WO2017041197A1 - 多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机 - Google Patents

多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机 Download PDF

Info

Publication number
WO2017041197A1
WO2017041197A1 PCT/CN2015/000635 CN2015000635W WO2017041197A1 WO 2017041197 A1 WO2017041197 A1 WO 2017041197A1 CN 2015000635 W CN2015000635 W CN 2015000635W WO 2017041197 A1 WO2017041197 A1 WO 2017041197A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
wheel
indicated
compressor
turbine
Prior art date
Application number
PCT/CN2015/000635
Other languages
English (en)
French (fr)
Inventor
苏犁
Original Assignee
苏犁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏犁 filed Critical 苏犁
Priority to CN201580039714.6A priority Critical patent/CN107208552B/zh
Priority to PCT/CN2015/000635 priority patent/WO2017041197A1/zh
Publication of WO2017041197A1 publication Critical patent/WO2017041197A1/zh
Priority to US15/849,640 priority patent/US10634047B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/06Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages
    • F02C3/067Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor the compressor comprising only axial stages having counter-rotating rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/18Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means
    • F01D1/20Non-positive-displacement machines or engines, e.g. steam turbines without stationary working-fluid guiding means traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D1/00Non-positive-displacement machines or engines, e.g. steam turbines
    • F01D1/24Non-positive-displacement machines or engines, e.g. steam turbines characterised by counter-rotating rotors subjected to same working fluid stream without intermediate stator blades or the like
    • F01D1/26Non-positive-displacement machines or engines, e.g. steam turbines characterised by counter-rotating rotors subjected to same working fluid stream without intermediate stator blades or the like traversed by the working-fluid substantially axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/26Starting; Ignition
    • F02C7/268Starting drives for the rotor, acting directly on the rotor of the gas turbine to be started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/002Axial flow fans
    • F04D19/005Axial flow fans reversible fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/024Units comprising pumps and their driving means the driving means being assisted by a power recovery turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/05Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
    • F04D29/056Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/325Rotors specially for elastic fluids for axial flow pumps for axial flow fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • F05D2260/31Retaining bolts or nuts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a design and improvement of the mechanical field for the structure and construction of its compressor and turbine fan for the purpose of improving the efficiency of the turbojet engine (core machine). Therefore, a multi-sleeve transmission bidirectional rotary wheel fan turbine and a sleeved fan type compressor are designed.
  • the compressor and the turbine of the existing turbojet engine work in such a manner that the multi-stage fan rotation of the compressor compresses the air to a temperature of ten to twenty times and is sent to the combustion chamber and mixed with the fuel, and mixed. After the gas is ignited in the combustion chamber, the explosion ejects to the tail of the engine and drives the multi-stage fan of the turbine to rotate.
  • the multi-stage fan of the turbine passes the single or multiple transmission shafts (two-axis or three-axis) to the multi-stage fan of the compressor. Power is provided to operate the turbojet engine.
  • the current turbojet engines have the following outstanding problems: 1) Fan problem: the fan blade is connected to a single-axis or multi-axis by a cantilever force structure, and the blade is easily generated under the action of wind pressure. Deformation, coupled with the influence of the thermal expansion of the fan blade, there is a certain gap between the fan working stage (axial) and between the fan fan tip and the intrinsic channel (radial) to ensure that the blades do not interact with each other during operation. Friction and collision will occur, but these gaps also cause the escape of compressed gas, which makes the compressor work inefficient.
  • the single (or two-axis or three-axis) drive shaft of the compressor drives the multi-stage fan to rotate.
  • the primary fan is blocked due to the intake air, its speed stalls, which drives the final stage fan stall of the drive shaft, causing the engine to work. Abnormal or even stop working.
  • a multi-sleeve transmission bidirectional rotary wheel fan turbine and a sleeved fan-type compressor are designed, which consists of four parts: work, transmission, structure and installation and start-up.
  • the fan of the compressor and the turbine is designed as a fan-shaped fan composed of inner and outer cones and connected by blades between them - called For the fan.
  • the wheel fan can be divided into a turbine wheel fan and a compressor wheel fan.
  • the compressor wheel fan is composed of a main wheel fan (indicated by numbers 11, 12, 13, 14, 15, 16, 17, 18, 19 in Fig. 1) and a secondary wheel fan (not shown in the main wheel). As shown in Fig. 1, it is represented by numbers 22, 23, 24, 25, 26, 27, 28, and 29).
  • the outer cone of the wheel - called the rim (indicated by Xa, as indicated by 15a in Figure 2), is provided with a circular (ball) slide on each side of the outer rim of the rim. It is a ball and a slide (indicated by Xd, as shown in Figure 2, denoted by 15d); the inner cone of the wheel - called the hub (indicated by Xc, as indicated by 15c in Figure 2), is compressed There is a keyway on the inner hub of the wheel of the machine fan - called the compressor wheel drive keyway ring (indicated by Xe, as indicated by 15e in Fig. 2), and the sub-wheel fan hub of the compressor is embedded in it.
  • a wide slot keyway is arranged in the inner hub of the compressor sub-fan fan, so that the sub-fan of the compressor surrounds the hub of the main wheel fan and swings freely within a certain angle.
  • the oscillating keyway ring of the compressor sub-fan (indicated by Xf, as indicated by 25f in Fig. 2), a keyway is provided in the hub of the turbine wheel, which is called a turbine wheel drive keyway ring.
  • the first wheel of the compressor (as indicated by the number 11 in Figure 1) is bare outside the front half (as indicated by point B in Figure 1) Bit), and the first wheel of the compressor is pressed together with the first support plate (as indicated by the numeral 50 in Fig. 1) and connected by a bolt to the first wheel of the compressor.
  • the component is called - the top pressure ring and the connecting piece (as indicated by the number 10 in Figure 1); the fan at the end of the compressor (as indicated by the number 19 in Figure 1) is provided with a gear ring on the outside of its rim - - Called the start gear ring (shown as 19h in Figure 1), with a ratchet on the inside of its hub - called the rolling ratchet (as shown in Figure 3, A 3 -A 3, indicated by 19k)
  • the rim of the wheel coincides with the center of the hub, and the two are connected by a blade - called a fan (indicated by Xb, as indicated by 15b in Fig.
  • the fan spoke is a hollow fan blade and a connecting portion of the rim and the hub, and an air passage is formed through the opening.
  • the working part of the present invention - the beneficial effect of the wheel fan compared with the prior art is: firstly, the structure of the wheel fan improves the fixing manner of the blade, and the cantilever force fixed by the current fan blade and the transmission shaft is fixed by one side.
  • the structural form is changed into a fixed connection structure between the blade and the rim and the hub.
  • the bending moment of the blade can be increased by about 8 times, and the deformation of the blade is greatly reduced, which can reduce the thickness of the blade and reduce the structure of the root.
  • the weight can reduce the working resistance of the fan, and can also reduce the axial gap between the fans to reduce air leakage (while a small amount of air can form a gas film, reduce the friction between the fans), rims, hubs and fans There is no fan fan tip leakage problem for the whole body.
  • the fan spoke is both the working part and the support or connecting piece of the rim and the hub, so that the radial air is not leaking, the axial penetration is unobstructed, and the fan working efficiency is further improved; secondly, the gas is compressed.
  • the first wheel of the machine (as in Figure 1, the number 11 wheel fan) has its front half bare (as indicated by point B in Figure 1) for the convenience of setting the outer fan or air conditioner on the front.
  • the outermost wheel of the machine (such as the number 19 wheel fan in Figure 1) has a start gear ring on the outside of the rim to facilitate the engine start; and fourth, the fan spoke is made into an S shape (as in Figure 2, A 1 - As shown by A 1 or A 2 -A 2 )
  • the fan spoke is heated, since the rim and the hub have a hoop restraint on the fan, the amount of thermal expansion can be transferred to the S-bend deformation, thereby reducing the deformation of the rim and the hub.
  • the fan of the turbine wheel fan is designed to be a hollow fan blade and form an air circulation passage. When the engine is running, the cold air flowing inside can take away the heat of the fan fan. The turbine wheel can be subjected to higher temperatures, thereby increasing the compression ratio of the compressor and creating conditions for improving the working efficiency of the engine.
  • a turbine wheel fan drives a corresponding compressor wheel to rotate
  • a transmission component is arranged between the two - the transmission bushing (as shown in Figure 2, number 45 turbine wheel and No. 15 compressor main wheel fan and No. 25 compressor sub-fan fan corresponding, with the number 35 drive bushing connected between them)
  • multiple drive bushings can be put together around an axis (as shown in Figure 1 , indicated by the numbers 31, 32, 33, 34, 35, 36, 37, 38, 39) leaving a gap between each other and a plurality of through holes in the wall of each drive bushing (as shown in Figure 1) .
  • a ring key that can be inserted into the hub of the compressor main fan at one end (small head) of the transmission bushing is called a compressor wheel drive keyway ring (indicated by Xe, as indicated by 15e in Fig. 2)
  • a ring key that can be inserted into the hub of the turbine wheel is called a turbine wheel drive keyway ring (indicated by Xg, as indicated by 15g in Figure 2);
  • the part of the drive bushing that is mounted on the deflector is called the guide cone (as shown in Figure 1, numbered 30); the outermost drive bushing (shown in Figure 1 by the number 39) and
  • One end of the compressor wheel is connected with a smooth surface instead of its compressor wheel drive keyway ring, with the rolling ratchet of the fan at the end of the compressor (as shown in Figure 3, A 3 -A 3 , to 19k) Indicates) driving the compressor wheel.
  • the transmission component of the present invention has the beneficial effects compared with the prior art: first, there is a gap between the transmission bushings, and each of the transmission bushings does not affect each other, and a plurality of pipes are disposed on the pipe wall.
  • the through hole and the guide cone are installed in the central drive bushing to play the role of air conduction and heat dissipation.
  • Second, the drive bushing is respectively suspended above the hub of the fan corresponding to the compressor and the turbine, and the engine is axially penetrated without fixing. Supports the components of the drive bushing to increase the efficiency of the turbine wheel and compressor fan.
  • a plurality of balls support the wheel fan to rotate in the disc-shaped member, the disc-shaped member is called - Support plate.
  • the support disc can be divided into support discs of the turbine wheel (as shown in Figure 1, numbered 69, 68, 67, 66, 65, 64, 63, 62, 61, 60) and the support disc of the compressor wheel (eg In Fig. 1, denoted by reference numerals 50, 51, 52, 53, 54, 55, 56, 57, 58, 59).
  • the (ball) slide is provided on one side or both sides of the inner circumference of the support disc and is corresponding to the balls and slides at both ends of the outer side of the rim of the wheel, which are called balls and slides (indicated by Xd, as shown in FIG. 3) Medium, denoted by 54d); a plurality of through-holes are provided on the inner disk of the support disk, which is called a fixed hole (represented by Xn, indicated by 54n in Fig. 3), which is adjacent to the fixed hole
  • the bolts with the support discs fixed together are called - fixed bolts (as indicated by the number 71 in Figures 1 and 3); a plurality of through-hole holes are arranged on the outer disc of the support disc.
  • Starting component - starting motor, starting gear set The motor that powers the engine start is called the starter motor (as shown in Figure 1, numbered 81); the power that transmits the starter motor to the fan at the end of the compressor
  • the component of the start gear ring (shown as 19h in Figure 1) is referred to as the start gear set (as indicated by reference numeral 82 in Figure 1).
  • Fig. 1 Schematic diagram of the overall structure of a multi-sleeve transmission bidirectional rotary wheel fan turbine and an inlaid wheel fan compressor according to the present invention.
  • Fig. 2 is a schematic view showing the working and transmission components of the multi-sleeve transmission bidirectional rotary wheel fan turbine and the inlaid wheel fan compressor of the present invention.
  • Fig. 3 is a structural schematic view showing the structure and mounting components of the multi-sleeve transmission bidirectional rotary wheel fan turbine and the inlaid wheel fan compressor of the present invention.
  • Fig. 4 is a schematic view showing the structure of the rolling ratchet of the multi-sleeve transmission bidirectional rotary wheel fan turbine and the endmost fan of the inlaid wheel fan compressor (such as the number 19 wheel fan in Fig. 1).
  • Fig. 5 is a schematic view showing the fan-spoke of the main and auxiliary wheel fans of the multi-sleeve transmission bidirectional rotary wheel fan turbine and the inlaid wheel fan compressor of the present invention.
  • Figure 6 Schematic diagram of the overlap of the fan blades of the compressor main and auxiliary wheel fans of the multi-sleeve transmission bidirectional rotary wheel fan turbine and the inlaid wheel fan compressor according to the present invention.
  • No. 10 is called - the first wheel fan of the compressor (No. 11) top pressure ring and connecting piece; number 11, 12, 13, 14, 15, 16, 17, 18, 19 is called - the main wheel fan of the compressor; number 22, 23, 24, 25, 26, 27, 28, 29 is called - the secondary wheel fan set on the main wheel; the number 30 is called - the flow cone; number 31, 32, 33, 34, 35, 36, 37, 38 39 is called the transmission bushing; number 49, 48, 47, 46, 45, 44, 43, 42, 41 is called - turbine wheel; number 50, 51, 52, 53, 54, 55, 56 57, 58, 59 are called - support discs for compressor wheel fans; numbers 69, 68, 67, 66, 65, 64, 63, 62, 61, 60 are called - support discs for turbine wheels; 70 is called - middle section machine; number 71 is called - fixed bolt; number 72 is called - assembly bolt pair; number 73 is called - annular combustion chamber;
  • Xy indicates that X- represents a part number
  • y- represents a functional part of the part.
  • the existing turbojet engine (core machine) is improved in terms of work and transmission mode, structural configuration form, working cooling mode, and starting mode, and in order to make the above features and features of the present invention
  • the advantages can be more obvious and easy to understand.
  • the following is a detailed description of the following with the accompanying drawings.
  • a turbine wheel fan drives a corresponding compressor wheel fan rotation through a transmission bushing
  • the working speed and the steering are the same and opposite to the rotation direction of the corresponding vortex corresponding to the fan, and the rotational speed (absolute value) of each wheel can be different; except for the first fan of the compressor (such as the number 11 fan in Figure 1) And the last wheel of the turbine (numbered 41 wheel in Figure 1), each pair of oppositely directed and adjacent compressor wheels or turbine wheels form a working stage; the secondary wheel of the compressor is sheathed Above the main wheel fan, under the action of its swing keyway ring (shown by Xe, as shown in Fig.
  • 25e represents the swing keyway ring of the No. 25 secondary wheel fan
  • the two fan blades can be expanded to form a wide-chord fan (in Fig. 5, E 1 - E 1 is shown); it can also be turned into two narrow-string fans after being hidden behind the fan of the main wheel (in Fig. 6, F 1 -F 1 ).
  • the two wheel fans of each stage of the compressor and the turbine are bidirectionally rotated (ie, mutually positive and negative) than the compressor of the current existing engine.
  • the relative speed of each stage of the fan (one rotor fan and one stator fan) is more than doubled, which improves the efficiency of the compressor and reduces the number of stages of the turbine wheel and the compressor wheel.
  • the two-way rotation The positive and negative torques formed by the wheel fan cancel each other out, and the influence on the external skeletal structure is small, which is beneficial to the structural reinforcement and weight reduction.
  • the wheel fan drives the rotation of a compressor wheel through a drive bushing
  • the wheel fan The speed of the motor can be increased with the increase of the working level.
  • the main compressor wheel driven fan sub fan wheel composed of two wide-chord fan spoke expand radiation fan (Fig. 5, E shown in FIG. 1 -E 1) to the annular combustion chamber gas pressure
  • FIG. 6, F 1 -F 1 Suo Show part of the air directly into the annular combustion chamber to reduce the resistance of the aircraft at high speed.
  • the multi-sleeve transmission bidirectional rotary wheel fan turbine and the inlaid wheel fan compressor are structured in the form of an outer casing and an intermediate section of the annular combustion chamber to form a middle double cylinder structure, a support plate and a fixed plate.
  • the bolts and the assembly bolt pairs together form a circular funnel-shaped outer frame of the compressor or the turbine (as shown in FIG. 3 or FIG.
  • a plurality of sets of balls support all of the wheel fans can surround Rotating on the same axis (either forward or reverse), the rim of the wheel supports or pulls the fan, the fan supports or pulls the hub, and the drive bushing passes through the hollow area of the annular combustion chamber and is inserted into the compressor and The hub of the corresponding fan of the turbine is suspended by the hub, and then the compressor and the turbine are separated by the assembly bolts at the left and right ends to form an integral part of the engine (as shown in FIG. 1).
  • the overall frame of the engine is composed of a middle double-tube structure and a two-frame outer frame structure, so that the overall structure is rigid, light in weight, and the structure is transparent. It is convenient for external ventilation and heat dissipation of the engine;
  • the transmission bushing only transmits torque and bears a small amount of self-weight bending moment, which can be made into a thin-walled tubular shape, and a plurality of transmission bushings are set together with a gap between each other, and the transmission bushings are respectively separated Above the hub of the fan that suspends the compressor and the turbine, it does not affect each other when rotating, and does not require other components of the drive bushing.
  • the multi-sleeve transmission bidirectional rotary wheel fan turbine and the inlaid wheel fan compressor have the following working cooling modes: First, the cold air enters the central transmission bushing (such as the number 31 drive bushing in Fig. 1 , C The area indicated by the point is shunted by the flow guiding cone (as shown in Figure 1, part number 30), flows through the gap of each transmission bushing to cool the hub of the compressor fan, and then flows through the area of the casing in the annular combustion chamber. It is cooled and finally discharged into the tail of the central drive bushing (as indicated by point D in Figure 1); second, the cold air flows into the hollow fan of the turbine wheel through the gap of the engine turbine outer frame structure. The fan is cooled, and then the airflow is directly discharged through the hole in the wall of the drive shaft casing into the tail of the center drive bushing (as indicated by point D in Fig. 1).
  • the central transmission bushing such as the number 31 drive bushing in Fig. 1 , C
  • the area indicated by the point
  • the above-mentioned work cooling method has the beneficial effects compared with the prior art: First, the cold air is from the outside Inwardly, the front and rear high speed passes through the hub of the compressor fan, the gap between the drive bushings, the central area of the annular combustion chamber and the hollow fan of the turbine wheel to take away the heat, thereby improving the engine components.
  • the heat resistance of the compressor creates favorable conditions for increasing the compression ratio of the compressor and increasing the operating temperature of the turbine.
  • the area identified by the point D in the middle forms a high negative pressure zone, which provides free power to the above-mentioned airflow cooling mode, and has a simple structure and a good cooling effect.
  • the multi-sleeve transmission bidirectional rotating wheel fan turbine and the inlaid wheel fan compressor are started by: starting the motor (as shown in Fig. 1, the component numbered 81 is the engine starting motor) and the starting gear set (As shown in Figure 1, the part numbered 82 is the engine's starting gear set) only drives the fan at the end of the compressor (such as the number 19 wheel fan and the 29 wheel fan in Figure 1) to the annular combustion chamber (see Figure 1).
  • the above-mentioned starting method has the beneficial effects compared with the prior art: first, the energy consumption consumed at the time of starting is small; second, the starting parts are simple in construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,是由涡轮机轮扇(49、48、47、46、45、44、43、42、41)、压气机轮扇、传动轴套(31、32、33、34、35、36、37、38、39)等工作及传动部件;支撑盘(50、51、52、53、54、55、56、57、58、59)、定盘螺栓(71)等结构及安装部件;启动电机(81)等启动零部件所组成。其工作及传动特征为:一个涡轮机轮扇通过一个传动轴套带动一个与其相对应的压气机轮扇旋转,并且与相邻的轮扇旋转方向相反,转速各异;传动轴套分多层套装在一起,并分别***压气机和涡轮机的对应轮扇的轮毂之中被悬挂着,且不另设支撑轴承;压气机的副轮扇镶套于主轮扇之上。用其装配的涡喷发动机,具有功效高、重量轻、散热快、抗喘振、燃耗少、等有益效果。

Description

多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机 1.技术领域
本发明涉及一种以提高涡轮喷气发动机(核心机)的工作效率为目的,所进行针对其压气机及涡轮机风扇结构及构造的机械领域的设计和改进。从而设计出一种多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机。
2.背景技术
一般现有涡轮喷气发动机(核心机)的压气机及涡轮机的工作方式是:压气机的多级风扇转动把空气压缩到十几倍到二十几倍送入燃烧室并同燃料混合,混合的气体在燃烧室内被点燃后爆发向发动机尾部喷出并带动涡轮机的多级风扇转动,涡轮机的多级风扇通过单个或多个传动轴(双轴或三轴)给压气机的多级风扇的转动提供动力,从而使涡轮喷气发动机工作。一般来说,涡轮喷气发动机的压气机输送的空气越多即压缩比越高,发动机的推力就越大,推重比就高,其工作效率也就越高也就越省油。但目前现有涡轮喷气发动机存在以下几个突出问题:1)风扇问题:风扇的扇叶与单轴或多轴的连接的方式是悬臂受力结构,在风压的作用下扇叶极易产生变形,再加上扇叶受热膨胀的影响,故风扇工作级之间(轴向)和风扇扇尖与内涵道之间(径向)都留有一定的间隙以保证运转时扇叶相互之间不会发生摩擦和碰撞,但这些间隙也造成了压缩气体逃逸,使压气机的工作效率低下,为了提高压缩比只能增加压气机的风扇级数从而增加了发动机的重量;或者增强扇叶将其做得宽弦、厚叶、大根部,当飞机超音速飞行时,压气机的宽弦扇叶就成了阻碍空气进入发动机的累赘,这样既增加风扇工作阻力又增加重量,从而降低发动机的工作效率也降低了发动机的推重比。2)材料的耐热问题:压气机的末级风扇由于压缩比增高,压缩空气的温度就增高,当混合的气体在燃烧室内被点燃后爆发向发动机尾部喷出其气体温度也随之增高,当压缩比达到一定的高度,涡轮机的初级风扇的材料承受不住高温就会软化失去强度或被烧蚀,故压缩比受到限制,故发动机工作效率随之受到限制。3)发动机喘振问题:压气机的单个(或双轴或三轴)传动轴带动多级风扇转动,当初级风扇因进气受阻其转速失速从而带动该传动轴末级风扇失速,造成发动机工作失常甚至停止工作。
3.发明内容
为了提高涡轮喷气发动机(核心机)的工作效率,缩小上述三个问题对其的工作效率困扰和限制。从而为其设计出一种多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,该机是由其工作、传动、结构及安装和启动四部分零部件所组成。
3.1工作部件——轮扇,其构造特征是:将压气机及涡轮机的风扇设计成由内、外圆锥圈构成并在两者之间以扇叶相连接的形似车轮形的风扇——称之为轮扇。轮扇可分为涡轮机轮扇和压气机轮扇。压气机轮扇是由主轮扇(如图1中,以编号11、12、13、14、15、16、17、18、19表示)和镶套于主轮扇之上的副轮扇(如图1中,以编号22、23、24、25、26、27、28、29表示)所组成。轮扇的外圆锥圈——称之为轮辋(以Xa表示,如图2中,以15a表示),在轮辋的外园两侧上各设一圈圆形的(滚珠)滑道——称之为滚珠及滑道(以Xd表示,如图2中,以15d表示);轮扇的内圆锥圈——称之为轮毂(以Xc表示,如图2中,以15c表示),在压气机轮扇的轮毂内园上设一圈键槽——称之为压气机轮扇传动键槽环(以Xe表示,如图2中,以15e表示),压气机的副轮扇轮毂镶套在其主轮扇的轮毂之上,在压气机副轮扇的轮毂内园上设一圈宽槽键槽,可使压气机副轮扇环绕其主轮扇的轮毂,在一定角度内自由摆动——称之为压气机副轮扇的摆动键槽环(以Xf表示,如图2中,以25f表示),在涡轮机轮扇的轮毂内园上设一圈键槽——称之为涡轮机轮扇传动键槽环(以Xg表示,如图2中,以45g表示);压气机的第一个轮扇(如图1中,以编号11表示)其前半部外裸(如图1中B点所标识部位),而将压气机的第一个轮扇与第一个支撑盘(如图1中,以编号50表示)顶压在一起并用螺栓与压气机第一个轮扇连接在一起的环状构件称为——顶压环及连接件(如图1中,以编号10表示);压气机最末端的轮扇(如图1中,以编号19表示)在其轮辋外侧设有齿轮环——称之为启动齿轮环(如图1中,以19h表示),在其轮毂内侧设有棘轮——称之为滚动棘轮(如图4中,A3-A3所示,以19k表示);轮扇的轮辋与其轮毂的圆心重合,两者之间以扇叶连接——称之为扇辐(以Xb表示,如图2中,以15b表示),扇辐的一端与轮辋的内侧连接点的切线垂直,扇辐的另一端与轮毂的外侧连接点的切线垂直,扇辐与轮辋和轮毂之间连接点不在同一条发自于圆心的射线上,扇辐呈S形状(如图2中,A1-A1所示或A2-A2所示);涡轮机轮扇(如图1中,以编号49、48、47、46、45、44、43、42、41表示)的扇辐为中空扇叶与轮辋、轮毂的连接部位开孔贯通形成空气流通通道。
本发明的工作部件——轮扇与现有技术相比的有益效果是:首先,轮扇的结构改善了扇叶的固定方式,由现行的扇叶与传动轴单边连接固定的悬臂受力结构形式改成扇叶与轮辋、轮毂两端固定连接结构形式,其扇叶 抗弯惯性矩可以提高约8倍,受力变形量大幅缩小,既可将扇叶减薄厚度、缩小根部结构降低重量,又可降低风扇工作阻力,还可缩小轮扇之间的轴向间隙以减少漏气(而少量漏气可以形成气膜,减少轮扇之间的转动摩擦),轮辋、轮毂和扇辐为一整体本身不存在风扇扇尖漏气问题,扇辐既是工作部件又是轮辋、轮毂的支撑或连接件,这样径向不漏气,轴向贯通无阻进一步提高风扇工作效率;其二,压气机的第一个轮扇(如图1中,编号11轮扇)其前半部外裸(如图1中B点所标识部位)是为了以后在其上,套装外涵风扇或风浆提供方便;其三,在压气机最末端的轮扇(如图1中,编号19轮扇)的轮辋外侧上设有启动齿轮环以方便发动机启动;其四,将扇辐做成S形状(如图2中,A1-A1所示或A2-A2所示)当扇辐受热时,由于轮辋、轮毂对扇辐有环箍约束,可将其热膨胀量转移到S弯变形上,从而减少轮辋、轮毂的变形,以保证轮扇的正常运转;其五,涡轮机轮扇的扇辐,设计成为中空扇叶并形成空气流通通道,在发动机运行时,其内流过的冷空气可将辐扇的热量带走,可使涡轮机轮扇承受更高的温度,从而提高压气机的压缩比,为提高发动机的工作效率创造条件。
3.2传动部件——传动轴套:一个涡轮机轮扇带动一个所对应的压气机轮扇旋转,两者之间配置一个传动部件称——传动轴套(如图2中,编号45涡轮机轮扇与编号15压气机主轮扇和编号25压气机副轮扇相对应,两者之间配以编号35传动轴套连接),多个传动轴套可以围绕着一个轴线套装在一起(如图1中,以编号31、32、33、34、35、36、37、38、39表示)相互之间留有间隙并且每个传动轴套的管壁上设置多个贯通孔洞(如图1所示)。在传动轴套的一端(小头)设有可***压气机主轮扇的轮毂内的环键称为——压气机轮扇传动键槽环(以Xe表示,如图2中,以15e表示),在传动轴套的另一端(大头)设可***涡轮机轮扇的轮毂内的环键称为——涡轮机轮扇传动键槽环(以Xg表示,如图2中,以15g表示);在中心传动轴套内安装在起导流作用的零件称为——导流锥(如图1中,以编号30表示);在最外侧的传动轴套(如图1中,以编号39表示)与压气机轮扇相连接的一端,采用光滑园表面替代其压气机轮扇传动键槽环,以压气机最末端的轮扇的滚动棘轮(如图4中,A3-A3所示,以19k表示)驱动压气机轮扇。
本发明的传动部件——传动轴套与现有技术相比的有益效果是:其一,在传动轴套相互之间留有间隙,转动时互不影响,并在其管壁上设置多个贯通孔洞和在中心传动轴套内安装导流锥,起到了导气散热作用;其二,传动轴套被分别悬挂压气机和涡轮机对应的轮扇的轮毂之上,发动机轴向贯通,没有固定支撑传动轴套的部件,从而提高涡轮机轮扇和压气机轮扇的工作效率。
3.3结构及安装部件——支撑盘、定盘螺栓、组装螺栓副、中间段机匣、环形燃烧室:以多个滚珠支撑轮扇在园盘形构件内旋转,该盘形构件称为——支撑盘。支撑盘可分为涡轮机轮扇的支撑盘(如图1中,以编号69、68、67、66、65、64、63、62、61、60表示)和压气机轮扇的支撑盘(如图1中,以编号50、51、52、53、54、55、56、57、58、59表示)。其中,支撑盘内圆上一侧或两侧设有(滚珠)滑道并与轮扇的轮辋外侧两端滚珠及滑道相对应称为——滚珠及滑道(以Xd表示,如图3中,以54d表示);在支撑盘内盘上设有一圈多个贯通圆孔称为——定盘孔(以Xn表示,在图3中,以54n表示),穿过定盘孔将相邻的支撑盘固定在一起的螺栓称为——定盘螺栓(如图1和图3中,以编号71表示);在支撑盘外盘上设有一圈多个贯通圆孔孔道称为——组装孔(以Xm表示,在图3中,以54m表示),穿过组装孔道将压气机轮扇的全部支撑盘或涡轮机轮扇的全部支撑盘以及中间段机匣(如图1中,以编号70表示)固定在一起的螺栓及其紧固零件称为——组装螺栓副(如图1和图3中,以编号72表示);发动机的环形燃烧室(如图1中,以编号73表示)套装在中段机匣之中;
3.4启动部件——启动电机、启动齿轮组:为发动机启动提供动力的电机称为-启动电机(如图1中,以编号81表示);将启动电机的动力传递给压气机最末端的轮扇的启动齿轮环(如图1中,以19h表示)的部件称为-启动齿轮组(如图1中,以编号82表示)。
4.附图说明
图1.为本发明多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机的整体结构构造示意图。
图2.为本发明多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机的工作及传动部件构造示意图。
图3.为本发明多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机的结构及安装部件构造示意图。
图4.为本发明多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机的压气机最末端轮扇(如图1中,编号19轮扇)的滚动棘轮构造示意图。
图5.为本发明多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机的压气机主、副轮扇的扇辐展开时示意图。
图6.为本发明多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机的压气机主、副轮扇的扇辐重叠时示意图。
4.1上述图中零部件编号表示说明:编号10称为——压气机的第一个轮扇 (编号11)的顶压环及连接件;编号11、12、13、14、15、16、17、18、19称为——压气机的主轮扇;编号22、23、24、25、26、27、28、29称为——镶套于主轮扇之上的副轮扇;编号30称为——导流锥;编号31、32、33、34、35、36、37、38、39称为——传动轴套;编号49、48、47、46、45、44、43、42、41称为——涡轮机轮扇;编号50、51、52、53、54、55、56、57、58、59称为——压气机轮扇的支撑盘;编号69、68、67、66、65、64、63、62、61、60称为——涡轮机轮扇的支撑盘;编号70称为——中间段机匣;编号71称为——定盘螺栓;编号72称为——组装螺栓副;编号73称为——环形燃烧室;编号81称为——启动电机;编号82称为——启动齿轮环。
4.2上述图中零部件的功能部位说明:以Xy表示,X-表示某编号的零部件;y-表示该零部件的某功能部位。a-轮辋,b-扇辐,c-轮毂,d-滚珠及滑道,e-压气机轮扇传动键槽环,f-压气机副轮扇摆动键槽环,g-涡轮机轮扇传动键槽环,h-启动齿轮环,k-滚动棘轮,m-组装孔,n-定盘孔。
5.具体实施方式
为了能够更清楚了解本发明采用的技术手段对现有涡轮喷气发动机(核心机)在工作及传动方式、结构构造形式、工作冷却方式、启动方式方面的改进,并且为了让本发明的上述特征和优点能够更明显易懂,以下配合附图,详细说明如下
5.1所述多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,其工作及传动方式为:一个涡轮机轮扇通过一个传动轴套带动一个与其相对应的压气机轮扇旋转,其工作转速和转向相同并与相邻涡压对应轮扇的旋转方向相反,各轮扇的转速(绝对值)可以各异;除压气机第一个轮扇(如图1中编号11轮扇)和涡轮机的最后一个轮扇(如图1中编号41轮扇)外,每对转向相反且相邻的压气机轮扇或涡轮机轮扇组成一工作级;压气机的副轮扇镶套于主轮扇之上,在其摆动键槽环(以Xe表示,如图2中,25e表示第25号副轮扇的摆动键槽环)的作用下,两者扇辐可以展开组成一个宽弦扇辐(图5中,E1-E1所示);也可转向匿藏于主轮扇的扇辐之后(图6中,F1-F1所示)变成两个窄弦扇辐。
上述工作及传动方式与现有技术相比的有益效果是:其一,压气机和涡轮机的每一级两个轮扇为双向旋转(即互为正反转)比目前现有发动机的压气机的每一级风扇(一个转子风扇和一个定子风扇)的相对转速增加 了1倍以上,从而提高压气机工作效率,并可减少涡轮机轮扇和压气机轮扇的级数;其二,双向旋转轮扇形成的正反扭矩相互抵消,对外骨架结构影响较小,有利于结构增强减重;其三,由于一个涡轮机轮扇通过一个传动轴套带动一个压气机轮扇旋转的独立性,轮扇的转速可随其工作级数增高而提高,当压气机的初级某个轮扇因进气受阻其转速失速时,不会带动末级其他轮扇失速,从而避免了发动机喘振问题的发生;其四,当飞机起飞或低速飞行时,压气机的主轮扇带动副轮扇,两者扇辐展开组成宽弦扇辐(图5中,E1-E1所示)向环形燃烧室压气,以提高压气机的工作效率;当飞机高速飞行时,空气直接冲向压气机使其副轮扇的扇辐转向并匿藏于主轮扇的扇辐之后(图6中,F1-F1所示),使部分空气直接冲入环形燃烧室,以减少飞机高速飞行的阻力。
5.2所述多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,其结构构造形式为:环形燃烧室的外匣与中间段机匣构成中段双筒结构,支撑盘、定盘螺栓、组装螺栓副共同构成压气机或涡轮机的环形漏斗状格构外骨架(如图3或图1所示);在支撑盘组成的外骨架上,众多组滚珠支撑其内所有轮扇可围绕同一轴线(或正向或反向)旋转,轮扇的轮辋支撑或拉结着扇辐,扇辐支撑或拉结着轮毂,传动轴套穿过环形燃烧室的中空区域并分别***压气机和涡轮机对应的轮扇的轮毂之中被其悬挂着,然后压气机和涡轮机分左、右两端用组装螺栓副合拢从而构成发动机整体(如图1所示)。
上述结构构造形式与现有技术相比的有益效果是:其一,发动机整体机架由中段双筒结构加两端格构外骨架结构,使其整体结构刚性好,重量轻,其结构通透便于发动机外部通风散热;其二,传动轴套只传递扭矩和承担少量自重弯矩,可以做成薄壁管形,多个传动轴套套装在一起相互之间留有空隙,传动轴套被分别悬挂压气机和涡轮机对应的轮扇的轮毂之上,转动时互不影响且不需要传动轴套其他支撑的零部件。
5.3所述多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,其工作冷却方式为:其一,冷空气进入中心传动轴套(如图1中编号31传动轴套,C点所标识的区域)被导流锥(如图1中,编号30部件)分流,流经各传动轴套的间隙当中冷却压气机轮扇的轮毂,然后流经环形燃烧室内机匣所在区域对其进行冷却,最后汇入中心传动轴套尾部(如图1中D点所标识的区域)排出;其二,冷空气通过发动机涡轮机格构外骨架结构空隙流入涡轮机轮扇的中空扇辐为其轮扇进行冷却,然后其气流直接通过传动轴套管壁上的孔洞汇入中心传动轴套尾部(如图1中D点所标识的区域)排出。
上述工作冷却方式与现有技术相比的有益效果是:其一,冷空气从外 向内,由前向后高速穿过压气机轮扇的轮毂、传动轴套之间的间隙、环形燃烧室中心区域和涡轮机轮扇的中空扇辐将其热量带走,从而提高发动机各零部件的耐热性能,为增大压气机的压缩比、提高涡轮机工作温度,创造了有利条件;其二,由于涡轮机喷出的热气体尾流超过音速,因此在中心传动轴套尾部(如图1中D点所标识的区域)形成高负压区,给上述气流冷却方式提供了免费的动力,其构造简单,冷却效果好。
5.4所述多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,其启动方式为:由启动电机(如图1中,编号81的部件为发动机的启动电机)和启动齿轮组(如图1中,编号82的零件为发动机的启动齿轮组)仅带动压气机最末端的轮扇(如图1中,编号19轮扇和29轮扇)向环形燃烧室(如图1中,以编号73表示)内压气,由于有滚动棘轮(如图4中A3-A3所示,以19k表示)的作用,其对应的传动轴套和涡轮机轮扇(如图1中,编号39传动轴套和编号49轮扇)不动,对空气流通形成阻力,当环形燃烧室内的气体积累到一定的压力,发动机点火运转。
上述启动方式与现有技术相比的有益效果是:其一,启动时所消耗的能耗小;其二,启动的零部件构造简单。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不局限于上述事例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当提出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

  1. 一种多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,该机是由工作、传动、结构及安装和启动四部分零部件所组成。
    1.1工作部件——轮扇,其构造特征是:将压气机及涡轮机的风扇设计成由内、外圆锥圈构成并在两者之间以扇叶相连接的形似车轮形的风扇——称之为轮扇。轮扇可分为涡轮机轮扇和压气机轮扇。压气机轮扇是由主轮扇(如图1中,以编号11、12、13、14、15、16、17、18、19表示)和镶套于主轮扇之上的副轮扇(如图1中,以编号22、23、24、25、26、27、28、29表示)所组成。轮扇的外圆锥圈——称之为轮辋(以Xa表示,如图2中,以15a表示),在轮辋的外园两侧上各设一圈圆形的(滚珠)滑道——称之为滚珠及滑道(以Xd表示,如图2中,以15d表示);轮扇的内圆锥圈——称之为轮毂(以Xc表示,如图2中,以15c表示),在压气机轮扇的轮毂内园上设一圈键槽——称之为压气机轮扇传动键槽环(以Xe表示,如图2中,以15e表示),压气机的副轮扇轮毂镶套在其主轮扇的轮毂之上,在压气机副轮扇的轮毂内园上设一圈宽槽键槽,可使压气机副轮扇环绕其主轮扇的轮毂,在一定角度内自由摆动——称之为压气机副轮扇的摆动键槽环(以Xf表示,如图2中,以25f表示),在涡轮机轮扇的轮毂内园上设一圈键槽——称之为涡轮机轮扇传动键槽环(以Xg表示,如图2中,以45g表示);压气机的第一个轮扇(如图1中,以编号11表示)其前半部外裸(如图1中B点所标识部位),而将压气机的第一个轮扇与第一个支撑盘(如图1中,以编号50表示)顶压在一起并用螺栓与压气机第一个轮扇连接在一起的环状构件称为——顶压环及连接件(如图1中,以编号10表示);压气机最末端的轮扇(如图1中,以编号19表示)在其轮辋外侧设有齿轮环——称之为启动齿轮环(如图1中,以19h表示),在其轮毂内侧设有棘轮——称之为滚动棘轮(如图4中,A3-A3所示,以19k表示);轮扇的轮辋与其轮毂的圆心重合,两者之间以扇叶连接——称之为扇辐(以Xb表示,如图2中,以15b表示),扇辐的一端与轮辋的内侧连接点的切线垂直,扇辐的另一端与轮毂的外侧连接点的切线垂直,扇辐与轮辋和轮毂之间连接点不在同一条发自于圆心的射线上,扇辐呈S形状(如图2中,A1-A1所示或A2-A2所示);涡轮机轮扇(如图1中,以编号49、48、47、46、45、44、43、42、41表示)的扇辐为中空扇叶与轮辋、轮毂的连接部位开孔贯通形成空气流通通道。
    1.2传动部件——传动轴套,其构造特征是:一个涡轮机轮扇带动一个所对应的压气机轮扇旋转,两者之间配置一个传动部件称为——传动轴套(如图2中,编号45涡轮机轮扇与编号15压气机主轮扇和编号25压气机副轮扇相对应,两者之间配以编号35传动轴套连接),多个传动轴套可以围绕着一个轴线套装在一起(如图1中,以编号31、32、33、34、35、36、37、38、39表示)相互之间留有间隙并且每个传动轴套的管壁上设置多个贯通孔洞(如图1所示)。在传动轴套的一端(小头)设有可***压气机主轮扇的轮毂内的环键称为——压气机轮扇传动键槽环(以Xe表示,如图2中,以15e表示),在传动轴套的另一端(大头)设可***涡轮机轮扇的轮毂内的环键称为——涡轮机轮扇传动键槽环(以Xg表示,如图2中,以15g表示);在中心传动轴套内安装在起导流作用的零件称为——导流锥(如图1中,以编号30表示);在最外侧的传动轴套(如图1中,以编号39表示)与压气机轮扇相连接的一端,采用光滑园表面替代其压气机轮扇传动键槽环,以压气机最末端的轮扇的滚动棘轮(如图4中,A3-A3所示,以19k表示)驱动压气机轮扇。
    1.3结构及安装部件——支撑盘、定盘螺栓、组装螺栓副、中间段机匣、环形燃烧室,其构造特征是:以多个滚珠支撑轮扇在园盘形构件内旋转,该盘形构件称为——支撑盘。支撑盘可分为涡轮机轮扇的支撑盘(如图1中,以编号69、68、67、66、65、64、63、62、61、60表示)和压气机轮扇的支撑盘(如图1中,以编号50、51、52、53、54、55、56、57、58、59表示)。其中,支撑盘内圆上一侧或两侧设有(滚珠)滑道并与轮扇的轮辋外侧两端滚珠及滑道相对应称为——滚珠及滑道(以Xd表示,如图3中,以54d表示);在支撑盘内盘上设有一圈多个贯通圆孔称为——定盘孔(以Xn表示,在图3中,以54n表示),穿过定盘孔将相邻的支撑盘固定在一起的螺栓称为——定盘螺栓(如图1和图3中,以编号71表示);在支撑盘外盘上设有一圈多个贯通圆孔孔道称为——组装孔(以Xm表示,在图3中,以54m表示),穿过组装孔道将压气机轮扇的全部支撑盘或涡轮机轮扇的全部支撑盘以及中间段机匣(如图1中,以编号70表示)固定在一起的螺栓及其紧固零件称为——组装螺栓副(如图1和图3中,以编号72表示);发动机的环形燃烧室(如图1中,以编号73表示)套装在中段机匣之中;
    1.4启动部件——启动电机、启动齿轮组,其构造特征是:为发动机启动提供动力的电机称为-启动电机(如图1中,以编号81表示);将启动电机的动力传递给压气机最末端的轮扇的启动齿轮环(如图1中,以19h表示)的部件称为-启动齿轮组(如图1中,以编号82表示)。
  2. 根据权利要求1所述多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,其工作及传动特征为:一个涡轮机轮扇通过一个传动轴套带动一个与其相对应的压气机轮扇组成一组,其工作转速和转向相同并与相邻涡压对应轮扇的旋转方向相反,各轮扇的转速(绝对值)可以各异;除压气机第一个轮扇(如图1中,以编号11表示)和涡轮机的最后一个轮扇(如图1中,以编号41表示)外,每对转向相反且相邻的压气机轮扇或涡轮机轮扇组成一工作级;压气机的副轮扇镶套于主轮扇之上,在其摆动键槽环(以Xe表示,如图2中,以25e表示)的作用下,两者扇辐可以展开组成一个宽弦扇辐(图5中,E1-E1所示);也可转向匿藏于主轮扇的扇辐之后(图6中,F1-F1所示)变成两个窄弦扇辐。
  3. 所根据权利要求1所述多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,其结构特征为:支撑盘、定盘螺栓、组装螺栓副共同构成压气机或涡轮机的环形漏斗状格构外骨架(如图3或图1所示),在支撑盘组成的外骨架上,众多组滚珠支撑其内所有轮扇可围绕同一轴线(或正向或反向)旋转,轮扇的轮辋支撑或拉结着扇辐,扇辐支撑或拉结着轮毂,传动轴套穿过环形燃烧室的中空区域并分别***压气机和涡轮机对应的轮扇的轮毂之中被其悬挂着,然后压气机和涡轮机分左、右两端用组装螺栓副与环形燃烧室的外匣与中间段机匣构成中段双筒结构合拢,从而构成发动机整体(如图1所示)。
  4. 所根据权利要求1所述多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,其冷却工作特征为:采用流动空气冷却,其一,冷空气进入中心传动轴套(如图1中,以编号31表示,C点所标识的区域)被导流锥(如图1中,以编号30表示)分流,流经各传动轴套的间隙当中先冷却压气机轮扇的轮毂,然后流经环形燃烧室内机匣所在区域对其进行冷却,最后汇入中心传动轴套尾部(如图1中,D点所标识的区域)排出;其二,冷空气通过发动机涡轮机格构外骨架结构空隙流入涡轮机轮扇的中空扇辐为其轮扇进行冷却,然后其气流直接通过传动轴套管壁上的孔洞汇入中心传动轴套尾部(如图1中D点所标识的区域)排出。
  5. 根据权利要求1所述多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机,其启动特征为:由启动电机(如图1中,以编号81表示)和启动齿轮组(如图1中,以编号82表示)仅带动压气机最末端的轮扇(如图1中,以编号19和29表示)向环形燃烧室(如图1中,以编号73表示)内压气,由于有滚动棘轮(如图4中A3-A3所示,以19k表示)的作用,其对应的传 动轴套和涡轮机轮扇(如图1中,以编号39和编号49表示)不动,对空气流通形成阻力,当环形燃烧室内的气体积累到一定的压力,发动机点火运转。
PCT/CN2015/000635 2015-09-09 2015-09-09 多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机 WO2017041197A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580039714.6A CN107208552B (zh) 2015-09-09 2015-09-09 多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机
PCT/CN2015/000635 WO2017041197A1 (zh) 2015-09-09 2015-09-09 多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机
US15/849,640 US10634047B2 (en) 2015-09-09 2017-12-20 Multiple axle-sleeve driving bidirectional rotating wheel-shaped fan turbine and a bushing wheel-shaped fan compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/000635 WO2017041197A1 (zh) 2015-09-09 2015-09-09 多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/849,640 Continuation US10634047B2 (en) 2015-09-09 2017-12-20 Multiple axle-sleeve driving bidirectional rotating wheel-shaped fan turbine and a bushing wheel-shaped fan compressor

Publications (1)

Publication Number Publication Date
WO2017041197A1 true WO2017041197A1 (zh) 2017-03-16

Family

ID=58240453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000635 WO2017041197A1 (zh) 2015-09-09 2015-09-09 多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机

Country Status (3)

Country Link
US (1) US10634047B2 (zh)
CN (1) CN107208552B (zh)
WO (1) WO2017041197A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2550568A (en) * 2016-05-20 2017-11-29 Skinners Design Ltd Fan apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487180A (zh) * 2002-07-30 2004-04-07 ͨ�õ�����˾ 具有用于反向旋转低压涡轮的控制叶片的航空燃气轮机
WO2008026788A1 (en) * 2006-08-31 2008-03-06 Seung Ha Yoo Cross revolution axial flow turbine compressor
DE102008031986A1 (de) * 2008-07-07 2010-01-14 Rolls-Royce Deutschland Ltd & Co Kg Gasturbine mit gegenläufigen Verdichtermodulen
US20100205934A1 (en) * 2009-02-18 2010-08-19 Snecma Bypass engine with contrarotating turbine wheels
CN103562518A (zh) * 2011-05-31 2014-02-05 斯奈克玛 包括三个旋转体的燃气涡轮发动机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1483743A (fr) * 1965-12-02 1967-06-09 Snecma Turbomachine à compresseur contrarotatif
FR1561980A (zh) * 1967-12-14 1969-04-04
US3937592A (en) * 1973-05-30 1976-02-10 Gutehoffnungshutte Sterkrade Aktiengesellschaft Multi-stage axial flow compressor
US4159624A (en) * 1978-02-06 1979-07-03 Gruner George P Contra-rotating rotors with differential gearing
US5493855A (en) * 1992-12-17 1996-02-27 Alfred E. Tisch Turbine having suspended rotor blades
US9534608B2 (en) * 2012-02-17 2017-01-03 Embry-Riddle Aeronautical University, Inc. Multi-stage axial compressor with counter-rotation
DE102014203601A1 (de) * 2014-02-27 2015-08-27 Rolls-Royce Deutschland Ltd & Co Kg Schaufelreihengruppe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487180A (zh) * 2002-07-30 2004-04-07 ͨ�õ�����˾ 具有用于反向旋转低压涡轮的控制叶片的航空燃气轮机
WO2008026788A1 (en) * 2006-08-31 2008-03-06 Seung Ha Yoo Cross revolution axial flow turbine compressor
DE102008031986A1 (de) * 2008-07-07 2010-01-14 Rolls-Royce Deutschland Ltd & Co Kg Gasturbine mit gegenläufigen Verdichtermodulen
US20100205934A1 (en) * 2009-02-18 2010-08-19 Snecma Bypass engine with contrarotating turbine wheels
CN103562518A (zh) * 2011-05-31 2014-02-05 斯奈克玛 包括三个旋转体的燃气涡轮发动机

Also Published As

Publication number Publication date
CN107208552A (zh) 2017-09-26
CN107208552B (zh) 2020-08-11
US10634047B2 (en) 2020-04-28
US20180142619A1 (en) 2018-05-24

Similar Documents

Publication Publication Date Title
JP5667668B2 (ja) ガスタービンエンジン組立方法
JP5080777B2 (ja) 二重反転ファン組立体及びそれを含むガスタービンエンジン組立体
JP4846511B2 (ja) ガスタービンエンジン組立体及びそれを組み立てる方法
JP5486765B2 (ja) ガスタービンエンジンアセンブリ
JP4906311B2 (ja) 二重反転ガスタービンエンジン及びそれを組立てる方法
JP4906465B2 (ja) ガスタービンエンジン組立体及びそれを組み立てる方法
JP5596109B2 (ja) ガスタービンエンジン
JP2007113577A (ja) 二重反転ファン組立体及び二重反転ファン組立体を含むガスタービンエンジン組立体
JP5600234B2 (ja) ガスタービンエンジン組立体
JP2008082338A (ja) ガスタービンエンジン組立体
JP2007113584A (ja) ガスタービンエンジンアセンブリ
JPH0142879B2 (zh)
JPH0681883B2 (ja) 反対廻りの回転子を持つ動力タービンを有するガスタービン機関
CN107246330B (zh) 涡轮涡扇发动机及航天器
US2455458A (en) Thrust augmenting device for a system for developing propulsive thrust
WO2017041197A1 (zh) 多轴套传动双向旋转轮扇式涡轮机及镶套轮扇式压气机
US11313327B2 (en) Concentric turbomachine with electric machine
EP3623282B1 (en) Turbomachine
US11371350B2 (en) Concentric turbomachine with electric machine
US11371467B2 (en) Concentric turbomachine with electric machine
US11306682B2 (en) Concentric turbomachine with trailing edge
WO2022126834A1 (zh) 一种纵列多轴塔轮增压动力转换机
CN101936239A (zh) 离心式转子风扇发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903304

Country of ref document: EP

Kind code of ref document: A1