WO2017047124A1 - 空気調和機 - Google Patents

空気調和機 Download PDF

Info

Publication number
WO2017047124A1
WO2017047124A1 PCT/JP2016/055227 JP2016055227W WO2017047124A1 WO 2017047124 A1 WO2017047124 A1 WO 2017047124A1 JP 2016055227 W JP2016055227 W JP 2016055227W WO 2017047124 A1 WO2017047124 A1 WO 2017047124A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity
air
detected
air conditioner
dehumidifying
Prior art date
Application number
PCT/JP2016/055227
Other languages
English (en)
French (fr)
Inventor
慎太郎 野村
悠 光田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201680013199.9A priority Critical patent/CN108027160A/zh
Publication of WO2017047124A1 publication Critical patent/WO2017047124A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification

Definitions

  • the present invention relates to an air conditioner, and more particularly to an air conditioner having functions of dehumidification and humidification.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-281725
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-68803
  • Patent Document 1 discloses a humidity control apparatus having a clean operation mode in which an operation of switching to a dehumidifying operation after repeating a humidifying operation under a predetermined condition is repeated a plurality of times.
  • Patent Document 2 performs humidity conditioning and air cleaning, and when the air cleanliness sensor detects a degree of contamination that requires an increase in the amount of air blown in the air cleaning portion, the humidity difference is ignored and the rotational speed of the blower is increased.
  • the dehumidifying operation or humidifying operation may be intermittently repeated in a short period of time depending on the conditions of the use environment.
  • the dehumidifying operation using the compressor when the dehumidifying operation is repeated, there is a possibility that the frequency of noise generation accompanying the operation sound of the compressor is increased.
  • An object of the present invention is to provide an air conditioner that can suppress a switching frequency when switching between a dehumidifying operation and a humidifying operation when adjusting the humidity of ambient air.
  • An air conditioner includes a humidifying unit that humidifies air and sends the humidified air to the outside, a dehumidifying unit that dehumidifies the air and sends the dehumidified air to the outside, a dehumidifying unit, and A blower for blowing air to the humidifying unit and a control unit for controlling the air conditioner are provided.
  • the controller stops the one operation after starting one of the humidifying operation for driving the humidifying unit while blowing with the blower and the dehumidifying operation for driving the dehumidifying unit while blowing with the blower, It is configured to perform a blowing operation by a blower and then perform the other of the humidifying operation and the dehumidifying operation.
  • the air conditioner further includes a humidity sensor that detects humidity around the air conditioner, and the control unit has a start humidity that is detected before starting one of the operations, When the humidity is equal to or higher than the target humidity for adjusting the humidity, the dehumidifying operation is started as one operation, and when the detected humidity is lower than the target humidity, the humidifying operation is started as one operation.
  • control unit is configured to perform a blowing operation by a blower for a predetermined time, and to determine the humidity detected by the humidity sensor at the predetermined time as the starting humidity.
  • control unit when one of the operations is stopped and when the blowing operation by the blower is started, when the difference between the humidity detected by the humidity sensor and the target humidity is equal to or more than the first threshold during the blowing operation. Is configured to stop the blowing operation and start the other operation.
  • control unit determines that the difference between the detected humidity detected by the humidity sensor and the target humidity is second when a predetermined time has elapsed since the start of the air blowing operation by the blower after the one operation is stopped. When it is within the threshold range, the blower operation is stopped and the other operation is started.
  • the air conditioner further includes a brightness sensor that detects brightness around the air conditioner, and the control unit is configured to determine the target humidity based on the detected brightness and the ambient humidity. Is done.
  • control unit is configured to determine the target humidity based on the detected brightness, the ambient humidity, and the ambient temperature of the air conditioner.
  • the switching frequency is suppressed when the dehumidifying operation and the humidifying operation are switched when the ambient air is conditioned.
  • FIG. 1 is an external view of an air conditioner 100 according to Embodiment 1.
  • FIG. It is a figure which shows schematically the internal structure of the air conditioner 100 of FIG. It is a figure which shows the external appearance of the operation part 18 which concerns on embodiment of this invention. It is a figure which shows the external appearance of the display part 19 which concerns on embodiment of this invention. It is a figure which shows typically the structure of the controller 30 and peripheral part which concern on embodiment of this invention. It is a process flowchart in "automatic automatic driving” concerning an embodiment of the invention. It is a figure which shows an example of the table which concerns on this Embodiment. It is a figure which shows typically the change of the humidity detected during the "automatic automatic driving
  • FIG. 14 is a process flowchart in “automatic automatic driving” according to the third embodiment.
  • FIG. 10 illustrates an example of a table according to the third embodiment. 10 is a process flowchart in a specific mode according to the fourth embodiment.
  • FIG. 16 illustrates an example of a table according to the fourth embodiment.
  • FIG. 16 illustrates an example of a table according to the fourth embodiment.
  • FIG. 1 is an external view of an air conditioner 100 according to the first embodiment.
  • FIG. 2 is a diagram schematically showing the internal configuration of the air conditioner 100 of FIG.
  • the air conditioner 100 includes a housing as shown in FIGS. 1 and 2.
  • the housing includes a front panel 11A and a back panel 11B.
  • a front panel 11A of the housing is provided with a blower outlet 12B and a sensor unit 42 including various sensors, and a blower outlet 12A and a blowout louver 12C are provided on the upper surface of the housing.
  • the blowout louver 12C is attached to the housing so that the inclination of the blowout louver 12C can be changed in order to adjust the wind direction from the blowout port 12A.
  • the front panel 11A is provided with a display unit 19 including LEDs (Light Emitting Diodes), and an operation unit 18 including switches, buttons, and the like is provided on the upper surface of the housing.
  • the operation unit 18 receives a user operation on the air conditioner 100.
  • a mounting portion for detachably mounting the water supply tank 10 and a mounting portion for detachably mounting the dehumidifying tank 13 are provided on the side surface of the housing.
  • the water supply tank 10 stores water for humidification.
  • the dehumidification tank 13 stores the water
  • the user can supply water for the humidifying operation to the air conditioner 100 by mounting the water supply tank 10. Further, the user removes the dehumidification tank 13, discards the water in the tank, and then attaches the dehumidification tank 13.
  • a blower 8 having a double-wing fan 8 ⁇ / b> C that generates an airflow inside is provided in the housing.
  • the two-wing fan 8C can flow an airflow to a duct (not shown).
  • a plurality of dampers are provided in the duct, and it is determined whether or not the airflow proceeds in the duct by opening and closing operations of the damper, and the airflow is discharged from the outlets 12A and 12B. It is determined whether or not to blow out.
  • an ion generation unit 38 that ionizes ambient air by high-pressure discharge is provided.
  • the ion generator 38 corresponds to an embodiment of the air purifier.
  • a suction port 11 ⁇ / b> C for taking outside air into the inside is provided at the center of the rear panel 11 ⁇ / b> B of the housing.
  • An air cleaning filter 4 is provided in the vicinity of the suction port 11C.
  • the air cleaning filter 4 removes foreign matters such as dust from the air passing through the suction port 11C.
  • a humidifying unit for humidifying the air taken in from the suction port 11C and a dehumidifying unit for dehumidifying the air taken in from the suction port 11C are provided in the housing.
  • the humidification unit includes a humidification rotor 5 having a humidification filter.
  • the humidifying unit further includes a heater (not shown) for generating high-temperature air, a humidifying tray 3 for storing water sent from the water supply tank 10, and the antibacterial agent 2 in association with the humidifying rotor 5.
  • the humidification rotor 5 is formed in a disk shape by a humidification filter which is a nonwoven fabric. Part of the humidification rotor 5 is immersed in the water in the humidification tray 3 and rotates while evaporating the water that has soaked in the humidification filter.
  • the heat generation by the heater may be used for evaporation, and the evaporation may be accelerated as the heat generation temperature becomes higher.
  • the air taken in from the suction port 11C due to the rotation of the both-wing fan 8C becomes an air flow including high-temperature and high-humidity air due to evaporation when passing through the humidification rotor 5, and becomes the humidifying portion side suction port.
  • the air is taken into the duct through 8B and blown out from the air outlets 12A and 12B.
  • the dehumidifying unit has a heat exchanger 9 and a compressor (not shown) that compresses the refrigerant.
  • the heat exchanger 9 includes a condenser 9A and an evaporator 9B.
  • the air taken in from the suction port 11 ⁇ / b> C by the rotation of the both blade fans 8 ⁇ / b> C passes through the heat exchanger 9. At this time, heat exchange is performed between the air and the heat exchanger 9. Moisture removed from the air by heat exchange is stored in the dehumidification tank 13 via the dew condensation water receiver 7.
  • the air that has passed through the heat exchanger 9 reaches the both blade fans 8C through the heat exchanger side suction port 8A, and then is taken into the duct by the both blade fans 8C and blown out from the outlets 12A and 12B to the outside. Is done.
  • the ion generation part 38 is provided in relation to the duct to the blower outlets 12A and 12B. Ions generated by the ion generator 38 are blown out from the outlets 12A and 12B through the duct along the air flow of the both blade fans 8C.
  • a drive device 6 and a controller 30 for driving each part are provided in the housing.
  • the controller 30 is electrically connected to the drive device 6.
  • the controller 30 generates a control signal according to the user's operation content received by the operation unit 18, and independently controls the operation of each unit via the driving device 6 by the generated control signal.
  • Air flow can be blown out.
  • the air conditioner 100 of the present embodiment fixes the louver to an inclination of 20 degrees rearward so that the air blown out from the upper air outlet 12A flows along the ceiling surface of the room. Air blown out from the front air outlet 12B flows along the floor surface and the wall surface of the room, and as a result, an air flow is generated so that the entire indoor space is wrapped. Accordingly, the humidity and temperature distribution in the indoor space can be made uniform during humidification or dehumidification.
  • FIG. 3 is a diagram showing an appearance of the operation unit 18 according to the embodiment of the present invention.
  • the operation unit 18 performs an automatic operation button 18 ⁇ / b> A that is operated to select “automatic operation”, an operation button 18 ⁇ / b> B that operates on / off of operation, and single operation of humidification or dehumidification.
  • Button 18C for instructing, button 18D for switching operation, button 18E for switching air volume, button 18F for switching the swing angle of blowing louver 12C, button 18G for setting a timer function, and air conditioner It includes a button 18H that is operated to dry the interior of 100.
  • the operation unit 18 is provided with a lamp that is turned on / off in conjunction with the operation of the above various buttons.
  • the lamp 18a and the operation button 18B for notifying whether or not the operation of the automatic automatic operation has been started by operating the button is blinked.
  • the lamp 18b for notifying the driving state according to the operation of the driving button 18B by lighting the lamp is included.
  • lamps 18c, 18d that are lit to notify the operating state and information set by operating the corresponding buttons in relation to each of the buttons 18C, 18D, 18E, 18F, 18G, and 18H described above.
  • 18e, 18f, 18g and 18h are configured by, for example, an LED (Light Emitting Diode) provided in the vicinity of the corresponding button.
  • FIG. 4 is a diagram showing an appearance of the display unit 19 according to the embodiment of the present invention.
  • the display unit 19 includes an area 19A for displaying the measured current humidity, an area 19B for displaying information indicating that ions are being emitted by the ion generation unit 38, and information indicating that the humidifying operation is being performed.
  • An area 19C for displaying, an area 19D for displaying information indicating that the dehumidifying operation is in progress, and an area 19E for indicating the cleanliness of the surrounding air by changing the display color or the like are included.
  • Information display in each of the areas 19A to 19E is realized by turning on / off the LEDs.
  • FIG. 5 is a diagram schematically showing the configuration of the controller 30 and peripheral portions according to the embodiment of the present invention.
  • the controller 30 is an example of a control unit for controlling the air conditioner 100.
  • the controller 30 includes a CPU (Central Processing Unit) 31, a timer 32 for measuring time, a memory 33 including volatile and nonvolatile storage devices, and an input / output I / F (input / output) for inputting / outputting to / from each external unit.
  • the controller 30 connects the operation unit 18 and the output unit 17 via the input / output I / F 31A.
  • the output unit 17 includes a display unit 19 and an audio output unit (not shown).
  • the controller 30 includes a humidifying drive unit 34 for driving the humidifying rotor 5 and driving the heater, a fan driving unit 35 for driving both blade fans 8C, and a compressor of the dehumidifying unit via the external I / F 31B.
  • a dehumidifying drive unit 36 for driving and a louver driving unit 37 for adjusting the opening / closing and inclination angle of the blowing louver 12C are connected.
  • the humidification drive unit 34 includes a motor for rotating the humidification rotor 5 and a current supply unit to the heater.
  • the humidification drive unit 34 includes a motor for rotating the humidification rotor 5 and a current supply unit to the heater.
  • CPU31 controls the rotation direction and rotation speed (rotation speed) of the humidification rotor 5 by controlling a motor using a control signal.
  • the CPU 31 controls the current supply unit to change the amount of current supplied to the heater and adjust the temperature of heat generated by the heater.
  • the fan driving unit 35 includes a motor for rotating the both-wing fan 8C.
  • the CPU 31 controls the motor with a control signal, thereby changing the rotational speed (the number of rotations) and the rotational direction of the both blade fans 8C to adjust the air flow rate.
  • the dehumidifying drive unit 36 includes a compressor motor for controlling the amount of refrigerant delivered for heat exchange.
  • the CPU 31 controls the rotation or reciprocation of the motor by the control signal, the CPU 31 adjusts the dehumidification amount by changing the amount of refrigerant delivered.
  • Louver driving unit 37 includes a stepping motor for driving blowing louver 12C. The CPU 31 controls the rotation direction and the rotation amount of the stepping motor by the control signal, thereby changing the opening degree and the inclination angle of the blowing louver 12C to adjust the blowing amount and the blowing direction.
  • the drive device 6 described above includes a humidification drive unit 34, a fan drive unit 35, a dehumidification drive unit 36, and a louver drive unit 37.
  • the CPU 31 of the controller 30 further connects an ion generation unit 38 via the external I / F 31B.
  • the CPU 31 controls the ion generator 38 to generate a predetermined type of ions for air purification.
  • the CPU 31 has a humidity sensor 41 for detecting the ambient humidity of the air conditioner 100, a temperature sensor 40 for detecting the ambient temperature, and an ambient brightness for detecting ambient humidity via the external I / F 31B.
  • An illuminance sensor 20 and an odor sensor 39 for detecting the degree of contamination of ambient air are included. These sensors constitute a sensor unit 42.
  • the illuminance sensor 20 is an example of a “brightness sensor”.
  • the odor sensor 39 is an example of a “cleanliness sensor” for detecting the degree of contamination of ambient air. It should be noted that a dust sensor may be used in place of the odor sensor 39 in order to detect dirt in the surrounding air, or a dust sensor may be used together with the odor sensor 39.
  • the CPU 31 drives the humidification rotor 5 while blowing air from the blowout port by the blower 8 and drives the heat exchanger 9 while blowing air by the blower 8.
  • the air blowing operation by the blower 8 is performed, and then the other operation of the humidifying operation and the dehumidifying operation is performed.
  • the air blowing operation is performed, so that it is possible to agitate the ambient air and eliminate the variation in the temperature and humidity of the ambient air after dehumidification or humidification and make it uniform Become.
  • the blowing louver 12C fixes the inclination to 20 degrees diagonally behind and blows air.
  • FIG. 6 is a process flowchart in the “automatic automatic driving” according to the embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a table according to the present embodiment.
  • the program according to the flowchart of FIG. 6 is stored in the memory 33 in advance, and the process is realized by the CPU 31 reading the program from the memory 33. 7 is stored in the memory 33 of the air conditioner 100 in advance.
  • the CPU 31 controls the humidification drive unit 34 and the fan drive unit 35 to send out the humidified air from the outlet. Specifically, the CPU 31 controls the humidification rotor 5 and the heater via the humidification drive unit 34 by proportional control so that the detected humidity becomes the target humidity based on the difference between the humidity detected by the humidity sensor 41 and the target humidity. .
  • the CPU 31 sends out air dehumidified by driving the heat exchanger 9 (more specifically, the compressor) and the blower 8 from the outlet.
  • the CPU 31 performs rotational / reciprocating motion of the compressor via the dehumidifying drive unit 36 by proportional control so that the detected humidity becomes the target humidity based on the difference between the detected humidity by the humidity sensor 41 and the target humidity. Control the number of times.
  • the CPU 31 drives the ion generator 38 and the air blower 8. As a result, while the ions are generated, the air containing the ions is blown (sent out) from the outlet.
  • the ion generating unit 38 is driven to send out air containing ions for air cleaning.
  • the present invention is not limited to this, and the ion generating unit 38 is driven. Instead, only the air blowing device 8 may be driven to perform air blowing (sending air not containing ions).
  • the CPU 31 starts “automatic automatic driving” in FIG. 6 according to the operation received from the operation unit 18.
  • step S3 CPU 31 performs a blowing operation by blowing device 8 for a predetermined time, for example, 30 seconds (step S3).
  • the ambient air is agitated by the air blowing operation for 30 seconds, so that the temperature and humidity of the ambient air are uniformized without unevenness.
  • the CPU 31 detects the ambient temperature based on the output of the temperature sensor 40 and the ambient humidity based on the output of the humidity sensor 41 during the 30 seconds.
  • the CPU 31 determines whether to perform the humidifying operation or the dehumidifying operation in accordance with the brightness detected by the illuminance sensor 20 based on the detected temperature and humidity, and the target humidity. Is determined (step S5).
  • the CPU 31 compares the level (current value) of the current signal from the illuminance sensor 20 with a threshold value, and determines whether the surrounding is bright or dark based on the comparison result.
  • the CPU 31 searches the table in FIG. 7 based on the determination result and the detected temperature and humidity, selects either the humidifying operation or the dehumidifying operation based on the search result, and adjusts the ambient air.
  • a target humidity is determined which is a target humidity for moistening. For example, when it is determined that the surrounding is “bright” and the detected temperature is 24 ° C. or higher and the detected humidity is 55% or higher, “dehumidifying operation” is selected and the target humidity is set to 55% or higher. (See arrow A in FIG. 7).
  • “humidification operation” is selected and the target humidity is less than 60%. (See arrow B in FIG. 7).
  • step S5 determines whether the humidification operation is selected based on the determination in step S5 ("humidification" in step S5).
  • CPU31 resets the time counter for measuring progress of the time which implements the below-mentioned ventilation operation while starting humidification operation (step S7).
  • a predetermined time is set in the time counter.
  • 3 hours are set in the time counter.
  • the set time is not limited to 3 hours.
  • the CPU 31 compares the humidity detected by the humidity sensor 41 with the target humidity during the humidifying operation, and determines whether or not the detected humidity has reached or exceeded the target humidity based on the comparison result (step S9). If the target humidity has not been reached (NO in step S9), the process returns to step S7, and the time counter is reset.
  • step S9 the CPU 31 stops the humidification operation by stopping the humidification rotor 5 and the heater via the humidification drive unit 34, and the value of the time counter The elapsed time is started by decrementing (3 hours) in synchronization with the timer 32 (step S11). Thereafter, the air blowing operation is performed while the elapsed time is measured. During the air blowing operation, the CPU 31 rotates the both-wing fan 8 ⁇ / b> C via the fan driving unit 35.
  • the CPU 31 determines whether or not the humidity detected by the humidity sensor 41 maintains a humidity close to the target humidity (steps S13 to S17).
  • “humidity close to the target humidity” indicates a humidity corresponding to a range of (target humidity ⁇ 101% to target humidity ⁇ 104%).
  • the CPU 31 compares the detected humidity of the humidity sensor 41 with the target humidity, and based on the comparison result, the detected humidity is equal to or higher than the target humidity (NO in step S13), but the first threshold (target humidity) If it is determined that the detected humidity is “humidity close to the target humidity”, it is within 3 hours from the start of the air blowing operation (in step S17). NO), the process returns to step S13, and the air blowing operation continues while the subsequent processing is repeated.
  • step S13 when the CPU 31 determines that the detected humidity is lower than the target humidity based on the comparison result between the detected humidity of the humidity sensor 41 and the target humidity (YES in step S13), the process returns to step S7, and the blowing operation is performed. It stops and the humidification operation is started again.
  • step S15 When it is determined that the detected humidity is higher than (target humidity ⁇ 105%) (YES in step S15), the process proceeds to step S21, and the CPU 31 stops the blowing operation and starts the dehumidifying operation (step S21). . At this time, the time counter is reset.
  • step S17 when the air blowing operation is performed for 3 hours while maintaining the detected humidity “humidity close to the target humidity” (NO in step S17), the CPU 31 compares the detected humidity of the humidity sensor 41 with the target humidity. Based on the comparison result, the detected humidity is compared with the second threshold value (target humidity ⁇ 101% to target humidity ⁇ 104%), and based on the comparison result, it is determined whether or not this range is met (step S19). If it is determined that the detected humidity is not within the range (NO in step S19), the air blowing operation is stopped, the process returns to step S5, and the subsequent processing is repeated. On the other hand, if it is determined that the detected humidity is within the range (YES in step S19), the air blowing operation is stopped and the dehumidifying operation is started (step S21).
  • the second threshold value target humidity ⁇ 101% to target humidity ⁇ 104%
  • the dehumidifying operation of “automatic automatic operation” can maintain the detected humidity “humidity close to the target humidity” when the dehumidifying operation is selected in the above step S5 (“dehumidifying” in step S5) or in the above blowing operation. Start when the humidity is rising (YES in step S15) or when the humidity detected after the air blowing operation does not fall within the range of (target humidity ⁇ 101% to target humidity ⁇ 104%) (NO in step S19) Is done.
  • step S21 to S33 the dehumidifying operation is performed until the detected humidity is equal to or lower than the target humidity determined in step S5 while resetting the time timer (step S21). S21, NO in step S23).
  • step S21 NO in step S23
  • the air blowing operation steps S25 to S33
  • this air blowing operation is the same process as the above-described operation (steps S11 to S19), it will be briefly described.
  • step S23 when the detected humidity is carried out for 3 hours while maintaining “humidity close to the target humidity” (NO in step S31), the CPU 31 detects the humidity sensor 41.
  • the detected humidity is compared with the target humidity, and based on the comparison result, the detected humidity is compared with the second threshold (target humidity x 101% to target humidity x 104%), and whether it falls within the range of the second threshold It is determined whether or not (step S33). If it is determined that the detected humidity is not within the range (NO in step S33), the air blowing operation is stopped, the process returns to step S5, and the subsequent processing is repeated, but the detected humidity is within the range. If determined (YES in step S33), the air blowing operation is stopped and the humidifying operation is started (step S7).
  • the humidification operation is detected when the humidification operation is selected in the above step S5 (“humidification” in step S5) or in the above air blowing operation (steps S25 to S33).
  • the humidity exceeds the first threshold (target humidity ⁇ 105%) and cannot be maintained at “humidity close to the target humidity” (YES in step S29), or the humidity detected after the air blowing operation is (target humidity ⁇ 101% to target humidity) ⁇ 104%) is started when it does not fall within the range (NO in step S33).
  • FIG. 8 is a diagram schematically illustrating a change in humidity detected during the “automated automatic operation” according to the first embodiment.
  • the target humidity is determined to be 60% according to FIG. Humidification operation is selected.
  • the humidification operation is stopped and the air blowing operation is performed. Thereafter, the detected humidity is “humidity close to the target humidity”. If the air pressure cannot be maintained and the air pressure decreases, the air blowing operation is stopped and the humidifying operation is started, and the operation is continued so that the detected humidity is maintained at “humidity close to the target humidity”.
  • the target humidity is determined to be 55% according to FIG. A dehumidifying operation is selected.
  • the dehumidifying operation is started and the humidity detected by the humidity sensor 41 reaches the target humidity, the humidifying operation is stopped and the air blowing operation is performed. Thereafter, the detected humidity is “humidity close to the target humidity”.
  • the air blowing operation is stopped and the dehumidifying operation is started again.
  • the dehumidifying operation and the air blowing operation are alternately repeated, and the ambient humidity is maintained at “humidity close to the target humidity”.
  • the target humidity is determined to be 55% according to FIG. Humidification operation is selected.
  • the humidification operation is started and the humidity detected by the humidity sensor 41 reaches the target humidity, the humidification operation is stopped and the air blowing operation is performed. Thereafter, the detected humidity is “humidity close to the target humidity”.
  • the air blowing operation is stopped and the dehumidifying operation is started again.
  • the humidifying operation is stopped and the air blowing operation is started again.
  • the air blowing operation is stopped and the humidification operation is performed again.
  • the switching from the humidifying operation to the dehumidifying operation to the humidifying operation is performed while interposing the period of the air blowing operation at the time of operation switching.
  • the air blowing operation is performed to stir the ambient air and control the humidity, thereby suppressing variations in the ambient humidity. be able to. Therefore, it becomes possible to quickly achieve the ambient humidity to the target humidity, the frequency of switching between the dehumidifying / humidifying operation is reduced, and the frequency of water supply to the water supply tank 10 and the frequency of draining the dehumidification tank 13 can be reduced.
  • the air conditioner 100 that is easy to use can be obtained.
  • Emodiment 2 In the second embodiment, a modification of the first embodiment described above is shown.
  • the CPU 31 prohibits the start of the dehumidifying operation for a predetermined time (unit: minute) after the start of the operation, or after the dehumidifying operation is ended (YES in step S23).
  • the predetermined time (unit: minute) may be configured to prohibit the start of the dehumidifying operation again.
  • the target humidity is not updated after being determined in step S5 of FIG. 6, but is not limited to this, and may be updated.
  • the target humidity is synchronized with a clock cycle of a power supply clock (not shown) that starts operation in response to power supplied from the power supply unit (not shown) of the air conditioner 100 to each part of FIG.
  • the table may be searched, the target humidity may be read from the table based on the search result, and the target humidity may be updated with the read value.
  • the CPU 31 may perform only the air blowing operation for a predetermined time (for example, 3 minutes) after the dehumidifying operation is started until the compressor starts up to a sufficient rotational speed.
  • the refrigeration cycle using the heat exchanger 9 for dehumidification is used.
  • the dehumidification is performed by a so-called desiccant method having a structure in which dehumidification rotor and sensible heat exchange rotor perform dehumidification and heat exchange. May be.
  • the target humidity is determined based on the table of FIG. According to the table in FIG. 7, when the brightness detected by the illuminance sensor 20 indicates the first brightness level (“bright” in FIG. 7), the amount of air blown by the air blowing operation (the rotational speed of the two-wing fan 8 ⁇ / b> C, the blowout) When the detected brightness indicates a second brightness level ("dark” in FIG. 7) that is darker than the first brightness, the blast air volume is determined. Is determined to be a second value different from the first value. Desirably, the 2nd value shows a value which makes air volume smaller than the air flow volume of the 1st value.
  • the CPU 31 compares the detection level of the odor sensor 39 with a predetermined threshold value, determines the degree of dirt from the comparison result, and based on the determined degree of dirt It is good also as variably determining the air flow volume by driving
  • the target humidity for the “automatic operation” is determined based on the ambient “brightness” based on the output of the illuminance sensor 20, the ambient temperature, and the ambient humidity.
  • the target humidity is determined based on the ambient temperature and the ambient humidity regardless of the brightness.
  • the CPU 31 controls the air blowing operation based on the output of the odor sensor 39.
  • FIG. 9 is a process flowchart of “automatic automatic driving” according to the third embodiment.
  • FIG. 10 is a diagram illustrating an example of a table according to the third embodiment.
  • the program according to the flowchart of FIG. 9 is stored in the memory 33 in advance, and the processing is realized by the CPU 31 reading the program from the memory 33. 10 is stored in the memory 33 of the air conditioner 100 in advance.
  • step T ⁇ b> 3 CPU 31 determines whether or not the operation content instructs the start of “automatic automatic driving” (step T ⁇ b> 3). If it is determined that the start of another operation is instructed (NO in step T3), the process proceeds to step T5.
  • step T3 if it is determined that the operation content indicates the start of “automated automatic driving” (YES in step T3), the CPU 31 inputs the detected humidity by the humidity sensor 41 and the detected temperature by the temperature sensor 40, and the input temperature and A table (see FIG. 10) in the memory 33 based on the humidity is searched, and the target humidity and the type of operation (humidification operation or dehumidification operation) to be started are determined based on the search result (step T7). This determination method will be described later.
  • the CPU 31 When the humidification operation is started according to the determination, the CPU 31 performs the humidification operation so that the humidity detected by the humidity sensor 41 becomes the target humidity (step T11, step T13).
  • the dehumidification operation is started according to the determination, The CPU 31 performs the dehumidifying operation so that the humidity detected by the humidity sensor 41 becomes the target humidity (step T23, step T25).
  • the humidifying operation step T11
  • the dehumidifying operation step T23
  • the humidifying operation step T11
  • the dehumidifying operation step T23
  • the air blowing operation is started (step T15).
  • the CPU 31 drives the ion generator 38 together with the air blower 8. Accordingly, the ions for air purification generated by the ion generation unit 38 are sent to the surroundings through the air outlet with the air.
  • the CPU 31 compares the detection level of the odor sensor 39 with a predetermined threshold value, and determines the degree of contamination of the ambient air (whether it is dirty) based on the comparison result (step T17). When it is determined that it is dirty (YES in step T17), the air blowing operation (step T15) continues, but when it is determined that it is not dirty (NO in step T17), the CPU 31 receives an operation from the operation unit 18. Based on the contents, it is determined whether or not to release (stop) “automatic automatic driving” (step T19).
  • step T19 the CPU 31 switches to another operation or stops the operation of the air conditioner 100 (step T21).
  • the CPU 31 variably sets the operation time of the air blowing operation based on the degree of contamination of the ambient air detected by the odor sensor 39 during the air operation of “automatic operation”.
  • the air flow rate is changed by changing the time of the air blowing operation, but the air flow rate may be changed by changing the rotational speed of the fan motor of the fan drive unit 35.
  • step T9 The determination of the target humidity and operation type (step T9) will be described with reference to the table of FIG.
  • the CPU 31 searches the table of FIG. 10 based on the temperature and humidity detected in step T7, selects either the humidifying operation or the dehumidifying operation based on the search result, and determines the target humidity. For example, when the detected temperature is 24 ° C. or higher and the detected humidity is less than 55%, “humidification operation” indicated by arrow A in FIG. 10 is selected and the target humidity is set to 55% (in FIG. 10). (See arrow A). For example, when the detected temperature is 20 ° C. and the detected humidity is 60% or more, “dehumidification operation” is selected and the target humidity is set to 60% (see arrow B in FIG. 10).
  • the blowing operation is performed in which the blowing amount is variable based on the degree of contamination of the surrounding air.
  • the ambient air of the air conditioner 100 can be maintained as clean air having a humidity based on the ambient temperature.
  • Embodiment 4 shows a modification of the first to third embodiments.
  • Embodiment 4 demonstrates the specific mode for implementing the specific driving
  • FIG. 11 is a process flowchart in a specific mode according to the fourth embodiment.
  • FIG. 12 is a diagram illustrating an example of a table according to the fourth embodiment.
  • the program according to the flowchart of FIG. 11 is stored in the memory 33 in advance, and the processing is realized by the CPU 31 reading the program from the memory 33. 12 and 13 are stored in the memory 33 of the air conditioner 100 in advance.
  • step R3 when the operation start operation in the specific mode is accepted via operation unit 18, CPU 31 determines the target humidity based on the temperature detected by temperature sensor 40, and the humidity detected by humidity sensor 41 is the target humidity.
  • the dehumidifying operation is started so as to become (step R3).
  • the CPU 31 stops the dehumidifying operation (step R5).
  • the CPU 31 compares the time data output from the timer 32 with the summer time zone (for example, June to August) data stored in the memory 33, and based on the comparison result, the current season is summer. (Step R7). If it is determined that it is not summer (NO in step R7), the CPU 31 performs the humidifying operation for a predetermined time after stopping the dehumidifying operation (step R9). As a result, at a time when air tends to dry relatively outside of summer, after the indoor laundry is dried by the dehumidifying operation, a certain humidity is given to the laundry. Effects such as wrinkles can be obtained.
  • step R7 if it is determined that it is not summer (YES in step R7), the humidifying operation (step R9) after the dehumidifying operation is stopped is passed, and the series of processes ends.
  • the reason why the humidification operation is passed in this way is that the humidity of the ambient air is high in summer, so that it is not necessary to add special moisture to the laundry for wrinkle spreading.
  • the humidifying operation is performed after the dehumidifying operation as in the first to third embodiments even in the specific mode for drying the laundry.
  • the humidification operation after the dehumidification operation is performed only when it is determined that the operation time is summer. Therefore, an excessive increase in the humidity of the surrounding air can be avoided by not performing the humidifying operation in summer when the humidity in the air is relatively high.
  • the humidifying operation after the dehumidifying operation is performed at a relatively low humidity other than summer, so that the above-described laundry wrinkle spreading effect can be obtained without excessively increasing the humidity of the surrounding air. be able to.
  • the target humidity is also set in the dehumidifying operation (step R3) and the humidifying operation (step R9).
  • the CPU 31 searches the table in FIG. 12 based on the temperature detected by the temperature sensor 40 and reads the target humidity. Further, at the start of the humidification operation, the target humidity is read by searching the table of FIG. 13 based on the temperature detected by the temperature sensor 40. Thereby, the target humidity can be determined in accordance with the conditions of the ambient air of the air conditioner 100 for each of the dehumidifying operation and the humidifying operation in the specific mode.
  • Each of the embodiments described above discloses a configuration for conditioning the ambient air, and these may be implemented individually or in combination of two or more.
  • the air conditioner (100) humidifies the air and sends out the humidified air to the outside (humidification rotor 5, heater, etc.), dehumidifies the air, and sends the dehumidified air to the outside.
  • a dehumidifying unit heat exchanger 9
  • a blower for blowing air to the dehumidifying unit and the humidifying unit double-wing fan 8C
  • a control unit CPU 31 for controlling the air conditioner.
  • the controller stops the one operation after starting one of the humidifying operation for driving the humidifying unit while blowing with the blower and the dehumidifying operation for driving the dehumidifying unit while blowing with the blower, It is configured to perform a blowing operation by a blower and then perform the other of the humidifying operation and the dehumidifying operation (see FIG. 6).
  • the air conditioner further includes an air purifier (ion generator 38) for purifying the air, the blower further blows air to the air purifier, and the controller drives the air purifier. It is configured to perform a blowing operation.
  • the air conditioner further includes a humidity sensor 41 that detects the humidity around the air conditioner, and the control unit has a start humidity that is detected before starting one of the operations, When the humidity is equal to or higher than the target humidity for adjusting the humidity, the dehumidifying operation is started as one operation, and when the detected humidity is lower than the target humidity, the humidifying operation is started as one operation.
  • the control unit is configured to perform a blowing operation by a blower for a predetermined time (30 seconds), and to determine the humidity detected by the humidity sensor at the predetermined time as the starting humidity. Is done.
  • the control unit when one of the operations is stopped, starts a blowing operation by the blower, during the blowing operation, the difference between the humidity detected by the humidity sensor 41 and the target humidity is greater than or equal to the first threshold (target humidity) Is 5% or more), the air blowing operation is stopped and the other operation is started.
  • the other operation different from the current operation for humidity control (one of the dehumidifying operation and the humidifying operation) is performed. Operation is carried out. Thereby, humidity control can be promoted.
  • the control unit determines whether the humidity detected by the humidity sensor and the target humidity when a predetermined time (3 hours) has elapsed since the start of the air blowing operation by the blower after one operation is stopped. When the difference is within the range of the second threshold (the difference from the target humidity is 1 to 4%), the air blowing operation is stopped and the other operation is started. Thereby, humidity control can be promoted.
  • the control unit is configured to determine the target humidity based on the ambient humidity of the air conditioner. Therefore, the operation for humidity control can be performed according to the target temperature based on the ambient humidity.
  • the air conditioner further includes a brightness sensor (illuminance sensor 20) that detects the brightness around the air conditioner, and the control unit determines the target humidity based on the detected brightness and the ambient humidity. Configured to determine. Therefore, the target humidity can be variably determined based on the ambient brightness (for example, at bedtime or during the day).
  • a brightness sensor luminance sensor 20
  • the control unit determines the target humidity based on the detected brightness and the ambient humidity. Configured to determine. Therefore, the target humidity can be variably determined based on the ambient brightness (for example, at bedtime or during the day).
  • the control unit is configured to determine the target humidity based on the detected brightness, ambient humidity, and ambient temperature of the air conditioner. Therefore, the target humidity can be variably determined based on the ambient brightness and the ambient temperature.
  • the air conditioner further includes a brightness sensor that detects the ambient brightness of the air conditioner, and the control unit performs a blow operation when the detected brightness indicates the first brightness level.
  • the air flow rate is determined to be the first value and the detected brightness indicates a second brightness level that is darker than the first brightness, the air flow rate is set to a second value that is different from the first value. Configured to determine. Therefore, based on the brightness of the surroundings, when it is dark (such as at bedtime), the amount of blown air can be reduced compared to when it is bright (daytime), and sleep can be prevented from being disturbed by the blowing sound.
  • the air conditioner further includes a dirt degree sensor (odor sensor 39) for detecting the degree of dirt in the ambient air of the air conditioner, and the control unit performs a fan operation based on the degree of dirt detected by the dirt degree sensor. It is comprised so that the ventilation volume by may be determined variably. Therefore, it is possible to perform humidification or dehumidification operation for humidity adjustment while agitating ambient air by blowing air to alleviate dirt.
  • a dirt degree sensor odor sensor 39
  • the air conditioner further includes a blowout port (12A) for blowing air, and a louver (blowout louver 12C) provided at the blowout port and having a variable inclination to adjust the wind direction.
  • the louver inclination is fixed at a predetermined angle (for example, 20 degrees).
  • this angle is desirably an angle for generating an air flow from the ceiling toward the side wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Abstract

 空気調和機(100)は、空気を加湿し、加湿された空気を外部へ送出する加湿部と、空気を除湿し、除湿された空気を外部へ送出する除湿部と、除湿部および加湿部に送風する送風機と、空気調和機を制御する制御部と、を備える。制御部は、送風機により送風しながら加湿部を駆動させる加湿運転、および送風機により送風しながら除湿部を駆動させる除湿運転のうちの一方の運転を開始後に、当該一方の運転を停止する場合に、送風機による送風運転を行い、その後に加湿運転および除湿運転のうちの他方を行なうように構成される。

Description

空気調和機
 本発明は空気調和機に関し、特に、除湿および加湿の機能を備える空気調和機に関する。
 従来、除湿機能と加湿機能の両方の機能を有した機器として、特許文献1(特開2009-281725号公報)または特許文献2(特開2009-68803号公報)に示されるような装置が挙げられる。
 特許文献1は、所定の条件下で加湿運転した後、除湿運転に切り換える動作を複数回繰り返すクリーン運転モードを有する調湿装置を開示する。特許文献2は、湿度調和と空気清浄を行い、空気清浄度センサーが空気清浄部分の送風量増加が必要な汚れ度を検知した時、湿度差を無視して送風機の回転数を増加させる。
特開2009-281725号公報 特開2009-68803号公報
 除湿運転と加湿運転を相互に切り替える条件を特定の温度または湿度にする場合、使用環境の条件によっては、除湿運転または加湿運転を短期間の間に断続的に繰り返す可能性がある。圧縮機を用いた除湿運転である場合には、除湿運転が繰り返されるとき、圧縮機の動作音に伴う騒音発生の頻度も高くなる可能性がある。
 本発明の目的は、周囲空気の調湿に際して除湿運転と加湿運転を切り替える際に、切替え頻度を抑制することができる空気調和機を提供することである。
 本開示のある局面に従う空気調和機は、空気を加湿し、加湿された空気を外部へ送出する加湿部と、空気を除湿し、除湿された空気を外部へ送出する除湿部と、除湿部および加湿部に送風する送風機と、空気調和機を制御する制御部と、を備える。
 制御部は、送風機により送風しながら加湿部を駆動させる加湿運転、および送風機により送風しながら除湿部を駆動させる除湿運転のうちの一方の運転を開始後に、当該一方の運転を停止する場合に、送風機による送風運転を行い、その後に加湿運転および除湿運転のうちの他方を行なうように構成される。
 好ましくは、空気調和機は、空気調和機の周囲の湿度を検知する湿度センサを、さらに備え、制御部は、一方の運転を開始する前に検知される湿度である開始時湿度が、周囲の湿度を調湿するための目標湿度以上であるとき、一方の運転として除湿運転を開始し、検知される湿度が目標湿度未満であるとき一方の運転として加湿運転を開始するよう構成される。
 好ましくは、制御部は、予め定められた時間、送風機による送風運転を行い、当該予め定められた時間において湿度センサにより検知される湿度を開始時湿度と決定するように構成される。
 好ましくは、制御部は、一方の運転が停止後に送風機による送風運転が開始される場合に、当該送風運転中に、湿度センサによる検知湿度と目標湿度との差が第1閾値以上となった場合は、当該送風運転を停止し、他方の運転を開始するよう構成される。
 好ましくは、制御部は、一方の運転が停止後に送風機による送風運転が開始されてから予め定められた時間が経過した場合に、湿度センサにより検知される検知湿度と目標湿度との差が第2閾値の範囲内であるときは、当該送風運転を停止し、他方の運転を開始するよう構成される。
 好ましくは、空気調和機は、空気調和機の周囲の明るさを検知する明るさセンサを、さらに備え、制御部は、検知される明るさと周囲湿度とに基づき、目標湿度を決定するように構成される。
 好ましくは、制御部は、検知される明るさ、周囲湿度、および空気調和機の周囲温度に基づき、目標湿度を決定するように構成される。
 本開示によれば、周囲空気の調湿に際して除湿運転と加湿運転を切り替える際に、切替え頻度が抑制される。
本実施の形態1に係る空気調和機100の外観図である。 図1の空気調和機100の内部構成を概略的に示す図である。 本発明の実施の形態に係る操作部18の外観を示す図である。 本発明の実施の形態に係る表示部19の外観を示す図である。 本発明の実施の形態に係るコントローラ30と周辺部の構成を模式的に示す図である。 本発明の実施の形態に係る「おまかせ自動運転」における処理フローチャートである。 本実施の形態に係るテーブルの一例を示す図である。 実施の形態1に係る「おまかせ自動運転」中に検知される湿度の変化を模式的に示す図である。 実施の形態3に係る「おまかせ自動運転」における処理フローチャートである。 実施の形態3に係るテーブルの一例を示す図である。 実施の形態4に係る特定のモードにおける処理フローチャートである。 実施の形態4に係るテーブルの一例を示す図である。 実施の形態4に係るテーブルの一例を示す図である。
 以下、図面を参照しながら、本発明の実施の形態の空気調和機を説明する。なお、以下参照される図面において同一の符号が付されている部位は、同一の機能を果たすものであるため、特に必要がない限り、その説明は繰り返さない。
 [実施の形態1]
 図1は、本実施の形態1に係る空気調和機100の外観図である。図2は、図1の空気調和機100の内部構成を概略的に示す図である。
 空気調和機100は、図1および図2に示されるように、筐体を備えている。筐体は、前面パネル11Aと背面パネル11Bを含む。筐体の前面パネル11Aには吹出口12Bと各種センサからなるセンサ部42が設けられ、筐体の上面には吹出口12Aと吹出ルーバ12Cが設けられる。吹出ルーバ12Cは、吹出口12Aからの風向きを調整するために、その傾きが変更可能なように筐体に取付けられている。また、前面パネル11Aには、LED(Light Emitting Diode)を含む表示部19が設けられ、筐体の上面には、スイッチ,ボタンなどを含む操作部18が設けられる。操作部18は、空気調和機100に対するユーザの操作を受付ける。
 筐体の側面には、給水タンク10を着脱自在に装着するための装着部と、除湿タンク13を着脱自在に装着するための装着部とが設けられる。給水タンク10は、加湿のための水を収容する。また、除湿タンク13は、除湿により得られた空気中の水分を収容する。ユーザは、給水タンク10を装着することにより、加湿運転のための水を空気調和機100に供給することができる。また、ユーザは、除湿タンク13を取外し、タンク内の水を棄て、その後、除湿タンク13を装着する。
 また、図2に示されるように、筐体内には、内部で気流を生成する両翼ファン8Cを有した送風装置8が設けられている。両翼ファン8Cは、ダクト(図示せず)に対して気流を流すことができる。また、ダクト内には複数のダンパ(図示せす)が設けられており、ダンパの開閉動作によって、ダクト内を気流が進行するか否かが決定されるとともに、吹出口12A,12Bから気流が吹き出されるか否かが決定される。吹出口12A,12Bへの気流の流路に関連して、高圧放電により周囲の空気をイオン化するイオン発生部38が設けられている。イオン発生部38は、空気清浄部の一実施例に相当する。
 また、図2に示されるように、筐体の背面パネル11Bの中央部には、外部の空気を内部に取り込むための吸込口11Cが設けられている。吸込口11Cの近傍には空気清浄フィルタ4が設けられている。空気清浄フィルタ4は、吸込口11Cを通過する空気から埃などの異物を除去する。また、筐体内には、吸込口11Cから取り込まれた空気を加湿するための加湿部と、吸込口11Cから取り込まれた空気を除湿するための除湿部とが設けられる。
 加湿部は、加湿フィルタを有した加湿ロータ5を含む。加湿部は、さらに、加湿ロータ5に関連して、高温空気を生成するためのヒータ(図示せず)、給水タンク10から送られる水を収容する加湿トレイ3、および抗菌剤2を含む。加湿ロータ5は不織布である加湿フィルタで円板状に形成されている。加湿ロータ5は、その一部が加湿トレイ3の水に浸されて、加湿フィルタに浸み込んだ水を蒸発させながら回転する。蒸発のためにヒータによる発熱が用いられて、発熱温度が高温になるほど蒸発が促進される構成としてもよい。このように、両翼ファン8Cの回転により、吸込口11Cから取り込まれた空気は、加湿ロータ5を通過する際に、蒸発による高温高湿の空気を含んだ気流となって、加湿部側吸込み口8Bを介して上記のダクトに取り込まれて、吹出口12A,12Bから外部に吹き出される。
 除湿部は、熱交換器9、および冷媒を圧縮する圧縮機(図示せず)を有する。熱交換器9は、凝縮器9Aと蒸発器9Bを含む。両翼ファン8Cの回転により、吸込口11Cから取り込まれた空気は、熱交換器9を通過する。このとき、空気と熱交換器9との間で熱交換が行なわれる。熱交換により空気から除かれた水分は結露水受け7を介して、除湿タンクに13に貯留される。また、熱交換器9を通過した空気は、熱交換器側吸込み口8Aを経て両翼ファン8Cに到達した後、両翼ファン8Cにより上記のダクトに取り込まれて、吹出口12A,12Bから外部に吹出される。
 また、イオン発生部38は、吹出口12A,12Bへのダクトに関連して設けられている。イオン発生部38により生成されるイオンは、両翼ファン8Cの送風気流にのって、ダクトを介して吹出口12A,12Bから外部に吹き出される。
 また、筐体内には、各部を駆動するための駆動装置6およびコントローラ30が設けられている。コントローラ30は、駆動装置6に電気的に接続されている。また、コントローラ30は、操作部18が受付けたユーザの操作内容に従う制御信号を生成し、生成された制御信号により駆動装置6を介して、各部の動作を独立に制御する。
 (送風の方向)
 本実施の形態の空気調和機100は、上面の吹出口12Aと前面の吹出口12Bおよび背面の吸込口11Cとの間でショートサーキットが生じてしまうことなく、天井面、床面および壁面に沿って空気流(風)を吹き出すことができる。
 また、本実施の形態の空気調和機100は、上面の吹出口12Aから吹き出された空気は部屋の天井面に沿って流れるようルーバを後ろ斜め20度の傾きに固定する。前面の吹出口12Bから吹き出された空気が床面および部屋の壁面に沿って流れ、その結果、室内空間全体が包み込まれるような気流が生成される。したがって、加湿時または除湿時には、室内空間の湿度および温度の分布を均一化することができる。
 図3は、本発明の実施の形態に係る操作部18の外観を示す図である。図3を参照して操作部18は、「おまかせ自動運転」を選択するために操作されるおまかせ自動ボタン18A、運転の入/切を操作するための運転ボタン18B、加湿または除湿の単独運転を指示するためのボタン18C、運転を切換えるためのボタン18D、風量を切換えるためのボタン18E、吹出ルーバ12Cのスイング角度を切換えるためのボタン18F、タイマ機能を設定するためのボタン18G、および空気調和機100の内部を乾燥するために操作されるボタン18Hを含む。
 また、操作部18には、上記の各種ボタンの操作に連動して点灯/消灯するランプが設けられる。具体的には、おまかせ自動ボタン18Aに関連して、当該ボタンが操作されて「おまかせ自動運転」の動作が起動しているか否かをランプの点滅によって報知するためのランプ18a、運転ボタン18Bに関連して、運転ボタン18Bの操作に応じた運転状態をランプの点灯によって報知するためのランプ18bを含む。さらに、上記に述べたボタン18C、18D、18E、18F、18Gおよび18Hのそれぞれに関連して、対応のボタンの操作により設定された運転状態および情報などを報知するために点灯するランプ18c、18d、18e、18f、18gおよび18hを含む。ランプ18a~18hのそれぞれは、対応のボタンの近傍において設けられる例えばLED(Light Emitting Diode)により構成される。
 図4は、本発明の実施の形態に係る表示部19の外観を示す図である。表示部19は、測定された現在の湿度を表示するためのエリア19A、イオン発生部38によりイオンが放出中である旨の情報を表示するためのエリア19B、加湿運転中であることの情報を表示するためのエリア19C、および除湿運転中であることの情報を表示するためのエリア19D、ならびに周囲空気の清浄度を表示色の変更等により示すためのエリア19Eを含む。エリア19A~19Eのそれぞれにおける情報の表示は、LEDの点灯/消灯によって実現される。
 図5は、本発明の実施の形態に係るコントローラ30と周辺部の構成を模式的に示す図である。コントローラ30は、空気調和機100を制御するための制御部の一実施例である。コントローラ30は、CPU(Central Processing Unit)31、時間を計測するためのタイマ32、揮発性および不揮発性の記憶デバイスからなるメモリ33、および外部の各部と入出力するための入出力I/F(Interfaceの略)31Aおよび外部I/F31Bを含む。
 コントローラ30は、入出力I/F31Aを介して操作部18と出力部17を接続する。出力部17は、表示部19と音声出力部(図示せず)を含む。また、コントローラ30は、外部I/F31Bを介して、加湿ロータ5を駆動およびヒータを駆動するための加湿駆動部34、両翼ファン8Cを駆動するためのファン駆動部35、除湿部の圧縮機を駆動するための除湿駆動部36、吹出ルーバ12Cの開閉および傾き角度を調整するためのルーバ駆動部37を接続する。加湿駆動部34は、加湿ロータ5を回転させるためのモータおよびヒータへの電流供給部を含んで構成される。
 加湿駆動部34は、加湿ロータ5を回転させるためのモータおよびヒータへの電流供給部を含んで構成される。CPU31は、制御信号を用いてモータを制御することにより、加湿ロータ5の回転方向および回転速度(回転数)を制御する。また、CPU31は、電流供給部を制御することにより、ヒータへの供給電流量を変化させて、ヒータによる発熱の温度を調整する。ファン駆動部35は、両翼ファン8Cを回転させるためのモータを含む。CPU31は、制御信号により当該モータを制御することにより、両翼ファン8Cの回転速度(回転数)および回転方向を変化させて、送風量を調整する。
 除湿駆動部36は、熱交換のための冷媒の送出量を制御するための圧縮機のモータを含む。CPU31は、制御信号により当該モータの回転運動または往復運動を制御すると、冷媒の送出量を変化させて、除湿量を調整する。ルーバ駆動部37は、吹出ルーバ12Cを駆動するためのステッピングモータを含む。CPU31は、制御信号によりステッピングモータの回転方向と回転量を制御することにより、吹出ルーバ12Cの開度および傾き角度を変化させて、吹出される送風量と送風方向を調整する。上記に述べた駆動装置6は、加湿駆動部34、ファン駆動部35、除湿駆動部36およびルーバ駆動部37を含む。
 コントローラ30のCPU31は、外部I/F31Bを介して、さらにイオン発生部38を接続する。CPU31は、イオン発生部38を制御し、空気清浄のための所定種類のイオンを発生させる。またCPU31には、外部I/F31Bを介して、空気調和機100の周囲の湿度を検知するための湿度センサ41、周囲温度を検知するための温度センサ40、周囲の明るさを検知するための照度センサ20、および周囲空気の汚れの度合を検知するための臭いセンサ39を含む。これらセンサは、センサ部42を構成する。照度センサ20は、「明るさセンサ」の一実施例である。臭いセンサ39は、周囲空気の汚れ度を検知するための「清浄度センサ」の一実施例である。なお、周囲の空気の汚れを検知するために、臭いセンサ39に代えて埃センサを用いてもよく、または臭いセンサ39とともに埃センサを用いてもよい。
 (おまかせ自動運転)
 本実施の形態1における「おまかせ自動運転」においては、CPU31は、送風装置8により吹き出し口から送風しながら加湿ロータ5を駆動させる加湿運転、および送風装置8により送風しながら熱交換器9を駆動させる除湿運転のうちの一方の運転を開始後に、当該一方の運転を停止する場合に、送風装置8による送風運転を行い、その後に加湿運転および除湿運転のうちの他方の運転を実施する。このように、除湿運転と加湿運転とを切替えるときに送風運転が実施されることで、周囲空気をかき混ぜて除湿または加湿後の周囲空気の温度と湿度のバラつきをなくし均一化することが可能となる。なお、「おまかせ自動運転」では、吹出ルーバ12Cは後ろ斜め20度に傾きを固定し、送風する。
 図6は、本発明の実施の形態に係る「おまかせ自動運転」における処理フローチャートである。図7は、本実施の形態に係るテーブルの一例を示す図である。図6のフローチャートに従うプログラムは予めメモリ33に格納されて、CPU31がメモリ33からプログラムを読出すことにより、処理が実現される。また、図7のテーブルは、空気調和機100のメモリ33に予め格納される。
 「おまかせ自動運転」では、除湿運転、加湿運転および送風運転が実施される。加湿運転では、CPU31は加湿駆動部34およびファン駆動部35を制御することにより加湿された空気を吹き出し口から送出する。具体的には、CPU31は湿度センサ41による検知湿度と目標湿度との差に基づき、検知湿度が目標湿度となるように比例制御により、加湿駆動部34を介して加湿ロータ5およびヒータを制御する。除湿運転では、CPU31は、熱交換器9(より特定的には圧縮機)と送風装置8を駆動することにより除湿された空気を吹き出し口から送出する。具体的には、CPU31は湿度センサ41による検知湿度と目標湿度との差に基づき、検知湿度が目標湿度となるような比例制御により、除湿駆動部36を介して圧縮機の回転運動/往復運動の回数を制御する。
 送風運転では、CPU31は、イオン発生部38と送風装置8とを駆動する。これによりイオンを発生させながら、イオンを含んだ空気が吹き出し口から外部に送風(送出)される。なお、本実施の形態の送風運転では、イオン発生部38を駆動して空気清浄のためのイオンを含んだ空気を送出するようにしたが、これに限定されず、イオン発生部38は駆動せずに送風装置8のみを駆動して送風(イオンを含まない空気の送出)のみが実施されるとしてもよい。
 ユーザが、おまかせ自動ボタン18Aを操作すると、CPU31は操作部18から受付けた操作内容に従い、図6の「おまかせ自動運転」を開始する。
 図6を参照して、まず、CPU31はタイマ32の出力に基づき、予め定められた時間、例えば30秒間は送風装置8による送風運転を実施する(ステップS3)。この30秒間の送風運転により周囲空気がかき混ぜられることで、周囲空気の温度および湿度は偏りなく均一化された状態となる。また、CPU31は、この30秒間において、温度センサ40の出力に基づき周囲温度を検知するとともに、湿度センサ41の出力に基づき周囲の湿度を検知する。
 上記の30秒間が経過すると、CPU31は、検知された温度と湿度に基づき、照度センサ20により検知される明るさに従い、加湿運転および除湿運転のいずれを実施するかが判断されるとともに、目標湿度が決定される(ステップS5)。
 具体的には、CPU31は、照度センサ20からの電流信号のレベル(電流値)と閾値とを比較し、比較の結果に基づき周囲が明るいか、または暗いかを判断する。CPU31は、当該判断結果と、検知された温度および湿度とに基づき、図7のテーブルを検索し、検索の結果に基づき、加湿運転および除湿運転のいずれかを選択し、また、周囲空気を調湿するための目標とするべき湿度である目標湿度を決定する。例えば、周囲が「明るい」と判断された場合に、検知温度が24℃以上であり、検知湿度が55%以上であるときは、「除湿運転」が選択されて目標湿度は55%以上に設定される(図7の矢印A参照)。
 また、例えば、周囲が「暗い」と判断された場合に、検知温度が24℃以上であり、検知湿度が60%未満であるときは、「加湿運転」が選択されて目標湿度は60%未満に設定される(図7の矢印B参照)。
 ステップS5の判断に基づき、加湿運転が選択されたとする(ステップS5で“加湿”)。CPU31は、加湿運転を開始するとともに、後述の送風運転を実施する時間の経過を計測するための時間カウンタをリセットする(ステップS7)。リセットにより、時間カウンタには、予め定められた時間が設定される。ここでは、説明のために、時間カウンタには3時間がセットされるとする。なお、セットされる時間は3時間に限定されない。
 CPU31は、加湿運転時には湿度センサ41による検知湿度と目標湿度とを比較し、比較結果に基づき、検知湿度が目標湿度以上に達したか否かを判断する(ステップS9)。目標湿度に達していない場合(ステップS9でNO)、ステップS7の処理に戻り、時間カウンタがリセットされる。
 一方、目標湿度以上に達したと判断された場合(ステップS9でYES)、CPU31は加湿駆動部34を介して加湿ロータ5およびヒータを停止することにより加湿運転を停止するとともに、時間カウンタの値(3時間)をタイマ32に同期してデクリメントすることにより経過時間の計時を開始する(ステップS11)。以降、経過時間が計測されながら送風運転が実施される。送風運転の期間では、CPU31はファン駆動部35を介して両翼ファン8Cを回転させる。
 送風運転では、CPU31は、湿度センサ41による検知湿度が目標湿度に近い湿度を維持しているか否かを判断する(ステップS13~S17)。本実施の形態では、“目標湿度に近い湿度”とは、(目標湿度×101%~目標湿度×104%)の範囲に該当する湿度を示す。
 具体的には、CPU31は湿度センサ41の検知湿度と目標湿度とを比較し、この比較の結果に基づき、検知湿度が目標湿度以上であるが(ステップS13でNO)、第1閾値(目標湿度×105%)以上ではないと判断すると(ステップS15でNO)、すなわち検知湿度は“目標湿度に近い湿度”であると判断されると、送風運転開始から3時間以内であるとき(ステップS17でNO)、ステップS13に戻り、以降の処理が繰返されながら送風運転が継続する。
 一方、CPU31は湿度センサ41の検知湿度と目標湿度との比較結果に基づき、検知湿度が目標湿度より低いと判断されたときは(ステップS13でYES)、処理はステップS7に戻り、送風運転は停止し加湿運転が再度開始される。また、検知湿度が(目標湿度×105%)より高いと判断されると(ステップS15でYES)、ステップS21に移行して、CPU31は、送風運転を停止し除湿運転を開始する(ステップS21)。このとき、時間カウンタがリセットされる。このように送風運転開始から3時間以内であっても、湿度センサ41の検知湿度が“目標湿度に近い湿度”を維持できず湿度が低下する傾向にあるときは、送風運転を停止し、再度、加湿運転が実施される。逆に、検知湿度が“目標湿度に近い湿度”を維持できず湿度が上昇する傾向にあるときは、送風運転を停止し、除湿運転が開始される。
 このように、送風運転をしながら、すなわち湿度が均一化するように周囲空気をかき混ぜながら湿度が検知されるので、検知湿度が“目標湿度に近い湿度”を維持しているか否かの正確な判断が可能となる。
 また、送風運転が、検知湿度が“目標湿度に近い湿度”を維持しながら3時間実施されたときは(ステップS17でNO)、CPU31は、湿度センサ41の検知湿度と目標湿度とを比較し、比較結果に基づき、検知湿度が第2閾値である(目標湿度×101%~目標湿度×104%)と比較し、比較の結果に基づき、この範囲に該当するか否かを判断する(ステップS19)。検知湿度は当該範囲の湿度ではないと判断されると(ステップS19でNO)、送風運転は停止し、ステップS5に戻り、以降の処理が繰返される。一方、検知湿度は当該範囲の湿度であると判断されると(ステップS19でYES)、送風運転は停止し除湿運転が開始される(ステップS21)。
 「おまかせ自動運転」の除湿運転は、上記のステップS5において除湿運転が選択された場合(ステップS5で“除湿”)、または上記の送風運転において検知湿度が“目標湿度に近い湿度”を維持できずに上昇傾向にあるとき(ステップS15でYES)、または送風運転後に検知された湿度が(目標湿度×101%~目標湿度×104%)の範囲に該当しないときに(ステップS19でNO)開始される。
 除湿運転(ステップS21~ステップS33)では、上記に述べた加湿運転と同様に、時間タイマをリセットしながら検知湿度がステップS5で決定された目標湿度以下となるまで除湿運転が実施される(ステップS21、ステップS23でNO)。検知湿度が目標湿度以下になったと判断されたとき(ステップS23でYES)、送風運転(ステップS25~ステップS33)が同様に実施される。この送風運転は、上記に述べた運転(ステップS11~ステップS19)と同様の処理であるから、簡単に説明する。
 つまり、除湿運転後(ステップS23でYES)の送風運転では、検知湿度が“目標湿度に近い湿度”を維持しながら3時間実施されたときは(ステップS31でNO)、CPU31は、湿度センサ41の検知湿度と目標湿度とを比較し、比較結果に基づき、検知湿度が第2閾値である(目標湿度×101%~目標湿度×104%)と比較し、第2閾値の範囲に該当するか否かを判断する(ステップS33)。検知湿度は当該範囲の湿度ではないと判断されると(ステップS33でNO)、送風運転は停止し、ステップS5に戻り、以降の処理が繰返されるが、検知湿度は当該範囲の湿度であると判断されると(ステップS33でYES)、送風運転は停止し加湿運転が開始される(ステップS7)。
 このように「おまかせ自動運転」においては、加湿運転は、上記のステップS5において加湿運転が選択された場合(ステップS5で“加湿”)、または上記の送風運転(ステップS25~ステップS33)において検知湿度が第1閾値(目標湿度×105%)以上となり“目標湿度に近い湿度”に維持できないとき(ステップS29でYES)、または送風運転後に検知された湿度が(目標湿度×101%~目標湿度×104%)の範囲に該当しないときに(ステップS33でNO)開始される。
 なお、図6の「おまかせ自動運転」中は、ユーザがおまかせ自動ボタン18Aを再度操作したとき、または運転ボタン18BをOFF操作(ON→OFF)したとき、CPU31は、強制的に運転(図6の処理)を終了する。
 (運転の具体例)
 図8は、実施の形態1に係る「おまかせ自動運転」中に検知される湿度の変化を模式的に示す図である。図8(A)を参照して、運転開始の条件A(明るさが「明るい」、温度20℃および湿度45%)である場合、目標湿度は図7に従えば60%と決定されて、加湿運転が選択される。図6の処理に従えば、加湿運転が開始されて湿度センサ41の検知湿度が目標湿度に達すると、加湿運転は停止し送風運転が実施され、その後、検知湿度が“目標湿度に近い湿度”を維持できず低下した場合には、送風運転は停止し加湿運転が開始されて、検知湿度が“目標湿度に近い湿度”を維持するように運転が継続する。
 図8(B)を参照して、運転開始の条件B(明るさが「明るい」、温度24℃および湿度70%)である場合、目標湿度は図7に従えば55%と決定されて、除湿運転が選択される。図6の処理に従えば、除湿運転が開始されて湿度センサ41の検知湿度が目標湿度に達すると、加湿運転は停止し送風運転が実施され、その後、検知湿度が“目標湿度に近い湿度”を維持できず上昇した場合には、送風運転は停止し除湿運転が再度開始される。図8(B)では、除湿運転と送風運転が交互に繰返されて、周囲湿度は“目標湿度に近い湿度”に維持される。
 図8(C)を参照して、運転開始の条件C(明るさが「明るい」、温度25℃および湿度50%)である場合、目標湿度は図7に従えば55%と決定されて、加湿運転が選択される。図6の処理に従えば、加湿運転が開始されて湿度センサ41の検知湿度が目標湿度に達すると、加湿運転は停止し送風運転が実施され、その後、検知湿度が“目標湿度に近い湿度”を維持できず上昇した場合には、送風運転は停止し除湿運転が再度開始される。当該除湿運転により検知湿度が“目標湿度に近い湿度”を維持できた場合には、加湿運転は停止し再度、送風運転が開始される。当該送風運転中に周囲湿度が低下し、検知湿度が“目標湿度に近い湿度”を維持できないときは、送風運転は停止し、再度加湿運転が実施される。図8(C)では、運転切替え時に送風運転の期間を介在させながら、加湿運転→除湿運転→加湿運転の切替えが実施されている。
 本実施の形態では、図7のテーブルによれば、除湿運転については、周囲の明るさが暗いとき(例えば、就寝時)は、結露防止を目的に、明るいとき(日中)よりも低い目標湿度が設定される。
 本実施の形態によれば、除湿運転および加湿運転の一方の運転から他方の運転に切替える時に、送風運転が実施されることで周囲空気をかき混ぜて調湿させ、周囲の湿度のバラつきを抑制することができる。したがって、周囲湿度を目標湿度に速やかに達成させることが可能となり、除湿/加湿の運転の切替え頻度が軽減され、給水タンク10への給水の頻度と、除湿タンク13の水棄ての頻度を低くできて、使い勝手のよい空気調和機100を得ることができる。
 [実施の形態2]
 実施の形態2では、上記に述べた実施の形態1の変形例を示す。上記の「おまかせ自動運転」では、CPU31は、運転開始後から予め定めた時間(単位:分)は、除湿運転の開始を禁止する、または、除湿運転を終了後(ステップS23でYES)から予め定めた時間(単位:分)は、再度の除湿運転の開始を禁止する、ように構成されてもよい。
 また、上記の「おまかせ自動運転」では、目標湿度は、図6のステップS5で決定された後は更新されないとしているが、これに限定されず、更新されるとしてもよい。例えば、目標湿度は、空気調和機100の電源部(図示しない)から各部へ電力が供給されることに応じて動作を開始する電源クロック(図示しない)のクロック周期に同期して、図7のテーブルを検索し、検索結果に基づき目標湿度をテーブルから読出して、読出された値により目標湿度を更新する、としてもよい。
 また、除湿運転においては、除湿運転開始後の予め定めた時間(例えば、3分間)は、圧縮機が十分な回転速度にまで立ち上がるまでは、CPU31は送風運転のみを実施するとしてもよい。なお、実施の形態1では除湿のための熱交換器9による冷凍サイクルを用いたが、除湿ロータと顕熱交換ロータにより除湿と熱交換を実施する構造を有した、いわゆるデシカント方式による除湿であってもよい。
 本実施の形態1では、図7のテーブルに基づき目標湿度を決定している。図7のテーブルによれば、照度センサ20により検知される明るさが第1明るさレベル(図7の“明るい”)を示すときは、送風運転による送風風量(両翼ファン8Cの回転数、吹出ルーバ12Cの傾き角度等)を第1の値に決定し、検知される明るさが第1の明るさよりも暗い第2の明るさレベル(図7の“暗い”)を示すときは、送風風量を第1の値とは異なる第2の値に決定するように構成される。なお、望ましくは、第2の値は、第1の値の送風風量よりも風量を少なくするような値を示す。
 また、上記の「おまかせ自動運転」では、CPU31は、臭いセンサ39の検知レベルと予め定められた閾値とを比較し、その比較結果から汚れ度を判断し、判断された汚れ度に基づき、送風運転による送風風量を可変に決定する、としてもよい。
 [実施の形態3]
 上記に述べた実施の形態1と2では、「おまかせ自動運転」のための目標湿度を、照度センサ20の出力に基づく周囲の「明るさ」、周囲温度および周囲湿度に基づき決定したが、本実施の形態3では、明るさとは無関係に周囲温度と周囲湿度に基づき目標湿度を決定する。また、実施の形態3では、CPU31は、臭いセンサ39の出力に基づき送風運転を制御する。
 図9は、実施の形態3に係る「おまかせ自動運転」における処理フローチャートである。図10は、実施の形態3に係るテーブルの一例を示す図である。図9のフローチャートに従うプログラムは予めメモリ33に格納されて、CPU31がメモリ33からプログラムを読出すことにより、処理が実現される。また、図10のテーブルは、空気調和機100のメモリ33に予め格納される。
 図9を参照して、まず、CPU31は、操作部18から受付けた操作内容に基づき、操作内容は「おまかせ自動運転」の開始を指示しているか否かを判断する(ステップT3)。他の運転の開始が指示されていると判断すると(ステップT3でNO)、処理はステップT5に移行する。
 一方、操作内容は「おまかせ自動運転」の開始を指示していると判断すると(ステップT3でYES)、CPU31は湿度センサ41による検知湿度および温度センサ40による検知温度を入力し、入力した温度および湿度に基づくメモリ33のテーブル(図10参照)を検索し、検索の結果に基づき目標湿度と開始するべき運転(加湿運転または除湿運転)の種類とを決定する(ステップT7)。この決定方法については後述する。
 決定に従い加湿運転が開始されると、CPU31は、湿度センサ41の検知湿度が目標湿度となるように加湿運転を実施する(ステップT11、ステップT13)が、決定に従い除湿運転が開始されると、CPU31は、湿度センサ41の検知湿度が目標湿度となるように除湿運転を実施する(ステップT23、ステップT25)。
 CPU31は、検知温度と目標湿度とを比較し、その比較結果に基づき検知温度が目標湿度に達しないと判断する間は(ステップT13でNO、またはステップT25でNO)、加湿運転(ステップT11)または除湿運転(ステップT23)を継続して実施するが、検知湿度が目標湿度に達したことを判断すると(ステップT13でYES、またはステップT25でYES)、加湿運転(ステップT11)または除湿運転(ステップT23)を停止し、送風運転を開始する(ステップT15)。送風運転においては、CPU31は送風装置8とともにイオン発生部38を駆動する。したがって、イオン発生部38により発生した空気清浄のためのイオンが空気とともに吹出口を介して周囲に送出される。
 CPU31は、送風運転中は、臭いセンサ39の検知レベルと予め定めた閾値とを比較し、比較の結果に基づき周囲空気の汚れ度(汚れているか否か)を判断する(ステップT17)。汚れていると判断されたとき(ステップT17でYES)、送風運転(ステップT15)が継続するが、汚れていないと判断されると(ステップT17でNO)、CPU31は、操作部18から受付ける操作内容に基づき、「おまかせ自動運転」を解除(停止)するか否かを判断する(ステップT19)。
 CPU31が、「おまかせ自動運転」を解除しないと判断するとステップT7に戻り、以降の処理が実施される。一方、「おまかせ自動運転」を解除すると判断すると(ステップT19でYES)、CPU31は、その他の運転に切替えるか、または空気調和機100の運転を停止する(ステップT21)。
 このように、CPU31は、「おまかせ自動運転」の送風運転を実施中は、臭いセンサ39により検知される周囲空気の汚れ度に基づき、当該送風運転による運転時間を可変に設定する。ここでは、送風運転の時間を変更することにより送風量を変化させたが、ファン駆動部35のファンモータの回転速度を変更することにより送風量を変化させてもよい。
 上記の目標湿度と運転種類の決定(ステップT9)について図10のテーブルを参照して説明する。CPU31は、ステップT7で検知された温度および湿度に基づき、図10のテーブルを検索し、検索の結果に基づき、加湿運転および除湿運転のいずれかを選択し、また目標湿度を決定する。例えば、検知温度が24℃以上であり、検知湿度が55%未満であるときは、図10の矢印Aが示す「加湿運転」が選択されて目標湿度は55%に設定される(図10の矢印A参照)。また、例えば検知温度が20℃であり検知湿度が60%以上であるときは、「除湿運転」が選択されて目標湿度は60%に設定される(図10の矢印B参照)。
 実施の形態3によれば、「おまかせ自動運転」においては、除湿または加湿の運転により周囲温度が目標温度に達したときは、周囲空気の汚れ度に基づき送風量を可変とする送風運転が実施されることにより、空気調和機100の周囲空気を、周囲温度に基づく湿度を有した清浄空気に維持することが可能となる。
 [実施の形態4]
 実施の形態4は、実施の形態1から3の変形例を示す。実施の形態4では、空気調和機100が有する洗濯物を乾燥させるための特定の運転を実施するための特定モードについて説明する。図11は、実施の形態4に係る特定のモードにおける処理フローチャートである。図12は、実施の形態4に係るテーブルの一例を示す図である。図11のフローチャートに従うプログラムは予めメモリ33に格納されて、CPU31がメモリ33からプログラムを読出すことにより、処理が実現される。また、図12と図13のテーブルは、空気調和機100のメモリ33に予め格納される。
 図11を参照して、操作部18を介して特定モードの運転開始操作が受付けられると、CPU31は、温度センサ40による検知温度に基づき目標湿度を決定し、湿度センサ41の検知湿度が目標湿度となるように除湿運転を開始する(ステップR3)。除湿運転の開始から予め定められた時間が経過したこと、または検知湿度が目標湿度以下となったことが判断されたとき、CPU31は除湿運転を停止する(ステップR5)。
 CPU31は、タイマ32の出力する時間データと、メモリ33に格納されている夏の時間帯(たとえば6月~8月)データとを比較し、比較の結果に基づき、現在の季節は夏であるか否かを判断する(ステップR7)。夏ではないと判断されると(ステップR7でNO)、CPU31は、上記の除湿運転を停止後に、予め定められた時間だけ加湿運転を実施する(ステップR9)。これにより、夏以外の比較的に空気が乾燥しがちな時期には、室内の洗濯物を除湿運転により乾燥後は、当該洗濯物に一定の湿度が付与されることとなって、洗濯物のしわのばしなどの効果を得ることができる。一方、夏ではないと判断されると(ステップR7でYES)、上記の除湿運転を停止後の加湿運転(ステップR9)はパスされて、一連の処理は終了する。このように加湿運転がパスされるのは、夏は周囲空気の湿度が高いので、しわのばしのために洗濯物に特別に湿り気を付与せずともよいとの理由による。
 このように、本実施の形態4では、洗濯物の乾燥などのための特定モードにおいても、実施の形態1~3と同様に除湿運転後に加湿運転が実施される。ただし、運転時期が夏であると判断されたときにのみ除湿運転後の加湿運転が実施される。したがって、空気中の湿気が比較的に多い夏場には加湿運転が実施されないことで周囲空気の過度の湿度上昇を回避することができる。また、夏以外の比較的に湿度が低い時期には除湿運転後の加湿運転が実施されることで、周囲空気の湿度を過度に上昇させることなく上記に述べた洗濯物のしわのばし効果を得ることができる。
 なお、上記の除湿運転(ステップR3)および加湿運転(ステップR9)においても目標湿度が設定される。CPU31は、除湿運転の開始時には、温度センサ40の検知温度に基づき図12のテーブルを検索して目標湿度を読出す。また、加湿運転の開始時には、温度センサ40の検知温度に基づき図13のテーブルを検索して、目標湿度を読出す。これにより、特定モードにおける除湿運転と加湿運転のそれぞれについても、空気調和機100の周囲空気の条件に従い目標湿度を決定することができる。
 上記に述べた各実施の形態は、いずれも周囲空気の調湿のための構成を開示しており、これらは個別に実施されてもよく、または2つ以上を組み合わせて実施されてもよい。
 [実施の形態の構成]
 上記の各実施の形態に開示した空気調和機の構成について説明する。
 (1)空気調和機(100)は、空気を加湿し、加湿された空気を外部へ送出する加湿部(加湿ロータ5、ヒータ等)と、空気を除湿し、除湿された空気を外部へ送出する除湿部(熱交換器9)と、除湿部および加湿部に送風する送風機(両翼ファン8C)と、空気調和機を制御する制御部(CPU31)と、を備える。
 制御部は、送風機により送風しながら加湿部を駆動させる加湿運転、および送風機により送風しながら除湿部を駆動させる除湿運転のうちの一方の運転を開始後に、当該一方の運転を停止する場合に、送風機による送風運転を行い、その後に加湿運転および除湿運転のうちの他方を行なうように構成される(図6参照)。
 これにより、送風運転により適宜周囲空気をかき混ぜて周囲湿度を均一化しながら加湿運転または除湿運転を実施することができる。したがって、周囲湿度の調湿を速やかに達成することができる。
 (2)空気調和機は、空気を清浄するための空気清浄部(イオン発生部38)を、さらに備え、送風機は、さらに空気清浄部に送風し、制御部は、空気清浄部を駆動させながら送風運転を行うよう構成される。
 これにより、送風運転時に、空気清浄化も実施することができる。
 (3)空気調和機は、空気調和機の周囲の湿度を検知する湿度センサ41を、さらに備え、制御部は、一方の運転を開始する前に検知される湿度である開始時湿度が、周囲の湿度を調湿するための目標湿度以上であるとき、一方の運転として除湿運転を開始し、検知される湿度が目標湿度未満であるとき一方の運転として加湿運転を開始するよう構成される。
 したがって、目標湿度の基づき周囲空気の調湿の状況を判断しながら、加湿または除湿の運転を切替え実施することができる。
 (4)上記の制御部は、予め定められた時間(30秒間)、送風機による送風運転を行い、当該予め定められた時間において湿度センサにより検知される湿度を開始時湿度と決定するように構成される。
 したがって、周囲空気を送風運転によりかき混ぜて湿度を均一化した後に、湿度を検知して開始時湿度を決定することができる。
 (5)制御部は、一方の運転が停止後に送風機による送風運転が開始される場合に、当該送風運転中に、湿度センサ41による検知湿度と目標湿度との差が第1閾値以上(目標湿度との差が5%以上)となった場合は、当該送風運転を停止し、他方の運転を開始するよう構成される。
 したがって、周囲湿度を“目標湿度に近い湿度”を維持できず湿度が低下する、または上昇する場合には、調湿のための現在の運転(除湿運転および加湿運転の一方)とは異なる他方の運転が実施される。これにより、調湿を促進することができる。
 (6)制御部は、一方の運転が停止後に送風機による送風運転が開始されてから予め定められた時間(3時間)が経過した場合に、湿度センサにより検知される検知湿度と目標湿度との差が第2閾値(目標湿度との差が1~4%)の範囲内であるときは、当該送風運転を停止し、他方の運転を開始するよう構成される。これにより、調湿を促進することができる。
 (7)制御部は、目標湿度を、空気調和機の周囲湿度に基づき決定するように構成される。したがって、調湿のための運転を、周囲湿度に基づく目標温度に従い実施することができる。
 (8)空気調和機は、空気調和機の周囲の明るさを検知する明るさセンサ(照度センサ20)を、さらに備え、制御部は、検知される明るさと周囲湿度とに基づき、目標湿度を決定するように構成される。したがって、周囲の明るさの別(例えば、就寝時または日中)に基づき、目標湿度を可変に決定できる。
 (9)制御部は、検知される明るさ、周囲湿度、および空気調和機の周囲温度に基づき、目標湿度を決定するように構成される。したがって、周囲の明るさと周囲の温度に基づき、目標湿度を可変に決定できる。
 (10)空気調和機は、空気調和機の周囲の明るさを検知する明るさセンサを、さらに備え、制御部は、検知される明るさが第1明るさレベルを示すときは、送風運転による送風風量を第1の値に決定し、検知される明るさが第1の明るさよりも暗い第2の明るさレベルを示すときは、送風風量を第1の値とは異なる第2の値に決定するように構成される。したがって、周囲の明るさの別に基づき、暗いとき(就寝時等)は、明るい時(日中)よりも送風風量を少なくできて、送風音により睡眠が妨げられるのを防止できる。
 (11)空気調和機は、さらに空気調和機の周囲空気の汚れ度を検知する汚れ度センサ(臭いセンサ39)を備え、制御部は、汚れ度センサにより検知される汚れ度に基づき、送風運転による送風量を可変に決定するように構成される。したがって、送風により周囲空気のかき混ぜて汚れを緩和しつつ、調湿のための加湿または除湿の運転を実施することができる。
 (12)空気調和機は、送風するための吹き出し口(12A)と、吹き出し口に設けられて、風向きを調整するために傾きが可変であるルーバ(吹出ルーバ12C)と、をさらに備え、送風運転時は、ルーバの傾きを予め定められた角度(例えば20度)に固定する。これにより、送風運転時は、予め定められた角度に従う気流を発生させながら、周囲空気をかき混ぜることができる。なお、この角度は、天井から側壁へと向かう気流を生成するための角度であることが望ましい。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 5 加湿ロータ、8 送風装置、9 熱交換器、10 給水タンク、11C 吸込口、12A,12B 吹出口、12C 吹出ルーバ、13 除湿タンク、17 出力部、18 操作部、18A おまかせ自動ボタン、18B 運転ボタン、20 照度センサ、30 コントローラ、32 タイマ、33 メモリ、34 加湿駆動部、35 ファン駆動部、36 除湿駆動部、37 ルーバ駆動部、38 イオン発生部、39 臭いセンサ、40 温度センサ、41 湿度センサ、42 センサ部、100 空気調和機。

Claims (7)

  1.  空気調和機であって、
     空気を加湿し、加湿された空気を外部へ送出する加湿部と、
     空気を除湿し、除湿された空気を前記外部へ送出する除湿部と、
     前記除湿部および前記加湿部に送風する送風機と、
     前記空気調和機を制御する制御部と、を備え、
     前記制御部は、
     前記送風機により送風しながら前記加湿部を駆動させる加湿運転、および前記送風機により送風しながら前記除湿部を駆動させる除湿運転のうちの一方の運転を開始後に、当該一方の運転を停止する場合に、前記送風機による送風運転を行い、その後に前記加湿運転および前記除湿運転のうちの他方を行なうように構成される、空気調和機。
  2.  前記空気調和機の周囲の湿度を検知する湿度センサを、さらに備え、
     前記制御部は、
     前記一方の運転を開始する前に検知される湿度である開始時湿度が、前記周囲の湿度を調湿するための目標湿度以上であるとき、前記一方の運転として前記除湿運転を開始し、前記検知される湿度が前記目標湿度未満であるとき前記一方の運転として前記加湿運転を開始するよう構成される、請求項1に記載の空気調和機。
  3.  前記制御部は、
     予め定められた時間、前記送風機による送風運転を行い、当該予め定められた時間において前記湿度センサにより検知される湿度を前記開始時湿度と決定するように構成される、請求項2に記載の空気調和機。
  4.  前記制御部は、
     前記一方の運転が停止後に前記送風機による送風運転が開始される場合に、当該送風運転中に、前記湿度センサによる検知湿度と前記目標湿度との差が第1閾値以上となった場合は、当該送風運転を停止し、前記他方の運転を開始するよう構成される、請求項2または3に記載の空気調和機。
  5.  前記制御部は、
     前記一方の運転が停止後に前記送風機による送風運転が開始されてから予め定められた時間が経過した場合に、前記湿度センサにより検知される検知湿度と前記目標湿度との差が第2閾値の範囲内であるときは、当該送風運転を停止し、前記他方の運転を開始するよう構成される、請求項2から4のいずれか1項に記載の空気調和機。
  6.  前記空気調和機の周囲の明るさを検知する明るさセンサを、さらに備え、
     前記制御部は、検知される前記明るさと前記周囲湿度とに基づき、前記目標湿度を決定するように構成される、請求項2から5のいずれか1項に記載の空気調和機。
  7.  前記制御部は、検知される前記明るさ、前記周囲湿度、および前記空気調和機の周囲温度に基づき、前記目標湿度を決定するように構成される、請求項2から5のいずれか1項に記載の空気調和機。
PCT/JP2016/055227 2015-09-18 2016-02-23 空気調和機 WO2017047124A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680013199.9A CN108027160A (zh) 2015-09-18 2016-02-23 空气调和机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-184929 2015-09-18
JP2015184929A JP2017058099A (ja) 2015-09-18 2015-09-18 空気調和機

Publications (1)

Publication Number Publication Date
WO2017047124A1 true WO2017047124A1 (ja) 2017-03-23

Family

ID=58288593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055227 WO2017047124A1 (ja) 2015-09-18 2016-02-23 空気調和機

Country Status (3)

Country Link
JP (1) JP2017058099A (ja)
CN (1) CN108027160A (ja)
WO (1) WO2017047124A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085339A1 (ja) * 2018-10-22 2020-04-30 ダイキン工業株式会社 除湿システムの制御方法
CN116839131A (zh) * 2023-07-24 2023-10-03 佛山市南海科日超声电子有限公司 一种无雾精准加湿的加湿器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110260425A (zh) * 2019-06-10 2019-09-20 珠海格力电器股份有限公司 除湿机
CN116897073A (zh) * 2021-03-09 2023-10-17 三菱电机株式会社 除湿机
CN115751570B (zh) * 2022-12-05 2024-05-10 珠海格力电器股份有限公司 可除湿、加湿的空气净化器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156144A (ja) * 2001-09-26 2002-05-31 Sanyo Electric Co Ltd 空気調和機
JP2005133986A (ja) * 2003-10-28 2005-05-26 Hitachi Home & Life Solutions Inc 空気調和機
JP2011012861A (ja) * 2009-06-30 2011-01-20 Toshiba Home Technology Corp 空気調和機
JP2011242043A (ja) * 2010-05-18 2011-12-01 Panasonic Corp 保湿装置
JP2012026654A (ja) * 2010-07-23 2012-02-09 Daikin Industries Ltd 空調機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101691959B (zh) * 2009-05-25 2012-07-18 广东志高空调有限公司 恒温恒湿的调节***及整体式恒温恒湿机
JP2013221730A (ja) * 2012-04-19 2013-10-28 Daikin Industries Ltd 調湿装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156144A (ja) * 2001-09-26 2002-05-31 Sanyo Electric Co Ltd 空気調和機
JP2005133986A (ja) * 2003-10-28 2005-05-26 Hitachi Home & Life Solutions Inc 空気調和機
JP2011012861A (ja) * 2009-06-30 2011-01-20 Toshiba Home Technology Corp 空気調和機
JP2011242043A (ja) * 2010-05-18 2011-12-01 Panasonic Corp 保湿装置
JP2012026654A (ja) * 2010-07-23 2012-02-09 Daikin Industries Ltd 空調機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020085339A1 (ja) * 2018-10-22 2020-04-30 ダイキン工業株式会社 除湿システムの制御方法
CN116839131A (zh) * 2023-07-24 2023-10-03 佛山市南海科日超声电子有限公司 一种无雾精准加湿的加湿器

Also Published As

Publication number Publication date
JP2017058099A (ja) 2017-03-23
CN108027160A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
WO2017047124A1 (ja) 空気調和機
CN102032623B (zh) 除湿机
JP5743741B2 (ja) 空気調和機
TWI615586B (zh) 濕度調節裝置
JP2007232327A (ja) 空気調節装置
TWI810248B (zh) 送風裝置、空氣調和機及除濕機
JP4563948B2 (ja) 空気調節装置
JP4987102B2 (ja) 除湿機
JP2012072945A (ja) 加湿装置
JP4484011B2 (ja) 空気調和機の制御方法
JP7150493B2 (ja) 空気調和機
JP2002286243A (ja) 空気調和機
CN111720905A (zh) 除湿机的控制方法
JP2020115064A (ja) 空気調和機
JP2015132406A (ja) 空気調和機
WO2021075399A1 (ja) 空気清浄機
JPH06241536A (ja) 外気処理ユニット
JP2012097999A (ja) 空気調和機
JP2011167585A (ja) 除湿装置
JP2007032855A (ja) 空気調和機
WO2022018983A1 (ja) 空気浄化機能付き熱交換形換気装置
WO2019181007A1 (ja) 空気調和装置、空気調和方法および空気調和プログラム
JP2024041239A (ja) 空気調和装置、及び空気調和装置の制御方法
JP2023006981A (ja) 空気調和機
JP2023038429A (ja) 除湿機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16845997

Country of ref document: EP

Kind code of ref document: A1