WO2017042444A1 - Lithium-alloy cell comprising a solid electrolyte for manufacturing batteries - Google Patents

Lithium-alloy cell comprising a solid electrolyte for manufacturing batteries Download PDF

Info

Publication number
WO2017042444A1
WO2017042444A1 PCT/FR2016/000136 FR2016000136W WO2017042444A1 WO 2017042444 A1 WO2017042444 A1 WO 2017042444A1 FR 2016000136 W FR2016000136 W FR 2016000136W WO 2017042444 A1 WO2017042444 A1 WO 2017042444A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
electrolyte
lithium
lithium alloy
metal
Prior art date
Application number
PCT/FR2016/000136
Other languages
French (fr)
Inventor
Florence SALVER
Original Assignee
Asb Aerospatiale Batteries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asb Aerospatiale Batteries filed Critical Asb Aerospatiale Batteries
Publication of WO2017042444A1 publication Critical patent/WO2017042444A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • H01M4/1315Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx containing halogen atoms, e.g. LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/463Aluminium based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the technical field of the present invention is that of lithium alloy cells consisting of cells comprising a solid electrolyte for manufacturing. Battery.
  • the applicant undertook research to put point a cell operating at temperatures below 350 ° C in order to avoid the use of a sodium derivative and secondly to carry out a comprehensive study of lithium batteries despite the known obstacle high operating temperature.
  • This research led to the design of a lithium alloy cell whose characteristics of its components are carefully selected.
  • the object of the present invention is to provide a
  • the subject of the invention is therefore a lithium alloy cell comprising a solid electrolyte consisting of a lithium salt of formula LiX in which X represents a halogen optionally mixed with a ceramic additive, the anode consisting of a lithium alloy of formula LiM ', in which M' represents a metal, associated with the electrolyte and the cathode consisting of metal disulfide M "S 2 associated with the electrolyte, characterized in that the electrolyte has a particle size of less than 160 ⁇ , the lithium alloy and the metal disulphide a particle size less than 250 ⁇ , said cell being capable of providing a constant voltage of the order of 1.5 V for at least ten days in a volume of a few cubic centimeters to one operating temperature between 25 and 350 ° C.
  • the anode comprises from 30 to 100% by weight of lithium alloy and the cathode from 30 to 100% by weight of metal disulfide.
  • B, or Si and the metal disulfide by M "S2 with M” Fe, Co, Ni or Ti.
  • the ceramic additive component of the electrolyte is represented by MgO, A1 2 0 3, Si0 2, Y 2 0 3 or CaO.
  • a cell has a voltage of 1.5 Volt.
  • a first advantage of the present invention lies in the fact that the modification of the particle size of the components of the cell allows commercial use thereof.
  • Another advantage of the invention lies in the very long discharge time, greater than 10 days, in a volume of a few cubic centimeters, at an operating temperature of between 25 and 350 ° C.
  • Yet another advantage of the present invention is that the electrolyte of the cell is not fused and retains its physical integrity.
  • Yet another advantage of the present invention lies in the production of a battery incorporating one or more cells according to the invention.
  • FIGS. 1 to 10 illustrate curves. discharge at different temperatures.
  • the applicant was interested in lithium alloy cells to overcome the obstacle of the high operating temperature known to those skilled in the art and to manufacture a battery usable in the industry. After investigation of particle size, the applicant realized that . changing way . particular particle size of the components of this cell could lower the operating temperature.
  • the modification of the particle size allowed to reduce the thickness . , components of . the cell generating an increase in the ionic activity of the electrolyte and thus allow the reduction of the operating temperature.
  • the proposed solution with a new solid electrolyte provides a cell delivering energy for several days when the operating temperature is between room temperature and 350 ° C.
  • the needs for deep drilling for example are distinguished from earlier uses by lower voltages, 2.5 to. 4 V for example, but on much longer durations; from 10 to 20 days for example, with an operating temperature of less than 300 ° C.
  • the applicant provides a solution with the cell according to the invention by proposing a cell that can be used during deep drilling, for example by limiting the self-discharge of the cell while ensuring a sufficient conductivity of the cell. and a low temperature operation.
  • the cell according to the invention while implementing products known in this technical sector, makes it possible to achieve these performances, namely an operating temperature that does not lead to the melting of the electrolyte, a lower voltage, very long operating time, while being rechargeable if necessary.
  • the realization of the cell is carried out as follows.
  • the lithium salt is combined with a ceramic additive, it is mixed after grinding and sieving in a conventional manner and is carried out at a temperature above the melting point of the lithium salt. Then grinding and sieving is carried out so as to select a particle size of less than 160 ⁇ m.
  • a mechanical mixture of 100 g of metal disulphide having a particle size of less than 250 to 250 ⁇ is made. (iron, cobalt, nickel or titanium) and the elettrolyte obtained previously.
  • compositions thus obtained are used to manufacture various powder compression cells.
  • a cell assembly consisting of a 1 gram disc of the material of the negative electrode, 1.65 gr of electrolyte and 2.40 gr of cathode is manufactured. We obtain a set of cells whose total thickness is 1.53 mm and a diameter ranging from 26 mm to 36 mm. In order to perform the tests, the user does not have a cell-only number of cells.
  • the discharge protocol is as follows.
  • the cell is placed between two voltage collectors in a neutral environment at 150 ° C.
  • The., Collectors are the voltage outputs that are connected to a galvanometer SP-240 of the company Biology.
  • the cell is then discharged at a current of -0.25 mA without time limit with a relaxation of one minute every 30 minutes applied to measure the impedance of this cell.
  • FIG. 1 illustrates the discharge test of the cell operating at 150 ° C. and shows a constant voltage V of
  • FIG. 2 illustrates the capacity in mA.h of the cell always at the operating temperature of 150 ° C. as a function of the voltage V. It can be seen that this voltage remains constant at about 1.5 V, the capacitance is 23 mA. .h and the cell still works after 10 days.
  • FIG. 3 illustrates the discharge test of the cell operating at 250 ° C. and shows a constant voltage V of
  • FIG. 4 illustrates the capacity in mA.h of the cell, always at the operating temperature of 250 ° C. as a function of the voltage V. It can be seen that this voltage remains constant at about 1.6 V, the capacity is 130 mA.h and the cell still works after 10 days.
  • a battery is made comprising two cells with 9 packets in parallel.
  • the cell is placed in a rack at the desired temperature (250 ° C) the discharge time (greater than 10 days).
  • the + and - poles of the battery are connected to a BCS-815 galvanometer from Biologie.
  • the battery is discharged at a current of -0.9 mA with no time limit and relaxation is done for one minute every 30 minutes to take the impedance of the system.
  • Figure 6 illustrates the voltage of the battery operating at 150 ° C under the same conditions. It is found that the capacity measured in mA.h is 210 mA.h 10 days after and the battery still works.
  • a stack comprising two cells in series with 11 packets in parallel is manufactured.
  • the battery is fully assembled and welded in a glove box under a neutral atmosphere and is placed in an oven at the desired temperature (150 ° C).
  • the aforementioned galvanometer is used, but the battery is discharged at a current of -2.25 mA with no time limit and with a relaxation of one minute every 30 minutes to measure the impedance.
  • Figure 7 illustrates the voltage of the battery operating at 150 ° C for a current of -2.25 mA. The curve shows that the voltage V stabilizes at about 2.8 V for more than 10 days.
  • Figure 8 shows the voltage under the same conditions. (Battery operating at 150 ° C) It is found that the capacity measured in mA.h is 500 mA.h .10 days after and the battery still works.
  • a stack is made comprising two cells in series with 13 packets in parallel.
  • the pile is. placed in an oven at the desired temperature (250 ° C).
  • the galvanometer mentioned above is used, but the battery is discharged at a current of -1.72 mA . no limit of time and with a relaxation of one minute every 30 minutes to take the impedance of the system.
  • Figure 9 illustrates the voltage of the battery operating at 250 ° C for a current of -1.72 mA. The curve shows that voltage V stabilizes at about 2.8 V for more than 19 days.
  • Figure 10 shows the battery voltage operating at 250 ° C under the same conditions. It is found that the capacity measured in mA.h is 650 mA.h 19 days after and the battery still works.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The invention relates to a lithium-alloy cell comprising a solid electrolyte made from a lithium salt with formula LiX, wherein X is a halogen optionally mixed with a ceramic additive; the anode made from a lithium alloy with formula LiM, wherein M is a metal associated with the electrolyte; and the cathode made from metal disulphide associated with the electrolyte. In said cell, the electrolyte has a particle size of less than 160 μm, and the lithium alloy and the metal disulphide have a particle size of less than 250 μm, said cell being capable of supplying a constant voltage on the order of 1.5 V for at least around ten days in a volume of several cubic centimetres at an operating temperature of 25 to 350°C. The invention can be used for manufacturing batteries.

Description

CELLULE EN ALLIAGE DE LITHIUM COMPRENANT UN ELECTROLYTE SOLIDE POUR LA FABRICATION DE PILES LITHIUM ALLOY CELL COMPRISING SOLID ELECTROLYTE FOR BATTERY MANUFACTURE
Le secteur technique de la présente invention est celui des cellules en alliage de lithium constituées de cellules comprenant un électrolyte solide pour fabriquer des. piles. The technical field of the present invention is that of lithium alloy cells consisting of cells comprising a solid electrolyte for manufacturing. Battery.
Aujourd'hui, il existe des piles qui fonctionnent soit en dessous de 180°C soit à des températures supérieures à 350°C. Le besoin d'une technologie travaillant de l' ambiante, jusqu' à 350°C n'est pas couvert et aucune pile n'existe pour ce domaine^ de température. Les besoins . actuels concernant différents domaines (géothermie, pétrole,...) se font de plus en plus pressants pour cette gamme de température  Today, there are batteries that operate either below 180 ° C or at temperatures above 350 ° C. The need for ambient working technology up to 350 ° C is not covered and no battery exists for this temperature range. Needs . current issues in different fields (geothermal, petroleum, ...) are becoming more and more pressing for this temperature range
De nombreuses recherches ont été effectuées pour parvenir à ce type de piles. ,  Much research has been done to achieve this type of batteries. ,
Ainsi, pour résoudre ce problème deux publications récentes ont proposé l'utilisation de batteries au sodium incorporant un électrolyte fusible à basse température. Le document US2015/0086826 propose par exemple une batterie fonctionnant à une température de 160 à 220 °C et le document US2015/0147619 également une batterie au sodium fonctionnant elle à une. température de 100 à 200 °C. Toutefois, les risques liés à l'utilisation d'un composé sodium ne sont ni évoqués ni résolus. Thus, to solve this problem two recent publications have proposed the use of sodium batteries incorporating a low temperature fuse electrolyte. The document US2015 / 0086826 for example proposes a battery operating at a temperature of 160 to 220 ° C and the document US2015 / 0147619 also a sodium battery operating it to one . temperature of 100 to 200 ° C. However, the risks associated with the use of a sodium compound are neither mentioned nor resolved.
Dans un document publié par la société CERAMETEC, on a évoqué les caractéristiques des batteries hautes températures tout en envisageant une batterie à . électrolyte solide Lil ou LiB fonctionnant à une température comprise entre la température ambiante et .550 °C. Toutefois, aucune caractéristique n'est donnée sur les constituants de cette batterie en particulier aucune courbe électrochimique. Dans ce document, on propose une batterie rechargeable dont 1' électrolyte est constitué de Lil+Al203, l'anode de LiAl et de l' électrolyte et la cathode de FeS ou FeS2 et : de 1' électrolyte . Toutefois, on indique que ce système présente une ■ température de fonctionnement élevée sans autres précisions. In a document published by the company CERAMETEC, we discussed the characteristics of high temperature batteries while considering a battery . solid electrolyte Lil or LiB operating at a temperature between room temperature and .550 ° C. However, no characteristic is given on the constituents of this battery, in particular no electrochemical curve. In this document, there is provided a rechargeable battery including one electrolyte consists of Lil + Al 2 0 3, the anode of LiAl and the electrolyte and the cathode of FeS or FeS 2 and: 1 electrolyte. However, it is indicated that this system has a high operating temperature without further specification.
Le demandeur a entrepris des recherches pour mettre au point une cellule fonctionnant à des températures inférieures à 350 °C afin d'une part d'éviter l'utilisation d'un dérivé sodium et d'autre part d'effectuer une étude approfondie des piles au lithium en dépit de l'obstacle connu de la température de fonctionnement élevée. Ces recherches, ont abouti à la conception d'une cellule en alliage de lithium dont les caractéristiques de ses composants sont soigneusement choisies. The applicant undertook research to put point a cell operating at temperatures below 350 ° C in order to avoid the use of a sodium derivative and secondly to carry out a comprehensive study of lithium batteries despite the known obstacle high operating temperature. This research led to the design of a lithium alloy cell whose characteristics of its components are carefully selected.
Le but de la présente invention est de fournir une The object of the present invention is to provide a
_aal.lu.Le en alliage de Lithium, douée—d' une—-capacité- de décharge étalée sur une période de temps très long tout en fonctionnant à basse température pour la réalisation de piles. _aal.lu.Le Lithium alloy, endowed with a discharge capacity spread over a very long period of time while operating at low temperature for the realization of batteries.
L'invention a donc pour objet une cellule en alliage de lithium comprenant un électrolyte solide constitué d'un sel de lithium de formule LiX dans laquelle X représente un halogène mélangé éventuellement avec un additif céramique, l'anode constituée d'un alliage de lithium de formule LiM' , dans laquelle M' représente un métal, associé à l' électrolyte et la cathode constituée de disulfure métallique M"S2 associé à l' électrolyte, caractérisée en ce que l' électrolyte présente une granulométrie inférieure à 160 μπι, l'alliage de lithium et le disulfure métallique une granulométrie inférieure à 250 μπι, ladite cellule étant apte à fournir une tension constante de l'ordre de 1,5 V pendant au moins une dizaine de jours dans un volume de quelques centimètres cubes à une température de fonctionnement comprise entre 25 et 350°C. The subject of the invention is therefore a lithium alloy cell comprising a solid electrolyte consisting of a lithium salt of formula LiX in which X represents a halogen optionally mixed with a ceramic additive, the anode consisting of a lithium alloy of formula LiM ', in which M' represents a metal, associated with the electrolyte and the cathode consisting of metal disulfide M "S 2 associated with the electrolyte, characterized in that the electrolyte has a particle size of less than 160 μπι, the lithium alloy and the metal disulphide a particle size less than 250 μπι, said cell being capable of providing a constant voltage of the order of 1.5 V for at least ten days in a volume of a few cubic centimeters to one operating temperature between 25 and 350 ° C.
Selon une caractéristique de l'invention, l'anode comprend de 30 à 100% en masse d' alliage de lithium et la cathode de 30 à 100% en masse de disulfure métallique.  According to one characteristic of the invention, the anode comprises from 30 to 100% by weight of lithium alloy and the cathode from 30 to 100% by weight of metal disulfide.
Selon une autre caractéristique de l'invention, l'alliage de lithium est représenté par LiM' avec M' =A1, . B, ou Si et le disulfure métallique par M"S2 avec M"=Fe, Co, Ni ou Ti. According to another characteristic of the invention, lithium alloy is represented by LiM 'with M' = A1. B, or Si and the metal disulfide by M "S2 with M" = Fe, Co, Ni or Ti.
Selon encore: une autre caractéristique de l'invention, l'additif céramique de l' électrolyte est représenté par MgO, A1203, Si02, Y203 ou CaO. According to yet: a further feature of the invention, the ceramic additive component of the electrolyte is represented by MgO, A1 2 0 3, Si0 2, Y 2 0 3 or CaO.
Avantageusement, une cellule présente une tension de 1,5 Volt. Advantageously, a cell has a voltage of 1.5 Volt.
Un tout premier avantage de la présente invention réside dans le fait que la modification de la granulométrie des composants de la cellule permet une utilisation commerciale de celle-ci.  A first advantage of the present invention lies in the fact that the modification of the particle size of the components of the cell allows commercial use thereof.
Un autre avantage de l' invention réside dans le temps de décharge très long, supérieur à 10 jours, dans un volume de quelques centimètres cubes, à une température de fonctionnement comprise entre 25 et 350 °C.  Another advantage of the invention lies in the very long discharge time, greater than 10 days, in a volume of a few cubic centimeters, at an operating temperature of between 25 and 350 ° C.
Un autre avantage encore de la prés.entj3_i.nv-e.nt.i.Qn—r-é.s.ide— dans le fait que l' électrolyte de la cellule ne subit aucune fusion et conserve son intégrité physique.  Yet another advantage of the present invention is that the electrolyte of the cell is not fused and retains its physical integrity.
Un autre avantage encore de la présente invention réside dans la réalisation d'une pile incorporant une ou plusieurs cellules selon l'invention.  Yet another advantage of the present invention lies in the production of a battery incorporating one or more cells according to the invention.
D'autres caractéristiques, avantages et détails de l'invention seront mieux compris à la lecture du complément de description qui va suivre de modes de réalisation donnés à titre d'exemple en relation avec des dessins sur lesquels les figures 1 à 10 illustrent des courbes de décharge à différentes températures.  Other features, advantages and details of the invention will be better understood on reading the additional description which will follow of embodiments given by way of example in relation to drawings in which FIGS. 1 to 10 illustrate curves. discharge at different temperatures.
Le demandeur s'est intéressé aux cellules en alliage de lithium pour s'affranchir de l'obstacle de la température élevée de fonctionnement connue de l'homme du métier et fabriquer une pile utilisable dans l'industrie. A l'issue de recherches sur la granulométrie, le demandeur s'est rendu compte qu'en . modifiant de manière. particulière la granulométrie des composants de cette cellule on pouvait faire baisser la température de fonctionnement. The applicant was interested in lithium alloy cells to overcome the obstacle of the high operating temperature known to those skilled in the art and to manufacture a battery usable in the industry. After investigation of particle size, the applicant realized that . changing way . particular particle size of the components of this cell could lower the operating temperature.
La modification de la granulométrie ; a permis de réduire l'épaisseur., des composants de. la cellule engendrant une augmentation de l'activité ionique de l' électrolyte et permettre ainsi la diminution de la température de fonctionnement. The modification of the particle size ; allowed to reduce the thickness . , components of . the cell generating an increase in the ionic activity of the electrolyte and thus allow the reduction of the operating temperature.
La solution proposée avec un nouvel électrolyte solide- fournit une cellule délivrant de l'énergie pendant plusieurs jours quand la température de fonctionnement est entre la température ambiante et 350°C. Actuellement, les besoins pour des forages en profondeur par exemple se distinguent des utilisations antérieures par des tensions plus faibles, 2,5 à. 4 V par exemple, mais sur des durées beaucoup plus longues,; de 10 à 20 jours par exemple, avec une température de fonctionnement inférieure à 300 °C. The proposed solution with a new solid electrolyte provides a cell delivering energy for several days when the operating temperature is between room temperature and 350 ° C. Currently, the needs for deep drilling for example are distinguished from earlier uses by lower voltages, 2.5 to. 4 V for example, but on much longer durations; from 10 to 20 days for example, with an operating temperature of less than 300 ° C.
C'est à ces difficultés que le demandeur apporte une solution avec la cellule selon l'invention en proposant une cellule utilisable lors d'un forage en profondeur par exemple en limitant l' autodécharge de la cellule tout en assurant une conductivité _ion_iç[ue suffisante et une___tempéx_a_tn.r.e bas.s.e—de— fonctionnement.  It is to these difficulties that the applicant provides a solution with the cell according to the invention by proposing a cell that can be used during deep drilling, for example by limiting the self-discharge of the cell while ensuring a sufficient conductivity of the cell. and a low temperature operation.
La cellule selon l'invention, bien que mettant en œuvre des produits connus dans ce secteur technique, permet d'atteindre ces performances, à savoir une température de fonctionnement n'entraînant pas la fusion de l' électrolyte, une tension plus faible, une durée de fonctionnement très longue, tout en étant rechargeable si besoin est.  The cell according to the invention, while implementing products known in this technical sector, makes it possible to achieve these performances, namely an operating temperature that does not lead to the melting of the electrolyte, a lower voltage, very long operating time, while being rechargeable if necessary.
La réalisation de la cellule est effectuée de la manière suivante.  The realization of the cell is carried out as follows.
Préparation de l' électrolyte solide Preparation of the solid electrolyte
On sèche le sel de lithium, LiX (X= F, Cl, Br, I) , à une température de l'ordre de 125 à 200 °C. Dans le cas où le sel de lithium est combiné avec un additif céramique, on mélange celui-ci après broyage et tamisage de manière classique puis on réalise une cuisson à une température au-dessus du point de fusion du sel de lithium. On effectue ensuite un broyage et un tamisage de manière à sélectionner une granulométrie inférieure à 160 um.  The lithium salt LiX (X = F, Cl, Br, I) is dried at a temperature of the order of 125 to 200 ° C. In the case where the lithium salt is combined with a ceramic additive, it is mixed after grinding and sieving in a conventional manner and is carried out at a temperature above the melting point of the lithium salt. Then grinding and sieving is carried out so as to select a particle size of less than 160 μm.
Préparation de. l'électrode négative (anode) Preparation of . the negative electrode (anode)
On effectue un mélange mécanique du LiM' (M' = Al, Si ou Mechanical mixing of LiM '(M' = Al, Si or
B) ayant une granulométrie inférieure à 250 μιη et deB) having a particle size less than 250 μιη and
1' électrolyte obtenu précédemment. The electrolyte obtained previously.
Préparation de l'électrode positive (cathode) Preparation of the positive electrode (cathode)
On effectue un mélange mécanique de 100 g du disulfure de métal dont la granulométrie est inférieure à 250 à 250 μπι (fer, Cobalt, nickel ou titane) et de l' éleçtrolyte obtenu précédemment. A mechanical mixture of 100 g of metal disulphide having a particle size of less than 250 to 250 μπι is made. (iron, cobalt, nickel or titanium) and the elettrolyte obtained previously.
Les compositions ainsi, obtenues sont utilisées pour fabriquer diverses cellules compression des poudres.  The compositions thus obtained are used to manufacture various powder compression cells.
On fabrique un ensemble de cellule constituée d'un disque de lgr du matériau de l'électrode négative, de l,65gr d' éleçtrolyte et de 2,40gr de cathode. On obtient un ensemble de cellules dont l'épaisseur totale est de 1,53 mm et d'un diamètre allant de 26 mm à 36mm. Pour effectuer les tests de décha.rge_o.n_p£.ut-_ut.i.li.s-e.r_une_ce.l2u.le_s£ul£_o-u_un_e.n.sBmb e_de_ cellules.  A cell assembly consisting of a 1 gram disc of the material of the negative electrode, 1.65 gr of electrolyte and 2.40 gr of cathode is manufactured. We obtain a set of cells whose total thickness is 1.53 mm and a diameter ranging from 26 mm to 36 mm. In order to perform the tests, the user does not have a cell-only number of cells.
Le protocole de décharge est le suivant. On dispose la cellule entre deux collecteurs de tension dans un environnement neutre à 150 °C. Les., collecteurs sont les sorties de tension que l'on relie à un galvanomètre SP-240 de la société Biologie. La cellule est alors déchargée à un courant de -0,25 mA sans limite de durée avec une relaxation d'une minute toutes les 30. mn appliquée pour mesurer l'impédance de cette cellule.  The discharge protocol is as follows. The cell is placed between two voltage collectors in a neutral environment at 150 ° C. The., Collectors are the voltage outputs that are connected to a galvanometer SP-240 of the company Biology. The cell is then discharged at a current of -0.25 mA without time limit with a relaxation of one minute every 30 minutes applied to measure the impedance of this cell.
La figure 1 illustre le test de décharge de la cellule fonctionnant à 150 °C et montre une tension V constante de FIG. 1 illustrates the discharge test of the cell operating at 150 ° C. and shows a constant voltage V of
1.5 V environ pendant plus de 10 jours pour un courant de - 0,25 mA. 1.5 V for more than 10 days for a current of - 0.25 mA.
La figure 2 illustre la capacité en mA.h de la cellule toujours à la température de fonctionnement de 150 °C en fonction de la tension V. On constate que cette tension reste constante à 1,5 V environ, la capacité est de 23 mA.h et la cellule fonctionne toujours au bout des 10 jours.  FIG. 2 illustrates the capacity in mA.h of the cell always at the operating temperature of 150 ° C. as a function of the voltage V. It can be seen that this voltage remains constant at about 1.5 V, the capacitance is 23 mA. .h and the cell still works after 10 days.
On dispose une cellule identique à 250. °C environ et on effectue les mêmes mesures.  An identical cell is available at about 250 ° C. and the same measurements are taken.
La figure 3 illustre le test de décharge de la cellule fonctionnant à 250 °C et montre une tension V constante de FIG. 3 illustrates the discharge test of the cell operating at 250 ° C. and shows a constant voltage V of
1.6 V environ pendant plus de 10 jours pour un courant de - 0, 55 mA. About 1.6 V for more than 10 days for a current of -0.55 mA.
La figure 4 illustre la capacité en mA.h de la cellule, toujours à la température de fonctionnement de 250 °C en fonction de la tension V. On constate que cette tension reste constante à 1,6 V environ, la capacité est de 130 mA.h et la cellule fonctionne toujours au bout des 10 jours. FIG. 4 illustrates the capacity in mA.h of the cell, always at the operating temperature of 250 ° C. as a function of the voltage V. It can be seen that this voltage remains constant at about 1.6 V, the capacity is 130 mA.h and the cell still works after 10 days.
On fabrique une pile comprenant deux cellules avec 9 paquets en parallèle.. La pile est placée dans une étuye à la température désirée (250 °C) le temps de la décharge (supérieure à 10 jours) . Les pôles + et - de la pile sont connectés à un galvanomètre BCS-815 de la société Biologie. La pile est déchargée à un courant de -0,9 mA sans limite de durée et on procède à une relaxation d'une minute toutes les 30 minutes pour prendre l'impédance du système.  A battery is made comprising two cells with 9 packets in parallel. The cell is placed in a rack at the desired temperature (250 ° C) the discharge time (greater than 10 days). The + and - poles of the battery are connected to a BCS-815 galvanometer from Biologie. The battery is discharged at a current of -0.9 mA with no time limit and relaxation is done for one minute every 30 minutes to take the impedance of the system.
La figure 5 illus_t.r_e___la. tension^_de la pile fonctionnant à Figure 5 illus_t.r_e ___ the. voltage ^ _of the battery operating at
150 °C pour un courant de -0,9 mA et cette tension se stabilise à 3 V pendant plus de 10 jours. 150 ° C for a current of -0.9 mA and this voltage stabilizes at 3 V for more than 10 days.
La figure 6 illustre la tension de la pile fonctionnant à 150 °C dans les mêmes conditions. On constate que la capacité mesurée en mA.h est de 210 mA.h 10 jours après et la pile fonctionne toujours.  Figure 6 illustrates the voltage of the battery operating at 150 ° C under the same conditions. It is found that the capacity measured in mA.h is 210 mA.h 10 days after and the battery still works.
On fabrique une pile comprenant deux cellules en série avec 11 paquets en parallèle. La pile est entièrement montée et soudée en boite à gant sous atmosphère neutre et est placée dans une étuve à la température désirée (150 °C) . On utilise le galvanomètre cité précédemment mais on décharge la pile à un courant de -2,25 mA sans limite de durée et avec une relaxation d'une minute toutes les 30 minutes pour mesurer l'impédance.  A stack comprising two cells in series with 11 packets in parallel is manufactured. The battery is fully assembled and welded in a glove box under a neutral atmosphere and is placed in an oven at the desired temperature (150 ° C). The aforementioned galvanometer is used, but the battery is discharged at a current of -2.25 mA with no time limit and with a relaxation of one minute every 30 minutes to measure the impedance.
La figure 7 illustre la tension de la pile fonctionnant à 150 °C pour un courant de -2,25 mA. La courbe montre que la tension V se stabilise à environ 2,8 V pendant plus de 10 jours.  Figure 7 illustrates the voltage of the battery operating at 150 ° C for a current of -2.25 mA. The curve shows that the voltage V stabilizes at about 2.8 V for more than 10 days.
La figure 8 montre la tension dans les mêmes conditions. (Pile fonctionnant à 150 °C) On constate que la capacité mesurée en mA.h est de 500 mA.h .10 jours après et la pile fonctionne toujours.  Figure 8 shows the voltage under the same conditions. (Battery operating at 150 ° C) It is found that the capacity measured in mA.h is 500 mA.h .10 days after and the battery still works.
On fabrique une pile comprenant deux cellules en série avec 13 paquets en parallèle. La pile est. placée dans une étuve à la température désirée (250 °C) . On utilise le galvanomètre cité précédemment mais on décharge la pile à une courant de -1,72 mA . sans limite de durée et avec une relaxation d'une minute toutes les 30 minutes pour prendre l'impédance du système. A stack is made comprising two cells in series with 13 packets in parallel. The pile is. placed in an oven at the desired temperature (250 ° C). The galvanometer mentioned above is used, but the battery is discharged at a current of -1.72 mA . no limit of time and with a relaxation of one minute every 30 minutes to take the impedance of the system.
La figure 9 illustre la tension de la pile fonctionnant à 250 °C pour un courant de -1,72 mA. La courbe montre que la tension V se stabilise à environ 2,8 V pendant plus de 19 j ours .  Figure 9 illustrates the voltage of the battery operating at 250 ° C for a current of -1.72 mA. The curve shows that voltage V stabilizes at about 2.8 V for more than 19 days.
La figure 10 montre la tension de la pile fonctionnant a 250 °C dans les mêmes conditions. On constate que la capacité mesurée en mA.h est de 650 mA.h 19 jours après et la pile fonctionne toujours.  Figure 10 shows the battery voltage operating at 250 ° C under the same conditions. It is found that the capacity measured in mA.h is 650 mA.h 19 days after and the battery still works.
D' autres essais ont été effectués à jie.s _t_empéxat.u.r_e.s de— fonctionnement inférieures à 100 °C et on a mis en évidence des performances similaires à celles indiquées ci-dessus.  Other tests have been carried out with operating temperatures lower than 100 ° C and similar performance has been demonstrated as indicated above.
Les résultats fournis ci-dessus montrent tout l'intérêt de la cellule selon l'invention. Ainsi, pour la première fois, il est possible de fabriquer une pile répondant aux spécificités requises dans le domaine des forages profonds en procurant un fonctionnement satisfaisant pendant une durée très longue. En augmentant le nombre de paquets, on constate également que les performances de la pile s'améliorent considérablement. Ainsi, l'invention ouvre une voie nouvelle dans l'utilisation des cellules et piles en alliage de lithium tout solide sans fusion de l' électrolyte à des températures de fonctionnement comprises entre 25 et 350°C.  The results provided above show all the interest of the cell according to the invention. Thus, for the first time, it is possible to manufacture a battery meeting the specificities required in the field of deep drilling by providing satisfactory operation for a very long time. By increasing the number of packets, we also see that the performance of the stack improves considerably. Thus, the invention opens a new way in the use of all-solid lithium alloy cells and cells without fusion of the electrolyte at operating temperatures between 25 and 350 ° C.

Claims

REVENDICATIONS
1. Cellule en alliage de lithium comprenant un électrolyte solide constitué d'un sel de lithium de formule LiX dans laquelle X représente un halogène mélangé éventuellement avec un additif céramique, l'anode constituée d'un alliage de lithium de formule Li ' , dans laquelle M' représente un métal, associé à l' électrolyte et la cathode constituée de disulfure métallique M"S2 associé à 1' électrolyte, caractérisée en ce que l' électrolyte présente une granulométrie inférieure à 160 μπι, l'alliage de lithium et le disulfure métallique une granulométrie inférieure à 250 μιη, ladite cellule étant apte à fournir une tension constante de l'ordre de 1,5 V pendant au moins une dizaine de jours dans un volume de quelques centimètres cubes à une température de fonctionnement comprise entre .25 et 350 °C. A lithium alloy cell comprising a solid electrolyte consisting of a lithium salt of formula LiX in which X represents a halogen optionally mixed with a ceramic additive, the anode consisting of a lithium alloy of formula Li ', in which M 'represents a metal, associated with the electrolyte and the cathode constituted by M "S2 metal disulfide associated with the electrolyte, characterized in that the electrolyte has a particle size of less than 160 μπι, the lithium alloy and the metal disulfide particle sizes below 250 μιη, said cell being capable of providing a constant voltage of about 1.5 V for at least ten days in a volume of a few cubic centimeters at an operating temperature between. 25 and 350 ° C.
2. Cellule en alliage de Lithium selon la revendication 1, caractérisée en ce que l'additif céramique de l' électrolyte est représenté par MgO, Al203, SiC>2, Y2O3 ou CaO. Lithium alloy cell according to claim 1, characterized in that the ceramic additive of the electrolyte is represented by MgO, Al 2 O 3, SiC 2, Y 2 O 3 or CaO.
3. Cellule en alliage de Lithium selon la revendication 1 ou 2, caractérisée en ce que dans l'alliage de lithium LiM' le métal M' est représenté par Al, B ou Si et dans le disulfure métallique M"S2 le métal M" est représenté par Fe, Co, Ni ou Ti.  3. Lithium alloy cell according to claim 1 or 2, characterized in that in the lithium alloy LiM 'the metal M' is represented by Al, B or Si and in the metal disulfide M "S2 the metal M" is represented by Fe, Co, Ni or Ti.
4. Utilisation de la cellule en alliage de lithium selon l'une des revendications précédentes pour la fabrication de piles comprenant 2 cellules avec 11 paquets en parallèle  4. Use of the lithium alloy cell according to one of the preceding claims for the manufacture of cells comprising 2 cells with 11 packets in parallel.
5. Utilisation de la cellule en alliage de -lithium selon l'une des revendications 1 à 3 pour la fabrication de piles comprenant 2 cellules avec 13 paquets en parallèle.  5. Use of the lithium-lithium cell according to one of claims 1 to 3 for the manufacture of cells comprising 2 cells with 13 packets in parallel.
PCT/FR2016/000136 2015-09-08 2016-09-08 Lithium-alloy cell comprising a solid electrolyte for manufacturing batteries WO2017042444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR15/01855 2015-09-08
FR1501855A FR3040823B1 (en) 2015-09-08 2015-09-08 LITHIUM ALLOY CELL COMPRISING SOLID ELECTROLYTE FOR BATTERY MANUFACTURE

Publications (1)

Publication Number Publication Date
WO2017042444A1 true WO2017042444A1 (en) 2017-03-16

Family

ID=55971026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/000136 WO2017042444A1 (en) 2015-09-08 2016-09-08 Lithium-alloy cell comprising a solid electrolyte for manufacturing batteries

Country Status (2)

Country Link
FR (1) FR3040823B1 (en)
WO (1) WO2017042444A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2508240A1 (en) * 1981-06-17 1982-12-24 Gipelec Electrochemical cell with cation conductive vitreous electrolyte - formed by powder compaction on cathode with lithium disc superimposed
US4444857A (en) * 1981-06-17 1984-04-24 Societe Anonyme Dite: Gipelec Electrochemical cell including a solid electrolyte made from a cation conductive vitreous compound
US4478920A (en) * 1982-04-16 1984-10-23 Gipelec Lithium cell having a solid electrolyte constituted by a conductive vitreous compound
US6203947B1 (en) * 1998-04-08 2001-03-20 Ramot University Authority For Applied Research And Industrial Development Ltd. Long cycle-life alkali metal battery
JP2015022960A (en) * 2013-07-22 2015-02-02 Jsr株式会社 Slurry for electrode of electricity storage device
US20150086826A1 (en) 2013-09-25 2015-03-26 Ceramatec, Inc. Intermediate Temperature Sodium-Metal Halide Battery
US20150147619A1 (en) 2013-11-28 2015-05-28 Sk Innovation Co., Ltd. Sodium Secondary Battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2508240A1 (en) * 1981-06-17 1982-12-24 Gipelec Electrochemical cell with cation conductive vitreous electrolyte - formed by powder compaction on cathode with lithium disc superimposed
US4444857A (en) * 1981-06-17 1984-04-24 Societe Anonyme Dite: Gipelec Electrochemical cell including a solid electrolyte made from a cation conductive vitreous compound
US4478920A (en) * 1982-04-16 1984-10-23 Gipelec Lithium cell having a solid electrolyte constituted by a conductive vitreous compound
US6203947B1 (en) * 1998-04-08 2001-03-20 Ramot University Authority For Applied Research And Industrial Development Ltd. Long cycle-life alkali metal battery
JP2015022960A (en) * 2013-07-22 2015-02-02 Jsr株式会社 Slurry for electrode of electricity storage device
US20150086826A1 (en) 2013-09-25 2015-03-26 Ceramatec, Inc. Intermediate Temperature Sodium-Metal Halide Battery
US20150147619A1 (en) 2013-11-28 2015-05-28 Sk Innovation Co., Ltd. Sodium Secondary Battery

Also Published As

Publication number Publication date
FR3040823B1 (en) 2019-11-15
FR3040823A1 (en) 2017-03-10

Similar Documents

Publication Publication Date Title
JP6246816B2 (en) All solid battery
CA3073099A1 (en) Electrode materials in the form of lithium-based alloy and methods for manufacturing same
JP5348607B2 (en) All-solid lithium secondary battery
CA2908675A1 (en) Positive electrode for a lithium battery
FR2933240A1 (en) NON-AQUEOUS ELECTROLYTE FOR HIGH VOLTAGE LITHIUM ACCUMULATOR
EP1819002A3 (en) Electrolyte composition for nickel-zinc batteries
WO2011157765A1 (en) Lithium electrochemical accumulator having a bipolar architecture and comprising a specific electrolyte additive
EP1531506B1 (en) Electrochemically active material for a positive electrode of a secondary lithium battery
KR101914070B1 (en) MANUFACTURING METHOD OF Si ALLOY-SHAPE MEMORY ALLOY COMPLEX FOR LITHIUM RECHARGEBLE ANODE ACTIVE MATERIAL, AND Si ALLOY-SHAPE MEMORY ALLOY COMPLEX MADE BY THE SAME
FR3040823B1 (en) LITHIUM ALLOY CELL COMPRISING SOLID ELECTROLYTE FOR BATTERY MANUFACTURE
CA3075951C (en) Solid polymer electrolyte comprising a solvating polymer, a lithium salt and a selected halogenated polymer, and battery comprising same
EP3387696A1 (en) Electrochemical cell for a lithium battery, comprising a specific electrolyte
EP3179550B1 (en) Electrochemical cell for lithium battery comprising an electrode made of a silicon-graphite composite material and a specific electrolyte
US20020142217A1 (en) Germanium nitride electrode material for high capacity rechargeable lithium battery cell
WO2021191217A1 (en) Lithium mixed inorganic electrolytes
FR3102889A1 (en) GELIFIED ELECTROLYTE FOR LITHIUM-ION ELECTROCHEMICAL ELEMENT
EP2959530B1 (en) Electrochemical cell for a lithium-ion battery including a negative electrode made of silicon and a specific electrolyte
TWI779200B (en) Active material of anode of lithium ion battery, anode of lithium ion battery and lithium ion battery
WO2011007056A1 (en) Liquid electrolyte for lithium accumulator, comprising a mixture of non-aqueous organic solvents
FR3072500B1 (en) USE OF A LI-ION BATTERY COMPRISING AN ANODE CONTAINING AN ALLOY BASED ON TIN AND ANTIMONY
WO2023078611A1 (en) Lithium-ion type electrochemical element
EP4148755A1 (en) Method for forming a potassium hybrid supercapacitor
FR2994026A1 (en) Lithium-ion cell for use in lithium-ion battery to store electric energy, has negative electrode comprising first materials and first additional material, and positive electrode comprising second materials and second additional material
EP3963656A1 (en) Multilayer electrode-electrolyte components and their production methods
WO2023089041A1 (en) Sulfide ceramic electrolytes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16781141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16781141

Country of ref document: EP

Kind code of ref document: A1