WO2017041701A1 - 可释放一氧化氮的前药分子 - Google Patents

可释放一氧化氮的前药分子 Download PDF

Info

Publication number
WO2017041701A1
WO2017041701A1 PCT/CN2016/098217 CN2016098217W WO2017041701A1 WO 2017041701 A1 WO2017041701 A1 WO 2017041701A1 CN 2016098217 W CN2016098217 W CN 2016098217W WO 2017041701 A1 WO2017041701 A1 WO 2017041701A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
oxo
substituted
dimethoxy
Prior art date
Application number
PCT/CN2016/098217
Other languages
English (en)
French (fr)
Inventor
葛建
李云飞
张瑱
王艺瑾
王佳苗
荣语媚
Original Assignee
浙江华海药业股份有限公司
上海华汇拓医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江华海药业股份有限公司, 上海华汇拓医药科技有限公司 filed Critical 浙江华海药业股份有限公司
Priority to EP16843639.2A priority Critical patent/EP3348548A4/en
Priority to CN201680050180.1A priority patent/CN108349911B/zh
Priority to US15/756,476 priority patent/US10456405B2/en
Priority to JP2018530955A priority patent/JP2018526448A/ja
Publication of WO2017041701A1 publication Critical patent/WO2017041701A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/5355Non-condensed oxazines and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4418Non condensed pyridines; Hydrogenated derivatives thereof having a carbocyclic group directly attached to the heterocyclic ring, e.g. cyproheptadine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • C07D217/24Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/88Oxygen atoms
    • C07D239/91Oxygen atoms with aryl or aralkyl radicals attached in position 2 or 3

Definitions

  • the invention belongs to the field of medicinal chemistry research and development, and particularly relates to a class of prodrug molecules capable of releasing nitric oxide and their medical uses.
  • Nitric oxide donor is a kind of prodrug that can release NO in the body. It refers to a drug that does not need to be catalyzed by nitric oxide (NOS) to produce NO by itself or with other substances. As a form of NO transport in the body, it can also be used as a storage form to prolong the half-life of NO, overcome the inconvenience caused by inhalation of NO and the difficulty of controlling the inhalation amount of NO.
  • the NO donor drug is mainly a prodrug in which the structure of a known drug or active compound is used as a mother core and a NO donor is combined by various linking groups, and the drug can be released in the body by an enzyme or a non-enzymatic action. And NO. Studies have shown that due to the release of NO, the effect of NO donor drugs is generally better than the original drug, and the adverse reactions are significantly smaller than the original drug.
  • the trend of NO donor drug research is to use the principle of prodrugs to combine NO donors with effective drugs to form a more effective new drug.
  • the advantages of this drug design method are to improve the bioavailability of the drug, increase the stability of the drug, reduce the side effects, and promote the long-acting of the drug.
  • it has the characteristics of NO donor, providing a biological activity that depends on NO.
  • the research of NO donor has become one of the hotspots and frontiers in the field of biomedicine and pharmacy in recent years.
  • Cardiovascular diseases have been a public health problem worldwide. According to statistics, about 3.5 million people die of cardiovascular disease every year - one person dies every 10 seconds from cardiovascular disease, and the body's fat metabolism or abnormal operation leads to high Blood lipids and high blood fat can directly cause diseases that seriously endanger human health, such as atherosclerosis. Hyperlipidemia can cause insufficient blood supply to human tissues and organs, thereby inducing cardiovascular and cerebrovascular diseases such as coronary heart disease, stroke, hypertension, and renal failure. The reverse cholesterol transport (RCT) mechanism in the human body can To improve hyperlipidemia, RCT is a normal physiological process that transports atherosclerotic plaques out of the arteries and removes them from the body through the liver.
  • RCT reverse cholesterol transport
  • Apolipoprotein AI is an important component of functional high-density lipoprotein (HDL) microparticles, which can promote RCT, effectively eliminate atherosclerotic plaque, and prevent hyperlipidemia; on the other hand, ApoA- I can also activate phosphorylated acetyl-coenzyme carboxylase by activating the AMPK signaling pathway, improve the absorption of glucose in muscle cells, and improve blood glucose metabolism in the body.
  • ApoA-I not only regulates lipids in vivo. Metabolism and blood glucose metabolism are related, and it is closely related to immune function and nerve function.
  • Clinical experimental data show that low levels of ApoA-I in the body can lead to an increase in the incidence of cardiovascular disease. Therefore, increasing the content of ApoA-I in the human body will play a positive role in the prevention and treatment of cardiovascular diseases.
  • the compound of the invention can rapidly release NO and increase the level of ApoA-I in the body, which can not only improve cardiovascular and cerebrovascular function, but also have certain preventive effects on dyslipidemia and diabetic complications.
  • the compound provided by the present invention is a compound represented by the formula (II): and a pharmaceutically acceptable salt or stereoisomer thereof:
  • A is a small molecular compound residue capable of preventing and treating cardiovascular diseases, and is selected from the following groups:
  • R 1 is -O-;
  • R 0 is selected from the group consisting of:
  • B is selected from:
  • B also specifically refers to:
  • R 2 is H, a linear C 1-4 alkyl group or a branched C 3-4 alkyl group;
  • R 3 is -CH- or a nitrogen atom
  • X is a fluorine atom or a chlorine atom
  • R 4 is C 1-3 alkyl
  • R 5 is -O-, -S-, -NH- or a nitrogen atom substituted by a C 1-3 alkyl group
  • R 8 and R 9 are each independently C 1-6 alkyl, alkyl substituted C 1-6 alkyl, hydroxy substituted C 1-6 alkyl, fluoro substituted C 1-6 alkyl, deuterium substituted C 1-6 alkyl, -CH 2 -R 10 or -CH 2 -CH 2 -R 10 ;
  • R 10 is -OH, -OC 1-6 alkyl, -OCD 3 , -C(O)-T 2 , -C(O)-R 5 -T 2 , -OC(O)-T 2 ,- R 5 -C(O)R 5 -T 2 , -NH 2 , -C 6 H 5 ,
  • the substituted 5 or 6 membered heteroaryl ring is mono- or disubstituted on any carbon atom by a group selected from the group consisting of:
  • R 11 is hydrogen, C 1-8 alkyl, substituted C 1-8 alkyl, phenyl, aryl, substituted phenyl or aryl, or a ring having 4 to 7 carbon atoms An alkyl group; or a substituted cycloalkyl group having 4 to 7 carbon atoms, wherein the substituent is defined by T 2 or R 10 ;
  • R 12 is R 11 , -C(O)-R 5 -R 11 or is -C(O)-R 11 , preferably -C(O)-OCH 2 CH 3 ;
  • R 13 is H, C 1-4 alkyl, nitrile, benzyl, nitro, p-nitrophenyl, alkylsulfonyl, arylsulfonyl, alkylcarbonyl or cycloalkyl;
  • R 14 is H, Or R 8 ;
  • Y 0 is -R 5 -Y
  • Y 0 also specifically represents:
  • Y further represents:
  • T is a linear C 1-20 alkylene group, a branched C 3-20 alkylene group, or a cycloalkylene group having 3 to 7 carbon atoms, which is optionally one Or a plurality of linear C 1-10 alkyl chains or branched C 3-10 alkyl chains;
  • U is a linear C 1-20 alkylene group or a branched C 3-20 alkylene group optionally substituted with an -ONO 2 group;
  • Y 1 is a linear C 1-20 alkylene group, a branched C 3-20 alkylene group, a linear C 2-20 alkenylene group, a branched C 3-20 alkenylene group;
  • a cycloalkylene group having 4 to 7 carbon atoms which ring is optionally substituted by one or more linear C 1-10 alkyl chains or a branched C 3-10 alkyl chain; It can also be expressed by the following formula:
  • T 1 is an unsubstituted or substituted C 1-12 linear alkyl group, an unsubstituted or substituted C 3-12 branched alkyl group, an unsubstituted or substituted C 2-12 linear alkenyl group, unsubstituted or substituted C 3-12 branched alkenyl, unsubstituted or substituted benzyl, unsubstituted or substituted phenyl, unsubstituted or substituted aryl substituted C 1-4 alkyl, unsubstituted or substituted heteroaryl, -OC(O)-(C 1-10 alkyl)-ONO 2 or -O-(C 1-10 alkyl)-ONO 2 ;
  • T 2 is an unsubstituted or substituted C 1-12 linear alkyl group, an unsubstituted or substituted C 3-12 branched alkyl group, an unsubstituted or substituted C 2-12 linear alkenyl group, unsubstituted or substituted a C 3-12 branched alkenyl group, an unsubstituted or substituted benzyl group, an unsubstituted or substituted phenyl group, an unsubstituted or substituted aryl substituted C 1-4 alkyl group, an unsubstituted or substituted heteroaryl group;
  • Y 2 is C 1-8 alkyl, phenyl, benzenesulfonyl, nitrile, trifluoromethyl, C 1-8 alkoxy or C 1-8 alkyl nitrate;
  • Y 3 is H, F, Cl, Br, I, OH, C 1-6 alkyl, -OC 1-6 alkyl;
  • Y 4 is hydrogen, halogen, trifluoromethyl, C 1-8 alkoxy, C 1-8 alkyl, nitro, sulfonamide, amino or nitrile;
  • Y 6 is a saturated 5 or 6 membered aromatic heterocyclic ring, an unsaturated 5 or 6 membered aromatic heterocyclic ring, wherein the heterocyclic ring contains one or more hetero atoms selected from nitrogen, oxygen, sulfur, and is specifically selected from the group consisting of:
  • Y 7 , Y 8 , Y 9 and Y 10 are the same or different and represent H, a linear C 1-4 alkyl group or a branched C 3-5 alkyl group;
  • Y 11 is or
  • alkyl includes saturated aliphatic groups, including straight chain alkyl groups (eg, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl, etc.) , branched alkyl (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl), alkyl substituted A cycloalkyl group and a cycloalkyl substituted alkyl group.
  • straight chain alkyl groups eg, methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl, etc.
  • a linear or branched alkyl group has 6 or fewer carbon atoms in the backbone (eg, a linear chain is C 1-6 and a branched chain is C 3-6 ), and more preferably 4 or fewer carbon atoms.
  • a preferred cycloalkyl group has 3 to 8 carbon atoms in its ring structure, and more preferably has 5 or 6 carbons in its ring structure.
  • C1-6 alkyl includes alkyl groups containing from 1 to 6 carbon atoms.
  • alkyl also includes “unsubstituted alkyl” and “substituted alkyl”, the latter referring to an alkyl group in which one or more hydrogens in the hydrocarbon backbone are replaced by a substituent.
  • the substituent may include: alkenyl, alkynyl, halogen, hydroxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, hydroxycarbonyl, alkylcarbonyl, Arylcarbonyl, alkoxycarbonyl, aminocarbonyl, Alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxy, phosphate, phosphonate, cyano, amino (including alkylamino, dialkylamino, arylamino, diarylamino) And alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), fluorenyl, imino, fluorenyl, alkylthio, arylthio, hydroxythiocarbonyl , sulfate, alkylsulfin
  • aryl embraces 5- and 6-membered monocyclic aromatic groups which may contain from 0 to 4 heteroatoms such as benzene, phenyl, pyrrole, furan, thiophene, thiazole, isothiazole, imidazole, triazole, Tetrazole, pyrazole, oxazole, isoxazole, pyridine, pyrazine, pyridazine, pyrimidine, etc.; in addition, the term “aryl” also includes polycyclic aryl groups, such as tricyclic, bicyclic, such as naphthalene, benzoxazole, Benzodiazole, benzothiazole, benzimidazole, benzothiophene, methylenedioxyphenyl, quinoline, isoquinoline, naphthyridine, anthracene, benzofuran, anthracene, benzofuran, denitrification ⁇ or medium nitrogen.
  • aryl groups such
  • Typical heteroaryl groups include 2- or 3-thienyl; 2- or 3-furyl; 2- or 3-pyrrolyl; 2-, 4- or 5-imidazolyl; 3-, 4- or 5-pyridyl; Azolyl; 2-, 4- or 5-thiazolyl; 3-, 4- or 5-isothiazolyl; 2-, 4- or 5-oxazolyl; 3-, 4- or 5-isoxazolyl; -or 5-1,2,4-triazolyl; 4- or 5-1,2,3-triazolyl; tetrazolyl; 2-, 3- or 4-pyridyl; 3- or 4-oxime Zinyl; 3-, 4- or 5-pyrazinyl; 2-pyrazinyl; 2-, 4- or 5-pyrimidinyl.
  • heteroaryl also refers to a group in which a heteroaromatic ring is fused to a ring of one or more aryl, cycloaliphatic or heterocyclic groups, wherein the linking group or point of attachment is on the heteroaromatic ring. .
  • Examples thereof include, but are not limited to, 1-, 2-, 3-, 5-, 6-, 7- or 8-indolyl; 1-, 3-, 4-, 5-, 6- or 7-isoindole Indenyl; 2-, 3-, 4-, 5-, 6- or 7-fluorenyl; 2-, 3-, 4-, 5-, 6- or 7-oxazolyl; 2-, 4- , 5-, 6-, 7- or 8-decyl; 1-, 2-, 3-, 4-, 6-, 7-, 8- or 9-quinolinyl; 2-, 3-, 4- , 5-, 6-, 7- or 8-quinolinyl; 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolinyl; 1-, 4-, 5-, 6-, 7- or 8-pyridazinyl; 2-, 3-, 4-, 5- or 6-naphthyridinyl; 2-, 3-, 5-, 6-, 7- or 8-quinazoline 3-, 4-, 5-, 6-, 7- or 8-carbolinyl
  • Typical fused heteroaryl groups include 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolinyl; 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolinyl; 2-, 3-, 4-, 5-, 6- or 7-fluorenyl; 2-, 3-, 4-, 5-, 6- or 7-benzo[b] Thienyl; 2-, 4-, 5-, 6- or 7-benzoxazolyl; 2-, 4-, 5-, 6- or 7-benzimidazolyl; 2-, 4-, 5-, 6- or 7-benzothiazolyl.
  • aryl or “heteroaryl” aromatic ring may be substituted at one or more of the ring positions by a substituent as described above, for example, halo, hydroxy, alkoxy, alkylcarbonyloxy, arylcarbonyl Oxyl, alkoxycarbonyloxy, aryloxycarbonyloxy, hydroxycarbonyl, alkylcarbonyl, alkylaminocarbonyl, arylalkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, Arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylthiocarbonyl, phosphate, phosphonate, cyano, amino (including alkylamino, dialkylamino, arylamino, di Arylamino and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino
  • alkenyl includes unsaturated aliphatic groups analogous in length and possible substitution to the alkyl groups described above, but which contain at least one double bond.
  • alkenyl includes straight-chain alkenyl groups (eg, ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, etc.) a branched alkenyl group, a cycloalkenyl group (e.g., cyclopropenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl), an alkyl or alkenyl substituted cycloalkenyl group, and A cycloalkyl or cycloalkenyl substituted alkenyl group.
  • alkenyl includes straight-chain alkenyl groups (eg, ethenyl, propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl,
  • alkenyl also includes alkenyl groups containing an oxygen, nitrogen, sulfur or phosphorus atom replacing one or more carbons of the hydrocarbon backbone.
  • a straight or branched alkenyl group has 6 or fewer carbon atoms in its backbone (eg, a C 2-6 linear alkenyl group, a C 3-6 branched alkenyl group) .
  • C 2-6 alkene includes alkenyl groups containing from 2 to 6 carbon atoms.
  • alkenyl includes “unsubstituted alkenyl” and “substituted alkenyl”, the latter referring to an alkenyl group in which one or more hydrogens in the hydrocarbon skeleton are replaced by a substituent.
  • the substituent may include, for example, an alkyl group, an alkynyl group, a halogen, a hydroxyl group, an alkylcarbonyloxy group, an arylcarbonyloxy group, an alkoxycarbonyloxy group, an aryloxycarbonyloxy group, a hydroxycarbonyl group, an alkyl group.
  • alkoxy includes substituted and unsubstituted alkyl groups covalently bonded to an oxygen atom.
  • alkoxy group examples include a methoxy group, an ethoxy group, an isopropyloxy group, a propoxy group, a butoxy group, and a pentyloxy group.
  • substituted alkoxy group examples include a halogenated alkoxy group.
  • Alkoxy groups may be substituted by alkenyl, alkynyl, halogen, hydroxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, hydroxycarbonyl, alkane Alkylcarbonyl, arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, phosphate, cyano, amino (including alkylamino, dialkylamino, Arylamino, diarylamino and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), fluorenyl, imino, fluorenyl, alkylthio, Arylthio, hydroxythiocarbonyl, alkylsulfinyl, sulfonate,
  • the AH compound is first synthesized.
  • the preparation method of the compound can be referred to the patent WO2009158404.
  • the compound is reacted with the fragment containing the NO donor, and the reaction is generally carried out in a condensing agent such as DCC, EDCI.
  • a condensing agent such as DCC, EDCI.
  • a base such as DMAP
  • an organic anhydrous solvent such as DMF, THF, toluene, dioxane or polyhalogenated aliphatic hydrocarbon
  • the reaction is carried out at a temperature of from -20 ° C to 50 ° C and the reaction is completed in a period of from 30 minutes to 36 hours.
  • the AH compound is prepared, it is generally reacted with an acid anhydride to form an ester, and the reaction is stirred in an organic anhydrous solvent, such as DMF, THF, DCM, at a temperature of 100 ° C to 120 ° C, and the reaction is carried out at 2 It is completed in an hour to 4 hours; the obtained product is purified and then reacted with an acid chloride compound in the presence of an organic base such as DMAP, triethylamine or pyridine in an inert organic solvent such as DMF, THF, benzene, In the presence of toluene, dioxane or polyhalogenated aliphatic hydrocarbon, the reaction is carried out at a temperature of -20 ° C to 40 ° C, and the reaction is completed in a period of 30 minutes to 36 hours; the obtained product is purified and then contains NO.
  • the chemical fragment of the donor undergoes a condensation reaction.
  • the NO donor compound provided by the present invention is represented by Y or Y 0 , and the synthesis method thereof can be referred to the patents WO2014113700, WO2015109210, EP0984012, EP1336602.
  • the synthesis method can refer to Embodiment 3 in the present invention.
  • TEA triethylamine
  • TFA trifluoroacetic acid
  • DIPEA N,N-diisopropylethylamine
  • DMAP 4-dimethylaminopyridine
  • DCM dichloromethane
  • BOC tert-butoxycarbonyl
  • DMF N,N-dimethylformamide
  • CDI 1,1-carbonyldiimidazole
  • IBCF isobutyl chloroformate
  • HOAc acetic acid
  • HOBt (1-hydroxybenzotriazole); DCC (dicyclohexylcarbodiimido);
  • P-TSA p-toluenesulfonic acid
  • Ac acetyl
  • BOP benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate
  • the invention also includes pharmaceutically acceptable salts of the compounds of formula (II) and stereoisomers thereof.
  • the pharmaceutically acceptable salt refers to an inorganic base salt such as a sodium salt, a potassium salt, a calcium salt or an aluminum salt; an organic base salt such as a lysine salt, an arginine salt, a triethylamine salt, or a second Benzylamine salts, piperidine salts and other pharmaceutically acceptable organic amine salts.
  • an inorganic base salt such as a sodium salt, a potassium salt, a calcium salt or an aluminum salt
  • an organic base salt such as a lysine salt, an arginine salt, a triethylamine salt, or a second Benzylamine salts, piperidine salts and other pharmaceutically acceptable organic amine salts.
  • At least one salt-forming nitrogen atom When at least one salt-forming nitrogen atom is contained in the molecule of the present invention, it can be converted into the corresponding salt by reacting with a corresponding organic acid or inorganic acid in an organic solvent such as acetonitrile or tetrahydrofuran.
  • organic acids are oxalic acid, tartaric acid, maleic acid, succinic acid, citric acid.
  • Typical inorganic acids are nitric acid, hydrochloric acid, sulfuric acid, phosphoric acid, preferably nitric acid.
  • the compounds of the invention When the compounds of the invention have one or more asymmetric carbon atoms, they can exist in the form of optically pure enantiomers, pure diastereomers, enantiomeric mixtures, non-corresponding isoforms A mixture of constructs, an enantiomerically racemic mixture, a racemate or a racemate mixture. All possible isomers, stereoisomers and mixtures thereof of the compounds of formula (II) are also within the scope of the invention.
  • the invention also provides a pharmaceutical composition comprising at least one of the compounds described above and optionally one or more pharmaceutically acceptable carriers and/or diluents.
  • the pharmaceutical composition provided by the present invention can be prepared in any form such as granules, powders, tablets, coated tablets, capsules, pills, syrups, drops, solutions, suspensions and emulsions, or sustained release of active ingredients.
  • Formulations, wherein examples of capsules include hard or soft gelatin capsules, granules and powders may be in a non-effervescent or effervescent form.
  • compositions of the present invention may further comprise one or more pharmaceutically or physiologically acceptable carriers which will be suitably formulated for ease of administration.
  • the pharmaceutically or physiologically acceptable carrier can be saline, hot pressed water, Ringer's solution, buffered saline, dextrose, maltodextrin, glycerol, ethanol, and mixtures thereof.
  • the pharmaceutical composition of the present invention may further comprise a pharmaceutically or physiologically acceptable additive such as a diluent, a lubricant, a binder, a glidant, a disintegrant, a sweetener, a flavoring agent, a wetting agent, a dispersing agent. , a surfactant, a solvent, a coating agent, a foaming agent, or a fragrance.
  • diluents that may be used include, but are not limited to, lactose, sucrose, starch, kaolin, salt, mannitol, and dicalcium phosphate;
  • examples of lubricants include, but are not limited to, talc, starch, magnesium or calcium stearates, stone pine And stearic acid;
  • examples of binders include, but are not limited to, microcrystalline cellulose, tragacanth, dextrose solution, gum arabic, gelatin solution, sucrose, and starch paste;
  • examples of glidants include, but are not limited to, colloidal Silica;
  • disintegrants include, but are not limited to, croscarmellose sodium, sodium starch glycolate, alginic acid, corn starch, potato starch, bentonite, methyl cellulose, agar, and carboxymethyl cellulose;
  • sweeteners include, but are not limited to, sucrose, lactose, mannitol, and artificial sweeteners,
  • composition of the present invention can be administered by various routes according to conventional methods, including oral, intravenous, intraarterial, intraperitoneal, intrathoracic, transdermal, nasal, inhalation, rectal, ocular and subcutaneous introduction.
  • Pharmaceutically acceptable carriers optionally added to the pharmaceutical compositions of the invention are: water, alcohol, honey, mannitol, sorbitol, dextrin, lactose, caramel, gelatin, calcium sulfate, magnesium stearate , talc, kaolin, glycerin, Tween, agar, calcium carbonate, calcium bicarbonate, surfactants, cyclodextrin and its derivatives, phospholipids, phosphates, starches and their derivatives, silicon derivatives, Cellulose One or more of the class and its derivatives, pyrrolidone, polyethylene glycol, acrylic resin, phthalate ester, acrylic acid copolymer, and trimes.
  • Pharmacological experiments verify that the compounds or pharmaceutical compositions provided by the present invention exert anti-inflammatory effects by inhibiting interleukin-66, vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1; by inhibiting the release of inflammatory cytokines It exerts immunosuppressive effects; regulates glucose metabolism disorders and lipid metabolism disorders in the body by promoting the increase of high-density lipoprotein cholesterol (HDL-C), inhibiting the synthesis of cholesterol, fatty acids and triglycerides, and reducing glucose absorption and production.
  • HDL-C high-density lipoprotein cholesterol
  • the compounds or pharmaceutical compositions of the invention also have neuroprotective effects against neuronal apoptosis, inhibition of necrosis, and promotion of nerve regeneration.
  • the present invention provides the use of the above compound or pharmaceutical composition for the preparation of a medicament for preventing or treating cardiovascular and cerebrovascular diseases, inflammatory diseases, neurodegenerative diseases, metabolic disorders and secondary diseases thereof.
  • the present invention provides a method for preventing and/or treating cardiovascular and cerebrovascular diseases, inflammatory diseases, neurodegenerative diseases, metabolic disorders and secondary diseases thereof, the method comprising administering a therapeutically effective amount to a subject in need thereof A compound or pharmaceutical composition according to the invention.
  • the compounds or pharmaceutical compositions according to the invention are useful for the prevention and/or treatment of cardiovascular and cerebrovascular diseases, inflammatory diseases, neurodegenerative diseases, metabolic disorders and their secondary diseases.
  • cardiovascular and cerebrovascular diseases include atherosclerosis, cerebral atherosclerosis, cerebral thrombosis, cerebral infarction, hyperlipemia, ischemic myocardial injury, stroke, coronary heart disease, cardiac hypertrophy, heart failure, myocardial infarction, Rheumatic heart disease, congenital heart disease, left ventricular dysfunction, endothelial dysfunction, fibrosis and structural remodeling after endothelial dysfunction, hypertrophic cardiomyopathy, diabetic cardiomyopathy, supraventricular and ventricular arrhythmia, house Tremor, cardiac fibrosis, atrial flutter, harmful vascular remodeling, myocardial infarction and its sequelae, angina pectoris, hypertension, primary and secondary pulmonary hypertension, renal vascular hypertension, hypertensive retinopathy Or retinal vascular disease.
  • the inflammatory diseases include: chronic kidney disease, chronic nephritis, arthritis, rheumatoid arthritis, psoriasis, enteritis disease, autoimmune disease, ulcerative colitis, gastric ulcer, chronic gastritis, cervicitis, hepatitis B , hepatitis C, non-alcoholic steatohepatitis, chronic skin ulcers, organ transplant rejection; for neuroinflammatory diseases such as diabetic neuropathy, amyotrophic lateral sclerosis, scorpion venom disease, Spinal muscular atrophy, multiple sclerosis, neuropathic pain, primary lateral sclerosis, meningitis or viral encephalitis.
  • neuroinflammatory diseases such as diabetic neuropathy, amyotrophic lateral sclerosis, scorpion venom disease, Spinal muscular atrophy, multiple sclerosis, neuropathic pain, primary lateral sclerosis, meningitis or viral encephalitis.
  • the neurodegenerative diseases include Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease.
  • Metabolic disorders and their secondary diseases include: type 2 diabetes, diabetic lipemia, diabetic macular edema, diabetic retinopathy, macular degeneration, cataract, diabetic nephropathy, glomerular sclerosis, diabetic neuropathy, metabolic acidosis, Premenstrual syndrome, appetite regulation and obesity.
  • the compounds provided herein generally range from about 0.001 mg/kg to about 1000 mg/kg, preferably from about 0.01 mg/kg to 100 mg/kg, more preferably from about 0.1 to 20 mg/kg, of the pharmaceutical composition. It is calculated by the amount of the above compound contained therein.
  • the 1NO donor prodrug is cleaved in vivo into a small molecule therapeutic drug and NO molecule that can regulate the expression or secretion of ApoA-I, thereby providing an exogenous NO based on the pharmacological action of the ApoA-I modulator itself.
  • the treatment of cerebrovascular diseases is of great significance;
  • ApoA-I modulators selected by the inventors have free alcoholic hydroxyl groups in their chemical structures. These drugs are easily conjugated to glucuronic acid in vivo to undergo phase II biotransformation and are metabolized. Under the catalysis of alcohol dehydrogenase in vivo, it is directly oxidized by the first phase biotransformation to be oxidized to free carboxylic acid, or further conjugated with glycine to undergo phase II biotransformation and metabolized. The inventors coupled these ApoA-I modulators to the NO donor to form a NO prodrug, which greatly slowed down these metabolic pathways, thereby improving the bioavailability of the drug, increasing the stability of the drug, and achieving the drug length. Effective effect
  • Figure 1 is the effect of test compounds on serum NO levels in C57 mice.
  • the starting material H30-4 (36 g, 0.24 mol), 2-bromoethanol (60 g, 0.48 mol), potassium carbonate (130 g, 0.94 mol) and EtOH (600 ml) were placed in a beaker, and the mixture was refluxed at 79 ° C for 8 h. After the reaction was completed by TLC, the mixture was filtered, and the filtrate was evaporated to dryness.
  • Aqueous solution of hydroxylamine (1.6 g, 22.8 mmol) was dissolved in THF (50 mL) and water (20 mL), and the solution was cooled to -5[deg.] C., and 5-methylthiophene-2-sulfonyl chloride dissolved in THF (10 mL) was slowly added. 1.5g, 7.6mmo), the temperature is not higher than 10 °C during the addition process, and the sulfonyl chloride consumption is monitored by TLC. The organic layer is separated and the organic layer is washed with water (2 ⁇ 50 mL). The organic layer was dried over sodium sulfate, and filtered under reduced pressure. The obtained filtrate was evaporated under reduced pressure.
  • the preparation was carried out in the same manner as in Example 2 except that the starting material was changed from p-bromomethylbenzoic acid to 3-(3-bromo-propionyl)-benzoic acid.
  • the structure of the final product was confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry.
  • the preparation method is the same as that in Example 2, except that the starting material is changed from p-bromomethylbenzoic acid to 3-allyloxy-benzoyl chloride (preparation method reference US 20150307650), and the final product structure is subjected to nuclear magnetic resonance spectrum and Mass spectrometry confirmed.
  • intermediate (d) was added to 70 mL of dichloromethane, dissolved well, and then HCl gas was passed thereto for 1 hour, and the solvent was evaporated under reduced pressure to give intermediate (e), glycine 2-[4-(5,7). -dimethoxy-4-oxo-3,4-dihydro-quinazolin-2-yl)-2,6-dimethyl-phenoxy]-ethyl ester hydrochloride, intermediate (e) Dissolved in 40 mL of dichloromethane, and then added 4-nitroxybutyric acid pentafluorophenol ester (0.41 g), DMAP (20 mg) and triethylamine (0.3 mL), and stirred at room temperature.
  • the product intermediate (f) of the previous step was dissolved in 24 mL of dichloromethane, and pyridine (0.5 mL) was added to the obtained solution, the solution was cooled to 0 ° C, and p-nitrophenol chloroformate (980 mg) was added at 0 ° C. Stirring under the conditions, after reacting for 10 minutes, stirring was continued for 21 hours at room temperature. After the reaction was completed, The reaction was diluted with 25 mL of dichloromethane, washed with EtOAc EtOAc EtOAc EtOAc.
  • the above product was dissolved in 30 mL of dichloromethane at room temperature, and dissolved well, and then HCl gas was passed thereto for 15 minutes.
  • the reaction mixture was diluted with dichloromethane (35 mL) and washed with saturated aqueous sodium carbonate.
  • the preparation method is the same as that in Example 9.
  • the starting material is changed from N-Boc-glycine to Boc- ⁇ -alanine, and the 4-nitroxybutyric acid pentafluorophenol ester in the preparation step 2 is changed to 3-nitroxypropyl.
  • the acid pentafluorophenol ester was confirmed by nuclear magnetic resonance spectroscopy and mass spectrometry.
  • the preparation method is the same as in Example 6, the succinic anhydride in the step 1 of the embodiment 6 is replaced by 2-hydroxysuccinic acid, and the substitution in the step 3 of the embodiment 6 is (2-oxo-4-phenyl-furazan- 3-Base)-methanol, the resulting structure was confirmed by 1H NMR and MS.
  • Example 14 Preparation of 4-(2-(((2-(4-(5,7-dimethoxy-4-oxo-3,4-dihydro-quinazolin-2-yl)-2) ,6-Dimethyl-phenoxy)ethoxy)carbonyl)oxy)ethoxy)-3-(phenylsulfonyl)-2-oxo-furazan (H114)
  • the preparation method is the same as in Example 6, the succinic anhydride in the step 1 of the embodiment 6 is changed to the butenedioic acid, and the N-hydroxythiophene-2-sulfonamide (N-hydroxythiophene-2) is replaced in the step 3 of the embodiment 6.
  • - Sulfonamide preparation method is referred to patent WO2014113700), and the obtained structure is confirmed by nuclear magnetic resonance spectrum and mass spectrometry.
  • Example 17 Preparation of 4-[4-(2-(nitroxy)ethyl)-piperazine-1yl]-4-oxo-butyric acid 2-[4-(5,7-dimethoxy) 4-oxo-3,4-dihydro-quinazolin-2-yl)-2,6-dimethyl-phenoxy]-ethyl ester (H117) is prepared in the same manner as in step 16 of Example 16. The starting material was changed from N-hydroxy-3-(methylsulfonyl)benzenesulfonamide to 1-(2-(nitroxy)ethyl)-piperazine.
  • the preparation method was the same as that in Example 19.
  • the starting material isosorbide mononitrate was changed to 6-nitrooxy-hexahydrofuro[3,2-b]furan-3-yl-amino group, and the structure was subjected to nuclear magnetic resonance spectrum. And mass spectrometry confirmed.
  • N-Hydroxy-5-chlorothiophene-2-sulfonamide (362 mg, 1.7 mmol, preparation method reference patent WO2014113700), triethylamine (172 mg, 1.7 mmol) and DCM (20 ml) were added to a 50 ml flask, which was carried out.
  • the intermediate (416 mg, 0.85 mmol) obtained in Step 2 of Example 6 was dissolved in DCM (20 ml), and then added dropwise to the reaction mixture at 0 ° C, then stirred for 1 h.
  • the preparation method was the same as that in Example 21.
  • the starting material was changed from N-hydroxy-5-chlorothiophene-2-sulfonamide to 2-(N-hydroxyaminesulfonyl)-1-methyl-1H-pyrazole-2-indole.
  • the salt preparation method refers to patent WO2014113700
  • the structure of the obtained target compound is confirmed by nuclear magnetic resonance spectrum and mass spectrometry.
  • Boc-(L)-tyrosine (380 mg, 1.35 mmol) was dissolved in a solution of N,N-dimethylformamide (10 ml), and cesium carbonate (440 g, 1.35 mmol) was added at 0 ° C to A solution of 3,4-dinitrooxy-1-bromobutane (350 mg, 1.35 mmol, preparation method reference WO 2001049275) dissolved in dichloromethane (20 ml) was added dropwise.
  • the product of the above step (525 mg, 0.75 mmol) was dissolved in acetonitrile (20 mL), then sodium iodide (0.45 g, 3.06 mmol) was added, and the mixture was heated to 120 ° C under microwave irradiation for 60 minutes and cooled.
  • the intermediate H130 (2.11 g, 5.7 mmol) was dissolved in dichloromethane (100 ml), and 4-(allyloxy)-3-(tert-butoxycarbonylamino)-4-oxobutanoic acid ( 1.55g, 5.7mmol) and DMAP (catalytic amount), the reaction was cooled to 0 ° C, then EDAC (1.49g, 7.85mmol) was added, the reaction was stirred at room temperature for 12h, distilled under reduced pressure, and the residue was applied to silica gel column
  • the intermediate (4-[4-(5,7-dimethoxy-4-oxo-3,4-dihydro-) was obtained by chromatography (eluent: hexane/ethyl acetate gradient elution).
  • the Griess reagent was placed: 4 g of sulfonamide, 0.2 g of N-naphthalene ethylenediamine hydrochloride, 10 ml of an 85% phosphoric acid solution, and diluted to 100 ml with distilled water.
  • Test object number NO release amount ( ⁇ M) Isosorbide mononitrate 3.31 H101 5.97 H102 -0.55 H106 2.56 H108 0.33 H109 1.49 H111 52.12 H113 45.63
  • HNO will rapidly dimerize and dehydrate in aqueous solution to produce nitrous oxide.
  • gas chromatography headspace analysis is generally used to determine the release amount of nitrous oxide to indirectly detect the level of HNO released by the compound.
  • test compound was formulated into a mother liquor of 20 mg/mL with DMF. Before the start of the experiment, 50 ⁇ L of the drug mother liquor was placed in a 20 mL headspace sample vial, and then diluted with 5 mL of PBS buffer pH 7.4. After the test sample was incubated under argon at 37 ° C for 90 minutes, the top gas was taken for gas chromatography analysis of nitrous oxide, and Angeli's Salt was used as a positive compound in the experiment.
  • HNO nitrosyl hydrogen
  • studies have shown that it can exert positive inotropic effects on living heart and can significantly improve myocardial contractile function in patients with heart failure.
  • Mechanism studies have revealed that HNO donors may regulate myocardial contraction in a redox-dependent manner.
  • drugs containing HNO donors can be used to treat heart failure, such as acute congestive heart failure, early chronic heart failure, and HNO donor drugs can also be administered with positive inotropic drugs.
  • the article may also treat or prevent ischemia/reperfusion injury, reduce the tissue infarct size of the at risk tissue, and may be used for organ transplant surgery by contacting the organ with the HNO donor prior to reperfusion of the transplant recipient organ.
  • test compound (2 ⁇ M) was added to mouse plasma or human plasma, incubated at 37 ° C, and sampled at 0, 10, 30, 60, 120 minutes, respectively, and the reaction was stopped by a stop agent. The mixture was centrifuged at 4 ° C, 4000 rpm for 10 minutes, and the supernatant was taken, and the concentration of the test compound and its metabolite (H130) in the supernatant was measured by LC-MS/MS method.
  • Sample pretreatment accurately absorb 150 ⁇ L of whole blood to be tested, add 600 ⁇ L of internal standard solution (diluted to 0.5 ⁇ g/mL by methanol), vortex fully, centrifuge at 13000r/min for 20min at 4°C, and take supernatant for 3 ⁇ L. Inject the vial.
  • Table 4 shows the pharmacokinetic parameters of H130 after intravenous injection of each test compound in rats.
  • Table 5 shows the pharmacokinetics of H130 after oral administration of the original drug and each test compound in rats. Kinetic parameters.
  • the prototype compound H130 can be released soon after administration of H101, H111, H116, H118 and H119.
  • the prototype compound H130 has been clinically proven to be a novel drug that can be used to reduce the incidence of adverse cardiac events and is highly safe.
  • HepG2 cells were cultured in a 24-well plate with 400 ⁇ l of MEM medium containing 0.5% (v/v) fetal bovine serum for 24 hours, then each test compound (100 ⁇ M), positive control RVX-208 (100 ⁇ M) was added, and cultured again. After 48 h of cells, aspirate the medium, rinse with 200 ⁇ l of PBS, add 85 ⁇ l of cell lysate to the cells of each well, incubate for 5-10 minutes at room temperature to completely dissolve and detach the cells, extract the mRNA from the cells, and then use RNA.
  • the fluorescent (RiboGreen) quantitative detection kit and the ApoA-I mRNA primer-probe mixture of Epsteins use the extracted mRNA for real-time fluorescent quantitative PCR detection;
  • the fold induction of each test compound relative to the DMSO control group was calculated.
  • the fold induction was used to reflect the potency of the test compound to modulate ApoA-I mRNA, and 100 ⁇ M of the test compound allowed ApoA in HepG2 cells.
  • -I mRNA is increased by more than 15% and is called an ApoA active compound.
  • the experimental results of the regulatory activities of each test substance on ApoA-I mRNA of HepG2 cells are shown in Table 6.
  • the synthesized test substances can up-regulate ApoA-I mRNA in hepatocytes.
  • apolipoprotein AI (ApoA-I) is an important component of functional high-density lipoprotein (HDL) microparticles, it can effectively eliminate atherosclerotic plaque, prevent hyperlipidemia, and improve blood glucose metabolism in the body;
  • the disclosed compounds increase intracellular ApoA-I levels indicating that these compounds will play a positive role in the prevention and treatment of cardiovascular diseases.
  • Test object number Up-regulation of ApoA-I mRNA levels H101 active H104 active H106 active H108 active H109 active H111 active
  • mice 36 male apoE-/- mice of 8 weeks old were randomly divided into blank administration group, H101 administration group, H111 administration group, H116 administration group, H119 administration group and H130 administration group. Each group of 6 mice in each group was fed with high-fat diet for 10 weeks. At the beginning of high-fat feeding, each group of mice was administered, and each test compound was administered at a dose of 150 mg/kg twice a day. The rats in the blank administration group were given a considerable dose of physiological saline. The mice were fasted for more than 12 h before sacrifice, and the mice were anesthetized with 20% urethane solution. After taking blood, serum, heart and aorta were isolated.
  • TC Total cholesterol
  • HDL-C high-density lipoprotein cholesterol
  • LDL-C low-density lipoprotein cholesterol
  • Table 7 shows the blood lipid levels of mice in each group after 10 weeks of high-fat diet, compared with the model group, *p ⁇ 0.05, **p ⁇ 0.01;
  • Table 8 is high-fat diet 10 Changes in NO and eNOS activity in mice after week.
  • Endothelial dysfunction is the starting point of atherosclerosis.
  • the endothelial dysfunction of the body can lead to abnormal vasoconstriction, increased endothelial permeability, platelet adhesion and aggregation, and leukocyte adhesion.
  • Low-density lipoprotein (LDL) is transferred to The endometrium, in turn, forms thrombosis, inflammatory response, abnormal proliferation and migration of smooth muscle cells, thereby promoting the formation of atherosclerosis.
  • each test compound can improve the dyslipidemia of mice with ApoE gene elimination, indicating that the test compound has an inhibitory effect on the occurrence and development of atherosclerosis, and its mechanism may be related to the test compound to promote the expression of ApoA1 in vivo and increase the body.
  • the activity of eNOS is related to the release of NO from vascular cells.
  • mice 60 8-week-old C57BL/6 mice (level: SPF; gender: male; source: Shanghai Slack Laboratory Animals Co., Ltd.) were selected, of which 2 were selected as blank control and 12 were used as positive drug control. (Isosorbide mononitrate), 12 for H101 administration group, and the remaining 32 mice, randomly divided into four groups, 8 rats in each group, respectively H111 administration group, H116 administration group, H119 administration group, H130
  • the test compound of the positive drug control group and each drug-administered group was dissolved in DMSO, then PEG400 was added, shaken and mixed, and finally 10% HP- ⁇ -CD was added, and the mixture was shaken and mixed, and the ratio of each solvent was DMSO:PEG400.
  • mice were sacrificed by inhaling excess CO 2 , and the blood was collected in a 1.5 ml centrifuge tube, left at room temperature for 30 min or more, and then centrifuged (3000 rpm, 10 min) to absorb the supernatant serum, -80 °C preservation for examination; after blood collection, cut the heart to the thoracic aorta, where the heart is weighed three times In the cryotube, the liquid nitrogen was frozen and stored at -80 °C for examination; the aorta and aortic arch were weighed, and the liquid nitrogen was frozen and stored at -80 °C for examination.
  • the NO content of the serum of C57BL/6 mice was determined using a 1.5 ml centrifuge tube, left at room temperature for 30 min or more, and then centrifuged (3000 rpm, 10 min) to absorb the supernatant serum, -80 °C preservation for examination; after blood collection, cut the heart to the thoracic aorta, where the heart is
  • mice 25 8-week-old db/db mice (strain: BKS.Cg-+Leprdb/+leprdb/JclSlac; grade: SPF; gender: male; source: Shanghai Slack Laboratory Animal Co., Ltd.), Three of them were selected as blank administration control, two were used as positive drug control (isosorbide mononitrate), and the remaining 20 mice were randomly divided into five groups, 4 in each group, respectively, H101 administration group and H111 administration.
  • the test compound of the group, the H116 administration group, the H119 administration group, the H130 administration group, the positive drug control group and each administration group was dissolved in DMSO, then PEG400 was added, shaken and mixed, and finally 10% HP- ⁇ - was added.
  • Blood was collected in a 1.5 ml centrifuge tube, left at room temperature for 30 min or more, and then centrifuged (3000 rpm, 10 min) Aspirate the supernatant serum, store at -80 ° C for examination; after blood collection, cut the heart to the thoracic aorta, where the heart is called Three in cryovials, frozen in liquid nitrogen and stored frozen at -80 °C to be detected; aorta and aortic arch weighed, frozen in liquid nitrogen and stored frozen at -80 °C for inspection.
  • the NO content of C57BL/6 mouse serum was determined by total NO test kit (Biyuntian); NOS test kit (Biyuntian) was used to determine the NOS content of mouse heart by adding eNOS inhibitor L-NAME (Biyuntian) The difference between the measured values is used to calculate the content of eNOS.
  • mice in the test group were administered with cardiac eNOS and serum NO. Both have increased in varying degrees.
  • mice Balb/c mice, 10 in each group.
  • Methods intraperitoneal injection, high dose group: 300mg/kg/day; low dose group: 150mg/kg/day, once a day for 3 days, observe the changes of animals within 14 days.
  • mice in the administration group showed no abnormal body weight and behavior within 14 days from the date of administration, indicating that the above test compound of the present invention was substantially non-toxic to mice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Neurosurgery (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

一类可用于治疗心血管疾病的化合物和含有该化合物的组合物。该化合物和组合物在人体内可通过增加血液中的高密度脂蛋白胆固醇,改善脂质代谢紊乱;另一方面,该化合物和组合物还可释放出一氧化氮,通过舒张血管、降低血压、抑制血小板黏附和聚集、维持血管张力,降低心血管疾病发病风险,在防治心血管疾病的发生发展方面发挥重要作用。

Description

可释放一氧化氮的前药分子
本申请要求于2015年9月7日提交中国专利局、申请号为201510563200.2发明名称为“可释放一氧化氮的前药分子”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于药物化学研发领域,具体涉及一类可释放一氧化氮的前药分子及其医药用途。
背景技术
一氧化氮供体(NO Provider)是一类能在体内释放出NO的前体药物,是指不需经一氧化氮酶(NOS)催化自行或与其它物质作用产生NO的药物,它既可作为一种NO体内运输形式,又可作为一种贮存形式,延长NO的半衰期,克服吸入NO所引起的诸多不便及NO的吸入量难以控制的缺点。NO供体型药物主要是以已知药物或活性化合物的结构为母核,与NO供体通过各种连接基团结合而成的前药,它可在体内经相关酶或非酶作用释放原药和NO。研究表明,由于释放NO的作用,NO供体型药物的疗效一般优于原药,且不良反应显著小于原药。
目前,NO供体药物研究的趋势是利用前药原理将NO供体与生效药物结合起来形成一种更有效的结合型新药物。这种药物设计方式的优点在于提高药物的生物利用度、增加药物稳定性、减小毒副作用、促使药物长效化等。同时,它具有NO供体的特征,提供一种依赖于NO的生物活性,NO供体的研究已成为近年来生物医学和药学领域研究的热点和前沿之一。
心血管类疾病一直是全球范围内的公共卫生问题,据统计每年约350万人死于心血管病——每10秒钟有1人死于心血管病,人体内脂肪代谢或运转异常导致高血脂,高血脂可直接引起一些严重危害人体健康的疾病,如动脉粥样硬化。高血脂能造成人体组织器官供血不足,由此诱发冠心病、脑卒中、高血压、肾衰竭等心脑血管疾病。人体内的胆固醇逆向转运(RCT)机制可 改善高血脂症,RCT是一种正常的生理过程,其能将动脉粥样硬化斑块运输到动脉之外,并通过肝脏将其从体内消除。
载脂蛋白A-I(ApoA-I)是功能性高密度脂蛋白(HDL)微粒的重要组成部分,其能促进RCT,有效消除动脉粥样硬化斑块,防治高血脂症;另一方面,ApoA-I还能通过激活AMPK信号通路,激活磷酸化乙酰辅酶羧化酶,提高葡萄糖在肌肉细胞中的吸收,改善体内的血糖代谢;随着研究的深入,人们发现ApoA-I不仅与调控体内脂质代谢及血糖代谢有关系,其还和免疫功能、神经功能有密切关系,临床实验数据表明,体内低水平的ApoA-I,可导致心血管疾病的发病率增加。因此,增加人体内ApoA-I的含量,将对心血管疾病的防治发挥积极作用。
开发能提高体内ApoA-I水平的小分子化合物已成为心血管疾病治疗药物研发的重要方向,在WO 2006/045096、WO2008/092231、WO2010/123975等专利中均公开了这一类小分子化合物。
发明内容
本发明的化合物进入体内能迅速释放出NO和提高体内ApoA-I水平的小分子化合物,不仅能改善心脑血管功能,还对血脂异常及糖尿病并发症具有一定的防治作用。
本发明所提供的化合物为通式(II)表示的化合物及其药学上可接受的盐或立体异构体:
A-B  (II)
其中A为可防治心血管疾病的小分子化合物残基,选自下列基团:
Figure PCTCN2016098217-appb-000001
其中R1为-O-;R0选自下列基团:
Figure PCTCN2016098217-appb-000002
Figure PCTCN2016098217-appb-000003
B选自:
Figure PCTCN2016098217-appb-000004
Figure PCTCN2016098217-appb-000005
除以上所罗列的结构,B还可以用以下通式所表示:
-C(O)-CH2-NH-C(O)-Y0
-C(O)-CH2-NH-C(O)-Y;
-C(O)-CH2-CH2-NH-C(O)-Y0
-C(O)-CH2-CH2-NH-C(O)-Y;
除以上通式,B还具体指代:
Figure PCTCN2016098217-appb-000006
其中,R2为H、直链C1-4烷基或支链的C3-4烷基;
R3为-CH-或氮原子;
X为氟原子或氯原子;
R4为C1-3烷基;
R5为-O-、-S-、-NH-或是被C1-3烷基取代的氮原子;
R7
Figure PCTCN2016098217-appb-000007
R8和R9分别独立地是C1-6烷基、烷基取代的C1-6烷基、羟基取代的C1-6烷基、氟取代的C1-6烷基、氘取代的C1-6烷基、-CH2-R10或-CH2-CH2-R10
其中R10是-OH、-O-C1-6烷基、-OCD3、-C(O)-T2、-C(O)-R5-T2、-OC(O)-T2、-R5-C(O)R5-T2、-NH2、-C6H5
或是未被取代的具有1、2或3个氮原子的5或6元杂芳基环;或是具有1、2或3个氮原子的被取代的5或6元杂芳基环,其中所述被取代的5或6元杂芳基环在任何碳原子上被选自下列取代基的基团单取代或二取代:
-OH、-O-C1-6烷基、-OCD3、-C(O)-T2、-C(O)-R5-T2、-OC(O)-T2、-R5-C(O)R5-T2、-NH2、-C1-6烷基、羟基取代的C1-6烷基、氟取代的C1-6烷基或氘取代的C1-6烷基;
R11是氢、C1-8烷基,有取代基的C1-8烷基,苯基、芳基、有取代基的苯基或芳基,或是具有4-7个碳原子的环烷基;或是有取代基的具有4-7个碳原子的环烷基,其中所述的取代基以T2或R10所限定;
R12为R11、-C(O)-R5-R11或为-C(O)-R11,优选-C(O)-OCH2CH3
R13为H、C1-4烷基、腈基、苄基、硝基、对硝基苯基、烷基磺酰基、芳基磺酰基、烷基羰基或环烷基;
R14为H、
Figure PCTCN2016098217-appb-000008
或R8
Y0为-R5-Y、
Figure PCTCN2016098217-appb-000009
Figure PCTCN2016098217-appb-000010
除以上通式,Y0还具体代表:
Figure PCTCN2016098217-appb-000011
Figure PCTCN2016098217-appb-000012
Y为
Ya)
-T-ONO2、-T-SNO、-(CH2-CH2)r-R5-CH2-CH2-ONO2
Figure PCTCN2016098217-appb-000013
Figure PCTCN2016098217-appb-000014
Figure PCTCN2016098217-appb-000015
除以上通式,Y还进一步代表:
Figure PCTCN2016098217-appb-000016
T为直链的C1-20亚烷基,支链的C3-20亚烷基,或是具有3-7个碳原子的亚环烷基,所述亚环烷基任选地被一个或多个直链的C1-10烷基链或支链的C3-10烷基链取代;
或是被一种或多种取代基取代的C1-20亚烷基,其中所述取代基为羟基、硝酸酯基(-ONO2)或T1
U为任选被-ONO2基团取代的直链C1-20亚烷基或支链C3-20亚烷基;
Y1为直链的C1-20亚烷基,支链的C3-20亚烷基,直链的C2-20亚烯基,支链的C3-20亚烯基;
或是被一种或多种取代基取代的C1-20亚烷基,或是被一种或多种取代基取代的C2-20亚烯基,其中所述取代基为T2
或是具有4-7个碳原子的亚环烷基,所述环任选地被一个或多个直链的C1-10烷基链或支链的C3-10烷基链取代;具体还可用以下通式表示:
-(CH2)r-、-(CH2)n-Z-(CH2)r-、-CH2-CH(CH3)-(CH2)r-、-CH2-CH(CH3)-(CH2)r-Z-CH2-、-CH2-CH(CH3)-CH2-Z-(CH2)r-、-CH2CH=CHCH2-、-CH2CH=CHCH2-Z-(CH2)r-、
Figure PCTCN2016098217-appb-000017
其中Z为R5
Figure PCTCN2016098217-appb-000018
A为O、N、S、C;
T1为未取代或取代的C1-12直链烷基,未取代或取代的C3-12支链烷基,未取代或取代的C2-12直链烯基,未取代或取代的C3-12支链烯基,未取代或取代的苄基,未取代或取代的苯基,未取代或取代的芳基取代的C1-4烷基,未取代或取代的杂芳基,-OC(O)-(C1-10烷基)-ONO2或-O-(C1-10烷基)-ONO2
T2为未取代或取代的C1-12直链烷基,未取代或取代的C3-12支链烷基,未取代或取代的C2-12直链烯基,未取代或取代的C3-12支链烯基,未取代或取代的苄基,未取代或取代的苯基,未取代或取代的芳基取代的C1-4烷基,未取代或取代的杂芳基;
Y2为C1-8烷基、苯基、苯磺酰基、腈基、三氟甲基、C1-8烷氧基或者为C1-8烷基硝酸酯基;
Y3为H、F、Cl、Br、I、OH、C1-6烷基、-OC1-6烷基;
Y4为氢、卤素、三氟甲基、C1-8烷氧基、C1-8烷基、硝基、磺酰胺基、氨基或腈基;
Y5为-CH2-CH2-、-CH=CH-CH2-或-CH=CH-;
Y6是饱和的5或6元芳杂环、不饱和的5或6元芳杂环,其中杂环包含一个或多个选自氮、氧、硫的杂原子,具体选自:
Figure PCTCN2016098217-appb-000019
Y7、Y8、Y9及Y10相同或不相同,它们代表H、直链的C1-4烷基或支链的C3-5烷基;
Y11
Figure PCTCN2016098217-appb-000020
Figure PCTCN2016098217-appb-000021
n为0-10的整数;n’为1-10的整数;m是0-3的整数;m’是1或2;r为1-6的整数;r’为0-6的整数。
术语“烷基”包括饱和的脂肪族基团,包括直链烷基(例如甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、壬基、癸基等)、支链烷基(异丙基、叔丁基、异丁基等)、环烷基基团(环丙基、环戊基、环己基、环庚基和环辛基)、烷基取代的环烷基、和环烷基取代的烷基。
在某些实施方案中,直链或支链的烷基的骨架上具有6个或更少的碳原子(例如,直链为C1-6,支链为C3-6),且更优选4个或更少的碳原子。同样,优选的环烷基在其环结构上具有3-8个碳原子,更优选在其环结构上具有5或6个碳。
术语“C1-6烷基”包括包含1至6个碳原子的烷基。
此外,术语“烷基”还包括“未被取代的烷基”和“取代的烷基”,后者是指烃骨架中一个或多个碳上的氢被取代基替换的烷基基团。所述取代基可以包括:烯基、炔基、卤素、羟基、烷基羰基氧基、芳基羰基氧基、烷氧基羰基氧基、芳氧基羰基氧基、羟基羰基、烷基羰基、芳基羰基、烷氧基羰基、氨基羰基、 烷基氨基羰基、二烷基氨基羰基、烷硫基羰基、烷氧基、磷酸酯、膦酸酯、氰基、氨基(包括烷基氨基、二烷基氨基、芳基氨基、二芳基氨基和烷基芳基氨基)、酰基氨基(包括烷基羰基氨基、芳基羰基氨基、氨基甲酰基和脲基)、脒基、亚氨基、巯基、烷硫基、芳硫基、羟基硫代羰基、硫酸酯、烷基亚磺酰基、磺酸基、氨磺酰基、磺酰氨基、硝基、三氟甲基、氰基、叠氮基、杂环基、烷基芳基或芳族基团或杂芳族基团。
术语“芳基”包括5和6元的单环芳族基团,其可以包含0-4个杂原子,例如苯、苯基、吡咯、呋喃、噻吩、噻唑、异噻唑、咪唑、***、四唑、吡唑、唑、异唑、吡啶、吡嗪、哒嗪和嘧啶等;此外,术语“芳基”还包括多环芳基,例如三环、二环,例如萘、苯并唑、苯并二唑、苯并噻唑、苯并咪唑、苯并噻吩、亚甲二氧基苯基、喹啉、异喹啉、萘啶、吲哚、苯并呋喃、嘌呤、苯并呋喃、脱氮嘌呤或中氮茚。这些具有杂原子的芳基也称为“芳基杂环”、“杂环”、“杂芳基”或“杂芳族基团”。
典型的杂芳基包括2-或3-噻吩基;2-或3-呋喃基;2-或3-吡咯基;2-、4-或5-咪唑基;3-、4-或5-吡唑基;2-、4-或5-噻唑基;3-、4-或5-异噻唑基;2-、4-或5-唑基;3-、4-或5-异唑基;3-或5-1,2,4-***基;4-或5-1,2,3-***基;四唑基;2-、3-或4-吡啶基;3-或4-哒嗪基;3-、4-或5-吡嗪基;2-吡嗪基;2-、4-或5-嘧啶基。
术语“杂芳基”还指其中杂芳族环与一个或多个芳基、环脂族或杂环基的环稠合的基团,其中其连接基团或连接点位于杂芳族环上。其实例包括但不限于1-、2-、3-、5-、6-、7-或8-中氮茚基;1-、3-、4-、5-、6-或7-异吲哚基;2-、3-、4-、5-、6-或7-吲哚基;2-、3-、4-、5-、6-或7-吲唑基;2-、4-、5-、6-、7-或8-嘌呤基;1-、2-、3-、4-、6-、7-、8-或9-喹嗪基;2-、3-、4-、5-、6-、7-或8-喹啉基;1-、3-、4-、5-、6-、7-或8-异喹啉基;1-、4-、5-、6-、7-或8-酞嗪基;2-、3-、4-、5-或6-萘啶基;2-、3-、5-、6-、7-或8-喹唑啉基;3-、4-、5-、6-、7-或8-噌啉基;2-、4-、6-或7-蝶啶基;1-、2-、3-、4-、5-、6-、7-或8-4aH咔唑基;1-、2-、3-、4-、5-、6-、7-或8-咔唑基;1-、3-、4-、5-、6-、7-、8-或9-咔啉基;1-、2-、3-、4-、6-、7-、8-、9-或10-菲啶基;1-、2-、3-、4-、5-、6-、7-、8-或9-吖啶基;1-、2-、4-、5-、6-、7-、 8-或9-啶基;2-、3-、4-、5-、6-、8-、9-或10-菲咯啉基;1-、2-、3-、4-、6-、7-、8-或9-吩嗪基;1-、2-、3-、4-、6-、7-、8-、9-或10-吩噻嗪基;1-、2-、3-、4-、6-、7-、8-、9-或10-吩嗪基;2-、3-、4-、5-、6-或1-、3-、4-、5-、6-、7-、8-、9-或10-苯并异喹啉基;2-、3-、4-或噻吩并[2,3-b]呋喃基;2-、3-、5-、6-、7-、8-、9-、10-或11-7H-吡嗪并[2,3-c]咔唑基;2-、3-、5-、6-或7-2H-呋喃并[3,2-b]-吡喃基;2-、3-、4-、5-、7-或8-5H-吡啶并[2,3-d]-o-嗪基;1-、3-或5-1H-吡唑并[4,3-d]-唑基;2-、4-或5-4H-咪唑并[4,5-d]噻唑基;3-、5-或8-吡嗪并[2,3-d]哒嗪基;2-、3-、5-或6-咪唑并[2,1-b]噻唑基;1-、3-、6-、7-、8-或9-呋喃并[3,4-c]噌啉基;1-、2-、3-、4-、5-、6-、8-、9-、10或11-4H-吡啶并[2,3-c]咔唑基;2-、3-、6-或7-咪唑并[1,2-b][1,2,4]三嗪基;7-苯并[b]噻吩基;2-、4-、5-、6-或7-苯并唑基;2-、4-、5-、6-或7-苯并咪唑基;2-、3-、4-、5-、6-或7-苯并噻唑基;1-、2-、4-、5-、6-、7-、8-或9-苯并氧杂基;2-、4-、5-、6-、7-或8-苯并嗪基;1-、2-、3-、5-、6-、7-、8-、9-、10-或11-1H-吡咯并[1,2-b][2]苯并氮杂基。典型的稠合杂芳基包括2-、3-、4-、5-、6-、7-或8-喹啉基;1-、3-、4-、5-、6-、7-或8-异喹啉基;2-、3-、4-、5-、6-或7-吲哚基;2-、3-、4-、5-、6-或7-苯并[b]噻吩基;2-、4-、5-、6-或7-苯并唑基;2-、4-、5-、6-或7-苯并咪唑基;2-、4-、5-、6-或7-苯并噻唑基。
“芳基”或“杂芳基”的芳环可以在一个或多个环位置上被上文所述的取代基取代,例如卤素、羟基、烷氧基、烷基羰基氧基、芳基羰基氧基、烷氧基羰基氧基、芳基氧基羰基氧基、羟基羰基、烷基羰基、烷基氨基羰基、芳基烷基氨基羰基、烯基氨基羰基、烷基羰基、芳基羰基、芳基烷基羰基、烯基羰基、烷氧基羰基、氨基羰基、烷硫基羰基、磷酸酯、膦酸酯、氰基、氨基(包括烷基氨基、二烷基氨基、芳基氨基、二芳基氨基和烷基芳基氨基)、酰基氨基(包括烷基羰基氨基、芳基羰基氨基、氨基甲酰基和脲基)、脒基、亚氨基、巯基、烷硫基、芳硫基、羟基硫代羰基、硫酸酯、烷基亚磺酰基、磺酸酯基、氨磺酰基、磺酰氨基、硝基、三氟甲基、氰基、叠氮基、杂环基、烷基芳基,或芳族基团或杂芳族基团,其中芳基基团也可以与非芳族的脂环或杂环稠合或桥连,以形成多环(例如四氢萘)。
术语“烯基”包括在长度和可能的取代上类似于上述的烷基的不饱和脂肪族基团,但是其包含至少一个双键。
例如,术语“烯基”包括直链的烯基(例如:乙烯基、丙烯基、丁烯基、戊烯基、己烯基、庚烯基、辛烯基、壬烯基、癸烯基等)、支链的烯基、环烯基(例如:环丙烯基、环戊烯基、环己烯基、环庚烯基、环辛烯基)、烷基或烯基取代的环烯基以及环烷基或环烯基取代的烯基。术语“烯基”还包括含有替换烃骨架的一个或多个碳的氧、氮、硫或磷原子的烯基。在某些实施方案中,直链或支链烯基在其骨架中具有6个或更少的碳原子(例如:C2-6的直链烯基,C3-6的支链烯基)。术语C2-6烯烃基包括含有2-6个碳原子的烯基。
此外,术语“烯基”包括“未被取代的烯基”和“被取代的烯基”,后者是指烃骨架中一个或多个碳上的氢被取代基替换的烯基。所述的取代基可以包括例如烷基、炔基、卤素、羟基、烷基羰基氧基、芳基羰基氧基、烷氧基羰基氧基、芳基氧基羰基氧基、羟基羰基、烷基羰基、芳基羰基、烷氧基羰基、氨基羰基、烷基氨基羰基、二烷基氨基羰基、烷硫基羰基、烷氧基、磷酸酯、膦酸酯、氰基、氨基(包括烷基氨基、二烷基氨基、芳基氨基、二芳基氨基和烷基芳基氨基)、酰基氨基(包括烷基羰基氨基、芳基羰基氨基、氨基甲酰基和脲基)、脒基、亚氨基、巯基、烷硫基、芳硫基、羟基硫代羰基、硫酸酯、烷基亚磺酰基、磺酸基、氨磺酰基、磺酰氨基、硝基、三氟甲基、氰基、叠氮基、杂环基、烷基芳基,或芳族基团。
术语“烷氧基”包括与氧原子共价连接的被取代的和未被取代的烷基。烷氧基的实例包括甲氧基、乙氧基、异丙基氧基、丙氧基、丁氧基和戊氧基。被取代的烷氧基的实例包括卤代烷氧基。烷氧基可被以下基团取代:烯基、炔基、卤素、羟基、烷基羰基氧基、芳基羰基氧基、烷氧基羰基氧基、芳氧基羰基氧基、羟基羰基、烷基羰基、芳基羰基、烷氧基羰基、氨基羰基、烷基氨基羰基、二烷基氨基羰基、烷硫基羰基、磷酸酯基、氰基、氨基(包括烷基氨基、二烷基氨基、芳基氨基、二芳基氨基和烷基芳基氨基)、酰基氨基(包括烷基羰基氨基、芳基羰基氨基、氨基甲酰基和脲基)、脒基、亚氨基、巯基、烷硫基、芳硫基、羟基硫代羰基、烷基亚磺酰基、磺酸基、氨磺酰基、磺酰氨基、硝基、三氟甲基、氰基、叠氮基、杂环基、烷基芳基或芳族基团。
本发明所提供化合物的合成流程:
本发明的通式表示的化合物可以按照多种反应流程加以合成,本领域技术人员可以很容易的通过本文在实施例中所提供的一些制备方法设计其他化合物的反应流程。
一般的合成路线中,首先合成A-H化合物,该化合物的制备方法可参考专利WO2009158404,得到A-H化合物后,再将化合物与含有NO供体的片段进行反应,反应一般在缩合剂中,如DCC、EDCI、CDI或HOBt的存在条件下,在碱例如DMAP存在或不存在的条件下进行,在有机无水溶剂中,如DMF、THF、甲苯、二氧己环或多卤化的脂肪族烃存在的条件下,在-20℃至50℃的温度下进行,反应在30分钟至36小时的时间内完成。
制备得A-H化合物后,一般将其先和酸酐反应成酯,反应在有机无水溶剂中,如DMF、THF、DCM存在的条件下,在100℃至120℃的温度条件下搅拌,反应在2小时至4小时的时间内完成;所得产物纯化后再与酰氯类化合物反应,反应在有机碱例如DMAP、三乙胺或吡啶存在的条件下,在惰性有机溶剂中,如DMF、THF、苯、甲苯、二氧己环或多卤化的脂肪族烃存在的条件下,在-20℃至40℃的温度下进行,反应在30分钟至36小时的时间内完成;所得产物纯化后再与含有NO供体的化学片段进行缩合反应。
本发明所提供的NO供体化合物由Y或Y0表示,其合成方法可参考专利WO2014113700、WO2015109210、EP0984012、EP1336602。
本发明化合物通式中的B选自
Figure PCTCN2016098217-appb-000022
Figure PCTCN2016098217-appb-000023
时,合成方法可参考本发明中的实施例2;
当B选自
Figure PCTCN2016098217-appb-000024
合成方法可参考本发明中的实施例3;
当B选自
Figure PCTCN2016098217-appb-000025
Figure PCTCN2016098217-appb-000026
时,合成方法可参考本发明中的实施例6;
当B选自
Figure PCTCN2016098217-appb-000027
时,合成方法可参考本发明中的实施例18;
当B选自
Figure PCTCN2016098217-appb-000028
合成方法可参考本发明中的实施例24;
当B选自
Figure PCTCN2016098217-appb-000029
合成方法可参考本发明中的实施例25;
当B选自
Figure PCTCN2016098217-appb-000030
Figure PCTCN2016098217-appb-000031
时,合成方法可参考本发明中的实施例23和实施例25;
当B选自-C(O)-CH2-NH-C(O)-Y0;-C(O)-CH2-NH-C(O)-Y;-C(O)-CH2-CH2-NH-C(O)-Y0;-C(O)-CH2-CH2-NH-C(O)-Y时,合成方法可参考本发明中的实施例9。
下列缩写可以用在实施例和说明书全文中:
g(克);                         mg(毫克);
L(升);                         mL(毫升);
M(摩尔的);                     mM(毫摩尔/升);
i.v.(静脉内);                  Hz(赫兹);
MHz(兆赫兹);                   mol(摩尔);
mmol(毫摩尔);                  TLC(薄层色谱);
min(分钟);                     h(小时);
MeOH(甲醇);                    THF(四氢呋喃);
TEA(三乙胺);                   TFA(三氟乙酸);
DIPEA(N,N-二异丙基乙胺)        DMAP(4-二甲氨基吡啶);
DMSO(二甲基亚砜);              EtOAc(乙酸乙酯);
DCM(二氯甲烷);                 BOC(叔丁氧羰基);
DMF(N,N-二甲基甲酰胺);        CDI(1,1-羰基二咪唑);
IBCF(氯甲酸异丁酯);            HOAc(乙酸);
HOBt(1-羟基苯并***);          DCC(二环己基碳二亚氨基);
Et2O(二***);                  Ac2O(乙酸酐)
EDCI(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐);
NMP(N-甲基吡咯烷酮)             Me(甲基);
P-TSA(对甲基苯磺酸);           Ac(乙酰基);
OMe(甲氧基);                   Et(乙基);
EtOH(乙醇);                    RP(反相);
BOP(苯并三氮唑-1-基氧基三(二甲基氨基)磷鎓六氟磷酸盐)。
本发明的通式A-B中具有代表性的化合物如下:
2-(4-(2-硝氧基-乙氧基)-3,5-二甲基苯基)-5,7-二甲氧基喹唑啉-4(3H)-酮;
3-硝氧甲基-苯甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
N-((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢喹唑啉-2-基)-2,6-二甲基苯氧基)乙氧基)羰基氧基)-5-甲基噻吩-2-磺酰胺;
N-((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢喹唑啉-2-基)-2,6-二甲基苯氧基)乙氧基)羰基氧基)-5-甲基呋喃-2-磺酰胺;
3-(3-硝氧基-丙酰基)-苯甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑 啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
琥珀酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯3-(硝氧基)-2,2-二((硝氧基)甲基)丙酯;
3-(2,3-二硝基氧-丙氧基)-苯甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
4,5-二硝基氧基-戊酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
(4-硝氧基-丁酰胺基)-乙酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
2-氨基-3-(4-{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基羰基氧基}-苯基)-丙酸2-硝氧基-乙酯的盐酸盐;
4-(2-氧代-3-硝氧基甲基-1,2,5-
Figure PCTCN2016098217-appb-000032
二唑-3-甲基)氧基-4-氧代-丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
3-(6-硝氧基-己酰胺基)-丙酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
2-羟基琥珀酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(2-氧代-4-苯基-呋咱-3-基)-甲酯;
4-(2-(((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基)乙氧基)羰基)氧基)乙氧基)-3-(苯磺酰基)-2-氧代-呋咱;
(E)-4-((呋喃-2-磺酰氨基)氧基)-4-氧代-2-丁烯酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
4-(((3-(甲磺酰基))苯基)磺酰胺基)氧基)-4-氧代丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
4-[4-(2-(硝氧基)乙基)-哌嗪-1基]-4-氧代-丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
2-氨基-琥珀酸1-(2,3-二硝氧基-丙基)酯4-{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙基}酯的盐酸盐;
(6-硝氧基-六氢化呋喃并[3,2-b]呋喃-3-基)-碳酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
(6-硝氧基-六氢化呋喃并[3,2-b]呋喃-3-基)-氨甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
4-(((5-氯代噻吩)-2-磺酰氨基)氧基)-4-氧代丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
2-(N-(((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基)羰基)氧基)氨磺酰基)-1-甲基-1H-吡啶1-2-鎓盐;
2-乙酰氨基-3-(4-(((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基)羰基)氧基)苯基)丙酸3,4-(二硝氧基)丁基酯;
4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基)-4-氧代-2-乙酰氨基-丁酸3-(硝氧基)-2,2-二(硝氧基甲基)丙酯;
4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁氧基)-4-氧代-2-(2-(硝氧基)乙酰氨基)-丁酸2-硝氧基乙酯。
如上所述,本发明还包括式(II)的化合物的药用可接受的盐和其立体异构体。
所述的药用可接受的盐的是指无机碱盐,如钠盐、钾盐、钙盐或铝盐;有机碱盐,如赖氨酸盐、精氨酸盐、三乙胺盐、二苄胺盐、哌啶盐及其他药学上可接受的有机胺盐。
在本发明的化合物分子中包含至少一个可成盐的氮原子时,可以通过在有机溶剂如乙腈、四氢呋喃中与相应的有机酸或无机酸反应,从而转化为相应的盐。典型的有机酸有草酸、酒石酸、马来酸、琥珀酸、柠檬酸,典型的无机酸有硝酸、盐酸、硫酸、磷酸,优选硝酸。
本发明的化合物中具有一个或多个不对称碳原子时,它们能够以如下形式存在:光学纯的对映异构体、纯的非对应异构体、对映异构体混合物、非对应异构体混合物、对映异构体外消旋混合物、外消旋物或外消旋物混合物。式(II)的化合物的全部可能的异构体、立体异构体和其混合物也在本发明的范围内。
本发明还提供了一种药物组合物,其包含上述至少一个化合物以及任选一种或多种医药上可接受的载剂和/或稀释剂。
本发明所提供的药物组合物可以制备为任何形式,例如颗粒、粉末、片剂、包衣片剂、胶囊、药丸、糖浆、滴剂、溶液、混悬剂和乳剂,或者活性成分的缓释制剂,其中胶囊剂的实例包括硬或软明胶胶囊剂,颗粒剂和粉剂可以是非泡腾或泡腾形式。
本发明的药物组合物可进一步包括一种或多种医药或生理上可接受的载体,这些载体将适当配制以便于给药。例如,医药或生理上可接受的载体可以是盐水、热压水、林格氏液、缓冲盐水、葡萄糖、麦芽糖糊精、甘油、乙醇及其混合物。本发明的药物组成物还可以包括医药或生理上可接受的添加剂,例如稀释剂、润滑剂、粘合剂、助流剂、崩解剂、甜味剂、矫味剂、湿润剂、分散剂、表面活性剂、溶剂、涂层剂、发泡剂、或芳香剂。
可以使用的稀释剂的实例包括但不限于乳糖、蔗糖、淀粉、高岭土、盐、甘露糖醇和磷酸二钙;润滑剂的实例包括但不限于滑石、淀粉、镁或钙的硬脂酸盐、石松子和硬脂酸;粘合剂的实例包括但不限于微晶纤维素、黄蓍胶、葡萄糖溶液、***胶浆、明胶溶液、蔗糖和淀粉糊;助流剂的实例包括但不限于胶体二氧化硅;崩解剂的实例包括但不限于交联羧甲基纤维素钠、淀粉羟乙酸钠、藻酸、玉米淀粉、马铃薯淀粉、膨润土、甲基纤维素、琼脂和羧甲基纤维素;甜味剂的实例包括但不限于蔗糖、乳糖、甘露糖醇和人工甜味剂,例如环磺酸钠和糖精,和任意数量的喷雾干燥矫味剂;矫味剂的实例包括但不限于从植物提取的天然矫味剂,例如果实,和味道较好的化合物,例如但不限于薄荷和水杨酸甲酯;湿润剂的实例包括但不限于丙二醇一硬脂酸酯、脱水山梨醇一油酸酯、二甘醇一月桂酸酯和聚氧乙烯月桂基醚。
本发明的药物组合物可以根据传统方法来通过各种途径给药,包括口服、静脉内、动脉内、腹腔内、胸腔内、透皮、鼻腔、吸入、直肠、眼部和皮下导入。
任选地添加到本发明的药物组合物中的医药上可接受的载体是:水、醇、蜂蜜、甘露醇、山梨醇、糊精、乳糖、焦糖、明胶、硫酸钙、硬脂酸镁、滑石粉、高岭土、甘油、吐温、琼脂、碳酸钙、碳酸氢钙、表面活性剂、环糊精及其衍生物、磷脂类、磷酸盐类、淀粉类及其衍生物、硅衍生物、纤维素 类及其衍生物、吡咯烷酮类、聚乙二醇类、丙烯酸树脂类、酞酸酯类、丙烯酸共聚物、苯三酸酯类中的一种或几种。
经药理实验验证,本发明所提供的化合物或者药物组合物可通过抑制白介素-66、血管细胞粘附分子-1和单核细胞趋化蛋白-1发挥抗炎作用;通过抑制炎性细胞因子释放发挥免疫抑制作用;通过促进高密度脂蛋白胆固醇(HDL-C)增多、抑制胆固醇、脂肪酸和甘油三酯的合成、减少葡萄糖吸收和生成来调控体内葡萄糖代谢紊乱和脂代谢紊乱。
另一方面,本发明的化合物或者药物组合物还具有神经保护作用,可对抗神经凋亡、抑制神经坏死,促进神经再生。
本发明提供了上述化合物或者药物组合物在制备用于预防、治疗心脑血管疾病、炎性疾病、神经退行性疾病、代谢紊乱疾病及其继发症的药物中的应用。
本发明提供一种用于预防和/或治疗心脑血管疾病、炎性疾病、神经退行性疾病、代谢紊乱疾病及其继发症的方法,所述方法包括对有需要的对象施用治疗有效量的根据本发明的化合物或者药物组合物。
另一方面,根据本发明的化合物或者药物组合物用于预防和/或治疗心脑血管疾病、炎性疾病、神经退行性疾病、代谢紊乱疾病及其继发症。
进一步地,所述心脑血管疾病包括动脉粥样硬化、脑动脉粥样硬化、脑血栓、脑梗死、高血脂、缺血性心肌损伤、中风、冠心病、心脏肥厚、心衰、心脏梗塞、风湿性心脏病、先天性心脏病、左心室功能不全、内皮功能障碍、内皮功能障碍后的纤维变性和结构重塑、肥厚性心肌病、糖尿病性心肌病、室上性和室性心律失常、房颤、心脏纤维化、心房扑动、有害的血管重塑、心肌梗塞及其后遗症、心绞痛、高血压、原发性和继发性肺性高血压、肾血管性高血压、高血压性视网膜病变或视网膜血管病变。
所述炎性疾病包括:慢性肾病、慢性肾炎、关节炎、类风湿性关节炎、银屑病、肠炎性疾病、自身免疫性疾病、溃疡性结肠炎、胃溃疡、慢性胃炎、***、乙肝、丙肝、非酒精性脂肪性肝炎、皮肤慢性溃疡、器官移植排斥;用于神经炎性疾病,如糖尿病神经病变、肌肉萎缩性侧索硬化症、朊毒体病、 脊髓性肌萎缩症、多发性硬化、神经性疼痛、原发性侧索硬化病、脑膜炎或病毒性脑炎。
所述神经退行性疾病包括阿兹海默症、帕金森、多发性硬化、亨廷顿舞蹈病。
代谢紊乱疾病及其继发症包括:2型糖尿病、糖尿病性脂血异常、糖尿病黄斑水肿、糖尿病视网膜病变、黄斑变性、白内障、糖尿病肾病、肾小球硬化、糖尿病神经病变、代谢性酸中毒、月经前期综合症、食欲调节及肥胖。
本发明所提供的化合物一般的剂量范围为约每天0.001mg/Kg至1000mg/kg,优选为约0.01mg/kg至100mg/kg,更优选为约0.1至20mg/kg,药物组合物的剂量范围为以其含有的上述化合物的量来计算。
本发明所提供的NO前药分子结构新颖,具有以下特点及优势:
①NO供体型前药在体内裂解成可调控ApoA-I表达或分泌的小分子治疗药物及NO分子,从而在ApoA-I调控剂本身的药理作用基础上额外提供了外源性的NO,对心脑血管疾病的治疗具有重要的意义;
②发明人所选择的一些ApoA-I调控剂的化学结构中带有游离的醇羟基,这类药物在体内易与葡萄糖醛酸直接轭合发生第II相生物转化与而被代谢,另外,在体内醇脱氢酶的催化下经过第I相生物转化被氧化成游离羧酸而直接排除体外,或进一步与甘氨酸轭合发生第II相生物转化而被代谢。发明人将这些形成ApoA-I调控剂偶联上NO供体,形成NO前药后,在很大程度上减缓了这些代谢途径,从而提高药物的生物利用度、增加药物稳定性,达到药物长效的效果;
③临床上应用的很多心脑血管疾病药物,具有相对较高的亲脂性,比如他汀类、沙坦酯类的醇-水分配系数(log P)值都在5左右,而发明人在ApoA-I调控剂上偶联了NO供体,形成NO前药后,亲脂性水平提高,log P值从3升到了5,从而提高了药物体内吸收分数,进一步增加生物利用度。
附图说明
图1为受试化合物对C57小鼠血清NO水平的影响。
具体实施方式
实施例1:2-(4-(2-硝氧基-乙氧基)-3,5-二甲基苯基)-5,7-二甲氧基喹唑啉-4(3H)-酮(H101)的制备
Figure PCTCN2016098217-appb-000033
步骤1
将起始物H30-2(19.7g,0.1mol),HOBt(20.3g,0.15mol),碳化二亚胺EDCI(28.8g,0.15mol),DIPEA(32.3g,0.25mol)和THF(1L)加入到三颈圆底烧瓶中搅拌3h,再加入40ml氨水,室温搅拌过夜,TLC检测反应完全后,混合物用DCM(2X200ml)萃取,分离出有机层,有机层再用水清洗两次后,减压蒸馏,残余物中加入***(50ml),搅拌混匀后,过滤,弃去滤液,得中间体H30-3(13.4g,得率68%)。
步骤2
将起始物H30-4(36g,0.24mol),2-溴乙醇(60g,0.48mol),碳酸钾(130g,0.94mol)和EtOH(600ml)加入烧杯,混合物在79℃条件下回流8h,TLC检测反应完全后,将混合物过滤,对所得滤液进行减压蒸馏,再加入水(300ml),将混合物用EtOAc(3X100ml)萃取,分离出有机层,再用饱和NaCl水溶液(3X100ml)清洗有机层,再加入硫酸钠进行干燥,过滤后,所得滤液进行减压蒸馏,所得粗产物经硅胶柱层析(洗脱液:石油醚∶乙酸乙酯=4∶1)纯化,制得中间体H30-5(37.5g,得率80%)。
步骤3
在氮气条件下,将中间体H30-3(15.2g,77.5mol),H30-5(15.06g,77.5mmol),NaHSO3(8.9g,85.3mmol),P-TSA(1.34g,7.75mmol)和NMP(140ml)加入到烧瓶中,在130℃条件下搅拌3h,TLC检测反应完全后,再加入水(450ml)and DCM(500ml)对混合物进行萃取,分离出的水层再用的DCM(4x400ml)萃 取,合并所得有机层,将有机层用水(3x400ml)清洗,加入硫酸钠进行干燥,过滤后,所得滤液进行减压蒸馏,所得粗产物经硅胶柱层析(洗脱液:二氯甲烷∶甲醇=80∶1)纯化,得到中间产物H130:2-(4-(2-羟基乙氧基)-3,5-二甲基苯基)-5,7-二甲氧基喹唑啉-4(3H)-酮(18g,得率62.7%)。
步骤4
将中间体H130(370.4mg,1mmol)和浓硝酸(35ml)在0℃条件下混合,将混合物静置2h,TLC检测反应完全后,缓慢升温至室温,加入水(100ml)和DCM(100ml)使混合物分层,分离出水层,将水层用DCM(3x100ml)萃取,合并所得有机层,加入硫酸钠进行干燥,过滤后,所得滤液进行减压蒸馏,粗产物经硅胶柱层析(洗脱液:二氯甲烷∶甲醇=100∶1)纯化,得到120mg目标化合物2-(4-(2-硝氧基-乙氧基)-3,5-二甲基苯基)-5,7-二甲氧基喹唑啉-4(3H)-酮,得率29%,其结构经核磁共振氢谱图和质谱确证。1H NMR(400MHz,CDCl3)δ:9.87(s,1H),7.75(s,2H),6.83(d,J=2.2Hz,1H),6.46(d,J=2.2Hz,1H),4.90-4.81(m,2H),4.15-4.09(m,2H),3.95(d,6H),2.38(s,6H)。LC-MS:m/z(ES+),415[M+1]+
实施例2:3-硝氧甲基-苯甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H102)的制备
将间溴甲基苯甲酸(258mg,1.2mmol),AgNO3(245mg,1.44mmol)和乙腈(5ml)加入25ml的烧瓶,混合物在70℃条件下搅拌48h,TLC检测反应完全后,过滤,对所得滤液进行减压蒸馏后得3-硝氧基甲基-苯甲酸(211mg,得率89%)。
将H130(370mg,1mmol),3-硝氧基甲基-苯甲酸(211mg,1mmol),DCC(309mg,1.5mmol),HOBt(202.5mg,1.5mmol),DMAP(183mg,1.5mmol)和THF(40ml)加入100ml烧瓶,混合物在室温下搅拌3h,TLC检测反应完全后,加入水(30ml)和DCM(30ml)使混合物分层,分离出水层,水层再用DCM(3x100ml)萃取,合并所得有机层,加入硫酸钠进行干燥,过滤后,所得滤液进行减压蒸馏,粗产物经硅胶柱层析(洗脱液:二氯甲烷∶甲醇=100∶1)纯化,得到180mg目标化合物3-硝氧甲基-苯甲酸2-[4-(5,7-二甲氧基-4-氧代-3, 4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H102),得率32.7%,其结构经核磁共振氢谱图和质谱确证。1H NMR(400MHz,DMSO-d6)δ:11.86(s,1H),8.09-8.00(m,2H),7.91(s,2H),7.78(d,J=7.5Hz,1H),7.62(t,J=7.7Hz,1H),6.74(d,J=2.2Hz,1H),6.51(d,J=1.7Hz,1H),5.67(s,2H),4.64(m,2H),4.19(m,2H),3.86(d,6H),2.31(s,6H)。LC-MS:m/z(ES+),549[M+1]+
实施例3:N-((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢喹唑啉-2-基)-2,6-二甲基苯氧基)乙氧基)羰基氧基)-5-甲基噻吩-2-磺酰胺(H103)的制备
步骤1
在0℃条件下将2-甲基噻吩(4.4m.L,51mmol)加入到含有ClSO3OH(10mL,155mmol)的CH2Cl2(100mL)溶液中,加入过程持续30min,在此温度条件下,混合物再搅拌3h,然后将混合物倒入冰水(100ml)中,再用CH2Cl2(2X50mL)萃取混合物,收集有机层,将有机层用饱和NaCl水溶液(100ml)洗后,再用硫酸钠干燥,抽滤后,所得滤液进行减压蒸馏,得1.5g中间体5-甲基噻吩-2-磺酰氯,得率15%。
步骤2
将羟胺水溶液(1.6g,22.8mmol)溶解于THF(50mL)和水(20mL)中,溶液冷却至-5℃,缓慢加入溶解于THF(10mL)的5-甲基噻吩-2-磺酰氯(1.5g,7.6mmo),加入过程中维持温度不高于10℃,用薄层色谱法TLC监测磺酰氯消耗完全后,加入DCM(50mL),将有机层分离出,有机层用水(2X50mL)清洗,加入硫酸钠干燥有机层,再进行减压抽滤,所得滤液进行减压蒸馏,所得产物经硅胶柱层析(洗脱液:石油醚∶乙酸乙酯=20∶1-1∶1)纯化,得到中间体N-羟基-5-甲基噻吩-2-磺酰胺(0.5g,得率33%)。
步骤3
将中间体H130(420mg,1.1mmol),BOP(673mg,2.3mmol)和THF(100ml)加入到250mL烧瓶中,搅拌48h,TLC检测反应完全后,混合物经减压蒸馏,加入***(60ml)并搅拌,过滤后,弃去滤液,所得产物为中间体2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙基碳酰氯 (450mg,得率94.5%)。
步骤4
将步骤2所得产物(193mg,1mmol),三乙胺(202mg,2mmol)和DCM(20ml)加入到50mL烧瓶中,再加入步骤3所得产物(216mg,0.5mmol),混合物在室温条件下搅拌3h,TLC检测反应完全后,过滤,对所得滤液进行减压蒸馏,所得初产物经硅胶柱层析(洗脱液:二氯甲烷∶甲醇=100∶1)纯化得130mg目标化合物N-((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢喹唑啉-2-基)-2,6-二甲基苯氧基)乙氧基)羰基氧基)-5-甲基噻吩-2-磺酰胺(H103),得率44%,其结构经核磁共振氢谱图和质谱确证。1H NMR(400MHz,DMSO-d6)δ:11.88(s,1H),11.59(s,1H),7.91(s,2H),7.58(d,J=3.7Hz,1H),7.05-7.01(m,1H),6.74(d,J=2.1Hz,1H),6.52(d,J=1.9Hz,1H),4.56-4.51(m,2H),4.09-4.05(m,2H),3.86(d,6H),2.55(s,3H),2.28(s,6H)。LC-MS:m/z(ES+),589[M+1]+
实施例4:N-((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢喹唑啉-2-基)-2,6-二甲基苯氧基)乙氧基)羰基氧基)-5-甲基呋喃-2-磺酰胺(H104)的制备
步骤1
将2-甲基-呋喃(4.1g,50mmol)溶解于DME(20mL),再加入三氧化硫吡啶(9.5g,60mmol),混合物在氩气条件下搅拌3天后,反应物用EtOAc(60mL)稀释,继续在5℃条件下搅拌2h,过滤,弃去滤液得中间体5-甲基呋喃-2-磺酸(9g,得率75%)。
步骤2
将上步产物(9g,37mmol,吡啶盐)溶解于DME(60mL),在氩气和0℃条件下,依次加入草酰氯(15mL,172mmol)和DMF(1mL),再将混合物在室温条件下搅拌12h,接着用冰水(60ml)将混合物进行淬灭,再用甲苯(3X40ml)萃取混合物,分离出有机层,将有机层依次用NaHCO3水溶液(40ml)、水(40ml)、饱和NaCl水溶液(40ml)清洗,再加入硫酸钠进行干燥,过滤后,所得滤液进行减压蒸馏,得中间体5-甲基呋喃-2-磺酰氯(2g,得率30%)。
步骤3
将羟胺50%水溶液(3mL,45mmol)、THF(15mL)、水(5mL)混合后冷却至0℃,逐滴加入溶解于THF(10mL)的5-甲基呋喃-2-磺酰氯(2g,11mmol),加入过程中维持反应温度不高于10℃,反应物搅拌5min,用薄层色谱法TLC监测磺酰氯消耗完全后,用DCM(2X50mL)稀释反应物,然后分离出有机层,用水(10mL)清洗,加入硫酸钠干燥后,再进行减压抽滤,对所得滤液进行减压蒸馏,残余物经硅胶柱层析(洗脱液:石油醚∶乙酸乙酯=4∶1)纯化,得到中间体N-羟基-5-甲基呋喃-2-磺酰胺(0.6g,得率31%)。
步骤4
将实施例1所制备的中间体H130(185mg,0.5mmol),吡啶(130mg,1.65mmol)和DCM(5ml)加入到25mL的烧瓶中,将溶解于DCM(2ml)的对硝基氯甲酸苯酯(110mg,0.55mmol)在0℃条件下逐滴加入上述混合物中。混合物自然升温至室温,并搅拌过夜,TLC检测反应完全后,将反应物用水洗后,分离出有机层,减压蒸馏,残余物经硅胶柱层析(DCM∶MeOH=95∶5)纯化得中间体H04-7(130mg,得率48.6%)。
步骤5
将中间体H04-7(160mg,0.3mmol),N-羟基-5-甲基呋喃-2-磺酰胺(89mg,0.5mmol),DMAP(122mg,1mmol)和DCM(20ml)加入50mL烧瓶中,在室温条件下将混合物搅拌过夜,TLC检测反应完全后,然后用水清洗,分离出有机层,减压蒸馏,残余物经硅胶柱层析(DCM∶MeOH=95∶5)纯化得10mg目标化合物N-((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢喹唑啉-2-基)-2,6-二甲基苯氧基)乙氧基)羰基氧基)-5-甲基呋喃-2-磺酰胺(H104),得率5.8%,其结构经核磁共振氢谱图和质谱确证。1H NMR(400MHz,DMSO-d6)δ:11.86(s,2H),7.90(s,2H),7.26(d,J=3.5Hz,1H),6.74(d,J=2.3Hz,1H),6.52(d,J=2.2Hz,1H),6.44(d,J=3.4Hz,1H),4.55-4.49(m,2H),4.08-4.03 (m,2H),3.86(d,6H),2.40(s,3H),2.27(s,6H)。LC-MS:m/z(ES+),573[M+1]+
实施例5:3-(3-硝氧基-丙酰基)-苯甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H105)的制备
制备方法同实施例2,但起始原料由对间溴甲基苯甲酸换为3-(3-溴-丙酰基)-苯甲酸。终产物结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.65(s,1H),8.11-8.06(m,2H),7.88(s,1H),7.72(d,J=6.2Hz,2H),7.54(m,1H),6.71(d,J=2.8Hz,1H),6.48(d,J=2.5Hz,1H),4.65(m,2H),4.38(m,2H),3.81(d,6H),2.69(m,2H),2.33(s,6H)。LC-MS:m/z(ES+),592[M+1]+
实施例6:琥珀酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯3-(硝氧基)-2,2-二((硝氧基)甲基)丙酯(H106)的制备
Figure PCTCN2016098217-appb-000035
步骤1
将实施例1所制备的中间体H130(1.5g,4.05mmol),丁二酸酐(810mg,8.1mmol)和DMF(15ml)加入25ml烧瓶中,混合物在110℃条件下搅拌2h,TLC检测反应完全后,减压蒸馏,再加入乙酸乙酯(30ml)得悬浮液,将悬浮液过滤后,弃去滤液,所得产物为中间体琥珀酸单-{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙基}酯(1g,得率52.5%)。
步骤2
将上步所制备产物(400mg)and DCM(20ml)加入50mL烧瓶中,混匀后加入草酰氯(6ml),室温搅拌1h,TLC检测反应完全后,减压蒸馏,得产物4-氯-4氧代丁酸{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙基}酯。
Figure PCTCN2016098217-appb-000036
步骤3
将2,2-二(硝氧基甲基)-3-硝氧基-丙醇(285mg,1.05mmol),三乙胺(239mg,2.35mmol)和DCM(30ml)加入到100mL烧瓶中,再将步骤2所得产物(512mg,1.05mmol)溶解于DCM(20ml),然后在0℃条件下滴加到混合物中,反应物升到室温后,搅拌1h,TLC检测反应完全后,反应物用水清洗,分离出有机层,用硫酸钠干燥,过滤,对所得滤液减压蒸馏,残余物经硅胶柱层析(洗脱液:二氯甲烷∶甲醇=95∶5)纯化得251mg目标化合物(H106),得率33%,其结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.80(s,1H),7.85(s,2H),6.71(d,J=2.9Hz,1H),6.50(d,J=2.6Hz,1H),4.49-4.38(m,2H),4.08-4.18(m,2H),3.98(m,1H),3.85(d,6H),3.45(s,6H),2.79-2.81(m,4H),2.33(s,6H)。LC-MS:m/z(ES+),724[M+1]+
实施例7:3-(2,3-二硝基氧-丙氧基)-苯甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H107)的制备
制备方法同实施例2,但起始原料由对间溴甲基苯甲酸换为3-烯丙氧基-苯甲酰氯(制备方法参考专利US 20150307650),终产物结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.78(s,1H),7.96-7.85(m,4H),7.60(m,1H),7.34(m,1H),6.71(d,J=2.8Hz,1H),6.54(d,J=3.2Hz,1H),4.60(m,2H),4.32(m,2H),3.98-3.91(m,3H),3.81(d,6H),3.77-3.61(m,2H),2.35(s,6H)。LC-MS:m/z(ES+),655[M+1]+
Figure PCTCN2016098217-appb-000037
实施例8:4,5-二硝基氧基-戊酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H108)的制备
步骤1
4-戊烯酸(2g,20mmol)溶解于甲酸(5mL)中,在15min内滴加到50℃的含35%双氧水(28mmol)的甲酸溶液(20mL)中,在此温度下,混合物继续搅拌2h后,减压蒸馏,所得产物为2-酮基-5-羟甲基-四氢呋喃(2g,得率97%)。
步骤2
将上步反应所得产物(2g,17.2mmol)加入到HCl(6M,20mL),加热回流2h,TLC检测反应完全后,对反应物进行减压蒸馏,所得产物为4,5-二羟基-戊酸(2g,得率95%)。
步骤3
将上步所得产物(2g,15mmol)溶解于乙酸乙酯中(10mL),再加入到冰浴冷却的硝酸(90%,15mL,300mmol)和无水醋酸(20mL)中,混合物在冰浴条件下搅拌10min,再在室温条件下搅拌2h,在40℃条件下,对混合物进行减压蒸馏,产物经硅胶柱层析(洗脱液梯度洗脱:石油醚∶乙酸乙酯=20∶1-1∶1)纯化得中间体4,5-二硝氧基-戊酸(1g,45%得率)。
步骤4
将上步所得产物(448mg,2mmol),实施例1所制备的中间体H130(370.4mg,1mmol),DCC(618mg,3mmol),HOBt(405mg,3mmol),DMAP(366mg,3mmol)和THF(30ml)加入到50ml的烧瓶中,室温搅拌过夜,TLC检测反应完全后,再加入水(10ml)和DCM(10ml),分离出的水层再用DCM(3X10ml)萃取,收集有机层,将有机层用硫酸钠干燥,抽滤后,滤液减压蒸馏,所得初产物经硅胶柱层析(洗脱液:二氯甲烷∶甲醇=100∶1)纯化得115mg目标化合物4,5-二硝基氧基-戊酸2-[4-(5,7-二甲氧基-4-氧代-3,4- 二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H108),得率20%,其结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.85(s,1H),7.90(s,2H),6.73(d,J=2.6Hz,1H),6.51(d,J=2.5Hz,1H),5.56-5.45(m,1H),4.95(d,J=2.0Hz,1H),4.74(d,J=5.8Hz,1H),4.42-4.31(m,2H),4.07-3.99(m,2H),3.86(d,6H),2.57(m,2H),2.29(s,6H),2.09-1.97(m,2H)。LC-MS:m/z(ES+),576[M+1]+
实施例9:制备(4-硝氧基-丁酰胺基)-乙酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H109)
Figure PCTCN2016098217-appb-000038
步骤1
用35mL的丙酮溶解540mg的2-(4-(2-羟基乙氧基)-3,5-二甲基苯基)-5,7-二甲氧基喹唑啉-4(3H)-酮,在其中添加N-Boc-甘氨酸(0.334g)和4-二甲氨基吡啶(DMAP,20mg),将上述混合溶液在0℃冷却,并且添加EDC(0.365g),混合物在室温下搅拌,反应2小时后,真空条件下蒸发溶剂,所得残渣依次用水(50mL)和二氯甲烷(3×50mL)洗涤,所得有机层用硫酸钠干燥,再减压蒸馏,浓缩物通过柱层析色谱法纯化(洗脱液:正己烷与乙酸乙酯比例为6∶4),获得中间体(d),即(叔丁氧基羰基氨基)-乙酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯。
步骤2
将中间体(d)加入70mL二氯甲烷,溶解充分后向其中通HCl气体1小时,减压真空条件下蒸发溶剂,制得中间体(e),即甘氨酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯的盐酸盐,将中间体(e)用40mL的二氯甲烷溶解,再向其添加4-硝氧基丁酸五氟苯酚酯(0.41g),DMAP(20mg)和三乙胺(0.3mL),在室温下搅拌,反应24小时后,用5%的H3PO4(50mL)溶液洗涤,所得有机层用硫酸钠干燥,再减压蒸 馏,通过柱层析色谱法纯化浓缩物(洗脱液:梯度正己烷/乙酸乙酯1∶1-100,洗脱液中乙酸乙酯的量梯度增加,至洗脱液为130mL的乙酸乙酯为止),获得目标化合物。
1H NMR(400MHz,CDCl3)δ:9.92(s,1H),8.91(s,1H),7.73(s,2H),6.80(d,J=2.9Hz,1H),6.51(d,J=3.1Hz,1H),4.81-4.75(m,2H),4.26-4.15(m,4H),4.08(s,2H),3.90(d,6H),2.36(m,8H),2.09(m,2H);LC-MS:m/z(ES+),559[M+1]+
实施例10:制备2-氨基-3-(4-{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基羰基氧基}-苯基)-丙酸2-硝氧基-乙酯的盐酸盐(H110)
Figure PCTCN2016098217-appb-000039
步骤1
向Boc-(L)-酪氨酸(5.0g)的N,N-二甲基甲酰胺(40mL)溶液中添加碳酸铯(5.79g),溶解后,溶液冷却至0℃,并且滴加用20mL二氯甲烷溶解的硝酸2-溴乙基酯(3,48g)溶液,在0℃条件下搅拌,反应20分钟后,继续在室温条件下搅拌22小时,反应结束后,将混合物倒入5%的NaH2PO4水溶液并且用二***(40mL×4)萃取,所得有机层用硫酸钠干燥,再减压蒸馏,通过柱层析色谱法纯化浓缩物(洗脱液:梯度正己烷/乙酸乙酯9∶1,至正己烷/乙酸乙酯为1∶1,共用4000mL洗脱液),获得中间体(f),即2-(叔丁氧基羰基氨基)-3-(4-羟苯基)丙酸2-(硝氧基)乙基酯。
步骤2
用24mL的二氯甲烷溶解上一步产物中间体(f),在所得溶液中添加吡啶(0.5mL),溶液冷却至0℃,再添加氯甲酸对-硝基苯酚酯(980mg),在0℃条件下搅拌,反应10分钟后,继续在室温条件下搅拌21小时,反应结束后, 用25mL二氯甲烷稀释反应物,用1M的HCl水溶液洗涤,再用饱和碳酸钠水溶液洗涤,所得有机层用硫酸钠干燥,再减压蒸馏,通过柱层析色谱法纯化浓缩物(洗脱液:梯度正己烷/乙酸乙酯98∶2,至正己烷/乙酸乙酯为6∶4,共用1600mL洗脱液),获得中间体(i),即2-(叔丁氧基羰基氨基)-3-[4-(4-硝基苯氧基羰基氧基)-苯基]-丙酸2-(硝氧基)乙酯。
步骤3
向中间体(i)的二氯甲烷(40mL)溶液中,添加三氟甲基磺酸钪(0,11g)和0.57g的DMAP,将混合溶液冷却至0℃,再添加2-(4-(2-羟基乙氧基)-3,5-二甲基苯基)-5,7-二甲氧基喹唑啉-4(3H)-酮(1.07g),室温搅拌反应70小时,再减压蒸馏,通过柱层析色谱法纯化浓缩物(洗脱液:梯度正己烷/乙酸乙酯9∶1,至正己烷/乙酸乙酯为3∶7,共用1600mL洗脱液),得产物2-(叔丁氧基羰基氨基)-3-(4-{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基羰基氧基}-苯基)-丙酸2-硝氧基-乙酯。
步骤4
在室温条件下用30mL二氯甲烷溶解上步产物,溶解充分后向其中通HCl气体15分钟,反应液再用二氯甲烷(35mL)稀释,用饱和碳酸钠水溶液洗涤,所得有机层用硫酸钠干燥,再减压蒸馏,通过反相快速色谱法纯化浓缩物(洗脱液:梯度水/乙腈9∶1,至水/乙腈为2∶8,共用1400mL洗脱液),得产物2-氨基-3-(4-{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基羰基氧基}-苯基)-丙酸2-硝氧基-乙酯,产物用盐酸/二***溶液处理,过滤并且在真空条件下干燥,制得目标化合物。
1H NMR(400MHz,DMSO-d6)δ:11.80(s,1H),8.89(d,2H),7.85(s,2H),7.54-6.78(m,4H),6.71(d,J=2.4Hz,1H),6.55(d,J=2.5Hz,1H),4.59-4.54(m,2H),4.,,50(m,2H),4.39(m,4H),4.21(t,1H),3.91(d,6H),3.61-3.32(m,2H),2.27(s,6H)。LC-MS:m/z(ES+),667[M+1]+
实施例11:4-(2-氧代-3-硝氧基甲基-1,2,5-
Figure PCTCN2016098217-appb-000040
二唑-3-甲基)氧基-4-氧代-丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H111)的制备
步骤1
(E)-2-丁烯醛(30g,0.43mol)和HOAc(60ml)加入1L的圆底烧瓶,再将溶解于水(200ml)的NaNO2(107g,1.55mol)在0℃条件下逐滴加到混合物中,室温下搅拌70min,TLC检测反应完全后,加入100m水,用DCM(3x100ml)萃取混合物,所得有机层用硫酸钠干燥,过滤,对所得滤液进行减压蒸馏,残余物经硅胶柱层析(洗脱液:石油醚∶乙酸乙酯=20∶1)纯化得2-氧代-3-甲基-4-甲酸基-1,2,5-
Figure PCTCN2016098217-appb-000041
二唑(14.8g,得率26.9%)。
步骤2
将上步产物(4.2g,33mmol),NaBH4(2.5g,66mmol)和THF(12ml)加入50mL的烧瓶,室温搅拌1.5h,TLC检测反应完全后,反应液用饱和氯化铵水溶液(20ml)进行淬灭,再加入水(10ml)和乙酸乙酯(10ml),分离出有机层,有机层减压蒸馏后得2-氧代-4-羟甲基-3-甲基-1,2,5-
Figure PCTCN2016098217-appb-000042
二唑(3.3g,得率76.9%)。
步骤3
将上步产物(10.1g,77.7mmol),Ac2O(28g,274mmol),DIPEA(55g,426mmol)和DCM(200ml)加入到1L的烧瓶中,混合物在室温条件下搅拌过夜,TLC检测反应完全后,反应物用水(4X150ml)清洗,分离所得水层再用DCM(4x100ml)萃取,合并所得有机层,用硫酸钠干燥,过滤,对所得滤液进行减压蒸馏,残余物经硅胶柱层析纯化(洗脱液:石油醚∶乙酸乙酯=5∶1)得2-氧代-3-甲基-4-((甲基过氧基)甲基)-1,2,5-
Figure PCTCN2016098217-appb-000043
二唑(16g,得率100%)。
步骤4
将上步产物(4g,23mmol),N-溴代丁二酰亚胺NBS(10.4g,58mmol),过氧化苯甲酰(催化量)和CCl4(40ml)加入100mL烧瓶中,混合物在90℃条件下回流48h,TLC检测反应完全后,再将反应液过滤,对所得滤液进行减压蒸馏,粗产物经硅胶柱层析纯化(洗脱液:石油醚∶乙酸乙酯=3∶1)得2-氧代-3-溴甲基-4-((甲基过氧基)甲基)-1,2,5-
Figure PCTCN2016098217-appb-000044
二唑(2.14g,得率37%)。
步骤5
将上步产物(2.14g,8.52mmol),AgNO3(3.66g,21.5mmol)和CH3CN(20ml)加入到100mL烧瓶中,混合物在60℃条件下过夜搅拌,TLC检测反应 完全后,再将混合物过滤,对所得滤液进行减压蒸馏,粗产物经硅胶柱层析(洗脱液:石油醚∶乙酸乙酯=3∶1)纯化得2-氧代-3-硝氧基甲基-4-((甲基过氧基)甲基)-1,2,5-
Figure PCTCN2016098217-appb-000045
二唑(1.95g,得率98%)。
步骤6
将上步产物(1.95g,8.37mmol),HCl(2mol/L,3.3ml)和1,4-二氧六环(16.7ml)加入到100mL烧瓶中,混合物在60℃条件下搅拌过夜,TLC检测反应完全后,减压蒸馏,再在混残余物中加水(100ml),接着用乙酸乙酯(3x50ml)萃取混合物,有机层用硫酸钠干燥,过滤,对所得滤液进行减压蒸馏,残余物经硅胶柱层析(洗脱液:石油醚∶乙酸乙酯=4∶1)纯化得2-氧代-3-硝氧基甲基-4-羟基甲基-1,2,5-
Figure PCTCN2016098217-appb-000046
二唑(1.4g,得率87%)。
步骤7
将上步所得产物(245mg,1.28mmol),三乙胺(260mg,2.56mmol)和DCM(30ml)加入到100mL烧瓶中,再将实施例6中步骤2所得产物(624mg,1.28mmol)溶解于DCM(20ml),然后在0℃条件下滴加到混合物中,反应物升到室温后,搅拌1h,TLC检测反应完全后,反应物用水清洗,分离出有机层,用硫酸钠干燥,过滤,对所得滤液减压蒸馏,残余物经硅胶柱层析(DCM∶MeOH=9∶1)纯化得50mg目标化合物4-(2-氧代-3-硝氧基甲基-1,2,5-
Figure PCTCN2016098217-appb-000047
二唑-3-甲基)氧基-4-氧代-丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H111),得率6.1%,其结构经核磁共振氢谱图和质谱确证。1H NMR(400MHz,DMSO-d6)δ:11.86(s,1H),7.91(s,2H),6.74(d,J=2.3Hz,1H),6.52(d,J=2.3Hz,1H),5.60(s,1H),5.32(d,J=5.5Hz,2H),4.80(s,1H),4.39-4.31(m,2H),4.05-3.98(m,2H),3.87(d,6H),2.76-2.63(m,4H),2.30(s,6H)。LC-MS:m/z(ES+),643[M+1]+
实施例12:制备3-(6-硝氧基-己酰胺基)-丙酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H112)
制备方法同实施例9,起始原料由N-Boc-甘氨酸换为Boc-β-丙氨酸,制备步骤2中的4-硝氧基丁酸五氟苯酚酯换为3-硝氧基丙酸五氟苯酚酯,结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,CDCl3)δ:9.96(s,1H),8.95(s,1H),7.75(s,2H),6.77(d,J=2.9Hz,1H),6.55(d,J=3.1Hz,1H),4.78(t,2H),4.28-4.22(m,4H),3.86(d,6H),2.52(t,2H),2.33(t,2H),2.12(s,6H);LC-MS:m/z(ES+),559[M+1]+
实施例13:制备2-羟基琥珀酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(2-氧代-4-苯基-呋咱-3-基)-甲酯(H113)
制备方法同实施例6,将实施例6步骤1中的丁二酸酐换为2-羟基丁二酸,实施例6步骤3中的换为(2-氧代-4-苯基-呋咱-3-基)-甲醇,所得结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.81(s,1H),7.89(m,2H),7.78-7.62(m,6H),6.73(s,1H),6.59(d,J=3.1Hz,1H),5.56(s,1H),4.80(s,1H),4.42-4.35(m,2H),4.01-3.93(m,2H),3.91(d,6H),2.87-2.70(m,2H),2.35(s,6H)。LC-MS:m/z(ES+),661[M+1]+
实施例14:制备4-(2-(((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基)乙氧基)羰基)氧基)乙氧基)-3-(苯磺酰基)-2-氧代-呋咱(H114)
Figure PCTCN2016098217-appb-000048
将3-[(4-苯磺酰基-5-氧代-呋咱-3-基)-氧基]-丙醇(143mg,0.5mmol),三乙胺(101mg,1mmol)和DCM(20ml)加入到50mL烧瓶中,再加入实施例3中步骤3所得产物(216mg,0.5mmol),混合物在室温条件下搅拌3h,TLC检测反应完全后,过滤,对所得滤液进行减压蒸馏,所得初产物经硅胶柱层析(洗脱液:二氯甲烷∶甲醇=9∶1)纯化得88mg目标化合物(H114),得率26%,其结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.82(s,1H),8.21(d,2H),7.88(m, 1H),7.79(m,2H),6.85(s,1H),6.62(s,1H),4.62-4.49(m,8H),3.87(d,6H),2.32(s,6H)。LC-MS:m/z(ES+),683[M+1]+
实施例15:制备(E)-4-((呋喃-2-磺酰氨基)氧基)-4-氧代-2-丁烯酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H115)丁烯二酸
制备方法同实施例6,将实施例6步骤1中的丁二酸酐换为丁烯二酸,实施例6步骤3中的换为N-羟基噻吩-2-磺酰胺(N-羟基噻吩-2-磺酰胺制备方法参考专利WO2014113700),所得结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.81(s,1H),7.91(d,1H),7.69(m,2H),7.69(m,4H),7.4(s,1H),6.78(d,J=3.6Hz,1H),6.54(d,J=2.9Hz,1H),6.36(s,2H),4.48-4.37(m,2H),3.91(d,6H),2.35(s,6H)。LC-MS:m/z(ES+),614[M+1]+
实施例16:制备4-(((3-(甲磺酰基))苯基)磺酰胺基)氧基)-4-氧代丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H116)
步骤1
将甲基磺酰基苯(5g,32mmol)放于氯磺酸(37g,320mmol)中,在90℃条件下加热18h,冷却至室温,再将混合物缓慢倒入碎冰中,所得悬浮液用乙酸乙酯(2X200mL)萃取,分离出有机层,合并后用饱和NaCl水溶液(50mL)清洗,再用硫酸钠干燥,抽滤后,对所得滤液进行减压蒸馏,残余物为中间体3-甲基磺酰苯基-1-磺酰氯(50mg,得率6.1%)。
步骤2
将羟胺水溶液(50mmol)溶解于THF(60mL)和水(10mL)中,降温至-5℃,再缓慢加入3-甲基磺酰苯基-1-磺酰氯(5.1g,20mmol),同时保持反应温度不高于10℃,低温条件下,待反应完成后加入DCM(100mL),收集出有机层,用水(2X50mL)清洗,分离得到的有机层用硫酸钠干燥,抽滤后,滤液减压蒸馏,得中间体N-羟基-3-(甲基磺酰基)苯磺酰胺(3g,60%得率)。
Figure PCTCN2016098217-appb-000049
步骤3
将上步所得产物(427mg,1.7mmol,三乙胺(172mg,1.7mmol)和DCM(20ml)加入到50ml烧瓶中,将实施例4中步骤8所制得中间体(416mg,0.85mmol)溶解于DCM(20ml)后,在0℃条件下,逐滴加入反应混合物中,然后搅拌1h,TLC检测反应完全后,用水清洗后,硫酸钠干燥,抽滤后,滤液减压蒸馏,所得粗产物经硅胶柱层析(洗脱液:二氯甲烷∶甲醇=80∶1)纯化得120mg目标化合物4-(((3-(甲磺酰基))苯基)磺酰胺基)氧基)-4-氧代丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H116),得率20%,其结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.86(s,1H),11.52(s,1H),8.38-8.23(m,3H),8.00-7.89(m,3H),6.74(d,J=2.3Hz,1H),6.52(d,J=2.3Hz,1H),4.38-4.31(m,2H),4.05-3.99(m,2H),3.87(d,6H),3.35(s,3H),2.66(m,4H),2.29(s,6H)。LC-MS:m/z(ES+),703[M+1]+
实施例17:制备4-[4-(2-(硝氧基)乙基)-哌嗪-1基]-4-氧代-丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H117)制备方法同实施例16中的步骤3,起始原料由N-羟基-3-(甲基磺酰基)苯磺酰胺换为1-(2-(硝氧基)乙基)-哌嗪,终产物结构经MS谱图验证,1H NMR(400MHz,DMSO-d6)δ:11.83(s,1H),7.88(s,2H),6.70(d,J=2.9Hz,1H),6.54(d,J=2.8Hz,1H),4.36-4.30(m,2H),4.11-4.05(m,2H),3.84(d,6H),3.67(m,2H),3.44(m,4H),2.68-2.54(m,10H),2.35(s,6H)。LC-MS:m/z(ES+),703[M+1]+
实施例18:制备2-氨基-琥珀酸1-(2,3-二硝氧基-丙基)酯4-{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙基}酯的盐酸盐(H118)
步骤1
将2,3-二溴-1-丙醇(2g,9.2mmol),硝酸银(15.6g,91.8mmol)和CH3CN(100mL)混合,室温搅拌2天,TLC检测反应完全后,混合物加入水(50ml)稀释,再用乙酸乙酯(3X50mL)萃取混合物,分离出有机层,将有机层合并后用硫酸钠干燥,减压抽滤后,所得滤液进行减压蒸馏,初产物经硅胶柱层析(洗脱液:石油醚∶乙酸乙酯=4∶1)纯化得2,3-二硝氧基-1-丙醇(0.5g,得率30%)。
步骤2
将中间体H130(2.22g,59.9mmol),H18-7(1.94g,59.9mmol),DCC(1.86g,90mmol),DMAP(1.1g,1.1mmol)和THF(60ml)加入100mL烧瓶中,室温条件下搅拌过夜,TLC检测反应完全后,加入DCM(50ml),得悬浮液,将其过滤,滤液用水洗后,硫酸钠干燥,减压抽滤后,所得滤液进行减压蒸馏,初产物为经硅胶柱层析(洗脱液:二氯甲烷∶甲醇=100∶1)纯化得H18-8(4.1g,6.07mmol,得率100%)。
步骤3
将H18-8(4g,5.9mmol),钯碳Pd/C(200mg)和甲醇(200ml)加入到500mL烧瓶中,真空条件下置换氢气,混合物在氢气条件下搅拌过夜,TLC检测反应完全后,过滤,所得滤液进行真空干燥后得中间体H18-9(2.5g,得率72.4%)。
Figure PCTCN2016098217-appb-000050
步骤4
将H18-9(585.6mg,1mmol),步骤1所制备产物(182.09mg,1mmol),DCC(309mg,1.5mmol),HOBt(202.5mg,1.5mmol),DMAP(183mg,1.5mmol)和THF(20ml)加入100mL烧瓶中,将所得混合物在室温条件下搅拌过夜,TLC检测反应完全后,过滤后,将水(20ml)和DCM(20ml)加入到滤液中,分离出有机层,减压蒸馏后,所得初产物经硅胶柱层析纯化(洗脱液:二氯甲烷∶甲醇=100∶1)得中间体H18-11(300mg,得率40%)。
Figure PCTCN2016098217-appb-000051
步骤5
将上步所的产物(280mg,0.37mmol)溶解于乙酸乙酯(30ml)中,再将HCl/EtOAc(100ml)滴加到该溶液中,混合物室温搅拌2h,过滤,弃去滤液,所得残余物进行真空干燥后得150mg目标化合物(H118)2-氨基-琥珀酸1-(2,3-二硝氧基-丙基)酯4-{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙基}酯,得率59%。其结构经核磁共振氢谱图和质谱确证。1H NMR(400MHz,DMSO-d6)δ:8.73(s,3H),7.90(s,2H),6.83(s,1H),6.57(s,1H),5.75-5.62(m,1H),5.03-4.95(m,1H),4.87(d,J=6.2Hz,1H),4.65-4.40(m,5H),4.07(s,2H),3.88(d,6H),3.11(m,2H),2.31(s,6H);LC-MS:m/z(ES+),649[M+1]+
实施例19:制备(6-硝氧基-六氢化呋喃并[3,2-b]呋喃-3-基)-碳酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H119)
将中间体H04-7(53.6mg,0.1mmol),单硝酸异山梨醇酯(38mg,0.2mmol),DMAP(18.4mg,0.15mmol)和DCM(5ml)加入到10mL烧瓶中,室温搅拌过夜,TLC检测反应完全后,反应物用水洗后,硫酸钠干燥,减压抽滤后,所得滤液进行减压蒸馏,所得初产物经硅胶柱层(洗脱液:二氯甲烷∶甲醇=100∶1)析纯化得35mg目标化合物H119:(6-硝氧基-六氢化呋喃并[3,2-b]呋喃-3-基)-碳酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]- 乙酯,得率60%,其结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.85(s,1H),7.90(s,2H),6.74(d,J=2.0Hz,1H),6.52(d,J=2.1Hz,1H),5.52(td,J=5.3,1.6Hz,1H),5.06-4.99(m,2H),4.52-4.42(m,3H),4.08-3.98(m,4H),3.90-3.80(m,8H),2.28(s,6H)。LC-MS:m/z(ES+),587[M+1]+
实施例20:制备(6-硝氧基-六氢化呋喃并[3,2-b]呋喃-3-基)-氨甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H120)
制备方法同实施例19,起始原料单硝酸异山梨醇酯换为6-硝氧基-六氢化呋喃并[3,2-b]呋喃-3-基-氨基,结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.72(s,1H),8.04(s,1H),7.81(s,2H),6.,,71(m,2H),6.59(d,J=3.4Hz,1H),5.48(td,J=4.3,1.9Hz,1H),5.12-4.92(m,2H),4.47-4.38(m,3H),4.13-3.92(m,4H),3.85-3.73(m,8H),2.31(s,6H)。LC-MS:m/z(ES+),586[M+1]+
6-硝氧基-六氢化呋喃并[3,2-b]呋喃-3-基-氨基的制备方法如下:
步骤1
将28.0g的NaN3溶解于160ml三氯甲烷,搅拌下冷却至0℃,再缓慢滴加10mL浓硫酸,接着反应2.5h,过滤后,用硫酸钠干燥滤液制得叠氮酸。
步骤2
将12.6g的三苯基磷和8.4g的单硝酸异山梨醇酯溶解于100mL的无水四氢呋喃(THF),搅拌并冷却至0℃,分次滴加上步所得产物的三氯甲烷溶液(100mL),每次滴加20mL,滴加完毕再继续反应30min,再将8.6mL的偶氮二甲酸二异丙酯(DIAD)的THF(20mL)溶液,分次滴加入反应液,再继续反应5h后,反应恢复室温,再于油浴中升温至60℃,再反应28h后,加8mL蒸馏水,用2M的HCl调整反应液pH为1-2,再用无水二氯甲烷萃取3次,每次30mL,合并二氯甲烷层,用蒸馏水(3X15mL)清洗,用硫酸钠干燥,滤液旋干,制得6-硝氧基-六氢化呋喃并[3,2-b]呋喃-3-基-氨基。
实施例21:制备4-(((5-氯代噻吩)-2-磺酰氨基)氧基)-4-氧代丁酸2-[4-(5, 7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H121)
将N-羟基-5-氯代噻吩-2-磺酰胺(362mg,1.7mmol,制备方法参考专利WO2014113700),三乙胺(172mg,1.7mmol)和DCM(20ml)加入到50ml烧瓶中,将实施例6中步骤2所制得中间体(416mg,0.85mmol)溶解于DCM(20ml)后,在0℃条件下,逐滴加入反应混合物中,然后搅拌1h,TLC检测反应完全后,用水清洗后,硫酸钠干燥,抽滤后,滤液减压蒸馏,所得粗产物经硅胶柱层析纯化得147mg目标化合物4-(((5-氯代噻吩)-2-磺酰氨基)氧基)-4-氧代丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(H116),得率26%,其结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.86(s,1H),7.97(s,1H),7.64(m,2H),6.71(d,J=2.5Hz,1H),6.55(d,J=3.1Hz,1H),4.45-4.36(m,2H),4.05-3.99(m,2H),3.87(d,3H),2.69(m,4H),2.28(s,6H)。LC-MS:m/z(ES+),666[M+1]+
实施例22:制备2-(N-(((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基)羰基)氧基)氨磺酰基)-1-甲基-1H-吡啶1-2-鎓盐(H122)
制备方法同实施例21,起始原料由N-羟基-5-氯噻吩-2-磺酰胺换为2-(N-羟基胺磺酰)-1-甲基-1H-吡唑-2-鎓盐(制备方法参考专利WO2014113700),所得目标化合物结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.83(s,2H),11.56(s,1H),7.93(s,1H),7.82(d,2H),7.67(d,J=3.2Hz,2H),6.76(d,J=2.5Hz,1H),6.53(d,J=2.3Hz,1H),4.55-4.52(m,2H),4.08-4.02(m,2H),3.89(d,6H),2.48(s,3H),2.25(s,6H)。LC-MS:m/z(ES+),575[M+1]+
实施例23:制备2-乙酰氨基-3-(4-(((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基)羰基)氧基)苯基)丙酸3,4-(二硝氧基)丁基酯(H123)
Figure PCTCN2016098217-appb-000052
步骤1
将Boc-(L)-酪氨酸(380mg,1.35mmol)溶解于N,N-二甲基甲酰胺(10ml)溶液中,加入碳酸铯(440g,1.35mmol),在0℃条件下,向混合物中滴加溶解于二氯甲烷(20ml)的3,4-二硝氧基-1-溴丁烷(350mg,1.35mmol,制备方法参考WO 2001049275)溶液。在0℃条件下,搅拌20min,缓慢升温至室温后,再搅拌22小时,加入5%的磷酸二氢钠(20ml)水溶液,然后用二***(4×20mL)萃取,所得有机层用硫酸钠干燥,再进行减压蒸馏,残余物用硅胶柱层析(洗脱液:正己烷/乙酸乙酯梯度洗脱)纯化得中间体2-(叔丁氧基羰基氨基)-3-(4-羟苯基)丙酸3,4-(二硝氧基)丁基酯(267mg,得率43%)。
步骤2
将上步产物(0.97g,2.12mmol)溶解于二氯甲烷(20ml)溶液中,在溶液中通入HCl气体3小时,再加入二氯甲烷(25mL),用饱和碳酸钠水溶液洗涤,分离出有机层用硫酸钠干燥,在减压下蒸馏,得中间体2-氨基-3-(4-羟苯基)丙酸3,4-(二硝氧基)丁基酯。
步骤3
将上步产物(0.66g,1.85mmol)溶解于二氯甲烷(15mL)溶液中,再加入三乙胺(0.25mL,1.85mmol),将反应物冷却至0℃,滴加乙酰氯(0.14mL,1.98mmol),在0℃条件下,搅拌反应物10min,再在室温下搅拌16小时,加入二氯甲烷(25mL),用水洗涤,所得有机层用硫酸钠干燥,减压蒸馏,残余物用硅胶柱层析(洗脱液:正己烷/乙酸乙酯梯度洗脱)纯化得中间体2-乙酰氨基-3-(4-羟苯基)丙酸3,4-(二硝氧基)丁基酯(341mg,得率46%)。
步骤4
将上步产物(0.46g,1.15mmol)溶解于二氯甲烷(8ml)中,再加入吡啶(0.11mL,1.15mmol),将反应物冷却至0℃,再加入氯甲酸对硝基-苯基酯(233mg,1.15mmol),在0℃条件下,搅拌反应物15min,再在室温下搅拌48 小时,加入二氯甲烷(20mL),用HCl水溶液(1M,20mL)洗涤,再用饱和碳酸钠水溶液洗涤。有机层用硫酸钠干燥,减压蒸馏后,残余物用硅胶柱层析(洗脱液:正己烷/乙酸乙酯梯度洗脱)纯化得中间体2-乙酰氨基-3-(4-((4-硝基苯氧基)羰氧基)苯基)丙酸3,4-(二硝氧基)-丁基酯(228mg,得率35%)。
步骤5
将上步产物(453mg,0.8mmol)溶解于二氯甲烷(15mL)溶液中,再加入三氟甲基磺酸钪(0.04g,0.09mmol)和DMAP(0.21g,1.8mmol),将反应物冷却至0℃,再加入中间体H130(296mg,0.8mmol),在室温下搅拌反应物18h,加入二氯甲烷(24mL),用5%的磷酸二氢钠洗涤,再用饱和碳酸钠水溶液洗涤,有机层用硫酸钠干燥,减压蒸馏后,残余物用硅胶柱层析(洗脱液:正己烷/乙酸乙酯梯度洗脱)纯化得目标化合物(204mg,得率32%),所得目标化合物结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.81(s,1H),7.89(s,2H),7.52-6.74(m,4H),6.73(d,J=2.8Hz,1H),6.57(d,J=2.7Hz,1H),4.58-4.53(m,3H),4.11-4.05(m,2H),3.98(m,2H),3.91(s,3H),3.88-3.82(t,5H),3.58-3.52(m,1H),3.49-3.40(m,2H),2.29(s,6H),1.95(m,3H)。LC-MS:m/z(ES+),798[M+1]+
实施例24:制备4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基)-4-氧代-2-乙酰氨基-丁酸3-(硝氧基)-2,2-二(硝氧基甲基)丙酯(H124)
步骤1
将中间体H130(1.3g,3.5mmol)溶解于丙酮(100ml)溶液中,再加入N-乙酰天门冬氨酸(1.09g,6.25mmol)和DMAP(催化量),将反应物冷却至0℃,再加入EDAC(1.19g,6.25mmol),反应物在室温条件下搅拌24h,减压蒸馏,残余物用硅胶柱层析(洗脱液:二氯甲烷/甲醇梯度洗脱)纯化得4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基)-4-氧代-2-乙酰氨基-丁酸(0.83g,得率45%)。
步骤2
将上步产物(0.66g,1.25mmol)溶解于二氯甲烷(30ml)中,再加入3-氯-2, 2-二(氯甲基)丙烷-1-醇(0.24g,1.25mmol)和DMAP(催化量),将反应物冷却至0℃,再加入EDAC(0.24g,1.25mmol),反应物在室温条件下搅拌24h,减压蒸馏,残余物用硅胶柱层析(洗脱液:正己烷/乙酸乙酯梯度洗脱)纯化得4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基)-4-氧代-2-乙酰氨基-丁酸3-氯-2,2-二(氯甲基)丙酯(0.57g,得率65%)。
步骤3
将上步产物(525mg,0.75mmol)溶解于乙腈(20mL)中,再加入碘化钠(0.45g,3.06mmol),在微波辐射下,将反应物加热至120℃,放置60分钟,冷却所得的混合物,过滤,所得有机层经减压蒸馏后,得中间体4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基)-4-氧代-2-乙酰氨基-丁酸3-碘-2,2-二(碘甲基)丙酯(417mg,得率57%)。
步骤4
将上步产物(0.6g,0.62mmol)溶解于乙腈(20mL)溶液中,添加硝酸银(405mg,2.43mmol),在微波辐射下,将反应物加热至120℃,放置5分钟,冷却所得的混合物,过滤,所得有机层经减压蒸馏后,残余物用硅胶柱层析(洗脱液:正己烷/乙酸乙酯梯度洗脱)纯化得目标化合物(232mg,得率48%),所得目标化合物结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.86(s,1H),8.58(s,1H),7.94(s,2H),6.81(s,1H),6.55(s,1H),5.93-5.85(m,1H),4.42-4.36(m,2H),4.03(m,2H),3.87-3.81(m,8H),3.39(s,6H),3.09-3.01(m,2H),2.34(s,6H),1.89(s,3H)。LC-MS:m/z(ES+)781[M+1]+
实施例25:制备4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁氧基)-4-氧代-2-(2-(硝氧基)乙酰氨基)-丁酸2-硝氧基乙酯(H125)
Figure PCTCN2016098217-appb-000053
步骤1
将中间体H130(2.11g,5.7mmol)溶解于二氯甲烷(100ml)溶液中,加入4-(烯丙氧基)-3-(叔丁氧基羰基氨基)-4-氧代丁酸(1.55g,5.7mmol)和DMAP(催化量),将反应物冷却至0℃,再加入EDAC(1.49g,7.85mmol),反应物在室温下搅拌12h,减压蒸馏,残余物用硅胶柱层析(洗脱液:正己烷/乙酸乙酯梯度洗脱)纯化得中间体4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基氧基)-4-氧代-2-(叔丁氧基羰基氨基)琥珀酸2-烯丙基酯(1.92g,得率54%)。
步骤2
将上步产物(1.53g,2.45mmol)溶解于二氯甲烷(40mL)溶液中,加入HCl气体15min,减压蒸馏得中间体4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基氧基)-4-氧代-2-氨基丁酸2-烯丙基酯的盐酸盐(0.66g,得率48%)。
步骤3
将上步产物(702mg,1.25mmol)溶解于二氯甲烷(80ml)溶液中,加入DMAP(143mg,1.2mmol)和2-硝氧基乙酸五氟苯酚酯(359mg,1.25mmol,制备方法参考WO 2005011646),在室温条件下,将反应物搅拌12h,减压蒸发溶剂,残余物用硅胶柱层析(洗脱液:正己烷/乙酸乙酯梯度洗脱)纯化得中间体4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基氧基)-4-氧代-2-(2-(硝氧基)乙酰氨基)-丁酸2-烯丙基酯(495mg,得率63%)。
步骤4
将上步产物(440mg,0.70mmol)溶解于二氯甲烷(20ml)溶液中,加入5,5-二甲基-1,3-环己烷二酮(0.13g,0.97mmol),三苯膦(0.30g,1.16mmol)和四(三苯膦)钯(0.045g,0.039mmol),在室温条件下,将反应物搅拌12h,减压蒸发溶剂,残余物用硅胶柱层析(洗脱液:正己烷/丙酮/乙酸4/6/0.1%)纯化得中间体4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基氧基)-4-氧代-2-(2-(硝氧基)乙酰氨基)-丁酸(239mg,得率58%)。
步骤5
将上步产物(265mg,0.45mmol)溶解于二氯甲烷(20ml)溶液中,加入2-氯乙醇(0.04mL,0.5mmol)和DMAP(催化量),将反应物冷却至0℃,再加入EDAC(0.12g,0.62mmol),在室温条件下,将反应物搅拌12h,减压蒸发溶剂,残余物用硅胶柱层析(正己烷/乙酸乙酯梯度洗脱)纯化得中间体4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基氧基)-4-氧代-2-(2-(硝氧基)乙酰氨基)-丁酸2-氯乙酯(186mg,得率65%)。
步骤6
将上步产物(191mg,0.3mmol)溶解于乙腈(10ml)溶液中,加入碘化钠(0.18g,1.25mmol),在微波辐射下,将反应物加热至120℃,放置60分钟,冷却所得的混合物,过滤,所得有机层经减压蒸馏后,得中间体4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基氧基)-4-氧代-2-(2-(硝氧基)乙酰氨基)-丁酸2-碘乙酯(95.5mg,得率46%)。
步骤7
将上步产物(203mg,0.3mmol)溶解于乙腈(10ml)溶液中,加入硝酸银(0.21g,1.24mmol),在微波辐射下,将反应物加热至120℃,放置5分钟,冷却所得的混合物,过滤,所得有机层经减压蒸馏后,残余物用硅胶柱层析(洗脱液:正己烷/丙酮梯度洗脱)纯化得目标化合物(115mg,得率58%),所得目标化合物结构经核磁共振氢谱图和质谱确证。
1H NMR(400MHz,DMSO-d6)δ:11.81(s,1H),8.55(s,1H),7.91(s,2H),6.83(s,1H),6.52(s,1H),5.89-5.82(m,1H),5.48(s,2H),4.81(t,2H),4.46-4.37(m,4H),4.05(m,2H),3.91(d,6H),3.11-3.04(m,2H),2.34(s,6H)。LC-MS:m/z(ES+)678[M+1]+
生物学实验
实验一、受试化合物在体外释放一氧化氮的实验研究
实验步骤:
(1)配置Griess试剂:取氨苯磺胺4g,N-萘乙烯二胺盐酸盐0.2g,85%的磷酸溶液10ml,用蒸馏水稀释至100ml。
(2)绘制标准曲线:配置0.01、0.03、0.05、0.07、0.09、0.2、0.4μg/ml的亚硝酸盐氮的系列标准溶液,各取10ml与2.5ml的Griess试剂充分混匀, 室温放置10min后,于540nm波长处测定其吸收值。根据所得数据绘制标准曲线。
(3)受试药物NO释放量的测定:所有受试物均先溶于二甲亚砜中(1ml),再用磷酸缓冲液(pH7.4)缓慢滴加、振荡,将药物溶液稀释至50ml,缓冲液中含有过量的半胱氨酸(5mmol/l),受试物终浓度为10-4mol/l;将溶液置于37℃环境下孵化,分别于1h取反应液2ml与500μl的Griess试剂混合,室温放置10分钟,在540nm处测吸收值,以单硝酸异山梨酯为阳性对照,H130作为阴性对照,NO的释放量以其氧化产物亚硝酸盐(NO2 -)的量表示。
实验结果:受试物NO体外释放结果参见表1。
实验结论:从实验结果中可看出除了化合物H102和H130在1h之内没检测到NO的释放,其余化合物在1h之内均能检测到不同水平的NO释放,但是不同结构的NO供体的NO释放速率存在差距,释放速率可能与NO供体的分子量以及NO供体与原药的偶联方式有关,表1中仅示出了在1h的时间点检测到的NO释放,其中化合物H102虽然在1h内没有NO产生,但是2h或更长时间之后均有NO产生。
表一
受试物编号 NO释放量(μM)
单硝酸异山梨酯 3.31
H101 5.97
H102 -0.55
H106 2.56
H108 0.33
H109 1.49
H111 52.12
H113 45.63
H117 1.36
H118 1.74
H119 1.24
H120 1.32
H124 2.89
H130(阴性对照) -1.03
实验二、受试化合物释放HNO的实验研究
HNO在水溶液中会迅速二聚化和脱水产生一氧化二氮,在检测HNO的实验中一般采用气相色谱顶空分析法测定一氧化二氮的释放量从而间接检测化合物释放HNO的水平。
实验步骤:将各受试化合物用DMF配置成20mg/mL的母液,实验开始前,取50μL药物母液放置于20mL的顶空进样瓶中,再加入5mL的pH7.4的PBS缓冲液稀释受试化合物,所得样品在37℃的氩气条件下保温90分钟后,抽取顶部气体进行一氧化二氮的气相色谱分析,实验中采用Angeli′s Salt作为阳性化合物。
实验结果:各受试物HNO释放结果参见表二。
实验结论:由于此实验中所选取的化合物结构中含有HNO供体,这类化合物体外无法检测到NO的释放,只能通过气相色谱顶空分析法测定一氧化二氮的释放量从而间接检测化合物释放HNO的水平。从实验结果中可看出除了原型化合物H130(阴性对照)没检测到HNO的释放,其余化合物在1.5h之类均能检测到不同水平的HNO释放
实验讨论:硝酰基或亚硝酰氢(HNO)是一氧化氮(NO)的单电子还原产物,研究显示其对活体心脏能发挥正性肌力作用,可显著改善心力衰竭患者的心肌收缩功能,机制研究揭示了HNO供体可能通过氧化还原依赖性的方式调节心肌收缩。目前,对HNO供体的研究预示含有HNO供体的药物可用于治疗心力衰竭、例如急性充血性心衰、早期慢性心力衰竭,HNO供体药物还可与正性肌力药物一起给予正在接受β-拮抗剂治疗的心力衰竭患者;HNO供体药 物还可治疗或预防局部缺血/再灌注损伤,减少风险组织的组织梗塞面积,可用于器官移植手术,通过在移植受体器官再灌注之前使器官与HNO供体接触而完成。
表二
化合物 N2O的摩尔量/样品摩尔量(%)
Angeli′s Salt 62.4
H103 19.7
H104 23.6
H115 17.8
H116 15.3
H121 24.6
H122 18.3
H130(阴性对照) -0.15
实验三、受试化合物在体外的血浆稳定性实验
实验方法:将受试化合物(2μM)加入到小鼠血浆或是人血浆中,在37℃下孵育,分别于0,10,30,60,120分钟采样,加停止剂终止反应,振摇充分,在4℃,4000rpm条件下离心10分钟,取上清液,用LC-MS/MS方法测定上清液中受试化合物以及其代谢物(H130)的浓度。
实验结果:受试化合物在体外的血浆浓度变化见表三。
实验结论:由体外的实验结果可看出化合物H101在小鼠及人血浆中的稳定性较好,2h内该化合物浓度变化不大。化合物H102、H103、H104、H108和H116在人血浆中的稳定性也较好。
表三
Figure PCTCN2016098217-appb-000054
Figure PCTCN2016098217-appb-000055
Figure PCTCN2016098217-appb-000056
实验四、受试化合物的药代动力学及生物利用度研究
实验方法:制备受试化合物的静脉注射溶液(受试化合物给药浓度1mg/kg)以及口服灌胃液(受试化合物给药浓度5mg/kg),将其分别静脉注射以及口服给予3只SD大鼠,LC-MS/MS法分别测定给药后0.083h、0.25h、0.5h、1h、2h、4h、8h、24h时H130的全血血药浓度,通过药-时曲线,比较药代动力学参数。
样品预处理:精确吸取待测全血150μL,加入600μL内标溶液(甲醇稀释至0.5μg/mL)、涡旋充分,在4℃条件下,以13000r/min离心20min,取上清液3μL于进样小瓶。
色谱条件:C18反相色谱柱;流动相A:在水/乙腈(v∶v=95∶5)中加入0.025%的甲酸和1mM的乙酸铵,流动相B:在乙腈/水(v∶v=95∶5)中加入0.025%的甲酸和1mM的乙酸铵,梯度洗脱。
实验结果见表四和表五,其中表四为大鼠静脉注射各受试化合物后,H130的药代动力学参数;表五为大鼠口服原药以及各受试化合物后,H130的药代动力学参数。
实验结论:从实验结果可看出,H101、H111、H116、H118和H119给药后很快能释放出原型化合物H130。该原型化合物H130已被临床试验证实为可用于降低心脏不良事件发生率的新型药物,且安全性高。
表四
Figure PCTCN2016098217-appb-000057
表五
Figure PCTCN2016098217-appb-000058
实验五、受试化合物对ApoA-I mRNA的调节
在24孔板中用400μl的含0.5%(v/v)胎牛血清的MEM培养基培养HepG2细胞24小时,然后加入各受试化合物(100μM)、阳性对照RVX-208(100μM),再培养细胞48h,吸出培养基,200μl PBS冲洗后,将85μl细胞裂解液加入到各孔的细胞中,室温孵育5-10分钟以使细胞完全溶解和脱离,试剂盒提取细胞中的mRNA,然后采用RNA荧光(RiboGreen)定量检测试剂盒和爱普拜斯公司的ApoA-I mRNA引物-探针混合物将提取出的mRNA用于实时荧光定量PCR检测;
得到Ct值后,计算每个受试化合物相对于DMSO对照组的诱导倍数,诱导倍数用于反映受试化合物调控ApoA-I mRNA能力的强弱,当100μM的受试化合物使HepG2细胞中的ApoA-I mRNA增加15%以上,则被称为ApoA活性化合物。
各受试物对HepG2细胞ApoA-I mRNA的调节活性的实验结果参见表六。由表六可看出,所合成的受试物均能上调肝细胞中的ApoA-I mRNA。由于载脂蛋白A-I(ApoA-I)是功能性高密度脂蛋白(HDL)微粒的重要组成部分,其能有效消除动脉粥样硬化斑块,防治高血脂症,改善体内的血糖代谢;因此本发明所公开化合物可增加细胞内的ApoA-I含量说明这些化合物将对心血管疾病的防治发挥积极作用。
表六
受试物编号 上调ApoA-I mRNA水平
H101 活性
H104 活性
H106 活性
H108 活性
H109 活性
H111 活性
H116 活性
H118 活性
H119 活性
实验六、受试化合物对apoE-/-小鼠动脉粥样硬化模型的作用研究
实验方法:选取8周龄的雄性apoE-/-小鼠36只,随机分为空白给药组、H101给药组、H111给药组、H116给药组、H119给药组、H130给药组,每组6只,各组小鼠给予高脂饲料饲养10周,在高脂饲养开始时,就对各组小鼠进行给药处理,各受试化合物按150mg/kg的剂量,一天两次,灌胃给药,空白给药组给予相当剂量的生理盐水。小鼠处死前禁食12h以上,20%乌拉坦溶液麻醉小鼠,取血后,分离出血清、心脏及主动脉。利用全自动生化分析仪测定各组小鼠血清中的总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C);利用ApoA1试剂盒检测ApoA1表达水平;利用总NO测试试剂盒(碧云天)测定小鼠血清的NO含量;利用NOS测试试剂盒(碧云天)测定心脏、主动脉及血清的NOS活力,通过与加入eNOS抑制剂L-NAME(碧云天)后测定值的差值计算eNOS的含量。
实验结果见表七和表八,其中表七为高脂喂养10周后各组小鼠血脂水平,与模型组相比,*p<0.05,**p<0.01;表八为高脂喂养10周后各组小鼠体内NO及eNOS活力变化。
表七
Figure PCTCN2016098217-appb-000059
Figure PCTCN2016098217-appb-000060
表八
Figure PCTCN2016098217-appb-000061
实验结论:apoE-/-小鼠高脂饲养10周后,与空白给药组小鼠比较,各受试化合物给药后,小鼠血清中TC、LDL-C值均显著降低,HDL-C及ApoA1显著升高,心脏、血清及主动脉中的eNOS活力增加、血清中NO释放增加。
实验讨论:内皮功能障碍是动脉粥样硬化的始动环节,机体内皮功能障碍会导致不正常的血管收缩、内皮通透性增加、血小板黏附聚集以及白细胞黏附,低密度脂蛋白(LDL)转移至内膜,进而形成血栓、炎症反应、平滑肌细胞异常增殖及迁移,从而促进动脉粥样硬化的形成。由内皮型一氧化氮合酶(eNOS)合成的一氧化氮(NO)能调节血管张力、抗氧化、防止氧化型低密度脂蛋白(ox-LDL)的产生,抑制激活的内皮细胞表达黏附分子,减少炎症细胞的黏附和活化;抑制血小板黏附、聚集;有效抑制血管平滑肌细胞增殖、迁移和细胞外基质的合成,最终阻止动脉粥样硬化发生和发展。研究证实,外源性NO供体药物能通过抑制血管平滑肌细胞的增殖及细胞外基 质和胶原蛋白的产生来对动脉粥样硬化发挥防治作用,激活eNOS所产生的NO能够通过调节血管张力、脂质浸润、炎性反应、血栓形成和血管重塑等多种作用抵抗动脉粥样硬化。
本实验中各受试化合物能改善ApoE基因消除小鼠的血脂异常,说明受试化合物对动脉粥样硬化的发生和发展具有抑制作用,其作用机制可能与受试化合物促进体内ApoA1表达,增加体内eNOS活力、促进血管细胞释放NO有关。
实验七、受试化合物对C57小鼠和db/db小鼠的作用研究
实验1:受试化合物对C57小鼠的作用研究
实验方法:选用60只8周龄的C57BL/6小鼠(级别:SPF;性别:雄性;来源:上海斯莱克实验动物有限责任公司),其中选取2只作空白对照,12只作阳性药对照(单硝酸异山梨酯),12只作H101给药组,剩余32只小鼠,随机分成四组,每组8只,分别为H111给药组、H116给药组、H119给药组、H130给药组,阳性药对照组和各给药组的受试化合物溶解于DMSO,然后加入PEG400,震荡混匀,最后加入10%HP-β-CD,震荡混匀,各溶剂比例为DMSO∶PEG400∶10%HP-β-CD=5∶67.5∶27.5;给药组以150mg/kg的剂量口服灌胃给药,阳性药对照组给药剂量为5mg/kg,各组小鼠分别在给药后10min、30min、60min、120min、180min、240min,吸入过量CO2的方法处死小鼠,采集血液于1.5ml离心管中,室温放置30min以上后离心(3000rpm,10min)吸取上清血清,-80℃保存待检;血液采集后,剪取心脏至胸主动脉,其中心脏称取三份于冻存管中,液氮速冻后冻存于-80℃待检;主动脉及主动脉弓称重,液氮速冻后冻存于-80℃待检。用总NO测试试剂盒(碧云天)测定C57BL/6小鼠血清的NO含量。
实验结果见图一。
实验结论:由实验结果可看出,C57小鼠经各组受试化合物给药后,与空白对照小鼠相比,除了H130给药组,其余给药组小鼠血清中NO水平均有一定程度的提高,H111及H119化合物给药后1h后,C57小鼠血清中NO水平增加,随后NO释放量减少,阳性药及H101化合物给药后2h后,C57小鼠血清中NO释放至最大水平,随后NO释放量逐渐减少。
实验2:受试化合物对db/db小鼠的作用研究
实验方法:选用25只8周龄的db/db小鼠(品系:BKS.Cg-+Leprdb/+leprdb/JclSlac;级别:SPF;性别:雄性;来源:上海斯莱克实验动物有限责任公司),其中选取3只作空白给药对照,2只作阳性药对照(单硝酸异山梨酯),剩余20只小鼠,随机分成五组,每组4只,分别为H101给药组、H111给药组、H116给药组、H119给药组、H130给药组,阳性药对照组和各给药组的受试化合物溶解于DMSO,然后加入PEG400,震荡混匀,最后加入10%HP-β-CD,震荡混匀,各溶剂比例为DMSO∶PEG400∶10%HP-β-CD=5∶67.5∶27.5;给药组以150mg/kg的剂量口服灌胃给药,阳性药对照组给药剂量为5mg/kg,H101给药组小鼠在给药2h后处死,其余给药组小鼠在给药后1h处死,分别采集血液于1.5ml离心管中,室温放置30min以上后离心(3000rpm,10min)吸取上清血清,-80℃保存待检;血液采集后,剪取心脏至胸主动脉,其中心脏称取三份于冻存管中,液氮速冻后冻存于-80℃待检;主动脉及主动脉弓称重,液氮速冻后冻存于-80℃待检。分别用总NO测试试剂盒(碧云天)测定C57BL/6小鼠血清的NO含量;NOS测试试剂盒(碧云天)测定小鼠心脏的NOS含量,通过与加入eNOS抑制剂L-NAME(碧云天)后测定值的差值计算eNOS的含量。
实验结果:db/db小鼠给药后血清NO及心脏eNOS活力变化见表九。
实验结论:对db/db小鼠进行的实验中,受试化合物给药后,与空白对照小鼠相比,除了H130给药组,其余受试化合物给药组小鼠心脏eNOS及血清中NO均有不同程度增加。
以上实验结果说明发明人所提供的NO供体化合物进入体内可促进血管释放NO,提高eNOS活力。
表九
Figure PCTCN2016098217-appb-000062
Figure PCTCN2016098217-appb-000063
实验八、受试化合物对Balb/c小鼠的急性毒性实验
化合物:将H101、H111、H118分别溶于DMSO制成500μM药物母液,然后取适量各受试药缓慢稀释于PBS中,对照组注射PBS(含相同浓度的DMSO)。
动物:Balb/c小鼠,每组10只。
方法:腹腔注射给药,高剂量组:300mg/kg/day;低剂量组:150mg/kg/day,每天给药1次,共3天,观察14天内的动物变化。
结果:与对照组小鼠比较,给药组小鼠自给药日起14天内未见体重及行为异常,这说明上述浓度的本发明受试化合物对小鼠基本上没有毒性。

Claims (13)

  1. 通式(II)的化合物及其药学上可接受的盐或立体异构体:
    A-B (II)
    其中A为防治心血管疾病的小分子化合物残基,选自下列基团:
    Figure PCTCN2016098217-appb-100001
    其中R1为-O-;R0选自下列基团:
    Figure PCTCN2016098217-appb-100002
    B选自:
    -NO2
    Figure PCTCN2016098217-appb-100003
    Figure PCTCN2016098217-appb-100004
    Figure PCTCN2016098217-appb-100005
    Figure PCTCN2016098217-appb-100006
    -C(O)-CH2-NH-C(O)-Y0;-C(O)-CH2-NH-C(O)-Y;-C(O)-CH2-CH2-NH-C(O)-Y0;-C(O)-CH2-CH2-NH-C(O)-Y;
    其中,Y0为-R5-Y、
    Figure PCTCN2016098217-appb-100007
    Figure PCTCN2016098217-appb-100008
    Y为-T-ONO2、-T-SNO、-(CH2-CH2)r-R5-CH2-CH2-ONO2
    Figure PCTCN2016098217-appb-100009
    Figure PCTCN2016098217-appb-100010
    其中,R2为H、直链C1-4烷基或支链的C3-4烷基;R3为-CH-或氮原子;X为氟原子或氯原子;R4为C1-3烷基;R5为-O-、-S-、-NH-或是被C1-3烷基取代的氮原子;R8为C1-6烷基、C1-3烷基取代的C1-6烷基、羟基取代的C1-6烷基、氟取代的C1-6烷基、氘取代的C1-6烷基、-CH2-R10或-CH2-CH2-R10,其中R10是-OH、-O-C1-6烷基、-OCD3、-C(O)-T2、-C(O)-R5-T2、-OC(O)-T2、-R5-C(O)R5-T2、-NH2、-C6H5或是未被取代的具有1、2或3个氮原子的5或6元杂芳基环、或是具有1、2或3个氮原子的被取代的5或6元杂芳基环,其中所述被取代的5或6元杂芳基环在任何碳原子上被选自下列取代基的基团单取代或二取代:-OH、-O-C1-6烷基、-OCD3、-C(O)-T2、-C(O)-R5-T2、-OC(O)-T2、-R5-C(O)R5-T2、-NH2、-C1-6烷基、羟基取代的C1-6烷基、氟取代的C1-6烷基或是氘取代的C1-6烷基;R13为H、C1-4烷基、腈基、苄基、硝基、对硝基苯基;R14为H、
    Figure PCTCN2016098217-appb-100011
    或R8
    T为直链的C1-20亚烷基,支链的C3-20亚烷基;或是被一种或多种取代基取代的C1-20亚烷基,其中所述取代基为羟基、-ONO2或T1;或是具有4-7个碳原子的亚环烷基,所述亚环烷基任选地被一个或多个直链的C1-10烷基链或 支链的C3-10烷基链取代;U为任选氢离子被-ONO2基团取代的直链C1-20亚烷基或支链C3-20亚烷基;
    T1为未取代或取代的C1-8直链烷基,未取代或取代的C3-10支链烷基,未取代或取代的C2-10直链烯基,未取代或取代的C3-10支链烯基,未取代或取代的苄基,未取代或取代的苯基,未取代或取代的芳基取代的C1-4烷基,未取代或取代的杂芳基,-OC(O)-(C1-6烷基)-ONO2或-O-(C1-6烷基)-ONO2;T2为未取代或取代的C1-8直链烷基、未取代或取代的C3-10支链烷基、未取代或取代的C2-10直链烯基、未取代或取代的C3-10支链烯基、未取代或取代的苄基、未取代或取代的苯基、未取代或取代的芳基取代的C1-4烷基、未取代或取代的杂芳基;
    Y1为直链的C1-20亚烷基,支链的C3-20亚烷基,直链的C2-20亚烯基,支链的C3-20亚烯基;或是被一种或多种取代基取代的C1-20亚烷基,或是被一种或多种取代基取代的C2-20亚烯基,其中所述取代基为T2;或是具有4-7个碳原子的亚环烷基,所述环任选地被一个或多个直链的C1-10烷基链或支链的C3-10烷基链取代;尤其是选自以下基团:
    -(CH2)r-、-(CH2)n-Z-(CH2)r-、-CH2-CH(CH3)-(CH2)r-、-CH2-CH(CH3)-(CH2)r-Z-CH2-、-CH2-CH(CH3)-CH2-Z-(CH2)r-、-CH2CH=CHCH2-、-CH2CH=CHCH2-Z-(CH2)r-、
    Figure PCTCN2016098217-appb-100012
    其中Z为R5
    Figure PCTCN2016098217-appb-100013
    A为O、N、S、C;
    Y2为C1-8烷基、苯基、苯磺酰基、腈基、三氟甲基、C1-8烷氧基或者为C1-8烷基硝酸酯基;Y4为氢、卤素、三氟甲基、C1-8烷氧基、C1-8烷基、硝基、磺酰胺基、氨基或腈基;Y11
    Figure PCTCN2016098217-appb-100014
    Figure PCTCN2016098217-appb-100015
    n为0-4的整数;m是0-3的整数;r为1-6的整数。
  2. 根据权利要求1所述的化合物,其特征在于:A为
    Figure PCTCN2016098217-appb-100016
    B选自:
    -NO2
    Figure PCTCN2016098217-appb-100017
    Figure PCTCN2016098217-appb-100018
    Figure PCTCN2016098217-appb-100019
    -C(O)-CH2-NH-C(O)-Y0;-C(O)-CH2-NH-C(O)-Y;-C(O)-CH2-CH2-NH-C(O)-Y0;-C(O)-CH2-CH2-NH-C(O)-Y;
    R0
    Figure PCTCN2016098217-appb-100020
    R1为氧原子;R3为-CH-;R5为-O-;R8是C1-3烷基;
    T为-C1-8亚烷基,或是具有4-6个碳原子的亚环烷基,所述亚环烷基任选地被一个或多个直链的C1-10烷基链或支链的C3-10烷基链取代;被一种或多种取代基取代的C1-10亚烷基,其中所述取代基为羟基、-ONO2或T1
    T1为C1-3烷基、苄基、苯基、-OC(O)-(C1-6烷基)-ONO2或-O-(C1-6烷基)-ONO2
    T2为C1-6直链烷基、C3-6支链烷基、苄基、苯基;
    U为氢原子任选被-ONO2基团取代的直链C1-8亚烷基或支链C3-8亚烷基;
    Y1为直链的C1-5亚烷基,直链的C2-6亚烯基,或是被T2取代基取代的C1-5亚烷基;
    Y2为C1-6烷基、苯基、苯磺酰基、腈基、三氟甲基、C1-4烷氧基或者为C1-4烷基硝酸酯基;
    Y4为氢、三氟甲基、C1-6烷氧基、C1-6烷基或腈基;r为1-2的整数。
  3. 根据权利要求2所述的化合物,其特征在于:B选自
    -NO2
    Figure PCTCN2016098217-appb-100021
    Figure PCTCN2016098217-appb-100022
    -C(O)-CH2-NH-C(O)-Y0;-C(O)-CH2-NH-C(O)-Y;-C(O)-CH2-CH2-NH-C(O)-Y0;-C(O)-CH2-CH2-NH-C(O)-Y;
    Y0为-R5-Y、
    Figure PCTCN2016098217-appb-100023
    Figure PCTCN2016098217-appb-100024
    Y为-T-ONO2
    Figure PCTCN2016098217-appb-100025
    T为C1-5亚烷基;
    T2为C1-6直链烷基、C3-6支链烷基、苯基;
    Y1为直链的C1-5亚烷基,或是被T2取代基取代的C1-5亚烷基;
    Y2为C1-6烷基、苯基、苯磺酰基、腈基、三氟甲基、C1-4烷氧基或者为C1-4烷基硝酸酯基;Y4为氢。
  4. 根据权利要求3所述的化合物,其特征在于:Y0为-R5-Y、
    Figure PCTCN2016098217-appb-100027
    Figure PCTCN2016098217-appb-100028
    Y为-T-ONO2
    Figure PCTCN2016098217-appb-100029
    Figure PCTCN2016098217-appb-100030
    T为C1-4亚烷基;
    T2为C1-4直链烷基;
    Y1为直链的C1-5亚烷基,或是被T2取代基取代的C1-5亚烷基;
    Y2为C1-6烷基、苯基、苯磺酰基、或者为C1-4烷基硝酸酯基。
  5. 根据权利要求3所述的化合物,其特征在于:B选自
    Figure PCTCN2016098217-appb-100031
    -C(O)-CH2-NH-C(O)-Y0;-C(O)-CH2-CH2-NH-C(O)-Y0
    Y0选自-O-NH-SO2-Y11
  6. 根据权利要求1所述的化合物,其特征在于,所述化合物为:
    2-(4-(2-硝氧基-乙氧基)-3,5-二甲基苯基)-5,7-二甲氧基喹唑啉-4(3H)-酮;
    3-硝氧甲基-苯甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    N-((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢喹唑啉-2-基)-2,6-二甲基苯氧基)乙氧基)羰基氧基)-5-甲基噻吩-2-磺酰胺;
    N-((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢喹唑啉-2-基)-2,6-二甲基苯氧基)乙氧基)羰基氧基)-5-甲基呋喃-2-磺酰胺;
    3-(3-硝氧基-丙酰基)-苯甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    琥珀酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯3-(硝氧基)-2,2-二((硝氧基)甲基)丙酯;
    3-(2,3-二硝基氧-丙氧基)-苯甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    4,5-二硝基氧基-戊酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    (4-硝氧基-丁酰胺基)-乙酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    2-氨基-3-(4-{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基羰基氧基}-苯基)-丙酸2-硝氧基-乙酯的盐酸盐;
    4-(2-氧代-3-硝氧基甲基-1,2,5-
    Figure PCTCN2016098217-appb-100032
    二唑-3-甲基)氧基-4-氧代-丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    3-(6-硝氧基-己酰胺基)-丙酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    2-羟基琥珀酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯(2-氧代-4-苯基-呋咱-3-基)-甲酯;
    4-(2-(((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基)乙氧基)羰基)氧基)乙氧基)-3-(苯磺酰基)-2-氧代-呋咱;
    (E)-4-((呋喃-2-磺酰氨基)氧基)-4-氧代-2-丁烯酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    4-(((3-(甲磺酰基))苯基)磺酰胺基)氧基)-4-氧代丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    4-[4-(2-(硝氧基)乙基)-哌嗪-1基]-4-氧代-丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    2-氨基-琥珀酸1-(2,3-二硝氧基-丙基)酯4-{2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙基}酯的盐酸盐;
    (6-硝氧基-六氢化呋喃并[3,2-b]呋喃-3-基)-碳酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    (6-硝氧基-六氢化呋喃并[3,2-b]呋喃-3-基)-氨甲酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    4-(((5-氯代噻吩)-2-磺酰氨基)氧基)-4-氧代丁酸2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙酯;
    2-(N-(((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基)羰基)氧基)氨磺酰基)-1-甲基-1H-吡啶1-2-鎓盐;
    2-乙酰氨基-3-(4-(((2-(4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]-乙氧基)羰基)氧基)苯基)丙酸3,4-(二硝氧基)丁基酯;
    4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁基)-4-氧代-2-乙酰氨基-丁酸3-(硝氧基)-2,2-二(硝氧基甲基)丙酯;
    4-(2-[4-(5,7-二甲氧基-4-氧代-3,4-二氢-喹唑啉-2-基)-2,6-二甲基-苯氧基]丁氧基)-4-氧代-2-(2-(硝氧基)乙酰氨基)-丁酸2-硝氧基乙酯。
  7. 一种药物组合物,其特征在于,包括治疗有效量的权利要求1-6任一项所述的化合物及其药学上可接受的盐或立体异构体,以及任选一种或多种医药上可接受的载剂和/或稀释剂。
  8. 根据权利要求1-6任一项所述的化合物及其药学上可接受的盐或立体异构体或者根据权利要求7所述的药物组合物在制备用于预防和/或治疗心脑血管疾病、代谢性疾病及神经退行性疾病的药物中的用途。
  9. 根据权利要求8所述的用途,其特征在于,所述心脑血管疾病包括动脉粥样硬化、脑动脉粥样硬化、脑梗死、高血脂、缺血性心肌损伤、中风、冠心病、心脏肥厚、心衰、心脏梗塞、糖尿病性心肌病、心绞痛、高血压、原发性和继发性肺性高血压、肾血管性高血压、高血压性视网膜病变或视网膜血管病变。
  10. 根据权利要求8所述的用途,其特征在于,所述代谢性疾病包括2型糖尿病、糖尿病性脂血异常、糖尿病黄斑水肿、糖尿病视网膜病变、糖尿病肾病、糖尿病神经病变、食欲调节及肥胖。
  11. 根据权利要求8所述的用途,其特征在于,所述神经退行性疾病包括阿兹海默症、帕金森或多发性硬化。
  12. 一种用于预防和/或治疗心脑血管疾病、代谢性疾病、神经退行性疾病的方法,所述方法包括对有需要的对象施用治疗有效量的根据权利要求1-6任一项所述的化合物及其药学上可接受的盐或立体异构体或者根据权利要求5所述的药物组合物。
  13. 根据权利要求1-6任一项所述的化合物及其药学上可接受的盐或立体异构体或者根据权利要求7所述的药物组合物用于预防和/或治疗心脑血管疾病、代谢性疾病、神经退行性疾病。
PCT/CN2016/098217 2015-09-07 2016-09-06 可释放一氧化氮的前药分子 WO2017041701A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16843639.2A EP3348548A4 (en) 2015-09-07 2016-09-06 DRUG MOLECULE RELEASING NITRIC OXIDE
CN201680050180.1A CN108349911B (zh) 2015-09-07 2016-09-06 可释放一氧化氮的前药分子
US15/756,476 US10456405B2 (en) 2015-09-07 2016-09-06 Nitric oxide-releasing prodrug molecule of substituted quinazolines
JP2018530955A JP2018526448A (ja) 2015-09-07 2016-09-06 一酸化窒素を放出可能なプロドラッグ分子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510563200.2 2015-09-07
CN201510563200 2015-09-07

Publications (1)

Publication Number Publication Date
WO2017041701A1 true WO2017041701A1 (zh) 2017-03-16

Family

ID=58240146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098217 WO2017041701A1 (zh) 2015-09-07 2016-09-06 可释放一氧化氮的前药分子

Country Status (5)

Country Link
US (1) US10456405B2 (zh)
EP (1) EP3348548A4 (zh)
JP (1) JP2018526448A (zh)
CN (1) CN108349911B (zh)
WO (1) WO2017041701A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108069954A (zh) * 2017-03-03 2018-05-25 上海华汇拓医药科技有限公司 含no供体的喹唑啉酮化合物
WO2020009138A1 (ja) 2018-07-04 2020-01-09 日産化学株式会社 電荷輸送性組成物
CN113166067A (zh) * 2018-09-28 2021-07-23 加利福尼亚大学董事会 用于治疗胃肠疾病的化合物和方法
WO2022258035A1 (zh) * 2021-06-11 2022-12-15 复旦大学 一种胆碱碳酸酯类前药及其制备方法和应用
CN115710202A (zh) * 2021-08-23 2023-02-24 江西同和药业股份有限公司 一种阿帕他酮关键中间体的制备方法及其应用
WO2023109731A1 (zh) * 2021-12-17 2023-06-22 浙江华海药业股份有限公司 联苯四氮唑类化合物及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108349911B (zh) * 2015-09-07 2022-05-13 浙江华海药业股份有限公司 可释放一氧化氮的前药分子
EP3960730A4 (en) * 2019-04-26 2023-02-08 Nissan Chemical Corporation PROCESS FOR PREPARING AN ARYLSULPHONIC ACID ESTER COMPOUND

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005032559A1 (en) * 2003-10-07 2005-04-14 Resverlogix Corp. Nitric oxide donating derivatives for the treatment of cardiovascular disorders
CN101641339A (zh) * 2007-02-01 2010-02-03 雷斯韦洛吉克斯公司 用于预防和治疗心血管疾病的化合物
CN102458405A (zh) * 2009-04-22 2012-05-16 雷斯韦洛吉克斯公司 新抗炎剂

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7115661B1 (en) 1999-12-29 2006-10-03 Queen's University At Kingston Methods and compositions for mitigating pain
EP0984012A3 (en) 1998-08-31 2001-01-10 Pfizer Products Inc. Nitric oxide releasing oxindole prodrugs with analgesic and anti-inflammatory properties
EP1336602A1 (en) 2002-02-13 2003-08-20 Giovanni Scaramuzzino Nitrate prodrugs able to release nitric oxide in a controlled and selective way and their use for prevention and treatment of inflammatory, ischemic and proliferative diseases
US7166638B2 (en) 2003-05-27 2007-01-23 Nicox S.A. Statin derivatives
KR20060056352A (ko) 2003-07-31 2006-05-24 니콕스 에스. 에이. 안지오텐신ⅱ 수용체 차단제 유도체들
AU2004270162B2 (en) 2003-08-28 2010-05-13 Nicox S.A. Nitrosated ad nitrosylated diuretic compouds, compositions and methods of use
CN1893957A (zh) * 2003-10-07 2007-01-10 雷斯弗洛吉克斯公司 治疗心血管疾病的供氧化氮衍生物
JP5198063B2 (ja) 2004-08-26 2013-05-15 アッパラオ・サティアム 新規バイオ開裂性リンカー
WO2006045096A2 (en) 2004-10-20 2006-04-27 Resverlogix Corp. Flavanoids and isoflavanoids for the prevention and treatment of cardiovascular diseases
EP1846380A4 (en) 2005-01-21 2010-02-17 Nicox Sa HETEROCYCLIC NITROGEN MONOXIDE DONOR COMPOSITIONS CONTAINING CARDIOVASCULAR COMPOUNDS, AND METHODS OF USING THE SAME
ES2532402T3 (es) 2008-06-26 2015-03-26 Resverlogix Corporation Métodos de preparación de derivados de quinazolinona
CN101768145A (zh) 2008-12-31 2010-07-07 中南大学 一氧化氮供体型白杨素衍生物、制备方法及医药用途
CN102753520B (zh) 2009-12-07 2016-06-08 约翰斯霍普金斯大学 N-酰氧基磺酰胺和n-羟基-n-酰基磺酰胺衍生物
RS59434B1 (sr) 2013-01-18 2019-11-29 Cardioxyl Pharmaceuticals Inc Donori nitroksila sa poboljšanim terapijskim indeksom
ES2734060T3 (es) 2014-01-17 2019-12-04 Cardioxyl Pharmaceuticals Inc Donadores de nitroxilo de N-hidroximetanosulfonamida
US9605108B2 (en) 2014-04-24 2017-03-28 New Jersey Institute Of Technology Isosorbide-derived epoxy resins and methods of making same
CN108349911B (zh) * 2015-09-07 2022-05-13 浙江华海药业股份有限公司 可释放一氧化氮的前药分子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005032559A1 (en) * 2003-10-07 2005-04-14 Resverlogix Corp. Nitric oxide donating derivatives for the treatment of cardiovascular disorders
CN101641339A (zh) * 2007-02-01 2010-02-03 雷斯韦洛吉克斯公司 用于预防和治疗心血管疾病的化合物
CN102458405A (zh) * 2009-04-22 2012-05-16 雷斯韦洛吉克斯公司 新抗炎剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3348548A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108069954A (zh) * 2017-03-03 2018-05-25 上海华汇拓医药科技有限公司 含no供体的喹唑啉酮化合物
CN108069954B (zh) * 2017-03-03 2018-11-23 上海华汇拓医药科技有限公司 含no供体的喹唑啉酮化合物
WO2020009138A1 (ja) 2018-07-04 2020-01-09 日産化学株式会社 電荷輸送性組成物
KR20210030382A (ko) 2018-07-04 2021-03-17 닛산 가가쿠 가부시키가이샤 전하수송성 조성물
CN113166067A (zh) * 2018-09-28 2021-07-23 加利福尼亚大学董事会 用于治疗胃肠疾病的化合物和方法
WO2022258035A1 (zh) * 2021-06-11 2022-12-15 复旦大学 一种胆碱碳酸酯类前药及其制备方法和应用
CN115710202A (zh) * 2021-08-23 2023-02-24 江西同和药业股份有限公司 一种阿帕他酮关键中间体的制备方法及其应用
CN115710202B (zh) * 2021-08-23 2024-05-03 江西同和药业股份有限公司 一种阿帕他酮关键中间体的制备方法及其应用
WO2023109731A1 (zh) * 2021-12-17 2023-06-22 浙江华海药业股份有限公司 联苯四氮唑类化合物及其制备方法

Also Published As

Publication number Publication date
CN108349911B (zh) 2022-05-13
CN108349911A (zh) 2018-07-31
US20180250305A1 (en) 2018-09-06
US10456405B2 (en) 2019-10-29
EP3348548A1 (en) 2018-07-18
JP2018526448A (ja) 2018-09-13
EP3348548A4 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
WO2017041701A1 (zh) 可释放一氧化氮的前药分子
JP6830671B6 (ja) γ−ヒドロキシ酪酸(GHB)のプロドラッグ、その組成物および使用
KR101982370B1 (ko) N-포밀 펩타이드 수용체 유사-1(fprl-1) 수용체 조절제로서의 아릴 유레아 유도체
JP2002513397A (ja) エンドセリン拮抗薬:n−〔〔2’−〔〔(4,5−ジメチル−3−イソキサゾリル)アミノ〕スルホニル〕−4−(2−オキサゾリル)〔1,1’−ビフェニル〕−2−イル〕メチル〕−n,3,3−トリメチルブタンアミドおよびn−(4,5−ジメチル−3−イソキサゾリル)−2’−〔(3,3−ジメチル−2−オキソ−1−ピロリジニル)メチル〕−4’−(2−オキサゾリル)〔1,1’−ビフェニル〕−2−スルホンアミドおよびそれらの塩
CZ301631B6 (cs) Ortho- a meta-substituované bisarylové slouceniny a farmaceutické prostredky, které je obsahují
CN105392785B (zh) 1,3‑二取代的环戊烷衍生物
TW200817311A (en) New CXCR2 inhibitors
EA027451B1 (ru) Ингибиторы кинуренин-3-монооксигеназы, фармацевтические композиции и их применение
WO2010041748A1 (ja) フルオレン化合物及びその医薬用途
JPWO2008123207A1 (ja) オルニチン誘導体
WO2000015603A1 (fr) Derives de benzene et leur utilisation medicale
EP4073070A1 (en) Compounds for modulating activity of fxr and uses thereof
JPH10182583A (ja) 新規ヒドロキサム酸誘導体
JP2020516697A (ja) 核受容体の効能剤であるイソオキサゾール誘導体及びその用途
CN108349880B (zh) 用于治疗心脏疾病的cyp类花生酸代谢稳健类似物
US20200131212A1 (en) Compound for treating metabolic diseases and preparation method and use thereof
JP2005507381A (ja) 心臓障害および代謝障害の治療のための主要環置換甲状腺受容体アンタゴニスト
CN108473449B (zh) 一种作为吲哚胺-2,3-双加氧酶抑制剂的砜脒及其制备方法和用途
EA030709B1 (ru) Производное фенантролинфосфоновой кислоты и способ его получения и применения
EP4206193A1 (en) Novel biaryl derivative useful as diacylglycerol acyltransferase 2 inhibitor, and use thereof
JP2022542613A (ja) ヒトatglの阻害剤
JPH0662547B2 (ja) グリシン誘導体
TW202031674A (zh) 一類新型二肽類化合物及用途
CN113166024A (zh) 芳族化合物及其医药用途
KR102437095B1 (ko) 캐스파제 저해제의 프로드럭

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15756476

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2018530955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016843639

Country of ref document: EP