WO2017045488A1 - 一种电流互感器抗直流分量和偶次谐波测试*** - Google Patents

一种电流互感器抗直流分量和偶次谐波测试*** Download PDF

Info

Publication number
WO2017045488A1
WO2017045488A1 PCT/CN2016/092115 CN2016092115W WO2017045488A1 WO 2017045488 A1 WO2017045488 A1 WO 2017045488A1 CN 2016092115 W CN2016092115 W CN 2016092115W WO 2017045488 A1 WO2017045488 A1 WO 2017045488A1
Authority
WO
WIPO (PCT)
Prior art keywords
current transformer
current
transformer
impedance matching
half wave
Prior art date
Application number
PCT/CN2016/092115
Other languages
English (en)
French (fr)
Inventor
张蓬鹤
薛阳
徐英辉
石二微
赵兵
彭楚宁
秦程林
赵越
谭琛
成达
王雅涛
袁翔宇
Original Assignee
中国电力科学研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院, 国家电网公司 filed Critical 中国电力科学研究院
Priority to GB1804682.1A priority Critical patent/GB2556610B/en
Priority to DE112016004201.9T priority patent/DE112016004201B4/de
Publication of WO2017045488A1 publication Critical patent/WO2017045488A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/02Testing or calibrating of apparatus covered by the other groups of this subclass of auxiliary devices, e.g. of instrument transformers according to prescribed transformation ratio, phase angle, or wattage rating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Definitions

  • the invention relates to the field of power equipment testing, in particular to a current transformer anti-DC component and even harmonic test system.
  • the use of smart energy meters has increased rapidly.
  • the smart energy meter can only be used after passing the verification by the verification department before use.
  • As a key link of electric energy metering not only the metering performance of the smart energy meter should meet the requirements, but also its safety and reliability are guaranteed.
  • the current transformer is the key component of the three-phase energy meter sampling, and the accuracy of the sampling is directly related to the accuracy of the energy metering.
  • the accuracy of the sampling is directly related to the accuracy of the energy metering.
  • embodiments of the present invention provide a current transformer anti-DC component and even harmonic test system.
  • Embodiments of the present invention provide a current transformer anti-DC component and even harmonic test system, the test system includes a current booster, a standard current transformer, a half-wave rectification device, and an impedance Matching device and half-wave transformer calibrator;
  • the primary side of the test system includes a first half wave rectifying device, a second half wave rectifying device, and a first impedance matching device; the first half wave rectifying device and the first impedance matching device are connected in series and are in series with the second The half-wave rectifying device is connected in parallel with the current transformer to be tested;
  • the secondary side of the test system includes a third half wave rectifying device, a fourth half wave rectifying device and a second impedance matching device; the fourth half wave rectifying device, the second impedance matching device, the standard current transformer and the third Half wave rectifier device connected in series;
  • the booster is connected to a standard current transformer.
  • the current booster turns a small current into a large current.
  • the primary side of the standard current transformer passes through a period of 50 Hz sinusoidal current wave, the secondary side is connected to the fourth half wave rectifying device and the second impedance matching device, and the secondary side half wave current is input into the half wave mutual inductance.
  • the standard current transformer is a 0.001 current transformer.
  • the half-wave rectifying device is configured to change a sine wave of one cycle into a sine wave of a half cycle.
  • the impedance matching device can automatically match the impedance in the circuit, so that the impedances in the two branches of the current transformer are consistent, so that the impedances in the two branches of the standard current transformer are consistent;
  • the two branches of the current transformer to be tested include: a first branch and a second branch; the first branch includes: a first impedance matching device and a first half wave rectifying device, the second branch including : a primary side and a second half-wave rectifying device of the current transformer to be tested;
  • the two branches of the quasi-current transformer include: a third branch and a fourth branch; the third branch includes the measured a secondary side of the current transformer and a third half wave rectifying device, the fourth branch comprising a second impedance matching device and a fourth half wave rectifying device;
  • the first impedance matching device can realize automatic matching of the primary side impedance of the current transformer to be tested
  • the second impedance matching device can achieve automatic matching of the secondary side impedance of the standard current transformer.
  • the primary side of the measured current transformer passes through a positive half wave of a 50 Hz sinusoidal current wave of one cycle, and the half wave current of the secondary side is input to a half wave transformer calibrator.
  • the half-wave transformer calibrator compares the secondary current half-wave of the standard current transformer with the measured current transformer by using the differential principle, and obtains the ratio difference and the phase difference.
  • the embodiment of the invention has the following beneficial effects:
  • the embodiment of the invention can realize the test of the DC transformer and the even harmonic of the current transformer for the electric energy meter, and can accurately evaluate the influence of the half wave on the current difference and the phase difference of the current transformer. It can realize the automatic matching of the impedance of the measurement loop, reduce the influence of the impedance imbalance on the measurement result, and improve the test efficiency.
  • FIG. 1 is a schematic structural diagram of an anti-DC component and even harmonic test system of a current transformer for an electric energy meter according to an embodiment of the present invention
  • FIG. 2 is a half-wave current waveform according to an embodiment of the present invention.
  • the existing current transformer calibration method mainly adopts the comparison method of the measured current transformer and the standard current transformer. Moreover, the existing current transformer test method can only perform error check for full sine wave. Since the principle of standard current transformer is electromagnetic induction (transformation characteristic of current transformer), DC component and even harmonic are passing the standard. When the current transformer is used, it will cause saturation of the current transformer, so it cannot be accurately measured for the DC component. Therefore, it is necessary to propose a method for detecting the difference and phase difference of the current transformer for the electric energy meter under the conditions of the direct current component and the even harmonic, so as to realize the test of the direct current component and the even harmonic performance of the current transformer.
  • the current booster supplies the same primary current as the standard current transformer and the current transformer under test, and the secondary current of the standard current transformer passes through the half-wave transformer calibrator.
  • the standard loop at the same time, the secondary current difference between the measured current transformer and the standard current transformer flows into the difference loop of the half-wave transformer calibrator, and then the difference and phase difference are read by the half-wave transformer calibrator. Error data.
  • FIG. 1 is a structural diagram of a system for resisting a direct current component and an even harmonic of a current transformer according to an embodiment of the present invention.
  • the system includes: a current booster AC, a standard current transformer 8, a half-wave rectifying device, an impedance matching device, and a half-wave transformer calibrator 9;
  • the primary side of the test system comprises a first half-wave rectifying device 1, a second half-wave rectifying device 2 and a first impedance matching device 5; the first half-wave rectifying device 1 and the first impedance matching device 5 are connected in series and in series The second half-wave rectifying device 2 and the current transformer 7 to be tested are connected in parallel;
  • the secondary side of the test system includes a third half wave rectifying device 3, a fourth half wave rectifying device 4, and a second impedance matching device 6; the fourth half wave rectifying device 4, the second impedance matching device 6, and a standard current
  • the transformer 8 is connected in series with the third half-wave rectifying device 3;
  • the booster AC is connected to a standard current transformer 8.
  • the first impedance matching device 5 can realize automatic matching of the primary side impedance of the current transformer 7 to be tested;
  • the second impedance matching device 6 can achieve automatic matching of the secondary side impedance of the standard current transformer 8.
  • the test system provided by the embodiment of the invention is based on the current transformer calibrator and its verification principle, and the output of the small current into a large current (for example, a current of 10A up to 100A) is connected to the output of the current regulator AC.
  • the primary side of the standard current transformer 8 is that the current passing through the standard current transformer 8 is an AC full wave, and after the standard current transformer 8 the circuit is divided into two branches (the first branch and the second branch).
  • the first branch includes: a first impedance matching device 5 and a first half wave rectifying device 1
  • the second branch comprises: a primary side of the current transformer 7 to be tested and a second half-wave rectifying device 2.
  • the first impedance matching device 5 in the first branch can automatically achieve impedance matching to ensure that the impedances of the two branches are equal, and the first half-wave rectifying device 1 ensures that the current input into the first branch is a negative half-wave.
  • the second half-wave rectifying device 2 ensures that the current input to the second branch is a positive half wave, as shown in FIG.
  • the circuit (the first half-wave rectifying device 1, the second half-wave rectifying device 2 and the first impedance matching device 5) connected to the primary side of the current transformer 7 to be tested ensures the current input to the primary side of the standard current transformer 8 For the full wave. At the same time, it is ensured that the current input to the measured current transformer 7 is a positive half wave, and the secondary side of the standard current transformer 8 is rectified, and the positive half wave is connected to the transformer calibrator 9 and the current transformer 7 to be tested. The half-wave output of the secondary side is compared and measured to meet the requirements of the anti-DC component and the even harmonic test.
  • the current output from the secondary side of the standard current transformer 8 (positive half-wave) (as shown in FIG. 2) and the current output from the primary side (after the first half-wave rectification)
  • the direction of rectification of the device 1 (negative half wave) is reversed.
  • the current output from the secondary side of the standard current transformer 8 is connected to the current transformer load 10, after which the circuit is divided into two branches (the third branch and the fourth branch).
  • the impedance matching device automatically matches the impedance in the circuit, so that the impedances in the two branches of the current transformer are consistent, so that the impedances in the two branches of the standard current transformer 8 are consistent.
  • the third branch includes a secondary side of the current transformer 7 to be measured and a third half-wave rectifying device 3
  • the fourth branch includes a second impedance matching device 6 and a fourth half-wave rectifying device 4.
  • the second impedance matching device 6 implements automatic matching of the secondary side impedance of the standard current transformer 8.
  • the current transformer load 10 is used as a component of the test, and its resistance cannot be greater than the secondary rated impedance value of the standard current transformer 8.
  • Half-wave current the measured current transformer 7 of the half-wave transformer calibrator access T X end 9 of the standard full-wave current transformer 9 6 through the second impedance matching means and the fourth half-wave rectification means 4
  • the half-wave current is connected to the T 0 end of the half-wave transformer calibrator 9 , and the difference between the T X terminal and the T 0 terminal current is connected to the K terminal of the half-wave transformer calibrator 9 (in the half-wave transformer) Inside the calibrator 9, the difference between the T X terminal and the T 0 terminal current is calculated).
  • the half-wave transformer calibrator 9 compares the standard current transformer 8 with the secondary side current half-wave of the current transformer 7 to be measured by the differential principle, and gives the ratio difference and the phase difference.
  • the half-wave transformer calibrator 9 reads out error data of the difference and phase difference.
  • the test system compares the measured current transformer 7 with the standard current transformer 8 of the same current ratio, and the half-wave transformer calibrator 9 uses the differential principle to the standard current transformer 8 and The secondary side current half-waves of the current transformer 7 to be tested are compared to give a ratio difference and a phase difference.
  • the primary current of the standard current transformer 8 and the current transformer 7 to be measured is supplied by the current booster AC, and the secondary current of the standard current transformer 8 passes through the standard circuit of the half-wave transformer calibrator 9.
  • the secondary current difference between the measured current transformer 7 and the standard current transformer 8 flows into the difference loop of the half-wave transformer calibrator 9, and then the error data is read by the half-wave transformer calibrator 9.
  • the primary side of the standard current transformer 8 can pass a period of 50 Hz sinusoidal current wave (a complete normal power frequency current wave), and the secondary side is connected to the fourth half wave rectifying device 4 And the second impedance matching device 6 after the secondary side half wave current is input to the half wave transformer calibrator 9;
  • the standard current transformer 8 can be a 0.001-level current transformer, so that the accuracy of the measurement can be greatly improved. In practical applications, when the standard current transformer 8 can be a 0.001-level current transformer, the error measurement of the 0.02-level current transformer can be measured.
  • test system provided by the embodiment of the present invention is based on the original calibration method of the half-wave transformer calibrator, and needs to be added to the anti-DC component and the even harmonic test according to the test requirements.
  • Test circuit the test circuit required for the test is obtained by adding a test circuit
  • the flow, supporting half-wave transformer calibrator realizes the measurement of the difference and phase difference of the current transformer under the condition of DC and even harmonics.
  • the solution provided by the embodiment of the invention performs half-wave rectification of the secondary output of the standard current transformer, and compares with the secondary output half-wave of the measured current transformer, thereby realizing the measured current transformer ratio under the half-wave condition.
  • the accurate measurement of the difference and phase difference avoids the measurement error of the entire measurement system caused by the half-wave current passing through the standard transformer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种电流互感器抗直流分量和偶次谐波测试***,所述测试***包括升流器、标准电流互感器(8)、半波整流装置、阻抗匹配装置和半波互感器校验仪(9);所述测试***一次侧包括第一半波整流装置(1)、第二半波整流装置(2)和第一阻抗匹配装置(5);所述第一半波整流装置(1)和第一阻抗匹配装置(5)串联后与同是串联的第二半波整流装置(2)和被测电流互感器(7)并联;所述测试***二次侧包括:第三半波整流装置(3)、第四半波整流装置(4)和第二阻抗匹配装置(6);所述第四半波整流装置(4)、第二阻抗匹配装置(6)、标准电流互感器(8)与第三半波整流装置(3)串联;所述升流器连接标准电流互感器(8)。

Description

一种电流互感器抗直流分量和偶次谐波测试*** 技术领域
本发明涉及电力设备测试领域,特别涉及一种电流互感器抗直流分量和偶次谐波测试***。
背景技术
随着智能电网的快速发展,智能电能表的用量迅猛增加。智能电能表在使用前需要经过检定部门的检定合格后才能使用。作为电能计量的关键环节,不仅智能电能表的计量性能要满足要求,而且其安全性和可靠性也要得到保证。
电流互感器是三相电能表采样的关键元器件,其采样的准确度直接关系到电能计量的准确性。对于三相直接接入式电能表,由于其内部采样的电流互感器一次侧直接与电网相连接,因此需要考核其抗直流分量和偶次谐波的能力。
然而,目前对电流互感器的抗直流分量和偶次谐波性能进行试验的测试方案中,无法对直流分量和偶次谐波影响下电流互感器的误差进行准确测量。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种电流互感器抗直流分量和偶次谐波测试***。
本发明实施例的技术方案是这样实现的:
本发明实施例提供了一种电流互感器抗直流分量和偶次谐波测试***,所述测试***包括升流器、标准电流互感器、半波整流装置、阻抗匹 配装置和半波互感器校验仪;
所述测试***一次侧包括第一半波整流装置、第二半波整流装置和第一阻抗匹配装置;所述第一半波整流装置和第一阻抗匹配装置串联后与同是串联的第二半波整流装置和被测电流互感器并联;
所述测试***二次侧包括第三半波整流装置、第四半波整流装置和第二阻抗匹配装置;所述第四半波整流装置、第二阻抗匹配装置、标准电流互感器与第三半波整流装置串联;
所述升压器连接标准电流互感器。
上述方案中,所述升流器把小电流变成大电流。
上述方案中,所述标准电流互感器一次侧通过1个周期的50Hz正弦电流波,二次侧接入第四半波整流装置和第二阻抗匹配装置将二次侧半波电流输入半波互感器校验仪;
所述标准电流互感器为0.001级电流互感器。
上述方案中,所述半波整流装置配置为把一个周期的正弦波变成半个周期的正弦波。
上述方案中,所述阻抗匹配装置可实现自动匹配电路中阻抗,使被测电流互感器两个支路中的阻抗保持一致,使标准电流互感器两个支路中的阻抗保持一致;所述被测电流互感器的两个支路包括:第一支路及第二支路;所述第一支路包括:第一阻抗匹配装置和第一半波整流装置,所述第二支路包括:为被测电流互感器的一次侧和第二半波整流装置;所述准电流互感器的两个支路包括:第三支路和第四支路;所述第三支路包括被测电流互感器的二次侧和第三半波整流装置,所述第四支路包括第二阻抗匹配装置和第四半波整流装置;
所述第一阻抗匹配装置可以实现被测电流互感器一次侧阻抗的自动匹配;
所述第二阻抗匹配装置可以实现标准电流互感器二次侧阻抗的自动匹配。
上述方案中,所述被测电流互感器一次侧通过1个周期的50Hz正弦电流波的正半波,二次侧的半波电流输入半波互感器校验仪。
上述方案中,所述半波互感器校验仪用测差式原理对标准电流互感器与被测电流互感器的二次侧电流半波进行比较,得出比差和相位差。
与现有技术相比,本发明实施例具有以下有益效果:
本发明实施例可以实现电能表用电流互感器抗直流分量和偶次谐波的测试,可以准确评估半波对于电流互感器的比差和相位差的影响。可以实现测量回路的阻抗自动匹配,减少阻抗不平衡对于测量结果的影响,提高了测试效率。
附图说明
图1为本发明实施例提供的电能表用电流互感器的抗直流分量和偶次谐波测试***结构示意图;
图2为本发明实施例提供的半波电流波形。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步的详细说明。
现有的电流互感器校验方法主要采用被测电流互感器与标准电流互感器比较法进行。而且,现有电流互感器检验方法只能针对全正弦波进行误差校验,由于标准电流互感器的原理为电磁感应(电流互感器的传变特性),直流分量和偶次谐波在通过标准电流互感器时,会引起电流互感器的饱和,所以对于直流分量其无法准确测量。因此需要提出一种在直流分量和偶次谐波条件下,电能表用电流互感器比差和相位差的检测方法,以实现对电流互感器的抗直流分量和偶次谐波性能的测试。
基于此,在本发明的各种实施例中:升流器供给标准电流互感器和被测电流互感器相同的一次电流,标准电流互感器的二次侧电流通过半波互感器校验仪的标准回路,同时被测电流互感器与标准电流互感器的二次侧电流差值流入半波互感器校验仪的差值回路,然后由半波互感器校验仪读出比差和相位差的误差数据。
图1为本发明实施例电流互感器抗直流分量和偶次谐波测试***结构图。如图1所示,该***包括:升流器AC、标准电流互感器8、半波整流装置、阻抗匹配装置和半波互感器校验仪9;其中,
所述测试***一次侧包括第一半波整流装置1、第二半波整流装置2和第一阻抗匹配装置5;所述第一半波整流装置1和第一阻抗匹配装置5串联后与串联的第二半波整流装置2和被测电流互感器7并联;
所述测试***二次侧包括第三半波整流装置3、第四半波整流装置4和第二阻抗匹配装置6;所述第四半波整流装置4、第二阻抗匹配装置6、标准电流互感器8与第三半波整流装置3串联;
所述升压器AC连接标准电流互感器8。
其中,所述第一阻抗匹配装置5可以实现被测电流互感器7一次侧阻抗的自动匹配;
所述第二阻抗匹配装置6可以实现标准电流互感器8二次侧阻抗的自动匹配。
本发明实施例提供的测试***,基于电流互感器校验仪及其校验原理,在升流器AC把小电流变成大电流(比如将10A的电流升流至100A的电流)输出接到标准电流互感器8的一次侧,此时经过标准电流互感器8的电流为交流全波,经过标准电流互感器8后电路分为两个支路(第一支路及第二支路)。
所述第一支路包括:第一阻抗匹配装置5和第一半波整流装置1,所述 第二支路包括:为被测电流互感器7的一次侧和第二半波整流装置2。
所述第一支路中的第一阻抗匹配装置5可以自动实现阻抗匹配,保证两支路阻抗相等,第一半波整流装置1保证输入所述第一支路中的电流为负半波,第二半波整流装置2保证输入所述第二支路中的电流为正半波,如图2所示。
所述被测电流互感器7一次侧所连接的电路(第一半波整流装置1、第二半波整流装置2和第一阻抗匹配装置5)保证了输入标准电流互感器8一次侧的电流为全波。同时,保证了输入被测电流互感器7的电流为正半波,而标准电流互感器8二次侧经过整流后以正半波接入互感器校验仪9后与被测电流互感器7二次侧输出的半波进行比较测差,从而满足抗直流分量和偶次谐波试验要求。
经过第四半波整流装置4的整流作用后,标准电流互感器8的二次侧输出的电流(正半波)(如图2所示)与一次侧输出的电流(经过第一半波整流装置1的整流作用)方向(负半波)相反。其中,标准电流互感器8二次侧输出的电流接入电流互感器负载10,之后电路分为两支路(第三支路和第四支路)。
所述阻抗匹配装置自动匹配电路中阻抗,使被测电流互感器两个支路中的阻抗保持一致,使标准电流互感器8两个支路中的阻抗保持一致。其中,第三支路包括被测电流互感器7的二次侧和第三半波整流装置3,第四支路包括第二阻抗匹配装置6和第四半波整流装置4。
所述第二阻抗匹配装置6实现标准电流互感器8二次侧阻抗的自动匹配。
这里,电流互感器负载10作为测试的部件,其阻值不能大于标准电流互感器8二次额定阻抗值。
被测电流互感器7的半波电流接入半波互感器校验仪9的TX端,标准 电流互感器9的全波经第二阻抗匹配装置6和第四半波整流装置4后的半波电流接入半波互感器校验仪9的T0端,TX端与T0端电流的差值接入半波互感器校验仪9的K端(在所述半波互感器校验仪9的内部,会进行TX端与T0端电流的差值的计算)。半波互感器校验仪9用测差式原理对标准电流互感器8与被测电流互感器7的二次侧电流半波进行比较,给出比差和相位差。
换句话说,半波互感器校验仪9读出比差和相位差的误差数据。
本发明实施例提供的测试***,是将被测电流互感器7与同电流比的标准电流互感器8进行比较,半波互感器校验仪9用测差式原理对标准电流互感器8与被检电流互感器7的二次侧电流半波进行比较,给出比差和相位差。具体来说,由升流器AC供给标准电流互感器8和被测电流互感器7相同的一次电流,标准电流互感器8的二次侧电流通过半波互感器校验仪9的标准回路,同时被测电流互感器7与标准电流互感器8的二次侧电流差值流入半波互感器校验仪9的差值回路,然后由半波互感器校验仪9读出误差数据。
在一实施例中,所述标准电流互感器8的一次侧可以通过1个周期的50Hz正弦电流波(一个完整的正常的工频电流波),二次侧接入第四半波整流装置4和第二阻抗匹配装置6后将二次侧半波电流输入半波互感器校验仪9;
所述标准电流互感器8可以为0.001级电流互感器,如此,可大大提高测量的准确度。实际应用时,当所述标准电流互感器8可以为0.001级电流互感器时,可测量0.02级被测电流互感器的误差测量。
从上面的描述中可以看出,本发明实施例提供的测试***是在半波互感器校验仪原有校验方法的基础上,根据试验要求加入抗直流分量和偶次谐波试验所需要的试验电路,通过添加的试验电路得到试验所需的试验电 流,配套半波互感器校验仪实现电流互感器在通入直流和偶次谐波情况下其比差和相位差的测量。
本发明实施例提供的方案,将标准电流互感器的二次输出进行半波整流,与被测电流互感器的二次输出半波进行比较,从而实现半波条件下的被测电流互感器比差和相位差的准确测量,避免了半波电流通过标准互感器时引起整个测量***的测量误差。
最后应当说明的是:以上实施例仅用于说明本申请的技术方案而非对其保护范围的限制,尽管参照上述实施例对本申请进行了详细的说明,所属领域的普通技术人员应当理解:本领域技术人员阅读本申请后依然可对申请的具体实施方式进行种种变更、修改或者等同替换,但这些变更、修改或者等同替换,均在申请待批的权利要求保护范围之内。

Claims (7)

  1. 一种电流互感器抗直流分量和偶次谐波测试***,所述测试***包括升流器、标准电流互感器、半波整流装置、阻抗匹配装置和半波互感器校验仪;
    所述测试***一次侧包括:第一半波整流装置、第二半波整流装置和第一阻抗匹配装置;所述第一半波整流装置和第一阻抗匹配装置串联后与串联的第二半波整流装置和被测电流互感器并联;
    所述测试***二次侧包括:第三半波整流装置、第四半波整流装置和第二阻抗匹配装置;所述第四半波整流装置、第二阻抗匹配装置、标准电流互感器与第三半波整流装置串联;
    所述升压器连接标准电流互感器。
  2. 根据权利要求1所述的测试***,其中,所述升流器把小电流变成大电流。
  3. 根据权利要求1所述的测试***,其中,所述标准电流互感器一次侧通过1个周期的50Hz正弦电流波,二次侧接入第四半波整流装置和第二阻抗匹配装置将二次侧半波电流输入半波互感器校验仪;
    所述标准电流互感器为0.001级电流互感器。
  4. 根据权利要求1所述的测试***,其中,所述半波整流装置配置为把一个周期的正弦波变成半个周期的正弦波。
  5. 根据权利要求1所述的测试***,其中,所述阻抗匹配装置自动匹配电路中阻抗,使被测电流互感器两个支路中的阻抗保持一致,使标准电流互感器两个支路中的阻抗保持一致;所述被测电流互感器的两个支路包括:第一支路及第二支路;所述第一支路包括:第一阻抗匹配装置和第一半波整流装置,所述第二支路包括:为被测电流互感器的一次侧和第二半波整流装置;所述准电流互感器的两个支路包括:第三支路和第四支路; 所述第三支路包括被测电流互感器的二次侧和第三半波整流装置,所述第四支路包括第二阻抗匹配装置和第四半波整流装置;
    所述第一阻抗匹配装置实现被测电流互感器一次侧阻抗的自动匹配;
    所述第二阻抗匹配装置实现标准电流互感器二次侧阻抗的自动匹配。
  6. 根据权利要求1所述的测试***,其中,所述被测电流互感器一次侧通过1个周期的50Hz正弦电流波的正半波,二次侧的半波电流输入半波互感器校验仪。
  7. 根据权利要求1所述的测试***,其中,所述半波互感器校验仪用测差式原理对标准电流互感器与被测电流互感器的二次侧电流半波进行比较,得出比差和相位差。
PCT/CN2016/092115 2015-09-16 2016-07-28 一种电流互感器抗直流分量和偶次谐波测试*** WO2017045488A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1804682.1A GB2556610B (en) 2015-09-16 2016-07-28 Test system for anti-DC component and even-order harmonic of current transformer
DE112016004201.9T DE112016004201B4 (de) 2015-09-16 2016-07-28 Prüfsystem für den Widerstand eines Stromwandlers gegen Gleichstromkomponenten und geradzahlige Harmonische

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510589596.8A CN106546938A (zh) 2015-09-16 2015-09-16 一种电流互感器抗直流分量和偶次谐波测试***
CN201510589596.8 2015-09-16

Publications (1)

Publication Number Publication Date
WO2017045488A1 true WO2017045488A1 (zh) 2017-03-23

Family

ID=58288508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/092115 WO2017045488A1 (zh) 2015-09-16 2016-07-28 一种电流互感器抗直流分量和偶次谐波测试***

Country Status (4)

Country Link
CN (1) CN106546938A (zh)
DE (1) DE112016004201B4 (zh)
GB (1) GB2556610B (zh)
WO (1) WO2017045488A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761375A (zh) * 2018-07-31 2018-11-06 山西互感器电测设备有限公司 一种低功耗程控式电流互感器现场检定装置
CN109375133A (zh) * 2018-09-17 2019-02-22 国网江西省电力有限公司电力科学研究院 一种电流传感器耐直流性能检测装置及方法
CN109581265A (zh) * 2018-10-30 2019-04-05 国网江西省电力有限公司电力科学研究院 一种基于功率误差的电流互感器抗直流性能检测方法
CN112068062A (zh) * 2020-09-10 2020-12-11 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种互感器校验***及校验方法
CN112986891A (zh) * 2021-02-10 2021-06-18 南方电网科学研究院有限责任公司 一种电流互感器抗直流性能的检测装置及方法
CN113009404A (zh) * 2021-01-26 2021-06-22 江阴长仪集团有限公司 一种直流偶次谐波误差校准的方法及电能表
CN115561695A (zh) * 2022-11-18 2023-01-03 山西互感器电测设备有限公司 三相电流互感器现场校验装置及方法
CN116184019A (zh) * 2022-12-14 2023-05-30 广州汇电云联互联网科技有限公司 交流电的谐波检测***、方法及装置
CN116755020A (zh) * 2023-07-06 2023-09-15 浙江天际互感器股份有限公司 一种基于谐波比较法的抗直流互感器半波误差检测***及方法
CN116930849A (zh) * 2023-07-18 2023-10-24 浙江天际互感器股份有限公司 一种基于基波比较法的抗直流互感器半波误差检测***及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108279396A (zh) * 2018-04-19 2018-07-13 南京丹迪克电力仪表有限公司 抗直流分量电流互感器误差测试仪及其测试方法
CN110133563B (zh) * 2019-05-13 2021-10-19 国网江西省电力有限公司电力科学研究院 一种电流传感器抗直流性能检测方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533082A (zh) * 2009-04-10 2009-09-16 深圳市科陆变频器有限公司 一种电能表半波整流试验线路
CN102156273A (zh) * 2011-04-20 2011-08-17 郑州万特电气有限公司 用于误差试验及直流和偶次谐波试验的电能表检定电路
CN102520382A (zh) * 2012-01-12 2012-06-27 江西省电力科学研究院 电流互感器半波电流变换误差检测方法
CN102928802A (zh) * 2012-10-16 2013-02-13 江西省电力科学研究院 基于交直流标准的电流互感器耐直流性能检测方法
US8421444B2 (en) * 2009-12-31 2013-04-16 Schneider Electric USA, Inc. Compact, two stage, zero flux electronically compensated current or voltage transducer employing dual magnetic cores having substantially dissimilar magnetic characteristics
CN103675749A (zh) * 2013-11-14 2014-03-26 国家电网公司 电能表直流与偶次谐波状态下性能检测装置
CN104237837A (zh) * 2014-09-15 2014-12-24 河海大学 电流互感器比差角差检测***及检测方法
CN104569904A (zh) * 2014-12-19 2015-04-29 浙江万胜电力仪表有限公司 一种测试电能表的直流及偶次谐波影响量的试验装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202948126U (zh) * 2012-12-05 2013-05-22 河北省电力公司电力科学研究院 一种电流互感器现场误差测试***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101533082A (zh) * 2009-04-10 2009-09-16 深圳市科陆变频器有限公司 一种电能表半波整流试验线路
US8421444B2 (en) * 2009-12-31 2013-04-16 Schneider Electric USA, Inc. Compact, two stage, zero flux electronically compensated current or voltage transducer employing dual magnetic cores having substantially dissimilar magnetic characteristics
CN102156273A (zh) * 2011-04-20 2011-08-17 郑州万特电气有限公司 用于误差试验及直流和偶次谐波试验的电能表检定电路
CN102520382A (zh) * 2012-01-12 2012-06-27 江西省电力科学研究院 电流互感器半波电流变换误差检测方法
CN102928802A (zh) * 2012-10-16 2013-02-13 江西省电力科学研究院 基于交直流标准的电流互感器耐直流性能检测方法
CN103675749A (zh) * 2013-11-14 2014-03-26 国家电网公司 电能表直流与偶次谐波状态下性能检测装置
CN104237837A (zh) * 2014-09-15 2014-12-24 河海大学 电流互感器比差角差检测***及检测方法
CN104569904A (zh) * 2014-12-19 2015-04-29 浙江万胜电力仪表有限公司 一种测试电能表的直流及偶次谐波影响量的试验装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761375A (zh) * 2018-07-31 2018-11-06 山西互感器电测设备有限公司 一种低功耗程控式电流互感器现场检定装置
CN108761375B (zh) * 2018-07-31 2024-05-14 山西互感器电测设备有限公司 一种低功耗程控式电流互感器现场检定装置
CN109375133A (zh) * 2018-09-17 2019-02-22 国网江西省电力有限公司电力科学研究院 一种电流传感器耐直流性能检测装置及方法
CN109581265A (zh) * 2018-10-30 2019-04-05 国网江西省电力有限公司电力科学研究院 一种基于功率误差的电流互感器抗直流性能检测方法
CN109581265B (zh) * 2018-10-30 2021-07-02 国网江西省电力有限公司电力科学研究院 一种基于功率误差的电流互感器抗直流性能检测方法
CN112068062A (zh) * 2020-09-10 2020-12-11 内蒙古电力(集团)有限责任公司内蒙古电力科学研究院分公司 一种互感器校验***及校验方法
CN113009404A (zh) * 2021-01-26 2021-06-22 江阴长仪集团有限公司 一种直流偶次谐波误差校准的方法及电能表
CN113009404B (zh) * 2021-01-26 2023-08-11 江阴长仪集团有限公司 一种直流偶次谐波误差校准的方法及电能表
CN112986891B (zh) * 2021-02-10 2023-02-28 南方电网科学研究院有限责任公司 一种电流互感器抗直流性能的检测装置及方法
CN112986891A (zh) * 2021-02-10 2021-06-18 南方电网科学研究院有限责任公司 一种电流互感器抗直流性能的检测装置及方法
CN115561695B (zh) * 2022-11-18 2023-06-09 山西互感器电测设备有限公司 三相电流互感器现场校验装置及方法
CN115561695A (zh) * 2022-11-18 2023-01-03 山西互感器电测设备有限公司 三相电流互感器现场校验装置及方法
CN116184019A (zh) * 2022-12-14 2023-05-30 广州汇电云联互联网科技有限公司 交流电的谐波检测***、方法及装置
CN116184019B (zh) * 2022-12-14 2023-12-08 广州市均能科技有限公司 交流电的谐波检测***、方法及装置
CN116755020A (zh) * 2023-07-06 2023-09-15 浙江天际互感器股份有限公司 一种基于谐波比较法的抗直流互感器半波误差检测***及方法
CN116755020B (zh) * 2023-07-06 2024-05-10 浙江天际互感器股份有限公司 一种基于谐波比较法的抗直流互感器半波误差检测方法
CN116930849A (zh) * 2023-07-18 2023-10-24 浙江天际互感器股份有限公司 一种基于基波比较法的抗直流互感器半波误差检测***及方法
CN116930849B (zh) * 2023-07-18 2024-05-14 浙江天际互感器股份有限公司 一种基于基波比较法的抗直流互感器半波误差检测***及方法

Also Published As

Publication number Publication date
GB2556610A (en) 2018-05-30
DE112016004201T5 (de) 2018-06-07
CN106546938A (zh) 2017-03-29
GB2556610B (en) 2021-07-07
GB201804682D0 (en) 2018-05-09
DE112016004201B4 (de) 2021-02-11

Similar Documents

Publication Publication Date Title
WO2017045488A1 (zh) 一种电流互感器抗直流分量和偶次谐波测试***
CN105699818A (zh) 一种电流互感器误差测量装置及测量方法
CN103207379B (zh) 电流互感器直流偏磁误差特性测量方法及装置
CN102156274A (zh) 配电网三相电能计量***现场整体检测***
CN104569904B (zh) 一种测试电能表的直流及偶次谐波影响量的试验装置
CN103675749A (zh) 电能表直流与偶次谐波状态下性能检测装置
CN107765077A (zh) 一种励磁涌流识别方法及识别装置
Schöttke et al. Transfer characteristic of a MV/LV transformer in the frequency range between 2 kHz and 150 kHz
CN204694836U (zh) 一种电能表工频磁场影响量试验装置
Silsüpür et al. Flicker source detection methods based on IEC 61000-4-15 and signal processing techniques–a review
CN202075405U (zh) 配电网三相电能计量***现场整体检测***
CN203204109U (zh) 变压器差动保护现场校验装置
CN110133563B (zh) 一种电流传感器抗直流性能检测方法及装置
Rogalla et al. Source-driven and resonance-driven harmonic interaction between pv inverters and the grid
CN203287514U (zh) 电流互感器直流偏磁误差特性测量装置
CN109581265B (zh) 一种基于功率误差的电流互感器抗直流性能检测方法
CN106597356A (zh) 一种单相电能表工频磁场影响量试验装置
CN104345218B (zh) 三相电抗器电抗值测量***及方法
CN106501754A (zh) 三相电能表的直流及偶次谐波影响量的试验装置
CN206074797U (zh) 三相电能表的直流及偶次谐波影响量的试验装置
CN109655676A (zh) 一种电力核相的方法
CN203519812U (zh) 一种电流互感器现场校验装置
CN104101856A (zh) 零磁通直流电流互感器电子测量单元误差检测方法及装置
Yanping et al. Design and implementation of the CT analyzer on the basis of the low pressure test principle
CN202929193U (zh) 一种电能表整体误差校验***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16845602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016004201

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 201804682

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160728

122 Ep: pct application non-entry in european phase

Ref document number: 16845602

Country of ref document: EP

Kind code of ref document: A1