WO2017038506A1 - 重合性液晶組成物及びそれを用いた光学異方体 - Google Patents

重合性液晶組成物及びそれを用いた光学異方体 Download PDF

Info

Publication number
WO2017038506A1
WO2017038506A1 PCT/JP2016/074234 JP2016074234W WO2017038506A1 WO 2017038506 A1 WO2017038506 A1 WO 2017038506A1 JP 2016074234 W JP2016074234 W JP 2016074234W WO 2017038506 A1 WO2017038506 A1 WO 2017038506A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
polymerizable
oco
coo
Prior art date
Application number
PCT/JP2016/074234
Other languages
English (en)
French (fr)
Inventor
美花 山本
桑名 康弘
小野 善之
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020187004583A priority Critical patent/KR20180037206A/ko
Priority to US15/755,956 priority patent/US20180252957A1/en
Priority to JP2017537744A priority patent/JP6264513B2/ja
Publication of WO2017038506A1 publication Critical patent/WO2017038506A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/02Liquid crystal materials characterised by optical, electrical or physical properties of the components, in general
    • C09K19/0208Twisted Nematic (T.N.); Super Twisted Nematic (S.T.N.); Optical Mode Interference (O.M.I.)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3402Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom
    • C09K19/3405Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having oxygen as hetero atom the heterocyclic ring being a five-membered ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3477Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a five-membered aromatic ring containing at least one nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3491Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having sulfur as hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/36Steroidal liquid crystal compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2219/00Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used
    • C09K2219/03Aspects relating to the form of the liquid crystal [LC] material, or by the technical area in which LC material are used in the form of films, e.g. films after polymerisation of LC precursor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • G02F1/133507Films for enhancing the luminance
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/01Number of plates being 1
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/02Number of plates being 2
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/05Single plate on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/06Two plates on one side of the LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/12Biaxial compensators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/14Negative birefingence

Definitions

  • the present invention relates to an optical anisotropic member used for optical compensation and viewing angle compensation of a liquid crystal display, an optical anisotropic member used for an organic EL, etc., or an optical anisotropic member used for an optical element.
  • a polymerizable cholesteric liquid crystal composition useful as an optical anisotropic body a retardation film, a retardation patterning film, a brightness enhancement film, an antireflection film, a thermal barrier film, and the optical film made of the polymerizable cholesteric liquid crystal composition
  • the polymerizable liquid crystal composition is useful as a component of an optical anisotropic body, and the optical anisotropic body is applied to various liquid crystal displays as, for example, a polarizing film and a retardation film.
  • the polarizing film and the retardation film are coated with a polymerizable liquid crystal composition on a substrate, dried with a solvent to form a coating film, and then heated or activated in a state where the polymerizable liquid crystal composition is aligned with an alignment film or the like. It is obtained by irradiating energy rays to cure the polymerizable liquid crystal composition.
  • a circularly polarized light separation characteristic can be obtained by using a polymerizable cholesteric liquid crystal composition obtained by adding a chiral compound to a polymerizable liquid crystal composition, a retardation film, a retardation patterning film, a brightness enhancement film,
  • a polymerizable cholesteric liquid crystal composition obtained by adding a chiral compound to a polymerizable liquid crystal composition, a retardation film, a retardation patterning film, a brightness enhancement film.
  • various optical elements such as antireflection films, heat shield films, diffraction gratings and pickup lenses, anti-counterfeit printed matter, and the like has been studied.
  • Patent Document 1 discloses that by using a liquid crystal compound having four or more rings such as a benzene ring and a cyclohexane ring, a retardation film having excellent heat resistance can be created in the baking treatment after the retardation film is formed. ing.
  • the heat resistance is improved, there is a problem that the orientation deteriorates depending on the polymerizable liquid crystal composition.
  • patent document 1 improved heat resistance, there existed a tendency for orientation to deteriorate depending on the kind of polymeric liquid crystal composition.
  • Patent Document 2 by adding a multi-branched compound such as a dendrimer to the polymerizable liquid crystal composition, the retardation unevenness is small, and the surface shape change of the retardation film is changed even after the firing process after the retardation film is formed. Further, it is disclosed that a retardation film having a stable surface shape can be obtained without generating cracks in the sputtering step of the transparent electrode, which is a subsequent step of the firing step.
  • Patent Document 2 although a retardation film having a stable surface shape can be obtained, in a liquid crystal display device, an image display device, and the like, there is a further baking step after the transparent electrode sputtering step. The heat resistance of the retardation film was not disclosed.
  • the problem to be solved by the present invention is a polymerizable cholesteric that has good orientation and excellent heat resistance in a thin film such as an optical anisotropic body and retardation film obtained by curing a polymerizable cholesteric liquid crystal composition.
  • the object is to provide a liquid crystal composition.
  • an optical anisotropic body, a retardation film, a retardation patterning film, a brightness enhancement film, an antireflection film, and a thermal barrier film a liquid crystal display device, an image display device, an optical element, and a printed matter.
  • the present invention has been conducted by paying attention to the polymerizable liquid crystal composition, and as a result, has come to provide the present invention.
  • the present invention relates to a polymerizable liquid crystal compound (I) having two or more polymerizable functional groups in one or two or more molecules, a chiral compound (III), a polymerization initiator (IV), and optionally repeating.
  • a polymerizable cholesteric liquid crystal composition comprising a non-silicon compound (V) having a unit and a polymerizable liquid crystal compound (II) optionally having one or two or more polymerizable functional groups.
  • an optical anisotropic body using the polymerizable liquid crystal composition of the present invention.
  • the polymerizable cholesteric liquid crystal composition of the present invention By using the polymerizable cholesteric liquid crystal composition of the present invention, it is possible to obtain a good alignment state with few alignment defects when a thin film such as an optical anisotropic body or retardation film is formed.
  • thin films such as optical anisotropic bodies and retardation films obtained by curing the liquid crystal composition are excellent in heat resistance, and thus are useful for various optical materials.
  • the liquid crystal display device having a thin film such as the optical anisotropic body or the retardation film can exhibit excellent display characteristics.
  • Polarizing layer (2) Adhesive layer (3) Light transmissive substrate (4) Color filter layer (5) Flattening layer (6) Alignment film for retardation film (7) Polymerizable liquid crystal composition was used.
  • Retardation film 1 (8) Retardation film 2 using polymerizable liquid crystal composition (9) Transparent electrode layer (10) Alignment film (11) Liquid crystal composition (12) Alignment film (13) Pixel electrode layer (14) Light transmissive substrate (15) Adhesive layer (16) Polarizing layer (17) Back Light
  • the “liquid crystal” of the polymerizable liquid crystal composition refers to an organic solvent after coating the polymerizable liquid crystal composition on a substrate. It is intended to show liquid crystal properties in the removed state.
  • the “liquid crystal” of the polymerizable liquid crystal compound means a case where it is intended to show liquid crystal properties with only one type of polymerizable liquid crystal compound used, or a mixture with other liquid crystal compounds. It is intended to exhibit liquid crystal properties.
  • the polymerizable liquid crystal composition can be polymerized (formed into a film) by performing a polymerization treatment by irradiation with light such as ultraviolet rays, heating, or a combination thereof.
  • the polymerizable liquid crystal compound contained in the polymerizable cholesteric liquid crystal composition of the present invention is particularly limited except that one or more polymerizable liquid crystal compounds having two or more polymerizable functional groups in the molecule are used. There are no known and conventional ones.
  • a rod-like polymerizable liquid crystal compound having a polymerizable functional group such as a vinyl group, an acrylic group or a (meth) acryl group, or a maleimide as described in JP-A Nos. 2004-2373 and 2004-99446
  • a rod-like polymerizable liquid crystal compound having a group examples thereof include a rod-like polymerizable liquid crystal compound having a group.
  • a rod-like liquid crystal compound having a polymerizable group is preferable because it can easily produce a liquid crystal having a temperature range around room temperature.
  • the polymerizable cholesteric liquid crystal composition of the present invention contains one or more polymerizable liquid crystal compounds having two or more polymerizable functional groups in the molecule.
  • a coating film having excellent curability is obtained when a polymer obtained by polymerizing a polymerizable cholesteric liquid crystal composition is prepared. be able to.
  • Specific examples of the polymerizable liquid crystal compound having two or more polymerizable functional groups in the molecule include compounds represented by general formula (I-1) below.
  • each of P 11 and P 12 independently represents a polymerizable functional group
  • each of Sp 11 and Sp 12 independently represents an alkylene group having 1 to 18 carbon atoms or a single bond, and the alkylene group In which one —CH 2 — or two or more non-adjacent —CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—.
  • one or more hydrogen atoms of the alkylene group may be substituted with a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or a CN group, and X 11 and X 12 are independent of each other.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • P 11 and P 12 each independently preferably represent a substituent selected from a polymerizable group represented by the following formulas (P-2-1) to (P-2-20).
  • MG 12 represents a mesogenic group and has the general formula (Ib)
  • A1, A2 and A3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1, 3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine- 2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6- Diyl group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydrophenant
  • any one of A1, A2 and A3 has one or two-(X 12 -Sp 12 ) q2 -P 12 groups. ).
  • A1, A2 and A3 each independently preferably represents a 1,4-phenylene group, a 1,4-cyclohexylene group or a 2,6-naphthylene group.
  • (Bifunctional polymerizable liquid crystal compound) Examples of the polymerizable liquid crystal compound represented by the above general formula (I-1) having two or more polymerizable functional groups in the molecule include the following general formula (I-) having two polymerizable functional groups in the molecule. It is preferable to use a bifunctional polymerizable liquid crystal compound represented by 1-1).
  • each of P 11 and P 12 independently represents a polymerizable functional group
  • each of Sp 11 and Sp 12 independently represents an alkylene group having 1 to 18 carbon atoms or a single bond
  • one -CH 2 in the group - or nonadjacent two or more -CH 2 - are each independently -O -, - COO -, - OCO- or --OCO-O-substituted by
  • one or more hydrogen atoms of the alkylene group may be substituted by a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or a CN group
  • X 11 and X 12 are each Independently, —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O— CO—O—, —CO—NH—
  • each of P 11 and P 12 preferably independently represents a substituent selected from the polymerizable groups represented by the above formulas (P-2-1) to (P-2-20).
  • the formulas (P-2-1), (P-2-2), (P-2-7), (P-2-12), ( P-2-13) is preferred, and formulas (P-2-1) and (P-2-2) are more preferred.
  • each of Sp 11 and Sp 12 independently preferably represents an alkylene group having 1 to 15 carbon atoms, and one —CH 2 — in the alkylene group or two or more non-adjacent — CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—, and one or more hydrogen atoms of the alkylene group may be a halogen atom (Fluorine atom, chlorine atom, bromine atom, iodine atom) or a CN group may be substituted, and Sp 11 and Sp 12 each independently more preferably represent an alkylene group having 1 to 12 carbon atoms, In the alkylene group, one —CH 2 — or two or more non-adjacent —CH 2 — are each independently substituted by —O—, —COO—, —OCO— or —OCO—O—. Even There.
  • X 11 and X 12 are each independently —O—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NH. —, —NH—CO—, —CF 2 O—, —OCF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH— , —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 —, —OCO—CH 2 —, -CH 2 -COO -, - CH 2 -OCO—, —COO—CH 2 —, —OCO—CH 2 — , -CH 2 -COO -, - CH 2
  • MG 12 represents a mesogenic group and has the general formula (I-1-b)
  • A1, A2 and A3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1,3 -Dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine-2 , 5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6-diyl Group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydroph
  • Examples of the general formula (I-1-1) include compounds represented by the following general formulas (I-1-1-1) to (I-1-1-4). The formula is not limited.
  • each of P 11 , Sp 11 , X 11 , q 1, X 12 , Sp 12 , q 2, P 12 represents the same definition as in the general formula (I-1-1), A11, A12, A13, A2, and A3 represent the same definitions as A1 to A3 in the general formula (I-1-b), and may be the same or different.
  • Z11, Z12, Z13, and Z2 represent the same definitions as Z1 and Z2 in the general formula (I-1-b), respectively, and may be the same or different.
  • a compound having three or more ring structures in the compound is preferable because the orientation of the obtained optical anisotropic body is good, and the compound represented by the general formula (3) having three ring structures in the compound is preferable. It is particularly preferable to use a compound represented by I-1-1-2).
  • the compounds represented by the above general formulas (I-1-1-1) to (I-1-1-4) include the following general formulas (I-1-1-1-1) to (I-1 Examples of the compound represented by 1-1-1-21) are not limited thereto.
  • R d and R e each independently represent a hydrogen atom or a methyl group
  • the cyclic group includes one or more F, Cl, CF 3 , OCF 3 , CN groups, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, and 1 to 8 alkanoyl groups, alkanoyloxy groups having 1 to 8 carbon atoms, alkoxycarbonyl groups having 1 to 8 carbon atoms, alkenyl groups having 2 to 8 carbon atoms, alkenyloxy groups having 2 to 8 carbon atoms, carbon atoms May have an alkenoyl group having 2 to 8 carbon atoms and an alkenoyloxy group having 2 to 8 carbon atoms, m1 and m2 each independently represent an integer of 0 to 18, and n1, n2, n3, and n4 each independently represent 0 or 1.
  • the liquid crystal compound having two polymerizable functional groups can be used singly or in combination of two or more, preferably 1 to 5 types, more preferably 2 to 5 types.
  • the total content of the polymerizable liquid crystal compound having two polymerizable functional groups in the molecule is the polymerizable liquid crystal compound (I), polymerizable liquid crystal compound (II) and chiral compound contained in the polymerizable cholesteric liquid crystal composition.
  • the total content of (III) is preferably 10 to 98% by mass, more preferably 15 to 98% by mass, and particularly preferably 20 to 98% by mass.
  • the lower limit is preferably 30% by mass or more, and more preferably 50% by mass or more.
  • Trifunctional polymerizable liquid crystal compound The polymerizable liquid crystal compound represented by the above general formula (I-1) having two or more polymerizable functional groups in the molecule includes the following general formula (I- It is preferable to use a trifunctional polymerizable liquid crystal compound represented by 1-2).
  • P 12 to P 13 each independently represents a polymerizable functional group
  • Sp 11 to S 13 each independently represents an alkylene group having 1 to 18 carbon atoms or a single bond
  • one -CH 2 in the group - or nonadjacent two or more -CH 2 - are each independently -O -, - COO -, - OCO- or --OCO-O-substituted by
  • one or more hydrogen atoms of the alkylene group may be substituted with a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or a CN group
  • X 11 to X 13 are each Independently, —O—, —S—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —CO—S—, —S—CO—, —O— CO—O—, —CO—NH—, —NH
  • each of Sp 11 to Sp 13 preferably independently represents an alkylene group having 1 to 15 carbon atoms
  • one —CH 2 — in the alkylene group or two or more non-adjacent — CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—
  • one or more hydrogen atoms of the alkylene group may be a halogen atom (Fluorine atom, chlorine atom, bromine atom, iodine atom) or CN group may be substituted
  • Sp 11 to Sp 13 each independently preferably represents an alkylene group having 1 to 12 carbon atoms
  • one —CH 2 — or two or more non-adjacent —CH 2 — are each independently substituted by —O—, —COO—, —OCO— or —OCO—O—.
  • X 11 to X 13 are each independently —O—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NH.
  • A1, A2 and A3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1,3 -Dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine-2 , 5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6-diyl Group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydroph
  • Z1 and Z2 are each independently —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —CH ⁇ CH—, —C ⁇ C—, —CH ⁇ CHCOO—, —OCOCH ⁇ CH—, —CH 2 CH 2 COO—, —CH 2 CH 2 OCO—, —COOCH 2 CH 2 —, —OCOCH 2 CH 2 —, —C ⁇ N—, —N ⁇ C— , —CONH—, —NHCO—, —C (CF 3 ) 2 —, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or an alkyl group having 2 to 10 carbon atoms or a single atom Z1 and Z2 each independently represent —COO—, —OCO—, —CH 2 CH 2 —, —OCH 2 —, —CH 2 O—, —
  • Examples of the general formula (I-1-2) include compounds represented by the following general formulas (I-1-2-1) to (I-1-2-8). The formula is not limited.
  • the general formula (I-1-2 ) Represents the same definition as A11, A12, A13, A2, and A3 each represent the same definition as A1 to A3 in the general formula (I-2-b), and may be the same or different, Z11, Z12, Z13, and Z2 each represent the same definition as Z1 and Z2 in the general formula (I-2-b), and may be the same or different.
  • the compounds represented by the above general formulas (I-1-2-1) to (I-1-2-8) include the following general formulas (I-1-2-1-1) to (I-1 -2-1-8), but is not limited thereto.
  • R f , R g and R h each independently represent a hydrogen atom or a methyl group
  • R i , R j and R k each independently represent a hydrogen atom, a halogen atom (fluorine atom, A chlorine atom, a bromine atom, an iodine atom), an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or a cyano group, and these groups are alkyl groups having 1 to 6 carbon atoms, or 1 carbon atom
  • the alkoxy groups of 6 to 6 all are unsubstituted or may be substituted by one or more halogen atoms (fluorine atom, chlorine atom, bromine atom, iodine atom), Is one or more of F, Cl, CF 3 , O
  • the polyfunctional polymerizable liquid crystal compound having three polymerizable functional groups can be arbitrarily used alone or in combination of two or more.
  • the total content of the polyfunctional polymerizable liquid crystal compound having three polymerizable functional groups in the molecule is within the polymerizable cholesteric liquid crystal composition including the polymerizable liquid crystal compound represented by the general formula (II-1).
  • the total content of the polymerizable liquid crystal compound (I), the polymerizable liquid crystal compound (II) and the chiral compound (III) contained in is preferably 0 to 40% by mass, and preferably 0 to 30% by mass. Is more preferable, and the content is particularly preferably 0 to 20% by mass.
  • one or more monofunctional polymerizable liquid crystal compounds (II) having one polymerizable functional group in the molecule can be arbitrarily used.
  • the polymerizable liquid crystal composition of the present invention when a polymerizable liquid crystal compound having two or more polymerizable functional groups in the molecule is used as an essential component, the polymerizable liquid crystal composition has one polymerizable functional group in the molecule.
  • a monofunctional polymerizable liquid crystal compound can be used as an optional component.
  • Specific examples of the monofunctional polymerizable liquid crystal compound include compounds represented by general formula (II-1) below.
  • P 22 represents a polymerizable functional group
  • Sp 22 represents an alkylene group having 1 to 18 carbon atoms or a single bond, and one —CH 2 — or two not adjacent to each other in the alkylene group.
  • the above —CH 2 — may be each independently substituted by —O—, —COO—, —OCO— or —OCO—O—, and one or more hydrogen atoms of the alkylene group are ,
  • a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or a CN group
  • X 22 represents —O—, —S—, —OCH 2 —, —CH 2 O—, —CO -, -COO-, -OCO-, -CO-S-, -S-CO-, -O-CO-O-, -CO-NH-, -NH-CO-, -SCH 2- , -
  • Atom, iodine atom cyano group, straight from 1 to 12 carbon atoms
  • —NH—CO— —NH—, —N (CH 3 ) —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH— , —CH ⁇ CH—, —CF ⁇ CF— or —C ⁇ C—, wherein one or more hydrogen atoms of the alkyl group and the alkenyl group are each independently a halogen atom. Placed by atom (fluorine atom, chlorine atom, bromine atom, iodine atom) or cyano group It may be, even in the respective same if it is more substituents may be different.
  • P 22 preferably represents a substituent selected from polymerizable groups represented by the following formulas (P-2-1) to (P-2-20).
  • Sp 22 is preferably represents an alkylene group having 1 to 15 carbon atoms, one -CH 2 in the alkylene group - or nonadjacent two or more -CH 2 - are each independently
  • One or more hydrogen atoms of the alkylene group which may be substituted by —O—, —COO—, —OCO— or —OCO—O— are a halogen atom (a fluorine atom, a chlorine atom, a bromine atom).
  • Sp 22 preferably represents an alkylene group having 1 to 12 carbon atoms, and one —CH 2 — or adjacent group in the alkylene group Two or more —CH 2 — which are not present may be each independently replaced by —O—, —COO—, —OCO— or —OCO—O—.
  • X 22 represents —O—, —OCH 2 —, —CH 2 O—, —CO—, —COO—, —OCO—, —O—CO—O—, —CO—NH—, —NH—CO—, —CF 2 O—, —OCF 2 —, —CH ⁇ CH—COO—, —CH ⁇ CH—OCO—, —COO—CH ⁇ CH—, —OCO—CH ⁇ CH—, —COO—CH 2 CH 2 —, —OCO—CH 2 CH 2 —, —CH 2 CH 2 —COO—, —CH 2 CH 2 —OCO—, —COO—CH 2 —, —OCO—CH 2 —, —CH 2 —COO—, It preferably represents —CH 2 —OCO—, —CH ⁇ CH—, —N ⁇ N—, —CH ⁇ N—N ⁇ CH—, —CF ⁇ CF—, —C ⁇ C— or a single bond
  • A1, A2 and A3 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1, 3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine- 2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6- Diyl group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-dihydrophenant
  • Bromine atom, iodine atom) or It may be substituted by anode group, even each identical If a plurality substituted, may be different.
  • Examples of the general formula (II-1) include compounds represented by the following general formulas (II-1-1) to (II-1-4), but are not limited to the following general formulas is not.
  • P 22 , Sp 22 , X 22 , q1 and R 21 each represent the same definition as in the general formula (II-1), A11, A12, A13, A2, and A3 represent the same definitions as A1 to A3 in the general formula (II-1-b), and may be the same or different, Z11, Z12, Z13, and Z2 represent the same definitions as Z1 to Z3 in the general formula (II-1-b), and may be the same or different,
  • the compounds represented by the general formulas (II-1-1) to (II-1-4) are represented by the following formulas (II-1-1-1) to (II-1-1-26). The compounds represented are exemplified, but not limited thereto.
  • R c represents a hydrogen atom or a methyl group
  • m represents an integer of 0 to 18
  • n represents 0 or 1
  • R 21 represents the above general formulas (II-1-1) to (II- 1-4) represents the same as defined above, but R 21 represents a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), a cyano group, or one —CH 2 — represents —O—.
  • the cyclic group includes one or more F, Cl, CF 3 , OCF 3 , CN groups, an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, and 1 to 8 alkanoyl groups, alkanoyloxy groups having 1 to 8 carbon atoms, alkoxycarbonyl groups having 1 to 8 carbon atoms, alkenyl groups having 2 to 8 carbon atoms, alkenyloxy groups having 2 to 8 carbon atoms, carbon atoms It may have an alkenoyl group having 2 to 8 carbon atoms and an alkenoyloxy group having 2 to 8 carbon atoms.
  • the total content of the monofunctional polymerizable liquid crystal compound having one polymerizable functional group in the molecule is the polymerizable liquid crystal compound (I), polymerizable liquid crystal compound (II) contained in the polymerizable cholesteric liquid crystal composition, and
  • the total content of the chiral compound (III) is preferably 0 to 55% by mass, more preferably 0 to 50% by mass, and particularly preferably 0 to 45% by mass.
  • the upper limit is preferably 50% by mass or less, and more preferably 40% by mass or less.
  • the polymerizable cholesteric liquid crystal composition of the present invention it is preferable to use a mixture of a plurality of the polymerizable liquid crystal compounds, and the polymerizable liquid crystal compound having one polymerizable functional group in the at least one molecule.
  • a polymerizable liquid crystal compound having two polymerizable functional groups in at least one molecule are essential components.
  • at least one polymerizable liquid crystal compound selected from (II-1-2) to (II-1-4) having one polymerizable functional group in the molecule, and (I-1- is particularly preferable to use a polymerizable liquid crystal compound having two polymerizable functional groups in at least one molecule selected from 2) to (I-1-4) as a mixture.
  • the total amount of the polymerizable liquid crystal compound having one polymerizable functional group in the molecule and the polymerizable liquid crystal compound having two polymerizable functional groups in the molecule is determined by the polymerization used in the polymerizable cholesteric liquid crystal composition.
  • the total amount of the liquid crystalline compound is preferably 60% by mass to 100% by mass, particularly preferably 70% by mass to 100% by mass.
  • the liquid crystal composition of the present invention may contain a compound containing a mesogenic group having no polymerizable group, such as a normal liquid crystal device such as STN (Super Twisted Nematic) liquid crystal, TN ( The compound used for a twisted nematic liquid crystal, TFT (thin film transistor) liquid crystal, etc. is mentioned.
  • the compound containing a mesogenic group having no polymerizable functional group is preferably a compound represented by the following general formula (5).
  • the mesogenic group represented by MG 3 has the general formula (5-b)
  • A1 d , A2 d and A3 d are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group 1,3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group Pyridine-2,5-diyl group, pyrimidine-2,5-diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2 , 6-diyl group, 2,6-naphthylene group, phenanthrene-2,7-diyl group, 9,10-d
  • -O -, - S may, independently each two or more CH 2 groups not one CH 2 group or adjacent present in this group to each other, in a manner that oxygen atoms are not directly bonded to each other, -O -, - S May be replaced by —, —NH—, —N (CH 3 ) —, —CO—, —COO—, —OCO—, —OCOO—, —SCO—, —COS— or —C ⁇ C—. . ).
  • Ra and Rb each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 1 to 6 carbon atoms, or a cyano group.
  • an alkyl group of ⁇ 6 or an alkoxy group of 1 to 6 carbon atoms all may be unsubstituted or substituted by one or more halogen atoms.
  • the total content of the compound having a mesogenic group is preferably 0 to 20% by mass, and preferably 0 to 15% by mass, based on the total amount of the polymerizable liquid crystal compound used in the polymerizable cholesteric liquid crystal composition. 0 to 10% by mass is particularly preferable.
  • the polymerizable cholesteric liquid crystal composition in the present invention contains a chiral compound (III) which may exhibit liquid crystallinity or may be non-liquid crystalline.
  • the chiral compound used in the present invention preferably has one or more polymerizable functional groups.
  • the polymerizable chiral compound preferably has one or more polymerizable functional groups. Examples of such compounds include JP-A-11-193287, JP-A-2001-158788, JP-T 2006-52669, JP-A-2007-269639, JP-A-2007-269640, 2009.
  • -84178 which contains chiral saccharides such as isosorbide, isomannite, glucoside, etc., and a rigid group such as 1,4-phenylene group and 1,4-cyclohexylene group, and a vinyl group
  • a polymerizable chiral compound having a polymerizable functional group such as an acryloyl group, a (meth) acryloyl group, or a maleimide group, a polymerizable chiral compound comprising a terpenoid derivative as described in JP-A-8-239666, NATURE VOL35, pages 467-469 (November 30, 1995) Issue), NATURE VOL392, pages 476-479 (issued on April 2, 1998), or the like, or a polymerizable chiral compound comprising a mesogenic group and a spacer having a chiral moiety, or JP-T-2004-504285.
  • a polymerizable chiral compound containing a binaphthyl group as described in JP-A-2007-248945 is preferable for the polymerizable cholesteric liquid crystal composition of the present invention.
  • the compounding amount of the polymerizable chiral compound needs to be appropriately adjusted depending on the helical induction force of the compound, but the polymerizable liquid crystal compound (I) and the polymerizable liquid crystal compound (II) contained in the polymerizable cholesteric liquid crystal composition. And 2 to 25% by mass of the total content of the chiral compound (III), preferably 2 to 20% by mass, more preferably 2 to 15% by mass. It is particularly preferable to contain 15% by mass.
  • Examples of the general formula of the chiral compound include general formulas (III-1) to (III-4), but are not limited to the following general formula.
  • Sp 3a and Sp 3b each independently represent an alkylene group having 0 to 18 carbon atoms, and the alkylene group is a carbon atom having one or more halogen atoms, a CN group, or a polymerizable functional group.
  • alkyl group having 1 to 8 may be substituted by an alkyl group having 1 to 8, two or more of CH 2 groups, independently of one another each of the present in the radical is not one CH 2 group or adjacent, each other oxygen atom -O-, -S-, -NH-, -N (CH 3 )-, -CO-, -COO-, -OCO-, -OCOO-, -SCO-, -COS- Or it may be replaced by -C ⁇ C- A1, A2, A3, A4 and A5 are each independently 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, , 3-dioxane-2,5-diyl group, tetrahydrothiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2
  • R 3a and R 3b are represented by the general formula (III-a)
  • P 3a represents a polymerizable functional group.
  • P 3a preferably represents a substituent selected from the polymerizable groups represented by the following formulas (P-1) to (P-20).
  • the formula (P-1) or the formulas (P-2), (P-7), (P-12), (P-13) ) are preferred, and formulas (P-1), (P-7), and (P-12) are more preferred.
  • chiral compound examples include compounds (III-5) to (III-46), but are not limited to the following compounds.
  • n and n each independently represent an integer of 1 to 18, R and R 1 to R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 1 to 6 carbon atoms.
  • the polymerizable liquid crystal composition of the present invention may exhibit liquid crystallinity other than the polymerizable compound represented by the general formula (II), may be non-liquid crystalline, and may contain a polymerizable discotic compound. it can.
  • the polymerizable discotic compound used in the present invention preferably has one or more polymerizable functional groups.
  • examples of such compounds include polymerizable compounds described in, for example, JP-A-7-281028, JP-A-7-287120, JP-A-7-333431, and JP-A-8-27284. Is mentioned.
  • the blending amount of the polymerizable discotic compound needs to be appropriately adjusted depending on the compound, but is preferably contained in an amount of 0 to 10% by mass in the polymerizable composition.
  • Examples of the general formula of the polymerizable discotic compound include general formulas (4-1) to (4-3), but are not limited to the following general formula.
  • Sp 4 represents an alkylene group having 0 to 18 carbon atoms, and the alkylene group is substituted with one or more halogen atoms, CN group, or an alkyl group having 1 to 8 carbon atoms having a polymerizable functional group.
  • a 4 represents 1,4-phenylene group, 1,4-cyclohexylene group, 1,4-cyclohexenyl group, tetrahydropyran-2,5-diyl group, 1,3-dioxane-2,5-diyl group, tetrahydro Thiopyran-2,5-diyl group, 1,4-bicyclo (2,2,2) octylene group, decahydronaphthalene-2,6-diyl group, pyridine-2,5-diyl group, pyrimidine-2,5 -Diyl group, pyrazine-2,5-diyl group, thiophene-2,5-diyl group-, 1,2,3,4-tetrahydronaphthalene-2,6-diyl group, 2,6-naphthylene group, phenanthrene- 2,7-diyl group, 9,10-dihydrophenanthrene-2,7-
  • One CH 2 group present or two or more non-adjacent CH 2 groups are each independently of each other in a form in which oxygen atoms are not directly bonded to each other, —O—, —S—, —NH—, May be replaced by —N (CH 3 ) —, —CO—, —COO—, —OCO—, —OCOO—, —SCO—, —COS— or —C ⁇ C—, Or R 4 represents the general formula (4-a)
  • P 4a represents a polymerizable functional group
  • Sp 3a represents the same meaning as Sp 1
  • P 4a preferably represents a substituent selected from the polymerizable groups represented by the following formulas (P-1) to (P-20).
  • the formula (P-1) or the formulas (P-2), (P-7), (P-12), (P-13) ) are preferred, and formulas (P-1), (P-7), and (P-12) are more preferred.
  • polymerizable discotic compound examples include compounds (4-4) to (4-8), but are not limited to the following compounds.
  • (Polymerization initiator) (Photopolymerization initiator)
  • the polymerizable liquid crystal composition in the present invention preferably contains a photopolymerization initiator. It is preferable to contain at least one photopolymerization initiator.
  • the amount of photopolymerization initiator used is when the total content of the polymerizable liquid crystal compound (I), the polymerizable liquid crystal compound (II) and the chiral compound (III) contained in the polymerizable cholesteric liquid crystal composition is 100 parts by mass. It is preferable to add 0.1 to 7 parts by mass, more preferably 0.5 to 6 parts by mass, still more preferably 1 to 6 parts by mass, and particularly preferably 3 to 6 parts by mass. These can be used alone or in combination of two or more, and a sensitizer or the like may be added.
  • thermo polymerization initiator In the polymerizable cholesteric liquid crystal composition of the present invention, a thermal polymerization initiator may be used in combination with a photopolymerization initiator.
  • a thermal polymerization initiator known and conventional ones can be used.
  • methyl acetoacetate peroxide cumene hydroperoxide, benzoyl peroxide, bis (4-t-butylcyclohexyl) peroxydicarbonate, t-butyl Peroxybenzoate, methyl ethyl ketone peroxide, 1,1-bis (t-hexylperoxy) 3,3,5-trimethylcyclohexane, p-pentahydroperoxide, t-butylhydroperoxide, dicumyl peroxide, isobutyl Organic peroxides such as peroxide, di (3-methyl-3-methoxybutyl) peroxydicarbonate, 1,1-bis (t-butylperoxy) cyclohexane, 2,2′-azobisisobutyronitrile , 2,2'-azobis (2,4 Azonitrile compounds such as dimethylvaleronitrile), azoamidin compounds such as 2,2′-azobis (2-methyl-N-phenyl
  • the amount of the thermal polymerization initiator used is when the total content of the polymerizable liquid crystal compound (I), the polymerizable liquid crystal compound (II) and the chiral compound (III) contained in the polymerizable cholesteric liquid crystal composition is 100 parts by mass. It is preferable to add 0.1 to 7 parts by mass, more preferably 0.3 to 6 parts by mass, and particularly preferably 0.5 to 5% by mass. These can be used alone or in combination of two or more. (Compound having a repeating unit)
  • the polymerizable cholesteric liquid crystal composition of the present invention preferably contains a non-silicon compound (V) having a repeating unit.
  • an optical anisotropic body is formed using a polymerizable cholesteric liquid crystal composition, and further, a protective layer for protecting the optical anisotropic body is separately laminated on the optical anisotropic film,
  • a non-silicon compound (V) having a repeating unit or a solution containing a non-silicon compound (V) having a repeating unit is used. It is not always necessary to contain the non-silicon compound (V) having a unit.
  • an optical anisotropic body having a good alignment state and excellent heat resistance can be obtained.
  • examples of the non-silicon compound (V) having a repeating unit include an acrylic compound and / or a methacrylic compound (V-1) having a repeating unit.
  • the acrylic compound and / or methacrylic compound (V-1) having a repeating unit may have a repeating unit. Even if it is a monomer, a polymer, a (meth) acrylic compound, Copolymers of (meth) acrylic compounds and other polymerizable compounds may be used, but the molecular weight Mw is 200000 or less and Mn is 400000 or less so that it can be dissolved in the solvent used for the polymerizable cholesteric liquid crystal composition.
  • acrylic compound and / or methacrylic compound (V-1) include the following formulas (V-1-1) to (V-1-15).
  • Copolymer of 2-ethylhexyl acrylate and butyl acrylate (V-1-1) Copolymer of butyl acrylate and butyl methacrylate (V-1-2) 2-ethylbutyl acrylate polymer (V-1-3)
  • Ethyl acrylate polymer (V-1-5) Polymer of 2-ethylhexyl acrylate (V-1-6) 1,9-nonanediol acrylate (V-1-7)
  • Polypropylene glycol diacrylate (V-1-8) Polymer of benzyl acrylate (V-1-9) Copolymer of 2-ethylhexyl acrylate, butyl acrylate, butyl methacrylate (V-1-10)
  • f, g, l and o each represents an integer of 1 or more, f is preferably 15 to 50, g is preferably 50 to 85, l is preferably 1 to 20, and o is 1 to 20 N, h, m and s each represent an integer of 1 or more, n is preferably 1 to 20, h is preferably 1 to 20, m is preferably 1 to 20, and s is 1 to
  • each of R and R ⁇ independently represents a hydrocarbon group having 1 to 20 carbon atoms or an aromatic hydrocarbon, and the hydrogen atom in the hydrocarbon group contains one or more hydrogen atoms.
  • examples of the non-silicon compound (V) having a repeating unit include compounds having a repeating unit represented by the following general formula (V-2) and having a weight average molecular weight of 100 or more.
  • each of R 11 , R 12 , R 13 and R 14 independently represents a hydrogen atom, a halogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and one or more hydrogen atoms in the hydrocarbon group It may be substituted with a halogen atom.
  • Examples of suitable compounds represented by the general formula (V-2) include polyethylene, polypropylene, polyisobutylene, paraffin, liquid paraffin, chlorinated polypropylene, chlorinated paraffin, and chlorinated liquid paraffin.
  • examples of the non-silicon compound (V) having a repeating unit include a polyimide compound and / or a polyamide compound (V-3) having a repeating unit represented by the following general formula or the like.
  • the polyimide compound and / or polyamide compound (V-3) having a repeating unit may have a repeating unit. Even if it is a monomer, a polymer, a polyimide compound and / or a polyamide compound may be used. It is preferable that the molecular weight Mw is 200000 or less and Mn is 400000 or less so that it can be dissolved in the solvent used for the polymerizable cholesteric liquid crystal composition.
  • Specific examples of the polyimide compound and / or the polyamide compound (V-3) include polymers of the following formulas (V-3-1) to (V-3-4).
  • the amount of the non-silicon compound (V) having a repeating unit is the total content of the polymerizable liquid crystal compound (I), the polymerizable liquid crystal compound (II) and the chiral compound (III) contained in the polymerizable cholesteric liquid crystal composition.
  • Organic solvent An organic solvent may be added to the polymerizable cholesteric liquid crystal composition in the present invention.
  • the organic solvent in which a polymeric liquid crystal compound shows favorable solubility is preferable, and it is preferable that it is an organic solvent which can be dried at the temperature of 100 degrees C or less.
  • organic solvents include aromatic hydrocarbons such as toluene, xylene, cumene, and mesitylene, ester solvents such as methyl acetate, ethyl acetate, propyl acetate, and butyl acetate, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclohexane, and the like.
  • Ketone solvents such as pentanone, ether solvents such as tetrahydrofuran, 1,2-dimethoxyethane and anisole, amide solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone, propylene glycol monomethyl ether acetate , Diethylene glycol monomethyl ether acetate, ⁇ -butyrolactone, chlorobenzene and the like.
  • amide solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone
  • propylene glycol monomethyl ether acetate Diethylene glycol monomethyl ether acetate, ⁇ -butyrolactone, chlorobenzene and the like.
  • amide solvents such as N, N-dimethylformamide and N-methyl-2-pyrrolidone
  • propylene glycol monomethyl ether acetate Diethylene glycol monomethyl ether acetate, ⁇ -butyrolactone, chlorobenzene and the like.
  • the composition used in the present invention can be applied to a substrate as a solution of an organic solvent, and the ratio of the organic solvent used in the polymerizable cholesteric liquid crystal composition is not particularly limited as long as the applied state is not significantly impaired.
  • the total amount of the organic solvent contained in the polymerizable cholesteric liquid crystal composition is preferably 10 to 95% by mass, more preferably 12 to 90% by mass, and 15 to 85% by mass. Is particularly preferred.
  • the heating temperature at the time of heating and stirring may be appropriately adjusted in consideration of the solubility of the composition to be used in the organic solvent, but is preferably 15 ° C. to 110 ° C., more preferably 15 ° C. to 105 ° C. from the viewpoint of productivity. 15 to 100 ° C. is more preferable, and 20 to 90 ° C. is particularly preferable.
  • dispersion stirrer when adding the solvent, it is preferable to stir and mix with a dispersion stirrer.
  • the dispersion stirrer include a disperser having a stirring blade such as a disper, a propeller, and a turbine blade, a paint shaker, a planetary stirring device, a shaker, a stirrer, a shaker, or a rotary evaporator.
  • an ultrasonic irradiation apparatus can be used.
  • the number of rotations of stirring when adding the solvent is preferably adjusted appropriately depending on the stirring device used, but the number of rotations of stirring is preferably 10 rpm to 1000 rpm in order to obtain a uniform polymerizable liquid crystal composition solution, and 50 rpm to 800 rpm is more preferable, and 150 rpm to 600 rpm is particularly preferable.
  • a polymerization inhibitor is preferably added to the polymerizable cholesteric liquid crystal composition in the present invention.
  • the polymerization inhibitor include phenol compounds, quinone compounds, amine compounds, thioether compounds, nitroso compounds, and the like.
  • phenolic compounds include p-methoxyphenol, cresol, t-butylcatechol, 3.5-di-t-butyl-4-hydroxytoluene, 2.2'-methylenebis (4-methyl-6-t-butylphenol) 2.2′-methylenebis (4-ethyl-6-tert-butylphenol), 4.4′-thiobis (3-methyl-6-tert-butylphenol), 4-methoxy-1-naphthol, 4,4′- Dialkoxy-2,2′-bi-1-naphthol, and the like.
  • quinone compounds include hydroquinone, methylhydroquinone, tert-butylhydroquinone, p-benzoquinone, methyl-p-benzoquinone, tert-butyl-p-benzoquinone, 2,5-diphenylbenzoquinone, 2-hydroxy-1,4-naphthoquinone 1,4-naphthoquinone, 2,3-dichloro-1,4-naphthoquinone, anthraquinone, diphenoquinone and the like.
  • amine compounds include p-phenylenediamine, 4-aminodiphenylamine, N.I. N'-diphenyl-p-phenylenediamine, Ni-propyl-N'-phenyl-p-phenylenediamine, N- (1.3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, N.I. N′-di-2-naphthyl-p-phenylenediamine, diphenylamine, N-phenyl- ⁇ -naphthylamine, 4.4′-dicumyl-diphenylamine, 4.4′-dioctyl-diphenylamine and the like.
  • thioether compounds include phenothiazine and distearyl thiodipropionate.
  • nitroso compounds include N-nitrosodiphenylamine, N-nitrosophenylnaphthylamine, N-nitrosodinaphthylamine, p-nitrosophenol, nitrosobenzene, p-nitrosodiphenylamine, ⁇ -nitroso- ⁇ -naphthol, and the like, N, N-dimethyl p-nitrosoaniline, p-nitrosodiphenylamine, p-nitronedimethylamine, p-nitrone-N, N-diethylamine, N-nitrosoethanolamine, N-nitrosodi-n-butylamine, N-nitroso-Nn-butyl- 4-butanolamine, N-nitroso-diisopropanolamine, N-nitroso-N-ethyl-4-butanolamine, 5-nitroso-8-hydroxyquinoline, N-nitrosomorpholine, N-nitros
  • the addition amount of the polymerization inhibitor is when the total content of the polymerizable liquid crystal compound (I), the polymerizable liquid crystal compound (II) and the chiral compound (III) contained in the polymerizable cholesteric liquid crystal composition is 100 parts by mass.
  • the amount is preferably 0.01 to 1.0 part by mass, and more preferably 0.05 to 0.5 part by mass.
  • the polymerizable cholesteric liquid crystal composition of the present invention may contain one or more alignment control agents that further promote the alignment in order to bring the polymerizable liquid crystal compound into a cholesteric alignment (planar alignment) state.
  • Alignment control agents that can be contained include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, fluoro Examples include alkylethylene oxide derivatives, polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts, and the like, and fluorine-containing surfactants are particularly preferable.
  • orientation control agent examples include compounds represented by the following general formulas (5-1) to (5-4), but the structure is not limited thereto.
  • R may be the same or different and each represents an alkoxy group having 1 to 30 carbon atoms which may be substituted with a fluorine atom.
  • m1, m2 and m3 each represents an integer of 1 or more. Represents.
  • Chain transfer agent The polymerizable cholesteric liquid crystal composition in the present invention preferably further includes a chain transfer agent in order to further improve the adhesion to the base material in the case of an optical anisotropic body.
  • chain transfer agent examples include aromatic hydrocarbons, halogenated hydrocarbons such as chloroform, carbon tetrachloride, carbon tetrabromide, and bromotrichloromethane, and thiol compounds such as monothiol, dithiol, trithiol, and tetrathiol.
  • aromatic hydrocarbons and thiol compounds are more preferable.
  • compounds represented by the following general formulas (8-1) to (8-12) are preferable.
  • R 65 represents an alkyl group having 2 to 18 carbon atoms, and the alkyl group may be linear or branched, and one or more methylene groups in the alkyl group are oxygen atoms.
  • a sulfur atom that is not directly bonded to each other may be substituted with an oxygen atom, a sulfur atom, —CO—, —OCO—, —COO—, or —CH ⁇ CH—
  • R 66 is a carbon atom Represents an alkylene group of 2 to 18, and one or more methylene groups in the alkylene group are oxygen atoms, sulfur atoms, —CO—, —OCO—, wherein oxygen atoms and sulfur atoms are not directly bonded to each other.
  • —COO—, or —CH ⁇ CH— may be substituted.
  • the addition amount of the chain transfer agent is determined when the total content of the polymerizable liquid crystal compound (I), the polymerizable liquid crystal compound (II) and the chiral compound (III) contained in the polymerizable cholesteric liquid crystal composition is 100 parts by mass. 0.5 to 10 parts by mass, and more preferably 1.0 to 5.0 parts by mass. (Other additives) Furthermore, in order to adjust the physical properties, additives such as polymerizable compounds that do not have liquid crystallinity, thixotropic agents, ultraviolet absorbers, infrared absorbers, antioxidants, surface treatment agents, etc., do not significantly reduce the alignment ability of liquid crystals. To the extent that can be added.
  • optical anisotropic The optical anisotropic body of the present invention is obtained by coating the polymerizable cholesteric liquid crystal composition of the present invention on a substrate having an alignment function, and then transferring the liquid crystal molecules in the polymerizable cholesteric liquid crystal composition of the present invention to a nematic phase, chiral It is obtained by aligning and polymerizing while maintaining the smectic phase.
  • the retardation film described later is one of the uses of the optical anisotropic body, and is included in the concept of the optical anisotropic body.
  • the retardation film of the present invention is produced in the same manner as the optical anisotropic body of the present invention. A liquid crystalline compound uniformly forms a continuous alignment state with respect to the substrate, and a retardation film is obtained.
  • the retardation film of the present invention is synonymous with the retardation layer and the retardation film.
  • Examples of the retardation film obtained by aligning and polymerizing the polymerizable cholesteric liquid crystal composition of the present invention on a substrate by coating or the like include a negative C plate and a biaxial plate.
  • the negative C plate has a refractive index in the in-plane slow axis direction of the retardation film nx, a refractive index in the in-plane fast axis direction of the retardation film ny, and a refractive index in the thickness direction of the retardation film.
  • the refractive index in the in-plane slow axis direction of the retardation film is nx
  • the refractive index in the in-plane fast axis direction of the retardation film is ny
  • the refractive index in the thickness direction of the retardation film is nz.
  • the retardation film has a relationship of “nx>ny> nz”.
  • the retardation film of the present invention is suitable for use depending on the use such as a liquid crystal display device, a display, an optical element, an optical component, a colorant, a security marking, a laser emission member, an optical film, and a compensation film. Applied in form.
  • an adhesive, an adhesive layer, an adhesive, an adhesive layer, a protective film, a polarizing film, or the like may be laminated.
  • the retardation patterning film of the present invention is obtained by sequentially laminating a substrate, an alignment film, and a polymer of a polymerizable cholesteric liquid crystal composition in the same manner as the optical anisotropic body of the present invention.
  • the patterning is performed so that different phase differences can be obtained. Patterning may be in different directions, such as lattice patterning, circular patterning, polygonal patterning, and the like.
  • the retardation patterning film of the present invention is applied depending on the use of a liquid crystal display device, a display, an optical element, an optical component, a colorant, a security marking, a laser emission member, an optical film, a compensation film, and the like. .
  • the polymerizable liquid crystal composition is patterned and aligned when an alignment film is provided on the substrate and the polymerizable cholesteric liquid crystal composition of the present invention is applied and dried during the alignment treatment.
  • an alignment treatment include a fine rubbing treatment, a polarized ultraviolet visible light irradiation treatment through a photomask, and a fine shape processing treatment.
  • the alignment film known and conventional ones are used.
  • Such alignment films include polyimide, polysiloxane, polyamide, polyvinyl alcohol, polycarbonate, polystyrene, polyphenylene ether, polyarylate, polyethylene terephthalate, polyether sulfone, epoxy resin, epoxy acrylate resin, acrylic resin, coumarin compound, chalcone.
  • the compound include compounds, cinnamate compounds, fulgide compounds, anthraquinone compounds, azo compounds, and arylethene compounds.
  • the compound subjected to the alignment treatment by fine rubbing is preferably an alignment treatment or a compound in which crystallization of the material is promoted by adding a heating step after the alignment treatment.
  • the brightness enhancement film of the present invention is produced in the same manner as the optical anisotropic body of the present invention.
  • a retardation film obtained by curing a polymerizable cholesteric liquid crystal composition and a ⁇ / 4 wavelength plate with an adhesive layer or the like it can be used as the brightness enhancement film of the present invention.
  • the antireflection film of the present invention is produced in the same manner as the optical anisotropic body of the present invention.
  • a retardation film obtained by curing a polymerizable cholesteric liquid crystal composition and a ⁇ / 4 wavelength plate with an adhesive layer or the like it can be used as an antireflection film of the present invention.
  • Image display devices such as organic EL have problems such as reflection of external light and reflection of the background. However, the above problem can be prevented by providing the antireflection film of the present invention.
  • Thermal barrier film The thermal barrier film of the present invention is produced in the same manner as the optical anisotropic body of the present invention.
  • the base material used for the optical anisotropic body of the present invention is a base material usually used for a liquid crystal display device, a display, an optical component or an optical film, and is dried after application of the polymerizable cholesteric liquid crystal composition of the present invention. There is no particular limitation as long as it is a material having heat resistance that can withstand the heating.
  • Examples of such a substrate include organic materials such as a glass substrate, a metal substrate, a ceramic substrate, and a plastic substrate.
  • organic materials such as a glass substrate, a metal substrate, a ceramic substrate, and a plastic substrate.
  • examples thereof include cellulose derivatives, polyolefins, polyesters, polycarbonates, polyacrylates (acrylic resins), polyarylate, polyether sulfone, polyimide, polyphenylene sulfide, polyphenylene ether, nylon, and polystyrene.
  • plastic base materials such as polyester, polystyrene, polyacrylate, polyolefin, cellulose derivative, polyarylate, and polycarbonate are preferable, and base materials such as polyacrylate, polyolefin, and cellulose derivative are more preferable, and COP (cycloolefin polymer) is used as the polyolefin. It is particularly preferable to use TAC (triacetyl cellulose) as the cellulose derivative and PMMA (polymethyl methacrylate) as the polyacrylate.
  • TAC triacetyl cellulose
  • PMMA polymethyl methacrylate
  • As a shape of a base material you may have a curved surface other than a flat plate.
  • These base materials may have an electrode layer, an antireflection function, and a reflection function as needed.
  • surface treatment of these substrates may be performed.
  • the surface treatment include ozone treatment, plasma treatment, corona treatment, silane coupling treatment, and the like.
  • an organic thin film, an inorganic oxide thin film, a metal thin film, etc. are provided on the surface of the substrate by a method such as vapor deposition, or in order to add optical added value.
  • the material may be a pickup lens, a rod lens, an optical disk, a retardation film, a light diffusion film, a color filter, or the like.
  • a pickup lens, a retardation film, a light diffusion film, and a color filter that have higher added value are preferable.
  • the substrate is usually subjected to an alignment treatment or an alignment film so that the polymerizable cholesteric liquid crystal composition is aligned when the polymerizable cholesteric liquid crystal composition of the present invention is applied and dried. May be.
  • the alignment treatment include stretching treatment, rubbing treatment, polarized ultraviolet visible light irradiation treatment, ion beam treatment, and the like.
  • the alignment film is used, a known and conventional alignment film is used.
  • Such alignment films include polyimide, polysiloxane, polyamide, polyvinyl alcohol, polycarbonate, polystyrene, polyphenylene ether, polyarylate, polyethylene terephthalate, polyether sulfone, epoxy resin, epoxy acrylate resin, acrylic resin, coumarin compound, chalcone.
  • the compound include compounds, cinnamate compounds, fulgide compounds, anthraquinone compounds, azo compounds, and arylethene compounds.
  • the compound subjected to the alignment treatment by rubbing is preferably an alignment treatment or a compound in which crystallization of the material is promoted by inserting a heating step after the alignment treatment.
  • Application methods for obtaining the optical anisotropic body of the present invention include applicator method, bar coating method, spin coating method, roll coating method, direct gravure coating method, reverse gravure coating method, flexo coating method, ink jet method, and die coating.
  • a publicly known method such as a method, a cap coating method, a dip coating method, or a slit coating method can be used. After applying the polymerizable cholesteric liquid crystal composition, it is dried if necessary.
  • the polymerizable cholesteric liquid crystal composition causes decomposition or the like due to ultraviolet light of 390 nm or less, it may be preferable to perform polymerization treatment with ultraviolet light of 390 nm or more.
  • This light is preferably diffused light and unpolarized light.
  • Examples of the method for polymerizing the polymerizable cholesteric liquid crystal composition of the present invention include a method of irradiating active energy rays and a thermal polymerization method. However, since the reaction proceeds at room temperature without requiring heating, the active energy rays are used. In particular, a method of irradiating light such as ultraviolet rays is preferable because the operation is simple.
  • the temperature during irradiation is preferably a temperature at which the polymerizable cholesteric liquid crystal composition of the present invention can maintain a liquid crystal phase. Moreover, it is possible to improve the curability of the obtained optical anisotropic body by raising the temperature at the time of irradiation of the polymerizable cholesteric liquid crystal composition.
  • the liquid crystal composition usually has a liquid crystal phase within a range from the C (solid phase) -N (nematic) transition temperature (hereinafter abbreviated as the CN transition temperature) to the NI transition temperature in the temperature rising process. Indicates.
  • the liquid crystal composition in a supercooled state is also included in the state in which the liquid crystal phase is retained. Specifically, irradiation with ultraviolet light of 390 nm or less is preferable, and irradiation with light having a wavelength of 250 to 370 nm is most preferable.
  • the polymerizable composition causes decomposition or the like due to ultraviolet light of 390 nm or less
  • This light is preferably diffused light and unpolarized light.
  • Ultraviolet irradiation intensity in the range of 0.05kW / m 2 ⁇ 10kW / m 2 is preferred. In particular, the range of 0.2 kW / m 2 to 2 kW / m 2 is preferable.
  • the ultraviolet intensity is less than 0.05 kW / m 2 , it takes a lot of time to complete the polymerization.
  • liquid crystal molecules in the polymerizable liquid crystal composition tend to be photodegraded, or a large amount of polymerization heat is generated to increase the temperature during polymerization.
  • the parameter may change, and the retardation of the film after polymerization may be distorted.
  • the orientation state of the unpolymerized part is changed by applying an electric field, a magnetic field or temperature, and then the unpolymerized part is polymerized.
  • An optical anisotropic body having a plurality of regions having orientation directions can also be obtained.
  • the alignment was regulated in advance by applying an electric field, magnetic field or temperature to the unpolymerized polymerizable liquid crystal composition, and the state was maintained.
  • An optical anisotropic body having a plurality of regions having different orientation directions can also be obtained by irradiating light from above the mask and polymerizing it.
  • the optical anisotropic body obtained by polymerizing the polymerizable liquid crystal composition of the present invention can be peeled off from the substrate and used alone as an optical anisotropic body, or it can be used as an optical anisotropic body as it is without peeling off from the substrate. You can also In particular, since it is difficult to contaminate other members, it is useful when used as a laminated substrate or by being attached to another substrate. (Method for producing a laminate having a protective layer on an optical anisotropic body) The following method is mentioned as a manufacturing method of the laminated body which has a protective layer on the optical anisotropic body of this invention.
  • the polymerizable cholesteric liquid crystal composition of the present invention contains the non-silicon compound (V) having the above repeating unit and polymerizes the polymerizable cholesteric liquid crystal composition.
  • the non-silicon compound (V) having a repeating unit contained therein is dried as necessary to form a certain alignment state. It is presumed that it is eliminated from the cholesteric cholesteric liquid crystal composition and segregates between the polymerizable cholesteric liquid crystal composition and the air interface to form a protective layer to form a laminate.
  • non-silicon compound having a repeating unit as (V), the general formula (V-1), the use of (V-2) are of compound for use in, moderately and optically anisotropic member It is preferable because an optically anisotropic body having a good orientation can be obtained because it is easy to separate and form a protective layer.
  • a non-silicon compound having a repeating unit on an optical anisotropic body obtained by polymerizing a polymerizable cholesteric liquid crystal composition for obtaining an optical anisotropic body having the optical anisotropic body of the present invention A method of laminating a protective layer by drying the solution containing (V) and curing it as necessary is mentioned.
  • the polymerizable cholesteric liquid crystal composition may or may not contain the non-silicon compound (V) having a repeating unit. It is preferable to contain the compound represented by this.
  • the liquid crystal display device of the present invention is a display element in which a liquid crystal substance is sealed between light transmissive substrates such as glass.
  • the liquid crystal display device changes the polarization state of the light polarized by the polarizing plate placed on the back side of the liquid crystal cell by changing the molecular orientation of the liquid crystal material by electrical control from a display control device (not shown).
  • the image is displayed by controlling the amount of light transmitted through the polarizing plate arranged on the viewing side of the liquid crystal cell.
  • rod-shaped liquid crystal molecules having negative dielectric anisotropy are aligned.
  • the negative C plate of the retardation film of the present invention in order to widen the viewing angle by compensating the viewing angle dependence of the polarization axis orthogonality. Further, it is preferable to use a positive A plate in combination, and it is more preferable to stack a positive A plate and a negative C plate.
  • the positive A plate has a refractive index in the in-plane slow axis direction of the film as nx, a refractive index in the in-plane fast axis direction of the film as ny, and a refractive index in the thickness direction of the film as nz,
  • the positive A plate has an in-plane retardation value in the range of 30 to 500 nm at a wavelength of 550 nm. Are preferred.
  • the Nz coefficient is preferably in the range of 0.9 to 1.1.
  • the thickness direction retardation value at a wavelength of 550 nm is preferably in the range of 20 to 400 nm.
  • the refractive index anisotropy in the thickness direction is represented by a thickness direction retardation value Rth defined by the equation (2).
  • a thickness direction retardation value Rth an in-plane retardation value R 0 , a retardation value R 50 measured with a slow axis as an inclination axis and an inclination of 50 °, a film thickness d, and an average refractive index n 0 of the film are used.
  • nx, ny, and nz can be obtained by numerical calculation from the equation (1) and the following equations (4) to (7), and these can be substituted into the equation (2).
  • R 0 (nx ⁇ ny) ⁇ d (1)
  • Rth [(nx + ny) / 2 ⁇ nz] ⁇ d (2)
  • Nz coefficient (nx ⁇ nz) / (nx ⁇ ny) (3)
  • R 50 (nx ⁇ ny ′) ⁇ d / cos ( ⁇ ) (4)
  • ny ′ ny ⁇ nz / [ny 2 ⁇ sin 2 ( ⁇ ) + nz 2 ⁇ cos 2 ( ⁇ )] 1/2 (7)
  • the numerical calculation shown here is automatically performed in the device, and the in-plane retardation value R0 , the thickness direction retardation value Rth, etc. are automatically displayed. There are many.
  • An example of such a measuring apparatus is RETS-100 (manufactured by Ot
  • the retardation film of the present invention is either a liquid crystal display device (out-cell type, FIG. 1) disposed outside the liquid crystal cell or a liquid crystal display device (in-cell type) where the retardation film is disposed inside the liquid crystal cell. It can also be applied to liquid crystal display devices. From the viewpoint of improving productivity by reducing the thickness, weight, and pasting process of the liquid crystal display device, it is better to use an in-cell type retardation film.
  • the “in-cell type retardation film” of the present invention has a retardation film on the inner side sandwiched between a pair of light-transmitting substrates, and is arranged inside the liquid crystal cell.
  • an optically anisotropic body polymerized with the polymerizable liquid crystal composition aligned is used for the retardation film.
  • the liquid crystal display device shown in FIGS. 2 and 3 is only one example of arrangement, and the position where the retardation film is provided is not limited thereto.
  • a retardation film may be provided at a desired position, such as between the electrode and the alignment film on the back side (FIGS. 10 and 11).
  • the liquid crystal display device of the present invention may have a color filter.
  • the color filter includes a black matrix and at least an RGB three-color pixel portion. Any method may be used for forming the color filter layer.
  • the liquid crystal display device of the present invention may have an alignment film for aligning the liquid crystal composition on the surface of the first substrate that contacts the liquid crystal composition on the second substrate.
  • the alignment film material is as described in the alignment treatment of the present invention.
  • a conductive metal oxide can be used as a material for the transparent electrode.
  • the metal oxide include indium oxide (In 2 O 3 ), tin oxide (SnO 2 ), and zinc oxide. (ZnO), indium tin oxide (In 2 O 3 —SnO 2 ), indium zinc oxide (In 2 O 3 —ZnO), niobium-doped titanium dioxide (Ti 1-x Nb x O 2 ), fluorine-doped tin oxide, graphene
  • nanoribbons or metal nanowires can be used, zinc oxide (ZnO), indium tin oxide (In 2 O 3 —SnO 2 ), or indium zinc oxide (In 2 O 3 —ZnO) is preferable.
  • a photo-etching method or a method using a mask can be used for patterning these transparent conductive films.
  • the liquid crystal display device of the invention may have a polarizing layer.
  • the polarizing layer is a member having a function of converting natural light into linearly polarized light.
  • the polarizing layer may be a film having a polarizing function.
  • a film obtained by stretching a polyvinyl alcohol film by adsorbing iodine or a dichroic dye a film obtained by stretching a polyvinyl alcohol film, and an iodine or dichroic dye.
  • substrate, and formed the polarizing layer, a wire grid polarizer, etc. are mentioned.
  • a material formed of a conductive material such as Al, Cu, Ag, Cu, Ni, Cr, and Si.
  • the polarizing layer may further include a film serving as a protective film, if necessary.
  • a film serving as a protective film examples include polyolefin films such as polyethylene, polypropylene and norbornene polymers, polyethylene terephthalate films, polymethacrylic acid ester films, polyacrylic acid ester films, and cellulose ester films.
  • an in-cell polarizing layer may be provided in which a polarizing layer is installed in the liquid crystal cell.
  • An example of the liquid crystal display device in this case is shown in FIGS.
  • the optical member having the polarizing layer described above may be provided with an adhesive layer for bonding with the liquid crystal cell.
  • An adhesive layer can also be provided for bonding with other members other than the liquid crystal cell.
  • the pressure-sensitive adhesive forming the pressure-sensitive adhesive layer is not particularly limited.
  • an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer is appropriately used as a base polymer. It can be selected and used.
  • the liquid crystal composition of the present invention includes cyanobiphenyl, phenylcyclohexyl, phenylbenzoate, cyclohexylbenzoate, azomethine, azobenzene, pyrimidine, dioxane, cyclohexylcyclohexane, stilbene, tolan, etc.
  • Image display device The image display device of the present invention can be used in various devices for image display. Examples of the image display device include an organic EL display device, a plasma display display device, and the like, and there is no limitation on the application, type, and configuration of the image display device.
  • optical element The optical anisotropic body of the present invention can also be used as an optical element.
  • the optical element include a diffraction grating and a pickup lens, but the use, type, and configuration of the optical element are not limited.
  • Printed matter The optically anisotropic body of the present invention can also be used as a printed matter. An example of the printed material is one printed to prevent counterfeiting, but there is no limitation on the application, type, and configuration of the printed material.
  • the following table shows specific compositions of the polymerizable cholesteric liquid crystal compositions (1) to (28) and comparative polymerizable cholesteric liquid crystal compositions (29) to (40) of the present invention.
  • the obtained coating film was rubbed.
  • the rubbing treatment was performed using a commercially available rubbing apparatus.
  • the prepared polymerizable cholesteric liquid crystal composition (1) was applied to the obtained substrate at 2000 rpm / 30 sec using a spin coater at room temperature, and dried at 80 ° C. for 2 minutes. Then, after leaving at 25 ° C. for 2 minutes, using a high-pressure mercury lamp, setting the irradiation amount to 3600 mJ / cm 2 in a nitrogen atmosphere and irradiating with UV light, the irradiation of Example 1 An optical anisotropic body (film thickness: 1 ⁇ m) was obtained.
  • Optically anisotropic bodies were prepared using the polymerizable cholesteric liquid crystal compositions (2) to (40), and their orientation and heat resistance were measured. The results are shown in the above table as Examples 2 to 28 and Comparative Examples 1 to 12, respectively.
  • the production methods of the optical anisotropic bodies of Examples 2 to 28 and Comparative Examples 1 to 12 are as follows.
  • the optically anisotropic bodies for evaluating the orientation of Examples 1 to 6 and Comparative Examples 1 to 3 spin a polyimide alignment film material for a horizontal alignment film on a light-transmitting substrate. After coating by a coating method and drying at 100 ° C. for 10 minutes, a coating film was obtained by baking at 200 ° C. for 60 minutes. The obtained coating film was rubbed. The rubbing treatment was performed using a commercially available rubbing apparatus. Each of the prepared polymerizable cholesteric liquid crystal compositions was applied to the obtained substrate at 2000 rpm / 30 sec using a spin coater at room temperature, dried at 80 ° C. for 2 minutes, and then allowed to stand at 25 ° C. for 2 minutes.
  • the optical anisotropic bodies (film thicknesses) of the respective examples and comparative examples 1 ⁇ m) was obtained.
  • the heat resistance was evaluated by forming an ITO film on the optical anisotropic body under the same conditions as in Example 1.
  • optically anisotropic bodies for evaluation of orientation in Examples 7 to 16 and Comparative Examples 2 to 9 were coated on a light-transmitting substrate by drying at 100 ° C. for 10 minutes and then baking at 200 ° C. for 60 minutes. A membrane was obtained. The obtained coating film was rubbed. The rubbing treatment was performed using a commercially available rubbing apparatus.
  • the prepared base material was coated with each polymerizable liquid crystal composition for cholesteric film prepared at 350 rpm / 30 sec using a spin coater at room temperature, dried at 80 ° C. for 2 minutes, and then allowed to stand at 25 ° C. for 2 minutes.
  • the optical anisotropic bodies of the examples and comparative examples ( A film thickness of 4 ⁇ m) was obtained.
  • the heat resistance was evaluated by forming an ITO film on the optical anisotropic body under the same conditions as in Example 1.
  • the optically anisotropic bodies for evaluation of orientation and the like were prepared by using the COP substrate as a base material and using the bar coater # 3 as the base material, and adjusting each polymerizable cholesteric liquid crystal composition prepared. After coating at room temperature, drying at 80 ° C. for 2 minutes and leaving at 25 ° C. for 2 minutes, using a high-pressure mercury lamp, set the irradiation amount to 3600 mJ / cm 2 in a nitrogen atmosphere and set UV. By irradiating with light, optical anisotropic bodies (film thickness: 1 ⁇ m) of the examples and comparative examples were obtained. The heat resistance was evaluated by forming an ITO film on the optical anisotropic body under the same conditions as in Example 1.
  • the optically anisotropic body for orientation evaluation of Example 21 and Comparative Example 11 uses a COP substrate as a base material, and uses the bar coater # 5 as the base material, and the adjusted polymerizable cholesteric liquid crystal composition at room temperature. After coating, drying at 80 ° C. for 2 minutes, and leaving at 25 ° C. for 2 minutes, using a high-pressure mercury lamp, set the irradiation amount to 3600 mJ / cm 2 in a nitrogen atmosphere and emit UV light. By irradiating, optical anisotropic bodies (film thickness 4 ⁇ m) of Examples and Comparative Examples were obtained. The heat resistance was evaluated by forming an ITO film on the optical anisotropic body under the same conditions as in Example 1.
  • a polyimide alignment film material for a horizontal alignment film is applied on a glass substrate by a spin coating method, and 10% at 100 ° C.
  • the coating film (6) was obtained by baking at 200 ° C. for 60 minutes.
  • the obtained coating film was rubbed.
  • the rubbing treatment was performed using a commercially available rubbing apparatus.
  • a homogeneous alignment polymerizable liquid crystal composition shown in Example 2 of JP-A-2014-231568 was used at 650 rpm / 30 sec using a spin coater for the obtained base material, applied at room temperature, and 2 at 100 ° C. The film was dried for 2 minutes and allowed to stand at 25 ° C.
  • a first retardation film (7) having a thickness of 0.6 ⁇ m was obtained (see FIG. 12).
  • each adjusted polymerizable cholesteric liquid crystal composition shown in the above table was applied at 350 rpm / 30 sec using a spin coater at room temperature, dried at 80 ° C. for 2 minutes, and then at 25 ° C.
  • Example 12 After leaving it for 2 minutes, using a high pressure mercury lamp, under a nitrogen atmosphere, set the irradiation amount to 3600 mJ / cm 2 and irradiate with UV light to form a second retardation film (4 ⁇ m thick) 8) (see FIG. 12) was obtained.
  • the heat resistance was evaluated by forming an ITO film on the retardation film 2 under the same conditions as in Example 1.
  • the optically anisotropic body for evaluating the orientation of Example 24 was coated with a polyimide alignment film material for a horizontal alignment film on a light-transmitting substrate by spin coating, and dried at 100 ° C. for 10 minutes.
  • a coating film was obtained by baking at 200 ° C. for 60 minutes.
  • the obtained coating film was rubbed.
  • the rubbing treatment was performed using a commercially available rubbing apparatus. After applying the adjusted polymerizable cholesteric liquid crystal composition shown in the above table at room temperature at 2000 rpm / 30 sec using a spin coater on the obtained substrate, drying at 80 ° C. for 2 minutes, and leaving at 25 ° C.
  • an optical anisotropic body having a film thickness of 1 ⁇ m was obtained by irradiating with UV light while setting the irradiation amount to 3600 mJ / cm 2 in a nitrogen atmosphere.
  • a solution containing 5% by weight of the above formula (F-7) at a rate of 800 rpm / 120 sec using a spin coater (E-1) is added to 100 parts by mass of (F-7).
  • organic solvent: ethyl acetate) was applied at room temperature, dried at 80 ° C. for 2 minutes, allowed to stand at 25 ° C.
  • Example 26 The heat resistance was evaluated by forming an ITO film on the protective layer under the same conditions as in Example 1.
  • a polyimide alignment film material for a horizontal alignment film is applied on a light-transmitting substrate by a spin coating method, and 10 minutes at 100 ° C. After drying, a coating film was obtained by baking at 200 ° C. for 60 minutes. The obtained coating film was rubbed. The rubbing treatment was performed using a commercially available rubbing apparatus.
  • Each of the prepared polymerizable cholesteric liquid crystal compositions shown in the above table was applied to the obtained base material at 350 rpm / 30 sec at room temperature, dried at 80 ° C. for 2 minutes, and left at 25 ° C. for 2 minutes.
  • an optical anisotropic body having a film thickness of 4 ⁇ m was obtained by irradiating with UV light while setting the irradiation amount to 3600 mJ / cm 2 in a nitrogen atmosphere.
  • the solution used in Example 24 containing 5% by weight of the above (F-7) was applied at 6000 rpm / 120 sec using a spin coater at room temperature, dried at 80 ° C. for 2 minutes, and 25 Protect the optical anisotropic body by leaving it to stand at 2 ° C.
  • An optical anisotropic body for evaluating the orientation of Example 27 was applied on a light-transmitting substrate with a polyimide alignment film material for a horizontal alignment film by spin coating, and dried at 100 ° C. for 10 minutes.
  • a coating film was obtained by baking at 200 ° C. for 60 minutes.
  • the obtained coating film was rubbed.
  • the rubbing treatment was performed using a commercially available rubbing apparatus. After applying the prepared polymerizable cholesteric liquid crystal composition shown in the above table at room temperature at 350 rpm / 30 sec using a spin coater on the obtained substrate, drying at 80 ° C. for 2 minutes, and leaving at 25 ° C. for 2 minutes.
  • an optical anisotropic body having a film thickness of 4 ⁇ m was obtained by irradiating with UV light while setting the irradiation amount to 3600 mJ / cm 2 in a nitrogen atmosphere.
  • 3 wt. Of (E-1) is added to 100 wt.
  • Organic solvent: ethyl acetate) was applied at room temperature, dried at 80 ° C. for 2 minutes, allowed to stand at 25 ° C.
  • Example 27 The heat resistance was evaluated by forming an ITO film on the protective layer under the same conditions as in Example 1.
  • the optically anisotropic body for evaluating the orientation of Example 28 was coated with a polyimide alignment film material for a horizontal alignment film on a light-transmitting substrate by spin coating, and dried at 100 ° C. for 10 minutes.
  • a coating film was obtained by baking at 200 ° C. for 60 minutes.
  • the obtained coating film was rubbed.
  • the rubbing treatment was performed using a commercially available rubbing apparatus.
  • the prepared polymerizable cholesteric liquid crystal composition shown in the above table was applied to the obtained substrate at 350 rpm / 30 sec at room temperature, dried at 80 ° C. for 2 minutes, and then allowed to stand at 25 ° C. for 2 minutes.
  • an optical anisotropic body (film thickness: 4 ⁇ m) was obtained by irradiating with UV light while setting the irradiation amount to 3600 mJ / cm 2 in a nitrogen atmosphere.
  • the above (F-9) was applied at 1000 rpm / 60 sec at room temperature using a spin coater, dried at 80 ° C. for 2 minutes, left at 25 ° C. for 2 minutes, and then heated at 200 ° C.
  • a protective layer (thickness: 1 ⁇ m) for protecting the retardation film was left standing for 30 minutes, and an optical anisotropic body of Example 28 was obtained.
  • the heat resistance was evaluated by forming an ITO film on the protective layer under the same conditions as in Example 1. (Example 29, Example 30, Comparative Example 13) (VA mode liquid crystal display device)
  • optical anisotropic body was prepared, and the orientation and heat resistance were measured.
  • the results are shown in the above table as Examples 29 to 30 and Comparative Example 13, respectively.
  • the production methods of the optical anisotropic bodies of Examples 29 to 30 and Comparative Example 13 are as follows.
  • the optically anisotropic bodies for evaluating orientation of Examples 29 to 30 and Comparative Example 13 are provided with a color filter layer (4) and a planarizing layer (5) on a light-transmitting substrate (3). After that, a solution containing 3% by weight of cinnamic acid polymer (H) (organic solvent cyclopentanone) was applied by spin coating, dried at 80 ° C. for 2 minutes, and then allowed to stand at 25 ° C. for 2 minutes.
  • H cinnamic acid polymer
  • the cinnamic acid polymer (H) was prepared as follows. 1 part (10.0 mmol) of the compound (I) represented by the above structural formula was dissolved in 10 parts of ethyl methyl ketone, 0.01 part of azobisisobutyronitrile (AIBN) is added and heated under reflux for 2 days under a nitrogen atmosphere to obtain a solution, the solution is then added dropwise to 60 parts of methanol and the precipitated solid is filtered.
  • AIBN azobisisobutyronitrile
  • the obtained solid is dissolved in 5 parts of tetrahydrofuran (THF), stirred dropwise in 120 parts of ice-cooled hexane, and the precipitated solid is filtered, and the obtained solid is dissolved in 5 parts of THF and dissolved in 120 parts of ice-cooled methanol.
  • THF tetrahydrofuran
  • the solution is obtained by dissolving the obtained solid in THF and then vacuum-drying it.
  • a homogeneous alignment polymerizable liquid crystal composition shown in Example 2 of JP-A-2014-231568 was used at 650 rpm / 30 sec using a spin coater for the obtained base material, applied at room temperature, and 2 at 100 ° C. The film was dried for 2 minutes and allowed to stand at 25 ° C.
  • each adjusted polymerizable cholesteric liquid crystal composition shown in the above table was applied at 350 rpm / 30 sec using a spin coater at room temperature, dried at 80 ° C. for 2 minutes, and then at 25 ° C.
  • Example 8 After leaving it for 2 minutes, using a high pressure mercury lamp, under a nitrogen atmosphere, set the irradiation amount to 3600 mJ / cm 2 and irradiate with UV light to form a second retardation film (4 ⁇ m thick) 8) was obtained.
  • the heat resistance was evaluated by forming an ITO film (9) on the second retardation film (8) under the same conditions as in Example 1.
  • An ITO film (13) as a pixel electrode layer was attached to the light transmissive substrate (14), an alignment film (12) was formed, and then a weak rubbing treatment was performed.
  • a TFT liquid crystal manufactured by DIC was injected into the liquid crystal layer (11) between the alignment film layers (10) and (12) to produce VA mode liquid crystal display devices of Examples 29 to 30 and Comparative Example 13. (FIG. 13). The results obtained are shown in the table below.
  • cholesteric liquid crystal compositions (Examples 1 to 23, Examples 29 to 30) are polymerizable cholesteric liquid crystal compositions (Comparative Example 1, Comparative Example 4, Comparative Example 6, and Comparative Example) that do not contain a compound having a repeating unit. Compared to 8), an optically anisotropic body having excellent orientation can be obtained.
  • polymerizable cholesteric liquid crystal compositions (Comparative Example 2, Comparative Example 3, Comparative Example 5, Comparative Example 7, Comparative Example 8 to Comparative Example 13) containing a silicon compound having a repeating unit have the repeating unit.
  • the thickness of the obtained retardation film is as thin as 1 ⁇ m by adding a silicon compound, an optical anisotropic body having good orientation of the retardation film can be obtained (Comparative Example 2).
  • Comparative Example 3 and Comparative Example 10 when the thickness of the obtained retardation film is 4 ⁇ m and the film thickness is large, the orientation of the retardation film cannot be improved (Comparative Example 5, Comparative Example 7, Comparison) Example 9, Comparative Examples 11 to 13).
  • the retardation film obtained using the polymerizable cholesteric liquid crystal composition to which the silicon compound having the repeating unit is added has a film thickness as thin as 1 ⁇ m, the film after the ITO film is formed Since the film thickness difference after the baking treatment is a large numerical value, it is clearly inferior in heat resistance.
  • a polymerizable cholesteric liquid crystal composition containing a non-silicon compound having a repeating unit selected from formulas (F-1) to (F-5) and formulas (F-7) to (F-9) When the products (Examples 1 to 23, Examples 29 to 30) were used, the difference in film thickness after the baking treatment after the ITO film was formed was small.
  • the compound selected from the formulas (F-5), (F-7) to (F-9) is not taken into the optical anisotropic body, and the optical anisotropic body It is considered that heat resistance is improved because it is possible to protect the optical anisotropy from the heat generated by the baking process after the ITO film is deposited as a protective layer that protects the optical anisotropic body. Is done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

重合性コレステリック液晶組成物を硬化させて得られる光学異方体や位相差膜等の薄膜において、配向性が良好で、かつ、耐熱性に優れる、重合性コレステリック液晶組成物を提供する。併せて、当該重合性液晶組成物を用いた光学異方体、位相差膜、位相差パターニング膜、輝度向上膜等、前記位相差膜上に保護層を有する積層体、及び前記光学異方体、位相差膜、位相差パターニング膜、輝度向上膜を有する表示装置を提供する。 本発明は、1種または2種以上の分子内に2個以上の重合性官能基を有する重合性液晶化合物(I)、キラル化合物(III)、重合開始剤(IV)、任意に繰り返し単位を有する非シリコン系化合物(V)、及び、任意に1種または2種以上の1個の重合性官能基を有する重合性液晶化合物(II)、を含有する重合性コレステリック液晶組成物を提供する。また、本発明の重合性液晶組成物を用いた光学異方体も提供する。

Description

重合性液晶組成物及びそれを用いた光学異方体
 本願発明は、液晶ディスプレイ等の光学補償や視野角補償に用いられる光学異方体の構成部材、有機EL等に用いられる光学異方体の構成部材、または、光学素子に用いられる光学異方体として有用な重合性コレステリック液晶組成物に関し、さらには当該重合性コレステリック液晶組成物からなる光学異方体、位相差膜、位相差パターニング膜、輝度向上膜、反射防止膜、遮熱膜、前記光学異方体上に保護層を有する積層体、及び前記光学異方体、位相差膜、位相差パターニング膜、輝度向上膜、反射防止膜、遮熱膜を有する液晶表示装置、画像表示装置、光学素子、印刷物に関する。
 重合性液晶組成物は光学異方体の構成部材として有用であり、光学異方体は、例えば、偏光膜、位相差膜として、種々の液晶ディスプレイに応用されている。偏光膜や位相差膜は、重合性液晶組成物を基材に塗布し、溶剤を乾燥させ塗膜とした後に、配向膜等により重合性液晶組成物を配向させた状態で、加熱、あるいは活性エネルギー線を照射して重合性液晶組成物を硬化することにより得られる。特に、重合性液晶組成物にキラル化合物を添加した重合性コレステリック液晶組成物を用いると、円偏光分離特性が得られることが知られており、位相差膜、位相差パターニング膜、輝度向上膜、反射防止膜、遮熱膜、または回折格子やピックアップレンズ等の様々な光学素子、偽造防止の印刷物等への応用が検討されている。
 光学異方体を液晶表示装置、画像表示装置等の構成部材に用いる場合、耐熱性が要求される。特許文献1では、ベンゼン環、シクロヘキサン環等の環数を4つ以上有する液晶化合物を使用することで、位相差膜形成後の焼成処理において、耐熱性に優れる位相差膜を作成できることが開示されている。しかし、耐熱性は向上するものの、重合性液晶組成物によっては配向性が悪化するという問題が生じていた。しかしながら、特許文献1は、耐熱性は向上するものの重合性液晶組成物の種類によっては、配向性が悪化する傾向にあった。また、特許文献2では、重合性液晶組成物にデンドリマー等の多分岐化合物を添加することで、位相差ムラが少なく、かつ、位相差膜形成後に焼成工程を経ても位相差膜の表面形状変化が小さく、更には前記焼成工程の後工程である透明電極のスパッタリング工程においてもクラックが発生せず、表面形状が安定した位相差膜が得られることが開示されている。しかしながら、特許文献2では、表面形状が安定した位相差膜が得られるものの、実際に液晶表示装置、画像表示装置等では、さらに前記透明電極スパッタリング工程の後にさらなる焼成工程があり、その焼成工程後の位相差膜の耐熱性に関しては開示されていなかった。
特開2011-148761号公報 特開2010-138283号公報
 本発明が解決しようとする課題は、重合性コレステリック液晶組成物を硬化させて得られる光学異方体や位相差膜等の薄膜において、配向性が良好で、かつ、耐熱性に優れる重合性コレステリック液晶組成物を提供することにある。併せて、当該重合性液晶組成物を用いた光学異方体、位相差膜、位相差パターニング膜、輝度向上膜、反射防止膜、遮熱膜、前記光学異方体上に保護層を有する積層体、及び前記光学異方体、位相差膜、位相差パターニング膜、輝度向上膜、反射防止膜、遮熱膜を有する液晶表示装置、画像表示装置、光学素子、印刷物を提供することにある。
 本発明は、上記課題を解決するために、重合性液晶組成物に着目して鋭意研究を重ねた結果、本発明を提供するに至った。
 即ち、本発明は、1種または2種以上の分子内に2個以上の重合性官能基を有する重合性液晶化合物(I)、キラル化合物(III)、重合開始剤(IV)、任意に繰り返し単位を有する非シリコン系化合物(V)、及び、任意に1種または2種以上の1個の重合性官能基を有する重合性液晶化合物(II)、を含有する重合性コレステリック液晶組成物を提供する。また、本発明の重合性液晶組成物を用いた光学異方体も提供する。
 本発明の重合性コレステリック液晶組成物を用いることで、光学異方体や位相差膜等の薄膜を形成した際に、配向欠陥が少ない良好な配向状態を得ることができる。また、前記液晶組成物を硬化させた光学異方体や位相差膜等の薄膜は、耐熱性に優れることから、各種光学材料の用途に有用である。さらに、前記光学異方体や位相差膜等の薄膜を有する液晶表示装置は、優れた表示特性を示すことができる。
本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。 本発明の液晶表示装置の一例を示す図である。
(1)偏光層
(2)粘着剤層
(3)光透過性基板
(4)カラーフィルタ層
(5)平坦化層
(6)位相差膜用配向膜
(7)重合性液晶組成物を使用した位相差膜1
(8)重合性液晶組成物を使用した位相差膜2
(9)透明電極層
(10)配向膜
(11)液晶組成物
(12)配向膜
(13)画素電極層
(14)光透過性基板
(15)粘着剤層
(16)偏光層
(17)バックライト
 以下に本発明による重合性液晶組成物の最良の形態について説明するが、本発明において、重合性液晶組成物の「液晶」とは、重合性液晶組成物を基材に塗布後、有機溶剤を除去した状態において液晶性を示すことを意図する。また、本発明において、重合性液晶化合物の「液晶」とは、用いる重合性液晶化合物1種のみの化合物で液晶性を示すことを意図する場合や、その他の液晶化合物と混合し混合物とした場合に液晶性を示すことを意図する。なお、重合性液晶組成物を紫外線等の光照射、加熱又はそれらの併用によって重合処理を行うことでポリマー化(フィルム化)することができる。
(重合性液晶化合物)
 本発明の重合性コレステリック液晶組成物に含まれる重合性液晶化合物としては、分子内に2個以上の重合性官能基を有する重合性液晶化合物を1種又は2種以上用いること以外は、特に制限無く、公知慣用のものを用いることができる。
 例えば、Handbook of Liquid Crystals(D.Demus,J.W.Goodby,G.W.Gray,H.W.Spiess,V.Vill編集、Wiley-VCH社発行,1998年)、季刊化学総説No.22、液晶の化学(日本化学会編,1994年)、あるいは、特開平7-294735号公報、特開平8-3111号公報、特開平8-29618号公報、特開平11-80090号公報、特開平11-116538号公報、特開平11-148079号公報、等に記載されているような、1,4-フェニレン基1,4-シクロヘキレン基等の構造が複数繋がったメソゲンと呼ばれる剛直な部位と、ビニル基、アクリル基、(メタ)アクリル基といった重合性官能基を有する棒状重合性液晶化合物、あるいは特開2004-2373号公報、特開2004-99446号公報に記載されているようなマレイミド基を有する棒状重合性液晶化合物が挙げられる。中でも、重合性基を有する棒状液晶化合物が、液晶温度範囲として室温前後の低温を含むものを作りやすく好ましい。
(分子内に2個以上の重合性官能基を有する重合性液晶化合物)
 本発明の重合性コレステリック液晶組成物には、分子内に2個以上の重合性官能基を有する重合性液晶化合物を1種または2種以上含有する。分子内に2個以上の重合性官能基を有する重合性液晶化合物を用いることにより、重合性コレステリック液晶組成物を重合して得られる重合体を作製した際に硬化性に優れた塗膜を得ることができる。前記分子内に2個以上の重合性官能基を有する重合性液晶化合物として具体的には、以下一般式(I-1)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000003
 式中、P11及びP12はそれぞれ独立して、重合性官能基を表し、Sp11及びSp12はそれぞれ独立して、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、X11及びX12はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P11-Sp11、P12-Sp12、Sp11-X11及びSp12-X12において、ヘテロ原子同士の直接結合を含まない。)、q1及びq2はそれぞれ独立して0又は1を表し、q3は1又は2を表し、MG12はメソゲン基を表す。
 P11及びP12はそれぞれ独立して、下記式(P-2-1)から式(P-2-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000004
 これらの重合性官能基のうち、重合性を高める観点から、式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13)が好ましく、式(P-2-1)、(P-2-2)がより好ましい。
 MG12はメソゲン基を表し、一般式(I-b)
Figure JPOXMLDOC01-appb-C000005
(式中、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、及び/又は、炭素原子数2~8のアルケノイルオキシ基を有していても良く、Z1及びZ2はそれぞれ独立して、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、Z1及びZ2はそれぞれ独立して-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-又は単結合であることが好ましく、-COO-、-OCO-、-OCH-、-CHO-、-CHCHO-、-CHCHOCO-、-COOCHCH-、-OCOCHCH-又は単結合であることがより好ましく、r1は0、1、2又は3を表し、A1、及びZ1が複数存在する場合は、それぞれ、同一であっても、異なっていても良いが、q3が2又は3を表す場合、A1、A2及びA3のいずれかに-(X12-Sp12q2-P12基を1つ又は2つ有する。)で表される。このうち、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、2,6-ナフチレン基を表すことが好ましい。
(2官能重合性液晶化合物)
 分子内に2個以上の重合性官能基を有する上記一般式(I-1)で表される重合性液晶化合物としては、分子内に2個の重合性官能基を有する下記一般式(I-1-1)で表される2官能重合性液晶化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000006
(式中、P11及びP12はそれぞれ独立して、重合性官能基を表し、Sp11及びSp12はそれぞれ独立して、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、X11及びX12はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P11-Sp11、P12-Sp12、Sp11-X11及びSp12-X12において、ヘテロ原子同士の直接結合を含まない。)、q1及びq2はそれぞれ独立して、0又は1を表し、MG12はメソゲン基を表す。)
 ここで、P11及びP12はそれぞれ独立して、上述の式(P-2-1)から式(P-2-20)で表される重合性基から選ばれる置換基を表すのが好ましい。これらの重合性官能基のうち、重合性を高める観点から、式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13)が好ましく、式(P-2-1)、(P-2-2)がより好ましい。
 また、Sp11及びSp12はそれぞれ独立して、炭素原子数1~15のアルキレン基を表すことが好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、Sp11及びSp12はそれぞれ独立して、炭素原子数1~12のアルキレン基を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。
 X11及びX12はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すことが好ましく、X11及びX12はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことがより好ましい。
MG12はメソゲン基を表し、一般式(I-1-b)
Figure JPOXMLDOC01-appb-C000007
 式中、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、及び/又は、炭素原子数2~8のアルケノイルオキシ基を有していても良く、Z1及びZ2はそれぞれ独立して、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、Z1及びZ2はそれぞれ独立して-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-又は単結合であることが好ましく、-COO-、-OCO-、-OCH-、-CHO-、-CHCHO-、-CHCHOCO-、-COOCHCH-、-OCOCHCH-又は単結合であることがより好ましく、r1は0、1、2又は3を表し、A1、及びZ1が複数存在する場合は、それぞれ、同一であっても、異なっていても良い。このうち、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、2,6-ナフチレン基を表すことが好ましい。
 一般式(I-1-1)の例として、下記一般式(I-1-1-1)~(I-1-1-4)で表される化合物を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000008
 式中、P11、Sp11、X11、q1、X12、Sp12、q2、P12は、それぞれ、上記一般式(I-1-1)の定義と同じものを表し、
A11とA12とA13、A2、A3は、上記一般式(I-1-b)のA1~A3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
Z11とZ12とZ13、Z2は、それぞれ、上記一般式(I-1-b)のZ1、Z2の定義と同じものを表し、それぞれ、同一であっても、異なっていても良い。
 上記一般式(I-1-1-1)~(I-1-1-4)で表される化合物のうち、一般式(I-1-1-2)~(I-1-1-4)で表される、化合物中に3つ以上の環構造を有する化合物を用いると、得られる光学異方体の配向性が良好となるため好ましく、化合物中に3つの環構造を有する一般式(I-1-1-2)で表される化合物を用いることが特に好ましい。
 上記一般式(I-1-1-1)~(I-1-1-4)で表される化合物としては、以下の一般式(I-1-1-1-1)~(I-1-1-1-21)で表される化合物を例示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 式中、R及びRは、それぞれ独立して水素原子又はメチル基を表し、
上記環状基は、置換基として1個以上のF、Cl、CF3、OCF3、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、炭素原子数2~8のアルケノイルオキシ基を有していても良く、
m1、m2は、それぞれ独立して0~18の整数を表し、n1、n2、n3、n4はそれぞれ独立して0又は1を表す。
 2つの重合性官能基を有する液晶化合物は、1種又は2種以上用いることができるが、1種~5種が好ましく、2種~5種がより好ましい。
 分子内に2個の重合性官能基を有する重合性液晶化合物の合計含有量は、重合性コレステリック液晶組成物中に含有する重合性液晶化合物(I)、重合性液晶化合物(II)及びキラル化合物(III)の合計含有量の内、10~98質量%含有することが好ましく、15~98質量%含有することがより好ましく20~98質量%含有することが特に好ましい。得られる塗膜の硬化性を重視する場合には下限値を30質量%以上にすることが好ましく、50質量%以上にすることがより好ましい。
(3官能重合性液晶化合物)
 分子内に2個以上の重合性官能基を有する上記一般式(I-1)で表される重合性液晶化合物としては、分子内に3個の重合性官能基を有する下記一般式(I-1-2)で表される3官能重合性液晶化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000013
(式中、P12~P13はそれぞれ独立して、重合性官能基を表し、Sp11~S13はそれぞれ独立して、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、X11~X13はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P11-Sp11、P12-Sp12、Sp11-X11、Sp12-X12、Sp13-X13、及びSp13-X13において、ヘテロ原子同士の直接結合を含まない。)、q1、q2、q4、及びq5はそれぞれ独立して、0又は1を表し、MG12はメソゲン基を表す。)
 ここで、P12~P13はそれぞれ独立して、下記の式(P-2-1)から式(P-2-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000014
 これらの重合性官能基のうち、重合性を高める観点から、式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13)が好ましく、式(P-2-1)、(P-2-2)がより好ましい。
 また、Sp11~Sp13はそれぞれ独立して、炭素原子数1~15のアルキレン基を表すことが好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、Sp11~Sp13はそれぞれ独立して、炭素原子数1~12のアルキレン基を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。X11~X13はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すことが好ましく、X11~X13はそれぞれ独立して、-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことがより好ましい。
MG12はメソゲン基を表し、一般式(I-2-b)
Figure JPOXMLDOC01-appb-C000015
 式中、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、及び/又は、炭素原子数2~8のアルケノイルオキシ基を有していても良いが、存在するA1、A2及びA3のいずれかに-(X13q5-(Sp13q4-P13基を有する。Z1及びZ2はそれぞれ独立して、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-C=N-、-N=C-、-CONH-、-NHCO-、-C(CF-、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を有してもよい炭素原子数2~10のアルキル基又は単結合を表し、Z1及びZ2はそれぞれ独立して-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-又は単結合であることが好ましく、r1は0、1、2又は3を表し、A1、及びZ1が複数存在する場合は、それぞれ、同一であっても、異なっていても良い。)で表される。このうち、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、2,6-ナフチレン基を表すことが好ましい。
 一般式(I-1-2)の例として、下記一般式(I-1-2-1)~(I-1-2-8)で表される化合物を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000016
 式中、P11、Sp11、X11、q1、X12、Sp12、q2、P12、X13、q5、Sp13、q4、P13は、それぞれ、上記一般式(I-1-2)の定義と同じものを表し、
A11とA12とA13、A2、A3は、それぞれ、上記一般式(I―2-b)のA1~A3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
Z11とZ12とZ13、Z2は、それぞれ、上記一般式(I―2-b)のZ1、Z2の定義と同じものを表し、それぞれ、同一であっても、異なっていても良い。
 上記一般式(I-1-2-1)~(I-1-2-8)で表される化合物としては、以下の一般式(I-1-2-1-1)~(I-1-2-1-8)で表される化合物を例示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 上記一般式(I-1-2-1-5)中2つの※は結合部位を表すが当該部位に連結基は存在しない。又、上記式中、R、R及びRは、それぞれ独立して水素原子又はメチル基を表し、R、R及びRはそれぞれ独立して水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、シアノ基を表し、これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)により置換されていてもよく、上記環状基は、置換基として1個以上のF、Cl、CF3、OCF3、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、炭素原子数2~8のアルケノイルオキシ基を有していても良い。n、m、kはそれぞれ独立して1~18の整数を表し、m4~m9はそれぞれ独立して0~18の整数を表し、n4~n10はそれぞれ独立して0又は1を表す。
 3個の重合性官能基を有する多官能重合性液晶化合物は、任意に1種又は2種以上用いることができる。
 分子内に3個の重合性官能基を有する多官能重合性液晶化合物の合計含有量は、上記一般式(II-1)で表される重合性液晶化合物を含めた重合性コレステリック液晶組成物中に含有する重合性液晶化合物(I)、重合性液晶化合物(II)及びキラル化合物(III)の合計含有量の内、0~40質量%含有することが好ましく、0~30質量%含有することがより好ましく、0~20質量%含有することが特に好ましい。
(単官能重合性液晶化合物)
 本発明の重合性コレステリック液晶組成物には、任意に分子内に1個の重合性官能基を有する単官能重合性液晶化合物(II)を1種又は2種以上用いることができる。なお、本発明の重合性液晶組成物において、上記分子内に2個以上の重合性官能基を有する重合性液晶化合物を必須成分として用いる場合、当該分子内に1個の重合性官能基を有する単官能重合性液晶化合物は任意成分として用いることができる。単官能重合性液晶化合物として具体的には、以下一般式(II-1)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000020
 式中、P22は重合性官能基を表し、Sp22は炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、X22は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P22-Sp22、及びSp22-X22において、C、H以外のヘテロ原子同士の直接結合を含まない。)、q6は0又は1を表し、MG22はメソゲン基を表し、R21は、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、炭素原子数1から12の直鎖又は分岐アルキル基、炭素原子数1から12の直鎖又は分岐アルケニル基を表し、該アルキル基及びアルケニル基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-NH-、-N(CH)-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良く、該アルキル基及び該アルケニル基の有する1個又は2個以上の水素原子はそれぞれ独立して、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はシアノ基によって置換されても良く、複数置換されている場合それぞれ同一であっても、異なっていても良い。
 ここで、P22は、下記の式(P-2-1)から式(P-2-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000021
 これらの重合性官能基のうち、重合性を高める観点から、式(P-2-1)、(P-2-2)、(P-2-7)、(P-2-12)、(P-2-13)が好ましく、式(P-2-1)、(P-2-2)がより好ましい。
 また、Sp22は炭素原子数1~15のアルキレン基を表すことが好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、Sp22は炭素原子数1~12のアルキレン基を表すことがより好ましく、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良い。
 X22は-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表すことが好ましく、X22は-O-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-O-CO-O-、-CFO-、-OCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-CF=CF-、-C≡C-又は単結合を表すことがより好ましい。
MG22はメソゲン基を表し、一般式(II-1-b)
Figure JPOXMLDOC01-appb-C000022
(式中、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、及び/又は、炭素原子数2~8のアルケノイルオキシ基を有していても良く、このうち、A1、A2及びA3はそれぞれ独立的に、上記置換基を有していても良い1,4-フェニレン基、1,4-シクロヘキシレン基、2,6-ナフチレン基を表すことが好ましい。
 R21は、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、炭素原子数1から8の直鎖又は分岐アルキル基、炭素原子数1から8の直鎖又は分岐アルケニル基を表すことがより好ましく、該アルキル基及びアルケニル基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-CO-、-COO-、-OCO-、-O-CO-O-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、又は-C≡C-によって置換されても良く、該アルキル基及び該アルケニル基の有する1個又は2個以上の水素原子はそれぞれ独立して、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はシアノ基によって置換されても良く、複数置換されている場合それぞれ同一であっても、異なっていても良い。
一般式(II-1)の例として、下記一般式(II-1-1)~(II-1-4)で表される化合物を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000023
 式中、P22、Sp22、X22、q1、及び、R21は、それぞれ、上記一般式(II-1)の定義と同じものを表し、
A11、A12、A13、A2、A3は、上記一般式(II-1-b)のA1~A3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
Z11、Z12、Z13、Z2は、上記一般式(II-1-b)のZ1~Z3の定義と同じものを表し、それぞれ、同一であっても、異なっていても良く、
 上記一般式(II-1-1)~(II-1-4)で表される化合物としては、以下の式(II-1-1-1)~式(II-1-1-26)で表される化合物を例示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 式中、Rは水素原子又はメチル基を表し、mは0~18の整数を表し、nは0又は1を表し、R21は、上記一般式(II-1-1)~(II-1-4)の定義と同じものを表すが、R21は、水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、1個の-CH-が-O-、-CO-、-COO-、-OCO-、によって置換されても良い、炭素原子数1から6の直鎖アルキル基又は炭素原子数1から6の直鎖アルケニル基を表すことが好ましい。
上記環状基は、置換基として1個以上のF、Cl、CF3、OCF3、CN基、炭素原子数1~8のアルキル基、炭素原子数1~8のアルコキシ基、炭素原子数1~8のアルカノイル基、炭素原子数1~8のアルカノイルオキシ基、炭素原子数1~8のアルコキシカルボニル基、炭素原子数2~8のアルケニル基、炭素原子数2~8のアルケニルオキシ基、炭素原子数2~8のアルケノイル基、炭素原子数2~8のアルケノイルオキシ基を有していても良い。
 分子内に1個の重合性官能基を有する単官能重合性液晶化合物の合計含有量は、重合性コレステリック液晶組成物中に含有する重合性液晶化合物(I)、重合性液晶化合物(II)及びキラル化合物(III)の合計含有量の内、0~55質量%含有することが好ましく、0~50質量%含有することがより好ましく、0~45質量%含有することが特に好ましい。得られる塗膜の硬化性を重視する場合には上限値を50質量%以下とすることが好ましく、40質量%以下とすることがより好ましい。
 本発明の重合性コレステリック液晶組成物には、上記重合性液晶化合物を複数種混合して用いることが好ましく、上記少なくとも1種以上の分子内に1個の重合性官能基を有する重合性液晶化合物と、少なくとも1種以上の分子内に2個の重合性官能基を有する重合性液晶化合物とを必須成分とする。特に、分子内に1個の重合性官能基を有する上記(II-1-2)~(II-1-4)から選択される少なくとも1種の重合性液晶化合物と、上記(I-1-2)~(I-1-4)から選択される少なくとも1種の分子内に2個の重合性官能基を有する重合性液晶化合物とを混合物とすることが特に好ましい。
 上記分子内に1個の重合性官能基を有する重合性液晶化合物と分子内に2個の重合性官能基を有する重合性液晶化合物との合計量は、重合性コレステリック液晶組成物中に用いる重合性液晶化合物の合計量のうち、60質量%~100質量%とすることが好ましく、70質量%~100質量%とすることが特に好ましい。
(その他の液晶化合物)
 また、本発明の液晶組成物には、重合性基を有さないメソゲン基を含有する化合物を添加しても良く、通常の液晶デバイス、例えばSTN(スーパー・ツイステッド・ネマチック)液晶や、TN(ツイステッド・ネマチック)液晶、TFT(薄膜トランジスター)液晶等に使用される化合物が挙げられる。
 重合性官能基を有さないメソゲン基を含有する化合物は、具体的には以下の一般式(5)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000029
 MGで表されるメソゲン基は、一般式(5-b)
Figure JPOXMLDOC01-appb-C000030
(式中、A1、A2及びA3はそれぞれ独立的に、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、置換基として1個以上のF、Cl、CF、OCF、CN基、炭素原子数1~8のアルキル基、アルコキシ基、アルカノイル基、アルカノイルオキシ基、炭素原子数2~8のアルケニル基、アルケニルオキシ基、アルケノイル基、アルケノイルオキシ基を有していても良く、
Z0、Z1、Z2及びZ3はそれぞれ独立して、-COO-、-OCO-、-CH CH-、-OCH-、-CHO-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CHCHCOO-、-CHCHOCO-、-COOCHCH-、-OCOCHCH-、-CONH-、-NHCO-、炭素数2~10のハロゲン原子を有してもよいアルキレン基又は単結合を表し、
neは0、1又は2を表し、
51及びR52はそれぞれ独立して水素原子、ハロゲン原子、シアノ基又は炭素原子数1~18のアルキル基を表すが、該アルキル基は1つ以上のハロゲン原子又はCNにより置換されていても良く、この基中に存在する1つのCH基又は隣接していない2つ以上のCH基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良い。)で表される化合物が挙げられる。
 具体的には、以下に示されるが、これらに限定される訳ではない。
Figure JPOXMLDOC01-appb-C000031
 Ra及びRbはそれぞれ独立して水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のアルケニル基、シアノ基を表し、これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子により置換されていてもよい。
 メソゲン基を有する化合物の総含有量は、重合性コレステリック液晶組成物中に用いる重合性液晶化合物の合計量のうち0~20質量%であることが好ましく、0~15質量%であることが好ましく、0~10質量%であることが特に好ましい。
(キラル化合物)
 本発明における重合性コレステリック液晶組成物には、液晶性を示してもよく、非液晶性であってもよい、キラル化合物(III)を含有する。
 本発明に使用するキラル化合物としては、重合性官能基を1つ以上有することが好ましい。重合性キラル化合物としては、重合性官能基を1つ以上有することが好ましい。このような化合物としては、例えば、特開平11-193287号公報、特開2001-158788号公報、特表2006-52669号公報、特開2007-269639号公報、特開2007-269640号公報、2009-84178号公報等に記載されているような、イソソルビド、イソマンニット、グルコシド等のキラルな糖類を含み、かつ、1,4-フェニレン基1,4-シクロヘキレン基等の剛直な部位と、ビニル基、アクリロイル基、(メタ)アクリロイル基、また、マレイミド基といった重合性官能基を有する重合性キラル化合物、特開平8-239666号公報に記載されているような、テルペノイド誘導体からなる重合性キラル化合物、NATURE VOL35 467~469ページ(1995年11月30日発行)、NATURE VOL392 476~479ページ(1998年4月2日発行)等に記載されているような、メソゲン基とキラル部位を有するスペーサーからなる重合性キラル化合物、あるいは特表2004-504285号公報、特開2007-248945号公報に記載されているような、ビナフチル基を含む重合性キラル化合物が挙げられる。中でも、らせんねじれ力(HTP)の大きなキラル化合物が、本発明の重合性コレステリック液晶組成物に好ましい。
 重合性キラル化合物の配合量は、化合物の螺旋誘起力によって適宜調整することが必要であるが、重合性コレステリック液晶組成物中に含有する重合性液晶化合物(I)、重合性液晶化合物(II)及びキラル化合物(III)の合計含有量の内、2~25質量%含有することが好ましく、2~20質量%含有することがより好ましく、2~15質量%含有することがさらに好ましく、2~15質量%含有することが特に好ましい。
 キラル化合物の一般式の一例として、一般式(III-1)~(III-4)を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000032
 式中、Sp3a、及び、Sp3bはそれぞれ独立して炭素原子数0~18のアルキレン基を表し、該アルキレン基は1つ以上のハロゲン原子、CN基、又は重合性官能基を有する炭素原子数1~8のアルキル基により置換されていても良く、この基中に存在する1つのCH2基又は隣接していない2つ以上のCH2基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良く、
 A1、A2、A3、A4、及びA5はそれぞれ独立して、1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、n、l及びkはそれぞれ独立して、0又は1を表し、0≦n+l+k≦3となり、
 Z0、Z1、Z2、Z3、Z4、Z5、及び、Z6はそれぞれ独立して、-COO-、-OCO-、-CH2CH2-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-CONH-、-NHCO-、炭素数2~10のハロゲン原子を有してもよいアルキル基又は単結合を表し、
n5、及び、m5はそれぞれ独立して0又は1を表し、
3a及びR3bは、水素原子、ハロゲン原子、シアノ基又は炭素原子数1~18のアルキル基を表すが、該アルキル基は1つ以上のハロゲン原子又はCNにより置換されていても良く、この基中に存在する1つのCH2基又は隣接していない2つ以上のCH2基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良く、
あるいはR3a及びR3bは一般式(III-a)
Figure JPOXMLDOC01-appb-C000033
(式中、P3aは重合性官能基を表す。)
 P3aは、下記の式(P-1)から式(P-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000034
 これらの重合性官能基のうち、重合性および保存安定性を高める観点から、式(P-1)又は式(P-2)、(P-7)、(P-12)、(P-13)が好ましく、式(P-1)、(P-7)、(P-12)がより好ましい。
 キラル化合物の具体的例としては、化合物(III-5)~(III-46)の化合物を挙げることができるが、下記の化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
(式中、m、nはそれぞれ独立して1~18の整数を表し、R、R~Rはそれぞれ独立して水素原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、カルボキシ基、シアノ基を示す。これらの基が炭素数1~6のアルキル基、あるいは炭素数1~6のアルコキシ基の場合、全部が未置換であるか、あるいは1つまたは2つ以上のハロゲン原子により置換されていてもよい。)
(重合性ディスコチック化合物)
 本発明の重合性液晶組成物において、上記一般式(II)に示す重合性化合物以外の液晶性を示してもよく、非液晶性であってもよく、重合性ディスコチック化合物を含有することもできる。
 本発明に使用する重合性ディスコチック化合物としては、重合性官能基を1つ以上有することが好ましい。このような化合物としては、例えば、特開平7-281028号公報、特開平7-287120号公報、特開平7-333431号公報、特開平8-27284号公報に記載されているような重合性化合物が挙げられる。
 重合性ディスコチック化合物の配合量は、化合物によって適宜調整することが必要であるが、重合性組成物の内、0~10質量%含有することが好ましい。
 重合性ディスコチック化合物の一般式の一例として、一般式(4-1)~(4-3)を挙げることができるが、下記の一般式に限定されるわけではない。
Figure JPOXMLDOC01-appb-C000045
 式中、Spは炭素原子数0~18のアルキレン基を表し、該アルキレン基は1つ以上のハロゲン原子、CN基、又は重合性官能基を有する炭素原子数1~8のアルキル基により置換されていても良く、この基中に存在する1つのCH2基又は隣接していない2つ以上のCH2基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良く、
 Aは1,4-フェニレン基、1,4-シクロヘキシレン基、1,4-シクロヘキセニル基、テトラヒドロピラン-2,5-ジイル基、1,3-ジオキサン-2,5-ジイル基、テトラヒドロチオピラン-2,5-ジイル基、1,4-ビシクロ(2,2,2)オクチレン基、デカヒドロナフタレン-2,6-ジイル基、ピリジン-2,5-ジイル基、ピリミジン-2,5-ジイル基、ピラジン-2,5-ジイル基、チオフェン-2,5-ジイル基-、1,2,3,4-テトラヒドロナフタレン-2,6-ジイル基、2,6-ナフチレン基、フェナントレン-2,7-ジイル基、9,10-ジヒドロフェナントレン-2,7-ジイル基、1,2,3,4,4a,9,10a-オクタヒドロフェナントレン-2,7-ジイル基、1,4-ナフチレン基、ベンゾ[1,2-b:4,5-b‘]ジチオフェン-2,6-ジイル基、ベンゾ[1,2-b:4,5-b‘]ジセレノフェン-2,6-ジイル基、[1]ベンゾチエノ[3,2-b]チオフェン-2,7-ジイル基、[1]ベンゾセレノフェノ[3,2-b]セレノフェン-2,7-ジイル基、又はフルオレン-2,7-ジイル基を表し、
n5は0又は1を表し、
 Z4aは、-CO-、-CH2 CH2-、-CH2O-、-CH=CH-、-CH=CHCOO-、-CH2CH2COO-、-CH2CH2OCO-、-COCH2CH2-、炭素数2~10のハロゲン原子を有してもよいアルキル基又は単結合を表し、
 Z4bは-COO-、-OCO-、-OCH2-、-CH2O-、-CH=CH-、-C≡C-、-CH=CHCOO-、-OCOCH=CH-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-、-CONH-、-NHCO-、-OCOO-、炭素数2~10のハロゲン原子を有してもよいアルキル基又は単結合を表し、
 Rは、水素原子、ハロゲン原子、シアノ基又は炭素原子数1~18のアルキル基を表すが、該アルキル基は1つ以上のハロゲン原子又はCNにより置換されていても良く、この基中に存在する1つのCH2基又は隣接していない2つ以上のCH2基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良く、
あるいはRは一般式(4-a)
Figure JPOXMLDOC01-appb-C000046
(式中、P4aは重合性官能基を表し、Sp3aはSpと同じ意味を表す。)
 P4aは、下記の式(P-1)から式(P-20)で表される重合性基から選ばれる置換基を表すのが好ましい。
Figure JPOXMLDOC01-appb-C000047
 これらの重合性官能基のうち、重合性および保存安定性を高める観点から、式(P-1)又は式(P-2)、(P-7)、(P-12)、(P-13)が好ましく、式(P-1)、(P-7)、(P-12)がより好ましい。
 重合性ディスコチック化合物の具体的例としては、化合物(4-4)~(4-8)の化合物を挙げることができるが、下記の化合物に限定されるものではない。
(重合開始剤)
(光重合開始剤)
 本発明における重合性液晶組成物は光重合開始剤を含有することが好ましい。光重合開始剤は少なくとも1種類以上含有することが好ましい。具体的には、BASF社製の「イルガキュア651」、「イルガキュア184」、「ダロキュア1173」、「イルガキュア907」、「イルガキュア127」、「イルガキュア369」、「イルガキュア379」、「イルガキュア819」、「イルガキュア2959」、「イルガキュア1800」、「イルガキュア250」、「イルガキュア754」、「イルガキュア784」、「イルガキュアOXE01」、「イルガキュアOXE02」、「ルシリンTPO」、「ダロキュア1173」、「ダロキュアMBF」やLAMBSON社製の「エサキュア1001M」、「エサキュアKIP150」、「スピードキュアBEM」、「スピードキュアBMS」、「スピードキュアMBP」、「スピードキュアPBZ」、「スピードキュアITX」、「スピードキュアDETX」、「スピードキュアEBD」、「スピードキュアMBB」、「スピードキュアBP」や日本化薬社製の「カヤキュアDMBI」、日本シイベルヘグナー社製(現DKSH社)の「TAZ-A」、ADEKA社製の「アデカオプトマーSP-152」、「アデカオプトマーSP-170」、「アデカオプトマーN-1414」、「アデカオプトマーN-1606」、「アデカオプトマーN-1717」、「アデカオプトマーN-1919」、UCC社製の「サイラキュアーUVI-6990」、「サイラキュアーUVI-6974」や「サイラキュアーUVI-6992」、旭電化工業社製の「アデカオプトマーSP-150、SP-152、SP-170、SP-172」やローディア製の「PHOTOINITIATOR2074」、BASF社製の「イルガキュア250」、GEシリコンズ社製の 「UV-9380C」、みどり化学社製の「DTS-102」等が挙げられる。
 光重合開始剤の使用量は重合性コレステリック液晶組成物中に含有する重合性液晶化合物(I)、重合性液晶化合物(II)及びキラル化合物(III)の合計含有量を100質量部とした場合に、0.1~7質量部添加することが好ましく、0.5~6質量部添加することがより好ましく、1~6質量部添加することがさらに好ましく、3~6質量部が特に好ましい。これらは、単独で使用することもできるし、2種類以上混合して使用することもでき、また、増感剤等を添加しても良い。
(熱重合開始剤)
 本発明における重合性コレステリック液晶組成物には、光重合開始剤とともに、熱重合開始剤を併用してもよい。熱重合開始剤としては公知慣用のものが使用でき、例えば、メチルアセトアセテイトパーオキサイド、キュメンハイドロパーオキサイド、ベンゾイルパーオキサイド、ビス(4-t-ブチルシクロヘキシル)パ-オキシジカーボネイト、t-ブチルパーオキシベンゾエイト、メチルエチルケトンパーオキサイド、1,1-ビス(t-ヘキシルパ-オキシ)3,3,5-トリメチルシクロヘキサン、p-ペンタハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、ジクミルパーオキサイド、イソブチルパーオキサイド、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネイト、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン等の有機過酸化物、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾニトリル化合物、2,2’-アゾビス(2-メチル-N-フェニルプロピオン-アミヂン)ジハイドロクロライド等のアゾアミヂン化合物、2,2’アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}等のアゾアミド化合物、2,2’アゾビス(2,4,4-トリメチルペンタン)等のアルキルアゾ化合物等を使用することができる。
 熱重合開始剤の使用量は重合性コレステリック液晶組成物中に含有する重合性液晶化合物(I)、重合性液晶化合物(II)及びキラル化合物(III)の合計含有量を100質量部とした場合に、0.1~7質量部添加することが好ましく、0.3~6質量部添加することがより好ましく、0.5~5質量%が特に好ましい。これらは、単独で使用することもできるし、2種類以上混合して使用することもできる。
(繰り返し単位を有する化合物)
 本発明の重合性コレステリック液晶組成物には、繰り返し単位を有する、非シリコン系化合物(V)を含有することが好ましい。なお、後述するが、重合性コレステリック液晶組成物を用いて光学異方体を形成し、さらに、当該光学異方体膜上に、光学異方体を保護する保護層を別途積層する場合は、当該保護層を形成するにあたり、繰り返し単位を有する非シリコン系化合物(V)又は、繰り返し単位を有する非シリコン系化合物(V)を含有する溶液を用いる為、重合性液晶組成物中に、当該繰り返し単位を有する非シリコン系化合物(V)を必ずしも含有する必要はない。本発明の重合性コレステリック液晶組成物に繰り返し単位を有する非シリコン系化合物(V)を含有することで、配向状態が良好で、耐熱性に優れる光学異方体を得ることができる。
 本発明において、繰り返し単位を有する非シリコン系化合物(V)としては、繰り返し単位を有するアクリル系化合物及び/又はメタアクリル系化合物(V-1)を挙げることができる。繰り返し単位を有するアクリル系化合物及び/又はメタアクリル系化合物(V-1)としては、繰り返し単位を有していればよく、モノマーであっても、重合体や、(メタ)アクリル系化合物同士や、(メタ)アクリル系化合物とその他の重合性化合物との共重合体であってもよいが、重合性コレステリック液晶組成物に用いる溶剤に溶解可能なように分子量Mwが200000以下、Mnが400000以下であることが好ましい。アクリル系化合物及び/又はメタアクリル系化合物(V-1)として、具体的には、以下の式(V-1-1)~(V-1-15)が挙げられる。
2-エチルヘキシルアクリレート、ブチルアクリレートの共重合体(V-1-1)
ブチルアクリレート、ブチルメタクリレートの共重合体(V-1-2)
2-エチルブチルアクリレートの重合体(V-1-3)
ブチルアクリレートの重合体(V-1-4)
エチルアクリレートの重合体(V-1-5)
2-エチルヘキシルアクリレートの重合体(V-1-6)
1,9-ノナンジオールアクリレート(V-1-7)
ポリプロピレングリコールジアクリレート(V-1-8)
ベンジルアクリレートの重合体(V-1-9)
2-エチルヘキシルアクリレート、ブチルアクリレート、ブチルメタクリレートの共重合体(V-1-10)
下記(V-a)、(V-b)の共重合体(V-1-11)
Figure JPOXMLDOC01-appb-C000048
下記(V-c)、(V-d)の共重合体(V-1-12)
Figure JPOXMLDOC01-appb-C000049
フェニルグリシジルエーテルアクリレートの重合体(V-1-13)
下記重合体(V-1-14)
Figure JPOXMLDOC01-appb-C000050
下記重合体(V-1-15)
Figure JPOXMLDOC01-appb-C000051
(式中、f、g、l、oはそれぞれ1以上の整数を表すが、fは15~50が好ましく、gは50~85が好ましく、lは1~20が好ましく、oは1~20が好ましい。また、n、h、m、sはそれぞれ1以上の整数を表すが、nは1~20が好ましく、hは1~20が好ましく、mは1~20が好ましく、sは1~20が好ましい。また、式中、R、R`はそれぞれ独立的に炭素原子数1~20の炭化水素基、または芳香族炭化水素を表し、該炭化水素基中の水素原子は1つ以上のハロゲン原子で置換されていても良い。)
 本発明において、繰り返し単位を有する非シリコン系化合物(V)としては、下記一般式(V-2)で表される繰り返し単位を有する重量平均分子量が100以上である化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000052
 式中、R11、R12、R13及びR14はそれぞれ独立的に水素原子、ハロゲン原子又は炭素原子数1~20の炭化水素基を表し、該炭化水素基中の水素原子は1つ以上のハロゲン原子で置換されていても良い。
 一般式(V-2)で表される好適な化合物として、例えばポリエチレン、ポリプロピレン、ポリイソブチレン、パラフィン、流動パラフィン、塩素化ポリプロピレン、塩素化パラフィン、塩素化流動パラフィン等を挙げることができる。
 本発明において、繰り返し単位を有する非シリコン系化合物(V)としては、下記一般式等で表される繰り返し単位を有するポリイミド系化合物及び/又はポリアミド系化合物(V-3)を挙げることができる。繰り返し単位を有するポリイミド系化合物及び/又はポリアミド系化合物(V-3)としては、繰り返し単位を有していればよく、モノマーであっても、重合体や、ポリイミド系化合物及び/又はポリアミド系化合物とその他の重合性化合物との共重合体であってもよいが、重合性コレステリック液晶組成物に用いる溶剤に溶解可能なように分子量Mwが200000以下、Mnが400000以下であることが好ましい。ポリイミド系化合物及び/又はポリアミド系化合物(V-3)として、具体的には、以下の式(V-3-1)~(V-3-4)の重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
(式中、iは1以上の整数を表すが、1~50が好ましい。)
繰り返し単位を有する非シリコン系化合物(V)の使用量は重合性コレステリック液晶組成物中に含有する重合性液晶化合物(I)、重合性液晶化合物(II)及びキラル化合物(III)の合計含有量を100質量部とした場合に、0.1~6質量部添加することが好ましく、0.1~5.5質量部添加することがより好ましく、0.1~5質量%が特に好ましい。これらは、単独で使用することもできるし、2種類以上混合して使用することもできる。
(有機溶剤)
 本発明における重合性コレステリック液晶組成物に有機溶剤を添加してもよい。用いる有機溶剤としては特に限定はないが、重合性液晶化合物が良好な溶解性を示す有機溶剤が好ましく、100℃以下の温度で乾燥できる有機溶剤であることが好ましい。そのような溶剤としては、例えば、トルエン、キシレン、クメン、メシチレン等の芳香族系炭化水素、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、シクロペンタノン等のケトン系溶剤、テトラヒドロフラン、1,2-ジメトキシエタン、アニソール等のエーテル系溶剤、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、等のアミド系溶剤、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、γ-ブチロラクトン及びクロロベンゼン等が挙げられる。これらは、単独で使用することもできるし、2種類以上混合して使用することもできるが、ケトン系溶剤、エーテル系溶剤、エステル系溶剤及び芳香族炭化水素系溶剤のうちのいずれか1種類以上を用いることが溶液安定性の点から好ましい。
 本発明に用いられる組成物は有機溶剤の溶液とすると基板に対して塗布することができ、重合性コレステリック液晶組成物に用いる有機溶剤の比率は、塗布した状態を著しく損なわない限りは特に制限はないが、重合性コレステリック液晶組成物中に含有する有機溶剤の合計量が10~95質量%であることが好ましく、12~90質量%であることが更に好ましく、15~85質量%であることが特に好ましい。
 有機溶剤に重合性コレステリック液晶組成物を溶解する際には、均一に溶解させるために、加熱攪拌することが好ましい。加熱攪拌時の加熱温度は、用いる組成物の有機溶剤に対する溶解性を考慮して適宜調節すればよいが、生産性の点から15℃~110℃が好ましく、15℃~105℃がより好ましく、15℃~100℃がさらに好ましく、20℃~90℃とするのが特に好ましい。
 また、溶媒を添加する際には分散攪拌機により攪拌混合することが好ましい。分散攪拌機として具体的には、ディスパー、プロペラ、タービン翼等攪拌翼を有する分散機、ペイントシェイカー、遊星式攪拌装置、振とう機、スターラー、シェーカー又はロータリーエバポレーター等が使用できる。その他には、超音波照射装置が使用できる。
 溶媒を添加する際の攪拌回転数は、用いる攪拌装置により適宜調整することが好ましいが、均一な重合性液晶組成物溶液とするために攪拌回転数を10rpm~1000rpmとするのが好ましく、50rpm~800rpmとするのがより好ましく、150rpm~600rpmとするのが特に好ましい。
(重合禁止剤)
 本発明における重合性コレステリック液晶組成物には、重合禁止剤を添加することが好ましい。重合禁止剤としては、フェノール系化合物、キノン系化合物、アミン系化合物、チオエーテル系化合物、ニトロソ化合物、等が挙げられる。
 フェノール系化合物としては、p-メトキシフェノール、クレゾール、t-ブチルカテコール、3.5-ジ-t-ブチル-4-ヒドロキシトルエン、2.2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、2.2'-メチレンビス(4-エチル-6-t-ブチルフェノール)、4.4'-チオビス(3-メチル-6-t-ブチルフェノール)、4-メトキシ-1-ナフトール、4,4’-ジアルコキシ-2,2’-ビ-1-ナフトール、等が挙げられる。
 キノン系化合物としては、ヒドロキノン、メチルヒドロキノン、tert-ブチルヒドロキノン、p-ベンゾキノン、メチル-p-ベンゾキノン、tert-ブチル-p-ベンゾキノン、2,5-ジフェニルベンゾキノン、2-ヒドロキシ-1,4-ナフトキノン、1,4-ナフトキノン、2,3-ジクロロ-1,4-ナフトキノン、アントラキノン、ジフェノキノン等が挙げられる。
 アミン系化合物としては、p-フェニレンジアミン、4-アミノジフェニルアミン、N.N'-ジフェニル-p-フェニレンジアミン、N-i-プロピル-N'-フェニル-p-フェニレンジアミン、N-(1.3-ジメチルブチル)-N'-フェニル-p-フェニレンジアミン、N.N'-ジ-2-ナフチル-p-フェニレンジアミン、ジフェニルアミン、N-フェニル-β-ナフチルアミン、4.4'-ジクミル-ジフェニルアミン、4.4'-ジオクチル-ジフェニルアミン等が挙げられる。
 チオエーテル系化合物としては、フェノチアジン、ジステアリルチオジプロピオネート等が挙げられる。
 ニトロソ系化合物としては、N-ニトロソジフェニルアミン、N-ニトロソフェニルナフチルアミン、N-ニトロソジナフチルアミン、p-ニトロソフェノール、ニトロソベンゼン、p-ニトロソジフェニルアミン、α-ニトロソ-β-ナフトール等、N、N-ジメチルp-ニトロソアニリン、p-ニトロソジフェニルアミン、p-ニトロンジメチルアミン、p-ニトロン-N、N-ジエチルアミン、N-ニトロソエタノールアミン、N-ニトロソジ-n-ブチルアミン、N-ニトロソ-N-n-ブチル-4-ブタノールアミン、N-ニトロソ-ジイソプロパノールアミン、N-ニトロソ-N-エチル-4-ブタノールアミン、5-ニトロソ-8-ヒドロキシキノリン、N-ニトロソモルホリン、N-二トロソーN-フェニルヒドロキシルアミンアンモニウム塩、二トロソベンゼン、2,4.6-トリーtert-ブチルニトロンベンゼン、N-ニトロソ-N-メチル-p-トルエンスルホンアミド、N-ニトロソ-N-エチルウレタン、N-ニトロソ-N-n-プロピルウレタン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、1-ニトロソ-2-ナフトール-3,6-スルホン酸ナトリウム、2-ニトロソ-1-ナフトール-4-スルホン酸ナトリウム、2-ニトロソ-5-メチルアミノフェノール塩酸塩、2-ニトロソ-5-メチルアミノフェノール塩酸塩等が挙げられる。
 重合禁止剤の添加量は重合性コレステリック液晶組成物中に含有する重合性液晶化合物(I)、重合性液晶化合物(II)及びキラル化合物(III)の合計含有量を100質量部とした場合に0.01~1.0質量部であることが好ましく、0.05~0.5質量部であることがより好ましい。
(配向制御剤)
 本発明の重合性コレステリック液晶組成物は、重合性液晶化合物をコレステリック配向(平面配向)した状態にするために、配向性をより促進する配向制御剤を1種類以上含有してもよい。含有することができる配向制御剤としては、アルキルカルボン酸塩、アルキルリン酸塩、アルキルスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルリン酸塩、フルオロアルキルスルホン酸塩、ポリオキシエチレン誘導体、フルオロアルキルエチレンオキシド誘導体、ポリエチレングリコール誘導体、アルキルアンモニウム塩、フルオロアルキルアンモニウム塩類等を挙げることができ、特に含フッ素界面活性剤が好ましい。具体的には、「メガファック F-251」、「メガファック F-444」、「メガファック F-510」、「メガファック F-552」、「メガファック F-553」、「メガファック F-554」、「メガファック F-555」、「メガファック F-558」、「メガファック F-560」、「メガファック F-561」、「メガファック F-563」、「メガファック F-565」、「メガファック F-570」、「メガファック R-40」、「メガファック R-41」、「メガファック R-43」、「メガファック R-94」(以上、DIC株式会社製)、「FTX-218」(株式会社ネオス製)等の例を挙げることができる。
 また、使用可能な配向制御剤の例として、下記一般式(5-1)~(5-4)で表される化合物が挙げられるが、構造はこれに限定されない。
Figure JPOXMLDOC01-appb-C000055
(式中、Rはそれぞれ同一でも異なっていてもよく、フッ素原子で置換されていてもよい炭素原子数1~30のアルコキシ基を表す。式中、m1、m2及びm3はそれぞれ1以上の整数を表す。)
(連鎖移動剤)
 本発明における重合性コレステリック液晶組成物は、光学異方体とした場合の基材との密着性をより向上させるため、連鎖移動剤を添加することも好ましい。連鎖移動剤としては、芳香族炭化水素類、クロロホルム、四塩化炭素、四臭化炭素、ブロモトリクロロメタン等のハロゲン化炭化水素類、モノチオール、ジチオール、トリチオール、テトラチオール等のチオール化合物が挙げられるが、芳香族炭化水素類、チオール化合物がより好ましい。具体的には下記一般式(8-1)~(8-12)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
 式中、R65は炭素原子数2~18のアルキル基を表し、該アルキル基は直鎖であっても分岐鎖であっても良く、該アルキル基中の1つ以上のメチレン基は酸素原子、及び硫黄原子が相互に直接結合しないものとして、酸素原子、硫黄原子、-CO-、-OCO-、-COO-、又は-CH=CH-で置換されていてもよく、R66は炭素原子数2~18のアルキレン基を表し、該アルキレン基中の1つ以上のメチレン基は酸素原子、及び硫黄原子が相互に直接結合しないものとして、酸素原子、硫黄原子、-CO-、-OCO-、-COO-、又は-CH=CH-で置換されていてもよい。
 連鎖移動剤の添加量は重合性コレステリック液晶組成物中に含有する重合性液晶化合物(I)、重合性液晶化合物(II)及びキラル化合物(III)の合計含有量を100質量部とした場合に、0.5~10質量部であることが好ましく、1.0~5.0質量部であることがより好ましい。
(その他の添加剤)
 更に物性調整のため、目的に応じて、液晶性のない重合性化合物、チキソ剤、紫外線吸収剤、赤外線吸収剤、抗酸化剤、表面処理剤等の添加剤を液晶の配向能を著しく低下させない程度添加することができる。
(光学異方体)
 本発明の光学異方体は、本発明の重合性コレステリック液晶組成物を、配向機能を有する基材上に塗布し、本発明の重合性コレステリック液晶組成物中の液晶分子を、ネマチック相、キラルスメクチック相を保持した状態で配向させ、重合させることによって得られる。なお、本発明の光学異方体は、後述の位相差膜は、当該光学異方体の用途の1つであり、光学異方体の概念に包含されるものである。
(位相差膜)
 本発明の位相差膜は、本発明の光学異方体と同様にして作製される。基材に対して、液晶性化合物が一様に連続的な配向状態を形成して、位相差膜が得られる。なお、本発明の位相差膜は、位相差層及び位相差フィルムと同義である。
 本発明の重合性コレステリック液晶組成物を塗布等により、基材上に配向させ、重合して得られる位相差膜として、ネガティブCプレート、二軸性プレート等が挙げられる。
 ここで、ネガティブCプレートは、位相差膜の面内遅相軸方向の屈折率をnx、位相差膜の面内進相軸方向の屈折率をny、位相差膜の厚み方向の屈折率をnzとしたときに、「nx=ny>nz」の関係となる位相差膜である。二軸性プレートは、位相差膜の面内遅相軸方向の屈折率をnx、位相差膜の面内進相軸方向の屈折率をny、位相差膜の厚み方向の屈折率をnzとしたときに、「nx>ny>nz」の関係となる位相差膜である。
本発明の位相差膜は、液晶表示装置、ディスプレイ、光学素子、光学部品、着色剤、セキュリティ用マーキング、レーザー発光用部材、光学フィルム、及び、補償フィルム等の用途に応じて、用途に適した形で適用される。また、接着剤や接着層、粘着剤や粘着層、保護フィルムや偏光フィルム等が積層されていてもよい。
(位相差パターニング膜)
 本発明の位相差パターニング膜は、本発明の光学異方体同様に、基材、配向膜、及び、重合性コレステリック液晶組成物の重合体を順次積層したものであるが、重合工程において、部分的に異なる位相差が得られるようにパターニングされたものである。パターニングは、格子状のパターニング、円状のパターニング、多角形状のパターニング等、異なる方向の場合もある。本発明の位相差パターニング膜は、液晶表示装置、ディスプレイ、光学素子、光学部品、着色剤、セキュリティ用マーキング、レーザー発光用部材、光学フィルム、及び、補償フィルム等の用途に応じて、適用される。
 部分的に異なる位相差を得る方法としては、基材に配向膜を設け、配向処理する際に本発明の重合性コレステリック液晶組成物を塗布乾燥した際に、重合性液晶組成物がパターニング配向するように処理する。そのような配向処理は、微細ラビング処理、フォトマスクを介しての偏光紫外可視光照射処理、微細形状加工処理等が挙げられる。配向膜は、公知慣用のものが用いられる。そのような配向膜としては、ポリイミド、ポリシロキサン、ポリアミド、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリフェニレンエーテル、ポリアリレート、ポリエチレンテレフタレート、ポリエーテルサルホン、エポキシ樹脂、エポキシアクリレート樹脂、アクリル樹脂、クマリン化合物、カルコン化合物、シンナメート化合物、フルギド化合物、アントラキノン化合物、アゾ化合物、アリールエテン化合物等の化合物が挙げられる。微細ラビングにより配向処理する化合物は、配向処理、もしくは配向処理の後に加熱工程を入れることで材料の結晶化が促進されるものが好ましい。ラビング以外の配向処理を行う化合物の中では光配向材料を用いることが好ましい。
(輝度向上膜)
 本発明の輝度向上膜は、本発明の光学異方体と同様にして作製される。重合性コレステリック液晶組成物を硬化した位相差膜、λ/4波長板を粘着剤層等で介して積層させることにより、本発明の輝度向上膜として使用することができる。本発明の輝度向上膜を設けることで、液晶表示装置において、バックライトからの光を有効に利用し、輝度を向上させ且つ発光効率を高めることが可能である。
(反射防止膜)
 本発明の反射防止膜は、本発明の光学異方体と同様にして作製される。重合性コレステリック液晶組成物を硬化した位相差膜、λ/4波長板を粘着剤層等で介して積層させることにより、本発明の反射防止膜として使用することができる。有機EL等の画像表示装置には、外光反射や背景の映り込み等の問題があるが、本発明の反射防止膜を設けることで、上記問題を防ぐことができる。
(遮熱膜)
 本発明の遮熱膜は、本発明の光学異方体と同様にして作製される。重合性コレステリック液晶組成物を硬化した位相差膜を積層することで、本発明の遮熱膜として使用することができる。本発明の遮熱膜を設けることで、太陽光の可視光線、または赤外光線等の透過を防ぐことが可能である。
(光学異方体の製造方法)
(基材)
 本発明の光学異方体に用いられる基材は、液晶表示装置、ディスプレイ、光学部品や光学フィルムに通常使用する基材であって、本発明の重合性コレステリック液晶組成物の塗布後の乾燥時における加熱に耐えうる耐熱性を有する材料であれば、特に制限はない。そのような基材としては、ガラス基材、金属基材、セラミックス基材やプラスチック基材等の有機材料が挙げられる。特に基材が有機材料の場合、セルロース誘導体、ポリオレフィン、ポリエステル、ポリカーボネート、ポリアクリレート(アクリル樹脂)、ポリアリレート、ポリエーテルサルホン、ポリイミド、ポリフェニレンスルフィド、ポリフェニレンエーテル、ナイロン又はポリスチレン等が挙げられる。中でもポリエステル、ポリスチレン、ポリアクリレート、ポリオレフィン、セルロース誘導体、ポリアリレート、ポリカーボネート等のプラスチック基材が好ましく、ポリアクリレート、ポリオレフィン、セルロース誘導体等の基材がさらに好ましく、ポリオレフィンとしてCOP(シクロオレフィンポリマー)を用い、セルロース誘導体としてTAC(トリアセチルセルロース)を用い、ポリアクリレートとしてPMMA(ポリメチルメタクリレート)を用いることが特に好ましい。基材の形状としては、平板の他、曲面を有するものであっても良い。これらの基材は、必要に応じて、電極層、反射防止機能、反射機能を有していてもよい。
 本発明の重合性コレステリック液晶組成物の塗布性や接着性向上のために、これらの基材の表面処理を行っても良い。表面処理として、オゾン処理、プラズマ処理、コロナ処理、シランカップリング処理などが挙げられる。また、光の透過率や反射率を調節するために、基材表面に有機薄膜、無機酸化物薄膜や金属薄膜等を蒸着など方法によって設ける、あるいは、光学的な付加価値をつけるために、基材がピックアップレンズ、ロッドレンズ、光ディスク、位相差フィルム、光拡散フィルム、カラーフィルタ等であっても良い。中でも付加価値がより高くなるピックアップレンズ、位相差フィルム、光拡散フィルム、カラーフィルタは好ましい。
(配向処理)
 また、上記基材には、本発明の重合性コレステリック液晶組成物を塗布乾燥した際に重合性コレステリック液晶組成物が配向するように、通常配向処理が施されている、あるいは配向膜が設けられていても良い。配向処理としては、延伸処理、ラビング処理、偏光紫外可視光照射処理、イオンビーム処理等が挙げられる。配向膜を用いる場合、配向膜は公知慣用のものが用いられる。そのような配向膜としては、ポリイミド、ポリシロキサン、ポリアミド、ポリビニルアルコール、ポリカーボネート、ポリスチレン、ポリフェニレンエーテル、ポリアリレート、ポリエチレンテレフタレート、ポリエーテルサルホン、エポキシ樹脂、エポキシアクリレート樹脂、アクリル樹脂、クマリン化合物、カルコン化合物、シンナメート化合物、フルギド化合物、アントラキノン化合物、アゾ化合物、アリールエテン化合物等の化合物が挙げられる。ラビングにより配向処理する化合物は、配向処理、もしくは配向処理の後に加熱工程を入れることで材料の結晶化が促進されるものが好ましい。ラビング以外の配向処理を行う化合物の中では光配向材料を用いることが好ましい。
(塗布)
 本発明の光学異方体を得るための塗布法としては、アプリケーター法、バーコーティング法、スピンコーティング法、ロールコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、フレキソコーティング法、インクジェット法、ダイコーティング法、キャップコーティング法、ディップコーティング法、スリットコーティング法等、公知慣用の方法を行うことができる。重合性コレステリック液晶組成物を塗布後、必要に応じて乾燥させる。
(重合方法)
 本発明の光学異方体を得るための重合性コレステリック液晶組成物の重合操作については、重合性液晶組成物中の液晶化合物が基材に対してコレステリック配向(平面配向)した状態で一般に紫外線等の光照射、あるいは加熱によって行われる。重合を光照射で行う場合は、具体的には390nm以下の紫外光を照射することが好ましく、250~370nmの波長の光を照射することが最も好ましい。但し、390nm以下の紫外光により重合性コレステリック液晶組成物が分解などを引き起こす場合は、390nm以上の紫外光で重合処理を行ったほうが好ましい場合もある。この光は、拡散光で、かつ偏光していない光であることが好ましい。
 本発明の重合性コレステリック液晶組成物を重合させる方法としては、活性エネルギー線を照射する方法や熱重合法等が挙げられるが、加熱を必要とせず、室温で反応が進行することから活性エネルギー線を照射する方法が好ましく、中でも、操作が簡便なことから、紫外線等の光を照射する方法が好ましい。
 照射時の温度は、本発明の重合性コレステリック液晶組成物が液晶相を保持できる温度とすることが好ましい。また、重合性コレステリック液晶組成物の照射時の温度を上昇させることにより、得られた光学異方体の硬化性を向上させることか可能である。尚、液晶組成物は、通常、昇温過程において、C(固相)-N(ネマチック)転移温度(以下、C-N転移温度と略す。)から、N-I転移温度範囲内で液晶相を示す。一方、降温過程においては、熱力学的に非平衡状態を取るため、C-N転移温度以下でも凝固せず液晶状態を保つ場合がある。この状態を過冷却状態という。本発明においては、過冷却状態にある液晶組成物も液晶相を保持している状態に含めるものとする。具体的には390nm以下の紫外光を照射することが好ましく、250~370nmの波長の光を照射することが最も好ましい。但し、390nm以下の紫外光により重合性組成物が分解などを引き起こす場合は、390nm以上の紫外光で重合処理を行ったほうが好ましい場合もある。この光は、拡散光で、かつ偏光していない光であることが好ましい。紫外線照射強度は、0.05kW/m~10kW/mの範囲が好ましい。特に、0.2kW/m~2kW/mの範囲が好ましい。紫外線強度が0.05kW/m未満の場合、重合を完了させるのに多大な時間がかかる。一方、2kW/mを超える強度では、重合性液晶組成物中の液晶分子が光分解する傾向にあることや、重合熱が多く発生して重合中の温度が上昇し、重合性液晶のオーダーパラメーターが変化して、重合後のフィルムのリタデーションに狂いが生じる可能性がある。
 マスクを使用して特定の部分のみを紫外線照射で重合させた後、該未重合部分の配向状態を、電場、磁場又は温度等をかけて変化させ、その後該未重合部分を重合させると、異なる配向方向をもった複数の領域を有する光学異方体を得ることもできる。
 また、マスクを使用して特定の部分のみを紫外線照射で重合させる際に、予め未重合状態の重合性液晶組成物に電場、磁場又は温度等をかけて配向を規制し、その状態を保ったままマスク上から光を照射して重合させることによっても、異なる配向方向をもった複数の領域を有する光学異方体を得ることができる。
 本発明の重合性液晶組成物を重合させて得られる光学異方体は、基板から剥離して単体で光学異方体として使用することも、基板から剥離せずにそのまま光学異方体として使用することもできる。特に、他の部材を汚染し難いので、被積層基板として使用したり、他の基板に貼り合わせて使用したりするときに有用である。
(光学異方体上に保護層を有する積層体の製造方法)
 本発明の光学異方体上に保護層を有する積層体の製造方法として以下の方法が挙げられる。
 第1の方法として、本発明の重合性コレステリック液晶組成物中に、上記繰り返し単位を有する非シリコン系化合物(V)を含有させ、前記重合性コレステリック液晶組成物を重合する方法が挙げられる。この場合、含有する繰り返し単位を有する非シリコン系化合物(V)が、前記重合性コレステリック液晶組成物の塗布後、必要に応じて乾燥して一定の配向状態を形成するまでの間に、前記重合性コレステリック液晶組成物から排斥され、前記重合性コレステリック液晶組成物と空気界面の間に偏析して保護層を形成し、積層体となると推察される。本方法を用いる場合、繰り返し単位を有する非シリコン系化合物(V)として、上記一般式(V-1)、(V-2)で用いられる化物を用いると、光学異方体と適度に分離し保護層を形成しやすく、さらには配向性が良好な光学異方体を得られるため好ましい。
 第2の方法として、本発明の光学異方体を有する光学異方体を得るための重合性コレステリック液晶組成物を重合して得られる光学異方体上に、繰り返し単位を有する非シリコン系化合物(V)を含有する溶液を乾燥後、必要に応じて硬化して保護層を積層する方法が挙げられる。この場合、重合性コレステリック液晶組成物中に、繰り返し単位を有する非シリコン系化合物(V)を含有していても含有していなくても良いが、含有する場合は、上記一般式(V-2)で表される化合物を含有することが好ましい。また、本方法を用いる場合、繰り返し単位を有する非シリコン系化合物(V)として、上記一般式(V-1)、(V-3)で用いられる化合物を用いると、ガラス転移温度が高いことにより、保護層として耐熱性の機能に優れるため好ましい。
(液晶表示装置)
 本発明の液晶表示装置は、ガラスなどの光透過性基板の間に液晶物質を封入した表示素子である。液晶表示装置は、図示しない表示制御装置からの電気的制御により液晶物質の分子配向を変化させることで、液晶セルの背面側に配置した偏光板により偏光されたバックライトの光の偏光状態を変化させ、液晶セルの視認側に配置した偏光板を透過する光量を制御することによって画像を表示させる。本実施形態の液晶表示装置は、負の誘電率異方性を有する棒状の液晶分子を配向させている。
 本発明の一実施形態である液晶表示装置では、偏光軸直交性の視野角依存を補償して視野角を広げるため、本発明の位相差膜のネガティブCプレートを使用することが好ましい。また、ポジティブAプレートを併用することが好ましく、更にポジティブAプレート及びネガティブCプレートを積層することがより好ましい。
 ここで、ポジティブAプレートは、フィルムの面内遅相軸方向の屈折率をnx、フィルムの面内進相軸方向の屈折率をny、フィルムの厚み方向の屈折率をnzとしたときに、「nx>ny=nz」の関係となる。
 ポジティブAプレート及びネガティブCプレートを積層する場合、第1の位相差膜として、ポジティブAプレートを使用することが好ましく、ポジティブAプレートとしては、波長550nmにおける面内位相差値が30~500nmの範囲にあるものが好ましい。Nz係数は、0.9~1.1の範囲が好ましい。ネガティブCプレートとしては、波長550nmにおける厚み方向位相差値は20~400nmの範囲が好ましい。
 なお、厚み方向の屈折率異方性は、式(2)により定義される厚み方向位相差値Rthで表される。厚み方向位相差値Rthは、面内位相差値R、遅相軸を傾斜軸として50°傾斜して測定した位相差値R50、フィルムの厚みd、フィルムの平均屈折率nを用いて、式(1)と次式(4)~(7)から数値計算によりnx、ny、nzを求め、これらを式(2)に代入して算出することができる。また、Nz係数=は、式(3)から算出
することができる。以下、本明細書の他の記載において同様である。
 R=(nx-ny)×d                         (1)
 Rth=[(nx+ny)/2-nz]×d                (2)
 Nz係数=(nx-nz)/(nx-ny)                (3)
 R50=(nx-ny’)×d/cos(φ)                (4)
 (nx+ny+nz)/3=n                      (5)
ここで、
 φ=sin-1[sin(50°)/n]                  (6)
 ny’=ny×nz/[ny×sin(φ)+nz×cos(φ)]1/2 (7)
 市販の位相差測定装置では、ここに示した数値計算を装置内で自動的に行い、面内位相差値Rや厚み方向位相差値Rthなどを自動的に表示するようになっているものが多い。このような測定装置としては、例えば、RETS-100(大塚化学(株)製)を挙げることができる。
 また、本発明の位相差膜は、液晶セルの外側に配置される液晶表示装置(アウトセル型、図1)、位相差膜が液晶セルの内側に配置される液晶表示装置(インセル型)のどちらの液晶表示装置にも適用できる。液晶表示装置の薄型化・軽量化・貼り付け工程削減による生産性向上の観点から、インセル型位相差膜を用いたほうが良い。
 本発明の「インセル型位相差膜」は、一対の光透過性基板で挟まれた内側に位相差膜を備えており、液晶セルの内側に配置されている。位相差膜には、重合性液晶組成物を配向させた状態で、重合させた光学異方体を使用している。また、図2、図3に示す液晶表示装置は、配置例の1つに過ぎず、位相差膜が設けられる位置としてはこれに限定されない。例えば、電極と背面側の配向膜との間など、所望の位置に位相差膜を設けるようにしてもよい(図10、図11)。
 本発明の液晶表示装置は、カラーフィルタを有していてもよい。カラーフィルタは、ブラックマトリックス及び少なくともRGB三色画素部から構成される。カラーフィルタ層の形成には、何れの方法を用いてもよい。本発明の液晶表示装置は、第一の基板と第二の基板上の液晶組成物と接する面には液晶組成物を配向させるために配向膜を有していても良い。配向膜材料は、本発明の配向処理に記載の通りである。
 本発明の液晶表示装置において、透明電極の材料としては、導電性の金属酸化物を用いることができ、金属酸化物としては酸化インジウム(In)、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化インジウムスズ(In―SnO)、酸化インジウム亜鉛(In―ZnO)、ニオブ添加二酸化チタン(Ti1-xNbx)、フッ素ドープ酸化スズ、グラフェンナノリボン又は金属ナノワイヤー等が使用できるが、酸化亜鉛(ZnO)、酸化インジウムスズ(In―SnO)又は酸化インジウム亜鉛(In―ZnO)が好ましい。これらの透明導電膜のパターニングには、フォト・エッチング法やマスクを用いる方法などを使用することができる。
 発明の液晶表示装置は、偏光層を有していてもよい。偏光層は、自然光を直線偏光に変換する機能を有する部材である。前記偏光層は、偏光機能を有するフィルムであればよく、例えば、ポリビニルアルコール系フィルムにヨウ素や二色性色素を吸着させて延伸したフィルム、ポリビニルアルコール系フィルムを延伸してヨウ素や二色性染料あるいは、二色性色素を吸着させたフィルム、二色性染料を含有する水溶液を基板上に塗布して偏光層を形成したフィルム、ワイヤーグリッド偏光子等が挙げられる。
 ワイヤーグリッド偏光子を用いる場合は、Al、Cu、Ag、Cu、Ni、Cr、及びSiなどの導電材料で形成されたものを使用することが好ましい。
 また、偏光層にはさらに、必要に応じて、保護フィルムとなるフィルムを備えていてもよい。前記保護フィルムとしては、たとえばポリエチレン、ポリプロピレン、ノルボルネン系ポリマー等のポリオレフィンフィルム、ポリエチレンテレフタレートフィルム、ポリメタクリル酸エステルフィルム、ポリアクリル酸エステルフィルム、セルロースエステルフィルム等が挙げられる。
 本発明の一実施形態では、液晶セル内に偏光層を設置する、インセル偏光層が設けられてもよい。この場合の液晶表示装置の一例を図4~図9に示す。
 前述した偏光層を有する光学部材には、液晶セルとの貼合のため粘着剤層を設けていてもよい。液晶セル以外の他部材と貼合するためにも粘着剤層を設けることもできる。粘着剤層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。本発明の液晶組成物には、シアノビフェニル系、フェニルシクロヘキシル系、フェニルベンゾエート系、シクロヘキシルベンゾエート系、アゾメチン系、アゾベンゼン系、ピリミジン系、ジオキサン系、シクロヘキシルシクロヘキサン系、スチルベン系、トラン系等、特に制限なく、公知慣用のものを用いることができる。
(画像表示装置)
 本発明の画像表示装置は、画像表示用の各種装置に使用することができる。画像表示装置としては、有機EL表示装置、プラズマディスプレイ表示装置等が挙げられ、画像表示装置の用途、種類、構成に限定はない。画像表示装置を構成する際に、拡散板、反射防止膜、保護膜、光拡散板、バックライト等の部品を配置することができる。
(光学素子)
 本発明の光学異方体は、光学素子として使用することもできる。光学素子としては、回折格子やピックアップレンズ等が一例として挙げられるが、光学素子の用途、種類、構成に限定はない。
(印刷物)
 本発明の光学異方体は、印刷物として使用することもできる。印刷物としては、偽造防止用に印刷したものが一例として挙げられるが、印刷物の用途、種類、構成に限定はない。
 以下に本発明を合成例、実施例、及び、比較例によって説明するが、もとより本発明はこれらに限定されるものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。
(重合性液晶組成物の調製)
 位相差膜用の本発明の各重合性液晶組成物を以下のように調製した。
 表1に示す、分子内に2個以上の重合性官能基を有する重合性液晶化合物である下記式(A-1)~式(A-7)で表される化合物、1個の重合性官能基を有する重合性液晶化合物である下記式(B-1)~式(B-3)で表される化合物、キラル化合物である下記式(C-1)~式(C-6)で表される化合物の合計量100質量部に対し、下記式(D-1)で表される化合物、下記(E-1)~(E-2)の化合物、繰り返し単位を有する下記式(F-1)~(F-9)で表される化合物、有機溶剤である下記シクロペンタノン(G-1)をそれぞれ、表1に示す割合(質量部)で用いて各重合性液晶組成物を調製した。
(重合性コレステリック液晶組成物(1)の調製)
 表1に示す通り、式(A-1)で表される化合物51.0質量部、式(A-2)で表される化合物12.8質量部、式(B-1)で表される化合物9.2質量部、式(B-2)で表される化合物22.4質量部、式(C-1)で表される化合物4.6質量部の合計値100質量部に対して、メチルヒドロキノン(MEHQ)(D-1)0.1質量部、重合開始剤(E-1)3.0質量部、式(F-1)で表される化合物0.1質量部、及び、有機溶剤であるシクロペンタノン(G-1)を300質量部用い、攪拌プロペラを有する攪拌装置を使用し、攪拌速度が500rpm、溶液温度が60℃の条件下で1時間攪拌後、0.2μmのメンブランフィルターで濾過して重合性コレステリック液晶組成物(1)を得た。
(重合性コレステリック液晶組成物(2)~(28)、比較用重合性液晶組成物(29)~(40)の調製)
 本発明の重合性液晶組成物(1)の調製と同様に、表1に示す式(A-1)~式(A-7)、式(B-1)~式(B-3)、式(C-1)~式(C-6)、重合禁止剤(D-1)、重合開始剤(E-1)~(E-2)、繰り返し単位を有する式(F-1)~(F-9)で表される化合物の各化合物をそれぞれ表1~表3に示す割合に変更した以外は重合性コレステリック液晶組成物(1)の調製と同一条件で、それぞれ、重合性コレステリック液晶組成物(2)~(28)、比較用重合性コレステリック液晶組成物(29)~(40)を得た。
 下記表に、本発明の重合性コレステリック液晶組成物(1)~(28)、比較用重合性コレステリック液晶組成物(29)~(40)の具体的な組成を示す。
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
MEHQ(D-1)
イルガキュア907(E-1)
カチオン重合性開始剤DTS-102(E-2)
2-エチルヘキシルアクリレート、ブチルアクリレートの共重合体(F-1)
ブチルアクリレート、ブチルメタクリレートの共重合体(F-2)
ポリプロピレングリコールジアクリレート(F-3)
下記(F-a)、(F-b)の共重合体(F-4)
Figure JPOXMLDOC01-appb-C000064
流動パラフィン(F-5)
BASFジャパン社製、シリコーン系ポリマー EFKA-2550     (F-6)
DIC社製、UV硬化樹脂ウレタンアクリレート ユニディックV-4260 (F-7)
DIC社製、UV硬化樹脂エポキシアクリレート アクリディックV-5500(F-8)
Sigma Aldrich社製、熱硬化性配向材料ポリイミド 575798(F-9)
((F-1):2-エチルヘキシルアクリレート、ブチルアクリレートを3:1の比率で重合させた、Mw:5000、Mn:10000の共重合体。(F-2):ブチルアクリレート、ブチルメタクリレートを9:1の比率で重合させた、Mw:10000、Mn:20000の共重合体。(F-3):Mw:708のポリプロピレングリコールジアクリレート。(F-4):(F-a)、(F-b)を3:7の比率で重合させた、Mw:4200、Mn:9500の共重合体。(F-5):Mw:740の流動パラフィン。)
(実施例1)
(配向性)
 <配向性評価用光学異方体の作製>
 光透過性基板上に、水平配向膜用であるポリイミド配向膜材料をスピンコート法で塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。得られた基材にスピンコーターを用い2000rpm/30secで、調整した上記重合性コレステリック液晶組成物(1)を室温で、塗布し、80℃で2分間乾燥した。その後、25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、実施例1の光学異方体(膜厚1μm)を得た。
<配向性の評価>
○:目視で欠陥が全くなく、偏光顕微鏡観察でも欠陥が全くない。
△:目視では欠陥がないが、偏光顕微鏡観察で一部に無配向部分が存在している。
×:目視では欠陥がないが、偏光顕微鏡観察で全体的に無配向部分が存在している。
<耐熱性の評価>
 上記配向性評価試験において得られた光学異方体上に、スパッタリング装置を用いて、50℃で圧力3.7×10-1Pa、アルゴン流量90sccm、酸素ガス流量4.7sccmでITOスパッタリングを2分半間行い、膜厚700ÅのITO膜を、光学異方体上に成膜した。その後、焼成処理(100℃10分)を行い、SPM表面分析装置で塗膜50μm四方において、凹凸(膜厚段差)を3点測定し、その膜厚段差の平均値を評価した。なお、実施例1~30、比較例2、3、10において、ITO蒸着前の光学異方体の膜厚段差の平均値は全て0.02μであった。
得られた結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
(実施例2~28、比較例1~12)
 重合性コレステリック液晶組成物(2)~(40)を用いて、光学異方体を作製し、配向性、耐熱性を測定した。結果を、それぞれ、実施例2~28、比較例1~12とし、上記表に示す。実施例2~28、比較例1~12の各光学異方体の作製方法は以下のとおりである。
 実施例1~6、比較例1~3の配向性評価用等の光学異方体は、実施例1と同様に、光透過性基板上に、水平配向膜用であるポリイミド配向膜材料をスピンコート法で塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。得られた基材にスピンコーターを用い2000rpm/30secで、調整した各重合性コレステリック液晶組成物を室温で、塗布し、80℃で2分間乾燥し、その後、25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、各実施例、及び比較例の光学異方体(膜厚1μm)を得た。また、耐熱性の評価は、実施例1と同一条件でITO膜を光学異方体上に成膜して行った。
 実施例7~16、比較例2~9の配向性評価用等の光学異方体は、光透過性基板上に、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。得られた基材にスピンコーターを用い350rpm/30secで、調整したコレステリック膜用各重合性液晶組成物を室温で、塗布し、80℃で2分間乾燥し、その後、25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、各実施例、及び比較例の光学異方体(膜厚4μm)を得た。また、耐熱性の評価は、実施例1と同一条件でITO膜を光学異方体上に成膜して行った。
 実施例17~20、比較例10の配向性評価用等の光学異方体は、COP基板を基材とし、当該基材にバーコーター#3を用い、調整した各重合性コレステリック液晶組成物を室温で、塗布し、80℃で2分間乾燥し25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、各実施例、及び比較例の光学異方体(膜厚1μm)を得た。また、耐熱性の評価は、実施例1と同一条件でITO膜を光学異方体上に成膜して行った。
 実施例21、比較例11の配向性評価用等の光学異方体は、COP基板を基材とし、当該基材にバーコーター#5を用い、調整した重合性コレステリック液晶組成物を室温で、塗布し、80℃で2分間乾燥し、25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、各実施例、及び比較例の光学異方体(膜厚4μm)を得た。また、耐熱性の評価は、実施例1と同一条件でITO膜を光学異方体上に成膜して行った。
 実施例22~23、及び比較例12の配向性評価用等の光学異方体は、ガラス基板上に、水平配向膜用であるポリイミド配向膜材料をスピンコート法で塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜(6)を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。得られた基材にスピンコーターを用い650rpm/30secで、特開2014-231568号公報実施例2に示されているホモジニアス配向重合性液晶組成物を使用し、室温で塗布し、100℃で2分間乾燥し、25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、膜厚0.6μmの第1の位相差膜(7)を得た(図12参照。)。当該位相差膜1上に、スピンコーターを用い350rpm/30secで、上記表に示す調整した各重合性コレステリック液晶組成物を室温で、塗布し、80℃で2分間乾燥し、その後、25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射し、膜厚4μmの第2の位相差膜(8)(図12参照。)を得た。また、耐熱性の評価は、実施例1と同一条件でITO膜を位相差膜2上に成膜して行った。
 実施例24の配向性評価用等の光学異方体は、光透過性基板上に、水平配向膜用であるポリイミド配向膜材料をスピンコート法で塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。得られた基材にスピンコーターを用い2000rpm/30secで、上記表に示す調整した重合性コレステリック液晶組成物を室温で、塗布し、80℃で2分間乾燥し25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより膜厚1μmの光学異方体を得た。当該光学異方体上に、スピンコーターを用い800rpm/120secで、上記式(F-7)を5重量%含有する溶液((F-7)100質量部に対して、(E-1)を3重量部含有する。有機溶剤:酢酸エチル)を室温で、塗布し、80℃で2分間乾燥し、25℃で2分放置後、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、光学異方体を保護する保護層(膜厚1μm)を積層し、実施例26の光学異方体を得た。また、耐熱性の評価は、実施例1と同一条件でITO膜を前記保護層上に成膜して行った。
 実施例25~実施例26の配向性評価用等の光学異方体は、光透過性基板上に、水平配向膜用であるポリイミド配向膜材料をスピンコート法で塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。得られた基材にスピンコーターを用い350rpm/30secで、上記表に示す調整した各重合性コレステリック液晶組成物を室温で、塗布し、80℃で2分間乾燥し25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより膜厚4μmの光学異方体を得た。当該光学異方体上に、スピンコーターを用い6000rpm/120secで、上記(F-7)を5重量%含有する実施例24で用いた溶液を室温で塗布し、80℃で2分間乾燥し25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、光学異方体保護する保護層(膜厚0.1μm)を積層し、各実施例の光学異方体を得た。また、耐熱性の評価は、実施例1と同一条件でITO膜を前記保護層上に成膜して行った。
 実施例27の配向性評価用等の光学異方体は、光透過性基板上に、水平配向膜用であるポリイミド配向膜材料をスピンコート法で塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。得られた基材にスピンコーターを用い350rpm/30secで、上記表に示す調整した重合性コレステリック液晶組成物を室温で、塗布し、80℃で2分間乾燥し、25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、膜厚4μmの光学異方体を得た。当該位相差膜上に、スピンコーターを用い800rpm/120secで、上記(F-8)を5重量%含有する溶液((F-8)100質量部に対して、(E-1)を3重量部含有する。有機溶剤:酢酸エチル)を室温で、塗布し、80℃で2分間乾燥し、25℃で2分放置後、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、光学異方体を保護する保護層(膜厚1μm)を積層し、実施例27の光学異方体を得た。また、耐熱性の評価は、実施例1と同一条件でITO膜を前記保護層上に成膜して行った。
 実施例28の配向性評価用等の光学異方体は、光透過性基板上に、水平配向膜用であるポリイミド配向膜材料をスピンコート法で塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理した。ラビング処理は、市販のラビング装置を用いて行った。得られた基材にスピンコーターを用い350rpm/30secで、上記表に示す調整した重合性コレステリック液晶組成物を室温で、塗布し、80℃で2分間乾燥し、その後25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、光学異方体(膜厚4μm)を得た。当該光学異方体上に、スピンコーターを用い1000rpm/60secで、上記(F-9)を室温で、塗布し、80℃で2分間乾燥し25℃で2分放置後、200℃のホットプレート上で30分放置して位相差膜を保護する保護層(膜厚1μm)を積層し、実施例28の光学異方体を得た。また、耐熱性の評価は、実施例1と同一条件でITO膜を前記保護層上に成膜して行った。
(実施例29、実施例30、比較例13)
(VAモードの液晶表示装置)
Figure JPOXMLDOC01-appb-T000067
 上記重合性コレステリック液晶組成物(40)、(41)、(42)を用いて、光学異方体を作製し、配向性、耐熱性を測定した。結果を、それぞれ、実施例29~30、比較例13とし、上記表に示す。実施例29~30、比較例13の各光学異方体の作製方法は以下のとおりである。
 実施例29~実施例30、及び比較例13の配向性評価用等の光学異方体は、光透過性基板(3)上に、カラーフィルタ層(4)、平坦化層(5)を備え付けた後、桂皮酸ポリマー(H)を3重量%含有する溶液(有機溶剤シクロペンタノン)をスピンコート法で塗布し、80℃で2分間乾燥し、その後、25℃で2分放置した後に、高圧水銀ランプを使用し、偏光フィルターを介して、波長313nm付近の可視紫外光の直線偏光でかつ平行光を、基材に対して垂直方向から照射することにより(照射量:100mJ/cm)、光配向膜(6)を得た。
Figure JPOXMLDOC01-appb-C000068
(なお、桂皮酸ポリマー(H)は、以下のように調整したものである。上記構造式で表される化合物(I)1部(10.0mmol)をエチルメチルケトン10部に溶解させて、アゾビスイソブチロニトリル(AIBN)を0.01部加え、窒素雰囲気下2日間加熱還流し、溶液を得る。次に、溶液をメタノール60部に滴下撹拌し、析出した固体をろ過する。得られた固体をテトラヒドロフラン(THF)5部に溶解させ、氷冷したヘキサン120部に滴下撹拌し、析出した固体をろ過する。得られた固体をTHF5部に溶解させ、氷冷したメタノール120部に滴下撹拌し、析出した固体をろ過する。得られた固体をTHFに溶解させた後真空乾燥することで得られる。)
 得られた基材にスピンコーターを用い650rpm/30secで、特開2014-231568号公報実施例2に示されているホモジニアス配向重合性液晶組成物を使用し、室温で塗布し、100℃で2分間乾燥し、25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射することにより、膜厚0.6μmの第1の位相差膜(7)を得た。当該位相差膜1上に、スピンコーターを用い350rpm/30secで、上記表に示す調整した各重合性コレステリック液晶組成物を室温で、塗布し、80℃で2分間乾燥し、その後、25℃で2分放置した後に、高圧水銀ランプを使用して、窒素雰囲気下において、照射量が3600mJ/cmとなるようにセットしてUV光を照射し、膜厚4μmの第2の位相差膜(8)を得た。耐熱性の評価は、実施例1と同一条件でITO膜(9)を第2の位相差膜(8)上に成膜して行った。第2の位相差膜(8)に、透明電極層であるITO膜(9)を蒸着後、配向膜(10)を形成した。光透過性基板(14)に対して、画素電極層であるITO膜(13)を取り付けた後、配向膜(12)を形成後、弱ラビング処理を行った。配向膜層(10)、(12)の間の液晶層(11)にDIC社製のTFT液晶を注入し、実施例29~実施例30、及び比較例13のVAモードの液晶表示装置を作製した(図13)。
得られた結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000069
 以上の結果から、式(F-1)~式(F-5)、式(F-7)~式(F-9)から選択される、繰り返し単位を有する非シリコン系化合物を含有する重合性コレステリック液晶組成物(実施例1~実施例23、実施例29~30)は、繰り返し単位を有する化合物を含有しない重合性コレステリック液晶組成物(比較例1、比較例4、比較例6、比較例8)に比べ、配向性に優れる光学異方体を得ることができる。また、繰り返し単位を有するシリコン系化合物を含有する重合性コレステリック液晶組成物(比較例2、比較例3、比較例5、比較例7、比較例8~比較例13)は、当該繰り返し単位を有するシリコン系化合物を添加することにより、得られる位相差膜の膜厚が1μmと薄い膜厚の場合は、位相差膜の配向性が良好な光学異方体を得ることができるものの(比較例2、比較例3、比較例10)、得られる位相差膜の膜厚が4μmと膜厚が厚い場合、位相差膜の配向性を良好にすることはできない(比較例5、比較例7、比較例9、比較例11~比較例13)。そして、当該繰り返し単位を有するシリコン系化合物を添加した重合性コレステリック液晶組成物を用いて得られる位相差膜は膜厚が1μmと薄い膜厚の場合であっても、ITO膜の成膜後の焼成処理後の膜厚段差は大きい数値となっていることから、耐熱性に劣ることが明らかである。一方、式(F-1)~式(F-5)、式(F-7)~式(F-9)から選択される、繰り返し単位を有する非シリコン系化合物を含有する重合性コレステリック液晶組成物(実施例1~23、実施例29~30)を用いた場合、ITO膜の成膜後の焼成処理後の膜厚段差は小さく、比較例との差異から、式(F-1)~式(F-5)、式(F-7)~式(F-9)から選択される化合物が、重合性コレステリック液晶組成物の重合過程において、光学異方体に取り込まれず、光学異方体上に当該光学異方体を保護する保護層として積層されることにより、ITO成膜後の焼成処理による熱から光学異方体を保護することが可能となり耐熱性が向上しているものと考察される。
 上記考察は、繰り返し単位を有する非シリコン系化合物を含有する溶液を光学異方体上に、当該光学異方体を保護する保護層を積層して得られる光学異方体の耐熱性(実施例24~実施例28)が、実施例1~実施例23の光学異方体の耐熱性と同程度であることからも裏付けられる。

Claims (22)

  1.  1種または2種以上の分子内に2個以上の重合性官能基を有する重合性液晶化合物(I)、キラル化合物(III)、重合開始剤(IV)、任意に、繰り返し単位を有する非シリコン系化合物(V)、及び、任意に、1種または2種以上の1個の重合性官能基を有する重合性液晶化合物(II)、を含有する重合性コレステリック液晶組成物。
  2.  繰り返し単位を有する非シリコン系化合物(V)を必須成分として含有する請求項1に記載の重合性コレステリック液晶組成物。
  3.  前記繰り返し単位を有する非シリコン系化合物(V)がアクリル系化合物及び/又はメタアクリル系化合物である請求項1又は請求項2に記載の重合性コレステリック液晶組成物。
  4.  前記分子内に2個以上の重合性官能基を有する重合性液晶化合物(I)が一般式(I-1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、P11及びP12はそれぞれ独立して、重合性官能基を表し、Sp11及びSp12はそれぞれ独立して、炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)又はCN基によって置換されても良く、X11及びX12はそれぞれ独立して、-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P11-Sp11、P12-Sp12、Sp11-X11及びSp12-X12において、ヘテロ原子同士の直接結合を含まない。)、q1及びq2はそれぞれ独立して0又は1を表し、q3は1又は2を表し、MG12はメソゲン基を表す。)で表される化合物である、請求項1~請求項3のいずれか一項に記載の重合性コレステリック液晶組成物。
  5.  前記分子内に1個の重合性官能基を有する重合性液晶化合物(II)が一般式(II-1)
    Figure JPOXMLDOC01-appb-C000002
    (式中、P22は重合性官能基を表し、Sp22は炭素原子数1~18のアルキレン基又は単結合を表し、該アルキレン基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-COO-、-OCO-又は-OCO-O-によって置換されても良く、該アルキレン基の有する1個又は2個以上の水素原子は、ハロゲン原子又はCN基によって置換されても良く、X22は-O-、-S-、-OCH-、-CHO-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-SCH-、-CHS-、-CFO-、-OCF-、-CFS-、-SCF-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-COO-CHCH-、-OCO-CHCH-、-CHCH-COO-、-CHCH-OCO-、-COO-CH-、-OCO-CH-、-CH-COO-、-CH-OCO-、-CH=CH-、-N=N-、-CH=N-N=CH-、-CF=CF-、-C≡C-又は単結合を表し(ただし、P22-Sp22、及びSp22-X22において、C、H以外のヘテロ原子同士の直接結合を含まない。)、q6は0又は1を表し、MG22はメソゲン基を表し、R21は、水素原子、ハロゲン原子、シアノ基、炭素原子数1から12の直鎖又は分岐アルキル基、炭素原子数1から12の直鎖又は分岐アルケニル基を表し、該アルキル基及びアルケニル基中の1個の-CH-又は隣接していない2個以上の-CH-が各々独立して-O-、-S-、-CO-、-COO-、-OCO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-NH-、-N(CH)-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-CF=CF-又は-C≡C-によって置換されても良く、該アルキル基及び該アルケニル基の有する1個又は2個以上の水素原子はそれぞれ独立して、ハロゲン原子又はシアノ基によって置換されても良く、複数置換されている場合それぞれ同一であっても、異なっていても良い。)で表される化合物である、請求項1~請求項4のいずれか一項に記載の重合性コレステリック液晶組成物。
  6.  請求項1~請求項5のいずれか一項に記載の重合性コレステリック液晶組成物を用いてなる光学異方体。
  7.  請求項1~請求項5のいずれか一項に記載の重合性コレステリック液晶組成物を用いてなる位相差膜。
  8.  請求項1~請求項5のいずれか一項に記載の重合性コレステリック液晶組成物を用いてなる位相差パターニング膜。
  9.  請求項1~請求項5のいずれか一項に記載の重合性コレステリック液晶組成物を用いてなる輝度向上膜。
  10.  請求項1~請求項5のいずれか一項に記載の重合性コレステリック液晶組成物を用いてなる反射防止膜。
  11.  請求項1~請求項5のいずれか一項に記載の重合性コレステリック液晶組成物を用いてなる遮熱膜。
  12.  請求項1~請求項5のいずれか一項に記載の重合性コレステリック液晶組成物を用いてなる光学異方体上に保護層を有する積層体。
  13.  請求項1~請求項5のいずれか一項に記載の重合性コレステリック液晶組成物を重合して得られる光学異方体上に、繰り返し単位を有する非シリコン系化合物(V)含有溶液を塗布し乾燥、必要に応じて硬化して得られる請求項12に記載の積層体の製造方法。
  14.  請求項2~請求項5のいずれか一項に記載の重合性コレステリック液晶組成物を重合して得られる請求項12に記載の積層体の製造方法。
  15.  請求項6に記載の光学異方体を有する液晶表示装置。
  16.  請求項7に記載の位相差膜を有する液晶表示装置。
  17.  請求項8に記載の位相差パターニング膜を有する画像表示装置。
  18.  請求項9に記載の輝度向上膜を有する画像表示装置。
  19.  請求項10に記載の反射防止膜を有する画像表示装置。
  20.  請求項7に記載の光学異方体を有する光学素子。
  21.  請求項8に記載の位相差パターニング膜を有する光学素子。
  22.  請求項6に記載する光学異方体を有する印刷物。
PCT/JP2016/074234 2015-09-01 2016-08-19 重合性液晶組成物及びそれを用いた光学異方体 WO2017038506A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020187004583A KR20180037206A (ko) 2015-09-01 2016-08-19 중합성 액정 조성물 및 그것을 사용한 광학 이방체
US15/755,956 US20180252957A1 (en) 2015-09-01 2016-08-19 Polymerizable liquid crystal composition and optically anisotropic body formed from the same
JP2017537744A JP6264513B2 (ja) 2015-09-01 2016-08-19 重合性液晶組成物及びそれを用いた光学異方体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015171976 2015-09-01
JP2015-171976 2015-09-01

Publications (1)

Publication Number Publication Date
WO2017038506A1 true WO2017038506A1 (ja) 2017-03-09

Family

ID=58187611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074234 WO2017038506A1 (ja) 2015-09-01 2016-08-19 重合性液晶組成物及びそれを用いた光学異方体

Country Status (4)

Country Link
US (1) US20180252957A1 (ja)
JP (1) JP6264513B2 (ja)
KR (1) KR20180037206A (ja)
WO (1) WO2017038506A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199704A (ja) * 2015-04-13 2016-12-01 Jnc株式会社 モノマーを含有する液晶組成物、高分子/液晶複合材料および光素子
CN110662775A (zh) * 2017-05-26 2020-01-07 富士胶片株式会社 聚合性液晶组合物、光学各向异性层、光学层叠体、光学层叠体的制造方法及图像显示装置
CN112219159A (zh) * 2018-07-03 2021-01-12 Dic株式会社 液晶显示元件及液晶显示元件的制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112823310A (zh) * 2018-09-25 2021-05-18 堺显示器制品株式会社 液晶显示装置
JP2021099482A (ja) * 2019-12-20 2021-07-01 住友化学株式会社 重合性液晶組成物、偏光膜、偏光フィルムおよび偏光板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021826A1 (ja) * 2011-08-08 2013-02-14 Dic株式会社 重合性液晶組成物、及び光学異方体の製造方法
JP2013035938A (ja) * 2011-08-08 2013-02-21 Dic Corp 重合性コレステリック液晶組成物及びそれを用いたコレステリック反射フィルム
WO2013038969A1 (ja) * 2011-09-12 2013-03-21 富士フイルム株式会社 コレステリック液晶性混合物、フィルム、選択反射板、積層体および合わせガラス
WO2013146923A1 (ja) * 2012-03-28 2013-10-03 富士フイルム株式会社 コレステリック液晶性混合物、フィルム、赤外反射板、積層体および合わせガラス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2887083B2 (ja) * 1994-12-02 1999-04-26 富士ゼロックス株式会社 熱記録型光学素子
JP2007272185A (ja) * 2006-03-10 2007-10-18 Fujifilm Corp 組成物、位相差板、液晶表示装置、平均チルト角調整剤、平均チルト角の調整方法
TWI659091B (zh) * 2009-02-20 2019-05-11 迪愛生股份有限公司 聚合性液晶組成物
JP5387807B1 (ja) * 2011-11-30 2014-01-15 Dic株式会社 重合性液晶組成物、及びそれを用いた薄膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021826A1 (ja) * 2011-08-08 2013-02-14 Dic株式会社 重合性液晶組成物、及び光学異方体の製造方法
JP2013035938A (ja) * 2011-08-08 2013-02-21 Dic Corp 重合性コレステリック液晶組成物及びそれを用いたコレステリック反射フィルム
WO2013038969A1 (ja) * 2011-09-12 2013-03-21 富士フイルム株式会社 コレステリック液晶性混合物、フィルム、選択反射板、積層体および合わせガラス
WO2013146923A1 (ja) * 2012-03-28 2013-10-03 富士フイルム株式会社 コレステリック液晶性混合物、フィルム、赤外反射板、積層体および合わせガラス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199704A (ja) * 2015-04-13 2016-12-01 Jnc株式会社 モノマーを含有する液晶組成物、高分子/液晶複合材料および光素子
CN110662775A (zh) * 2017-05-26 2020-01-07 富士胶片株式会社 聚合性液晶组合物、光学各向异性层、光学层叠体、光学层叠体的制造方法及图像显示装置
US11186775B2 (en) 2017-05-26 2021-11-30 Fujifilm Corporation Polymerizable liquid crystal composition, optically anisotropic layer, optical laminate, method for producing optical laminate, and image display device
CN110662775B (zh) * 2017-05-26 2021-11-30 富士胶片株式会社 聚合性液晶组合物、光学各向异性层、光学层叠体、光学层叠体的制造方法及图像显示装置
CN112219159A (zh) * 2018-07-03 2021-01-12 Dic株式会社 液晶显示元件及液晶显示元件的制造方法
CN112219159B (zh) * 2018-07-03 2024-05-03 Dic株式会社 液晶显示元件及液晶显示元件的制造方法

Also Published As

Publication number Publication date
JPWO2017038506A1 (ja) 2018-01-11
JP6264513B2 (ja) 2018-01-24
US20180252957A1 (en) 2018-09-06
KR20180037206A (ko) 2018-04-11

Similar Documents

Publication Publication Date Title
KR101756609B1 (ko) 액정 표시 장치
TWI642766B (zh) Liquid crystal display device
JP5880994B1 (ja) 重合性液晶組成物及び該組成物を用いて作製した光学異方体、位相差膜、位相差パターニング膜
JP6264513B2 (ja) 重合性液晶組成物及びそれを用いた光学異方体
JP6590075B2 (ja) 重合性液晶組成物、及び、それを用いた光学フィルム
JP7082127B2 (ja) 重合性液晶組成物、それを用いた光学フィルム、及びその製造方法。
JP6156588B2 (ja) 重合性組成物、及び、それを用いたフィルム
JP6156581B2 (ja) 積層体、およびそれを使用した光学フィルムまたは液晶配向膜
WO2018225579A1 (ja) 重合性液晶組成物、それを用いた光学フィルム、及びその製造方法
JP2018203945A (ja) 重合性液晶組成物、及び、それを用いた光学異方体
JP6296135B2 (ja) 重合性組成物、及び、それを用いたフィルム
WO2018151070A1 (ja) 光学異方体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537744

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187004583

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15755956

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841538

Country of ref document: EP

Kind code of ref document: A1