WO2017037772A1 - 熱交換器及び熱交換器の製造方法 - Google Patents

熱交換器及び熱交換器の製造方法 Download PDF

Info

Publication number
WO2017037772A1
WO2017037772A1 PCT/JP2015/074366 JP2015074366W WO2017037772A1 WO 2017037772 A1 WO2017037772 A1 WO 2017037772A1 JP 2015074366 W JP2015074366 W JP 2015074366W WO 2017037772 A1 WO2017037772 A1 WO 2017037772A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
header
refrigerant
heat exchanger
transfer tube
Prior art date
Application number
PCT/JP2015/074366
Other languages
English (en)
French (fr)
Inventor
良太 赤岩
寿守務 吉村
松本 崇
山田 彰二
皓亮 宮脇
石橋 晃
智嗣 上山
綾 河島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017537042A priority Critical patent/JP6537615B2/ja
Priority to PCT/JP2015/074366 priority patent/WO2017037772A1/ja
Publication of WO2017037772A1 publication Critical patent/WO2017037772A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present invention relates to a heat exchanger, a refrigeration cycle apparatus, and a heat exchanger manufacturing method, for example, a heat exchanger used in an air conditioner capable of defrosting operation and heating operation, and a heat exchanger manufacturing method.
  • a heat exchanger for a car air conditioner a pair of headers that are horizontally opposed to each other, a plurality of flat heat transfer tubes that are connected in parallel to the pair of headers at a constant interval, and between flat heat transfer tubes
  • a corrugated fin that intervenes closely in a gap and supplies a refrigerant as a heat exchange medium to a plurality of flat heat transfer tubes.
  • the above-described heat exchanger functions as an evaporator.
  • the surface temperature of the fins and heat transfer tubes in the evaporator decreases to below the freezing point, and moisture in the air may form frost on the fins and heat transfer tube surfaces.
  • JP 2012-72955 A Japanese Patent No. 3738404
  • Patent Document 2 since the refrigerant does not flow in the refrigerant flow path in the heat transfer tube located on the windward side of the heat transfer tube, when performing the defrosting operation, Patent Document 1 As in the heat exchanger described in 1., the fin surface temperature on the windward side of the heat transfer tube is unlikely to rise, and the defrosting time becomes long.
  • Patent Documents 1 and 2 have a problem that the defrosting efficiency is poor and as a result, the heating efficiency is lowered. Moreover, when performing cooling operation, there also existed a subject that the effective windward side temperature difference area
  • the present invention has been made against the background of the problems described above, and provides a heat exchanger and a heat exchanger manufacturing method that can improve the defrosting efficiency than before and suppress frosting than before. It is intended to provide.
  • the heat exchanger according to the present invention is a heat exchanger for exchanging heat between the refrigerant flowing inside and the air flowing around, and each of the plurality of heat transfer tubes extending linearly and each of both ends of the plurality of heat transfer tubes
  • Each of the plurality of heat transfer tubes has openings at both ends and has a plurality of refrigerant flow paths through which the refrigerant flows,
  • the opening provided in a part of the part including the part located on the most upstream side of the air flow is at the one end.
  • the opening of the remaining part to be provided and the inside of the header have different orientations.
  • the manufacturing method of the heat exchanger includes a first step of inserting the plurality of heat transfer tubes into one arcuate member of two arcuate members having an arcuate cross section constituting the hollow tubular header, After the first step, a part of the plurality of heat transfer tubes including the heat transfer tube located on the most upstream side of the air flow is left with an opening provided at one end located on the one header side.
  • the second step of bending so as to be located on the other end side of the opening provided on the one header side of the portion of the portion, and the bent portion of the plurality of heat transfer tubes after the second step
  • a third step of producing the header by combining the one arcuate member and the other arcuate member so as to be located inside the header.
  • the gas refrigerant flowing into the heat exchanger functioning as an evaporator flows through the inside of the heat transfer tube located on the windward side of the heat transfer tube, compared to the conventional heat transfer tube.
  • the gas refrigerant that has flowed into the heat exchanger that functions as an evaporator flows through the inside of the heat transfer tube located on the windward side of the heat transfer tube, compared with the conventional heat transfer tube.
  • the heat exchange in can be suppressed. Therefore, the defrosting efficiency can be improved as compared with the conventional case, and frost formation can be suppressed as compared with the conventional case.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. It is an external view of the outdoor heat exchanger 5 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. It is a perspective view which shows the outline
  • FIG. 7 It is a figure which shows the 2nd example of the shape of the heat exchanger tube 12 and the header 10 of the refrigerating-cycle apparatus 100 which concerns on Embodiment 6 of this invention. It is an external view of the outdoor heat exchanger 5 of the refrigeration cycle apparatus 100 according to Embodiment 7 of the present invention. It is a figure which shows the header 10 and the heat exchanger tube 12 of the refrigerating-cycle apparatus 100 which concerns on Embodiment 7 of this invention. It is a figure which shows the header 11 and the heat exchanger tube 12 of the refrigerating-cycle apparatus 100 which concerns on Embodiment 7 of this invention. It is a figure which shows the header 110 and the heat exchanger tube 112 of the conventional refrigeration cycle apparatus.
  • FIG. 1 It is a figure which shows the header 111 and the heat exchanger tube 112 of the conventional refrigeration cycle apparatus. It is a figure which shows the mode of the frost on the fin 113 of the heat exchanger tube 112 of the conventional refrigeration cycle apparatus. It is a figure which shows the relationship between the refrigerant
  • FIG. It is a figure which shows the relationship between the refrigerant
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a four-way valve 2, an indoor heat exchanger 3, an expansion valve 4, and an outdoor heat exchanger 5.
  • the compressor 1 is a variable capacity compressor that compresses sucked refrigerant and discharges it as a high-temperature and high-pressure refrigerant.
  • the four-way valve 2 is for switching the refrigerant flow path provided on the discharge side of the compressor 1.
  • the refrigerant flow in a state where the four-way valve 2 is switched so as to perform the heating operation is indicated by a solid line.
  • coolant flow in the state in which the four-way valve 2 was switched so that a defrost operation may be performed is shown with the dotted line.
  • the indoor heat exchanger 3 is a heat exchanger that functions as an evaporator during cooling operation and functions as a condenser during heating operation.
  • the expansion valve 4 is for decompressing and expanding the refrigerant flowing out of the outdoor heat exchanger 5 during the cooling operation and decompressing and expanding the refrigerant flowing out of the indoor heat exchanger 3 during the heating operation.
  • the outdoor heat exchanger 5 is a heat exchanger that functions as a condenser during cooling operation and functions as an evaporator during heating operation.
  • the refrigerant flow when the heating operation is performed in the refrigeration cycle apparatus 100 will be described.
  • the four-way valve 2 is switched to the heating side, the indoor heat exchanger 3 functions as a condenser, and the outdoor heat exchanger 5 functions as an evaporator.
  • the refrigerant supplied to the compressor 1 is compressed to become a high-temperature and high-pressure gas refrigerant, passes through the four-way valve 2, and flows into the indoor heat exchanger 3.
  • the refrigerant that has flowed into the indoor heat exchanger 3 is cooled and liquefied by heat exchange with the indoor air introduced into the indoor heat exchanger 3.
  • the liquefied refrigerant passes through the expansion valve 4 to become a two-phase refrigerant state in which low-temperature and low-pressure gas refrigerant and liquid refrigerant are mixed, and flows into the outdoor heat exchanger 5.
  • the refrigerant flowing into the outdoor heat exchanger 5 returns to the compressor 1 in a state where it is heated and gasified by exchanging heat with outdoor air introduced into the outdoor heat exchanger 5.
  • the heating operation is executed and the cumulative amount of frost in the outdoor heat exchanger 5 increases, the defrosting operation is started.
  • the refrigerant flow when the defrosting operation is performed in the refrigeration cycle apparatus 100 will be described.
  • the four-way valve 2 is switched to the cooling side, the indoor heat exchanger 3 functions as an evaporator, and the outdoor heat exchanger 5 functions as a condenser.
  • the refrigerant flow during the defrosting operation is in the opposite direction to the refrigerant flow during the heating operation.
  • the refrigerant supplied to the compressor 1 is compressed to become a high-temperature and high-pressure gas refrigerant, passes through the four-way valve 2, and flows into the outdoor heat exchanger 5.
  • the refrigerant that has flowed into the outdoor heat exchanger 5 is cooled and liquefied by exchanging heat with the indoor air introduced into the outdoor heat exchanger 5.
  • the liquefied refrigerant passes through the expansion valve 4 to become a two-phase refrigerant state in which low-temperature and low-pressure gas refrigerant and liquid refrigerant are mixed, and flows into the indoor heat exchanger 3.
  • the refrigerant flowing into the indoor heat exchanger 3 returns to the compressor 1 in a state of being heated and gasified by exchanging heat with outdoor air introduced into the indoor heat exchanger 3.
  • FIG. 2 is an external view of the outdoor heat exchanger 5 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 3 is a perspective view showing an outline of the outdoor heat exchanger 5 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the arrows in FIGS. 2 and 3 indicate the flow of air. The air passes through the gaps between the fins by driving the blowing means (not shown).
  • the outdoor heat exchanger 5 includes headers 10 and 11, heat transfer tubes 12, and fins 13.
  • the header 10 is provided below the outdoor heat exchanger 5, and the header 11 is provided below the outdoor heat exchanger 5.
  • the headers 10 and 11 are configured in, for example, a hollow cylindrical shape.
  • the heat transfer tube 12 has a plurality of flow paths through which the refrigerant flows and has a flat shape extending linearly and is inserted into the headers 10 and 11.
  • the fin 13 is a corrugated fin, for example, and is closely intervened in the gap between the adjacent heat transfer tubes 12.
  • the header 10 is connected to the refrigerant pipe 101.
  • the refrigerant pipe 101 is connected to the expansion valve 4.
  • the header 11 is connected to the refrigerant pipe 102.
  • the refrigerant pipe 102 is connected to the four-way valve 2.
  • the heat transfer tube 12 is not limited to the example configured to have a plurality of refrigerant flow paths, and each of the plurality of heat transfer tubes may be configured to have a single refrigerant flow path.
  • the fin 13 is not limited to the above-mentioned example, A plate type fin may be used and the finless type which does not use a fin may be employ
  • the gas-liquid two-phase refrigerant flows into the header 10 through the refrigerant pipe 101, and the refrigerant that has flowed into the header 10 is distributed to the heat transfer pipe 12.
  • the gas-liquid two-phase refrigerant flowing in the heat transfer tube 12 exchanges heat with air and becomes a gas refrigerant and flows out to the header 11.
  • the gas refrigerant that has flowed out to the header 11 is guided to the refrigerant pipe 102.
  • the gas refrigerant flows into the header 11 through the refrigerant pipe 102, and the refrigerant that has flowed into the header 11 is distributed to the plurality of heat transfer tubes 12. Then, the gas refrigerant flowing in the heat transfer tube 12 exchanges heat with air and becomes liquid refrigerant and flows out to the header 10. The liquid refrigerant that has flowed out to the header 10 is guided to the refrigerant pipe 101.
  • the refrigerant flow during the cooling operation or the defrosting operation is in the opposite direction to the refrigerant flow during the heating operation.
  • openings 15A to 15F are provided at the end of the heat transfer tube 12 in order from the windward side.
  • FIG. 3 illustrates an example in which an opening is provided on one end side of the heat transfer tube 12, the opening is similarly provided on the other end side of the heat transfer tube 12.
  • a plurality of refrigerant flow paths 15 are provided inside the heat transfer tube 12.
  • the refrigerant channels 15a, 15b, 15c, 15d, 15e, and 15f are sequentially called from the windward side.
  • the refrigerant channels 15a, 15b, and 15c may be referred to as refrigerant channels 15a to 15c.
  • the refrigerant channels 15d, 15e, and 15f may be referred to as refrigerant channels 15d to 15f.
  • the portion on the windward side of the heat transfer tube 12 is referred to as the windward heat transfer tube 12a.
  • a portion on the windward side of the fin 13 is referred to as a windward fin 13a.
  • a louver 14 is provided on the surface of the fin 13. The louver 14 has a shape cut and raised so as to promote heat transfer.
  • the refrigerant is distributed from the header 10 to the plurality of refrigerant flow paths 15 of the heat transfer pipe 12.
  • the header 10 and the refrigerant flow path 15 there are flows in which the flow rate ratio of the refrigerant flowing in each refrigerant flow path 15 and the ratio of the gas refrigerant and the liquid refrigerant are different.
  • FIG. 4 is a diagram showing the header 10 and the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing the header 11 and the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 6 is a diagram showing a state of frost on the fins 13 of the heat transfer tubes 12 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • a flow such as a laminar flow, a wavy flow, a bubble flow, and a plug flow in which the gas refrigerant is likely to collect on the upper portion of the header 10. It is assumed that it will occur.
  • liquid refrigerant is accumulated in the lower part of the header 10
  • gas refrigerant is accumulated in the upper part of the header 10.
  • the opening provided at the lower end is located above the liquid level of the liquid refrigerant and is opposite to the traveling direction of the gas refrigerant inside the header 10. It is bent to face the direction.
  • the portion having the refrigerant flow paths 15d to 15f in the heat transfer tube 12 is configured such that the opening provided at the lower end is positioned below the liquid level of the liquid refrigerant.
  • the gas refrigerant flowing inside the header 10 is likely to flow into the refrigerant flow paths 15a to 15c due to inertial force.
  • the liquid refrigerant flowing under the header 10 is sucked into the refrigerant flow paths 15d to 15f. That is, the two-phase refrigerant flowing through the refrigerant flow paths 15d to 15f has a smaller gas refrigerant ratio than the two-phase refrigerant flowing through the refrigerant flow paths 15a to 15c.
  • the two-phase refrigerant that has passed through the refrigerant flow paths 15a to 15f exchanges heat with air, changes to a gas single-phase refrigerant, and is supplied to the header 11.
  • a gas refrigerant is stored inside the header 11.
  • portions of the heat transfer tube 12 having the refrigerant flow paths 15a to 15c are configured to extend linearly.
  • a portion of the heat transfer tube 12 having the refrigerant flow paths 15d to 15f is bent so as to face the direction opposite to the traveling direction of the gas refrigerant inside the header 11.
  • the in-tube pressure loss of the refrigerant channels 15a to 15c and the refrigerant channels 15d to 15f are equal, or the in-tube pressure loss of the refrigerant channels 15d to 15f is made larger than that of the refrigerant channels 15a to 15c.
  • the flow rate of the gas refrigerant flowing to ⁇ 15c can be increased. This is because, when comparing two-phase refrigerants of the same flow rate, the pressure loss in the pipe increases as the proportion of the gas refrigerant increases, and the part of the heat transfer pipe 12 having the refrigerant flow paths 15a to 15c is bent. This is to prevent the flow rate of the refrigerant flow paths 15a to 15c in the heat transfer tube 12 from being reduced due to an increase in pressure loss.
  • the two-phase refrigerant flowing through the refrigerant flow paths 15a to 15c is more gas than the two-phase refrigerant flowing through the refrigerant flow paths 15d to 15f.
  • the two-phase refrigerant flowing through the refrigerant flow paths 15d to 15f has a smaller ratio of the gas refrigerant than the two-phase refrigerant flowing through the refrigerant flow paths 15a to 15c. For this reason, the heat exchange amount in which the refrigerant flowing through the refrigerant flow path provided on the windward side of the heat transfer tube 12 exchanges heat with air can be suppressed, and as shown in FIG. It becomes uniform from the upper side toward the leeward side.
  • the heat transfer tube 12 By configuring the heat transfer tube 12 as shown in FIG. 5, when the gas single-phase refrigerant inside the header 11 is supplied to the refrigerant channel 15 during the cooling operation or the defrosting operation, the refrigerant channel 15 a Since the refrigerant flowing through the refrigerant channels 15-15c is larger than the refrigerant flowing through the refrigerant channels 15d-15f, the amount of heat exchange in the refrigerant channels 15a-15c can be increased.
  • FIG. 7 is a diagram showing the relationship between the refrigerant flow path of the heat transfer tube 12 and the temperature of the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing the relationship between the refrigerant flow path of the heat transfer tube 12 and the heat exchange amount of the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 9 is a diagram showing the relationship between the refrigerant flow path of the heat transfer tube 12 and the refrigerant flow rate of the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the horizontal axis of the heat transfer tube 12 is defined on the horizontal axis, and the temperature of the heat transfer tube 12 is defined on the vertical axis of FIG. 7.
  • the horizontal axis in FIG. 8 defines the refrigerant flow path of the heat transfer tube 12, and the vertical axis in FIG. 8 defines the heat exchange amount of the heat transfer tube 12.
  • the horizontal axis of FIG. 9 defines the refrigerant flow path of the heat transfer tube 12, and the vertical axis of FIG. 9 defines the refrigerant flow rate of the heat transfer tube 12.
  • the temperature of the refrigerant is constant from the windward side of the refrigerant channel to the leeward side of the refrigerant channel. As shown in FIG. 7, the temperature of the air decreases as it goes from the windward side of the refrigerant flow path to the leeward side of the refrigerant flow path. As shown in FIG. 8, the heat exchange amount of the outdoor heat exchanger 5 is increased from the windward side of the refrigerant flow path toward the leeward side of the refrigerant flow path.
  • the flow rate of the gas refrigerant flowing inside the heat transfer tube 12 decreases from the windward side of the refrigerant flow path toward the leeward side of the refrigerant flow path.
  • the flow rate of the liquid refrigerant flowing inside the heat transfer tube 12 increases from the windward side of the refrigerant flow path to the leeward side of the refrigerant flow path.
  • the two-phase refrigerant having a high ratio of gas refrigerant flows through the refrigerant channel on the leeward side, and the two-phase refrigerant having a high ratio of liquid refrigerant is the refrigerant on the leeward side.
  • the flow path heat exchange on the leeward side that can obtain more latent heat of the refrigerant is promoted.
  • the air flowing on the fins 13 flows from the upstream side to the downstream side, the amount of water vapor that the air has decreases.
  • FIG. 10 is a perspective view and a front sectional view for explaining an assembly process of the header 10 and the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 11 is a perspective view and a front sectional view for explaining an assembly process of the header 10 and the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • FIG. 12 is a perspective view and a front sectional view for explaining an assembly process of the header 10 and the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the header 10 includes, for example, an arc member 10a and an arc member 10b.
  • the arc-shaped member 10a and the arc-shaped member 10b are configured by, for example, members having a cross-sectional arc shape.
  • the heat transfer tube 12 is inserted into the arc-shaped member 10a as shown in FIG. 10, for example, in a state where there is a cut in the longitudinal direction of the heat transfer tube 12 between the refrigerant flow channel 15c and the refrigerant flow channel 15d. Is done.
  • one of the end portions of the heat transfer tubes 12 corresponding to the refrigerant flow paths 15a to 15c is bent in the longitudinal direction of the header by a bending machine, for example, as shown in FIG. It becomes a state.
  • the arcuate member 10a and the arcuate member 10b are fitted to each other to fit the header 10. Is formed. Specifically, for example, the fitting of the arc-shaped member 10a and the arc-shaped member 10b is performed by, for example, a belt conveyor type integrated brazing process or the like. As a result, the state shown in FIG. 12 is obtained.
  • the above-described assembly process is not limited to the case of the circular pipe header as shown in FIG. 12, but also in the case of a header constituted by a plurality of members, the obstacle in the process of bending the heat transfer tube 12 by the bending machine. As long as it is not, it can be applied.
  • the heat transfer tube 12 inserted into the header 10 is thermally expanded in the course of the belt conveyor type integrated brazing process so that the heat transfer tube 12 is thermally expanded. Has the effect of solving the problem of missing from the header 10.
  • FIG. 13 is a perspective view of the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. As shown in FIG. 13, portions of the heat transfer tube 12 having the refrigerant flow paths 15a to 15c are bent, and portions of the heat transfer tube 12 having the refrigerant flow paths 15d to 15f are not bent and extend in a straight line. Yes. As described above, the direction of the opening provided in the end portion on the header 10 side of the portion having the refrigerant flow paths 15a to 15c in the heat transfer tube 12 is the same as that of the heat transfer tube having the refrigerant flow paths 15d to 15f in the heat transfer tube 12. This is different from the direction of the opening provided at the end on the header 10 side.
  • FIG. 29 is a diagram showing a header 110 and a heat transfer tube 112 of a conventional refrigeration cycle apparatus.
  • FIG. 30 is a diagram showing a header 111 and a heat transfer tube 112 of a conventional refrigeration cycle apparatus.
  • FIG. 31 is a diagram showing a state of frost on the fin 113 of the heat transfer tube 112 of the conventional refrigeration cycle apparatus.
  • the conventional heat transfer tube 112 corresponds to all the refrigerant flow paths 115, and the lower end portion located inside the header 110 extends in a straight line without being bent. In addition, as shown in FIG. 30, the conventional heat transfer tube 112 extends in a straight line without being bent at the upper end portion located inside the header 111.
  • FIG. 32 is a diagram showing the relationship between the refrigerant flow path of the heat transfer tube 112 and the temperature of the heat transfer tube 112 of the conventional refrigeration cycle apparatus.
  • FIG. 33 is a diagram showing the relationship between the refrigerant flow path of the heat transfer tube 112 and the heat exchange amount of the heat transfer tube 112 of the conventional refrigeration cycle apparatus.
  • FIG. 34 is a diagram showing the relationship between the refrigerant flow path of the heat transfer tube 112 and the refrigerant flow rate of the heat transfer tube 112 of the conventional refrigeration cycle apparatus.
  • the horizontal axis of the heat transfer tube 12 is defined on the horizontal axis, and the temperature of the heat transfer tube 12 is defined on the vertical axis of FIG. 32.
  • the horizontal axis of FIG. 33 defines the refrigerant flow path of the heat transfer tube 12, and the vertical axis of FIG. 33 defines the heat exchange amount of the heat transfer tube 12.
  • the horizontal axis of FIG. 34 defines the refrigerant flow path of the heat transfer tube 12, and the vertical axis of FIG. 34 defines the refrigerant flow rate of the heat transfer tube 12.
  • the temperature of the refrigerant is constant from the windward side of the refrigerant channel to the leeward side of the refrigerant channel. As shown in FIG. 32, the temperature of the air decreases as it goes from the windward side of the refrigerant flow path to the leeward side of the refrigerant flow path. As shown in FIG. 33, the heat exchange amount of the outdoor heat exchanger 5 decreases from the windward side of the refrigerant flow path toward the leeward side of the refrigerant flow path.
  • the flow rate of the gas refrigerant flowing inside the heat transfer tube 12 is constant from the windward side of the refrigerant flow path to the leeward side of the refrigerant flow path.
  • the flow rate of the liquid refrigerant flowing inside the heat transfer tube 12 is constant from the windward side of the refrigerant channel to the leeward side of the refrigerant channel.
  • the heat transfer tube 112 When the heat transfer tube 112 is configured as shown in FIGS. 29 and 30, two-phase refrigerants having the same ratio of gas refrigerant to liquid refrigerant and the same amount are distributed from the header 110 as shown in FIG. Will be.
  • the heat exchange amount of the outdoor heat exchanger 5 decreases from the windward side of the refrigerant flow path toward the leeward side of the refrigerant flow path.
  • the temperature difference between the air and the refrigerant is the largest in the portion located on the windward side of the heat transfer tube 112, and the windward side to the leeward side. The temperature difference between the air and the refrigerant becomes lower.
  • the frost accumulated on the windward side of the conventional heat transfer tube 112 eventually leads to a decrease in the air volume passing through the heat exchanger because it obstructs the air path, and the frost on the fin surface becomes a thermal resistance and the heat exchange efficiency with the air is increased. The problem of deteriorating occurs.
  • the outdoor heat exchanger 5 is a heat exchanger that exchanges heat between the refrigerant flowing inside and the air flowing around, and includes a plurality of heat transfer tubes 12 extending linearly.
  • Each end of each of the plurality of heat transfer tubes 12 is inserted, and each of the plurality of heat transfer tubes 12 has an opening at each end so that the refrigerant flows.
  • the opening to be formed has a different orientation in the inside of the header 10 and the opening of the remaining part located on the header 10 side.
  • the openings of some of the flow paths are the openings of other flow paths and the refrigerant flow in the header 10. Try to have a different orientation to the direction. For this reason, a difference arises in the ease of a refrigerant
  • the difference in the height position in the header 10 is also used between the openings of some of the flow paths and the openings of the other flow paths.
  • the distribution of the refrigerant gas and liquid inside the header may be various.
  • the difference in the direction of the opening may be used to generate gas, liquid, and inflow distribution between the flow paths.
  • a bent portion is formed so that the openings of some of the flow paths are different from the openings of the other flow paths, and the flow of the refrigerant is made different by making the resistance of the flow paths different. It may be. Such a difference in bending may be used for a difference in refrigerant inflow.
  • FIG. 1 By using such a structure, during the defrosting operation, the gas refrigerant flowing into the outdoor heat exchanger 5 flows inside the heat transfer tube 12 located on the windward side of the heat transfer tube 12 as compared with the conventional case. Heat exchange in the heat transfer tube 12 is promoted, and during the heating operation, the gas refrigerant flowing into the outdoor heat exchanger 5 flows through the heat transfer tube 12 located on the windward side of the heat transfer tube 12 than before. Heat exchange in the heat transfer tube 12 can be suppressed. Therefore, the defrosting efficiency can be improved as compared with the conventional case, and frost formation can be suppressed as compared with the conventional case.
  • FIG. in the second embodiment the heat transfer tube 12 is configured differently from the first embodiment.
  • items that are not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 14 is a diagram showing the header 10 and the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention.
  • FIG. 15 is a diagram showing the header 11 and the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention.
  • FIG. 16 is a perspective view of the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 2 of the present invention.
  • the portion of the heat transfer tube 12 having the refrigerant flow paths 15a to 15c is bent so that the lower end thereof faces in the direction opposite to the refrigerant flow direction in the header 10. Further, as shown in FIG. 14, the portion having the refrigerant flow paths 15 d to 15 f in the heat transfer tube 12 is bent so that the lower end thereof faces the same direction as the refrigerant flow direction in the header 10. As shown in FIG. 15, the upper end of the heat transfer tube 12 extends straight without being bent.
  • the orientation of the opening provided at the lower end of the portion having the refrigerant flow paths 15a to 15c in the heat transfer tube 12 is the lower end of the portion having the refrigerant flow paths 15d to 15f in the heat transfer tube 12.
  • the direction is opposite to the direction of the opening provided.
  • the gas refrigerant inside the header 10 is supplied more to the refrigerant flow paths 15a to 15c than to the refrigerant flow paths 15d to 15f.
  • the outdoor heat exchanger 5 has a part of the heat transfer tube 12 including a part located at the most upstream side of the air flow at least at one end in the longitudinal direction.
  • the opening provided is configured to be in the direction opposite to the refrigerant flow direction inside the header 10, and the opening of the remaining portion located on the header 10 side is the same as the refrigerant flow direction inside the header 10. It is comprised so that it may become a direction. For this reason, it is only necessary to bend the lower end of the heat transfer tube 12, it is not necessary to bend the upper end of the heat transfer tube 12, and for example, a circular tube having an insertion port for the heat transfer tube 12 is used.
  • the processing can be simplified as compared with the first one.
  • the portion of the heat transfer tube 12 having the refrigerant flow paths 15d to 15f is bent so that the lower end thereof is oriented in the same direction as the refrigerant flow direction in the header 10. Pressure loss on the flow paths 15d to 15f side increases. Therefore, in the second embodiment, the gas refrigerant is less likely to enter the refrigerant flow paths 15d to 15f than in the first embodiment, and a larger amount of gas refrigerant can be supplied to the refrigerant flow paths 15a to 15c.
  • Embodiment 3 FIG.
  • the portion having the refrigerant flow paths 15a to 15c of the heat transfer tube 12 is inserted and bent to the center height of the header 10.
  • items that are not particularly described are the same as those in Embodiment 1, and the same functions and configurations are described using the same reference numerals.
  • FIG. 17 is a front view and a perspective view showing the shape of the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 3 of the present invention.
  • FIG. 18 is a front view and a perspective view showing the shape of the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 3 of the present invention.
  • the gas refrigerant out of the gas-liquid two-phase refrigerant flowing inside the header 10 flows like an annular flow that tends to gather at a position corresponding to the center height of the header 10. It is assumed that this occurs.
  • the lower end of the portion of the heat transfer tube 12 having the refrigerant flow paths 15a to 15c is the center of the header 10 in the radial direction than the lower end of the portion of the heat transfer tube 12 having the refrigerant flow paths 15d to 15f. It is bent so that it is located on the side. Also, as shown in FIG. 17, the portion of the heat transfer tube 12 having the refrigerant flow paths 15d to 15f is such that the position of the opening provided at the lower end thereof is shortened to the height near the side wall of the header 10. It is configured by cutting.
  • the orientation of the opening provided at the lower end of the portion having the refrigerant flow paths 15a to 15c in the heat transfer tube 12 is the opening provided at the lower end of the portion of the heat transfer pipe 12 having the refrigerant flow paths 15d to 15f.
  • the gas refrigerant inside the header 10 is supplied to the refrigerant flow paths 15a to 15c more than the refrigerant flow paths 15d to 15f.
  • the lower end of the portion of the heat transfer tube 12 having the refrigerant flow paths 15d to 15f is smaller in diameter of the header 10 than the lower end of the portion of the heat transfer tube 12 having the refrigerant flow paths 15d to 15f. You may comprise so that it may extend linearly so that it may be located in the direction center side.
  • the portion of the heat transfer tube 12 having the refrigerant flow paths 15d to 15f is arranged such that the position of the opening provided at the lower end thereof is located at a height near the side wall of the header 10. It is bent.
  • the orientation of the opening provided at the lower end of the portion having the refrigerant flow paths 15a to 15c in the heat transfer tube 12 is the opening provided at the lower end of the portion of the heat transfer pipe 12 having the refrigerant flow paths 15d to 15f.
  • the gas refrigerant inside the header 10 is supplied to the refrigerant flow paths 15a to 15c more than the refrigerant flow paths 15d to 15f.
  • the header 10 has a hollow cylindrical shape, and is connected to the header 10 in the longitudinal direction of the plurality of heat transfer tubes 12.
  • the openings provided in some parts including the part located on the most upstream side of the air flow are located closer to the center side in the radial direction of the header 10 than the openings of the remaining parts located on the header 10 side. Yes.
  • it can be set as the header 10 with a small cross-sectional area where an annular flow tends to occur, and the cost of the header 10 can be reduced.
  • more gas refrigerant in the header 10 is supplied to the refrigerant flow paths 15a to 15c than to the refrigerant flow paths 15d to 15f.
  • Embodiment 4 FIG.
  • the flat surface of the heat transfer tube 12 is cut open, for example, to the half surface in the minor axis direction.
  • items not particularly described are the same as those in the first embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 19 is a front view and a perspective view showing the shape of the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 4 of the present invention.
  • FIG. 20 is a front view and a perspective view showing the shape of the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 4 of the present invention.
  • the portion of the heat transfer tube 12 having the refrigerant flow paths 15a to 15c has a through portion 12A in which a portion located inside the header 10 penetrates from the outer surface to the inner surface. It is configured. With this configuration, the gas refrigerant inside the header 10 is supplied more to the refrigerant flow paths 15a to 15c than to the refrigerant flow paths 15d to 15f.
  • the portion located on the upper end side by a predetermined distance from the lower end of the header 10 is not provided with the penetration portion 12A, and the location where the penetration portion 12A is provided more than in FIG. Good. Even if it does in this way, there can exist an effect similar to the case where it is set as a structure like FIG.
  • the outdoor heat exchanger 5 has a portion located on the most upstream side of the air flow at one end located on the header 10 side in the longitudinal direction of the plurality of heat transfer tubes 12. Some of the parts including the through-hole 12 ⁇ / b> A have a part located inside the header 10 cut out from the outer surface to the inner surface. For this reason, in the fourth embodiment, unlike the first embodiment, the process of inserting the heat transfer tube 12 into the header 10 and bending the portion of the heat transfer tube 12 having the refrigerant flow paths 15a to 15c is performed. Without it, the outdoor heat exchanger 5 can be manufactured. Therefore, this Embodiment 4 can manufacture the outdoor heat exchanger 5 by a simpler process than Embodiment 1. FIG. In the fourth embodiment, the same effect as in the first embodiment can be obtained.
  • Embodiment 5 FIG.
  • the lower end of the heat transfer tube 12 is bent in the same direction as the refrigerant inflow direction in the header 10.
  • items that are not particularly described are the same as those in the fourth embodiment, and the same functions and configurations are described using the same reference numerals.
  • FIG. 21 is a diagram showing the header 10 and the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 5 of the present invention.
  • FIG. 22 is a perspective view showing heat transfer tube 12 of refrigeration cycle apparatus 100 according to Embodiment 5 of the present invention.
  • FIG. 23 is a perspective view showing heat transfer tube 12 of refrigeration cycle apparatus 100 according to Embodiment 5 of the present invention.
  • the opening provided at the lower end is positioned above the liquid level of the liquid refrigerant in the header 10, and the traveling direction of the gas refrigerant in the header 10 is as follows. It is bent to face the same direction.
  • the portions having the refrigerant flow paths 15a to 15c in the heat transfer tubes 12 shown in FIGS. 22 and 23 are the same as the portions having the refrigerant flow paths 15a to 15c in the heat transfer tubes 12 shown in FIGS.
  • the structure has a through portion 12A.
  • the opening provided at the lower end of the portion having the refrigerant flow paths 15d to 15f in the heat transfer tube 12 is located in the direction opposite to the direction of the refrigerant flowing through the header 10, the refrigerant loses pressure loss. The gas refrigerant becomes difficult to flow.
  • the opening provided at the lower end of the portion having the refrigerant flow paths 15a to 15c in the heat transfer tube 12 is located in the same direction as the direction of refrigerant flowing through the header 10, the structure in which gas refrigerant flows easily It has become.
  • the outdoor heat exchanger 5 according to the fifth embodiment is cut out in the heat transfer tube 12 and bent in the same direction as the refrigerant inflow direction in the header 10 as in the configuration of the fourth embodiment. It is a thing. Therefore, in the fifth embodiment, the height of the refrigerant inserted into the header 10 can be shortened while obtaining the same effect as in the first to third embodiments. Therefore, the total pressure loss of the refrigerant passing through the outdoor heat exchanger 5 can be reduced.
  • Embodiment 6 FIG.
  • the shape of the header 10 into which the heat transfer tube 12 is inserted has a shape that becomes narrower in the insertion direction of the heat transfer tube 12.
  • items not particularly described are the same as those in the first to fifth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 24 is a diagram showing a first example of the shape of the heat transfer tube 12 and the header 10 of the refrigeration cycle apparatus 100 according to Embodiment 6 of the present invention.
  • FIG. 25 is a diagram showing a second example of the shape of the heat transfer tube 12 and the header 10 of the refrigeration cycle apparatus 100 according to Embodiment 6 of the present invention.
  • the header 10 is configured to have a triangular cross section. Specifically, the header 10 may be provided such that one of the sides is located at the bottom and the top facing the above-described bottom is located at the top.
  • the header 10 may have a hexagonal cross section. Specifically, the header 10 may be provided such that one of the sides is positioned at the lowest position as the bottom and the top portion facing the above-described bottom is positioned at the highest position.
  • the outdoor heat exchanger 5 configures the header 10 so that the horizontal internal cross-sectional area decreases from the lower end side of the heat transfer tube 12 toward the upper end side of the heat transfer tube 12. is doing. For this reason, it becomes easy to accumulate gas refrigerant above the inside of the header 10, and the effects of the first, second, and fourth embodiments can be further exhibited.
  • the upper end of the heat transfer tube 12 is bent or the flow path length is shortened so as to correspond to a plurality of refrigerant flow paths so that the pressure losses are different. It is good also as a structure cut
  • Embodiment 7 FIG. In the seventh embodiment, unlike the first to sixth embodiments, the shape of the outdoor heat exchanger 5 is changed. In the seventh embodiment, items not particularly described are the same as those in the first to sixth embodiments, and the same functions and configurations are described using the same reference numerals.
  • FIG. 26 is an external view of the outdoor heat exchanger 5 of the refrigeration cycle apparatus 100 according to Embodiment 7 of the present invention. As shown in FIG. 26, the headers 10 and 11 are provided in the vertical direction, and the heat transfer tubes 12 are provided in the horizontal direction.
  • FIG. 27 is a diagram showing the header 10 and the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 7 of the present invention.
  • FIG. 28 is a diagram showing the header 11 and the heat transfer tube 12 of the refrigeration cycle apparatus 100 according to Embodiment 7 of the present invention.
  • FIG. 27 a case where liquid refrigerant is accumulated on the inner wall side of the header 10 in the header 10 and gas refrigerant is accumulated in the direction away from the inner wall of the header 10 inside the header 10 will be described as an example.
  • the gas-liquid two-phase refrigerant flows in the header 10 from below to above.
  • a portion of the heat transfer tube 12 having the refrigerant flow paths 15a to 15c is bent so as to face the direction opposite to the refrigerant flow direction. Thereby, the gas refrigerant inside the header 10 is easily supplied to the refrigerant flow paths 15a to 15c.
  • the gas refrigerant flows in the header 11 from below to above.
  • Parts of the heat transfer tube 12 having the refrigerant flow paths 15d to 15f are bent so as to face the same direction as the refrigerant flow direction.
  • one end located on the header 10 side among the longitudinal ends of the plurality of heat transfer tubes 12 is the interior of the header 10, as in the first embodiment.
  • the openings provided in a part of the plurality of heat transfer tubes 12 including the part located on the most upstream side of the air flow are the openings of the remaining parts located on the header 10 side and the header 10. It has a different orientation inside. For this reason, also in this Embodiment 7, the same effect as Embodiment 1 can be show
  • the heat exchanger is the outdoor heat exchanger 5
  • the present invention is not limited to this.
  • the present invention can be similarly applied to the case where the heat exchanger is an indoor heat exchanger.
  • the refrigeration cycle apparatuses 100 of Embodiments 1 to 7 described above can be applied to, for example, a heat pump apparatus, a hot water supply apparatus, a refrigeration apparatus, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

従来よりも除霜効率を向上させ、従来よりも着霜を抑制することができる熱交換器及び熱交換器の製造方法を提供する。 内部を流れる冷媒と周囲を流れる空気とを熱交換する熱交換器であって、直線状に延びる複数の伝熱管12と、前記複数の伝熱管の両端の各々が挿入され、冷媒の流れ道を構成する各々中空のヘッダ10、11と、を備え、前記複数の伝熱管の各々は、両端に開口部15A-15Fを有し、冷媒が流れる複数の冷媒流路15a-15fを内部に有し、前記複数の伝熱管の長手方向のうち前記ヘッダと接続している少なくとも一端において、前記空気の流れの最も上流側に位置する部位を含む一部の部位に設けられる前記開口部15A-15Cは、前記一端に設けられる残りの部位の前記開口部15D-15Fと前記ヘッダの内部で異なる向きとする。

Description

熱交換器及び熱交換器の製造方法
 本発明は、熱交換器、冷凍サイクル装置、及び熱交換器の製造方法に関し、例えば、除霜運転及び暖房運転可能な空気調和機に用いられる熱交換器及び熱交換器の製造方法に関する。
 従来、例えばカーエアコン用の熱交換器として、上下で水平に対峙する一対のヘッダと、一対のヘッダに一定の間隔を保って平行に接続される複数の扁平伝熱管と、扁平伝熱管同士の隙間に密着介入させるコルゲートフィンと、を備え、熱交換媒体である冷媒を複数の扁平伝熱管に対して供給するものがあった。
 しかしながら、例えばヒートポンプ型の冷暖兼用の空調用室外機において、上述した熱交換器を用いて暖房運転を行った場合、上述の熱交換器は蒸発器として機能することとなる。このため、寒冷時に暖房運転を行った場合、蒸発器におけるフィンや伝熱管の表面温度は氷点下まで温度が低下し、空気中の水分がフィンや伝熱管表面に着霜する場合がある。
 このような着霜が生じると、蒸発器のフィン間を通過する空気の通風抵抗が大幅に増大することや、フィンと空気の熱交換における熱抵抗の増大を招き、熱交換効率が低下するため、空調用室外機において上述した熱交換器の実用化はされていないのが実状である。
 ここで、上述した着霜が生じないようにするために、伝熱促進のために設けられたコルゲートフィン表面上にあるルーバーの風上側一部が熱伝導抑制部となるように構成した熱交換器が提案されている(例えば、特許文献1参照)。また、上述した着霜が生じないようにするために、扁平伝熱管の風上側における冷媒流路を閉塞した空調用熱交換器が提案されている(例えば、特許文献2参照)。
特開2012-72955号公報 特許第3738404号公報
 しかしながら、特許文献1に記載された熱交換器は、伝熱管の風上側に位置するフィンに対して熱伝導抑制部が設けられているため、除霜運転を行う場合において、熱が伝わりにくく、フィンの表面温度が上昇しにくい。このため、フィン上の霜が融解されるのに時間がかかり、除霜時間が長くなってしまう。
 また、特許文献2に記載された空調用熱交換器においては、伝熱管の風上側に位置する伝熱管内の冷媒流路に冷媒が流れないため、除霜運転を行う場合において、特許文献1に記載の熱交換器と同様に、伝熱管の風上側のフィン表面温度が上昇しにくく、除霜時間が長くなってしまう。
 このように、特許文献1、2に記載された技術においては、除霜効率が悪く、結果として暖房効率が低下するという課題があった。また、冷房運転を行う場合に、室外熱交換器の有効な風上側温度差領域を効率低下させる可能性があるという課題もあった。
 本発明は、上述のような課題を背景としてなされたものであり、従来よりも除霜効率を向上させ、従来よりも着霜を抑制することができる熱交換器及び熱交換器の製造方法を提供することを目的としている。
 本発明に係る熱交換器は、内部を流れる冷媒と周囲を流れる空気とを熱交換する熱交換器であって、直線状に延びる複数の伝熱管と、前記複数の伝熱管の両端の各々が挿入され、冷媒の流れ道を構成する各々中空のヘッダと、を備え、前記複数の伝熱管の各々は、両端に開口部を有し、冷媒が流れる複数の冷媒流路を内部に有し、前記複数の伝熱管の長手方向のうち前記ヘッダと接続している少なくとも一端において、前記空気の流れの最も上流側に位置する部位を含む一部の部位に設けられる前記開口部は、前記一端に設けられる残りの部位の前記開口部と前記ヘッダの内部で異なる向きとなるものである。
 本発明に係る熱交換器の製造方法は、中空筒状の前記ヘッダを構成する2つの断面弧形状の弧状部材のうち一方の弧状部材に前記複数の伝熱管を挿入する第1工程と、前記第1工程の後に、前記複数の伝熱管のうち前記空気の流れの最も上流側に位置する伝熱管を含む一部の部位を、前記一方のヘッダ側に位置する一端に設けられる開口部が残りの部位の前記一方のヘッダ側に設けられる開口部よりも他端側に位置するように曲折する第2工程と、前記第2工程の後に、前記複数の伝熱管のうち曲折された部位が前記ヘッダの内部に位置するように前記一方の弧状部材と他方の弧状部材とを組み合わせて前記ヘッダを作製する第3工程と、を有するものである。
 本発明によれば、除霜運転時において、蒸発器として機能する熱交換器に流入したガス冷媒は、従来よりも、伝熱管のうち風上側に位置する伝熱管の内部を流れて当該伝熱管における熱交換を促進し、暖房運転時において、蒸発器として機能する熱交換器に流入したガス冷媒は、従来よりも、伝熱管のうち風上側に位置する伝熱管の内部を流れて当該伝熱管における熱交換を抑制することができる。したがって、従来よりも除霜効率を向上させることができ、従来よりも着霜を抑制することができる。
本発明の実施の形態1に係る冷凍サイクル装置100の構成図である。 本発明の実施の形態1に係る冷凍サイクル装置100の室外熱交換器5の外観図である。 本発明の実施の形態1に係る冷凍サイクル装置100の室外熱交換器5の概要を示す斜視図である。 本発明の実施の形態1に係る冷凍サイクル装置100のヘッダ10及び伝熱管12を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置100のヘッダ11及び伝熱管12を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置100の伝熱管12のフィン13上の霜の様子を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置100の伝熱管12の冷媒流路と伝熱管12の温度との関係を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置100の伝熱管12の冷媒流路と伝熱管12の熱交換量との関係を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置100の伝熱管12の冷媒流路と伝熱管12の冷媒流量との関係を示す図である。 本発明の実施の形態1に係る冷凍サイクル装置100のヘッダ10及び伝熱管12の組み立て工程を説明する斜視図及び正面断面図である。 本発明の実施の形態1に係る冷凍サイクル装置100のヘッダ10及び伝熱管12の組み立て工程を説明する斜視図及び正面断面図である。 本発明の実施の形態1に係る冷凍サイクル装置100のヘッダ10及び伝熱管12の組み立て工程を説明する斜視図及び正面断面図である。 本発明の実施の形態1に係る冷凍サイクル装置100の伝熱管12の斜視図である。 本発明の実施の形態2に係る冷凍サイクル装置100のヘッダ10及び伝熱管12を示す図である。 本発明の実施の形態2に係る冷凍サイクル装置100のヘッダ11及び伝熱管12を示す図である。 本発明の実施の形態2に係る冷凍サイクル装置100の伝熱管12の斜視図である。 本発明の実施の形態3に係る冷凍サイクル装置100の伝熱管12の形状を示す正面図及び斜視図である。 本発明の実施の形態3に係る冷凍サイクル装置100の伝熱管12の形状を示す正面図及び斜視図である。 本発明の実施の形態4に係る冷凍サイクル装置100の伝熱管12の形状を示す正面図及び斜視図である。 本発明の実施の形態4に係る冷凍サイクル装置100の伝熱管12の形状を示す正面図及び斜視図である。 本発明の実施の形態5に係る冷凍サイクル装置100のヘッダ10及び伝熱管12を示す図である。 本発明の実施の形態5に係る冷凍サイクル装置100の伝熱管12を示す斜視図である。 本発明の実施の形態5に係る冷凍サイクル装置100の伝熱管12を示す斜視図である。 本発明の実施の形態6に係る冷凍サイクル装置100の伝熱管12及びヘッダ10の形状の第1の例を示す図である。 本発明の実施の形態6に係る冷凍サイクル装置100の伝熱管12及びヘッダ10の形状の第2の例を示す図である。 本発明の実施の形態7に係る冷凍サイクル装置100の室外熱交換器5の外観図である。 本発明の実施の形態7に係る冷凍サイクル装置100のヘッダ10及び伝熱管12を示す図である。 本発明の実施の形態7に係る冷凍サイクル装置100のヘッダ11及び伝熱管12を示す図である。 従来の冷凍サイクル装置のヘッダ110及び伝熱管112を示す図である。 従来の冷凍サイクル装置のヘッダ111及び伝熱管112を示す図である。 従来の冷凍サイクル装置の伝熱管112のフィン113上の霜の様子を示す図である。 従来の冷凍サイクル装置の伝熱管112の冷媒流路と伝熱管112の温度との関係を示す図である。 従来の冷凍サイクル装置の伝熱管112の冷媒流路と伝熱管112の熱交換量との関係を示す図である。 従来の冷凍サイクル装置の伝熱管112の冷媒流路と伝熱管112の冷媒流量との関係を示す図である。
 以下、本発明を実施するための形態について、図面を参照して説明する。ここで、図1を含めた、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。
実施の形態1.
 図1は本発明の実施の形態1に係る冷凍サイクル装置100の構成図である。図1に示されるように、冷凍サイクル装置100は、圧縮機1と、四方弁2と、室内熱交換器3と、膨張弁4と、室外熱交換器5と、を備えている。
 圧縮機1は、吸入された冷媒を圧縮して高温及び高圧の冷媒として吐出する、可変容量の圧縮機である。四方弁2は、圧縮機1の吐出側に設けられている冷媒の流路を切り替えるためのものである。図1においては、暖房運転を行うように四方弁2が切り替えられた状態における冷媒流れを実線で示している。また、図1においては、除霜運転を行うように四方弁2が切り替えられた状態における冷媒流れを点線で示している。
 室内熱交換器3は、冷房運転時に蒸発器として機能し、暖房運転時に凝縮器として機能する熱交換器である。膨張弁4は、冷房運転時において室外熱交換器5から流出した冷媒を減圧膨張し、暖房運転時において室内熱交換器3から流出した冷媒を減圧膨張するためのものである。室外熱交換器5は、冷房運転時に凝縮器として機能し、暖房運転時に蒸発器として機能する熱交換器である。
 以下に、冷凍サイクル装置100において暖房運転を実行した場合における冷媒流れについて説明する。暖房運転を実行する場合において、四方弁2は暖房側に切り替えられ、室内熱交換器3は凝縮器として機能し、室外熱交換器5は蒸発器として機能する。
 まず、圧縮機1に供給された冷媒は圧縮されて高温高圧のガス冷媒となり、四方弁2を通過し、室内熱交換器3に流入する。室内熱交換器3に流入した冷媒は、室内熱交換器3に導入された室内空気と熱交換して冷却されて液化する。液化された冷媒は、膨張弁4を通過することで低温低圧のガス冷媒と液冷媒が混在した二相冷媒状態となり、室外熱交換器5に流入する。室外熱交換器5に流入した冷媒は、室外熱交換器5に導入された室外空気と熱交換して加熱されてガス化した状態で圧縮機1に戻る。暖房運転を実行し、室外熱交換器5の累積霜量が多くなると、除霜運転が開始される。
 以下に、冷凍サイクル装置100において除霜運転を実行した場合における冷媒流れについて説明する。除霜運転を実行する場合において、四方弁2は冷房側に切り替えられ、室内熱交換器3は蒸発器として機能し、室外熱交換器5は凝縮器として機能する。除霜運転時における冷媒流れは、暖房運転時における冷媒流れとは逆方向となる。
 まず、圧縮機1に供給された冷媒は圧縮されて高温高圧のガス冷媒となり、四方弁2を通過し、室外熱交換器5に流入する。室外熱交換器5に流入した冷媒は、室外熱交換器5に導入された室内空気と熱交換して冷却されて液化する。液化された冷媒は、膨張弁4を通過することで低温低圧のガス冷媒と液冷媒が混在した二相冷媒状態となり、室内熱交換器3に流入する。室内熱交換器3に流入した冷媒は、室内熱交換器3に導入された室外空気と熱交換して加熱されてガス化した状態で圧縮機1に戻る。
 図2は本発明の実施の形態1に係る冷凍サイクル装置100の室外熱交換器5の外観図である。図3は本発明の実施の形態1に係る冷凍サイクル装置100の室外熱交換器5の概要を示す斜視図である。なお、図2,図3内の矢印は空気の流れを示している。空気は、送風手段(図示省略)を駆動させることでフィン間の隙間を通過する。
 図2に示されるように、室外熱交換器5は、ヘッダ10,11と、伝熱管12と、フィン13と、を備える。ヘッダ10は室外熱交換器5の下方に設けられ、ヘッダ11は室外熱交換器5の下方に設けられている。ヘッダ10,11は、例えば、中空筒状の形状で構成されている。伝熱管12は、冷媒が流れる複数の流路を内部に有し、直線上に延びる扁平状のものであり、ヘッダ10,11に挿入されている。なお、フィン13は、例えば、コルゲート状のフィンであり、隣接する伝熱管12同士の隙間に密着介入されている。
 図2に示されるように、ヘッダ10は冷媒配管101と接続されている。冷媒配管101は膨張弁4と接続されている。ヘッダ11は冷媒配管102と接続されている。冷媒配管102は四方弁2と接続されている。
 なお、伝熱管12は複数の冷媒流路を有するように構成される例に限定されず、複数の伝熱管の各々が単一の冷媒流路を有するように構成されていてもよい。また、フィン13は、上述の例に限定されるものではなく、プレートタイプのフィンを用いてもよく、また、フィンを用いないフィンレスタイプを採用してもよい。
 ここで、暖房運転時には、気液二相冷媒が、冷媒配管101を通ってヘッダ10に流入し、ヘッダ10内に流入した冷媒が伝熱管12に分配される。そして、伝熱管12内を流れる気液二相冷媒は、空気と熱交換してガス冷媒となってヘッダ11に流出する。ヘッダ11に流出したガス冷媒は冷媒配管102に導かれる。
 一方、冷房運転時や除霜運転時においては、ガス冷媒が冷媒配管102を通ってヘッダ11内に流入し、ヘッダ11内に流入した冷媒が複数の伝熱管12に分配される。そして、伝熱管12内を流れるガス冷媒は、空気と熱交換して液冷媒となってヘッダ10に流出する。ヘッダ10に流出した液冷媒は冷媒配管101に導かれる。このように、冷房運転時や除霜運転時における冷媒流れは、暖房運転時における冷媒流れとは逆方向となっている。
 図3に示されるように、伝熱管12の端部には風上側から順に開口部15A~15Fが設けられている。図3においては、伝熱管12の一端側に開口部が設けられる例を図示しているが、伝熱管12の他端側においても同様に開口部が設けられる構成となっている。また、図3に示されるように、伝熱管12の内部には複数の冷媒流路15が設けられている。複数の冷媒流路15のうち風上側から順に冷媒流路15a,15b,15c,15d,15e,15fと称する。なお、以後の説明において、冷媒流路15a,15b,15cを冷媒流路15a~15cと記載することがあるものとする。また、以後の説明において、冷媒流路15d,15e,15fを冷媒流路15d~15fと記載することがあるものとする。
 伝熱管12の風上側の部位を風上側伝熱管12aと称する。また、フィン13の風上側の部位を風上側フィン13aと称する。また、フィン13の表面にはルーバー14が設けられている。ルーバー14は、伝熱を促進させるように切り起こされた形状を有する。
 室外熱交換器5には、暖房運転時において、上述したようにガス冷媒及び液冷媒が混在した二相冷媒が流入するため、ヘッダ10から伝熱管12の複数の冷媒流路15に分配されるとき、ヘッダ10と冷媒流路15の関係によって、各々の冷媒流路15に流れる冷媒の流量比率やガス冷媒と液冷媒の比率が異なる流れが生じる。
 図4は本発明の実施の形態1に係る冷凍サイクル装置100のヘッダ10及び伝熱管12を示す図である。図5は本発明の実施の形態1に係る冷凍サイクル装置100のヘッダ11及び伝熱管12を示す図である。図6は本発明の実施の形態1に係る冷凍サイクル装置100の伝熱管12のフィン13上の霜の様子を示す図である。なお、本実施の形態1においては、ヘッダ10に供給されるガス冷媒及び液冷媒のうち、ガス冷媒がヘッダ10の上部に集まりやすい層状流、波状流、気泡流、プラグ流のような流れが生じる場合を想定している。
 図4に示されるように、ヘッダ10の内部のうち下方には液冷媒が溜まっており、ヘッダ10の内部のうち上方にはガス冷媒が溜まっている。例えば、伝熱管12のうち冷媒流路15a~15cを有する部位は、下端に設けられる開口部が液冷媒の液面よりも上方に位置し、ヘッダ10の内部におけるガス冷媒の進行方向とは反対方向を向くように曲折されている。例えば、伝熱管12のうち冷媒流路15d~15fを有する部位は、下端に設けられる開口部が液冷媒の液面よりも下方に位置するように構成されている。
 なお、以上の説明においては、伝熱管12のうち冷媒流路15a~15cを有する部位が曲折される例について説明したが、これに限定されない。例えば、伝熱管12のうち冷媒流路15aを有する伝熱管のみ曲折するようにしてもよい。伝熱管12のうち空気の流れの最も上流側に位置する冷媒流路15を含む1又は連続する2以上の冷媒流路15を有する部位を曲折する構成となっていればよい。
 図4のように伝熱管12を構成することで、ヘッダ10の内部の上方を流れるガス冷媒は、慣性力により冷媒流路15a~15cに流入しやすくなる。一方、ヘッダ10の内部の下方を流れる液冷媒は、冷媒流路15d~15fの内部に吸い上げられる。すなわち、冷媒流路15d~15fを流れる二相冷媒は、冷媒流路15a~15cを流れる二相冷媒よりも、ガス冷媒の比率が小さくなる。冷媒流路15a~15fを通過した二相冷媒は、空気と熱交換してガス単相の冷媒へと変化し、ヘッダ11に供給される。
 図5に示されるように、ヘッダ11の内部にはガス冷媒が溜められている。例えば、伝熱管12のうち冷媒流路15a~15cを有する部位は、直線状に延びるように構成されている。例えば、伝熱管12のうち冷媒流路15d~15fを有する部位は、ヘッダ11の内部におけるガス冷媒の進行方向とは反対方向を向くように曲折されている。これにより、冷媒流路15a~15cと冷媒流路15d~15fの管内圧力損失を同等、又は冷媒流路15a~15cよりも冷媒流路15d~15fの管内圧力損失を大きくし、冷媒流路15a~15cに流れるガス冷媒の流量をより多くすることができる。これは、同等の流量の二相冷媒を比べた場合、ガス冷媒の割合が多くなるほど管内圧力損失が増加してしまうこと、伝熱管12のうち冷媒流路15a~15cを有する部位が曲折して圧力損失が増加することで、伝熱管12のうち冷媒流路15a~15cの流量が低減してしまうのを抑制するためである。
 図4に示されるように伝熱管12を構成することで、暖房運転時においては、冷媒流路15a~15cを流れる二相冷媒は、冷媒流路15d~15fを流れる二相冷媒よりも、ガス冷媒の比率が大きく、冷媒流路15d~15fを流れる二相冷媒は、冷媒流路15a~15cを流れる二相冷媒よりも、ガス冷媒の比率が小さくなる。このため、伝熱管12のうち風上側に設けられる冷媒流路を流れる冷媒が空気と熱交換する熱交換量を抑制することができ、図6に示されるように、フィンに付着する霜は風上側から風下側に向かって均等になる。
 図5に示されるように伝熱管12を構成することで、冷房運転や除霜運転時には、ヘッダ11の内部のガス単相冷媒が、冷媒流路15に供給される場合に、冷媒流路15a~15cを流れる冷媒は、冷媒流路15d~15fを流れる冷媒よりも多くなるため、冷媒流路15a~15cにおける熱交換量を増加させることができる。
 図7は本発明の実施の形態1に係る冷凍サイクル装置100の伝熱管12の冷媒流路と伝熱管12の温度との関係を示す図である。図8は本発明の実施の形態1に係る冷凍サイクル装置100の伝熱管12の冷媒流路と伝熱管12の熱交換量との関係を示す図である。図9は本発明の実施の形態1に係る冷凍サイクル装置100の伝熱管12の冷媒流路と伝熱管12の冷媒流量との関係を示す図である。
 図7の横軸には伝熱管12の冷媒流路を規定し、図7の縦軸には伝熱管12の温度を規定している。図8の横軸には伝熱管12の冷媒流路を規定し、図8の縦軸には伝熱管12の熱交換量を規定している。図9の横軸には伝熱管12の冷媒流路を規定し、図9の縦軸には伝熱管12の冷媒流量を規定している。
 図7に示されるように、冷媒の温度は冷媒流路の風上側から冷媒流路の風下側に亘って一定となっている。図7に示されるように、空気の温度は冷媒流路の風上側から冷媒流路の風下側に向かうにつれて温度が低下している。図8に示されるように、室外熱交換器5の熱交換量は冷媒流路の風上側から冷媒流路の風下側に向かって増加するようになっている。
 図9に示されるように、伝熱管12の内部を流れるガス冷媒の流量は冷媒流路の風上側から冷媒流路の風下側に向かって減少するようになっている。図9に示されるように、伝熱管12の内部を流れる液冷媒の流量は冷媒流路の風上側から冷媒流路の風下側に増加するようになっている。
 本実施の形態1においては、図7のように、風上側の冷媒温度と空気温度の温度差が大きくとも、図8のように、風上側の熱交換量を抑制し、風下側の熱交換量を促進するようになっている。このため、本実施の形態1においては、図9のように、ガス冷媒の割合が多い二相冷媒が風上側の冷媒流路を流れ、液冷媒の割合が多い二相冷媒が風下側の冷媒流路を流れることで、冷媒の潜熱をより多く得ることが可能となる風下側における熱交換が促進される。また、フィン13上を流れる空気は上流側から下流側に流れるにつれて、空気が持つ水蒸気量が低下する。
 図10は本発明の実施の形態1に係る冷凍サイクル装置100のヘッダ10及び伝熱管12の組み立て工程を説明する斜視図及び正面断面図である。図11は本発明の実施の形態1に係る冷凍サイクル装置100のヘッダ10及び伝熱管12の組み立て工程を説明する斜視図及び正面断面図である。図12は本発明の実施の形態1に係る冷凍サイクル装置100のヘッダ10及び伝熱管12の組み立て工程を説明する斜視図及び正面断面図である。
 図10に示されるように、ヘッダ10は、例えば、弧状部材10a及び弧状部材10bで構成されている。弧状部材10a及び弧状部材10bは、例えば、断面弧形状の部材で構成されている。以下に、ヘッダ10及び伝熱管12を組み立てる工程について説明する。
 まず、伝熱管12は、例えば冷媒流路15cと冷媒流路15dとの間で伝熱管12の長手方向に切れ目が入っている状態にして、図10に示されるように、弧状部材10aに挿入される。挿入された伝熱管12のうち、冷媒流路15a~15c側にあたる伝熱管12端部の一方は、例えば、曲げ加工機によって冷媒流路開口部がヘッダ長手方向に向かって曲折され、図11の状態になる。
 次に、図11に示されるように、伝熱管12が弧状部材10aに挿入されて伝熱管12の一部が曲折された状態で、弧状部材10aと弧状部材10bとを嵌め合わせることでヘッダ10が形成される。具体的には、例えば、弧状部材10aと弧状部材10bとの嵌め会わせは、例えば、ベルトコンベア式一体ろう付け工程等により行われる。これにより、図12の状態になる。
 なお、上述した組み立て工程は、図12に記載のような円管型ヘッダの場合に限らず、複数の部材によって構成されるヘッダの場合においても、曲げ加工機が伝熱管12を曲げる工程の障害とならない限り、適用することができる。上述したように伝熱管12に対して曲げ加工を施すことで、ヘッダ10に挿入された伝熱管12は、ベルトコンベア式一体ろう付け工程の途中において、伝熱管12が熱膨張して伝熱管12がヘッダ10から抜けてしまう問題を解決できる効果も併せ持つ。
 図13は本発明の実施の形態1に係る冷凍サイクル装置100の伝熱管12の斜視図である。図13に示されるように、伝熱管12のうち冷媒流路15a~15cを有する部位は曲折され、伝熱管12のうち冷媒流路15d~15fを有する部位は曲折されずに直線上に延びている。このように、伝熱管12のうち冷媒流路15a~15cを有する部位のヘッダ10側の端部に設けられる開口部の方向は、伝熱管12のうち冷媒流路15d~15fを有する伝熱管のヘッダ10側の端部に設けられる開口部の方向と相違している。
 図29は従来の冷凍サイクル装置のヘッダ110及び伝熱管112を示す図である。図30は従来の冷凍サイクル装置のヘッダ111及び伝熱管112を示す図である。図31は従来の冷凍サイクル装置の伝熱管112のフィン113上の霜の様子を示す図である。
 図29に示されるように、従来の伝熱管112は、全ての冷媒流路115に対応して、ヘッダ110の内部に位置する下端側の部位は曲折されず直線状に平行に延びている。また、図30に示されるように、従来の伝熱管112は、ヘッダ111の内部に位置する上端側の部位は曲折されず直線状に平行に延びている。
 図32は従来の冷凍サイクル装置の伝熱管112の冷媒流路と伝熱管112の温度との関係を示す図である。図33は従来の冷凍サイクル装置の伝熱管112の冷媒流路と伝熱管112の熱交換量との関係を示す図である。図34は従来の冷凍サイクル装置の伝熱管112の冷媒流路と伝熱管112の冷媒流量との関係を示す図である。
 図32の横軸には伝熱管12の冷媒流路を規定し、図32の縦軸には伝熱管12の温度を規定している。図33の横軸には伝熱管12の冷媒流路を規定し、図33の縦軸には伝熱管12の熱交換量を規定している。図34の横軸には伝熱管12の冷媒流路を規定し、図34の縦軸には伝熱管12の冷媒流量を規定している。
 図32に示されるように、冷媒の温度は冷媒流路の風上側から冷媒流路の風下側に亘って一定となっている。図32に示されるように、空気の温度は冷媒流路の風上側から冷媒流路の風下側に向かうにつれて温度が低下している。図33に示されるように、室外熱交換器5の熱交換量は冷媒流路の風上側から冷媒流路の風下側に向かって減少するようになっている。
 図34に示されるように、伝熱管12の内部を流れるガス冷媒の流量は冷媒流路の風上側から冷媒流路の風下側に亘って一定となっている。図34に示されるように、伝熱管12の内部を流れる液冷媒の流量は冷媒流路の風上側から冷媒流路の風下側に亘って一定となっている。
 図29,図30に示されるように伝熱管112を構成した場合には、図34に示されるように、ガス冷媒と液冷媒の比率が同様で同量の二相冷媒がヘッダ110から分配されることになる。ここで、図33に示されるように、室外熱交換器5の熱交換量は冷媒流路の風上側から冷媒流路の風下側に向かって減少するようになっているため、空気がフィン113の隙間を流れながら冷媒と熱交換する場合に、図32に示されるように、伝熱管112のうち風上側に位置する部位において、最も空気と冷媒との温度差が大きく、風上側から風下側に向かって空気と冷媒との温度差は低くなる。このため、図31に示されるように、空気と冷媒とが熱交換される熱交換量は、伝熱管112のうち風上側に位置する部位において最も多く、霜は最も発生しやすい。そして、従来の伝熱管112の風上側に累積した霜は、やがて風路を妨げるため熱交換器を通過する風量低下に繋がること、フィン表面にある霜が熱抵抗となり空気との熱交換効率が低下するといった問題が発生する。
 これに対して、本実施の形態1に係る室外熱交換器5は、内部を流れる冷媒と周囲を流れる空気とを熱交換する熱交換器であって、直線状に延びる複数の伝熱管12と、複数の伝熱管12の両端の各々が挿入され、冷媒の流れ道を構成する各々中空のヘッダと、を備え、複数の伝熱管12の各々は、両端に開口部を有し、冷媒が流れる複数の冷媒流路を内部に有し、複数の伝熱管12の長手方向のうちヘッダ10と接続している一端において、空気の流れの最も上流側に位置する部位を含む一部の部位に設けられる開口部は、ヘッダ10側に位置する残りの部位の開口部とヘッダ10の内部で異なる向きとなっている。特に、1つの伝熱管12において、ヘッダ10の長手方向と交差する方向に並ぶ複数の流路のうち、一部の流路の開口部は他の流路の開口部とヘッダ10内の冷媒流れ方向に対して異なる向きとなるようにする。このため、冷媒流れの慣性力によって一部の流路と他の流路とに冷媒の入りやすさに違いが生じる。本実施の形態1では、ガスと液体とが混在するヘッダ側では一部の流路の開口部は他の流路の開口部とでヘッダ10内の高さ位置の違いも利用した。しかしながら、ヘッダ内部の冷媒の気体と液体との分布は種々の場合がある。特に高さ方向で分布が定まらないような場合は、流路同士で開口部の高さを必ずしも変える必要はない。また、ガス冷媒のみが流れるヘッダでも高さ位置を異ならせる必要はない。それらの場合は、開口部の向きの違いを流路間でガスと液体と流入分布を生じさせることに利用すればよい。また、ヘッダ10内で一部の流路の開口部が他の流路の開口部と異なるように曲げ部分を形成し、流路の抵抗が異なるようにすることで冷媒の流入を異ならせるようにしてもよい。このような曲げの違いを冷媒の流入の違いに利用してもよい。また、伝熱管12の両端のヘッダのうち、一方のヘッダ内にのみ、このような開口部の向きが異なるようにしてもよい。このような構造を利用することにより、除霜運転時において、室外熱交換器5に流入したガス冷媒は、従来よりも、伝熱管12のうち風上側に位置する伝熱管12の内部を流れて当該伝熱管12における熱交換を促進し、暖房運転時において、室外熱交換器5に流入したガス冷媒は、従来よりも、伝熱管12のうち風上側に位置する伝熱管12の内部を流れて当該伝熱管12における熱交換を抑制することができる。したがって、従来よりも除霜効率を向上させることができ、従来よりも着霜を抑制することができる。
実施の形態2.
 本実施の形態2においては、実施の形態1とは異なるように、伝熱管12を構成したものである。なお、本実施の形態2において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図14は本発明の実施の形態2に係る冷凍サイクル装置100のヘッダ10及び伝熱管12を示す図である。図15は本発明の実施の形態2に係る冷凍サイクル装置100のヘッダ11及び伝熱管12を示す図である。図16は本発明の実施の形態2に係る冷凍サイクル装置100の伝熱管12の斜視図である。
 図14に示されるように、伝熱管12のうち冷媒流路15a~15cを有する部位は、その下端がヘッダ10内の冷媒流れ方向と反対方向に向くように曲折されている。また、図14に示されるように、伝熱管12のうち冷媒流路15d~15fを有する部位は、その下端がヘッダ10内の冷媒流れ方向と同一方向に向くように曲折されている。図15に示されるように、伝熱管12の上端は曲折されずに直線状に延びている。
 図16に示されるように、伝熱管12のうち冷媒流路15a~15cを有する部位の下端に設けられる開口部の向きは、伝熱管12のうち冷媒流路15d~15fを有する部位の下端に設けられる開口部の向きと反対方向となっている。これにより、ヘッダ10の内部のガス冷媒は、冷媒流路15d~15fよりも冷媒流路15a~15cに多く供給される。
 以上のように、本実施の形態2に係る室外熱交換器5は、複数の伝熱管12の長手方向の少なくとも一端において、空気の流れの最も上流側に位置する部位を含む一部の部位に設けられる開口部は、ヘッダ10の内部において冷媒流れ方向と逆向きとなるように構成されており、ヘッダ10側に位置する残りの部位の開口部は、ヘッダ10の内部において冷媒流れ方向と同一方向となるように構成されている。
 このため、伝熱管12の下端のみに曲げ加工するだけでよく、伝熱管12の上端を曲げ加工する必要がなく、伝熱管12の挿入口がある例えば円管などを用いることで、実施の形態1のものと比べて加工の簡易化を図ることができる。
 また、本実施の形態2においては、伝熱管12のうち冷媒流路15d~15fを有する部位は、その下端がヘッダ10内の冷媒流れ方向と同一方向に向くように曲折されているため、冷媒流路15d~15f側の圧力損失は増大する。したがって、本実施の形態2においては、実施の形態1よりも、ガス冷媒が冷媒流路15d~15fに浸入しにくくなり、冷媒流路15a~15cに多くのガス冷媒を供給することができる。
実施の形態3.
 本実施の形態3においては、実施に形態1とは異なり、例えば、伝熱管12の冷媒流路15a~15cを有する部位をヘッダ10の中央高さまで挿入して曲折したものである。なお、本実施の形態3において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図17は本発明の実施の形態3に係る冷凍サイクル装置100の伝熱管12の形状を示す正面図及び斜視図である。図18は本発明の実施の形態3に係る冷凍サイクル装置100の伝熱管12の形状を示す正面図及び斜視図である。本実施の形態3においては、実施の形態1とは異なり、ヘッダ10の内部を流れる気液二相冷媒のうちガス冷媒が、ヘッダ10の中央高さにあたる位置に集まりやすい環状流のような流れが生じる場合を想定している。
 図17に示されるように、伝熱管12のうち冷媒流路15a~15cを有する部位の下端は、伝熱管12のうち冷媒流路15d~15fを有する部位の下端よりもヘッダ10の径方向中心側に位置するように曲折されている。また、図17に示されるように、伝熱管12のうち冷媒流路15d~15fを有する部位は、その下端に設けられる開口部の位置がヘッダ10の側壁付近の高さまで短くしてなるように切断して構成されている。
 このようにして、伝熱管12のうち冷媒流路15a~15cを有する部位の下端に設けられる開口部の向きは、伝熱管12のうち冷媒流路15d~15fを有する部位の下端に設けられる開口部と相違し、ヘッダ10の内部のガス冷媒が、冷媒流路15d~15fよりも冷媒流路15a~15cに多く供給される。
 なお、図18に示されるように、伝熱管12のうち冷媒流路15d~15fを有する部位の下端は、伝熱管12のうち冷媒流路15d~15fを有する部位の下端よりもヘッダ10の径方向中心側に位置するように直線状に延びるように構成してもよい。このとき、図18に示されるように、伝熱管12のうち冷媒流路15d~15fを有する部位は、その下端に設けられる開口部の位置がヘッダ10の側壁付近の高さに位置するように曲折されている。
 このようにして、伝熱管12のうち冷媒流路15a~15cを有する部位の下端に設けられる開口部の向きは、伝熱管12のうち冷媒流路15d~15fを有する部位の下端に設けられる開口部と相違し、ヘッダ10の内部のガス冷媒が、冷媒流路15d~15fよりも冷媒流路15a~15cに多く供給される。
 以上のように、本実施の形態3に係る室外熱交換器5は、ヘッダ10が中空筒状で構成されており、複数の伝熱管12の長手方向のうちヘッダ10と接続している一端において、空気の流れの最も上流側に位置する部位を含む一部の部位に設けられる開口部は、ヘッダ10側に位置する残りの部位の開口部よりもヘッダ10の径方向中心側に位置している。このため、本実施の形態3においては、環状流が起こりやすい断面積が小さなヘッダ10とすることができ、ヘッダ10のコストを削減することができる。また、本実施の形態3においては、実施の形態1と同様に、ヘッダ10の内部のガス冷媒は、冷媒流路15d~15fよりも冷媒流路15a~15cに多く供給される。
実施の形態4.
 本実施の形態4においては、実施の形態1とは異なり、伝熱管12の扁平面において短軸方向の例えば半面までを切り開くようにしたものである。なお、本実施の形態4において、特に記述しない項目については実施の形態1と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図19は本発明の実施の形態4に係る冷凍サイクル装置100の伝熱管12の形状を示す正面図及び斜視図である。図20は本発明の実施の形態4に係る冷凍サイクル装置100の伝熱管12の形状を示す正面図及び斜視図である。
 図19に示されるように、例えば、伝熱管12のうち冷媒流路15a~15cを有する部位は、ヘッダ10の内部に位置する部位が外面から内面に亘って貫通する貫通部12Aを有するように構成されている。このように構成することで、ヘッダ10の内部のガス冷媒は、冷媒流路15d~15fよりも冷媒流路15a~15cに多く供給される。
 なお、図20に示されるように、ヘッダ10の下端から所定距離だけ上端側に位置する箇所は貫通部12Aを設けないようにして、図19よりも貫通部12Aを設ける箇所を限定してもよい。このようにしても、図19のような構成にした場合と同様の効果を奏することができる。
 以上のように、本実施の形態4に係る室外熱交換器5は、複数の伝熱管12の長手方向のうちヘッダ10側に位置する一端において、空気の流れの最も上流側に位置する部位を含む一部の部位は、ヘッダ10の内部に位置する部位が外面から内面に亘って切り欠かれた貫通部12Aを有する。
 このため、本実施の形態4においては、実施の形態1とは異なり、伝熱管12をヘッダ10に挿入して伝熱管12のうち冷媒流路15a~15cを有する部位を曲折するという工程を経ないで室外熱交換器5を製造することができる。したがって、本実施の形態4は、実施の形態1よりも簡易な工程で室外熱交換器5を製造できる。また、本実施の形態4においては、実施の形態1と同様の効果を得ることができる。
実施の形態5.
 本実施の形態5においては、実施の形態4とは異なり、伝熱管12の下端をヘッダ10内の冷媒流入方向と同一方向に曲げるように構成したものである。なお、本実施の形態5において、特に記述しない項目については実施の形態4と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図21は本発明の実施の形態5に係る冷凍サイクル装置100のヘッダ10及び伝熱管12を示す図である。図22は本発明の実施の形態5に係る冷凍サイクル装置100の伝熱管12を示す斜視図である。図23は本発明の実施の形態5に係る冷凍サイクル装置100の伝熱管12を示す斜視図である。
 図21~図23に示されるように、伝熱管12は、下端に設けられる開口部がヘッダ10の内部において液冷媒の液面よりも上方に位置し、ヘッダ10の内部におけるガス冷媒の進行方向と同一方向を向くように曲折されている。また、図22,図23に示される伝熱管12のうち冷媒流路15a~15cを有する部位は、図19,図20に示される伝熱管12のうち冷媒流路15a~15cを有する部位と同様に、貫通部12Aを有する構成となっている。
 このとき、伝熱管12のうち冷媒流路15d~15fを有する部位の下端に設けられる開口部は、ヘッダ10の内部を流れる冷媒進行方向と反対の向きに位置しているため、冷媒が圧力損失が高くなり、ガス冷媒が流れにくい。一方、伝熱管12のうち冷媒流路15a~15cを有する部位の下端に設けられる開口部が、ヘッダ10の内部を流れる冷媒進行方向と同一方向に位置しているため、ガス冷媒が流れやすい構造となっている。
 以上のように、本実施の形態5に係る室外熱交換器5は、実施の形態4の構成と同様に伝熱管12を切り欠いて更にヘッダ10内の冷媒流入方向と同一方向に曲げるようにしたものである。このため、本実施の形態5においては、実施の形態1~3と同等の効果を得つつ、ヘッダ10に差し込む冷媒高さを短くすることができる。したがって、室外熱交換器5を通過する冷媒の合計圧力損失を低減することが出来る。
実施の形態6.
 本実施の形態6においては、実施の形態1~5とは異なり、伝熱管12が挿入されるヘッダ10の形状を伝熱管12の挿入方向に向かって幅が細くなる形状としたものである。なお、本実施の形態6において、特に記述しない項目については実施の形態1~5と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図24は本発明の実施の形態6に係る冷凍サイクル装置100の伝熱管12及びヘッダ10の形状の第1の例を示す図である。図25は本発明の実施の形態6に係る冷凍サイクル装置100の伝熱管12及びヘッダ10の形状の第2の例を示す図である。
 図24に示されるように、ヘッダ10の形状を断面三角形となるように構成されている。具体的には、ヘッダ10は、何れかの辺を底部として最も下方に位置させ、上述の底部と対向する頂部が上方に位置するようにヘッダ10を設けてもよい。
 なお、図25に示されるように、ヘッダ10の形状が断面六角形となるように構成されていてもよい。具体的には、何れかの辺を底部として最も下方に位置させ、上述の底部と対向する頂部が最も上方に位置するようにヘッダ10を設けてもよい。
 以上のように、本実施の形態6に係る室外熱交換器5は、伝熱管12の下端側から伝熱管12の上端側に向かって水平方向の内部断面積が小さくなるようにヘッダ10を構成している。このため、ヘッダ10内部の上方にガス冷媒が溜まりやすくなり、実施の形態1,2,4の効果を一層発揮することができる。
 なお、以上説明した実施の形態3~6において、必要に応じて、伝熱管12の上端において、複数の冷媒流路に対応して、各々圧力損失を異なるように曲げ加工あるいは流路長を短く切断する構成としてもよい。
実施の形態7.
 本実施の形態7においては、実施の形態1~6とは異なり、室外熱交換器5の形状を変更したものである。なお、本実施の形態7において、特に記述しない項目については実施の形態1~6と同様とし、同一の機能や構成については同一の符号を用いて述べることとする。
 図26は本発明の実施の形態7に係る冷凍サイクル装置100の室外熱交換器5の外観図である。図26に示されるように、ヘッダ10,11が上下方向に設けられ、伝熱管12を左右方向に設けられるようになっている。
 図27は本発明の実施の形態7に係る冷凍サイクル装置100のヘッダ10及び伝熱管12を示す図である。図28は本発明の実施の形態7に係る冷凍サイクル装置100のヘッダ11及び伝熱管12を示す図である。なお、図27においては、液冷媒がヘッダ10の内部においてヘッダ10の内壁側に溜まり、ガス冷媒がヘッダ10の内部においてヘッダ10の内壁から遠ざかる方向に溜まっている場合を例として説明する。
 図27に示されるように、気液二相冷媒はヘッダ10の内部において下方から上方に向かって流れるようになっている。伝熱管12のうち冷媒流路15a~15cを有する部位は、冷媒流れ方向とは反対側に向くように曲折されている。これにより、ヘッダ10の内部のガス冷媒は冷媒流路15a~15cに供給されやすくなる。
 図28に示されるように、ガス冷媒はヘッダ11の内部において下方から上方に向かって流れるようになっている。伝熱管12のうち冷媒流路15d~15fを有する部位は、冷媒流れ方向とは同一方向を向くように曲折されている。
 以上のように、本実施の形態7に係る冷凍サイクル装置100は、実施の形態1と同様に、複数の伝熱管12の長手方向の両端のうちヘッダ10側に位置する一端はヘッダ10の内部に位置し、複数の伝熱管12のうち空気の流れの最も上流側に位置する部位を含む一部の部位に設けられる開口部は、ヘッダ10側に位置する残りの部位の開口部とヘッダ10の内部で異なる向きとなっている。このため、本実施の形態7においても、実施の形態1と同一の効果を奏することができる。
 また、以上の説明においては、熱交換器が室外熱交換器5である例について説明したが、これに限定されない。熱交換器が室内熱交換器である場合についても同様に本発明を適用することができる。
 以上説明した実施の形態1~7の冷凍サイクル装置100は、例えば、ヒートポンプ装置等、給湯装置、冷凍装置等に適用することができる。
 1 圧縮機、2 四方弁、3 室内熱交換器、4 膨張弁、5 室外熱交換器、10 ヘッダ、10a,10b 弧状部材、11 ヘッダ、12 伝熱管、12A 貫通部、12a 風上側伝熱管、13 フィン、13a 風上側フィン、14 ルーバー、15,15a~15f 冷媒流路、15A~15F 開口部、100 冷凍サイクル装置、101 冷媒配管、102 冷媒配管、110 ヘッダ、111 ヘッダ、112 伝熱管、113 フィン、115 冷媒流路。

Claims (9)

  1.  内部を流れる冷媒と周囲を流れる空気とを熱交換する熱交換器であって、
     直線状に延びる複数の伝熱管と、
     前記複数の伝熱管の両端の各々が挿入され、冷媒の流れ道を構成する各々中空のヘッダと、を備え、
     前記複数の伝熱管の各々は、両端に開口部を有し、冷媒が流れる複数の冷媒流路を内部に有し、
     前記複数の伝熱管の長手方向のうち前記ヘッダと接続している少なくとも一端において、前記空気の流れの最も上流側に位置する部位を含む一部の部位に設けられる前記開口部は、前記一端に設けられる残りの部位の前記開口部と前記ヘッダの内部で異なる向きとなる
     熱交換器。
  2.  前記複数の伝熱管の長手方向の少なくとも一端において、前記空気の流れの最も上流側に位置する部位を含む一部の部位に設けられる前記開口部は、前記ヘッダの内部において冷媒流れ方向と逆向きになるように構成されている
     請求項1に記載の熱交換器。
  3.  前記複数の伝熱管の長手方向の少なくとも一端において、前記空気の流れの最も上流側に位置する部位を含む一部の部位に設けられる前記開口部は、前記一端に設けられる残りの部位の前記開口部よりも前記ヘッダの径方向中心側に位置している
     請求項1又は請求項2に記載の熱交換器。
  4.  前記複数の伝熱管の長手方向の少なくとも一端において、前記空気の流れの最も上流側に位置する部位を含む一部の部位は、前記ヘッダの内部に位置する部位が外面から内面に亘って切り欠かれた貫通部を有するように構成されている
     請求項1に記載の熱交換器。
  5.  前記複数の伝熱管の長手方向の少なくとも一端は、前記ヘッダの内部において、冷媒流れ方向と同一方向に曲げられている
     請求項4に記載の熱交換器。
  6.  前記複数の伝熱管の長手方向の一端が挿入されている前記ヘッダは、前記伝熱管の下方に設けられている
     請求項1~請求項5の何れか一項に記載の熱交換器。
  7.  前記伝熱管の下方に設けられた前記ヘッダは、
     前記伝熱管の下端側から前記伝熱管の上端側に向かって水平方向の内部断面積が小さくなるように構成されている
     請求項6に記載の熱交換器。
  8.  前記一端に設けられる残りの部位の前記開口部は、前記ヘッダの内部において冷媒流れ方向と同一方向となるように構成されている
     請求項1、請求項2、請求項3、請求項6、又は請求項7に記載の熱交換器。
  9.  請求項1~8の何れか一項に記載の熱交換器の製造方法であって、
     中空筒状の前記ヘッダを構成する2つの断面弧形状の弧状部材のうち一方の弧状部材に前記複数の伝熱管を挿入する第1工程と、
     前記第1工程の後に、前記複数の伝熱管のうち前記空気の流れの最も上流側に位置する伝熱管を含む一部の部位を、前記一方のヘッダ側に位置する一端に設けられる開口部が残りの部位の前記一方のヘッダ側に設けられる開口部よりも他端側に位置するように曲折する第2工程と、
     前記第2工程の後に、前記複数の伝熱管のうち曲折された部位が前記ヘッダの内部に位置するように前記一方の弧状部材と他方の弧状部材とを組み合わせて前記ヘッダを作製する第3工程と、を有する
     熱交換器の製造方法。
PCT/JP2015/074366 2015-08-28 2015-08-28 熱交換器及び熱交換器の製造方法 WO2017037772A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017537042A JP6537615B2 (ja) 2015-08-28 2015-08-28 熱交換器及び熱交換器の製造方法
PCT/JP2015/074366 WO2017037772A1 (ja) 2015-08-28 2015-08-28 熱交換器及び熱交換器の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/074366 WO2017037772A1 (ja) 2015-08-28 2015-08-28 熱交換器及び熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2017037772A1 true WO2017037772A1 (ja) 2017-03-09

Family

ID=58188321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074366 WO2017037772A1 (ja) 2015-08-28 2015-08-28 熱交換器及び熱交換器の製造方法

Country Status (2)

Country Link
JP (1) JP6537615B2 (ja)
WO (1) WO2017037772A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168590A (ja) * 1989-11-28 1991-07-22 Nippondenso Co Ltd 熱交換器
JP2005140374A (ja) * 2003-11-05 2005-06-02 Denso Corp 熱交換器
JP2005249313A (ja) * 2004-03-04 2005-09-15 Denso Corp 熱交換器
JP2009074768A (ja) * 2007-09-21 2009-04-09 Toyota Motor Corp 熱交換器
JP2012021682A (ja) * 2010-07-13 2012-02-02 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を搭載したヒートポンプシステム
JP2012225638A (ja) * 2011-04-04 2012-11-15 Denso Corp 熱交換器
JP2014066503A (ja) * 2012-09-27 2014-04-17 Daikin Ind Ltd 熱交換器および冷凍装置
JP2014228234A (ja) * 2013-05-24 2014-12-08 株式会社デンソー 冷媒蒸発器
JP2015021655A (ja) * 2013-07-18 2015-02-02 新日本空調株式会社 雪氷冷熱源システム及びこれを冷熱源とする冷房システム
WO2015045344A1 (ja) * 2013-09-25 2015-04-02 株式会社デンソー 蓄冷熱交換器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100661U (ja) * 1990-12-28 1992-08-31
US9151540B2 (en) * 2010-06-29 2015-10-06 Johnson Controls Technology Company Multichannel heat exchanger tubes with flow path inlet sections

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168590A (ja) * 1989-11-28 1991-07-22 Nippondenso Co Ltd 熱交換器
JP2005140374A (ja) * 2003-11-05 2005-06-02 Denso Corp 熱交換器
JP2005249313A (ja) * 2004-03-04 2005-09-15 Denso Corp 熱交換器
JP2009074768A (ja) * 2007-09-21 2009-04-09 Toyota Motor Corp 熱交換器
JP2012021682A (ja) * 2010-07-13 2012-02-02 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を搭載したヒートポンプシステム
JP2012225638A (ja) * 2011-04-04 2012-11-15 Denso Corp 熱交換器
JP2014066503A (ja) * 2012-09-27 2014-04-17 Daikin Ind Ltd 熱交換器および冷凍装置
JP2014228234A (ja) * 2013-05-24 2014-12-08 株式会社デンソー 冷媒蒸発器
JP2015021655A (ja) * 2013-07-18 2015-02-02 新日本空調株式会社 雪氷冷熱源システム及びこれを冷熱源とする冷房システム
WO2015045344A1 (ja) * 2013-09-25 2015-04-02 株式会社デンソー 蓄冷熱交換器

Also Published As

Publication number Publication date
JPWO2017037772A1 (ja) 2018-05-10
JP6537615B2 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
JP4055449B2 (ja) 熱交換器およびこれを用いた空気調和機
US9791218B2 (en) Air conditioner with grooved inner heat exchanger tubes and grooved outer heat exchanger tubes
JP5617935B2 (ja) 熱交換器および空気調和機
KR101166806B1 (ko) 이중관 및 이를 구비한 열교환기
US10712104B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5195733B2 (ja) 熱交換器及びこれを備えた冷凍サイクル装置
EP3156752B1 (en) Heat exchanger
CN107110568A (zh) 多通路多板片折叠式微通道换热器
JP6253814B2 (ja) 熱交換器、及び冷凍サイクル装置
JP6584636B2 (ja) 熱交換器および空気調和機
JPWO2018225252A1 (ja) 熱交換器及び冷凍サイクル装置
JP5962033B2 (ja) 熱交換器及びそれを備えた空気調和機
WO2017068723A1 (ja) 熱交換器及び冷凍サイクル装置
WO2018207321A1 (ja) 熱交換器及び冷凍サイクル装置
JP6198976B2 (ja) 熱交換器、及び冷凍サイクル装置
WO2017208419A1 (ja) フィンチューブ型熱交換器、このフィンチューブ型熱交換器を備えたヒートポンプ装置、および、フィンチューブ型熱交換器の製造方法
JP2011112315A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
WO2017037772A1 (ja) 熱交換器及び熱交換器の製造方法
JP6599056B1 (ja) ガスヘッダ、熱交換器及び冷凍サイクル装置
CN113646597B (zh) 冷冻循环装置
JP4983878B2 (ja) 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機
JP5664272B2 (ja) 熱交換器及び空気調和機
KR20110103827A (ko) 공기조화기용 열교환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15902898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15902898

Country of ref document: EP

Kind code of ref document: A1