WO2017036084A1 - 有机电致发光器件及其制备方法、显示装置 - Google Patents

有机电致发光器件及其制备方法、显示装置 Download PDF

Info

Publication number
WO2017036084A1
WO2017036084A1 PCT/CN2016/072294 CN2016072294W WO2017036084A1 WO 2017036084 A1 WO2017036084 A1 WO 2017036084A1 CN 2016072294 W CN2016072294 W CN 2016072294W WO 2017036084 A1 WO2017036084 A1 WO 2017036084A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electron
hole
injection
sub
Prior art date
Application number
PCT/CN2016/072294
Other languages
English (en)
French (fr)
Inventor
吴海东
赖韦霖
陈凯
白娟娟
马文昱
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to EP16812665.4A priority Critical patent/EP3343660A4/en
Priority to US15/320,130 priority patent/US10566565B2/en
Publication of WO2017036084A1 publication Critical patent/WO2017036084A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • H10K85/6565Oxadiazole compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the invention belongs to the technical field of display, and in particular relates to an organic electroluminescent device, a preparation method thereof and a display device.
  • OLED Organic Light-Emitting Device
  • the structure of existing OLEDs generally includes an anode layer, a cathode layer, and an organic functional layer disposed between the anode layer and the cathode layer.
  • the organic functional layer includes, in order from the anode layer toward the cathode layer, a hole injection layer, a hole transport layer, a light-emitting layer, an electron transport layer, and an electron injection layer.
  • the hole injection layer is adjacent to the anode layer
  • the electron injection layer is adjacent to the cathode layer.
  • the luminescence mechanism of the OLED is: when an external voltage is applied between the anode layer and the cathode layer, the hole injected by the anode layer enters the luminescent layer through the hole injection layer and the hole transport layer under the driving of the external voltage.
  • the electrons injected into the cathode layer enter the luminescent layer through the electron injecting layer and the electron transporting layer, and the holes and electrons entering the luminescent layer recombine to form excitons in the recombination region, and the exciton radiation illuminates to generate luminescence, that is, the electroluminescence is formed. Glowing.
  • the inventors have found that at least the following problems exist in the prior art: since electrons and holes have different injection rates, that is, the electron injection rate is greater than the hole injection rate, the number of electrons injected into the composite region of the light-emitting layer and the number of holes are different. Thereby, the luminous efficiency and lifetime of the organic electroluminescent device are lowered.
  • the embodiments of the present invention provide an organic electroluminescent device having high luminous efficiency and long life, a preparation method thereof, and a display device.
  • Embodiments of the present invention provide an organic electroluminescent device including an anode layer, a cathode layer, and a light emitting layer disposed between the anode layer and the cathode layer, the organic electroluminescent device further comprising: a carrier rate adjusting layer between at least one of the anode layer and the cathode layer and the light emitting layer, the carrier rate adjusting layer being used to adjust an injection rate of carriers.
  • the carrier rate adjusting layer may be disposed between the light emitting layer and the cathode layer, and the carrier rate adjusting layer may include an electron rate adjusting layer.
  • the electron rate adjustment layer includes a plurality of continuously disposed electron trap units, and the electron trap unit includes an electron sub-injection layer and a deceleration layer which are sequentially disposed in a direction away from the cathode layer.
  • the electron sub-injection layer is used to inject electrons into the deceleration layer, and the deceleration layer is used to slow the electron injection rate.
  • the carrier rate adjusting layer may further include an electron transport layer disposed between the light emitting layer and the electron rate adjusting layer.
  • the material of the electron transport layer may include a material having an electron mobility greater than 10 -3 cm 2 /VS.
  • the material of the electron transport layer may include 2-(4-biphenyl)-5-phenyloxadiazole (PBD), 2,5-di(1-naphthyl)-1,3,5-oxo Any one of azole (BND) and 2,4,6-triphenoxy-1,3,5-triazine (TRZ).
  • PBD 2-(4-biphenyl)-5-phenyloxadiazole
  • BND 2,5-di(1-naphthyl)-1,3,5-oxo Any one of azole
  • TRZ 2,4,6-triphenoxy-1,3,5-triazine
  • the thickness of the electron transport layer may range from 10 nm to 30 nm.
  • the material of the retardation layer may include an alloy of any one or more of magnesium, silver, aluminum, lithium, potassium, and calcium.
  • the thickness of the retardation layer may range from 1 nm to 10 nm.
  • the material of the electron injecting layer may include any one of lithium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, cesium fluoride, lithium oxide, and lithium metaborate.
  • the thickness of the electron sub-injection layer may range from 1 nm to 5 nm.
  • the number of the electronic trap units may be 2-10.
  • the organic electroluminescent device may further include a cathode layer disposed on the anode a hole injecting layer and a hole transporting layer between the light emitting layers.
  • the hole injection layer is disposed between the anode layer and the hole transport layer.
  • the carrier rate adjusting layer may be disposed between the light emitting layer and the anode layer, and the carrier rate adjusting layer may include a hole rate adjusting layer.
  • the hole velocity adjusting layer includes a plurality of continuously disposed hole accelerating units including a hole sub-injecting layer and an accelerating layer which are sequentially disposed in a direction away from the anode layer.
  • the hole sub-injection layer is for injecting holes into the acceleration layer, and the acceleration layer is for increasing a hole transport rate.
  • the material of the hole sub-injection layer may be a P-type dopant material.
  • the material of the hole sub-injection layer may include 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene, 2,3,5 Any one of 6-tetrafluoro-7,7',8,8'-tetracyanodimethyl p-benzoquinone or tris(4-bromophenyl)hexachloroantimonate.
  • the hole sub-injection layer may have a thickness ranging from 1 nm to 5 nm.
  • the material of the acceleration layer may be N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine, triphenyldiene Any one of an amine derivative and 1,3,5-tris(N-3-methylphenyl-N-phenylamino)benzene.
  • the thickness of the acceleration layer may range from 10 nm to 200 nm.
  • the number of the hole acceleration units may be 2 to 10.
  • the organic electroluminescent device may further include an electron injecting layer and an electron transporting layer disposed between the cathode layer and the light emitting layer.
  • the electron transport layer is disposed between the light emitting layer and the electron injecting layer.
  • the carrier rate adjusting layer may include a hole rate adjusting layer and an electron rate adjusting layer, the hole rate adjusting layer being disposed between the anode layer and the light emitting layer, wherein the electron rate adjusting layer is disposed Between the cathode layer and the luminescent layer.
  • the hole velocity adjustment layer includes a plurality of continuously disposed hole acceleration units including a hole sub-injection layer and an acceleration layer which are sequentially disposed in a direction away from the anode layer, the hole sub-injection layer For injecting holes into the empty student transport layer, the acceleration layer is used to increase the transport rate of holes.
  • the electron rate adjustment layer includes a plurality of continuously arranged electron trap units, and the electron trap unit includes an electron sub-injection layer and a deceleration layer disposed in a direction away from the cathode layer, the electricity A sub-injection layer is used to inject electrons into the deceleration layer, the deceleration layer being used to slow the injection rate of electrons.
  • the organic electroluminescent device may further include an electron transport layer disposed between the light emitting layer and the electron rate adjusting layer.
  • Embodiments of the present invention also provide a method of preparing an organic electroluminescent device, comprising forming an anode layer and a cathode layer over a substrate, and forming a light emitting layer between the cathode layer and the anode layer, the method The method further includes forming a carrier rate adjusting layer between at least one of the anode layer and the cathode layer and the light emitting layer.
  • the carrier rate adjusting layer may be formed between the cathode layer and the light emitting layer, and the carrier rate adjusting layer includes an electron rate adjusting layer.
  • the electron rate adjustment layer includes a plurality of continuously disposed electron trap units, and the electron trap unit includes an electron sub-injection layer and a deceleration layer which are sequentially disposed in a direction away from the cathode layer.
  • the electron sub-injection layer is used to inject electrons into the deceleration layer, and the deceleration layer is used to slow the electron injection rate.
  • Forming the electron rate adjusting layer includes: sequentially forming the decelerating layer and the electron sub-injecting layer by an evaporation process over a substrate on which the light emitting layer is formed; and then repeatedly forming the decelerating layer and the electron sub-injection Floor.
  • Forming the electron rate adjusting layer may further include forming an electron transport layer between the light emitting layer and the decelerating layer closest to the light emitting layer.
  • the carrier rate adjusting layer may be formed between the light emitting layer and the anode layer, and the carrier rate adjusting layer includes a hole rate adjusting layer.
  • the hole velocity adjusting layer includes a plurality of continuously disposed hole accelerating units including a hole sub-injecting layer and an accelerating layer which are sequentially disposed in a direction away from the anode layer.
  • the hole sub-injection layer is for injecting holes into the acceleration layer, the acceleration layer is for increasing a hole transport rate; and forming the hole rate adjustment layer includes: above the substrate on which the anode layer is formed
  • the hole sub-injection layer and the acceleration layer are sequentially formed by an evaporation process; then the hole sub-injection layer and the acceleration layer are repeatedly formed.
  • the carrier rate adjusting layer may include a hole rate adjusting layer and an electron rate adjusting layer.
  • the hole velocity adjusting layer is formed in the anode layer and the light emitting layer
  • the electron rate adjusting layer is formed between the cathode layer and the light emitting layer.
  • the hole velocity adjustment layer includes a plurality of continuously disposed hole acceleration units including a hole sub-injection layer and an acceleration layer which are sequentially disposed in a direction away from the anode layer, the hole sub-injection layer For injecting holes into the acceleration layer, the acceleration layer is used to increase the hole transport rate.
  • the electron rate adjustment layer includes a plurality of successively disposed electron trap units, the electron trap unit including an electron sub-injection layer and a deceleration layer disposed in a direction away from the cathode layer, the electron sub-injection layer being used for Electrons are injected into the retardation layer, which is used to slow down the electron injection rate.
  • Forming the hole rate adjusting layer includes: sequentially forming the hole sub-injecting layer and the accelerating layer by an evaporation process over a substrate on which the anode layer is formed; then repeatedly forming the hole sub-injecting layer and the Acceleration layer.
  • Forming the electron rate adjusting layer includes: sequentially forming the decelerating layer and the electron sub-injecting layer by an evaporation process over a substrate on which the light emitting layer is formed; and then repeatedly forming the decelerating layer and the electron sub-injection Floor.
  • Forming the electron rate adjusting layer may further include forming an electron transport layer between the light emitting layer and the decelerating layer closest to the light emitting layer.
  • Embodiments of the present invention also provide a display device including the above-described organic electroluminescent device.
  • a carrier rate adjusting layer is provided, which is disposed between at least one of the anode layer and the cathode layer and the light emitting layer.
  • the carrier rate adjusting layer can adjust the injection rate of the corresponding carriers to the light emitting layer, so that the injection rates of the different carriers tend to be balanced to improve the luminous efficiency and lifetime of the organic electroluminescent device.
  • FIG. 1 is a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the structure of an organic electroluminescent device according to an embodiment of the present invention. Figure.
  • Embodiments of the present invention provide an organic electroluminescent device including an anode layer, a cathode layer, and a light emitting layer disposed between the anode layer and the cathode layer.
  • the organic electroluminescent device further includes a carrier rate adjusting layer disposed between at least one of the anode layer and the cathode layer and the light emitting layer.
  • the carrier rate adjustment layer is used to adjust the injection rate of carriers.
  • the organic electroluminescent device when the organic electroluminescent device is driven to emit light, since the injection rate from the anode layer to the light-emitting layer is different from the injection rate from the cathode layer to the light-emitting layer, The hole injection rate is smaller than the electron injection rate, which will result in a difference in the number of electrons and the number of holes injected into the composite region of the light-emitting layer at the same time, thus causing a decrease in luminous efficiency and lifetime of the organic electroluminescent device.
  • a carrier rate adjusting layer is added, which is disposed between at least one of the anode layer and the cathode layer and the light emitting layer, the carrier rate adjusting layer adjustable phase
  • the injection rate of the corresponding carriers to the light-emitting layer tends to balance the injection rates of different carriers to improve the luminous efficiency and lifetime of the organic electroluminescent device.
  • FIG. 1 shows a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • the organic electroluminescent device includes an anode layer 1, a light-emitting layer 3, a carrier rate adjusting layer 10, and a cathode layer 2.
  • the carrier rate adjusting layer 10 of the present embodiment includes at least an electron rate adjusting layer 4'.
  • the electron rate adjustment layer 4' includes a plurality of successively disposed electron trap units 40, each of which includes an electron sub-injection layer 42 and a deceleration layer 41 disposed in this order away from the cathode layer 2.
  • the electron sub-injection layer 42 is for injecting electrons into the deceleration layer 41, and the deceleration layer 41 serves to slow down the electron injection rate.
  • the cathode layer 2 When the organic electroluminescent device is applied with an external voltage, the cathode layer 2 is injected The electrons first pass through the first electron sub-injection layer 42, and the electron sub-injection layer 42 contributes to electron injection because of the poor injection capability of the electron itself. Then, electrons pass through the first deceleration layer 41, and the electron injection rate is slowed down. Thereafter, electrons enter the repeated electron sub-injection layer 42 and the deceleration layer 41. Each set of electron sub-injection layer 42 and deceleration layer 41 substantially corresponds to an electron trap unit 40 for slowing the rate of electron injection.
  • the electron injection rate and the injection rate of the holes injected into the anode layer 1 tend to be balanced, at which time electrons and holes are compositely illuminated in the light-emitting layer 3.
  • the technical solution of the present embodiment contributes to improving the luminous efficiency and lifetime of the organic electroluminescent device.
  • the carrier rate adjusting layer 10 in this embodiment further includes an electron transport layer 5 disposed between the light emitting layer 3 and the electron rate adjusting layer 4'.
  • the electron transport layer 5 facilitates the transport of electrons into the luminescent layer 3.
  • the organic electroluminescent device in the present embodiment further includes a hole injecting layer 6 and a hole transporting layer 7 disposed between the anode layer 1 and the light emitting layer 3, and the hole injecting layer 6 is disposed in the anode layer 1 and empty Between the hole transport layer 7.
  • the hole injection layer 6 contributes to an improvement in the injection ability of holes
  • the hole transport layer 7 contributes to an improvement in the ability of holes to be transported to the light-emitting layer 3.
  • each film layer of the above organic electroluminescent device will be specifically described in conjunction with the method for producing an organic electroluminescence device described below.
  • the method of preparing the organic electroluminescent device of the present embodiment includes the following steps S1 to S8.
  • Step S1 includes sputtering an anode conductive film on the substrate, and forming a pattern including the anode layer 1 by a patterning process.
  • the substrate is supported by the electrode layer and the organic functional film layer in the organic electroluminescent device, and has good light transmission property in the visible light region, has certain water vapor and oxygen permeation ability, and has good performance.
  • the surface flatness can be generally made of glass, a flexible substrate or an array substrate. If a flexible substrate is used, the substrate can be made of polyester, polyimide or a thinner metal.
  • the anode layer 1 serves as a connection layer of a forward voltage in the organic electroluminescent device, and has good electrical conductivity, light transmittance in a visible light region, and a high work function.
  • the anode layer 1 may be an inorganic metal oxide (for example, indium tin oxide (ITO), zinc oxide (ZnO), etc.), an organic conductive polymer (for example, poly 3,4-ethylenedioxythiophene/polystyrenesulfonic acid) Salt (PEDOT: PSS), polyaniline (PANI), etc. or high work function metal materials (such as gold, copper, silver, platinum, etc.).
  • the thickness of the anode layer 1 may range from 10 nm to 200 nm.
  • Step S2 includes preparing a hole injecting layer 6 by a vacuum evaporation process on the substrate on which the anode layer 1 is formed.
  • the material of the hole injection layer 6 may include 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazabenzophenanthrene (HAT) -CN), 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl p-benzoquinone (F 4 -TCNQ), tris(4-bromophenyl)hexachloro Any of ammonium citrate (TBAHA).
  • the thickness of the hole injection layer 6 may range from 1 nm to 5 nm.
  • Step S3 includes forming a hole transport layer 7 by a vacuum evaporation process on the substrate on which the hole injection layer 6 is formed.
  • the material of the hole transport layer 7 may be a material having a hole mobility of more than 10 -5 cm 2 /VS, and an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, or a combination may be used.
  • a phenylenediamine derivative Made of a phenylenediamine derivative, a triarylamine polymer, a metal complex, or a carbazole polymer, for example, N,N'-bis(1-naphthyl)-N,N'-diphenyl-1, 1'-biphenyl-4-4'-diamine (NPB), triphenyldiamine derivative (TPD), TPTE, 1,3,5-tris(N-3-methylphenyl-N-benzene Any one of aminoamino)benzene (TDAB).
  • the thickness of the hole transport layer 7 may range from 10 nm to 200 nm.
  • Step S4 includes forming the light-emitting layer 3 by a vacuum evaporation process on the substrate on which the hole transport layer 7 is formed.
  • the light-emitting layer 3 may be made of an undoped fluorescent light-emitting organic material composed of a light-emitting material having a hole transporting ability not lower than the electron transporting ability, or may be composed of a fluorescent dopant and a matrix material.
  • the organic material is doped with a fluorescent material, or may be made of an organic material doped with a phosphorescent material composed of a phosphorescent dopant and a host material.
  • the thickness of the light-emitting layer 3 may range from 10 nm to 50 nm.
  • Step S5 includes forming an electron transport layer 5 by a vacuum evaporation process on the substrate on which the light-emitting layer 3 is formed.
  • the material of the electron transport layer 5 may include a material having an electron mobility of more than 10 -3 cm 2 /VS.
  • the material of the electron transport layer 5 may include 2-(4-biphenyl)-5-phenyloxadiazole (PBD), 2,5-di(1-naphthyl)-1,3,5- Any one of oxazolidine (BND) and 2,4,6-triphenoxy-1,3,5-triazine (TRZ).
  • PBD 2-(4-biphenyl)-5-phenyloxadiazole
  • BND 2,5-di(1-naphthyl)-1,3,5- Any one of oxazolidine
  • TRZ 2,4,6-triphenoxy-1,3,5-triazine
  • the thickness of the electron transport layer 5 may range from 10 nm to 30 nm.
  • Step S6 includes forming a first retardation layer 41 by a vacuum evaporation process on the substrate on which the electron transport layer 5 is formed.
  • the material of the retardation layer 41 may include any one or more of magnesium (Mg), silver (Ag), aluminum (Al), lithium (Li), potassium (K), and calcium (Ca). Alloy.
  • the thickness of the retardation layer 41 may range from 1 nm to 10 nm.
  • Step S7 includes forming a first electron sub-injection layer 42 by a vacuum evaporation process on the substrate on which the first retardation layer 41 is formed.
  • the material of the electron sub-injection layer 42 may include any one of lithium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, cesium fluoride, lithium oxide, and lithium metaborate.
  • the thickness of the electron sub-injection layer 42 may range from 1 nm to 5 nm.
  • step S6 and step S7 are repeated, that is, a plurality of electronic trap units 40 are formed, and the number of the electronic trap units 40 may be 2 to 10, for example, three, and of course, may be specifically set according to specific conditions.
  • Step S8 includes forming a cathode layer 2 by a vacuum evaporation process on a substrate on which the Nth electron sub-injection layer 42 is formed.
  • the cathode layer 2 serves as a connection layer of a negative voltage in the organic electroluminescent device, and has good electrical conductivity and a low work function.
  • the cathode layer 2 can usually be made of a low work function metal material, such as lithium, magnesium, calcium, barium, aluminum, indium, or the like, or an alloy of the above metals with copper, gold, or silver; or a thin layer of buffer insulation can be used.
  • a layer (such as lithium fluoride LiF, cesium carbonate CsCO 3 , etc.) and the above metal or alloy.
  • the thickness of the cathode layer 2 may range from 10 nm to 20 nm.
  • the organic electroluminescent device comprises a substrate, an anode layer 1, a carrier rate adjusting layer 10, a light-emitting layer 3, and a cathode layer 2, which are sequentially disposed on a substrate.
  • the carrier rate adjusting layer 10 in the example includes a hole rate adjusting layer 6'.
  • the hole velocity adjusting layer 6' includes a plurality of hole accelerating units 60 that are continuously disposed, and each of the hole accelerating units 60 includes a hole sub-injecting layer 61 and an accelerating layer 62 which are disposed in this order away from the anode layer 1.
  • the hole sub-injection layer 61 is for injecting holes into the acceleration layer 62, and the acceleration layer 62 is for increasing the hole injection rate.
  • the carrier rate adjusting layer 10 can increase the injection rate of holes.
  • the carrier rate adjusting layer 10 includes a hole rate adjusting layer 6' composed of a plurality of hole accelerating units 60. After the external electroluminescence device is applied, the holes injected from the anode layer 1 to the light-emitting layer 3 pass through a hole accelerating unit 60, and the injection rate of holes is increased. By controlling the number of the hole accelerating units 60, the hole injection rate and the electron injection rate are balanced, at which time electrons and holes are combined to emit light in the light-emitting layer 3.
  • the technical solution of the present embodiment contributes to improving the luminous efficiency and lifetime of the organic electroluminescent device.
  • the organic electroluminescent device in this embodiment further includes an electron injection layer 4 and an electron transport layer 5 disposed between the cathode layer 2 and the light-emitting layer 3.
  • the electron transport layer 5 is disposed between the light-emitting layer 3 and the electron injection layer 4.
  • the electron injection layer 4 and the electron transport layer 5 serve to increase the ability of the cathode layer 2 to inject electrons into the light-emitting layer 3.
  • each film layer of the above organic electroluminescent device will be specifically described in conjunction with the method for producing an organic electroluminescence device described below.
  • the method of preparing the organic electroluminescent device of the present embodiment includes the following steps S1 to S1 to S7.
  • Step S1 includes sputtering an anode conductive film on the substrate, and forming a pattern including the anode layer 1 by a patterning process.
  • the substrate is supported by the electrode layer and the organic functional film layer in the organic electroluminescent device, and has good light transmission property in the visible light region, has certain water vapor and oxygen permeation ability, and has good performance.
  • the surface flatness can be generally made of glass, a flexible substrate or an array substrate. If a flexible substrate is used, the substrate can be made of polyester, polyimide or a thinner metal.
  • the anode layer 1 serves as a connection layer of a forward voltage in the organic electroluminescent device, It has good electrical conductivity, light transmittance in the visible light region, and high work function.
  • the anode layer 1 may be an inorganic metal oxide (for example, indium tin oxide (ITO), zinc oxide (ZnO), etc.), an organic conductive polymer (for example, poly 3,4-ethylenedioxythiophene/polystyrenesulfonic acid) Salt (PEDOT: PSS), polyaniline (PANI), etc. or high work function metal materials (such as gold, copper, silver, platinum, etc.).
  • the thickness of the anode layer 1 may range from 10 nm to 200 nm.
  • Step S2 includes preparing a hole injecting layer 61 in the first hole accelerating unit 60 by a vacuum evaporation process on the substrate on which the anode layer 1 is formed.
  • the hole sub-injection layer 61 may be made of an organic material or a polymer doped with a phosphorescent dopant (P).
  • the material of the hole sub-injection layer 61 may include 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazabenzophenanthrene (HAT-CN). , 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl p-benzoquinone (F 4 -TCNQ), tris(4-bromophenyl)hexachloroantimonate Any of (TBAHA).
  • the hole sub-injection layer 61 may have a thickness ranging from 1 nm to 5 nm, for example, 1 nm.
  • Step S3 includes forming an acceleration layer 62 by a vacuum evaporation process on the substrate on which the hole injection layer 61 in the first hole acceleration unit 60 is formed.
  • the material of the acceleration layer 62 may include a material having a hole mobility greater than 10 -5 cm 2 /VS.
  • the acceleration layer 62 may be made of an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, a triarylamine polymer, a metal complex, or a carbazole polymer.
  • an aromatic diamine compound a triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, a triarylamine polymer, a metal complex, or a carbazole polymer.
  • NPB N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4'-diamine
  • TPD 1,3,5-tris(N-3-methylphenyl-N-phenylamino)benzene
  • the thickness of the acceleration layer 62 ranges from 10 nm to 200 nm.
  • steps S2 and S3 are repeated to form a plurality of hole accelerating units 60, and the number of the hole accelerating units 60 may be 2 to 10, for example, three. Of course, it can also be specifically set according to the specific situation, so that the rate of hole input and the rate of electron injection tend to be balanced.
  • Step S4 includes applying a vacuum on the substrate on which the hole velocity adjusting layer 6' is formed.
  • the evaporation process forms the light-emitting layer 3.
  • the light-emitting layer 3 may be made of an undoped fluorescent light-emitting organic material composed of a light-emitting material having a hole transporting ability not lower than the electron transporting ability, or may be composed of a fluorescent dopant and a matrix material.
  • the organic material is doped with a fluorescent material, or may be made of an organic material doped with a phosphorescent material composed of a phosphorescent dopant and a host material.
  • the thickness of the light-emitting layer 3 may range from 10 nm to 50 nm.
  • Step S5 includes forming an electron transport layer 5 by a vacuum evaporation process on the substrate on which the light-emitting layer 3 is formed.
  • the material of the electron transport layer 5 may include a material having a higher electron mobility, for example, 2-(4-biphenyl)-5-phenyloxadiazole (PBD), 2,5-di ( 1-naphthyl)-1,3,5-oxadiazole (BND), 2,4,6-triphenoxy-1,3,5-triazine (TRZ).
  • the thickness of the electron transport layer 5 may range from 10 nm to 30 nm.
  • Step S6 includes forming an electron injection layer 4 by a vacuum evaporation process on the substrate on which the electron transport layer 5 is formed,
  • the material of the electron injecting layer 4 may include any one of lithium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, cesium fluoride, lithium oxide, and lithium metaborate.
  • the thickness of the electron injection layer 4 may range from 1 nm to 5 nm.
  • Step S7 includes forming a cathode layer 2 by a vacuum evaporation process on a substrate on which the electron injection layer 4 is formed.
  • the cathode layer 2 serves as a connection layer of a negative voltage in the organic electroluminescent device, and has good electrical conductivity and a low work function.
  • the cathode layer 2 can usually be made of a low work function metal material, such as lithium, magnesium, calcium, barium, aluminum, indium, or the like, or an alloy of the above metals with copper, gold, or silver; or a thin layer of buffer insulation can be used.
  • a layer (such as lithium fluoride LiF, cesium carbonate CsCO 3 , etc.) and the above metal or alloy.
  • the thickness of the cathode layer 2 may range from 10 nm to 20 nm.
  • FIG. 3 shows a schematic structural view of an organic electroluminescent device according to an embodiment of the present invention.
  • the organic electroluminescent device includes an anode layer 1, a hole rate adjusting layer 6', a light emitting layer 3, an electron velocity adjusting layer 4', and a cathode layer 2.
  • the hole velocity adjusting layer 6' and the electron velocity adjusting layer 4' constitute a carrier rate adjusting layer.
  • Hole velocity adjustment layer 6' A plurality of successively disposed hole accelerating units 60 are included, each of the hole accelerating units 60 including a hole sub-injecting layer 61 and an accelerating layer 62 disposed in this order away from the anode layer 1.
  • the hole sub-injection layer 61 is for injecting holes into the acceleration layer 62, and the acceleration layer 62 is for increasing the hole injection rate.
  • the electron rate adjustment layer 4' includes a plurality of successively disposed electron trap units 40, each of which includes an electron sub-injection layer 42 and a deceleration layer 41 disposed in this order away from the cathode layer 2.
  • the electron sub-injection layer 42 is for injecting electrons into the deceleration layer 41, and the deceleration layer 41 serves to slow down the electron injection rate.
  • the electrons injected into the cathode layer 2 first pass through the first electron sub-injection layer 42 of the electron rate adjusting layer 4', and the electron injecting is poor due to the poor injecting ability of the electron itself.
  • Layer 42 facilitates electron injection.
  • electrons pass through the first deceleration layer 41, and the electron injection rate is slowed down. Thereafter, electrons enter the repeated electron sub-injection layer 42 and the deceleration layer 41.
  • Each set of electron sub-injection layer 42 and deceleration layer 41 substantially corresponds to an electron trap unit 40 for slowing the rate of electron injection.
  • the hole velocity adjusting layer 6' is composed of a plurality of hole accelerating units 60, and the holes injected from the anode layer 1 to the light emitting layer 3 pass through the hole accelerating unit 60 after the external voltage is applied to the organic electroluminescent device.
  • the injection rate of holes is increased.
  • the electron injection rate and the hole injection rate tend to be balanced, at which time electrons and holes are combined to emit light in the light-emitting layer 3.
  • An organic electroluminescent device according to an embodiment of the present invention has improved luminous efficiency and lifetime.
  • the organic electroluminescent device in this embodiment further includes an electron transport layer 5 disposed between the light-emitting layer 3 and the electron rate adjusting layer 4'.
  • the electron transport layer 5 facilitates the transport of electrons into the luminescent layer 3.
  • each film layer of the above organic electroluminescent device will be specifically described in conjunction with the method for producing an organic electroluminescence device described below.
  • the method of preparing the organic electroluminescent device of the present embodiment includes the following steps S1 to S8.
  • Step S1 includes sputtering an anode conductive film on the substrate, and forming a pattern including the anode layer 1 by a patterning process.
  • the substrate serves as an electrode layer and an organic work in the organic electroluminescent device. It can support the film layer, has good light transmission performance in the visible light region, has certain water vapor and oxygen permeability, and has good surface flatness. Generally, it can be made of glass, flexible substrate or array substrate. to make. If a flexible substrate is used, the substrate can be made of polyester, polyimide or a thinner metal.
  • the anode layer 1 serves as a connection layer of a forward voltage in the organic electroluminescent device, and has good electrical conductivity, light transmittance in a visible light region, and a high work function.
  • the anode layer 1 may be an inorganic metal oxide (for example, indium tin oxide (ITO), zinc oxide (ZnO), etc.), an organic conductive polymer (for example, poly 3,4-ethylenedioxythiophene/polystyrenesulfonic acid) Salt (PEDOT: PSS), polyaniline (PANI), etc. or high work function metal materials (such as gold, copper, silver, platinum, etc.).
  • the thickness of the anode layer 1 may range from 10 nm to 200 nm.
  • Step S2 includes preparing a hole injecting layer 61 in the first hole accelerating unit 60 by a vacuum evaporation process on the substrate on which the anode layer 1 is formed.
  • the hole sub-injection layer 61 may be made of an organic material or a polymer doped with a phosphorescent dopant (P), for example, 2, 3, 6, 7, 10, 11-hexacyano-1. 4,5,8,9,12-hexaazabenzophenanthrene (HAT-CN), 2,3,5,6-tetrafluoro-7,7',8,8'-tetracyanodimethyl-p-benzene Any of ⁇ (F 4 -TCNQ) and tris(4-bromophenyl)hexachloroantimonate (TBAHA).
  • the hole sub-injection layer 61 may have a thickness ranging from 1 nm to 5 nm, for example, 1 nm.
  • Step S3 includes forming an acceleration layer 62 by a vacuum evaporation process on the substrate on which the hole sub-injection layer 61 in the first hole acceleration unit 60 is formed.
  • the material of the acceleration layer 62 may include a material having a hole transport rate of more than 10 -5 cm 2 /VS, and an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, or a biphenyl may be used.
  • a diamine derivative Made of a diamine derivative, a triarylamine polymer, a metal complex, or a carbazole polymer, for example, N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1 '-Biphenyl-4-4'-diamine (NPB), triphenyldiamine derivative (TPD), 1,3,5-tris(N-3-methylphenyl-N-phenylamino) Any of benzene (TDAB).
  • the thickness of the acceleration layer 62 ranges from 10 nm to 200 nm.
  • steps S2 and S3 are repeated to form a plurality of hole accelerating units 60, and the number of the hole accelerating units 60 may be 2 to 10, for example, three. Of course, it can also be set according to the specific situation, so that the rate of hole input and the rate of electron injection The rate tends to be balanced.
  • Step S4 includes forming the light-emitting layer 3 by a vacuum evaporation process on the substrate on which the hole velocity adjusting layer 6' is formed.
  • the light-emitting layer 3 may be made of an undoped fluorescent light-emitting organic material composed of a light-emitting material having a hole transporting ability not lower than the electron transporting ability, or may be composed of a fluorescent dopant and a matrix material.
  • the organic material is doped with a fluorescent material, or may be made of an organic material doped with a phosphorescent material composed of a phosphorescent dopant and a host material.
  • the thickness of the light-emitting layer 3 may range from 10 nm to 50 nm.
  • Step S5 includes forming an electron transport layer 5 by a vacuum evaporation process on the substrate on which the light-emitting layer 3 is formed.
  • the material of the electron transport layer 5 may include a material having a higher electron mobility, for example, 2-(4-biphenyl)-5-phenyloxadiazole (PBD), 2,5-di ( 1-naphthyl)-1,3,5-oxadiazole (BND), 2,4,6-triphenoxy-1,3,5-triazine (TRZ).
  • the thickness of the electron transport layer 5 may range from 10 nm to 30 nm.
  • Step S6 includes forming a first retardation layer 41 by a vacuum evaporation process on the substrate on which the electron transport layer 5 is formed.
  • the material of the retardation layer 41 may include any one or more of magnesium (Mg), silver (Ag), aluminum (Al), lithium (Li), potassium (K), and calcium (Ca). Alloy.
  • the thickness of the retardation layer 41 may range from 1 nm to 10 nm.
  • Step S7 includes forming a first electron sub-injection layer 42 by a vacuum evaporation process on the substrate on which the first retardation layer 41 is formed.
  • the material of the electron sub-injection layer 42 may include any one of lithium fluoride, sodium fluoride, potassium fluoride, cesium fluoride, cesium fluoride, lithium oxide, and lithium metaborate.
  • the thickness of the electron sub-injection layer 42 may range from 1 nm to 5 nm.
  • step S6 and step S7 are repeated, that is, a plurality of electronic trap units 40 are formed, and the number of the electronic trap units 40 is, for example, three, which may be specifically set according to specific conditions, as long as the electron injection rate and hole injection are ensured. The rate is roughly the same.
  • Step S8 includes forming a cathode layer 2 by a vacuum evaporation process on a substrate on which the Nth electron sub-injection layer 42 is formed.
  • the cathode layer 2 serves as a connection layer of a negative voltage in the organic electroluminescent device, and has good electrical conductivity and a low work function.
  • the cathode layer 2 can usually be made of a low work function metal material, such as lithium, magnesium, calcium, barium, aluminum, indium, or the like, or an alloy of the above metals with copper, gold, or silver; or a thin layer of buffer insulation can be used.
  • a layer (such as lithium fluoride LiF, cesium carbonate CsCO 3 , etc.) and the above metal or alloy.
  • the thickness of the cathode layer 2 may range from 10 nm to 20 nm.
  • the embodiment of the invention further provides a display device comprising any one of the above organic electroluminescent devices.
  • the display device of this embodiment has excellent luminous efficiency and service life.
  • the display device can be any product or component having a display function such as an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display function such as an electronic paper, an OLED panel, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件及其制备方法、显示装置。该有机电致发光器件包括阳极层(1)、阴极层(2)以及设置在阳极层和阴极层之间的发光层(3),并且还包括设置在该阳极层和该阴极层中的至少一者与该发光层之间的载流子速率调整层(10),该载流子速率调整层用于调整载流子的注入速率。

Description

有机电致发光器件及其制备方法、显示装置 技术领域
本发明属于显示技术领域,具体涉及有机电致发光器件及其制备方法、显示装置。
背景技术
有机电致发光器件(Organic Light-Emitting Device,简称OLED)是一种利用有机固态半导体作为发光材料的发光器件,由于其具有制备工艺简单、成本低、功耗低、发光亮度高、工作温度范围广等优点,其具有广阔的应用前景。
现有的OLED的结构通常包括阳极层、阴极层以及设置在阳极层和阴极层之间的有机功能层。有机功能层沿阳极层朝向阴极层的方向依次包括空穴注入层、空穴传输层、发光层、电子传输层、以及电子注入层。空穴注入层与阳极层相邻,电子注入层与阴极层相邻。
OLED的发光机理为:当阳极层和阴极层之间施加有外界电压时,在外界电压的驱动下,由阳极层注入的空穴通过空穴注入层和空穴传输层进入发光层中,由阴极层注入的电子通过电子注入层和电子传输层进入发光层中,进入到发光层中的空穴和电子在复合区复合形成激子,激子辐射跃迁发光而产生发光现象,即形成电致发光。
发明人发现现有技术中至少存在如下问题:由于电子和空穴具有不同注入速率,即电子注入速率大于空穴注入速率,将会导致注入到发光层复合区的电子数量和空穴数量不同,从而导致有机电致发光器件的发光效率和寿命降低。
发明内容
针对现有技术中的有机电致发光器件中存在的上述的问题,本发明实施例提供发光效率高、寿命长的有机电致发光器件及其制备方法、显示装置。
本发明实施例提供了一种有机电致发光器件,其包括阳极层、阴极层以及设置在所述阳极层和所述阴极层之间的发光层,所述有机电致发光器件还包括:设置在所述阳极层和所述阴极层中的至少一者与所述发光层之间的载流子速率调整层,所述载流子速率调整层用于调整载流子的注入速率。
所述载流子速率调整层可以设置在所述发光层与阴极层之间,所述载流子速率调整层可以包括电子速率调整层。所述电子速率调整层包括多个连续设置的电子陷阱单元,所述电子陷阱单元包括沿远离所述阴极层的方向依次设置的电子子注入层和减速层。所述电子子注入层用于将电子注入至所述减速层,所述减速层用于减缓电子注入速率。
所述载流子速率调整层还可以包括设置在所述发光层与所述电子速率调整层之间的电子传输层。
所述电子传输层的材料可以包括电子迁移率大于10-3cm2/V.S的材料。
所述电子传输层的材料可以包括2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、2,4,6-三苯氧基-1,3,5-三嗪(TRZ)中的任意一种。
所述电子传输层的厚度范围可以为10nm至30nm。
所述减速层的材料可以包括镁、银、铝、锂、钾、钙中的任意一种或者多种组成的合金。
所述减速层的厚度范围可以为1nm至10nm。
所述电子子注入层的材料可以包括氟化锂、氟化钠、氟化钾、氟化铷、氟化铯、氧化锂、偏硼酸锂中的任意一种。
所述电子子注入层的厚度范围可以为1nm至5nm。
所述电子陷阱单元的个数可以为2~10。
所述有机电致发光器件还可以包括设置在所述阳极层和所述 发光层之间的空穴注入层和空穴传输层。所述空穴注入层设置在所述阳极层和所述空穴传输层之间。
所述载流子速率调整层可以设置在发光层和阳极层之间,所述载流子速率调整层可以包括空穴速率调整层。所述空穴速率调整层包括多个连续设置的空穴加速单元,所述空穴加速单元包括沿远离所述阳极层的方向依次设置的空穴子注入层和加速层。所述空穴子注入层用于将空穴注入至所述加速层,所述加速层用于提高空穴传输速率。
所述空穴子注入层的材料可以为P型掺杂材料。
所述空穴子注入层的材料可以包括2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲,2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌、三(4-溴苯基)六氯锑酸铵中的任意一种。
所述空穴子注入层的厚度范围可以为1nm至5nm。
所述加速层的材料可以为N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺、三苯基二胺衍生物、1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯中的任意一种。
所述加速层的厚度范围可以为10nm至200nm。
所述空穴加速单元的个数可以为2~10。
所述有机电致发光器件还可以包括设置在所述阴极层和所述发光层之间的电子注入层和电子传输层。所述电子传输层设置在所述发光层与所述电子注入层之间。
所述载流子速率调整层可以包括空穴速率调整层和电子速率调整层,所述空穴速率调整层设置在所述阳极层和所述发光层之间,所述电子速率调整层设置所述阴极层和所述发光层之间。所述空穴速率调整层包括多个连续设置的空穴加速单元,所述空穴加速单元包括沿远离所述阳极层的方向依次设置的空穴子注入层和加速层,所述空穴子注入层用于将空穴注入至所述空学子传输层,所述加速层用于提高空穴的传输速率。所述电子速率调整层包括多个连续设置的电子陷阱单元,所述电子陷阱单元包括沿远离所述阴极层的方向依次设置的电子子注入层和减速层,所述电 子子注入层用于将电子注入至所述减速层,所述减速层用于减缓电子的注入速率。
所述有机电致发光器件还可以包括设置在所述发光层与所述电子速率调整层之间的电子传输层。
本发明实施例还提供了一种制备有机电致发光器件的方法,其包括在基底上方形成阳极层和阴极层,以及在所述阴极层和所述阳极层之间形成发光层,所述方法还包括:在所述阳极层和所述阴极层中的至少一者与所述发光层之间形成载流子速率调整层。
所述载流子速率调整层可以形成在所述阴极层和所述发光层之间,所述载流子速率调整层包括电子速率调整层。所述电子速率调整层包括多个连续设置的电子陷阱单元,所述电子陷阱单元包括沿远离所述阴极层的方向依次设置的电子子注入层和减速层。所述电子子注入层用于将电子注入至所述减速层,所述减速层用于减缓电子注入速率。形成所述电子速率调整层包括:在形成有所述发光层的基底上方采用蒸镀工艺依次形成所述减速层和所述电子子注入层;之后重复形成所述减速层和所述电子子注入层。
形成所述电子速率调整层还可以包括:在所述发光层与最靠近所述发光层的减速层之间形成电子传输层。
所述载流子速率调整层可以形成在所述发光层和所述阳极层之间,所述载流子速率调整层包括空穴速率调整层。所述空穴速率调整层包括多个连续设置的空穴加速单元,所述空穴加速单元包括沿远离所述阳极层的方向依次设置的空穴子注入层和加速层。所述空穴子注入层用于将空穴注入至所述加速层,所述加速层用于提高空穴传输速率;形成所述空穴速率调整层包括:在形成有所述阳极层的基底上方采用蒸镀工艺依次形成空穴子注入层和加速层;之后重复形成所述空穴子注入层和所述加速层。
所述载流子速率调整层可以包括空穴速率调整层和电子速率调整层。所述空穴速率调整层形成在所述阳极层和所述发光层之 间,所述电子速率调整层形成在所述阴极层和所述发光层之间。所述空穴速率调整层包括多个连续设置的空穴加速单元,所述空穴加速单元包括沿远离所述阳极层的方向依次设置的空穴子注入层和加速层,所述空穴子注入层用于将空穴注入至所述加速层,所述加速层用于提高空穴传输速率。所述电子速率调整层包括多个连续设置的电子陷阱单元,所述电子陷阱单元包括沿远离所述阴极层的方向依次设置的电子子注入层和减速层,所述电子子注入层用于将电子注入至所述减速层,所述减速层用于减缓电子注入速率。形成所述空穴速率调整层包括:在形成有所述阳极层的基底上方采用蒸镀工艺依次形成所述空穴子注入层和所述加速层;之后重复形成所述空穴子注入层和所述加速层。形成所述电子速率调整层包括:在形成有所述发光层的基底上方采用蒸镀工艺依次形成所述减速层和所述电子子注入层;之后重复形成所述减速层和所述电子子注入层。
形成所述电子速率调整层还可以包括:在所述发光层与最靠近所述发光层的减速层之间形成电子传输层。
本发明实施例还提供了一种显示装置,其包括上述的有机电致发光器件。
在本发明实施例的有机电致发光器件中设置了载流子速率调整层,该载流子速率调整层设置在阳极层和阴极层中的至少一者与发光层之间。该载流子速率调整层可调整相应的载流子向发光层的注入速率,使不同载流子的注入速率趋于平衡,以提高有机电致发光器件的发光效率和寿命。
附图说明
图1为根据本发明的实施例的有机电致发光器件的结构示意图。
图2为根据本发明的实施例的有机电致发光器件的结构示意图。
图3为根据本发明的实施例的有机电致发光器件的结构示意 图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
本发明实施例提供一种有机电致发光器件,其包括阳极层、阴极层以及设置在阳极层和阴极层之间发光层。该有机电致发光器件还包括载流子速率调整层,其设置在阳极层和阴极层中的至少一者与发光层之间。该载流子速率调整层用于调整载流子的注入速率。
在现有技术的有机电致发光器件中,在驱动有机电致发光器件发光时,由于从阳极层注入空穴到发光层的注入速率与从阴极层注入电子到发光层的注入速率不同,即空穴注入速率小于电子注入速率,将会导致同一时刻注入到发光层复合区的电子数量和空穴数量不同,因此导致有机电致发光器件的发光效率和寿命降低。
在本实施例的有机电致发光器件中,增加了载流子速率调整层,其设置在阳极层和阴极层中的至少一者与发光层之间,该载流子速率调整层可调整相对应的载流子向发光层的注入速率,使不同载流子的注入速率趋于平衡,以提高有机电致发光器件的发光效率和寿命。
具体地,图1示出了根据本发明实施例的一种有机电致发光器件的结构示意图。该有机电致发光器件包括阳极层1、发光层3、载流子速率调整层10以及阴极层2。本实施例的载流子速率调整层10至少包括电子速率调整层4′。电子速率调整层4′包括多个连续设置的电子陷阱单元40,每个电子陷阱单元40包括沿远离阴极层2的方向依次设置的电子子注入层42和减速层41。电子子注入层42用于将电子注入至减速层41,减速层41用于减缓电子注入速率。
当有机电致发光器件被施加外界电压后,阴极层2所注入的 电子首先经过第一个电子子注入层42,由于电子本身的注入能力很差,该电子子注入层42有助于电子注入。然后,电子经过第一个减速层41,电子注入速率被减缓。之后,电子进入重复的电子子注入层42和减速层41。每一组电子子注入层42和减速层41实质上就相当于电子陷阱单元40,其用于将电子注入速率减缓。通过控制电子陷阱单元40的个数以使电子注入速率和阳极层1所注入的空穴的注入速率趋于平衡,此时电子和空穴在发光层3复合发光。本实施例的技术方案有助于提高有机电致发光器件的发光效率和寿命。
例如,本实施例中的载流子速率调整层10还包括设置在发光层3与电子速率调整层4′之间的电子传输层5。电子传输层5有助于将电子传输至发光层3中。
例如,本实施例中的有机电致发光器件还包括设置在阳极层1和发光层3之间的空穴注入层6和空穴传输层7,空穴注入层6设置在阳极层1和空穴传输层7之间。空穴注入层6有助于提高空穴的注入能力,空穴传输层7有助于提高空穴传输至发光层3的能力。
将结合下述的制备有机电致发光器件的方法对上述有机电致发光器件的各个膜层的材料和厚度进行具体说明。
制备本实施例的有机电致发光器件的方法包括如下步骤S1至步骤S8。
步骤S1包括在基底上溅射阳极导电薄膜,并通过构图工艺形成包括阳极层1的图形。
本实施例中,基底作为有机电致发光器件中电极层和有机功能薄膜层的支撑,其在可见光区域具有良好的透光性能,具有一定的防水汽和氧气渗透的能力,并具有较好的表面平整性,一般可以采用玻璃、柔性基片或阵列基板等制成。如果选用柔性基片,基底可采用聚酯类、聚酞亚胺或者较薄的金属制成。
此外,阳极层1作为有机电致发光器件中正向电压的连接层,具有较好的导电性能、可见光区域的透光性以及较高的功函数。 阳极层1可以采用无机金属氧化物(比如,氧化铟锡(ITO)、氧化锌(ZnO)等)、有机导电聚合物(比如,聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS)、聚苯胺(PANI)等)或高功函数金属材料(比如,金、铜、银、铂等)制成。阳极层1的厚度范围可以为10nm至200nm。
步骤S2包括在形成有阳极层1的基底上采用真空蒸镀工艺制备空穴注入层6。
本实施例中,空穴注入层6的材料可以包括2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)、2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、三(4-溴苯基)六氯锑酸铵(TBAHA)中的任意一种。空穴注入层6的厚度范围可以为1nm至5nm。
步骤S3包括在形成有空穴注入层6的基底上采用真空蒸镀工艺形成空穴传输层7。
本实施例中,空穴传输层7的材料可以为空穴迁移率大于10-5cm2/V.S的材料,可以采用芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、三芳胺聚合物、金属配合物、或者咔唑类聚合物制成,例如,N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)、三苯基二胺衍生物(TPD)、TPTE、1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)中的任意一种。空穴传输层7的厚度范围可以为10nm至200nm。
步骤S4包括在形成有空穴传输层7的基底上采用真空蒸镀工艺形成发光层3。
本实施例中,发光层3可以由具有空穴传输能力不低于电子传输能力的发光材料组成的无掺杂的荧光发光的有机材料制成,或可以采用由荧光掺杂剂与基质材料组成的掺杂荧光材料的有机材料制成,或可以采用由磷光掺杂剂与基质材料组成的掺杂磷光材料的有机材料制成。发光层3的厚度范围可以为10nm至50nm。
步骤S5包括在形成有发光层3的基底上采用真空蒸镀工艺形成电子传输层5。
本实施例中,电子传输层5的材料可以包括电子迁移率大于 10-3cm2/V.S的材料。
例如,电子传输层5的材料可以包括2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、2,4,6-三苯氧基-1,3,5-三嗪(TRZ)中的任意一种。
例如,电子传输层5的厚度范围可以为10nm至30nm。
步骤S6包括在形成有电子传输层5的基底上采用真空蒸镀工艺形成第一个减速层41。
本实施例中,减速层41的材料可以包括镁(Mg)、银(Ag)、铝(Al)、锂(Li)、钾(K)、钙(Ca)中的任意一种或者多种组成的合金。减速层41的厚度范围可以为1nm至10nm。
步骤S7包括在形成有第一个减速层41的基底上采用真空蒸镀工艺形成第一个电子子注入层42。
本实施例中,电子子注入层42的材料可以包括氟化锂、氟化钠、氟化钾、氟化铷、氟化铯、氧化锂、偏硼酸锂中的任意一种。电子子注入层42的厚度范围可以为1nm至5nm。
之后,重复步骤S6和步骤S7,也就是形成多个电子陷阱单元40,电子陷阱单元40的个数可以为2~10个,例如为3个,当然也可以根据具体情况具体设定。
步骤S8包括在形成有第N个电子子注入层42的基底上采用真空蒸镀工艺形成阴极层2。
本实施例中,阴极层2作为有机电致发光器件中负向电压的连接层,具有较好的导电性能和较低的功函数。阴极层2通常可以采用低功函数金属材料制成,比如,锂、镁、钙、锶、铝、铟等或上述金属与铜、金、银的合金;或者可以采用一层很薄的缓冲绝缘层(如氟化锂LiF、碳酸铯CsCO3等)和上述金属或合金制成。阴极层2的厚度范围可以为10nm至20nm。
至此完成本实施例的有机电致发光器件的制备。
图2示出了根据本发明实施例的一种有机电致发光器件的结构示意图。该有机电致发光器件包括基底、依次设置在基底上的阳极层1、载流子速率调整层10、发光层3以及阴极层2。本实施 例中的载流子速率调整层10包括空穴速率调整层6′。该空穴速率调整层6′包括多个连续设置的空穴加速单元60,每个空穴加速单元60包括沿远离阳极层1方向依次设置的空穴子注入层61和加速层62。空穴子注入层61用于将空穴注入至加速层62,加速层62用于提高空穴注入速率。
在本实施例中,由于在阳极层1和发光层3之间设置了载流子速率调整层10,该载流子速率调整层10能够提高空穴的注入速率。具体地,载流子速率调整层10包括空穴速率调整层6′,该空穴速率调整层6′是由多个空穴加速单元60组成。有机电致发光器件在被施加外界电压后,从阳极层1向发光层3注入的空穴经过一个空穴加速单元60,空穴的注入速率就会提高。通过控制空穴加速单元60的个数,以使空穴注入速率与电子注入速率趋于平衡,此时电子和空穴在发光层3复合发光。本实施例的技术方案有助于提高有机电致发光器件的发光效率和寿命。
例如,本实施例中的有机电致发光器件还包括设置在阴极层2和发光层3之间的电子注入层4和电子传输层5。电子传输层5设置在发光层3与电子注入层4之间。电子注入层4和电子传输层5用于提高阴极层2向发光层3注入电子的能力。
将结合下述的制备有机电致发光器件的方法对上述有机电致发光器件的各个膜层的材料和厚度进行具体说明。
制备本实施例的有机电致发光器件的方法包括如下步骤S1至步骤S1至步骤S7。
步骤S1包括在基底上溅射阳极导电薄膜,并通过构图工艺形成包括阳极层1的图形。
本实施例中,基底作为有机电致发光器件中电极层和有机功能薄膜层的支撑,其在可见光区域具有良好的透光性能,具有一定的防水汽和氧气渗透的能力,并具有较好的表面平整性,一般可以采用玻璃、柔性基片或阵列基板等制成。如果选用柔性基片,基底可采用聚酯类、聚酞亚胺或者较薄的金属制成。
此外,阳极层1作为有机电致发光器件中正向电压的连接层, 具有较好的导电性能、可见光区域的透光性以及较高的功函数。阳极层1可以采用无机金属氧化物(比如,氧化铟锡(ITO)、氧化锌(ZnO)等)、有机导电聚合物(比如,聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS)、聚苯胺(PANI)等)或高功函数金属材料(比如,金、铜、银、铂等)制成。阳极层1的厚度范围可以为10nm至200nm。
步骤S2包括在形成有阳极层1的基底上采用真空蒸镀工艺制备第一个空穴加速单元60中的空穴子注入层61。
本实施例中,空穴子注入层61可以由磷光掺杂剂(P)掺杂的有机材料或聚合物制成。
例如,空穴子注入层61的材料可以包括2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)、2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、三(4-溴苯基)六氯锑酸铵(TBAHA)中的任意一种。空穴子注入层61的厚度范围可以为1nm至5nm,例如为1nm。
步骤S3包括在形成有第一个空穴加速单元60中的空穴注入层61的基底上采用真空蒸镀工艺形成加速层62。
本实施例中,加速层62的材料可以包括空穴迁移率大于10-5cm2/V.S的材料。
具体地,加速层62可以采用芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、三芳胺聚合物、金属配合物、或者咔唑类聚合物制成,例如,N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)、三苯基二胺衍生物(TPD)、1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)中的任意一种。加速层62的厚度范围为10nm至200nm。
之后,重复步骤S2和步骤S3,以形成多个空穴加速单元60,空穴加速单元60的个数可以为2~10个,例如为3个。当然,也可以根据具体情况具体设定,以使空穴输入的速率与电子注入速率趋于平衡。
步骤S4包括在形成有空穴速率调整层6′的基底上采用真空 蒸镀工艺形成发光层3。
本实施例中,发光层3可以由具有空穴传输能力不低于电子传输能力的发光材料组成的无掺杂的荧光发光的有机材料制成,或可以采用由荧光掺杂剂与基质材料组成的掺杂荧光材料的有机材料制成,或可以采用由磷光掺杂剂与基质材料组成的掺杂磷光材料的有机材料制成。发光层3的厚度范围可以为10nm至50nm。
步骤S5包括在形成有发光层3的基底上采用真空蒸镀工艺形成电子传输层5。
本实施例中,电子传输层5的材料可以包括电子迁移率较高的材料,例如,2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、2,4,6-三苯氧基-1,3,5-三嗪(TRZ)中的任意一种。电子传输层5的厚度范围可以为10nm至30nm。
步骤S6包括在形成有电子传输层5的基底上采用真空蒸镀工艺形成电子注入层4,
本实施例中,电子注入层4的材料可以包括氟化锂、氟化钠、氟化钾、氟化铷、氟化铯、氧化锂、偏硼酸锂中的任意一种。电子注入层4的厚度范围可以为1nm至5nm。
步骤S7包括在形成有电子注入层4的基底上采用真空蒸镀工艺形成阴极层2。
本实施例中,阴极层2作为有机电致发光器件中负向电压的连接层,具有较好的导电性能和较低的功函数。阴极层2通常可以采用低功函数金属材料制成,比如,锂、镁、钙、锶、铝、铟等或上述金属与铜、金、银的合金;或者可以采用一层很薄的缓冲绝缘层(如氟化锂LiF、碳酸铯CsCO3等)和上述金属或合金制成。阴极层2的厚度范围可以为10nm至20nm。
至此完成本实施例的有机电致发光器件的制备。
图3示出了根据本发明实施例的一种有机电致发光器件的结构示意图。该有机电致发光器件包括阳极层1、空穴速率调整层6′、发光层3、电子速率调整层4′以及阴极层2。空穴速率调整层6′和电子速率调整层4′组成载流子速率调整层。空穴速率调整层6′ 包括多个连续设置的空穴加速单元60,每个空穴加速单元60包括沿远离阳极层1的方向依次设置的空穴子注入层61和加速层62。空穴子注入层61用于将空穴注入至加速层62,加速层62用于提高空穴注入速率。电子速率调整层4′包括多个连续设置的电子陷阱单元40,每个电子陷阱单元40包括沿远离阴极层2的方向依次设置的电子子注入层42和减速层41。电子子注入层42用于将电子注入至减速层41,减速层41用于减缓电子注入速率。
当有机电致发光器件被施加外界电压后,阴极层2所注入的电子首先经过电子速率调整层4′的第一个电子子注入层42,由于电子本身的注入能力很差,该电子子注入层42有助于电子注入。然后,电子经过第一个减速层41,电子注入速率被减缓。之后,电子进入重复的电子子注入层42和减速层41。每一组电子子注入层42和减速层41实质上就相当于电子陷阱单元40,其用于将电子注入速率减缓。同时,空穴速率调整层6′是由多个空穴加速单元60组成,有机电致发光器件在被施加外界电压后,从阳极层1向发光层3注入的空穴经过空穴加速单元60,空穴的注入速率就会提高。通过调整电子陷阱单元40的个数和空穴加速单元60的个数,以使电子注入速率和空穴注入速率趋于平衡,此时电子和空穴在发光层3复合发光。根据本发明实施例的有机电致发光器件具有改善的发光效率和寿命。
例如,本实施例中的有机电致发光器件还包括设置在发光层3与电子速率调整层4′之间的电子传输层5。电子传输层5有助于将电子传输至发光层3中。
将结合下述的制备有机电致发光器件的方法对上述有机电致发光器件的各个膜层的材料和厚度进行具体说明。
制备本实施例的有机电致发光器件的方法包括如下步骤S1至步骤S8。
步骤S1包括在基底上溅射阳极导电薄膜,并通过构图工艺形成包括阳极层1的图形。
本实施例中,基底作为有机电致发光器件中电极层和有机功 能薄膜层的支撑,其在可见光区域具有良好的透光性能,具有一定的防水汽和氧气渗透的能力,并具有较好的表面平整性,一般可以采用玻璃、柔性基片或阵列基板等制成。如果选用柔性基片,基底可采用聚酯类、聚酞亚胺或者较薄的金属制成。
此外,阳极层1作为有机电致发光器件中正向电压的连接层,具有较好的导电性能、可见光区域的透光性以及较高的功函数。阳极层1可以采用无机金属氧化物(比如,氧化铟锡(ITO),氧化锌(ZnO)等)、有机导电聚合物(比如,聚3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐(PEDOT:PSS)、聚苯胺(PANI)等)或高功函数金属材料(比如,金、铜、银、铂等)制成。阳极层1的厚度范围可以为10nm至200nm。
步骤S2包括在形成有阳极层1的基底上采用真空蒸镀工艺制备第一个空穴加速单元60中的空穴子注入层61。
本实施例中,空穴子注入层61可以由磷光掺杂剂(P)掺杂的有机材料或聚合物制成,例如,2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲(HAT-CN)、2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌(F4-TCNQ)、三(4-溴苯基)六氯锑酸铵(TBAHA)中的任意一种。空穴子注入层61的厚度范围可以为1nm至5nm,例如为1nm。
步骤S3包括在形成有第一个空穴加速单元60中的空穴子注入层61的基底上采用真空蒸镀工艺形成加速层62。
本实施例中,加速层62的材料可以包括空穴传输速率大于10-5cm2/V.S的材料,并且可以采用芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、三芳胺聚合物、金属配合物、或者咔唑类聚合物制成,例如,N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺(NPB)、三苯基二胺衍生物(TPD)、1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯(TDAB)中的任意一种。加速层62的厚度范围为10nm至200nm。
之后,重复步骤S2和步骤S3,以形成多个空穴加速单元60,空穴加速单元60的个数可以为2~10个,例如为3个。当然,也可以根据具体情况具体设定,以使空穴输入的速率与电子注入速 率趋于平衡。
步骤S4包括在形成有空穴速率调整层6′的基底上采用真空蒸镀工艺形成发光层3。
本实施例中,发光层3可以由具有空穴传输能力不低于电子传输能力的发光材料组成的无掺杂的荧光发光的有机材料制成,或可以采用由荧光掺杂剂与基质材料组成的掺杂荧光材料的有机材料制成,或可以采用由磷光掺杂剂与基质材料组成的掺杂磷光材料的有机材料制成。发光层3的厚度范围可以为10nm至50nm。
步骤S5包括在形成有发光层3的基底上采用真空蒸镀工艺形成电子传输层5。
本实施例中,电子传输层5的材料可以包括电子迁移率较高的材料,例如,2-(4-联苯基)-5-苯基恶二唑(PBD)、2,5-二(1-萘基)-1,3,5-恶二唑(BND)、2,4,6-三苯氧基-1,3,5-三嗪(TRZ)中的任意一种。电子传输层5的厚度范围可以为10nm至30nm。
步骤S6包括在形成有电子传输层5的基底上采用真空蒸镀工艺形成第一个减速层41。
本实施例中,减速层41的材料可以包括镁(Mg)、银(Ag)、铝(Al)、锂(Li)、钾(K)、钙(Ca)中的任意一种或者多种组成的合金。减速层41的厚度范围可以为1nm至10nm。
步骤S7包括在形成有第一个减速层41的基底上采用真空蒸镀工艺形成第一个电子子注入层42。
本实施例中,电子子注入层42的材料可以包括氟化锂、氟化钠、氟化钾、氟化铷、氟化铯、氧化锂、偏硼酸锂中的任意一种。电子子注入层42的厚度范围可以为1nm至5nm。
之后,重复步骤S6和步骤S7,也就是形成多个电子陷阱单元40,电子陷阱单元40的个数例如为3个,当然也可以根据具体情况具体设定,只要保证电子注入速率和空穴注入速率大致相同即可。
步骤S8包括在形成有第N个电子子注入层42的基底上采用真空蒸镀工艺形成阴极层2。
本实施例中,阴极层2作为有机电致发光器件中负向电压的连接层,具有较好的导电性能和较低的功函数。阴极层2通常可以采用低功函数金属材料制成,比如,锂、镁、钙、锶、铝、铟等或上述金属与铜、金、银的合金;或者可以采用一层很薄的缓冲绝缘层(如氟化锂LiF、碳酸铯CsCO3等)和上述金属或合金制成。阴极层2的厚度范围可以为10nm至20nm。
至此完成本实施例的有机电致发光器件的制备。
本发明实施例还提供一种显示装置,其包括上述任意一种有机电致发光器件。本实施例的显示装置的具有很好的发光效率和使用寿命。
该显示装置可以为电子纸、OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为落入本发明的保护范围。

Claims (29)

  1. 一种有机电致发光器件,包括阳极层、阴极层以及设置在所述阳极层和所述阴极层之间的发光层,其中
    所述有机电致发光器件还包括:设置在所述阳极层和所述阴极层中的至少一者与所述发光层之间的载流子速率调整层,
    所述载流子速率调整层用于调整载流子的注入速率。
  2. 根据权利要求1所述的有机电致发光器件,其中
    所述载流子速率调整层设置在所述发光层与所述阴极层之间,所述载流子速率调整层包括电子速率调整层;
    所述电子速率调整层包括多个连续设置的电子陷阱单元,所述电子陷阱单元包括沿远离所述阴极层的方向依次设置的电子子注入层和减速层;
    所述电子子注入层用于将电子注入至所述减速层,所述减速层用于减缓电子注入速率。
  3. 根据权利要求2所述的有机电致发光器件,其中,所述载流子速率调整层还包括设置在所述发光层与所述电子速率调整层之间的电子传输层。
  4. 根据权利要求3所述的有机电致发光器件,其中,所述电子传输层的材料包括电子迁移率大于10-3cm2/V.S的材料。
  5. 根据权利要求4所述的有机电致发光器件,其中,所述电子传输层的材料包括2-(4-联苯基)-5-苯基恶二唑、2,5-二(1-萘基)-1,3,5-恶二唑、2,4,6-三苯氧基-1,3,5-三嗪中的任意一种。
  6. 根据权利要求3所述的有机电致发光器件,其中,所述电子传输层的厚度范围为10nm至30nm。
  7. 根据权利要求2所述的有机电致发光器件,其中,所述减速层的材料包括镁、银、铝、锂、钾、钙中的任意一种或者多种组成的合金。
  8. 根据权利要求2所述的有机电致发光器件,其中,所述减速层的厚度范围为1nm~10nm。
  9. 根据权利要求2所述的有机电致发光器件,其中,所述电子子注入层的材料包括氟化锂、氟化钠、氟化钾、氟化铷、氟化铯、氧化锂、偏硼酸锂中的任意一种。
  10. 根据权利要求2所述的有机电致发光器件,其中,所述电子子注入层的厚度范围为1nm至5nm。
  11. 根据权利要求2所述的有机电致发光器件,其中,所述电子陷阱单元的个数为2~10。
  12. 根据权利要求2至11中任一项所述的有机电致发光器件,还包括设置在所述阳极层和所述发光层之间的空穴注入层和空穴传输层,其中
    所述空穴注入层设置在所述阳极层和所述空穴传输层之间。
  13. 根据权利要求1所述的有机电致发光器件,其中
    所述载流子速率调整层设置在所述发光层和所述阳极层之间,所述载流子速率调整层包括空穴速率调整层;
    所述空穴速率调整层包括多个连续设置的空穴加速单元,所述空穴加速单元包括沿远离所述阳极层方向依次设置的空穴子注入层和加速层;
    所述空穴子注入层用于将空穴注入至所述加速层,所述加速 层用于提高空穴传输速率。
  14. 根据权利要求13所述的有机电致发光器件,其中,所述空穴子注入层的材料为P型掺杂材料。
  15. 根据权利要求14所述的有机电致发光器件,其中,所述空穴子注入层的材料包括2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲、2,3,5,6-四氟-7,7′,8,8′-四氰二甲基对苯醌、三(4-溴苯基)六氯锑酸铵中的任意一种。
  16. 根据权利要求13所述的有机电致发光器件,其中,所述空穴子注入层的厚度范围为1nm至5nm。
  17. 根据权利要求13所述的有机电致发光器件,其中,所述加速层的材料为N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺、三苯基二胺衍生物、1,3,5-三(N-3-甲基苯基-N-苯基氨基)苯中的任意一种。
  18. 根据权利要求13所述的有机电致发光器件,其中,所述加速层的厚度范围为10nm至200nm。
  19. 根据权利要求13所述的有机电致发光器件,其中,所述空穴加速单元的个数为2~10。
  20. 根据权利要求13至19中任一项所述的有机电致发光器件,还包括设置在所述阴极层和所述发光层之间的电子注入层和电子传输层,其中
    所述电子传输层设置在所述发光层与所述电子注入层之间。
  21. 根据权利要求1所述的有机电致发光器件,其中
    所述载流子速率调整层包括空穴速率调整层和电子速率调整层,所述空穴速率调整层设置在所述阳极层和所述发光层之间,所述电子速率调整层设置在所述阴极层和所述发光层之间;
    所述空穴速率调整层包括多个连续设置的空穴加速单元,所述空穴加速单元包括沿远离所述阳极层的方向依次设置的空穴子注入层和加速层,所述空穴子注入层用于将空穴注入至所述加速层,所述加速层用于提高空穴的传输速率;
    所述电子速率调整层包括多个连续设置的电子陷阱单元,所述电子陷阱单元包括沿远离所述阴极层的方向依次设置的电子子注入层和减速层,所述电子子注入层用于将电子注入至所述减速层,所述减速层用于减缓电子的注入速率。
  22. 根据权利要求21所述的有机电致发光器件,还包括设置在所述发光层与所述电子速率调整层之间的电子传输层。
  23. 一种制备有机电致发光器件的方法,包括在基底上方形成阳极层和阴极层,以及在所述阴极层和所述阳极层之间形成发光层,其中
    所述方法还包括:在所述阳极层和所述阴极层中的至少一者与所述发光层之间形成载流子速率调整层。
  24. 根据权利要求23所述的方法,其中
    所述载流子速率调整层形成在所述阴极层和所述发光层之间,所述载流子速率调整层包括电子速率调整层;
    所述电子速率调整层包括多个连续设置的电子陷阱单元,所述电子陷阱单元包括沿远离所述阴极层的方向依次设置的电子子注入层和减速层;
    所述电子子注入层用于将电子注入至所述减速层,所述减速层用于减缓电子注入速率;
    形成所述电子速率调整层包括:在形成有所述发光层的基底 上方采用蒸镀工艺依次形成所述减速层和所述电子子注入层;之后重复形成所述减速层和所述电子子注入层。
  25. 根据权利要求24所述的方法,其中,形成所述电子速率调整层还包括:在所述发光层与最靠近所述发光层的减速层之间形成电子传输层。
  26. 根据权利要求23所述的方法,其中
    所述载流子速率调整层形成在所述发光层和所述阳极层之间,所述载流子速率调整层包括空穴速率调整层;
    所述空穴速率调整层包括多个连续设置的空穴加速单元,所述空穴加速单元包括沿远离所述阳极层的方向依次设置的空穴子注入层和加速层;
    所述空穴子注入层用于将空穴注入至所述加速层,所述加速层用于提高空穴传输速率;
    形成所述空穴速率调整层包括:在形成有所述阳极层的基底上方采用蒸镀工艺依次形成所述空穴子注入层和所述加速层;之后重复形成所述空穴子注入层和所述加速层。
  27. 根据权利要求23所述的方法,其中
    所述载流子速率调整层包括空穴速率调整层和电子速率调整层,所述空穴速率调整层形成在所述阳极层和所述发光层之间,所述电子速率调整层形成在所述阴极层和所述发光层之间;
    所述空穴速率调整层包括多个连续设置的空穴加速单元,所述空穴加速单元包括沿远离所述阳极层的方向依次设置的空穴子注入层和加速层,所述空穴子注入层用于将空穴注入至所述加速层,所述加速层用于提高空穴的传输速率;
    所述电子速率调整层包括多个连续设置的电子陷阱单元,所述电子陷阱单元包括沿远离所述阴极层的方向依次设置的电子子注入层和减速层,所述电子子注入层用于将电子注入至所述减速 层,所述减速层用于减缓电子的注入速率;
    形成所述空穴速率调整层包括:在形成有所述阳极层的基底上方采用蒸镀工艺依次形成所述空穴子注入层和所述加速层;之后重复形成所述空穴子注入层和所述加速层;
    形成所述电子速率调整层包括:在形成有所述发光层的基底上方采用蒸镀工艺依次形成所述减速层和所述电子子注入层;之后重复形成所述减速层和所述电子子注入层。
  28. 根据权利要求27所述的方法,其中,形成所述电子速率调整层还包括:在所述发光层与最靠近所述发光层的减速层之间形成电子传输层。
  29. 一种显示装置,包括权利要求1至22中任一项所述的有机电致发光器件。
PCT/CN2016/072294 2015-08-28 2016-01-27 有机电致发光器件及其制备方法、显示装置 WO2017036084A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16812665.4A EP3343660A4 (en) 2015-08-28 2016-01-27 ORGANIC ELECTROLUMINESCENCE COMPONENTS AND MANUFACTURING METHOD AND DISPLAY DEVICE
US15/320,130 US10566565B2 (en) 2015-08-28 2016-01-27 Organic light emitting device and method of fabricating the same, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510542671.5A CN105244446B (zh) 2015-08-28 2015-08-28 有机电致发光器件及其制备方法、显示装置
CN201510542671.5 2015-08-28

Publications (1)

Publication Number Publication Date
WO2017036084A1 true WO2017036084A1 (zh) 2017-03-09

Family

ID=55042010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072294 WO2017036084A1 (zh) 2015-08-28 2016-01-27 有机电致发光器件及其制备方法、显示装置

Country Status (4)

Country Link
US (1) US10566565B2 (zh)
EP (1) EP3343660A4 (zh)
CN (1) CN105244446B (zh)
WO (1) WO2017036084A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105244446B (zh) 2015-08-28 2018-06-29 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置
CN109427985B (zh) 2017-08-31 2019-12-24 昆山国显光电有限公司 有机电致发光器件及显示装置
CN109830613A (zh) * 2019-01-31 2019-05-31 瑞声科技(南京)有限公司 有机发光器件及其制备方法
CN109860407A (zh) * 2019-01-31 2019-06-07 瑞声科技(南京)有限公司 一种有机发光器件及其制备方法
CN110311045B (zh) * 2019-06-24 2021-02-26 武汉华星光电半导体显示技术有限公司 一种有机电致发光器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881843A (zh) * 2012-09-17 2013-01-16 京东方科技集团股份有限公司 一种制备有机发光二极管的方法、发光二极管和发光器件
CN103378297A (zh) * 2012-04-25 2013-10-30 群康科技(深圳)有限公司 有机发光二极管及包括其的显示装置
CN105244446A (zh) * 2015-08-28 2016-01-13 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03105896A (ja) * 1989-09-20 1991-05-02 Hitachi Ltd El発光体
JPH10270171A (ja) * 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JP2000196140A (ja) * 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
US6373186B1 (en) * 1999-01-21 2002-04-16 Tdk Corporation Organic electroluminescent device with high resistance inorganic hole injecting layer
WO2000057446A1 (en) 1999-03-19 2000-09-28 Fed Corporation High efficiency electrodes for organic light emitting diode devices
WO2000065879A1 (en) 1999-04-28 2000-11-02 Emagin Corporation Organic electroluminescence device with high efficiency reflecting element
KR100596028B1 (ko) * 2001-11-12 2006-07-03 네오뷰코오롱 주식회사 고효율 유기 전계발광 소자
US6794061B2 (en) * 2002-01-31 2004-09-21 Eastman Kodak Company Organic electroluminescent device having an adhesion-promoting layer for use with a magnesium cathode
US6797129B2 (en) * 2002-06-03 2004-09-28 Eastman Kodak Company Organic light-emitting device structure using metal cathode sputtering
US6963081B2 (en) * 2003-09-30 2005-11-08 Osram Otpo Semiconductors Gmbh Interfacial trap layer to improve carrier injection
US20050069727A1 (en) * 2003-09-30 2005-03-31 Rahul Gupta Oled emissive polymer layer
JP4689176B2 (ja) * 2004-02-26 2011-05-25 大日本印刷株式会社 有機エレクトロルミネッセンス素子
CN100403574C (zh) * 2004-04-05 2008-07-16 中山大学 一种有机电致发光器件
US7126267B2 (en) * 2004-05-28 2006-10-24 Eastman Kodak Company Tandem OLED having stable intermediate connectors
JP5064482B2 (ja) * 2006-03-14 2012-10-31 エルジー・ケム・リミテッド 高効率の有機発光素子およびその製造方法
EP1876658A3 (en) * 2006-07-04 2014-06-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, and electronic device
US8431242B2 (en) * 2007-10-26 2013-04-30 Global Oled Technology, Llc. OLED device with certain fluoranthene host
CN101159315A (zh) * 2007-11-06 2008-04-09 中国科学院长春应用化学研究所 一种红色有机电致发光器件及其制备方法
CN101436646A (zh) * 2008-12-15 2009-05-20 沈阳工业大学 一种有机电致发光器件
KR101320449B1 (ko) * 2011-09-02 2013-10-23 주식회사 엘엠에스 유기전자소자
CN104064675A (zh) * 2013-03-21 2014-09-24 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104183761A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 倒置有机电致发光器件及其制备方法
CN104638197A (zh) * 2013-11-14 2015-05-20 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN103730587B (zh) * 2013-12-31 2017-09-29 北京维信诺科技有限公司 一种蓝光有机发光器件及有机发光显示器
CN104600201A (zh) * 2015-01-30 2015-05-06 京东方科技集团股份有限公司 一种有机电致发光器件及其制备方法、显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378297A (zh) * 2012-04-25 2013-10-30 群康科技(深圳)有限公司 有机发光二极管及包括其的显示装置
CN102881843A (zh) * 2012-09-17 2013-01-16 京东方科技集团股份有限公司 一种制备有机发光二极管的方法、发光二极管和发光器件
CN105244446A (zh) * 2015-08-28 2016-01-13 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, C.W. ET AL.: "An Effective Cathode Structure for Inverted Top-Emitting Organic Light-Emitting Devices", APPLIED PHYSICS LETTERS, vol. 85, 27 September 2004 (2004-09-27), pages 2469 - 2471, XP012062672, ISSN: 0003-6951 *
CHEN, C.W. ET AL.: "An Effective Cathode Structure for Inverted Top-Emitting Organic Light-Emitting Devices", APPLIED PHYSICS LETTERS, vol. 85, no. 13, 27 September 2004 (2004-09-27), pages 2469 - 2471, XP012062672, ISSN: 0003-6951 *
See also references of EP3343660A4 *

Also Published As

Publication number Publication date
CN105244446A (zh) 2016-01-13
US10566565B2 (en) 2020-02-18
EP3343660A1 (en) 2018-07-04
EP3343660A4 (en) 2019-05-15
US20170194589A1 (en) 2017-07-06
CN105244446B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN106058066B (zh) 有机电致发光器件及其制备方法、显示装置
CN103715360B (zh) 有机电致发光器件、显示装置
US9118033B2 (en) Organic light-emitting diode and display device employing the same
WO2017036084A1 (zh) 有机电致发光器件及其制备方法、显示装置
KR20110032589A (ko) 유기전계발광소자
CN109585668B (zh) Oled显示器件、显示面板、oled显示器件的制备方法
JP6060361B2 (ja) 有機発光素子
WO2019095565A1 (zh) 串联量子点发光器件、面板即显示器
WO2020244252A1 (zh) 有机电致发光器件、显示面板及显示装置
KR20120045475A (ko) 유기전계발광소자 및 그 제조방법
WO2016188042A1 (zh) 电致发光器件及其制备方法、显示基板、显示装置
CN102315390A (zh) 电致发光器件及其制备方法
KR20110027484A (ko) 유기전계발광소자
CN105070845A (zh) 一种有机电致发光器件及其制作方法、显示装置
KR20120042434A (ko) 유기전계 발광소자 및 그의 제조방법
JP2011249436A (ja) 有機el素子
CN109768178B (zh) 有机电致发光器件、显示基板、显示装置
US20220052262A1 (en) Method of manufacturing perovskite light emitting device by inkjet printing
US10381591B2 (en) Organic light emitting diode device with a photoinduced electron film layer and method for manufacturing the same
CN112909191B (zh) 发光器件结构及其制备方法、显示基板和显示装置
US8384073B2 (en) System for displaying images
US20150137086A1 (en) Organic electroluminescence unit, method of manufacturing the same, and electronic apparatus
US11737343B2 (en) Method of manufacturing perovskite light emitting device by inkjet printing
JP5075027B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP2009252792A (ja) 有機発光素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15320130

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016812665

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16812665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016812665

Country of ref document: EP