Throughout the description, the description of each component having the same function in each drawing may be omitted.
 <装置の基本構成>
 図1に、本実施の形態に係る自動分析装置の基本構成を示す。ここでは、自動分析装置の一態様として血液凝固分析を行う装置の例について説明する。本図に示すように自動分析装置100は、主として、試料ディスク102、試薬ディスク104、試料分注機構105、試料分注機構洗浄部106、反応容器設置部108、反応容器移送機構109、反応容器供給部110、検出ユニット111、試薬分注機構112、試薬分注機構洗浄部113、反応容器廃棄部114、操作部115、制御部116、記憶部117、インターフェイス118等から構成される。
<Basic configuration of the device>
FIG. 1 shows a basic configuration of an automatic analyzer according to the present embodiment. Here, an example of an apparatus that performs blood coagulation analysis will be described as one aspect of the automatic analyzer. As shown in the figure, the automatic analyzer 100 mainly includes a sample disk 102, a reagent disk 104, a sample dispensing mechanism 105, a sample dispensing mechanism cleaning unit 106, a reaction container installation unit 108, a reaction container transfer mechanism 109, a reaction container. A supply unit 110, a detection unit 111, a reagent dispensing mechanism 112, a reagent dispensing mechanism cleaning unit 113, a reaction container discarding unit 114, an operation unit 115, a control unit 116, a storage unit 117, an interface 118, and the like.
 試料ディスク102は、時計回り、反時計回りに回転自在なディスク状のユニットであって、試料または精度管理試料を保持する試料容器101をその円周上に複数個配置することができる。 The sample disk 102 is a disk-shaped unit that can be rotated clockwise or counterclockwise, and a plurality of sample containers 101 holding samples or quality control samples can be arranged on the circumference thereof.
 試薬ディスク104は、試料ディスク102と同様に、時計回り、反時計回りに回転自在なディスク状のユニットであって、試料に含まれる各検査項目の成分と反応する成分を含有する試薬を収容する試薬容器103をその円周上に複数個配置することができる。また、本図には示していないが、試薬ディスク104では、保冷機構等を備えることにより、配置された試薬容器103内の試薬を保冷可能に構成することもできる。 Similar to the sample disk 102, the reagent disk 104 is a disk-shaped unit that can be rotated clockwise and counterclockwise, and contains a reagent containing a component that reacts with a component of each inspection item included in the sample. A plurality of reagent containers 103 can be arranged on the circumference thereof. Although not shown in the figure, the reagent disk 104 can be configured to be able to cool the reagent in the arranged reagent container 103 by providing a cold insulation mechanism or the like.
 試料分注機構105は、試料ディスク102に保持された試料容器101内の試料を吸引して、試料分注ポート119に設置された反応容器107内へ吐出する。ここで、試料分注機構105の動作は、図示しない試料用シリンジポンプの動作に伴って、制御部116の指示に基づいて制御される。 The sample dispensing mechanism 105 sucks the sample in the sample container 101 held on the sample disk 102 and discharges it into the reaction container 107 installed in the sample dispensing port 119. Here, the operation of the sample dispensing mechanism 105 is controlled based on an instruction from the control unit 116 in accordance with an operation of a sample syringe pump (not shown).
 試料分注機構洗浄部106は、試料分注機構105を洗浄水によって水洗する機構である。水洗のタイミングは制御部116の指示に基づいて制御される。 The sample dispensing mechanism washing unit 106 is a mechanism for washing the sample dispensing mechanism 105 with washing water. The timing of water washing is controlled based on an instruction from the control unit 116.
 試薬分注機構112は、試薬ディスク104に保持された試薬容器103内の試薬を吸引して、検出ユニット111の反応容器設置部108に設置された、試料が分注された反応容器107内に分注を行う。ここで、試薬分注機構112の動作は、図示しない試薬用シリンジポンプの動作に伴って、制御部116の指示に基づいて制御される。 The reagent dispensing mechanism 112 sucks the reagent in the reagent container 103 held on the reagent disk 104 and installs the reagent in the reaction container 107 in which the sample is dispensed, which is installed in the reaction container installation unit 108 of the detection unit 111. Do dispensing. Here, the operation of the reagent dispensing mechanism 112 is controlled based on an instruction from the control unit 116 in accordance with an operation of a reagent syringe pump (not shown).
 試薬分注機構洗浄部113は、試薬分注機構112を洗浄水によって水洗する機構である。水洗のタイミングは制御部116の指示に基づいて制御される。 The reagent dispensing mechanism washing unit 113 is a mechanism for washing the reagent dispensing mechanism 112 with washing water. The timing of water washing is controlled based on an instruction from the control unit 116.
 なお、ここでは試料分注機構洗浄部106と、試薬分注機構洗浄部113が各々別個に設けられている構成について説明したが、単一のユニットであっても良い。 Here, the configuration in which the sample dispensing mechanism cleaning unit 106 and the reagent dispensing mechanism cleaning unit 113 are separately provided has been described. However, a single unit may be used.
 反応容器供給部110は、分析前の反応容器107を複数保持可能に構成される。 The reaction container supply unit 110 is configured to hold a plurality of reaction containers 107 before analysis.
 反応容器移送機構109は、分析に使用する反応容器107を反応容器供給部110から試料分注ポート119に移送し、搬入する。また、試料が分注された後の反応容器107を、試料分注ポート119から搬出し、検出ユニット111の反応容器設置部108への移送、搬入を行う。分析終了後は、反応容器設置部108から反応容器107を搬出し、反応容器廃棄部114へ移送し、廃棄する。 The reaction container transfer mechanism 109 transfers the reaction container 107 used for analysis from the reaction container supply unit 110 to the sample dispensing port 119 and carries it in. In addition, the reaction container 107 after the sample is dispensed is unloaded from the sample dispensing port 119, and transferred to and loaded into the reaction container installation unit 108 of the detection unit 111. After completion of the analysis, the reaction vessel 107 is taken out from the reaction vessel setting unit 108, transferred to the reaction vessel discarding unit 114, and discarded.
 検出ユニット111は、反応容器107を設置するための1つ以上(本実施例では、一例として6つの場合を示している)の反応容器設置部108と、図示しない光源とフォトダイオードから構成される検出部(光センサ)とから構成される光学系を有している。光源は、反応容器設置部108に挿入された、分析対象である試料と試薬との混合液である反応液を収容する反応容器107へ光を照射し、反応液中で生じた反応によって産生される物質により得られる散乱光や透過光等の光強度の測定を行う。例えば、散乱光を検出する場合には、それぞれの反応容器設置部108は、下方に配置された光源と、側面に配置された検出部とを有している。このとき、検出部は受光した散乱光を光/電流変換を行うことで、受光した光強度を示す測光信号を図示しないA/D変換器に出力する。A/D変換器でA/D変換された光強度の測定信号は、インターフェイス118を介して制御部116と記憶部117に送られる。 The detection unit 111 includes one or more reaction container installation units 108 for installing the reaction container 107 (in this embodiment, six cases are shown as an example), a light source and a photodiode (not shown). An optical system including a detection unit (photosensor). The light source is produced by a reaction that occurs in the reaction solution by irradiating light to the reaction vessel 107 that contains the reaction solution that is a mixed solution of the sample to be analyzed and the reagent inserted in the reaction vessel installation unit 108. Measurement of light intensity such as scattered light and transmitted light obtained by the material. For example, when detecting scattered light, each reaction container installation part 108 has the light source arrange | positioned below and the detection part arrange | positioned at the side surface. At this time, the detection unit performs light / current conversion on the received scattered light, thereby outputting a photometric signal indicating the received light intensity to an A / D converter (not shown). The light intensity measurement signal A / D converted by the A / D converter is sent to the control unit 116 and the storage unit 117 via the interface 118.
 例えば血液凝固検査項目では、サンプルと試薬とが反応すると、時間の経過とともにフィブリンが析出する。そして、このフィブリンの析出に伴って散乱される光量も増加する。この光量を検出することで、サンプル中のフィブリノーゲン量(Fbg)を求めることができる。また、各々の検査項目に対応する試薬を用いて同様に光量を監視することで、プロトロンビン時間(PT)や活性化部分トロンボプラスチン時間(APTT)等の他の血液凝固検査項目を分析することもできる。 For example, in the blood coagulation test item, when the sample and the reagent react, fibrin precipitates with the passage of time. The amount of light scattered along with the fibrin deposition also increases. By detecting this amount of light, the amount of fibrinogen (Fbg) in the sample can be determined. In addition, by monitoring the amount of light in the same manner using a reagent corresponding to each test item, other blood coagulation test items such as prothrombin time (PT) and activated partial thromboplastin time (APTT) can be analyzed. .
 反応容器廃棄部114は、分析に使用済みの反応容器107を廃棄するためのユニットである。より具体的には、反応容器114が投入される廃棄口である開口部と、開口部の下方に配置された本図には図示しない収納ボックスを有する。 The reaction container discarding unit 114 is a unit for discarding the reaction container 107 that has been used for analysis. More specifically, it has an opening which is a waste outlet into which the reaction vessel 114 is charged, and a storage box (not shown) arranged below the opening.
 操作部115は入力手段としてキーボードやマウス、表示部に表示された操作画面などの入力端末を有し、キーボードや操作画面から分析する試料の分析項目を入力し、制御部116へ入力する。 The operation unit 115 has an input terminal such as a keyboard and mouse as an input means and an operation screen displayed on the display unit, and inputs analysis items of the sample to be analyzed from the keyboard and operation screen, and inputs them to the control unit 116.
 制御部116は、操作部115からの入力に基づき試料ディスク102、試薬ディスク104、試料分注機構105、試料分注機構洗浄部106、反応容器移送機構109、検出ユニット111、試薬分注機構112、試薬分注機構洗浄部113の動作を制御し、自動分析装置100を構成する種々の構成の動作や条件設定等の制御全般を行う。また、制御部は、検出ユニット111からインターフェイス118を介して入力された測定信号を処理し、検出結果に基づく目的成分の濃度や血液凝固時間を求めるための演算、および異常個所の特定といったデータ処理等を実施する。詳細は後述する。 The control unit 116 is based on the input from the operation unit 115, the sample disk 102, the reagent disk 104, the sample dispensing mechanism 105, the sample dispensing mechanism cleaning unit 106, the reaction container transfer mechanism 109, the detection unit 111, and the reagent dispensing mechanism 112. Then, the operation of the reagent dispensing mechanism cleaning unit 113 is controlled, and the overall control of the operation and condition setting of various components constituting the automatic analyzer 100 is performed. In addition, the control unit processes the measurement signal input from the detection unit 111 via the interface 118, performs calculation for obtaining the concentration of the target component and the blood coagulation time based on the detection result, and data processing such as specifying an abnormal part. Etc. Details will be described later.
 記憶部117は操作部115からの入力情報と、試料ディスク102等の動作情報と、試薬、検体情報等を記憶する。 The storage unit 117 stores input information from the operation unit 115, operation information of the sample disk 102 and the like, reagent, sample information, and the like.
 インターフェイス118は試料ディスク102等の動作情報と操作部115からの入力情報と、制御部116からの動作情報と記憶部117に格納する情報の仲介をする。 The interface 118 mediates operation information of the sample disk 102 and the like, input information from the operation unit 115, operation information from the control unit 116, and information stored in the storage unit 117.
 このように構成した本実施例の形態の自動分析装置100における試料の分析は試料分注、試薬分注、測光、反応容器107の廃棄、データ処理の順番に実施される。以下に基本的な分析の流れについて詳述する。 The sample analysis in the automatic analyzer 100 according to this embodiment configured as described above is performed in the order of sample dispensing, reagent dispensing, photometry, disposal of the reaction vessel 107, and data processing. The basic analysis flow is described in detail below.
 試薬ディスク104上には、複数の試薬容器103が円周上に並んで配置されており、操作部115から分析項目の選択および分析開始指示を受けると、分析項目に従って、目的の試薬容器103を試薬分注機構112の下まで時計回りもしくは反時計回りに回転して、搬送する。試薬容器103中の試薬は、試薬分注機構112に連結された試薬用シリンジ(図示せず)により、所定量分注される。反応容器供給部110上には複数の反応容器107が縦横に配置されている。反応容器移送機構109は所定の順番に反応容器供給部110から反応容器107を試薬分注ポート119を経由して反応容器設置部108に移送、搬入する。 On the reagent disk 104, a plurality of reagent containers 103 are arranged side by side on the circumference. Upon receiving an analysis item selection and analysis start instruction from the operation unit 115, the target reagent container 103 is set according to the analysis item. It is rotated clockwise or counterclockwise to the bottom of the reagent dispensing mechanism 112 and conveyed. A predetermined amount of the reagent in the reagent container 103 is dispensed by a reagent syringe (not shown) connected to the reagent dispensing mechanism 112. A plurality of reaction vessels 107 are arranged vertically and horizontally on the reaction vessel supply unit 110. The reaction container transfer mechanism 109 transfers and carries the reaction container 107 from the reaction container supply unit 110 to the reaction container installation unit 108 via the reagent dispensing port 119 in a predetermined order.
 試料ディスク102上には、複数の試料容器101が円周上に並んで配置されており、分析される試料の順番に従って時計回りもしくは反時計回りに回転し、試料分注機構105の下まで搬送する。 A plurality of sample containers 101 are arranged on the circumference of the sample disk 102 and rotated clockwise or counterclockwise according to the order of the samples to be analyzed, and conveyed to the bottom of the sample dispensing mechanism 105. To do.
 試料容器101中の検体は、試料分注機構105に連結された試料用シリンジ(図示せず)により、試料分注ポート119に設置された反応容器107に所定量分注される。次に、試薬分注機構112は、試薬容器103から試薬を吸引し、検出ユニット111の反応容器設置部108に設置された試料を収容する反応容器107に分注する。 The sample in the sample container 101 is dispensed into a reaction container 107 installed in the sample dispensing port 119 by a sample syringe (not shown) connected to the sample dispensing mechanism 105. Next, the reagent dispensing mechanism 112 aspirates the reagent from the reagent container 103 and dispenses it into the reaction container 107 containing the sample installed in the reaction container installation unit 108 of the detection unit 111.
 光源から光を照射し、反応容器107に収容された試料と試薬との混合液である反応液内での反応の進行は、上述したフォトダイオードなどで構成される検出部によって採取され、検出ユニット111にて検知される。検知したデータ、使用検出ユニット番号、使用試料種類および試料ディスク102上の設置位置、使用試薬種類および試薬ディスク104上の設置位置は記憶部117に格納される。 The progress of the reaction in the reaction solution, which is a mixed solution of the sample and the reagent contained in the reaction vessel 107, is collected by the detection unit configured by the photodiode described above, and is detected by the detection unit. Detected at 111. The detected data, use detection unit number, use sample type and installation position on the sample disk 102, use reagent type and installation position on the reagent disk 104 are stored in the storage unit 117.
 反応容器107内に保持した反応液の反応および測定が完了すると、反応容器107は反応後の混合液を保持したまま、反応容器移送機構109によって、反応容器廃棄部114へ廃棄される。 When the reaction and measurement of the reaction liquid held in the reaction vessel 107 is completed, the reaction vessel 107 is discarded to the reaction vessel disposal unit 114 by the reaction vessel transfer mechanism 109 while holding the mixed solution after the reaction.
第1の実施の形態First embodiment
 図2は、本実施の形態に係る、蓋部を有さない反応容器廃棄部の構成を示す図である。図1に示した反応容器廃棄部114は、本実施の形態では開口した収納ボックス201から構成される。反応容器移送機構202は、搬送路204を経由して、分析が終了した使用済みの反応容器203を収納ボックス201へ搬送し、廃棄する。 FIG. 2 is a diagram showing a configuration of a reaction container discarding unit that does not have a lid according to the present embodiment. The reaction container discarding unit 114 shown in FIG. 1 includes an open storage box 201 in the present embodiment. The reaction container transfer mechanism 202 transports the used reaction container 203, which has been analyzed, to the storage box 201 via the transport path 204 and discards it.
 このとき、反応容器移送機構202が反応容器203を廃棄する箇所が常に同じである場合、収納ボックス201内にて反応容器203は一定の箇所に蓄積されてしまう。そこで、本実施の形態に係る反応容器移送機構202は、収納ボックス201上にて、反応容器203の廃棄動作が所定の位置にて連続して行われないように、廃棄ポイントを任意に決定することができる。収納ボックス201上であれば、廃棄する場所に制限はなく、例えば、反応容器移送機構202の位置を制御するモータ(図示せず)の駆動量をわずかに変えるだけで、廃棄するポイントが連続しないようにずらすことができる。このように、反応容器移送機構202の動作の制御によって廃棄するポイントをずらすことができれば、振動によるノイズの影響を抑えつつ、反応容器203が収納ボックス201内の特定の箇所に蓄積するのを防ぐことができる。これにより、測定結果の信頼性を維持し、省スペース化を実現した自動分析装置において、収納ボックス201内の反応容器203の蓄積を均すことができる。 At this time, when the location where the reaction vessel transfer mechanism 202 discards the reaction vessel 203 is always the same, the reaction vessel 203 is accumulated in a certain location in the storage box 201. Therefore, the reaction container transfer mechanism 202 according to the present embodiment arbitrarily determines a disposal point on the storage box 201 so that the disposal operation of the reaction container 203 is not continuously performed at a predetermined position. be able to. If it is on the storage box 201, there is no restriction | limiting in the place to discard, for example, the point to discard does not continue only by slightly changing the drive amount of the motor (not shown) which controls the position of the reaction container transfer mechanism 202. Can be shifted. As described above, if the point of disposal can be shifted by controlling the operation of the reaction container transfer mechanism 202, the reaction container 203 is prevented from accumulating at a specific location in the storage box 201 while suppressing the influence of noise due to vibration. be able to. Thereby, the accumulation of the reaction vessels 203 in the storage box 201 can be leveled in the automatic analyzer that maintains the reliability of the measurement results and realizes space saving.
第2の実施の形態Second embodiment
 上述した実施の形態では、蓋部を備えておらず、上面が開口した収納ボックスを有する反応容器廃棄部の構成について説明した。本実施の形態では、複数の開口部を備えた蓋部を有する収納ボックスからなる反応容器廃棄部の構成について、図3を用いて説明する。 In the above-described embodiment, the configuration of the reaction container discarding unit that does not include a lid and has a storage box whose upper surface is open has been described. In the present embodiment, the configuration of a reaction container discarding unit including a storage box having a lid having a plurality of openings will be described with reference to FIG.
 本構成において、反応容器移送機構302は、搬送路306を経由して、分析が終了した使用済みの反応容器303を収納ボックス301の蓋部305に形成された複数の開口部304へ搬送し、廃棄する。本図においては蓋部305に形成された開口部304が5つの場合を示しているが、この数は限定されるものではなく、必要に応じて変更可能である。 In this configuration, the reaction container transfer mechanism 302 conveys the used reaction container 303, which has been analyzed, to the plurality of openings 304 formed in the lid portion 305 of the storage box 301 via the conveyance path 306, Discard. In this figure, although the case where the number of the opening parts 304 formed in the cover part 305 is five is shown, this number is not limited and can be changed as needed.
 ここで、反応容器移送機構302は、図1に示した反応容器設置部108上に設置された使用済みの反応容器303を保持後、搬送路306を通って、複数ある開口部304のうちのいずれか1つの開口部の直上に移動し、反応容器303を廃棄する。廃棄する順番としては、例えば、図中の開口部1→開口部2→開口部3→開口部4→開口部5→開口部1→・・・のように一定のシーケンスに従って設定することができ、また必要に応じて変更することもできる。このように、一定のシーケンスに従って複数形成された開口部への廃棄の順序を変えることによって、収納ボックス301内の一定の箇所に反応容器303が蓄積されるのを防ぐことができ、収納される反応容器303の高さを均等にすることができる。 Here, the reaction container transfer mechanism 302 holds the used reaction container 303 installed on the reaction container installation unit 108 shown in FIG. It moves right above any one of the openings, and the reaction vessel 303 is discarded. The order of discarding can be set according to a certain sequence, for example, opening 1 → opening 2 → opening 3 → opening 4 → opening 5 → opening 1 →... It can also be changed as necessary. In this way, by changing the order of discarding the plurality of openings formed in accordance with a certain sequence, it is possible to prevent the reaction vessel 303 from being accumulated at a certain location in the storage box 301 and stored. The height of the reaction vessel 303 can be made uniform.
 また、蓋部305を設けることにより、反応容器303以外の落下物等が収納ボックス301内に落ちるのを防ぐことができる。ここで、反応容器303内は検体と試薬の混合液である反応液や、反応後に産生された析出物を保持しているが、検体によっては危険な感染症のリスクを有するものも含まれている。よって、もし収納ボックス301内に反応容器303以外のものが回収されてしまった場合、収納ボックス303内へユーザがアクセスすることによる二次感染のおそれがある。本実施の形態によれば、蓋部305を備えることにより反応容器303以外のものが収納ボックス301内部へ回収されることを防ぐため、このようなリスクを回避することができる。 Also, by providing the lid 305, it is possible to prevent fallen objects other than the reaction vessel 303 from falling into the storage box 301. Here, the reaction vessel 303 holds a reaction solution that is a mixed solution of a specimen and a reagent, and a precipitate produced after the reaction, but some specimens include a risk of dangerous infection. Yes. Therefore, if anything other than the reaction container 303 is collected in the storage box 301, there is a risk of secondary infection due to the user accessing the storage box 303. According to the present embodiment, by providing the lid portion 305, it is possible to prevent such a risk from being collected inside the storage box 301 other than the reaction vessel 303, and thus such a risk can be avoided.
第3の実施の形態Third embodiment
 次に、図4を用いて、本実施の形態に係る、溝状の開口部を備えた蓋部を有する反応容器廃棄部の構成について説明する。上述した第2の実施の形態では、蓋部305に複数の開口部304を形成した構成について説明したが、ここでは、蓋部405は溝状に形成された、複数の廃棄ポイントを含んだ単一の開口部404を備えている。 Next, with reference to FIG. 4, the configuration of the reaction container discarding section having a lid portion having a groove-shaped opening according to the present embodiment will be described. In the second embodiment described above, the configuration in which the plurality of openings 304 are formed in the lid portion 305 has been described. Here, however, the lid portion 405 is formed in a groove shape and includes a single disposal point. One opening 404 is provided.
 本構成において、反応容器移送機構402は、搬送路406を経由して、分析が終了した使用済みの反応容器403を収納ボックス401の蓋部405に溝状に形成された単一の開口部404へ搬送し、この開口部404に含まれる複数の廃棄ポイントにおいて廃棄する。廃棄する順番としては、例えば、図中の開口部404におけるP1→P2→P3→P4→P5→P6→・・・のように、一定のシーケンスに従って設定することができ、また、必要に応じて変更することもできる。 In this configuration, the reaction container transfer mechanism 402 has a single opening 404 formed in a groove shape in the lid 405 of the storage box 401 for the used reaction container 403 that has been analyzed via the transport path 406. And is discarded at a plurality of disposal points included in the opening 404. The order of discarding can be set according to a certain sequence, for example, P1-> P2-> P3-> P4-> P5-> P6-> ... in the opening 404 in the figure, and if necessary, It can also be changed.
 開口部405の形状を、上述した第2の実施の形態のように反応容器403に合わせた円形状にするのではなく、溝状にすることによって、1つの開口部405上において複数の廃棄ポイントを含めることができる。反応容器移送部402は、開口部404上であればどのポイントにおいても反応容器403を廃棄可能であり、あるポイントにおいて反応容器403を廃棄したのちに、移動距離を長くとって廃棄ポイント間の距離を広くすることもできるし、反対に、移動距離を短くして廃棄ポイント間の距離を数ミリ単位にすることも可能である。 A plurality of disposal points are formed on one opening 405 by making the shape of the opening 405 into a groove shape instead of a circular shape matching the reaction container 403 as in the second embodiment. Can be included. The reaction container transfer unit 402 can discard the reaction container 403 at any point as long as it is on the opening 404. After discarding the reaction container 403 at a certain point, the distance between the disposal points is increased by taking a longer moving distance. It is also possible to increase the distance, and conversely, it is possible to shorten the moving distance so that the distance between the disposal points is several millimeters.
 本実施の形態によれば、1つの開口部404上で、広範囲にわたって収納ボックス401内へ反応容器403を廃棄することができる。単一の開口部404における複数の廃棄ポイントにおいて収納ボックス401へ反応容器403を廃棄することにより、収納ボックス401内の反応容器403の高さを均等にすることができる。また、単一の開口部404において、上述の通り数ミリずつずらして反応容器403を廃棄することもできるため、廃棄ポイントの自由度が増える。これにより収納ボックス401の内の反応容器403の高さの均等化をより精度よく実行することができる。 According to this embodiment, the reaction vessel 403 can be discarded into the storage box 401 over a wide range on the single opening 404. By discarding the reaction container 403 to the storage box 401 at a plurality of disposal points in the single opening 404, the heights of the reaction containers 403 in the storage box 401 can be made uniform. Further, since the reaction vessel 403 can be discarded by shifting by several millimeters as described above in the single opening 404, the degree of freedom of the disposal point increases. Thereby, equalization of the height of the reaction container 403 in the storage box 401 can be executed with higher accuracy.
 なお、開口部404の形状や配置、廃棄の順序については、上述した構成の他にも適宜変更することができる。 Note that the shape and arrangement of the opening 404 and the order of disposal can be changed as appropriate in addition to the above-described configuration.
第4の実施の形態Fourth embodiment
 本実施の形態では、複数の開口部を備えた蓋部を備え、さらに、内部に複数に区切られた収納スペースを有する反応容器廃棄部の構成、及び、本構成を用いて、検体の状態によって反応容器を廃棄する収納ボックス内の収納スペースを変更する態様について、図5を用いて説明する。 In the present embodiment, a configuration of a reaction container discarding section that includes a lid section having a plurality of openings and further has a storage space partitioned into a plurality of sections, and using this configuration, depending on the state of the sample An aspect of changing the storage space in the storage box for discarding the reaction container will be described with reference to FIG.
 本構成において、反応容器移送機構502は、搬送路506を経由して、分析が終了した使用済みの反応容器503を収納ボックス501の蓋部505に形成された複数の開口部604へ搬送し、収納ボックス501内の仕切り部材505によって区切られた複数の収納スペースのうちのいずれかに廃棄する。ここでは、仕切り部材505によって、収納ボックス501の内部は第1のスペース501a、第2のスペース501bの2つのスペースに区切られている。 In this configuration, the reaction container transfer mechanism 502 conveys the used reaction container 503, which has been analyzed, to the plurality of openings 604 formed in the lid 505 of the storage box 501 via the conveyance path 506, It is discarded in one of a plurality of storage spaces partitioned by the partition member 505 in the storage box 501. Here, the interior of the storage box 501 is divided into two spaces, a first space 501a and a second space 501b, by the partition member 505.
 血液凝固分析においては、測定項目による違いはあるものの、早いものでは数秒で試料である血液検体と試薬とが反応し、混合液は凝固し始める。しかしながら、血液凝固因子に欠損のある検体の場合では、試薬との混合後数秒の間には検体の凝固現象が開始されず、数分経過しても凝固しない場合もある。 In the blood coagulation analysis, although there are differences depending on the measurement items, the blood sample that is the sample reacts with the reagent in a few seconds at the earliest, and the mixture begins to coagulate. However, in the case of a specimen having a deficient blood coagulation factor, the specimen does not start to coagulate within a few seconds after mixing with the reagent, and may not coagulate even after several minutes.
 このような場合、自動分析装置においては最大測定時間など、測定を継続する最大の時間が設けられている。そして、この時間を経過した場合には、分析結果である血液凝固時間を得られないまま、測定を終了する。このとき、検体は反応容器503内でほぼ液体のまま保持されることになる。液状の検体を保持した反応容器503に対し、他の反応容器503、すなわち血液凝固反応が終了し、固体へと変化した混合物を収容した反応容器503と同じく、反応容器移送機構502によって収納ボックス501内の共通のスペースに廃棄した場合、反応容器503内の液体がこぼれて、収納ボックス501内を汚染するおそれがある。 In such a case, the automatic analyzer has a maximum time for continuing the measurement, such as a maximum measurement time. When this time has elapsed, the measurement is terminated without obtaining the blood coagulation time as the analysis result. At this time, the specimen is held in the reaction container 503 almost as a liquid. The storage container 501 is moved by the reaction container transfer mechanism 502 in the same manner as the other reaction container 503, that is, the reaction container 503 in which the blood coagulation reaction is completed and the mixture changed into a solid is stored in the reaction container 503 holding the liquid specimen. If it is discarded in the common space, the liquid in the reaction vessel 503 may spill and contaminate the storage box 501.
 そこで、本実施の形態では、例えば測定最大時間に達しても検体と試薬との混合液が凝固しない状態のまま収容されている反応容器503は、開口部504の5番もしくは6番の位置から廃棄し、収納ボックス501内の第1のスペース501aに回収する。一方、通常通り検体と試薬との混合液が凝固し、固体へと変化した場合には、開口部504の1~4番のいずれかの位置から反応容器503を廃棄し、収納ボックス501内の第2のスペース501bに回収する。より具体的には、測定最大時間を経過しても、検出ユニット111における検出部が、血液凝固時間の取得に要する光学的変化量を得られなかった(タイムアウトした)場合には、制御部116は、この分析に使用した反応容器503内に収容される混合液は液体の状態であると判断し、上述の通り第1のスペース501aに回収するように反応容器移送機構502の動作を制御する。 Therefore, in the present embodiment, for example, the reaction container 503 accommodated in a state in which the mixed liquid of the specimen and the reagent does not coagulate even when the maximum measurement time is reached is from the position 5 or 6 of the opening 504. Discard and collect in the first space 501a in the storage box 501. On the other hand, when the mixed solution of the specimen and the reagent is solidified and changed into a solid as usual, the reaction container 503 is discarded from any one of the positions 1 to 4 of the opening 504, and the inside of the storage box 501 is disposed. Collect in the second space 501b. More specifically, if the detection unit in the detection unit 111 fails to obtain the optical change amount necessary for acquiring the blood coagulation time even after the maximum measurement time has elapsed (timeout), the control unit 116. Determines that the liquid mixture accommodated in the reaction vessel 503 used for this analysis is in a liquid state, and controls the operation of the reaction vessel transfer mechanism 502 so as to collect it in the first space 501a as described above. .
 このように、収納ボックス501内に仕切り部材505を設けることによって区切られた各々のスペースに対し、血液凝固反応の状況に応じて開口部504の位置を変更することによって、反応容器503内の液状の混合液と凝固した固体の混合物とを分けて回収することができる。 Thus, by changing the position of the opening 504 in accordance with the state of the blood coagulation reaction with respect to each space partitioned by providing the partition member 505 in the storage box 501, the liquid in the reaction container 503 can be obtained. And the solidified mixture can be recovered separately.
 さらに、液状の混合液を収容した反応容器503が回収された第1のスペース501aには、廃棄用のビニール袋等を二重に設置するなどの処置を取ることによって、収納ボックス501内汚染と、反応容器503を廃棄するときに内部からこぼれた液状の混合液に接触してしまう等のリスクを下げることができる。 Further, in the first space 501a in which the reaction vessel 503 containing the liquid mixture is collected, by taking measures such as installing double plastic bags for disposal, the contamination in the storage box 501 can be reduced. Further, it is possible to reduce the risk of contact with the liquid mixture spilled from the inside when the reaction vessel 503 is discarded.
 なお開口部504の形状や、配置、廃棄の順序については、上述した構成の他にも適宜変更することができる。 It should be noted that the shape of the opening 504, the arrangement, and the order of disposal can be appropriately changed in addition to the above-described configuration.
第5の実施の形態Fifth embodiment
 本実施の形態では、内部の反応容器の蓄積状況を検知する検知器を有する反応容器廃棄部の構成、及び、本構成を用いて、収納ボックス内の反応容器の蓄積状況を検知することで、より正確に反応容器の蓄積を均等にするための反応容器移送機構の動作について、図6、図7を用いて説明する。 In the present embodiment, by using the configuration of the reaction container discarding unit having a detector for detecting the accumulation state of the internal reaction vessel, and using this configuration, the accumulation state of the reaction vessel in the storage box is detected, The operation of the reaction container transfer mechanism for equalizing the accumulation of reaction containers more accurately will be described with reference to FIGS.
 本構成において、反応容器移送機構602は、搬送路606を経由して、分析が終了した使用済みの反応容器603を収納ボックス601の蓋部605に形成された複数の開口部604へ搬送し、廃棄する。 In this configuration, the reaction container transfer mechanism 602 conveys the used reaction container 603 whose analysis is completed to a plurality of openings 604 formed in the lid 605 of the storage box 601 via the conveyance path 606. Discard.
 ここで、収納ボックス601の内部には、回収された反応容器603の蓄積状況を検知可能な複数の検知器607が設置されている。検知器607の種類については特に限定されるものではなく、対応する開口部604から回収された反応容器603の存在を検知できれば良い。ここで、対応する開口部604から回収された反応容器603の存在を精度よく検知するためには、検知器607は、対応する開口部604の位置の下方に設けられることが望ましい。 Here, a plurality of detectors 607 capable of detecting the accumulation state of the collected reaction container 603 are installed inside the storage box 601. The type of the detector 607 is not particularly limited as long as the presence of the reaction vessel 603 recovered from the corresponding opening 604 can be detected. Here, in order to accurately detect the presence of the reaction vessel 603 recovered from the corresponding opening 604, the detector 607 is desirably provided below the position of the corresponding opening 604.
 反応容器移送機構602が反応容器603の移送、廃棄の動作を開始すると、まず始めに記憶部117に記憶されている反応容器603の回収情報を読み出す(ステップ701)。ここで反応容器603の回収情報とは、現時点における、前回反応容器603が廃棄された時間と、使用した開口部604の位置を含んだ情報である。 When the reaction container transfer mechanism 602 starts the operation of transferring and discarding the reaction container 603, first, the collection information of the reaction container 603 stored in the storage unit 117 is read (step 701). Here, the collection information of the reaction vessel 603 is information including the time when the previous reaction vessel 603 was discarded and the position of the opening 604 used.
 反応容器移送機構602によって反応容器603が移送され、収納ボックス601内に廃棄され続ければ、使用された開口部604の直下には反応容器603が蓄積される。ここで、検知器607の設置位置まで反応容器603の蓄積が続くと、検知器607が蓄積された反応容器603の存在を検知する(ステップ702)。このとき、検知可能な検知器607は1つに限られるものではなく、複数の検知器607によって蓄積を検知することができる。複数の検知器607のうち、少なくとも1つの検知器607によって反応容器603の存在を検知した場合には、ステップ703に進む。 If the reaction vessel 603 is transferred by the reaction vessel transfer mechanism 602 and is continuously discarded in the storage box 601, the reaction vessel 603 is accumulated immediately below the used opening 604. Here, when the accumulation of the reaction vessel 603 continues to the installation position of the detector 607, the detector 607 detects the presence of the accumulated reaction vessel 603 (step 702). At this time, the number of detectors 607 that can be detected is not limited to one, and accumulation can be detected by a plurality of detectors 607. If the presence of the reaction vessel 603 is detected by at least one of the plurality of detectors 607, the process proceeds to step 703.
 検知器607により、収納ボックス601内の反応容器603の蓄積状況を検知した場合には、記憶部117に記憶されている前回の廃棄時間と、検知器607の位置の情報から、最も反応容器603の蓄積が少ない開口部604を決定する(ステップ703)。 When the detector 607 detects the accumulation state of the reaction container 603 in the storage box 601, the reaction container 603 is most determined from the previous disposal time stored in the storage unit 117 and the position information of the detector 607. The opening 604 with less accumulation is determined (step 703).
 ここで、最も反応容器603の蓄積の少ない開口部604とは、ステップ702において反応容器603の存在を検知しなかった開口部604が相当する。本ステップにおいて、反応容器603の存在を検知しなかった開口部604が複数あった場合には、ステップ701にて取得した前回の廃棄時間と、現在の時刻とが最も乖離している箇所の開口部604を、反応容器603の蓄積が少ない開口部604であると決定する。 Here, the opening 604 with the smallest accumulation in the reaction vessel 603 corresponds to the opening 604 in which the presence of the reaction vessel 603 was not detected in step 702. In this step, if there are a plurality of openings 604 where the presence of the reaction vessel 603 was not detected, the opening at the location where the previous discard time acquired in step 701 and the current time are the most deviated. The part 604 is determined to be the opening 604 in which the accumulation of the reaction vessel 603 is small.
 反応容器603の蓄積が少ないと判断される開口部604が決定したら、反応容器移送機構602は、決定された開口部604の位置へ反応容器603を移送して、この開口部604を介して収納ボックス601に廃棄する(ステップ704)。 When the opening 604 in which the accumulation of the reaction container 603 is determined to be small is determined, the reaction container transfer mechanism 602 transfers the reaction container 603 to the determined position of the opening 604 and stores it through the opening 604. It is discarded in the box 601 (step 704).
 ここで、収納ボックス601内の全ての検知器607により反応容器603の存在を検知しなかった場合、制御部116は反応容器603の蓄積量がまだ少ないもの判定する。この場合には、複数の開口部604のうち、前回使用した廃棄時間と、現在の時刻とが最も乖離している位置の開口部604を次の廃棄箇所として決定する。もしくは、ステップ703にて廃棄に使用する開口部604を決定することができなかった場合、例えば、全ての検知器607によって反応容器603の存在を検知した場合においても、同様に複数の開口部604のうち、前回使用した廃棄時間と、現在の時刻とが最も乖離している位置の開口部604を次の廃棄箇所として決定する(ステップ705)。反応容器603を廃棄する開口部604を決定後、ステップ704に進む。 Here, when all the detectors 607 in the storage box 601 do not detect the presence of the reaction vessel 603, the control unit 116 determines that the accumulation amount of the reaction vessel 603 is still small. In this case, among the plurality of openings 604, the opening 604 at the position where the previously used discard time and the current time are most different is determined as the next discard location. Alternatively, when the openings 604 to be used for disposal cannot be determined in step 703, for example, when the presence of the reaction vessel 603 is detected by all the detectors 607, a plurality of openings 604 are similarly provided. Among these, the opening 604 at the position where the discard time used last time and the current time are most different is determined as the next discard location (step 705). After determining the opening 604 for discarding the reaction vessel 603, the process proceeds to step 704.
 反応容器603の廃棄後、使用した開口部604の位置、および廃棄した時間を記憶部117に記憶する(ステップ706)。ここで、例えば開口部604に反応容器603を廃棄した場合には、前回使用時に記憶した開口部604に関する回収情報を上書きして記憶し、廃棄動作を終了する。 After discarding the reaction vessel 603, the position of the used opening 604 and the discarded time are stored in the storage unit 117 (step 706). Here, for example, when the reaction vessel 603 is discarded in the opening 604, the collection information regarding the opening 604 stored at the previous use is overwritten and stored, and the discarding operation is terminated.
 本構成によれば、収納ボックス601内に複数の検知器607を設置したことにより回収された反応容器603の存在を検知し、その蓄積状況を確認することがきる。また、廃棄時に使用した開口部604の位置の情報と、廃棄した時間を記憶することより、複数の開口部604のうちのどの開口部604から反応容器603を廃棄すれば、収納ボックス601内に回収される反応容器603の高さを均等にできるかをより正確に判断できる。 According to this configuration, it is possible to detect the presence of the reaction vessel 603 recovered by installing a plurality of detectors 607 in the storage box 601 and confirm the accumulation state. Further, by storing information on the position of the opening 604 used at the time of disposal and the time of disposal, if the reaction container 603 is discarded from any of the plurality of openings 604, the storage box 601 can be disposed. It can be determined more accurately whether or not the heights of the recovered reaction vessels 603 can be made uniform.
 また、本実施の形態は、上述した第3の実施の形態のように、1つの開口部604において複数の廃棄ポイントを有する構成においても適用可能である。 Further, the present embodiment can be applied to a configuration having a plurality of disposal points in one opening 604 as in the third embodiment described above.
第6の実施の形態Sixth embodiment
 上述した実施の形態では、自動分析装置の一例である血液凝固分析を行う装置について、特に、1台で独立した装置として運用されるスタンドアローンタイプの構成を用いて説明した。 In the above-described embodiment, an apparatus for performing blood coagulation analysis, which is an example of an automatic analyzer, has been described using, in particular, a stand-alone type configuration that is operated as a single independent apparatus.
 ところで、臨床検査のための自動分析装置には、このようなスタンドアローンタイプの装置の他にも、検査室の業務効率化のために、生化学分析や免疫分析、血液凝固分析等の複数の分析分野の分析部を接続し、共通したサンプルラック搬送ラインを用いて全体として1つの装置として運用するモジュールタイプの構成がある。 By the way, in addition to such a stand-alone type device, clinical analyzers have several types of bioanalytical analysis, immunological analysis, blood coagulation analysis, etc. There is a module type configuration in which analysis units in the analysis field are connected and operated as a single device as a whole using a common sample rack transport line.
 本実施の形態では、モジュールタイプの自動分析装置の一例として、2モジュールの血液凝固分析部を備えた自動分析装置への適用例について、図8を用いて説明する。 In this embodiment, as an example of a module type automatic analyzer, an application example to an automatic analyzer having a two-module blood coagulation analyzer will be described with reference to FIG.
 図8は、本実施の形態に係る2モジュールの血液凝固分析部を備えた自動分析装置の基本構成を示す図である。本図に示すように、モジュールタイプの自動分析装置800は、試料と試薬との混合液である反応液を分析する複数の分析部である、第1血液凝固分析部812、第2血液凝固分析部817を有し、各分析部に試料を供給するために、試料を収容する試料容器を搭載する試料ラック801を搬送する搬送ライン804、805を備えている。 FIG. 8 is a diagram showing a basic configuration of an automatic analyzer including a two-module blood coagulation analyzer according to the present embodiment. As shown in the figure, the module type automatic analyzer 800 includes a first blood coagulation analysis unit 812 and a second blood coagulation analysis, which are a plurality of analysis units that analyze a reaction solution that is a mixed solution of a sample and a reagent. In order to supply a sample to each analysis unit, the unit 817 includes transport lines 804 and 805 for transporting a sample rack 801 on which a sample container for storing the sample is mounted.
 分析の対象となる血漿等の試料が入った試料容器を搭載した試料ラック801を搬送する搬送系の一例として、搬送ライン804上へ試料ラック801を供給するラック供給部802、分析が終了し、搬送ライン805上を移動してきた試料ラック801を収容するラック収納部803、試料ラック801を各分析部に搬送する搬送ライン(送り方向)804、搬送ライン(戻り方向)805、分析待ちの試料ラック801を待機させるラック待機部806、搬送ライン804、805とラック待機部806間及びラック待機部806内で試料ラック801を移載するラックハンドリング機構807、試料ラック801の情報に基づいて搬送ライン805上のラックの行き先を振り分けるラック振り分け機構809、振り分けられた試料ラック801をラック収納部803へ移動するラック戻し機構808、緊急の分析を要する試料ラック801を投入する緊急試料ラック投入部810、搬送ライン804上の試料ラック801に付されたバーコード等の情報を読み取る読取部811(搬送ライン)を示す。 As an example of a transport system that transports a sample rack 801 loaded with a sample container containing a sample such as plasma to be analyzed, a rack supply unit 802 that supplies the sample rack 801 onto the transport line 804, the analysis is completed, A rack storage unit 803 for storing the sample rack 801 that has moved on the transfer line 805, a transfer line (feed direction) 804 for transferring the sample rack 801 to each analysis unit, a transfer line (return direction) 805, and a sample rack waiting for analysis The rack standby unit 806 that waits 801, the transport lines 804 and 805 and the rack standby unit 806, and the rack handling mechanism 807 that transfers the sample rack 801 in the rack standby unit 806 and the transport line 805 based on the information of the sample rack 801 A rack sorting mechanism 809 that sorts the destination of the upper rack, and the sorted sample label Information such as a rack return mechanism 808 that moves the rack 801 to the rack storage unit 803, an emergency sample rack input unit 810 that inputs a sample rack 801 requiring urgent analysis, and a barcode attached to the sample rack 801 on the transfer line 804 A reading unit 811 (conveyance line) is read.
 搬送ライン804に沿って配置される第1血液凝固分析部812の搬送系は、搬送ライン804から試料ラック901に収容されている試料に対する分析依頼情報を照合するための読取部(第1血液凝固分析部)816と、搬送ライン804から試料ラック801を受け取る第1ラック搬入機構814と、試料の分注が行われるサンプリングエリアを含むとともに試料の分注開始まで試料ラック801を待機可能である第1分注ライン813と、試料分注後の試料ラック801を搬送ライン804、805に搬送する第1ラックハンドリング機構815を備える。 The transport system of the first blood coagulation analysis unit 812 arranged along the transport line 804 is a reading unit (first blood coagulation unit for collating analysis request information for the sample stored in the sample rack 901 from the transport line 804. (Analysis unit) 816, a first rack carry-in mechanism 814 that receives the sample rack 801 from the transfer line 804, a sampling area where the sample is dispensed, and a sample rack 801 that can wait for the sample rack 801 to start dispensing. The 1st dispensing line 813 and the 1st rack handling mechanism 815 which conveys the sample rack 801 after sample dispensing to the conveyance lines 804 and 805 are provided.
 搬送ライン804に沿って配置される第2血液凝固分析部817の搬送系も、上述した第1血液凝固分析部812の搬送系の構成と同様に、搬送ライン804から試料ラック801に収容されている試料に対する分析依頼情報を照合するための読取部(第2血液凝固分析部)821と、搬送ライン804から試料ラック801を受け取る第2ラック搬入機構819と、試料の分注が行われるサンプリングエリアを含むとともに試料の分注開始まで試料ラック801を待機可能である第2分注ライン818と、試料分注後の試料ラック801を搬送ライン805に搬送する第2ラックハンドリング機構820を備える。 The transport system of the second blood coagulation analyzer 817 arranged along the transport line 804 is also accommodated in the sample rack 801 from the transport line 804 in the same manner as the transport system of the first blood coagulation analyzer 812 described above. A reading unit (second blood coagulation analysis unit) 821 for collating analysis request information for a sample, a second rack carry-in mechanism 819 for receiving the sample rack 801 from the transfer line 804, and a sampling area where the sample is dispensed And a second rack handling mechanism 820 that transports the sample rack 801 after sample dispensing to the transport line 805. The second rack handling mechanism 820 transports the sample rack 801 after sample dispensing to the transport line 805.
 また全体を通して、制御部822は、上述した試料ラック801の搬送動作や試料、試薬の分注動作、読取った情報に基づく試料ラック801の振り分け、搬入・搬出の動作等、検出結果に基づく血液凝固時間や目的成分の濃度の演算などのデータ処理動作等、自動分析装置800を構成する種々の構成の動作や条件設定等の制御を実施する。また、制御部822には、分析条件に関する各種データや、オペレータからの指示等が入力されるキーボード等の入力部825と、入力された情報や試料、試薬などから読取った情報、検出結果に関する情報等を記憶する記憶部823、検出結果、及び自動分析装置800の各種操作に係るグラフィカルユーザーインターフェース(GUI)等を表示する出力部824と接続されている。なお、本図において制御部822は各々の構成部に接続され、自動分析装置の全体を制御するものとしたが、構成部ごとに各々独立した制御部を備えるように構成することもできる。 Also, throughout, the control unit 822 performs the blood coagulation based on the detection results such as the above-described transport operation of the sample rack 801, the dispensing operation of the sample and the reagent, the sorting of the sample rack 801 based on the read information, and the loading / unloading operation. Control of various configuration operations, condition settings, and the like constituting the automatic analyzer 800, such as data processing operations such as calculation of time and concentration of target components, is performed. Further, the control unit 822 includes various data related to analysis conditions, an input unit 825 such as a keyboard for inputting instructions from the operator, information read from input information, samples, reagents, and information about detection results. Are connected to an output unit 824 that displays a storage unit 823 that stores information, a detection result, and a graphical user interface (GUI) related to various operations of the automatic analyzer 800. In this figure, the control unit 822 is connected to each component unit and controls the entire automatic analyzer. However, each component unit may be provided with an independent control unit.
 ここで、第1血液凝固分析部812における反応容器廃棄部828、反応容器移送機構830、第2血液凝固分析部817における反応容器廃棄部829、反応容器移送機構831の構成において、上述した第1~第5の実施の形態を適用することができる。 Here, in the configuration of the reaction container discarding unit 828, the reaction container transfer mechanism 830 in the first blood coagulation analysis unit 812, the reaction container discarding unit 829 in the second blood coagulation analysis unit 817, and the reaction container transfer mechanism 831, the first described above. The fifth embodiment can be applied.
 モジュールタイプの自動分析装置の場合、単に時間あたりの処理能力がスタンドアローンタイプのものよりも高いため、使用済みの反応容器が廃棄される量も多くなり、上述した課題がより顕著になる。そこで、このように構成することにより、モジュールタイプの自動分析装置においても、使用済みの反応容器の蓄積を均等化して集中することを防ぎ、かつ、分析精度を高く保つことができる。 In the case of a module type automatic analyzer, the processing capacity per unit time is higher than that of a stand-alone type, so that the amount of used reaction containers is discarded, and the above-described problems become more prominent. Therefore, with this configuration, even in the module type automatic analyzer, accumulation of used reaction vessels can be prevented from being concentrated and concentrated, and analysis accuracy can be kept high.
 次に、図9を用いて上述した血液凝固分析部の構成についてより詳細に説明する。図9において、試料ラック上の試料容器内に収容される試料を、測定に使用される反応容器901に分注する試料分注機構917と、このサンプル分注動作の対象となる反応容器901を配置できる試料分注ポート916と、待機状態の反応容器を収容する待機ポート910を複数備える待機ユニット911と、反応容器901が複数個ストックされる反応容器マガジン902と、反応容器901を移送し、必要に応じて各ポジションへの搬入、搬出を行う反応容器移送機構912と、37℃に温度調整され、血液凝固時間の測定の直前に試料や希釈等の処理が施された前処理済みの試料を昇温するプリヒートポート908を複数個備えたプリヒートユニット909と、同じく37℃に温度調整され血液凝固時間を測定する分析ポート910を複数個備えた分析ユニット907と、試薬が封入された試薬ボトルが内蔵されている試薬カセット903が円周状に配置され、約10℃に温度調整された試薬ディスク904と、試薬カセット供給部913に配置された試薬カセット903を試薬ディスク904に移送する試薬カセット移送機構915と、試薬ディスク904に移送された試薬カセット903の測定項目や使用期限等が入力されたバーコードやRFID等の媒体から試薬情報を読み取る試薬情報読取部905と、試薬カセット移送機構915により試薬ディスク904から取り出され、使用済みの試薬カセット903を収納する試薬カセット収納部914と、使用済みの反応容器901を廃棄する反応容器廃棄部923と、試料分注機構を洗浄する試料分注機構洗浄部918と、第1試薬分注機構を洗浄する第1試薬機構洗浄部920と、第2試薬分注機構921を洗浄する第2試薬分注機構洗浄部922と、を備えている。 Next, the configuration of the blood coagulation analyzer described above will be described in more detail with reference to FIG. In FIG. 9, a sample dispensing mechanism 917 for dispensing a sample accommodated in a sample container on a sample rack into a reaction container 901 used for measurement, and a reaction container 901 that is a target of this sample dispensing operation. A sample dispensing port 916 that can be disposed, a standby unit 911 that includes a plurality of standby ports 910 that accommodate reaction vessels in a standby state, a reaction vessel magazine 902 in which a plurality of reaction vessels 901 are stocked, and a reaction vessel 901 are transferred, A reaction container transfer mechanism 912 that carries in and out of each position as required, and a pretreated sample that has been temperature adjusted to 37 ° C. and subjected to processing such as sample and dilution immediately before the measurement of blood coagulation time A preheat unit 909 having a plurality of preheat ports 908 for raising the temperature of the sample, and an analysis port 910 for measuring the blood coagulation time by adjusting the temperature to 37 ° C. A plurality of analysis units 907, a reagent cassette 903 containing a reagent bottle in which a reagent is sealed are arranged circumferentially, a reagent disk 904 whose temperature is adjusted to about 10 ° C., and a reagent cassette supply unit 913 A reagent cassette transfer mechanism 915 for transferring the reagent cassette 903 arranged on the reagent disk 904 and a medium such as a barcode or RFID into which the measurement items and expiration date of the reagent cassette 903 transferred to the reagent disk 904 are input. A reagent information reading unit 905 for reading reagent information, a reagent cassette storage unit 914 for storing a used reagent cassette 903 taken out from a reagent disk 904 by a reagent cassette transfer mechanism 915, and a reaction for discarding a used reaction container 901 Container disposal unit 923 and sample dispensing mechanism washing unit 91 for washing the sample dispensing mechanism When provided with a first reagent system cleaning unit 920 for cleaning the first reagent dispensing system, a second reagent dispensing mechanism cleaning unit 922 for cleaning the second reagent dispensing mechanism 921, a.
 血液凝固時間の測定は、検出された光のデータに基づいて制御部922において演算により求められる。 The measurement of the blood coagulation time is obtained by calculation in the control unit 922 based on the detected light data.
 ここで、本図における反応容器廃棄部923、反応容器移送機構912の構成において、 上述した第1~第5の実施の形態を適用することができる。 Here, the first to fifth embodiments described above can be applied to the configuration of the reaction container discarding unit 923 and the reaction container transfer mechanism 912 in the drawing.
 モジュールタイプの自動分析装置の場合、単に時間あたりの処理能力がスタンドアローンタイプのものよりも高いため、使用済みの反応容器が廃棄される量も多くなり、上述した課題がより顕著になる。そこで、このように構成することにより、モジュール型の自動分析装置においても、使用済みの反応容器の蓄積を均等化して集中することを防ぎ、かつ、分析精度を高く保つことができる
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
In the case of a modular type automatic analyzer, the processing capacity per hour is higher than that of a stand-alone type, so that the amount of used reaction containers is discarded, and the above-mentioned problem becomes more prominent. Thus, by configuring in this way, even in a modular automatic analyzer, accumulation of used reaction vessels can be prevented from being concentrated and concentrated, and analysis accuracy can be kept high. Is not limited to the above-described embodiments, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Also, a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等はプロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記憶媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files for realizing each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, or a DVD.
 また、情報線や制御線は説明上必要と考えられるものを示しており、製品上必ずしも全ての情報線や制御線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてよい。 In addition, information lines and control lines indicate what is considered necessary for explanation, and not all information lines and control lines on the product are necessarily shown. In practice, it can be considered that almost all the components are connected to each other.
100・・・自動分析装置
101・・・試料容器
102・・・試料ディスク
103・・・試薬容器
104・・・試薬ディスク
105・・・試料分注機構
106・・・試料分注機構洗浄部
107、203、303、403、503、603・・・反応容器
108・・・反応容器設置部
109、202、302、402、502、602・・・反応容器移送機構
110・・・反応容器供給部
111・・・検出ユニット
112・・・試薬分注機構
113・・・試薬分注機構洗浄部
114・・・反応容器廃棄部
115・・・操作部
116・・・制御部
117・・・記憶部
118・・・インターフェイス
119・・・試料分注ポート
201、301、401、501、601・・・収納ボックス
204、306、406、506、606・・・反応容器移送機構の搬送路
304、504、604・・・開口部
305、405、505、605・・・蓋部
404・・・溝状の開口部
507・・・仕切り部材
607・・・検知器
800・・・自動分析装置(モジュールタイプ)
801・・・試料ラック
802・・・ラック供給部
803・・・ラック収納部
804・・・搬送ライン(送り方向)
805・・・搬送ライン(戻り方向)
806・・・ラック待機部
807・・・ラックハンドリング機構
808・・・ラック戻し機構
809・・・ラック振り分け機構
810・・・緊急試料ラック投入部
811・・・読取部(搬送ライン)
812・・・第1血液凝固分析部
813・・・第1分注ライン
814・・・第1ラック搬入機構
815・・・第1ラックハンドリング機構
816・・・読取部(第1血液凝固分析部)
817・・・第2血液凝固分析部
818・・・第2分注ライン
819・・・第2ラック搬入機構
820・・・第2ラックハンドリング機構
821・・・読取部(第2血液凝固分析部)
822・・・制御部
823・・・記憶部
824・・・出力部
825・・・入力部
826・・・第1分析ユニット
827・・・第2分析ユニット
828、829・・・反応容器廃棄部
830、831・・・反応容器移送部
901・・・反応容器
902・・・反応容器マガジン
903・・・試薬カセット
904・・・試薬ディスク
905・・・試薬情報読取部
906・・・分析ポート
907・・・分析ユニット
908・・・プリヒートポート
909・・・プリヒートユニット
910・・・待機ポート
911・・・待機ユニット
912・・・反応容器移送機構
913・・・試薬カセット供給部
914・・・試薬カセット収納部
915・・・試薬カセット移送機構
916・・・試料分注ポート
917・・・試料分注機構
918・・・試料分注機構洗浄部
919・・・第1試薬分注機構
920・・・第1試薬分注機構洗浄部
921・・・第2試薬分注機構
922・・・第2試薬分注機構洗浄部
923・・・反応容器廃棄部
DESCRIPTION OF SYMBOLS 100 ... Automatic analyzer 101 ... Sample container 102 ... Sample disc 103 ... Reagent container 104 ... Reagent disc 105 ... Sample dispensing mechanism 106 ... Sample dispensing mechanism washing | cleaning part 107 , 203, 303, 403, 503, 603... Reaction vessel 108... Reaction vessel installation unit 109, 202, 302, 402, 502, 602... Reaction vessel transfer mechanism 110. ... Detection unit 112 ... Reagent dispensing mechanism 113 ... Reagent dispensing mechanism cleaning unit 114 ... Reaction container discarding unit 115 ... Operating unit 116 ... Control unit 117 ... Storage unit 118 ... Interface 119 ... Sample dispensing ports 201, 301, 401, 501, 601 ... Storage boxes 204, 306, 406, 506, 606 ... Reaction vessels Conveying paths 304, 504, 604 of the feeding mechanism: openings 305, 405, 505, 605 ... lid 404 ... groove-shaped opening 507 ... partition member 607 ... detector 800 ..Automatic analyzer (module type)
801 ... Sample rack 802 ... Rack supply unit 803 ... Rack storage unit 804 ... Conveying line (feeding direction)
805 ... Conveying line (return direction)
806: Rack standby unit 807 ... Rack handling mechanism 808 ... Rack return mechanism 809 ... Rack sorting mechanism 810 ... Emergency sample rack loading unit 811 ... Reading unit (conveyance line)
812... First blood coagulation analyzer 813... First dispensing line 814... First rack carry-in mechanism 815... First rack handling mechanism 816. )
817 ... second blood coagulation analyzer 818 ... second dispensing line 819 ... second rack carry-in mechanism 820 ... second rack handling mechanism 821 ... reader (second blood coagulation analyzer) )
822 ... Control unit 823 ... Storage unit 824 ... Output unit 825 ... Input unit 826 ... First analysis unit 827 ... Second analysis unit 828, 829 ... Reaction vessel disposal unit 830, 831 ... Reaction container transfer part 901 ... Reaction container 902 ... Reaction container magazine 903 ... Reagent cassette 904 ... Reagent disc 905 ... Reagent information reading part 906 ... Analysis port 907 ... Analysis unit 908 ... Preheat port 909 ... Preheat unit 910 ... Standby port 911 ... Standby unit 912 ... Reaction container transfer mechanism 913 ... Reagent cassette supply unit 914 ... Reagent Cassette storage unit 915... Reagent cassette transfer mechanism 916... Sample dispensing port 917... Sample dispensing mechanism 918. 919 ... First reagent dispensing mechanism 920 ... First reagent dispensing mechanism washing unit 921 ... Second reagent dispensing mechanism 922 ... Second reagent dispensing mechanism washing unit 923 ... Reaction container Waste department

Claims (10)

  1.  試料を反応容器に分注する試料分注機構と、
     試薬を反応容器に分注する試薬分注機構と、
     前記反応容器を保持する反応容器保持部と、当該保持された反応容器に収容された試料と試薬との混合液に光を照射する光源と、当該照射された光を検出する検出部と、から構成される測定部と、
     当該測定が終了した反応容器が廃棄される反応容器廃棄部と、
     当該反応容器を、前記反応容器保持部から前記反応容器廃棄部へ移送し、当該反応容器廃棄部へ廃棄する反応容器移送機構と、
     前記反応容器移送機構の動作を制御する制御部と、を備え、
     前記制御部は、
     前記反応容器廃棄部における前記反応容器の廃棄が所定の位置で連続して行われないように、前記反応容器移送機構の動作を制御することを特徴とする自動分析装置。
    A sample dispensing mechanism for dispensing a sample into a reaction vessel;
    A reagent dispensing mechanism for dispensing reagents into reaction vessels;
    A reaction vessel holding unit for holding the reaction vessel, a light source for irradiating light to a mixed solution of a sample and a reagent contained in the held reaction vessel, and a detection unit for detecting the emitted light. A measuring unit configured;
    A reaction container discarding section for discarding the reaction container for which the measurement has been completed;
    A reaction container transfer mechanism for transferring the reaction container from the reaction container holding section to the reaction container disposal section and discarding the reaction container to the reaction container disposal section;
    A control unit for controlling the operation of the reaction vessel transfer mechanism,
    The controller is
    An automatic analyzer that controls the operation of the reaction container transfer mechanism so that the reaction container is not continuously discarded at a predetermined position in the reaction container discarding section.
  2.  請求項1に記載された自動分析装置であって、
     前記反応容器廃棄部は、当該廃棄された反応容器を収納する収納部と、当該収納部の上面を覆うように形成された蓋部とを有し、
     当該蓋部には、当該反応容器を前記収納部へ搬入できる開口部が複数形成され、
     前記制御部は、
     当該反応容器の廃棄が当該複数の開口部のうちのいずれかの開口部を介して連続して行われないように、前記反応容器移送機構の動作を制御することを特徴とする自動分析装置。
    An automatic analyzer according to claim 1, wherein
    The reaction vessel discarding unit has a storage unit that stores the discarded reaction vessel, and a lid formed to cover the upper surface of the storage unit,
    The lid is formed with a plurality of openings through which the reaction container can be carried into the storage unit,
    The controller is
    An automatic analyzer that controls the operation of the reaction container transfer mechanism so that the reaction container is not continuously discarded through any one of the plurality of openings.
  3.  請求項1に記載された自動分析装置であって、
     前記反応容器廃棄部は、当該廃棄された反応容器を収納する収納部と、当該収納部の上面を覆うように形成された蓋部とを有し、
     当該蓋部には、当該反応容器を前記収納部へ搬入できる廃棄ポイントを複数含むように単一の開口部が形成され、
     前記制御部は、
     当該反応容器の廃棄が前記開口部における複数の廃棄ポイントのうちのいずれかの廃棄ポイントを介して連続して行われないように、前記反応容器移送機構の動作を制御することを特徴とする自動分析装置。
    An automatic analyzer according to claim 1, wherein
    The reaction vessel discarding unit has a storage unit that stores the discarded reaction vessel, and a lid formed to cover the upper surface of the storage unit,
    A single opening is formed in the lid so as to include a plurality of disposal points at which the reaction vessel can be carried into the storage unit.
    The controller is
    Automatic operation characterized by controlling the operation of the reaction container transfer mechanism so that the reaction container is not continuously disposed through any one of the plurality of disposal points in the opening. Analysis equipment.
  4.  請求項2に記載された自動分析装置であって、
     前記収納部には、さらに、前記反応容器が収納されるスペースを複数に区切るように仕切り部材が設けられ、
     当該蓋部に形成された複数の開口部のそれぞれは、当該区切られた複数のスペースのうちのいずれかに前記反応容器を搬入できるように構成され、
     前記制御部は、
     前記測定部における測定結果に基づいて、
     当該収納部において区切られたスペースのうちのいずれのスペースに前記反応容器を収納するかを決定し、
     当該決定されたスペースに前記反応容器を収納するように、当該蓋部に形成された開口部のうちのいずれかの開口部にて前記反応容器の廃棄を行うように前記反応容器移送機構の動作を制御することを特徴とする自動分析装置。
    An automatic analyzer according to claim 2, wherein
    The storage part is further provided with a partition member so as to divide the space in which the reaction container is stored into a plurality of parts,
    Each of the plurality of openings formed in the lid is configured to be able to carry the reaction container into any one of the plurality of divided spaces,
    The controller is
    Based on the measurement result in the measurement unit,
    Determining in which of the spaces partitioned in the storage unit the reaction container is stored;
    Operation of the reaction container transfer mechanism so as to discard the reaction container at any one of the openings formed in the lid so that the reaction container is accommodated in the determined space. An automatic analyzer characterized by controlling.
  5.  請求項4に記載された自動分析装置であって、
     前記測定部は前記反応容器に収容された混合液の血液凝固分析を行い、
     前記制御部は、
     前記測定部における測定結果に基づいて、予め定められた時間内に血液凝固反応が終了したか否かを判断し、
     当該判断の結果に基づいて、
     当該収納部において区切られたスペースのうちのいずれのスペースに前記反応容器を収納するかを決定することを特徴とする自動分析装置。
    An automatic analyzer according to claim 4, wherein
    The measurement unit performs blood coagulation analysis of the mixed solution stored in the reaction container,
    The controller is
    Based on the measurement result in the measurement unit, determine whether the blood coagulation reaction is completed within a predetermined time,
    Based on the result of the decision,
    An automatic analyzer that determines in which of the spaces partitioned in the storage unit the reaction container is stored.
  6.  請求項5に記載された自動分析装置であって、
     前記収納部は、前記仕切り部材によって第1のスペースと第2のスペースとに区切られ、
     前記制御部は、
     当該判断において、
     予め定められた時間内に血液凝固反応が終了したと判断された場合には、当該収納部において区切られた第1のスペースに前記反応容器を収納し、
     予め定められた時間内に血液凝固反応が終了していないと判断された場合には、当該収納部において区切られた第2のスペースに前記反応容器を収納するように、前記反応容器移送機構の動作を制御することを特徴とする自動分析装置。
    An automatic analyzer according to claim 5, wherein
    The storage portion is divided into a first space and a second space by the partition member,
    The controller is
    In that judgment,
    When it is determined that the blood coagulation reaction is completed within a predetermined time, the reaction container is stored in the first space partitioned in the storage unit,
    When it is determined that the blood coagulation reaction has not been completed within a predetermined time, the reaction container transfer mechanism is configured to store the reaction container in the second space partitioned by the storage unit. An automatic analyzer characterized by controlling its operation.
  7.  請求項1に記載された自動分析装置であって、
     前記反応容器廃棄部は、当該廃棄された反応容器を収納する収納部と、当該収納部の上面を覆うように形成された蓋部とを有し、
     当該蓋部には、当該反応容器を前記収納部へ搬入できる開口部が複数形成され、
     当該収納部には、当該収納された反応容器を検知する検知器が複数設けられ、
     前記制御部は、
     当該検知器による反応容器の検知状況に基づいて、
     前記反応容器移送機構の動作を制御することを特徴とする自動分析装置。
    An automatic analyzer according to claim 1, wherein
    The reaction vessel discarding unit has a storage unit that stores the discarded reaction vessel, and a lid formed to cover the upper surface of the storage unit,
    The lid is formed with a plurality of openings through which the reaction container can be carried into the storage unit,
    The storage unit is provided with a plurality of detectors for detecting the stored reaction container,
    The controller is
    Based on the detection status of the reaction vessel by the detector,
    An automatic analyzer for controlling an operation of the reaction container transfer mechanism.
  8.  請求項7に記載された自動分析装置であって、
     当該複数の検知器のそれぞれは、当該蓋部に形成された複数の開口部のそれぞれに対応するように設けられ、
     当該検知器のうちの少なくともいずれかの検知器が反応容器を検知した場合、
     前記制御部は、前記反応容器の廃棄が、前記反応容器を検知した検知器に対応する開口部を介して連続して行われないように、前記反応容器移送機構の動作を制御することを特徴とする自動分析装置。
    An automatic analyzer according to claim 7,
    Each of the plurality of detectors is provided so as to correspond to each of the plurality of openings formed in the lid,
    If at least one of the detectors detects a reaction vessel,
    The control unit controls the operation of the reaction container transfer mechanism so that the reaction container is not continuously discarded through an opening corresponding to a detector that detects the reaction container. An automatic analyzer.
  9.  請求項8に記載された自動分析装置であって、
     前記制御部は、
     当該複数の検知器のそれぞれについての位置の情報と、対応する開口部において廃棄が行われた時刻に関する情報を記憶し、
     当該検知器のうちの少なくとも2つ以上の検知器が反応容器を検知した場合には、当該検知器のそれぞれについて、当該記憶された、対応する開口部において廃棄が行われた時刻と、現在の時刻との乖離を求め、当該求めた乖離が大きい方の検知器に対応する開口部において前記反応容器を廃棄するように、前記反応容器移送機構の動作を制御することを特徴とする自動分析装置。
    An automatic analyzer according to claim 8, comprising:
    The controller is
    Stores information on the position of each of the plurality of detectors and information on the time at which the corresponding opening was discarded,
    If at least two of the detectors detect a reaction vessel, for each of the detectors, the stored time at which the corresponding opening was discarded and the current An automatic analyzer characterized by obtaining a deviation from time and controlling an operation of the reaction container transfer mechanism so as to discard the reaction container at an opening corresponding to a detector having a larger obtained deviation. .
  10.  試料を反応容器に分注する試料分注機構と、
     試薬を反応容器に分注する試薬分注機構と、
     前記反応容器を保持する反応容器保持部と、当該保持された反応容器に収容された試料と試薬との混合液に光を照射する光源と、当該照射された光を検出する検出部と、から構成される測定部と、
     当該測定が終了した反応容器が廃棄される反応容器廃棄部と、
     当該反応容器を、前記反応容器保持部から前記反応容器廃棄部へ移送し、当該反応容器廃棄部へ廃棄する反応容器移送機構と、
     前記反応容器移送機構の動作を制御する制御部と、を備えた自動分析装置における分析方法であって、
     前記制御部は、
     前記反応容器廃棄部における前記反応容器の廃棄が所定の位置で連続して行われないように、前記反応容器移送機構の動作を制御することを特徴とする分析方法。
    A sample dispensing mechanism for dispensing a sample into a reaction vessel;
    A reagent dispensing mechanism for dispensing reagents into reaction vessels;
    A reaction vessel holding unit for holding the reaction vessel, a light source for irradiating light to a mixed solution of a sample and a reagent contained in the held reaction vessel, and a detection unit for detecting the emitted light. A measuring unit configured;
    A reaction container discarding section for discarding the reaction container for which the measurement has been completed;
    A reaction container transfer mechanism for transferring the reaction container from the reaction container holding section to the reaction container disposal section and discarding the reaction container to the reaction container disposal section;
    A control unit for controlling the operation of the reaction container transfer mechanism, and an analysis method in an automatic analyzer comprising:
    The controller is
    An analysis method characterized by controlling an operation of the reaction container transfer mechanism so that the reaction container is not continuously discarded at a predetermined position in the reaction container discarding section.
PCT/JP2016/071948 2015-09-17 2016-07-27 Automated analysis device WO2017047240A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680050816.2A CN108027380B (en) 2015-09-17 2016-07-27 Automatic analyzer
JP2017539747A JP6698665B2 (en) 2015-09-17 2016-07-27 Automatic analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-183539 2015-09-17
JP2015183539 2015-09-17

Publications (1)

Publication Number Publication Date
WO2017047240A1 true WO2017047240A1 (en) 2017-03-23

Family

ID=58288804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071948 WO2017047240A1 (en) 2015-09-17 2016-07-27 Automated analysis device

Country Status (3)

Country Link
JP (1) JP6698665B2 (en)
CN (2) CN112129963A (en)
WO (1) WO2017047240A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019152654A1 (en) * 2018-01-31 2019-08-08 Laboratory Corporation Of America Holdings Sample receiving system and methods
JP2019174395A (en) * 2018-03-29 2019-10-10 シスメックス株式会社 Specimen measurement system and rack conveyance method
WO2020075818A1 (en) * 2018-10-10 2020-04-16 株式会社Lsiメディエンス Cuvette discarding unit
JP2020101465A (en) * 2018-12-21 2020-07-02 シスメックス株式会社 Specimen measurement device and specimen measurement method
CN111551707A (en) * 2020-07-13 2020-08-18 宁波海壹生物科技有限公司 Cup losing device for chemiluminescence immunoassay analyzer
WO2022239431A1 (en) 2021-05-10 2022-11-17 株式会社日立ハイテク Automatic analysis device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020235134A1 (en) * 2019-05-21 2020-11-26 株式会社日立ハイテク Automatic analysis device
US20220178832A1 (en) * 2019-07-02 2022-06-09 Horiba Advanced Techno, Co., Ltd. Biological sample analysis device and biological sample analysis method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221866A (en) * 1989-02-22 1990-09-04 Olympus Optical Co Ltd Automatic analyzing instrument
JP2003083986A (en) * 2001-09-12 2003-03-19 Olympus Optical Co Ltd Disposal treatment apparatus of disposable part in automatic analysis apparatus
JP2003294772A (en) * 2002-03-29 2003-10-15 Aloka Co Ltd Dispensing device
JP2008039674A (en) * 2006-08-09 2008-02-21 Canon Inc Storage method of pipette tip
JP2013250218A (en) * 2012-06-04 2013-12-12 Hitachi High-Technologies Corp Autoanalyzer

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03170062A (en) * 1989-11-28 1991-07-23 Seiko Instr Inc Automatic chemical treatment device
JPH0477669A (en) * 1990-07-20 1992-03-11 Nittec Co Ltd Automatic analyzer
JP3162176B2 (en) * 1992-05-12 2001-04-25 オリンパス光学工業株式会社 Storage device for disposable chips
CA2173862C (en) * 1993-10-21 2006-10-31 Peter Zaun Apparatus and method for transfer of a fluid sample
JP2007017211A (en) * 2005-07-06 2007-01-25 Juki Corp Nozzle tip discarding device and dispenser
US20120020838A1 (en) * 2009-04-09 2012-01-26 Hitachi High-Technologies Corporation Automatic analysis device and dispensing device
ES2733548T3 (en) * 2010-02-09 2019-11-29 Cytena Gmbh Liquid material discharge device containing particles
HU228710B1 (en) * 2011-08-22 2013-05-28 Diagon Kft Method and apparatus for feeding cuvetta
WO2013187210A1 (en) * 2012-06-11 2013-12-19 株式会社 日立ハイテクノロジーズ Automatic analysis apparatus
US10203346B2 (en) * 2013-10-22 2019-02-12 Hitachi High-Technologies Corporation Automatic analysis device
JP6309307B2 (en) * 2014-02-26 2018-04-11 キヤノンメディカルシステムズ株式会社 Automatic analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02221866A (en) * 1989-02-22 1990-09-04 Olympus Optical Co Ltd Automatic analyzing instrument
JP2003083986A (en) * 2001-09-12 2003-03-19 Olympus Optical Co Ltd Disposal treatment apparatus of disposable part in automatic analysis apparatus
JP2003294772A (en) * 2002-03-29 2003-10-15 Aloka Co Ltd Dispensing device
JP2008039674A (en) * 2006-08-09 2008-02-21 Canon Inc Storage method of pipette tip
JP2013250218A (en) * 2012-06-04 2013-12-12 Hitachi High-Technologies Corp Autoanalyzer

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169165B2 (en) 2018-01-31 2021-11-09 Laboratory Corporation Of America Holdings Sample supply system and methods of supplying samples
US11709174B2 (en) 2018-01-31 2023-07-25 Laboratory Corporation Of America Holdings Sample sorting system and methods of sorting samples
US11709173B2 (en) 2018-01-31 2023-07-25 Laboratory Corporation Of America Holdings Sample supply system and methods of supplying samples
US11372011B2 (en) 2018-01-31 2022-06-28 Laboratory Corporation Of America Holdings Sample receiving system and methods
US11346851B2 (en) 2018-01-31 2022-05-31 Laboratory Corporation Of America Holdings Sample sorting system and methods of sorting samples
WO2019152654A1 (en) * 2018-01-31 2019-08-08 Laboratory Corporation Of America Holdings Sample receiving system and methods
JP2019174395A (en) * 2018-03-29 2019-10-10 シスメックス株式会社 Specimen measurement system and rack conveyance method
JP7029334B2 (en) 2018-03-29 2022-03-03 シスメックス株式会社 Specimen measurement system, rack transport method
CN112805570A (en) * 2018-10-10 2021-05-14 美迪恩斯生命科技株式会社 Cuvette discard unit
JPWO2020075818A1 (en) * 2018-10-10 2021-09-02 株式会社Lsiメディエンス Cuvette disposal unit
WO2020075818A1 (en) * 2018-10-10 2020-04-16 株式会社Lsiメディエンス Cuvette discarding unit
JP2020101465A (en) * 2018-12-21 2020-07-02 シスメックス株式会社 Specimen measurement device and specimen measurement method
CN111551707B (en) * 2020-07-13 2020-11-03 宁波海壹生物科技有限公司 Cup losing device for chemiluminescence immunoassay analyzer
CN111551707A (en) * 2020-07-13 2020-08-18 宁波海壹生物科技有限公司 Cup losing device for chemiluminescence immunoassay analyzer
WO2022239431A1 (en) 2021-05-10 2022-11-17 株式会社日立ハイテク Automatic analysis device

Also Published As

Publication number Publication date
CN112129963A (en) 2020-12-25
CN108027380A (en) 2018-05-11
CN108027380B (en) 2020-10-09
JPWO2017047240A1 (en) 2018-07-05
JP6698665B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
WO2017047240A1 (en) Automated analysis device
CN110058030B (en) Automatic analyzer
CN107831324B (en) Automated diagnostic analyzer with rear accessible track system and related methods
CN108700603B (en) Automatic analyzer
JP6602873B2 (en) Automatic analyzer
WO2010090138A1 (en) Autoanalyzer and rack transfer method
JP2008039554A (en) Autoanalyzer
WO2017033641A1 (en) Automated analyzer
JP7325171B2 (en) Rack transportation method, sample measurement system
JP6550152B2 (en) Automatic analyzer
EP2077445A1 (en) Method for identifying abnormal state, analytical apparatus, and reagent
CN115485566A (en) Automatic analyzer and maintenance method in automatic analyzer
EP3779465B1 (en) Specimen measurement system and rack conveyance method
EP3779466B1 (en) Specimen measurement system and rack conveyance method
JPWO2008044313A1 (en) Abnormality identification method and analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017539747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846113

Country of ref document: EP

Kind code of ref document: A1