WO2017031687A1 - 一种终端 - Google Patents

一种终端 Download PDF

Info

Publication number
WO2017031687A1
WO2017031687A1 PCT/CN2015/088009 CN2015088009W WO2017031687A1 WO 2017031687 A1 WO2017031687 A1 WO 2017031687A1 CN 2015088009 W CN2015088009 W CN 2015088009W WO 2017031687 A1 WO2017031687 A1 WO 2017031687A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive block
capacitor
conductive
middle frame
display module
Prior art date
Application number
PCT/CN2015/088009
Other languages
English (en)
French (fr)
Inventor
王净亦
余晓艳
张君勇
邹旸
吕仁
李建鹏
李航
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15901958.7A priority Critical patent/EP3267242B1/en
Priority to CN201580028660.3A priority patent/CN107077017B/zh
Priority to JP2017557078A priority patent/JP6521407B2/ja
Priority to PCT/CN2015/088009 priority patent/WO2017031687A1/zh
Priority to KR1020177030000A priority patent/KR102021218B1/ko
Priority to US15/562,536 priority patent/US10817097B2/en
Publication of WO2017031687A1 publication Critical patent/WO2017031687A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection

Definitions

  • the present invention relates to the field of terminals, and in particular, to a terminal.
  • the touch screen is more and more widely used in electronic devices such as mobile phones, ipads and personal computers (English name: Personal Computer: PC), and the more intuitive the human-computer interaction requirements are. The higher the value, such as pressure sensing through pressure sensing.
  • the pressure material required for pressure sensing has a sandwich structure, and the pressure material is collected on a pressure sensor, thereby arranging four corners under the liquid crystal display (English name: Liquid Crystal Display abbreviation: LCD) with a dedicated independent pressure sensor.
  • LCD Liquid Crystal Display abbreviation: LCD
  • the pressure material is a dedicated pressure material
  • the material cost is high, and it is necessary to develop a new supplier for resource integration, and the integration cost is high.
  • the embodiment of the invention discloses a method and a terminal for pressure sensing, which are used for solving the problem of high cost in implementing pressure touch in the prior art and saving cost.
  • a first aspect of the present invention provides a terminal, the terminal includes a cover, a display module, and a metal middle frame, wherein the display module is located between the cover and the metal middle frame, in the metal The frame is grounded, and the terminal further includes:
  • the conductive layer is attached to a lower surface of the display module
  • At least one gap between the conductive layer and the metal middle frame, wherein the conductive layer, the metal middle frame and the at least one gap form at least one capacitor, wherein a capacitance change of the at least one capacitor The magnitude of at least one pressure acting on the cover is reflected.
  • the conductive layer includes at least a first conductive block and a second conductive block, and the first conductive block and the second conductive block are connected;
  • the first conductive block and the second conductive block are respectively attached to the lower surface of the display module;
  • a first gap exists between the first conductive block and the metal middle frame, wherein the first conductive block, the metal middle frame and the first gap form a first capacitor; the second conductive block a second gap exists between the metal middle frame, wherein the second conductive block, the metal middle frame, and the second gap form a second capacitor, wherein the first capacitor and the second Capacitor capacitance change
  • the magnitude of the first pressure acting on the cover plate should be applied.
  • the conductive layer includes at least a third conductive block and a fourth conductive block; the third conductive block is not connected to the fourth conductive block;
  • the third conductive block and the fourth conductive block are respectively attached to the lower surface of the display module;
  • a third gap exists between the third conductive block and the metal middle frame, wherein the third conductive block, the metal middle frame and the third gap form a third capacitor, wherein the third The change in capacitance of the capacitor reflects the magnitude of the second pressure acting on the cover;
  • a fourth gap exists between the fourth conductive block and the metal middle frame, wherein the fourth conductive block, the metal middle frame and the fourth gap form a fourth capacitor, wherein the fourth The change in capacitance of the capacitor reflects the magnitude of the third pressure acting on the cover.
  • the lower surface of the conductive layer or the upper surface of the metal middle frame is bonded to at least one elastic colloid.
  • the conductive layer is made of indium tin oxide ITO film or copper foil flexible Board FPC.
  • a second aspect of the present invention provides a terminal, the terminal includes a cover, a display module, and a metal middle frame, wherein the display module is located between the cover and the metal middle frame, in the metal The frame is grounded, and the terminal further includes:
  • a conductive layer the conductive layer being attached to the upper surface of the metal middle frame by at least one elastic colloid, wherein the at least one elastic colloid is non-conductive, the conductive layer, the metal middle frame, and the At least one elastomeric gel forms at least one capacitor, wherein a change in capacitance of the at least one capacitor reflects a magnitude of at least one pressure acting on the cover.
  • the conductive layer includes at least a first conductive block and a second conductive block, and the first conductive block and the second conductive block are connected;
  • the first conductive block is attached to the upper surface of the first elastic colloid, wherein the first conductive block, the metal middle frame and the first elastic colloid form a first capacitor;
  • the second conductive block is attached to the upper surface of the second elastic colloid, wherein the second conductive block, the metal middle frame and the second elastic colloid form a second capacitor, wherein the first capacitor
  • the change in capacitance with the second capacitor reflects the magnitude of the first pressure acting on the cover.
  • the conductive layer includes at least a third conductive block and a fourth conductive block; the third conductive block is not connected to the fourth conductive block;
  • the third conductive block is attached to the upper surface of the third elastic colloid, wherein the third conductive block, the metal middle frame and the third elastic colloid form a third capacitor, wherein the third capacitor
  • the change in capacitance reflects the magnitude of the second pressure acting on the cover
  • the fourth conductive block is attached to the upper surface of the fourth elastic colloid, wherein the fourth conductive block, the metal middle frame and the fourth elastic colloid form a fourth capacitor, wherein the fourth capacitor
  • the change in capacitance reflects the magnitude of the third pressure acting on the cover.
  • the conductive layer is made of an indium tin oxide ITO film or a copper foil flexible circuit board FPC. .
  • a third aspect of the present invention provides a terminal, the terminal includes a cover plate and a display module, the cover plate is located above the display module; the display module includes a backlight unit, a thin film transistor TFT substrate, and a TFT circuit The TFT substrate is located between the backlight unit and the TFT circuit, the TFT circuit includes a constant voltage layer, and the terminal further includes:
  • a conductive layer being attached to a lower surface of the backlight unit
  • a dielectric exists between the conductive layer and the constant voltage layer in the TFT circuit, wherein the conductive layer, the constant voltage layer in the TFT circuit, and the dielectric form at least one capacitor, wherein the at least one The change in capacitance of the capacitor reflects the magnitude of at least one pressure acting on the cover plate, the dielectric comprising the TFT substrate.
  • the conductive layer includes at least a first conductive block and a second conductive block, and the first conductive block and the second conductive block are connected;
  • the first conductive block and the second conductive block are respectively attached to a lower surface of the backlight unit;
  • a first dielectric exists between the first conductive block and the constant voltage layer in the TFT circuit, wherein the first conductive block, the constant voltage layer in the TFT circuit, and the first dielectric form a first a capacitor; a second dielectric between the second conductive block and the constant voltage layer in the TFT circuit, wherein the second conductive block, the constant voltage layer in the TFT circuit, and the second dielectric are formed a second capacitor, wherein a change in capacitance of the first capacitor and the second capacitor reflects a magnitude of a first pressure acting on the cover.
  • the conductive layer includes at least a third conductive block and a fourth conductive block; the third conductive block is not connected to the fourth conductive block;
  • the third conductive block and the fourth conductive block are respectively attached to the lower surface of the backlight unit;
  • a third dielectric exists between the third conductive block and the constant voltage layer in the TFT circuit, wherein the third conductive block, the constant voltage layer in the TFT circuit, and the third dielectric form a third a capacitor, wherein a change in capacitance of the third capacitor reflects a magnitude of a second pressure acting on the cover;
  • a fourth dielectric exists between the fourth conductive block and the constant voltage layer in the TFT circuit, wherein the fourth conductive block, the constant voltage layer in the TFT circuit, and the fourth dielectric form a fourth a capacitor, wherein a change in capacitance of the fourth capacitor reflects a magnitude of a third pressure acting on the cover.
  • the terminal further includes:
  • the metal middle frame being located below the conductive layer
  • the lower surface of the conductive layer or the upper surface of the metal middle frame is bonded with at least one elastic colloid.
  • the conductive layer is made of an indium tin oxide ITO film or a copper foil.
  • Flexible circuit board FPC Flexible circuit board
  • a fourth aspect of the present invention provides a terminal, where the terminal includes a cover, a display module, and a middle frame, The display module is located between the cover plate and the middle frame, and the terminal further includes:
  • a conductive layer being attached to an upper surface of the middle frame
  • the conductive layer includes at least a first conductive block and a second conductive block, and the first conductive block and the second conductive block are connected;
  • the first conductive block and the second conductive block are respectively attached to the upper surface of the middle frame;
  • a first gap exists between the first conductive block and the lower surface of the display module, wherein the first conductive block, the lower surface of the display module, and the first gap form a first capacitor;
  • a second gap exists between the second conductive block and the lower surface of the display module, wherein the second conductive block, the lower surface of the display module, and the second gap form a second capacitor, wherein the change in capacitance of the first capacitor and the second capacitor reflects the magnitude of the first pressure acting on the cover.
  • the conductive layer includes at least a third conductive block and a fourth conductive block; the third conductive block is not connected to the fourth conductive block;
  • the third conductive block and the fourth conductive block are respectively attached to the upper surface of the middle frame;
  • a third gap exists between the third conductive block and the lower surface of the display module, wherein the third conductive block, the lower surface of the display module, and the third gap form a third capacitor.
  • the capacitance change of the third capacitor reflects the magnitude of the second pressure acting on the cover plate;
  • a fourth gap exists between the fourth conductive block and the lower surface of the display module, wherein the fourth conductive block, the lower surface of the display module, and the fourth gap form a fourth capacitor, wherein the change in capacitance of the fourth capacitor reflects the magnitude of the third pressure acting on the cover.
  • the conductive layer is made of an indium tin oxide ITO film or a copper foil flexible circuit board FPC. .
  • the terminal includes a cover plate, a display module, and a metal middle frame, wherein the display module is located between the cover plate and the metal middle frame, the metal middle frame is grounded, and the terminal is further
  • the method includes: a conductive layer, the conductive layer is attached to a lower surface of the display module; the conductive layer and the gold There is at least one gap between the middle frames, wherein the conductive layer, the metal middle frame and the at least one gap form at least one capacitor, wherein a capacitance change of the at least one capacitor reacts to act on the cover The size of at least one pressure on the board. It can be seen that the conductive layer only needs to be a material having conductivity.
  • the existing conductive material can be used in a large amount, and the pressure touch can be realized without using a special pressure material, thereby greatly saving material cost.
  • the pressure touch is realized, which is different from the prior art. Therefore, since the conductive materials required for the conductive layer are all existing, and no special pressure material is required, the pressure touch can be realized without developing a new supplier for resource integration, thereby reducing the integration cost.
  • FIG. 1 is a schematic structural diagram of a terminal in the prior art
  • FIG. 2 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIGS. 2a-2b are schematic diagrams showing another structure of a terminal in an embodiment of the present invention.
  • FIG. 3 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 4 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 5 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 6 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 7 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 8 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 9 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 10 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 11 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 12 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 13 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 14 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • 15 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • 16 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 17 is another schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the embodiment of the invention discloses a terminal for solving the problem of high cost in implementing pressure touch in the prior art, and saving cost.
  • the technical solution of the present invention is applied to any terminal, such as a smart phone, an ipad, a personal computer, etc., and is not specifically limited herein.
  • the terminal may be a terminal carrying a touch screen or a terminal carrying a button button, which is not specifically limited herein. As shown in FIG. 1 , the general structure of the terminal is further introduced:
  • the terminal 100 includes a cover plate 101. Below the cover plate 101 is a display module 102.
  • the cover plate 101 and the display module 102 can be adhered by optical transparent adhesive (English name: optical clear adhesive, abbreviated as OCA).
  • the lower part of the display module 102 is a metal middle frame 103.
  • the metal middle frame 103 is grounded. Specifically, the metal middle frame can be connected to the system, and the metal middle frame is grounded. Therefore, the voltage value of the metal middle frame 103 is always 0 volts, wherein there is a certain gap between the display module 102 and the metal middle frame 103, and the size of the gap is about 0.3 mm. There is also a certain gap below the backlight unit inside the display module.
  • a touch module may be disposed between the cover 101 and the display module 102.
  • the external terminal is provided with a touch module between the cover and the display module, which is not specifically limited herein.
  • the cover plate, the specific cover plate 101 may be a cover glass, and the cover plate may also be Known as a touch screen cover, it is a component of a display module for closing or covering a terminal.
  • the cover is mainly made of glass and has a thickness ranging from 0.1 mm to 1.1 mm.
  • the cover plate can also be made of other materials, and is not specifically limited herein.
  • the display module is one of the main components of the finished display screen, and is mainly composed of a backlight unit, a substrate and a driving circuit, a resistor, a capacitor and a plastic kit.
  • the metal middle frame is a component used to carry a device such as a display module, and is made of a metal material such as an aluminum metal middle frame.
  • the dedicated pressure sensor is used to arrange the four corners under the LCD.
  • the dedicated piezoresistive material is costly and requires the development of a new supplier. Resource integration and high integration costs are also high.
  • it is not necessary to use a dedicated independent pressure sensor to arrange the four corners under the LCD mainly by using a gap between the display module and the metal middle frame or a gap under the backlight unit in the display module, and utilizing
  • the existing conductive material forms a capacitor, thereby realizing pressure touch by detecting the capacitance change of the formed capacitor, and the specific structure is as follows:
  • an embodiment of a terminal 200 includes a cover 201, a display module 202, and a metal middle frame 203.
  • the display module 202 is located on the cover.
  • the metal middle frame 203 is grounded, and the terminal 200 further includes:
  • the conductive layer 204 is attached to the lower surface 2020 of the display module 202;
  • the upper surface of the display module is attached to the cover, and the conductive layer is attached to the lower surface of the display module.
  • the materials required for the conductive layer in the embodiment of the present invention are relatively common, and only need to have conductivity. Therefore, some existing conductive materials can be effectively utilized without special pressure materials. This saves material costs to a large extent.
  • the conductive layer is further attached to the lower surface of the display module.
  • the conductive layer is generally attached to the lower surface of the display module through a sealant or a full-surface gel. In some cases, as shown in FIG. 2-a, the conductive layer is only fixed by the sealant. Display Below the module, in some cases, as shown in Figure 2-b, in order to ensure the flatness of the conductive layer and the stability of the conductive properties of the conductive layer, the entire surface of the colloid can be used (such as the conductive layer in Figure 2-b) The part of the display module is attached to the lower surface of the display module.
  • the glue may be a double-sided tape or an OCA colloid. The specific one may be selected according to actual conditions, and is not specifically limited herein.
  • the conductive layer, the metal middle frame and the at least one gap form at least one capacitor
  • the conductive layer can be regarded as one plate of the capacitor
  • the metal middle frame can be regarded as the other plate of the capacitor, which can be used as the pressure sensing
  • the pressure sensing For example, when the user presses on the cover plate, a certain force is generated, and the force causes the conductive layer to be deformed, so that the distance between the two plates of the capacitor changes, so that the capacitance of the capacitor changes, and the capacitor can be further passed.
  • the change in capacitance reflects the amount of pressure acting on the cover.
  • the capacitor of the structure acts as a pressure sensor, which can induce a pressure of 60,000 steps from light press to heavy pressure, thereby identifying different The pressure of the order, while the prior art can only recognize the force of the two steps of light press and heavy pressure.
  • the change of the capacitance of the capacitor is proportional to the magnitude of the pressure. For example, the greater the change of the capacitance of the capacitor, the greater the pressure acting on the cover plate, or the cover plate is applied. The greater the pressure above, the greater the change in capacitance of the capacitor.
  • FIG. 3 which is a schematic structural view of the terminal 300 , the lower surface 2040 of the conductive layer 204 is attached with at least one elastic colloid 205 .
  • the upper surface of the conductive layer is attached to the display module, so that the deformation of the conductive layer is prevented from being too large, and at least one elastic colloid is attached to the lower surface of the conductive layer, wherein the elastic colloid is elastic on the one hand.
  • the elastic colloid may be foam or the like, which is not specifically limited herein.
  • FIG. 4 it is a schematic structural diagram of the terminal 400, and the upper surface of the metal middle frame 203 is 2030 is fitted with at least one elastic colloid 205.
  • the conductive layer is attached to the metal frame and the pressure touch cannot be achieved, and at least one of the lower surface of the conductive layer or the upper surface of the metal middle frame is attached.
  • the elastic colloid wherein the elastic colloid may be any colloid having elastic compression, and the elastic colloid has an elastic stretching effect on the one hand and a bonding effect on the other hand.
  • the depth of the gap is generally about 0.2 mm, thereby utilizing the conductive layer and the metal.
  • At least one gap between the middle frame, the conductive layer and the metal middle frame forms at least one capacitor, and further, the capacitance change of the at least one capacitor may reflect the magnitude of at least one pressure acting on the cover plate, such as when the user presses by a finger
  • the touch screen cover of the terminal When the touch screen cover of the terminal is applied, the user applies a certain pressure on the touch screen cover, and the pressure applied by the user causes the capacitance of the capacitor to change, wherein the capacitance change of the capacitor can reflect at least one pressure acting on the cover plate.
  • the terminal can receive a signal of the capacitance change of the capacitor, thereby performing a corresponding operation, such as turning the volume of the terminal up or down.
  • FIG. 5 a schematic structural diagram of the terminal 500, wherein the conductive layer 204 includes at least a first conductive block 2041 and a second conductive block. 2042, the first conductive block 2041 and the second conductive block 2042 are connected;
  • the first conductive block and the second conductive block are connected to each other, so that the first conductive block and the second conductive block can share the power supply module of the terminal.
  • the second conductive block can directly obtain power from the first conductive block without connecting to the circuit of the power supply module of the terminal, thereby reducing the layout space of the circuit. .
  • the size of the conductive layer can be equal to the screen size of the terminal,
  • the cross-sectional area of the conductive layer is also large, and the cross section of the conductive layer The larger the area, the harder it is to achieve better flatness detection.
  • the difficulty in detecting the capacitance change of the capacitor increases accordingly. Then the change in the capacitance of the detection capacitor reflects the pressure. The corresponding algorithm will also be difficult.
  • the conductive layer is divided into the first conductive block and the second conductive block, the difficulty of capacitance detection for each conductive block will be reduced, and the change of capacitance of the capacitor is detected by detecting
  • the algorithm for the change in pressure is also easy to implement.
  • the first conductive block is connected to the second conductive block, it can be used as a whole to facilitate the capacitance change of the overall detecting capacitor.
  • the metal middle frame there is a certain gap between the metal middle frame and the conductive layer, so that the shape variable of the conductive layer is prevented from being too large, and at least one elastic colloid is attached to the upper surface of the metal middle frame, for example,
  • the first elastic colloid corresponding to the first conductive block, the second elastic colloid corresponding to the second conductive block, and the like are not specifically limited herein.
  • the upper surface of the conductive layer is attached to the display module, so that the deformation of the conductive layer is prevented from being too large, and at least one elastic colloid is attached to the lower surface of the conductive layer, such as the first conductive block.
  • the corresponding first elastic colloid, the second elastic colloid corresponding to the second conductive block, and the like are not specifically limited herein.
  • the elastic colloid acts on the one hand to elastically compress and on the other hand acts as a bond.
  • the elastic colloid may be foam or the like, which is not specifically limited herein.
  • the conductive layer is divided into different conductive blocks, wherein the mode between the conductive blocks can be self-contained or mutually capacitive, and the terminal can recognize the pressure acting on the cover plate.
  • the position point corresponds to the position of the conductive block.
  • the force acting on the cover plate causes deformation of the entire conductive layer, and the degree of deformation of the conductive layer at various points is also different, and therefore, variations in capacitance of different capacitors can be induced.
  • the material of the conductive layer is indium tin oxide (English name: Indium Tin Oxide, abbreviation: ITO) film or copper foil flexible circuit board (English full name: Flexible Printed Circuit, abbreviation: FPC), of course, it can also be Other conductive materials are not specifically limited herein.
  • the conductive layer may include a plurality of conductive blocks, wherein the conductive blocks may or may not be connected to each other, and are not specifically limited herein, wherein the first conductive block and the second conductive block are connected.
  • the first conductive block and the second conductive block are further described below:
  • the first conductive block 2041 and the second conductive block 2042 are respectively attached to the lower surface 2020 of the display module 202;
  • first conductive block is attached to the display module by a sealant or a full-surface gel Bonding the second conductive block to the lower surface of the display module by a sealant or a full-surface gel, wherein the bonding area of the first conductive block and the second conductive block is not
  • first conductive block is attached to the display module by a sealant or a full-surface gel Bonding the second conductive block to the lower surface of the display module by a sealant or a full-surface gel, wherein the bonding area of the first conductive block and the second conductive block is not
  • the specific fitting manner can be seen in FIG. 2a and FIG. 2b, and details are not described herein again.
  • the manner in which the first conductive block and the second conductive block are attached to the lower surface of the display module is the same as the manner in which the conductive layer is attached to the lower surface of the display module.
  • the conductive layer being attached to the display module.
  • the way of the lower surface is not described here.
  • a first gap exists between the first conductive block 2041 and the metal middle frame 203 (such as a blank area between the first conductive block and the metal middle frame in FIG. 5), wherein the first conductive block 2041
  • the metal middle frame 203 and the first gap form a first capacitor, that is, the first conductive block is regarded as one plate of the first capacitor, and the metal middle frame is regarded as the other plate of the first capacitor;
  • There is a second gap between the two conductive blocks 2042 and the metal middle frame 203 (such as a blank area between the second conductive block and the metal middle frame in FIG.
  • the middle frame 203 and the second gap form a second capacitor, that is, the second conductive block is regarded as one plate of the second capacitor, and the metal middle frame is regarded as the other plate of the second capacitor, wherein the first plate
  • the change in capacitance of the capacitor and the second capacitor reflects the magnitude of the first pressure acting on the cover plate 201.
  • the first conductive block, the metal middle frame and the first gap form a first capacitor
  • the second conductive block, the metal middle frame and the second gap form a second capacitor
  • the change in capacitance of the first capacitor and the second capacitor reflects the magnitude of the first pressure acting on the cover plate, for example, when a single finger presses the touch screen cover, the pressure applied by the single finger can cause the first capacitor and the first
  • the capacitance of the two capacitors changes such that the change in capacitance of the first capacitor and the second capacitor reflects the magnitude of the pressure applied to the single finger press on the touch screen cover.
  • FIG. 6 a schematic structural diagram of the terminal 600, wherein the conductive layer 204 includes at least a third conductive block 2043 and a fourth conductive block 2044; The third conductive block 2043 is not connected to the fourth conductive block 2044;
  • the conductive layer is divided into different conductive blocks, wherein the mode between the conductive blocks can be self-contained or mutually capacitive, and the terminal can recognize the pressure acting on the cover plate.
  • the position point corresponds to the position of the conductive block.
  • the force acting on the cover plate causes deformation of the entire conductive layer, and the degree of deformation of the conductive layer at each position is also different, and therefore, the change of capacitance of different capacitors can be induced, and the number and terminal of the conductive block The number of areas divided by the screen correspond.
  • the material of the conductive layer is an ITO film or an FPC.
  • other conductive materials may be used, and are not specifically limited herein.
  • the third conductive block 2043 and the fourth conductive block 2044 are respectively attached to the lower surface 2020 of the display module 202;
  • the third conductive block is attached to the lower surface of the display module by a sealant or a full-surface gel, or the fourth conductive block is attached to the display by a sealant or a full-face gel.
  • the manner in which the third conductive block and the fourth conductive block are attached to the lower surface of the display module is the same as the manner in which the conductive layer is attached to the lower surface of the display module.
  • the conductive layer being attached to the display module.
  • the way of the lower surface is not described here.
  • the upper surface of the conductive layer is attached to the display module, so that the deformation of the conductive layer is prevented from being too large, and at least one elastic colloid is attached to the lower surface of the conductive layer, such as the third conductive block.
  • the corresponding third elastic colloid, the fourth elastic colloid corresponding to the fourth conductive block, and the like are not specifically limited herein.
  • the elastic colloid acts on the one hand to elastically compress and on the other hand acts as a bond.
  • the elastic colloid may be foam or the like, which is not specifically limited herein.
  • the third conductive block 2043 there is a third gap between the third conductive block 2043 and the metal middle frame 203 (such as a blank area between the third conductive block and the metal middle frame in FIG. 6), wherein the third conductive block 2043, The metal middle frame 203 and the third gap form a third capacitor, that is, the third conductive block is regarded as one plate of the third capacitor, and the metal middle frame is regarded as the other plate of the third capacitor, wherein
  • the change in capacitance of the third capacitor reflects the magnitude of the second pressure acting on the cover plate 201;
  • a fourth gap between the fourth conductive block 2044 and the metal middle frame 203 (such as a blank area between the fourth conductive block and the metal middle frame in FIG. 6), wherein the fourth conductive block 2044,
  • the metal middle frame 203 and the fourth gap form a fourth capacitor, that is, the fourth conductive block is regarded as one plate of the fourth capacitor, and the metal middle frame is regarded as the other plate of the fourth capacitor, wherein
  • the change in capacitance of the fourth capacitor reflects the magnitude of the third pressure acting on the cover plate 201.
  • the metal middle frame there is a certain gap between the metal middle frame and the conductive layer, so that the shape variable of the conductive layer is prevented from being too large, and at least one elastic colloid is attached to the upper surface of the metal middle frame.
  • the third elastic colloid corresponding to the third conductive block, the fourth elastic colloid corresponding to the fourth conductive block, and the like are not specifically limited herein.
  • the third conductive block, the metal middle frame and the third gap form a third capacitor
  • the fourth conductive block, the metal middle frame and the fourth gap form a fourth capacitor
  • the capacitance change of the third capacitor reflects the magnitude of the second pressure acting on the cover plate
  • the change in capacitance of the fourth capacitor reflects the magnitude of the third pressure acting on the cover plate, such as: two-finger press
  • the first finger of the two fingers acts on the first area of the corresponding cover of the first conductive block
  • the second finger of the two fingers acts on the second area of the corresponding cover of the second conductive block
  • the pressure generated by one finger causes the capacitance of the third capacitor to change
  • the pressure generated by the second finger causes the capacitance of the fourth capacitor to change, so that the capacitance change of the third capacitor can reflect the difference between the two fingers acting on the touch screen cover.
  • the magnitude of the pressure pressed by one finger, the change in capacitance of the fourth capacitor can reflect the magnitude of the pressure applied by the two-finger second finger on the touch screen cover. It can be seen that the first conductive block and the second conductive block are not connected, and multi-finger pressure touch can be realized, thereby effectively improving the user experience.
  • FIG. 7 is a schematic structural diagram of the terminal 700.
  • the terminal 700 includes a cover 301, a display module 302, and a metal middle frame 303.
  • the module 302 is located between the cover plate 301 and the metal middle frame 303, and the metal middle frame 303 is grounded.
  • the terminal 700 further includes:
  • the conductive layer 304 is attached to the upper surface 3030 of the metal middle frame 303 by at least one elastic colloid 305, wherein the at least one elastic colloid 305 is non-conductive, the conductive layer 304, the metal
  • the middle frame 303 and the at least one elastic colloid 305 form at least one capacitor, that is, the conductive layer is regarded as one plate of the capacitor, and the metal middle frame is regarded as the other plate of the capacitor, wherein the capacitance change of the at least one capacitor
  • the magnitude of at least one pressure acting on the cover plate 301 is reflected.
  • the upper surface of the metal middle frame is bonded with an elastic colloid, and further, a conductive layer is bonded to the upper surface of the elastic colloid.
  • the conductive layer and the metal middle frame are bonded together by an elastic colloid.
  • the elastic colloid may be any colloid having elastic compression, and the elastic colloid has an elastic stretching effect on the one hand and a bonding effect on the other hand.
  • the material of the conductive layer is an indium tin oxide ITO film or a copper foil flexible circuit board FPC.
  • the change in capacitance of the at least one capacitor may reflect the magnitude of at least one pressure acting on the cover, such as when the user presses the touch screen cover of the terminal by the finger, the user applies a certain pressure on the touch screen On the cover plate, the pressure applied by the user causes a change in the capacitance of the capacitor, wherein the change in capacitance of the capacitor can reflect the magnitude of at least one pressure acting on the cover plate, and further, the terminal can receive a signal of a change in capacitance of the capacitor, Thereby performing corresponding operations, such as turning the volume of the terminal up or down.
  • FIG. 8 is a schematic structural diagram of the terminal 800 , wherein the conductive layer 304 includes at least a first conductive block 3041 and a second conductive block 3042 , and the first conductive block 3041 . Connecting with the second conductive block 3042;
  • the first conductive block and the second conductive block are connected to each other, so that the first conductive block and the second conductive block can share the power supply module of the terminal.
  • the second conductive block can directly obtain power from the first conductive block without connecting the circuit of the power supply module of the terminal, thereby reducing the layout space of the circuit.
  • the first conductive block is connected to the second conductive block, it can be used as a whole to facilitate the capacitance change of the overall detecting capacitor.
  • the material of the conductive layer is an indium tin oxide ITO film or a copper foil flexible circuit board FPC.
  • the first conductive block 3041 is attached to the upper surface 31 of the first elastic colloid 3051, wherein the first conductive block 3041, the metal middle frame 303 and the first elastic colloid 3051 form a first capacitor, that is, : the first conductive block is regarded as one plate of the first capacitor, and the metal middle frame is regarded as the other plate of the first capacitor;
  • the second conductive block 3042 is attached to the upper surface 32 of the second elastic colloid 3052, wherein the second conductive block 3042, the metal middle frame 303 and the second elastic colloid 3052 form a second capacitor, that is,
  • the second conductive block is regarded as one plate of the second capacitor, and the metal middle frame is regarded as the other plate of the second capacitor, wherein the capacitance change of the first capacitor and the second capacitor reflects The magnitude of the first pressure acting on the cover plate 301.
  • first elastic colloid and the second elastic colloid may or may not be connected, and are not specifically limited herein.
  • the first conductive block may be directly bonded to the first elastic colloid, or may be bonded to the first elastic colloid by any colloid, and may be selected according to actual conditions, and is not specifically limited herein.
  • the first conductive block, the metal middle frame and the first elastic colloid form a first capacitor
  • the second conductive block, the metal middle frame and the second elastic colloid form a second capacitor
  • the first conductive block and the second conductive block The conductive blocks are connected, so that the capacitance change of the first capacitor and the second capacitor reflects the magnitude of the first pressure acting on the cover plate, for example, when the single finger presses the touch screen cover, the pressure applied by the single finger may cause the first capacitor
  • the capacitance of the second capacitor and the second capacitor are varied such that the change in capacitance of the first capacitor and the second capacitor reflects the magnitude of the pressure applied to the single finger press on the touch screen cover.
  • the conductive layer is divided into different conductive blocks, wherein the mode between the conductive blocks can be self-contained or mutually capacitive, and the terminal can recognize the pressure acting on the cover plate.
  • the position point corresponds to the position of the conductive block.
  • the force acting on the cover plate causes deformation of the entire conductive layer, and the degree of deformation of the conductive layer at various points is also different, and therefore, variations in capacitance of different capacitors can be induced.
  • the material of the conductive layer is an ITO film or an FPC.
  • other conductive materials may be used, and are not specifically limited herein.
  • the conductive layer 304 includes at least a third conductive block 3043 and a fourth conductive block 3044; the third conductive block 3043 and the fourth conductive Block 3044 is not connected;
  • the conductive layer is divided into different conductive blocks, wherein the mode between the conductive blocks can be self-contained or mutually capacitive, and the terminal can recognize the pressure acting on the cover plate.
  • the position point corresponds to the position of the conductive block.
  • the force acting on the cover plate causes deformation of the entire conductive layer, and the degree of deformation of the conductive layer at various points is also different, and therefore, variations in capacitance of different capacitors can be induced.
  • the material of the conductive layer is an indium tin oxide ITO film or a copper foil flexible circuit board FPC.
  • the third conductive block 3043 is attached to the upper surface 33 of the third elastic colloid 3053, wherein the third conductive block 3043, the metal middle frame 303 and the third elastic colloid 3053 form a third
  • the capacitor that is, the third conductive block is regarded as one plate of the third capacitor, and the metal middle frame is regarded as the other plate of the third capacitor, wherein the capacitance change of the third capacitor reacts to act on the cover plate
  • the fourth conductive block 3044 is attached to the upper surface 34 of the fourth elastic colloid 3054, wherein the fourth conductive block 3044, the metal middle frame 303, and the fourth elastic 3054 colloid form a fourth capacitor, that is,
  • the fourth conductive block is regarded as one plate of the fourth capacitor, and the metal middle frame is regarded as the other plate of the fourth capacitor, wherein the capacitance change of the fourth capacitor reacts with the cover plate 301 The size of the third pressure.
  • third elastic colloid and the fourth elastic colloid may or may not be connected, and are not specifically limited herein.
  • the third conductive block, the metal middle frame and the third elastic colloid form a third capacitor
  • the fourth conductive block, the metal middle frame and the fourth elastic colloid form a fourth capacitor
  • the third conductive block and the fourth conductive block The conductive block is not connected, therefore, the capacitance change of the third capacitor reflects the magnitude of the second pressure acting on the cover plate
  • the capacitance change of the fourth capacitor reflects the magnitude of the third pressure acting on the cover plate, such as:
  • the first finger of the two fingers acts on the first area of the corresponding cover of the first conductive block
  • the second finger of the two fingers acts on the second area of the corresponding cover of the second conductive block
  • the pressure generated by the first finger changes the capacitance of the third capacitor
  • the pressure generated by the second finger changes the capacitance of the fourth capacitor, so that the capacitance change of the third capacitor can reflect the two fingers acting on the touch screen cover.
  • the magnitude of the pressure pressed by one of the fingers, and the change in the capacitance of the fourth capacitor can reflect the pressure of the other finger pressed on the touch screen cover. . It can be seen that the first conductive block and the second conductive block are not connected, and multi-finger touch can be realized, thereby effectively improving the user experience.
  • the terminal 1000 includes a cover 401 and a display module 402, and the cover 401 is located above the display module 402 4020;
  • the display module 402 includes a backlight unit 4021, a thin film transistor (TFT) substrate 4022, and a TFT circuit 4023.
  • the TFT substrate 4022 is located between the backlight unit 4021 and the TFT circuit 4023.
  • the TFT circuit 4023 includes a constant voltage layer, and the terminal 1000 further includes:
  • the conductive layer 403 is attached to the lower surface 42 of the backlight unit 4021;
  • cover plate is located above the display module, and the upper portion refers to the position of the upper and lower positions at the structural level where the terminal is located.
  • a dielectric exists between the conductive layer 403 and the constant voltage layer in the TFT circuit 4023, wherein the conductive layer 403, the constant voltage layer in the TFT circuit 4023, and the dielectric form at least one capacitor, namely:
  • the conductive layer is regarded as one plate of the capacitor, and the constant voltage layer in the TFT circuit is regarded as the other plate of the capacitor, wherein the capacitance change of the at least one capacitor reflects at least one pressure acting on the cover plate 401
  • the dielectric includes the TFT substrate 4022.
  • the conductive layer may be attached to the lower surface of the backlight unit by a colloid.
  • the colloid may be a double-sided tape or an OCA colloid, etc., and may be selected according to actual conditions, and is not specifically limited herein.
  • the change of the capacitance of the capacitor is proportional to the magnitude of the pressure. For example, the greater the change of the capacitance of the capacitor, the greater the pressure acting on the cover plate, or the cover plate is applied. The greater the pressure above, the greater the change in capacitance of the capacitor.
  • the conductive layer and the constant voltage layer in the TFT circuit are insulated from each other, and a certain dielectric exists between the conductive layer and the constant voltage layer in the TFT circuit, the conductive layer is used in the TFT circuit.
  • the dielectric between the constant voltage layer, the conductive layer and the constant voltage layer in the TFT circuit forms at least one capacitor, and further, the capacitance change of the at least one capacitor can reflect the magnitude of at least one pressure acting on the cover, such as when When the user presses the touch screen cover of the terminal by the finger, the user applies a certain pressure on the touch screen cover, and the pressure applied by the user causes the capacitance of the capacitor to change, wherein the capacitance change of the capacitor can reflect the action on the cover plate.
  • At least one magnitude of the pressure further, the terminal can receive a signal of the capacitance change of the capacitor, thereby performing a corresponding operation, such as turning the volume of the terminal up or down.
  • FIG. 11 and FIG. 12 are respectively a schematic structural diagram of the terminal 1100 and the terminal 1200.
  • the terminal 1100 and the terminal 1200 further include:
  • the metal middle frame 404 is located below the conductive layer 403;
  • the metal middle frame is located below the conductive layer in the vertical direction where the screen of the terminal is located.
  • the lower surface 4030 of the conductive layer 403 or the upper surface 4040 of the metal middle frame 404 is attached At least one elastic colloid 405 is incorporated.
  • At least one elastic colloid 405 is bonded to the lower surface of the conductive layer.
  • At least one elastic colloid 405 is attached to the upper surface of the metal middle frame.
  • the conductive layer is attached to the metal frame and the pressure touch cannot be achieved, and at least one of the lower surface of the conductive layer or the upper surface of the metal middle frame is attached.
  • the elastic colloid wherein the elastic colloid may be any colloid having elastic compression, and the elastic colloid has an elastic stretching effect on the one hand and a bonding effect on the other hand.
  • the material of the conductive layer is an ITO film or an FPC, which is not specifically limited herein.
  • FIG. 13 is a schematic structural diagram of the terminal 1300, wherein the conductive layer 403 includes at least a first conductive block 4031 and a second conductive block 4032. The first conductive block 4031 and the second conductive block 4032 are connected;
  • the conductive layer is divided into different conductive blocks, wherein the mode between the conductive blocks can be self-contained or mutually capacitive, and the terminal can recognize the pressure acting on the cover plate.
  • the position point corresponds to the position of the conductive block.
  • the force acting on the cover plate causes deformation of the entire conductive layer, and the degree of deformation of the conductive layer at various points is also different, and therefore, variations in capacitance of different capacitors can be induced.
  • the first conductive block and the second conductive block are connected to each other, so that the first conductive block and the second conductive block can share the power supply module of the terminal.
  • the second conductive block can directly obtain power from the first conductive block without connecting the circuit of the power supply module of the terminal, thereby reducing the layout space of the circuit. .
  • the first conductive block 4031 and the second conductive block 4032 are respectively attached to the lower surface 42 of the backlight unit 4021;
  • the metal middle frame there is a certain gap between the metal middle frame and the conductive layer, so that the shape variable of the conductive layer is prevented from being too large, and at least one elastic colloid is attached to the upper surface of the metal middle frame, for example,
  • the first elastic colloid corresponding to the first conductive block, the second elastic colloid corresponding to the second conductive block, and the like are not specifically limited herein.
  • the upper surface of the conductive layer is attached to the display module, so that the deformation of the conductive layer is prevented from being too large, and at least one elastic colloid is attached to the lower surface of the conductive layer, such as the first conductive
  • the first elastic colloid corresponding to the block, the second elastic colloid corresponding to the second conductive block, and the like are not specifically limited herein.
  • the elastic colloid acts on the one hand to elastically compress and on the other hand acts as a bond.
  • the elastic colloid may be foam or the like, which is not specifically limited herein.
  • a first dielectric exists between the first conductive block 4031 and the constant voltage layer in the TFT circuit 4023, wherein the first conductive block 4031, the constant voltage layer in the TFT circuit 4023, and the first The dielectric forms a first capacitor, that is, the first conductive block is regarded as one plate of the first capacitor, and the constant voltage layer in the TFT circuit is regarded as the other plate of the first capacitor; the second conductive block 4032 and the A second dielectric exists between the constant voltage layers in the TFT circuit 4023, wherein the second conductive block 4032, the constant voltage layer in the TFT circuit 4023, and the second dielectric form a second capacitor, ie: second The conductive block is regarded as one plate of the second capacitor, and the constant voltage layer in the TFT circuit is regarded as the other plate of the second capacitor, wherein the capacitance change of the first capacitor and the second capacitor reacts The magnitude of the first pressure on the cover 401.
  • the first conductive block, the constant voltage layer in the TFT circuit and the first dielectric form a first capacitor
  • the second conductive block, the constant voltage layer in the TFT circuit, and the second dielectric form a second capacitor
  • a conductive block is connected to the second conductive block, so that the capacitance change of the first capacitor and the second capacitor reflects the magnitude of the first pressure acting on the cover plate, for example, when a single finger presses the touch screen cover, the single finger is applied
  • the pressure may cause a change in the capacitance of the first capacitor and the second capacitor such that the change in capacitance of the first capacitor and the second capacitor may reflect the magnitude of the pressure applied to the single finger press on the touch screen cover.
  • FIG. 14 a schematic structural diagram of the terminal 1400, wherein the conductive layer 403 includes at least a third conductive block 4033 and a fourth conductive block 4034.
  • the third conductive block 4033 is not connected to the fourth conductive block 4034;
  • the conductive layer is divided into different conductive blocks, wherein the mode between the conductive blocks can be self-contained or mutually capacitive, and the terminal can recognize the pressure acting on the cover plate.
  • the position point corresponds to the position of the conductive block.
  • the third conductive block 4033 and the fourth conductive block 4034 are respectively attached to the lower surface 42 of the backlight unit 4021;
  • the shape variable of the conductive layer is prevented from being too large, and at least one elastic colloid is adhered to the upper surface of the metal middle frame, such as a third elastic colloid corresponding to the third conductive block, and a fourth elastic colloid corresponding to the fourth conductive block.
  • a third elastic colloid corresponding to the third conductive block and a fourth elastic colloid corresponding to the fourth conductive block.
  • the upper surface of the conductive layer is attached to the display module, so that the deformation of the conductive layer is prevented from being too large, and at least one elastic colloid is attached to the lower surface of the conductive layer, such as the third conductive block.
  • the corresponding third elastic colloid, the fourth elastic colloid corresponding to the fourth conductive block, and the like are not specifically limited herein.
  • the elastic colloid acts on the one hand to elastically compress and on the other hand acts as a bond.
  • the elastic colloid may be foam or the like, which is not specifically limited herein.
  • a third dielectric exists between the third conductive block 4033 and the constant voltage layer in the TFT circuit 4023, wherein the third conductive block 4033, the constant voltage layer in the TFT circuit 4023, and the third The dielectric forms a third capacitor, that is, the third conductive block is regarded as one plate of the third capacitor, and the constant voltage layer in the TFT circuit is regarded as the other plate of the third capacitor, wherein the capacitance change of the third capacitor Responding to the magnitude of the second pressure acting on the cover plate 401;
  • a fourth dielectric exists between the fourth conductive block 4034 and the constant voltage layer in the TFT circuit 4023, wherein the fourth conductive block 4034, the constant voltage layer in the TFT circuit 4023, and the fourth The dielectric forms a fourth capacitor, that is, the fourth conductive block is regarded as one plate of the fourth capacitor, and the constant voltage layer in the TFT circuit is regarded as the other plate of the fourth capacitor, wherein the capacitance change of the fourth capacitor The magnitude of the third pressure acting on the cover 401 is reflected.
  • the third conductive block, the constant voltage layer and the third dielectric in the TFT circuit form a third capacitor
  • the fourth conductive block, the constant voltage layer in the TFT circuit, and the fourth dielectric form a fourth capacitor
  • the three conductive blocks are not connected to the fourth conductive block. Therefore, the capacitance change of the third capacitor reflects the magnitude of the second pressure acting on the cover plate, and the capacitance change of the fourth capacitor reflects the third pressure acting on the cover plate.
  • the size of the second finger refers to the first area of the corresponding cover of the first conductive block, and the second finger of the double finger acts on the corresponding part of the second conductive block.
  • the pressure generated by the first finger changes the capacitance of the third capacitor
  • the pressure generated by the second finger changes the capacitance of the fourth capacitor, so that the capacitance change of the third capacitor can react to the touch screen
  • the magnitude of the pressure pressed by one of the fingers on the cover, and the change in the capacitance of the fourth capacitor can reflect the other finger of the two fingers acting on the touch screen cover
  • the size of the pressure It can be seen that the first conductive block and the second conductive block are not connected, and multi-finger touch can be realized. Effectively improve the user experience.
  • a schematic structural diagram of the terminal 1500 includes a cover 501 , a display module 502 , and a middle frame 503 , wherein the display module 502 is located on the cover Between the board 501 and the middle frame 503, the terminal 500 further includes:
  • the conductive layer 504 is attached to the upper surface 53 of the middle frame 503;
  • the conductive layer is generally adhered to the upper surface of the middle frame by a sealant or a whole surface colloid. In some cases, the conductive layer is only fixed to the upper surface of the middle frame by a sealant. In some cases, in some cases, in some cases, the conductive layer may be adhered to the upper surface of the middle frame through the entire surface colloid, and the colloid may be a double-sided adhesive or an OCA colloid.
  • the specific selection may be made according to the actual situation, and is not specifically limited herein. For the specific bonding manner, refer to FIG. 2a and FIG. 2b, and details are not described herein again.
  • the conductive layer 504 and the lower surface 52 of the display module 502 there is at least one gap between the conductive layer 504 and the lower surface 52 of the display module 502 (as shown in the figure, a blank area between the lower surface of the module and the conductive layer), wherein the display module 502
  • the lower surface 52 of the display module 502 is grounded, and the conductive layer 504, the lower surface 52 of the display module 502, and the at least one gap form at least one capacitor, that is, conductive
  • the layer is considered to be a plate of the capacitor, and the lower surface of the display module is seen as the other plate of the capacitor, wherein the change in the at least one capacitor reflects the magnitude of at least one of the pressures acting on the cover plate 501.
  • the material of the conductive layer 504 is an indium tin oxide ITO film or a copper foil flexible circuit board FPC.
  • the depth of the gap is generally about 0.2 mm.
  • the conductive layer is used to form at least one gap between the lower surface of the display module and the lower surface of the conductive layer and the lower surface of the display module, that is, the conductive layer is regarded as one plate of the capacitor, and the lower surface of the display module is displayed.
  • the change in capacitance of the at least one capacitor can reflect the magnitude of at least one pressure acting on the cover, such as when the user presses the touch screen cover of the terminal by the finger, the user applies a certain The pressure on the touch screen cover, the force caused the deformation of the conductive layer, so that the distance between the two plates of the capacitor changes, Thereby, the capacitance of the capacitor is changed, wherein the capacitance change of the capacitor can reflect the magnitude of the at least one pressure acting on the cover plate.
  • the terminal can receive the signal of the capacitance change of the capacitor, thereby performing a corresponding operation, such as Turn the volume of the terminal up or down.
  • a schematic structural diagram of the terminal 1600 wherein the conductive layer 504 includes at least a first conductive block 5041 and a second conductive block 5042, the first a conductive block 5041 and the second conductive block 5042 are connected;
  • the first conductive block and the second conductive block are connected to each other, so that the first conductive block and the second conductive block can share the power supply module of the terminal.
  • the second conductive block can directly obtain power from the first conductive block without connecting the circuit of the power supply module of the terminal, thereby reducing the layout space of the circuit. .
  • the conductive layer is divided into different conductive blocks, wherein the mode between the conductive blocks can be self-contained or mutually capacitive, and the terminal can recognize the pressure acting on the cover plate.
  • the position point corresponds to the position of the conductive block.
  • the first conductive block 5041 and the second conductive block 5042 are respectively attached to the upper surface 53 of the middle frame 503;
  • a first gap exists between the first conductive block 5041 and the lower surface 52 of the display module 502 (such as a gap between the first conductive block and the lower surface of the display module in FIG. 16), wherein the The first conductive block 5041, the lower surface 52 of the display module 502, and the first gap form a first capacitor, that is, the first conductive block is regarded as a plate of the first capacitor, and the lower surface of the display module is viewed.
  • a second plate is formed between the second conductive block 5042 and the lower surface of the display module 502 (such as the second conductive block in FIG.
  • the second conductive block 5042 is regarded as one pole of the second capacitor a lower surface of the display module as the other plate of the second capacitor, wherein the first capacitor and the second capacitor
  • the change in capacitance reflects the magnitude of the first pressure acting on the cover 501.
  • the first conductive block, the lower surface of the display module and the first gap form a first capacitor
  • the second conductive block, the lower surface of the display module, and the second gap form a second capacitor
  • the block is connected to the second conductive block, so that the capacitance change of the first capacitor and the second capacitor reflects the magnitude of the first pressure acting on the cover plate, for example, when the single finger presses the touch screen cover, the pressure applied by the single finger can be
  • the capacitance of the first capacitor and the second capacitor is varied such that the change in capacitance of the first capacitor and the second capacitor can reflect the magnitude of the pressure applied to the single finger press on the touch screen cover.
  • FIG. 17 is a schematic structural diagram of a terminal 1700, wherein the conductive layer 504 includes at least a third conductive block 5043 and a fourth conductive block 5044; Block 5043 is not connected to the fourth conductive block 5044;
  • the conductive layer is divided into different conductive blocks, wherein the mode between the conductive blocks can be self-contained or mutually capacitive, and the terminal can recognize the pressure acting on the cover plate.
  • the position point corresponds to the position of the conductive block.
  • the force acting on the cover plate causes deformation of the entire conductive layer, and the degree of deformation of the conductive layer at various points is also different, and therefore, variations in capacitance of different capacitors can be induced.
  • the material of the conductive layer is an ITO film or an FPC.
  • other conductive materials may be used, and are not specifically limited herein.
  • the third conductive block 5043 and the fourth conductive block 5044 are respectively attached to the upper surface 53 of the middle frame 503;
  • a third gap between the third conductive block 5043 and the lower surface 52 of the display module 502 (such as a gap between the third conductive block and the lower surface of the display module in FIG. 17), wherein
  • the third conductive block 5043, the lower surface 52 of the display module 502, and the third gap form a third capacitor, that is, the third conductive block is regarded as a plate of the third capacitor, and the lower surface of the display module is viewed.
  • Making another plate of the third capacitor, wherein a change in capacitance of the third capacitor reflects a magnitude of a second pressure acting on the cover plate 501;
  • the fourth conductive block 5044, the lower surface of the display module 502, and the fourth gap form a fourth capacitor, That is, the fourth conductive block is regarded as one plate of the fourth capacitor, and the lower surface of the display module is regarded as the other plate of the fourth capacitor, wherein the capacitance change of the fourth capacitor reacts to act on the cover The magnitude of the third pressure on the plate 501.
  • the third conductive block, the lower surface of the display module and the third gap form a third capacitor
  • the fourth conductive block, the lower surface of the display module, and the fourth gap form a fourth capacitor
  • the block is not connected to the fourth conductive block. Therefore, the capacitance change of the third capacitor reflects the magnitude of the second pressure acting on the cover plate
  • the capacitance change of the fourth capacitor reflects the magnitude of the third pressure acting on the cover plate. For example, when the two fingers press the touch screen cover, the first finger of the two fingers acts on the first area of the corresponding cover of the first conductive block, and the second finger of the two fingers acts on the corresponding cover of the second conductive block.
  • the second region the pressure generated by the first finger causes the capacitance of the third capacitor to change, and the pressure generated by the second finger causes the capacitance of the fourth capacitor to change, so that the capacitance change of the third capacitor can be reflected to act on the touch screen cover
  • the magnitude of the pressure pressed by one of the two fingers, the change in capacitance of the fourth capacitor can reflect the other finger pressing on the double finger on the touch screen cover Magnitude of the force. It can be seen that the first conductive block and the second conductive block are not connected, and multi-finger touch can be realized, thereby effectively improving the user experience.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate parts may or may not be physically separated, and the parts displayed as units may or may not be physical units, ie may be located in one place, or may be Distributed to multiple network elements. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Pressure Sensors (AREA)

Abstract

一种终端(200),用于解决现有技术中实现压力触控所存在的成本高的问题,节约成本。所述终端(200)包括盖板(201)、显示模组(202)和金属中框(203),其中,所述显示模组(202)位于所述盖板(201)和所述金属中框(203)之间,所述金属中框(203)接地,所述终端(200)还包括:导电层(204),所述导电层(204)贴合于所述显示模组(202)的下表面;所述导电层(204)和所述金属中框(203)之间存在至少一个间隙,其中,所述导电层(204)、所述金属中框(203)和所述至少一个间隙形成至少一个电容器,其中,所述至少一个电容器的电容变化反应出作用于所述盖板(201)上的至少一个压力的大小。

Description

一种终端 技术领域
本发明涉及终端领域,具体涉及一种终端。
背景技术
触摸屏作为人机交互模块,在手机、ipad和个人电脑(英文全称:Personal Computer,缩写:PC)等电子设备中的应用越来越广泛与重要,对其人机交互的直观性感受要求也越来越高,比如:通过压力感应实现压力触控。
目前压力感应所需的压力材料的结构为三明治结构,该压力材料集合于压力传感器上,从而利用专用独立的压力传感器布置液晶显示器(英文全称:Liquid Crystal Display缩写:LCD)下方的四个角落。
但是,该压力材料为专用的压力材料,材料成本高,而且需要开发新的供应商才能进行资源整合,整合成本高。
发明内容
本发明实施例公开了一种压力感应的方法及终端,用于解决现有技术中实现压力触控所存在的成本高的问题,节约成本。
本发明第一方面提供一种终端,所述终端包括盖板、显示模组和金属中框,其中,所述显示模组位于所述盖板和所述金属中框之间,所述金属中框接地,所述终端还包括:
导电层,所述导电层贴合于所述显示模组的下表面;
所述导电层和所述金属中框之间存在至少一个间隙,其中,所述导电层、所述金属中框和所述至少一个间隙形成至少一个电容器,其中,所述至少一个电容器的电容变化反应出作用于所述盖板上的至少一个压力的大小。
结合第一方面,在第一种可能的实现方式中,所述导电层至少包括第一导电块和第二导电块,所述第一导电块和所述第二导电块连接;
所述第一导电块和所述第二导电块分别贴合于所述显示模组的下表面;
所述第一导电块与所述金属中框之间存在第一间隙,其中,所述第一导电块、所述金属中框和所述第一间隙形成第一电容器;所述第二导电块与所述金属中框之间存在第二间隙,其中,所述第二导电块、所述金属中框和所述第二间隙形成第二电容器,其中,所述第一电容器和所述第二电容器的电容变化反 应出作用于所述盖板上的第一压力的大小。
结合第一方面,在第二种可能的实现方式中,所述导电层至少包括第三导电块和第四导电块;所述第三导电块与所述第四导电块不连接;
所述第三导电块和所述第四导电块分别贴合于所述显示模组的下表面;
所述第三导电块与所述金属中框之间存在第三间隙,其中,所述第三导电块、所述金属中框和所述第三间隙形成第三电容器,其中,所述第三电容器的电容变化反应出作用于所述盖板上的第二压力的大小;
所述第四导电块与所述金属中框之间存在第四间隙,其中,所述第四导电块、所述金属中框和所述第四间隙形成第四电容器,其中,所述第四电容器的电容变化反应出作用于所述盖板上的第三压力的大小。
结合第一方面的第一种可能的实现方式,在第三种可能的实现方式中,
通过框胶或者整面胶体将所述第一导电块贴合于所述显示模组的下表面,或者,通过框胶或者整面胶体将所述第二导电块贴合于所述显示模组的下表面,其中,所述第一导电块和所述第二导电块的贴合区域不重叠。
结合第一方面的第二种可能的实现方式,在第四种可能的实现方式中,
通过框胶或者整面胶体将所述第三导电块贴合于所述显示模组的下表面,或者,通过框胶或者整面胶体将所述第四导电块贴合于所述显示模组的下表面,其中,所述第三导电块和所述第四导电块的贴合区域不重叠。
结合第一方面或者第一方面的第一至第四种中任意一种可能的实现方式,在第五种可能的实现方式中,
所述导电层的下表面或者所述金属中框的上表面贴合至少一个弹性胶体。
结合第一方面或者第一方面的第一至第五种中任意一种可能的实现方式,在第六种可能的实现方式中,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
本发明第二方面提供一种终端,所述终端包括盖板、显示模组和金属中框,其中,所述显示模组位于所述盖板和所述金属中框之间,所述金属中框接地,所述终端还包括:
导电层,所述导电层通过至少一个弹性胶体贴合于所述金属中框的上表面,其中,所述至少一个弹性胶体不导电,所述导电层、所述金属中框和所述 至少一个弹性胶体形成至少一个电容器,其中,所述至少一个电容器的电容变化反应出作用于所述盖板上的至少一个压力的大小。
结合第二方面,在第一种可能的实现方式中,所述导电层至少包括第一导电块和第二导电块,所述第一导电块和所述第二导电块连接;
所述第一导电块贴合于第一弹性胶体的上表面,其中,所述第一导电块、所述金属中框和所述第一弹性胶体形成第一电容器;
所述第二导电块贴合于第二弹性胶体的上表面,其中,所述第二导电块、所述金属中框和所述第二弹性胶体形成第二电容器,其中,所述第一电容器和所述第二电容器的电容变化反应出作用于所述盖板上的第一压力的大小。
结合第二方面,在第二种可能的实现方式中,所述导电层至少包括第三导电块和第四导电块;所述第三导电块与所述第四导电块不连接;
所述第三导电块贴合于第三弹性胶体的上表面,其中,所述第三导电块、所述金属中框和所述第三弹性胶体形成第三电容器,其中,所述第三电容器的电容变化反应出作用于所述盖板上的第二压力的大小;
所述第四导电块贴合于第四弹性胶体的上表面,其中,所述第四导电块、所述金属中框和所述第四弹性胶体形成第四电容器,其中,所述第四电容器的电容变化反应出作用于所述盖板上的第三压力的大小。
结合第二方面或者第二方面的第一种至第二种可能的实现方式,在第三种可能的实现方式中,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
本发明第三方面提供一种终端,所述终端包括盖板和显示模组,所述盖板位于所述显示模组的上方;所述显示模组包括背光单元、薄膜晶体管TFT基板和TFT电路,所述TFT基板位于所述背光单元和所述TFT电路之间,所述TFT电路包括恒压层,所述终端还包括:
导电层,所述导电层贴合于所述背光单元的下表面;
所述导电层与所述TFT电路中的恒压层之间存在电介质,其中,所述导电层、所述TFT电路中的恒压层和所述电介质形成至少一个电容器,其中,所述至少一个电容器的电容变化反应出作用于所述盖板的至少一个压力的大小,所述电介质包含所述TFT基板。
结合第三方面,在第一种可能的实现方式中,所述导电层至少包括第一导电块和第二导电块,所述第一导电块和所述第二导电块连接;
所述第一导电块和所述第二导电块分别贴合于所述背光单元的下表面;
所述第一导电块与所述TFT电路中的恒压层之间存在第一电介质,其中,所述第一导电块、所述TFT电路中的恒压层和所述第一电介质形成第一电容器;所述第二导电块与所述TFT电路中的恒压层之间存在第二电介质,其中,所述第二导电块、所述TFT电路中的恒压层和所述第二电介质形成第二电容器,其中,所述第一电容器和所述第二电容器的电容变化反应出作用于所述盖板上的第一压力的大小。
结合第三方面,在第二种可能的实现方式中,所述导电层至少包括第三导电块和第四导电块;所述第三导电块与所述第四导电块不连接;
所述第三导电块和所述第四导电块分别贴合于所述背光单元的下表面;
所述第三导电块与所述TFT电路中的恒压层之间存在第三电介质,其中,所述第三导电块、所述TFT电路中的恒压层和所述第三电介质形成第三电容器,其中,所述第三电容器的电容变化反应出作用于所述盖板上的第二压力的大小;
所述第四导电块与所述TFT电路中的恒压层之间存在第四电介质,其中,所述第四导电块、所述TFT电路中的恒压层和所述第四电介质形成第四电容器,其中,所述第四电容器的电容变化反应出作用于所述盖板上的第三压力的大小。
结合第三方面或者第三方面的第一种至第二种可能的实现方式,在第三种可能的实现方式中,所述终端还包括:
金属中框,所述金属中框位于所述导电层的下方;
所述导电层的下表面或者所述金属中框的上表面贴合有至少一个弹性胶体。
结合第二方面或者第二方面的第一种至第三种中任意一种可能的实现方式,在第四种可能的实现方式中,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
本发明第四方面提供一种终端,所述终端包括盖板、显示模组和中框,其 中,所述显示模组位于所述盖板和所述中框之间,所述终端还包括:
导电层,所述导电层贴合于所述中框的上表面;
所述导电层和所述显示模组的下表面之间存在至少一个间隙,其中,所述显示模组的下表面为金属材质,所述显示模组的下表面接地,所述导电层、所述显示模组的下表面和所述至少一个间隙形成至少一个电容器,其中,所述至少一个电容器的变化反应出作用于所述盖板上的至少一个压力的大小。
结合第四方面,在第一种可能的实现方式中,所述导电层至少包括第一导电块和第二导电块,所述第一导电块和所述第二导电块连接;
所述第一导电块和所述第二导电块分别贴合于所述中框的上表面;
所述第一导电块与所述显示模组的下表面之间存在第一间隙,其中,所述第一导电块、所述显示模组的下表面和所述第一间隙形成第一电容器;所述第二导电块与所述显示模组的下表面之间存在第二间隙,其中,所述第二导电块、所述显示模组的下表面和所述第二间隙形成第二电容器,其中,所述第一电容器和所述第二电容器的电容变化反应出作用于所述盖板上的第一压力的大小。
结合第四方面,在第二种可能的实现方式中,所述导电层至少包括第三导电块和第四导电块;所述第三导电块与所述第四导电块不连接;
所述第三导电块和所述第四导电块分别贴合于所述中框的上表面;
所述第三导电块与所述显示模组的下表面之间存在第三间隙,其中,所述第三导电块、所述显示模组的下表面和所述第三间隙形成第三电容器,其中,所述第三电容器的电容变化反应出作用于所述盖板上的第二压力的大小;
所述第四导电块与所述显示模组的下表面之间存在第四间隙,其中,所述第四导电块、所述显示模组的下表面和所述第四间隙形成第四电容器,其中,所述第四电容器的电容变化反应出作用于所述盖板上的第三压力的大小。
结合第四方面或者第四方面的第一种至第二种可能的实现方式,在第三种可能的实现方式中,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
应用以上技术方案,终端包括盖板、显示模组和金属中框,其中,所述显示模组位于所述盖板和所述金属中框之间,所述金属中框接地,所述终端还包括:导电层,所述导电层贴合于所述显示模组的下表面;所述导电层和所述金 属中框之间存在至少一个间隙,其中,所述导电层、所述金属中框和所述至少一个间隙形成至少一个电容器,其中,所述至少一个电容器的电容变化反应出作用于所述盖板上的至少一个压力的大小。可见,该导电层只要是具备导电性的材料即可,因此,可以大量的采用现有的导电材料,而并不需要专用的压力材料就可实现压力触控,很大程度上节约材料成本,进一步,通过将该导电层、金属中框和至少一个间隙形成至少一个电容器,并通过电容器的电容变化反应出作用于盖板上的压力的大小,从而实现压力触控,与现有技术不同的是,由于导电层所需的导电材料都是现有的,而无需采用专用的压力材料,因此,不需要开发新的供应商进行资源整合就可实现压力触控,从而减少整合成本。
附图说明
图1为现有技术中终端的一个结构示意图;
图2为本发明实施例中终端的一个结构示意图;
图2a-2b为本发明实施例中终端的另一个结构示意图;
图3为本发明实施例中终端的另一个结构示意图;
图4为本发明实施例中终端的另一个结构示意图;
图5为本发明实施例中终端的另一个结构示意图;
图6为本发明实施例中终端的另一个结构示意图;
图7为本发明实施例中终端的另一个结构示意图;
图8为本发明实施例中终端的另一个结构示意图;
图9为本发明实施例中终端的另一个结构示意图;
图10为本发明实施例中终端的另一个结构示意图;
图11为本发明实施例中终端的另一个结构示意图;
图12为本发明实施例中终端的另一个结构示意图;
图13为本发明实施例中终端的另一个结构示意图;
图14为本发明实施例中终端的另一个结构示意图;
图15为本发明实施例中终端的另一个结构示意图;
图16为本发明实施例中终端的另一个结构示意图;
图17为本发明实施例中终端的另一个结构示意图。
具体实施方式
本发明实施例公开了一种终端,用于解决现有技术中实现压力触控所存在的成本高的问题,节约成本。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等是用于区别不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
本发明的技术方案,应用于任何终端,比如智能手机、ipad和个人电脑等,此处不做具体限定。
其中,该终端可以是携带有触摸屏的终端,也可以是携带有按键按钮的终端,此处不做具体限定,如图1所示,进一步介绍终端的大概结构:
终端100包括盖板101,在盖板101的下方为显示模组102,其中,该盖板101和显示模组102之间可通过光学透明胶(英文全称:optical clear adhesive,缩写:OCA)粘结,在显示模组102的下方为金属中框103,其中,金属中框103接地,具体的,金属中框可以与***地连接,金属中框接地,因此金属中框103的电压值一直是0伏,其中,显示模组102与金属中框103之间存在一定的间隙,该间隙的大小在0.3mm左右。在显示模组里面的背光单元的下方也存在一定的间隙。另外,盖板101与显示模组102之间还可以设置有触摸模组,比如外挂式的终端就在盖板与显示模组之间设置有触摸模组,此处不做具体限定。
下面对本发明涉及到的几个名词进行解释:
盖板,具体的盖板101可以为玻璃盖板(Cover Glass),该玻璃盖板也可 以叫做触摸屏盖板,是用来封闭或者盖住终端的显示模组的部件,其中,盖板主要是由玻璃材质制成,其厚度规格在0.1mm到1.1毫米之间。当然,盖板也可以由其他材质制成,此处不做具体限定。
显示模组,是组成显示屏成品的主要部件之一,主要由背光单元,基板以及驱动电路,电阻,电容和塑料套件等组成。
金属中框,是用来承载显示模组等器件的部件,由金属材质制成,比如铝制金属中框。
由于现有技术中是将专用的压阻材料集合在压力传感器上,从而利用专用独立的压力传感器布置LCD下方的四个角落,该专用的压阻材料成本高,而且需要开发新的供应商才能进行资源整合,整合成本也高。而本发明中,不需要利用专用独立的压力传感器布置LCD下方的四个角落,主要是利用显示模组与金属中框之间存在的间隙或者显示模组里面的背光单元下方的间隙,并利用现有的导电材料形成电容器,从而通过检测形成的电容器的电容变化实现压力触控,具体结构如下:
请参阅图2,本发明实施例中一种终端200的一个实施例,终端200包括:包括盖板201、显示模组202和金属中框203,其中,所述显示模组202位于所述盖板201和所述金属中框203之间,所述金属中框203接地,所述终端200还包括:
导电层204,所述导电层204贴合于所述显示模组202的下表面2020;
如图2所示,可以理解的是,从终端顶层到终端底层的垂直方向上看,显示模组的上表面与盖板贴合,而导电层与显示模组的下表面贴合。
与现有技术不同的是,本发明实施例中导电层所需的材料比较普遍,只需要具有导电性即可,因此,可以有效利用现有的一些导电材料,而不需要专用的压力材料,从而在很大程度上节约了材料成本。
在实际应用中,导电模组与金属终端之间存在大小为0.3mm左右的间隙,导电层的厚度在0.1mm左右,那么,进一步,将导电层贴合在显示模组的下表面。
在实际应用中,一般是通过框胶或者整面胶体将导电层贴合在显示模组的下表面,在有些情况下,如图2-a所示,只需要通过框胶将导电层固定在显示 模组的下方,在有些情况下,如图2-b所示,为了保证导电层的平整度以及导电层的导电性能的稳定性,可通过整面胶体(如图2-b中导电层与显示模组之间的部分)将导电层贴合在显示模组的下表面另外,该胶体可以是双面胶或者OCA胶体等,具体可根据实际情况进行选择,此处不做具体限定。
如图2所示,所述导电层204和所述金属中框203之间存在至少一个间隙(如图2中导电层与金属中框之间的区域),其中,所述导电层204、所述金属中框203和所述至少一个间隙形成至少一个电容器,其中,所述至少一个电容器的电容变化反应出作用于所述盖板201上的至少一个压力的大小。
可以理解的是,导电层、金属中框和至少一个间隙形成至少一个电容器,导电层可看作电容器的一个极板,金属中框可看作电容器的另一个极板,该电容器可作为压力感应器,比如:用户在盖板上按压时产生一定的力,力的作用导致导电层发生形变,使得电容器的两个极板之间的距离发生改变,从而电容器的电容发生变化,进一步可通过电容器的电容的变化反映出作用在盖板上的压力的大小,比如,该结构的电容器作为压力感应器,可以感应出从轻按到重压之间的6万阶的压力,从而可以识别出不同阶的压力,而现有技术中只能识别出轻按与重压这两种阶的力。
可以理解的是,电容器的电容的变化与压力的大小成正比例关系,比如,电容器的电容的变化越大,则反应出作用于所述盖板上的压力越大,或者作用于所述盖板上的压力越大,则导致电容器的电容的变化越大。
在图2所示实施例的基础上,在一些可选的实施例中,如图3和图4所示,其中,所述导电层的下表面或者所述金属中框的上表面贴合至少一个弹性胶体。
如图3所示,为终端300的结构示意图,将所述导电层204的下表面2040贴合有至少一个弹性胶体205。
可以理解的是,导电层的上表面与显示模组贴合,可以避免导电层的形变量太大,在导电层的下表面贴合至少一个弹性胶体,其中,该弹性胶体一方面起到弹性压缩的作用,一方面起到粘结的作用。该弹性胶体可以是泡棉等,此处不做具体限定。
如图4所示,为终端400的结构示意图,将所述金属中框203的上表面 2030贴合有至少一个弹性胶体205。
可以理解的是,金属中框与导电层之间还存在一定的间隙,那么避免导电层的形变量太大,在金属中框的上表面贴合有至少一个弹性胶体。
在实际应用中,为了避免导电层的形变量太大而使得导电层贴合在金属中框上而无法实现压力触控,在导电层的下表面或者金属中框的上表面贴合有至少一个弹性胶体,其中,该弹性胶体可以为任意具有弹性压缩的胶体,该弹性胶体一方面具有弹性伸缩的作用,另一方面具有粘结的作用。
本发明实施例中,由于导电层与金属中框之间彼此绝缘,而且,导电层与金属中框之间还存在一定的间隙,该间隙的深度一般在0.2mm左右,从而利用导电层,金属中框、导电层与金属中框之间的至少一个间隙形成至少一个电容器,进一步,通过至少一个电容器的电容变化可以反映出作用于盖板上的至少一个压力的大小,比如当用户通过手指按压终端的触摸屏盖板时,用户施加了一定的压力在触摸屏盖板上,用户施加的压力导致电容器的电容发生改变,其中,该电容器的电容变化可以反应出作用于盖板上的至少一个压力的大小,进一步,终端可以接收到电容器的电容变化的信号,从而执行相应的操作,比如将终端的音量调高或者调低等。
与现有技术不同的是,由于导电层所需的导电材料都是现有的,而无需采用专用的压力材料,因此,不需要开发新的供应商进行资源整合就可实现压力触控,从而减少整合成本。
在图2、图3以及图4所示实施例的基础上,进一步请参阅图5,为终端500的一个结构示意图,其中,所述导电层204至少包括第一导电块2041和第二导电块2042,所述第一导电块2041和所述第二导电块2042连接;
可以理解的是,将第一导电块与第二导电块连接后,第一导电块与第二导电块之间实现电路连通,因此第一导电块与第二导电块可以共用终端的供电模组,比如,第一导电块从终端的供电模组获取电能后,第二导电块可以直接从第一导电块获取电能,而无需再连接于终端的供电模组的电路,从而减少电路的布设空间。将导电层和金属中框以及它们之间的电介质整体作为一个电容器时,由于终端的屏幕一般较大,为了达到较好的检测压力的效果,导电层的大小可以与终端的屏幕大小相当,因此导电层的横截面积也较大,导电层的横截 面积越大,越难做到较好的平整度检测,那么当外力作用于终端的盖板时,对电容器电容变化的检测的困难也相应的增加,那么通过检测电容器的电容的变化反映出压力的变化,对应的算法也将比较困难,因而,将导电层分为第一导电块和第二导电块后,针对每一个导电块做电容检测的难度将会下降,通过检测电容器电容的变化反映出压力的变化的算法也容易实现。另外,将第一导电块与第二导电块连接后,可作为一个整体,更方便整体检测电容器的电容变化。
在一些可选的实施例中,金属中框与导电层之间还存在一定的间隙,那么避免导电层的形变量太大,在金属中框的上表面贴合有至少一个弹性胶体,比如与第一导电块对应的第一弹性胶体,与第二导电块对应的第二弹性胶体等,此处不做具体限定。
在一些可选的实施例中,导电层的上表面与显示模组贴合,那么避免导电层的形变量太大,在导电层的下表面贴合至少一个弹性胶体,比如与第一导电块对应的第一弹性胶体,与第二导电块对应的第二弹性胶体等,此处不做具体限定。其中,该弹性胶体一方面起到弹性压缩的作用,一方面起到粘结的作用。该弹性胶体可以是泡棉等,此处不做具体限定。
与现有技术不同的是,将导电层分为不同导电块,其中,各个导电块之间的模式可以为自容式,也可以为互容式,终端可以识别出作用于盖板上的压力的位置点所对应的在导电块的位置点。另外,作用在盖板上的力引起整个导电层的变形,而导电层在各个位置点的变形程度也不相同,因此,可感应出不同电容器的电容的变化。
需要说明的是,导电层的材质为氧化铟锡(英文全称:Indium Tin Oxide,缩写:ITO)膜或铜箔柔性电路板(英文全称:Flexible Printed Circuit,缩写:FPC),当然,也可以是其他具有导电性的材质,此处不做具体限定。
本实施例中,导电层可包括多个导电块,其中,各个导电块之间可以互相连接,也可以不连接,此处不做具体限定,其中,以第一导电块和第二导电块连接为例,下面进一步介绍第一导电块与第二导电块:
所述第一导电块2041和所述第二导电块2042分别贴合于所述显示模组202的下表面2020;
其中,通过框胶或者整面胶体将所述第一导电块贴合于所述显示模组的下 表面,或者,通过框胶或者整面胶体将所述第二导电块贴合于所述显示模组的下表面,其中,所述第一导电块和所述第二导电块的贴合区域不重叠,具体贴合方式可参阅图2a和图2b所示,此处不再赘述。
其中,第一导电块和第二导电块贴合于显示模组的下表面的方式与导电层贴合在显示模组的下表面的方式相同,具体可参阅上述导电层贴合在显示模组的下表面的方式,此处不再赘述。
所述第一导电块2041与所述金属中框203之间存在第一间隙(如图5中第一导电块与金属中框之间的空白区域),其中,所述第一导电块2041、所述金属中框203和所述第一间隙形成第一电容器,即:第一导电块看做第一电容器的一个极板,金属中框看做第一电容器的另一个极板;所述第二导电块2042与所述金属中框203之间存在第二间隙(如图5中第二导电块与金属中框之间的空白区域),其中,所述第二导电块2042、所述金属中框203和所述第二间隙形成第二电容器,即:第二导电块看做第二电容器的一个极板,金属中框看做第二电容器的另一个极板,其中,所述第一电容器和所述第二电容器的电容变化反应出作用于所述盖板201上的第一压力的大小。
本发明实施例中,第一导电块,金属中框以及第一间隙形成第一电容器,第二导电块,金属中框以及第二间隙形成第二电容器,由于第一导电块与第二导电块连接,因此,第一电容器和第二电容器的电容变化反应出作用于盖板上的第一压力的大小,比如:单指按压触摸屏盖板时,单指施加的压力可导致第一电容器和第二电容器的电容发生变化,从而第一电容器和第二电容器的电容变化可以反应出作用于触摸屏盖板上的单指按压的压力的大小。
在图2、图3以及图4所示实施例的基础上,进一步请参阅图6,为终端600的一个结构示意图,其中,导电层204至少包括第三导电块2043和第四导电块2044;所述第三导电块2043与所述第四导电块2044不连接;
与现有技术不同的是,将导电层分为不同导电块,其中,各个导电块之间的模式可以为自容式,也可以为互容式,终端可以识别出作用于盖板上的压力的位置点所对应的在导电块的位置点。另外,作用在盖板上的力引起整个导电层的变形,而导电层在各个位置点的变形程度也不相同,因此,可感应出不同电容器的电容的变化,另外,导电块的数量与终端的屏幕所划分的区域的个数 对应。
需要说明的是,导电层的材质为ITO膜或FPC,当然,也可以是其他具有导电性的材质,此处不做具体限定。
所述第三导电块2043和所述第四导电块2044分别贴合于所述显示模组202的下表面2020;
其中,通过框胶或者整面胶体将所述第三导电块贴合于所述显示模组的下表面,或者,通过框胶或者整面胶体将所述第四导电块贴合于所述显示模组的下表面,其中,所述第三导电块和所述第四导电块的贴合区域不重叠,具体贴合方式可参阅图2a和图2b所示,此处不再赘述。
其中,第三导电块和第四导电块贴合于显示模组的下表面的方式与导电层贴合在显示模组的下表面的方式相同,具体可参阅上述导电层贴合在显示模组的下表面的方式,此处不再赘述。
在一些可选的实施例中,导电层的上表面与显示模组贴合,那么避免导电层的形变量太大,在导电层的下表面贴合至少一个弹性胶体,比如与第三导电块对应的第三弹性胶体,与第四导电块对应的第四弹性胶体等,此处不做具体限定。其中,该弹性胶体一方面起到弹性压缩的作用,一方面起到粘结的作用。该弹性胶体可以是泡棉等,此处不做具体限定。
所述第三导电块2043与所述金属中框203之间存在第三间隙(如图6中第三导电块与金属中框之间的空白区域),其中,所述第三导电块2043、所述金属中框203和所述第三间隙形成第三电容器,即:第三导电块看做第三电容器的一个极板,金属中框看做第三电容器的另一个极板,其中,所述第三电容器的电容变化反应出作用于所述盖板201上的第二压力的大小;
所述第四导电块2044与所述金属中框203之间存在第四间隙(如图6中第四导电块与金属中框之间的空白区域),其中,所述第四导电块2044、所述金属中框203和所述第四间隙形成第四电容器,即:第四导电块看做第四电容器的一个极板,金属中框看做第四电容器的另一个极板,其中,所述第四电容器的电容变化反应出作用于所述盖板201上的第三压力的大小。
在一些可选的实施例中,金属中框与导电层之间还存在一定的间隙,那么避免导电层的形变量太大,在金属中框的上表面贴合有至少一个弹性胶体,比 如与第三导电块对应的第三弹性胶体,与第四导电块对应的第四弹性胶体等,此处不做具体限定。
本发明实施例中,第三导电块,金属中框以及第三间隙形成第三电容器,第四导电块,金属中框以及第四间隙形成第四电容器,由于第三导电块与第四导电块不连接,因此,第三电容器的电容变化反应出作用于盖板上的第二压力的大小,第四电容器的电容变化反应出作用于盖板上的第三压力的大小,比如:双指按压触摸屏盖板时,双指中的第一指作用于第一导电块对应的盖板的第一区域,双指中的第二指作用于第二导电块对应的盖板的第二区域,第一指产生的压力使得第三电容器的电容发生变化,第二指产生的压力使得第四电容器的电容发生变化,从而第三电容器的电容变化可以反应出作用于触摸屏盖板上的双指中第一手指按压的压力的大小,第四电容器的电容变化可以反应出作用于触摸屏盖板上的双指第二手指按压的压力的大小。可见,将第一导电块与第二导电块不连接,可以实现多指压力触控,有效提高了用户体验。
在图2至5所示实施例的基础上,请参阅图7,为终端700的一个结构示意图,其中,终端700包括盖板301、显示模组302和金属中框303,其中,所述显示模组302位于所述盖板301和所述金属中框303之间,所述金属中框303接地,所述终端700还包括:
导电层304,所述导电层304通过至少一个弹性胶体305贴合于所述金属中框303的上表面3030,其中,所述至少一个弹性胶体305不导电,所述导电层304、所述金属中框303和所述至少一个弹性胶体305形成至少一个电容器,即:导电层看做电容器的一个极板,金属中框看做电容器的另一个极板,其中,所述至少一个电容器的电容变化反应出作用于所述盖板301上的至少一个压力的大小。
如图7所示,金属中框的上表面贴合有弹性胶体,进一步,在弹性胶体的上表面贴合有导电层。换句话说,就是导电层与金属中框之间通过弹性胶体贴合。
其中,该弹性胶体可以为任意具有弹性压缩的胶体,该弹性胶体一方面具有弹性伸缩的作用,另一方面具有粘结的作用。
其中,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
本发明实施例中,由于导电层与金属中框之间彼此绝缘,导电层与金属中框之间通过弹性胶体贴合,该弹性胶体不导电,将导电层,金属中框和至少一个弹性胶体形成至少一个电容器,进一步,通过至少一个电容器的电容变化可以反映出作用于盖板上的至少一个压力的大小,比如当用户通过手指按压终端的触摸屏盖板时,用户施加了一定的压力在触摸屏盖板上,用户施加的压力导致电容器的电容发生改变,其中,该电容器的电容变化可以反应出作用于盖板上的至少一个压力的大小,进一步,终端可以接收到电容器的电容变化的信号,从而执行相应的操作,比如将终端的音量调高或者调低等。
与现有技术不同的是,由于导电层所需的导电材料都是现有的,而无需采用专用的压力材料,因此,减少材料成本,而且不需要开发新的供应商进行资源整合以实现压力触控,从而减少整合成本。
在图7所示实施例的基础上,请参阅图8,为终端800的一个结构示意图,其中,导电层304至少包括第一导电块3041和第二导电块3042,所述第一导电块3041和所述第二导电块3042连接;
可以理解的是,将第一导电块与第二导电块连接后,第一导电块与第二导电块之间实现电路连通,因此第一导电块与第二导电块可以共用终端的供电模组,比如,第一导电块从终端的供电模组获取电能后,第二导电块可以直接从第一导电块获取电能,而无需再连接与终端的供电模组的电路,从而减少电路的布设空间。另外,将第一导电块与第二导电块连接后,可作为一个整体,更方便整体检测电容器的电容变化。
其中,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
所述第一导电块3041贴合于第一弹性胶体3051的上表面31,其中,所述第一导电块3041、所述金属中框303和所述第一弹性胶体3051形成第一电容器,即:第一导电块看做第一电容器的一个极板,金属中框看做第一电容器的另一个极板;
所述第二导电块3042贴合于第二弹性胶体3052的上表面32,其中,所述第二导电块3042、所述金属中框303和所述第二弹性胶体3052形成第二电容器,即:第二导电块看做第二电容器的一个极板,金属中框看做第二电容器的另一个极板,其中,所述第一电容器和所述第二电容器的电容变化反应出 作用于所述盖板301上的第一压力的大小。
其需要说明的是,第一弹性胶体与第二弹性胶体之间可以连接,也可以不连接,此处不做具体限定。
其中,第一导电块可以直接与第一弹性胶体贴合,也可以通过任意胶体与该第一弹性胶体贴合,具体可根据实际情况选择,此处不做具体限定。
本发明实施例中,第一导电块,金属中框以及第一弹性胶体形成第一电容器,第二导电块,金属中框以及第二弹性胶体形成第二电容器,由于第一导电块与第二导电块连接,因此,第一电容器和第二电容器的电容变化反应出作用于盖板上的第一压力的大小,比如:单指按压触摸屏盖板时,单指施加的压力可导致第一电容器和第二电容器的电容发生变化,从而第一电容器和第二电容器的电容变化可以反应出作用于触摸屏盖板上的单指按压的压力的大小。
与现有技术不同的是,将导电层分为不同导电块,其中,各个导电块之间的模式可以为自容式,也可以为互容式,终端可以识别出作用于盖板上的压力的位置点所对应的在导电块的位置点。另外,作用在盖板上的力引起整个导电层的变形,而导电层在各个位置点的变形程度也不相同,因此,可感应出不同电容器的电容的变化。
需要说明的是,导电层的材质为ITO膜或FPC,当然,也可以是其他具有导电性的材质,此处不做具体限定。
在图7所示实施例的基础上,请参阅图9,其中,所述导电层304至少包括第三导电块3043和第四导电块3044;所述第三导电块3043与所述第四导电块3044不连接;
与现有技术不同的是,将导电层分为不同导电块,其中,各个导电块之间的模式可以为自容式,也可以为互容式,终端可以识别出作用于盖板上的压力的位置点所对应的在导电块的位置点。另外,作用在盖板上的力引起整个导电层的变形,而导电层在各个位置点的变形程度也不相同,因此,可感应出不同电容器的电容的变化。
其中,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
所述第三导电块3043贴合于第三弹性胶体3053的上表面33,其中,所述第三导电块3043、所述金属中框303和所述第三弹性胶体3053形成第三 电容器,即:第三导电块看做第三电容器的一个极板,金属中框看做第三电容器的另一个极板,其中,所述第三电容器的电容变化反应出作用于所述盖板301上的第二压力的大小;
所述第四导电块3044贴合于第四弹性胶体3054的上表面34,其中,所述第四导电块3044、所述金属中框303和所述第四弹性3054胶体形成第四电容器,即:第四导电块看做第四电容器的一个极板,金属中框看做第四电容器的另一个极板,其中,所述第四电容器的电容变化反应出作用于所述盖板301上的第三压力的大小。
需要说明的是,第三弹性胶体与第四弹性胶体之间可以连接,也可以不连接,此处不做具体限定。
本发明实施例中,第三导电块,金属中框以及第三弹性胶体形成第三电容器,第四导电块,金属中框以及第四弹性胶体形成第四电容器,由于第三导电块与第四导电块不连接,因此,第三电容器的电容变化反应出作用于盖板上的第二压力的大小,第四电容器的电容变化反应出作用于盖板上的第三压力的大小,比如:双指按压触摸屏盖板时,双指中的第一指作用于第一导电块对应的盖板的第一区域,双指中的第二指作用于第二导电块对应的盖板的第二区域,第一指产生的压力使得第三电容器的电容发生变化,第二指产生的压力使得第四电容器的电容发生变化,从而第三电容器的电容变化可以反应出作用于触摸屏盖板上的双指中其中一个手指按压的压力的大小,第四电容器的电容变化可以反应出作用于触摸屏盖板上的双指中另一个手指按压的压力的大小。可见,将第一导电块与第二导电块不连接,可以实现多指触控,有效提高了用户体验。
在上述实施例的基础上,请参阅图10,终端1000的一个结构示意图,终端1000包括盖板401和显示模组402,所述盖板401位于所述显示模组402的上方4020;所述显示模组402包括背光单元4021、薄膜晶体管(英文全称:Thin Film Transistor,缩写:TFT)基板4022和TFT电路4023,所述TFT基板4022位于所述背光单元4021和所述TFT电路4023之间,所述TFT电路4023包括恒压层,其特征在于,所述终端1000还包括:
导电层403,所述导电层403贴合于所述背光单元4021的下表面42;
需要说明的是,盖板位于显示模组的上方,上方指的是在终端所在的构造层次上的位置上下位关系。
所述导电层403与所述TFT电路4023中的恒压层之间存在电介质,其中,所述导电层403、所述TFT电路4023中的恒压层和所述电介质形成至少一个电容器,即:导电层看做电容器的一个极板,TFT电路中的恒压层看做电容器的另一个极板,其中,所述至少一个电容器的电容变化反应出作用于所述盖板401的至少一个压力的大小,所述电介质包含所述TFT基板4022。
其中,可通过胶体将导电层贴合于所述背光单元的下表面,该胶体可以是双面胶或者OCA胶体等,具体可根据实际情况进行选择,此处不做具体限定。
可以理解的是,电容器的电容的变化与压力的大小成正比例关系,比如,电容器的电容的变化越大,则反应出作用于所述盖板上的压力越大,或者作用于所述盖板上的压力越大,则导致电容器的电容的变化越大。
本发明实施例中,由于导电层与TFT电路中的恒压层之间彼此绝缘,而且,导电层与TFT电路中的恒压层之间还存在一定的电介质,从而利用导电层,TFT电路中的恒压层、导电层与TFT电路中的恒压层之间的电介质形成至少一个电容器,进一步,通过至少一个电容器的电容变化可以反映出作用于盖板上的至少一个压力的大小,比如当用户通过手指按压终端的触摸屏盖板时,用户施加了一定的压力在触摸屏盖板上,用户施加的压力导致电容器的电容发生改变,其中,该电容器的电容变化可以反应出作用于盖板上的至少一个压力的大小,进一步,终端可以接收到电容器的电容变化的信号,从而执行相应的操作,比如将终端的音量调高或者调低等。
在图10所示实施例的基础上,在一些可选的实施例中,如图11和图12所示,分别为终端1100和终端1200的结构示意图;其中,终端1100和终端1200还包括:
金属中框404,所述金属中框404位于所述导电层403的下方;
可以理解的是,金属中框位于导电层在终端的屏幕所在的垂直方向上的下方。
所述导电层403的下表面4030或者所述金属中框404的上表面4040贴 合有至少一个弹性胶体405。
其中,如图11所示,在导电层的下表面贴合有至少一个弹性胶体405。
如图12所示,在金属中框的上表面贴合有至少一个弹性胶体405。
在实际应用中,为了避免导电层的形变量太大而使得导电层贴合在金属中框上而无法实现压力触控,在导电层的下表面或者金属中框的上表面贴合有至少一个弹性胶体,其中,该弹性胶体可以为任意具有弹性压缩的胶体,该弹性胶体一方面具有弹性伸缩的作用,另一方面具有粘结的作用。
其中,所述导电层的材质为ITO膜或FPC,此处不做具体限定。
在图10、图11以及图12所示实施例的基础上,请参阅图13,为终端1300的一个结构示意图,其中,导电层403包括至少包括第一导电块4031和第二导电块4032,所述第一导电块4031和所述第二导电块4032连接;
与现有技术不同的是,将导电层分为不同导电块,其中,各个导电块之间的模式可以为自容式,也可以为互容式,终端可以识别出作用于盖板上的压力的位置点所对应的在导电块的位置点。另外,作用在盖板上的力引起整个导电层的变形,而导电层在各个位置点的变形程度也不相同,因此,可感应出不同电容器的电容的变化。
可以理解的是,将第一导电块与第二导电块连接后,第一导电块与第二导电块之间实现电路连通,因此第一导电块与第二导电块可以共用终端的供电模组,比如,第一导电块从终端的供电模组获取电能后,第二导电块可以直接从第一导电块获取电能,而无需再连接与终端的供电模组的电路,从而减少电路的布设空间。
所述第一导电块4031和所述第二导电块4032分别贴合于所述背光单元4021的下表面42;
在一些可选的实施例中,金属中框与导电层之间还存在一定的间隙,那么避免导电层的形变量太大,在金属中框的上表面贴合有至少一个弹性胶体,比如与第一导电块对应的第一弹性胶体,与第二导电块对应的第二弹性胶体等,此处不做具体限定。
在一些可选的实施例中,导电层的上表面与显示模组贴合,那么避免导电层的形变量太大,在导电层的下表面贴合至少一个弹性胶体,比如与第一导电 块对应的第一弹性胶体,与第二导电块对应的第二弹性胶体等,此处不做具体限定。其中,该弹性胶体一方面起到弹性压缩的作用,一方面起到粘结的作用。该弹性胶体可以是泡棉等,此处不做具体限定。
所述第一导电块4031与所述TFT电路4023中的恒压层之间存在第一电介质,其中,所述第一导电块4031、所述TFT电路4023中的恒压层和所述第一电介质形成第一电容器,即:第一导电块看做第一电容器的一个极板,TFT电路中的恒压层看做第一电容器的另一个极板;所述第二导电块4032与所述TFT电路4023中的恒压层之间存在第二电介质,其中,所述第二导电块4032、所述TFT电路4023中的恒压层和所述第二电介质形成第二电容器,即:第二导电块看做第二电容器的一个极板,TFT电路中的恒压层看做第二电容器的另一个极板,其中,所述第一电容器和所述第二电容器的电容变化反应出作用于所述盖板401上的第一压力的大小。
本发明实施例中,第一导电块,TFT电路中的恒压层以及第一电介质形成第一电容器,第二导电块,TFT电路中的恒压层以及第二电介质形成第二电容器,由于第一导电块与第二导电块连接,因此,第一电容器和第二电容器的电容变化反应出作用于盖板上的第一压力的大小,比如:单指按压触摸屏盖板时,单指施加的压力可导致第一电容器和第二电容器的电容发生变化,从而第一电容器和第二电容器的电容变化可以反应出作用于触摸屏盖板上的单指按压的压力的大小。
在图10、图11以及图12所示实施例的基础上,请参阅图14,为终端1400的一个结构示意图,其中,所述导电层403至少包括第三导电块4033和第四导电块4034;所述第三导电块4033与所述第四导电块4034不连接;
与现有技术不同的是,将导电层分为不同导电块,其中,各个导电块之间的模式可以为自容式,也可以为互容式,终端可以识别出作用于盖板上的压力的位置点所对应的在导电块的位置点。
所述第三导电块4033和所述第四导电块4034分别贴合于所述背光单元4021的下表面42;
在一些可选的实施例中,金属中框与导电层之间还存在一定的间隙,那么 避免导电层的形变量太大,在金属中框的上表面贴合有至少一个弹性胶体,比如与第三导电块对应的第三弹性胶体,与第四导电块对应的第四弹性胶体等,此处不做具体限定。
在一些可选的实施例中,导电层的上表面与显示模组贴合,那么避免导电层的形变量太大,在导电层的下表面贴合至少一个弹性胶体,比如与第三导电块对应的第三弹性胶体,与第四导电块对应的第四弹性胶体等,此处不做具体限定。其中,该弹性胶体一方面起到弹性压缩的作用,一方面起到粘结的作用。该弹性胶体可以是泡棉等,此处不做具体限定。
所述第三导电块4033与所述TFT电路4023中的恒压层之间存在第三电介质,其中,所述第三导电块4033、所述TFT电路4023中的恒压层和所述第三电介质形成第三电容器,即:第三导电块看做第三电容器的一个极板,TFT电路中的恒压层看做第三电容器的另一个极板,其中,所述第三电容器的电容变化反应出作用于所述盖板401上的第二压力的大小;
所述第四导电块4034与所述TFT电路4023中的恒压层之间存在第四电介质,其中,所述第四导电块4034、所述TFT电路4023中的恒压层和所述第四电介质形成第四电容器,即:第四导电块看做第四电容器的一个极板,TFT电路中的恒压层看做第四电容器的另一个极板,其中,所述第四电容器的电容变化反应出作用于所述盖板401上的第三压力的大小。
本发明实施例中,第三导电块,TFT电路中的恒压层以及第三电介质形成第三电容器,第四导电块,TFT电路中的恒压层以及第四电介质形成第四电容器,由于第三导电块与第四导电块不连接,因此,第三电容器的电容变化反应出作用于盖板上的第二压力的大小,第四电容器的电容变化反应出作用于盖板上的第三压力的大小,比如:双指按压触摸屏盖板时,双指中的第一指作用于第一导电块对应的盖板的第一区域,双指中的第二指作用于第二导电块对应的盖板的第二区域,第一指产生的压力使得第三电容器的电容发生变化,第二指产生的压力使得第四电容器的电容发生变化,从而第三电容器的电容变化可以反应出作用于触摸屏盖板上的双指中其中一个手指按压的压力的大小,第四电容器的电容变化可以反应出作用于触摸屏盖板上的双指中另一个手指按压的压力的大小。可见,将第一导电块与第二导电块不连接,可以实现多指触控, 有效提高了用户体验。
在上述实施例的基础上,请参阅图15,终端1500的一个结构示意图,所述终端1500包括盖板501、显示模组502和中框503,其中,所述显示模组502位于所述盖板501和所述中框503之间,其特征在于,所述终端500还包括:
导电层504,所述导电层504贴合于所述中框503的上表面53;
在实际应用中,一般是通过框胶或者整面胶体将导电层贴合在中框的上表面,在有些情况下,只需要通过框胶将导电层固定在中框的上表面,在有些情况下,为了保证导电层的平整度以及导电层的导电性能的稳定性,可通过整面胶体将导电层贴合在中框的上表面,另外,该胶体可以是双面胶或者OCA胶体等,具体可根据实际情况进行选择,此处不做具体限定,具体贴合方式可参阅图2a和图2b所示,此处不再赘述。
所述导电层504和所述显示模组502的下表面52之间存在至少一个间隙(如图中显示模组的下表面与导电层之间的空白区域),其中,所述显示模组502的下表面52为金属材质,所述显示模组502的下表面52接地,所述导电层504、所述显示模组502的下表面52和所述至少一个间隙形成至少一个电容器,即:导电层看做电容器的一个极板,显示模组的下表面看做电容器的另一个极板,其中,所述至少一个电容器的变化反应出作用于所述盖板501上的至少一个压力的大小。
其中,所述导电层504的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
本发明实施例中,由于导电层与显示模组的下表面之间彼此绝缘,而且,导电层与显示模组的下表面之间还存在一定的间隙,该间隙的深度一般在0.2mm左右,从而利用导电层,显示模组的下表面、导电层与显示模组的下表面之间的至少一个间隙形成至少一个电容器,即:导电层看做电容器的一个极板,显示模组的下表面看做电容器的另一个极板,进一步,通过至少一个电容器的电容变化可以反映出作用于盖板上的至少一个压力的大小,比如当用户通过手指按压终端的触摸屏盖板时,用户施加了一定的压力在触摸屏盖板上,力的作用导致导电层发生形变,使得电容器的两个极板之间的距离发生改变, 从而导致电容器的电容发生改变,其中,该电容器的电容变化可以反应出作用于盖板上的至少一个压力的大小,进一步,终端可以接收到电容器的电容变化的信号,从而执行相应的操作,比如将终端的音量调高或者调低等。
与现有技术不同的是,由于导电层所需的导电材料都是现有的,而无需采用专用的压力材料,因此,不需要开发新的供应商进行资源整合就可实现压力触控,从而减少整合成本。
在图15所示实施例的基础上,请参阅图16,为终端1600的一个结构示意图,其中,所述导电层504包括至少包括第一导电块5041和第二导电块5042,所述第一导电块5041和所述第二导电块5042连接;
可以理解的是,将第一导电块与第二导电块连接后,第一导电块与第二导电块之间实现电路连通,因此第一导电块与第二导电块可以共用终端的供电模组,比如,第一导电块从终端的供电模组获取电能后,第二导电块可以直接从第一导电块获取电能,而无需再连接与终端的供电模组的电路,从而减少电路的布设空间。
与现有技术不同的是,将导电层分为不同导电块,其中,各个导电块之间的模式可以为自容式,也可以为互容式,终端可以识别出作用于盖板上的压力的位置点所对应的在导电块的位置点。
所述第一导电块5041和所述第二导电块5042分别贴合于所述中框503的上表面53;
所述第一导电块5041与所述显示模组502的下表面52之间存在第一间隙(如图16中第一导电块与显示模组的下表面之间的间隙),其中,所述第一导电块5041、所述显示模组502的下表面52和所述第一间隙形成第一电容器,即:第一导电块看做第一电容器的一个极板,显示模组的下表面看做第一电容器的另一个极板;所述第二导电块5042与所述显示模组502的下表面之间存在第二间隙(如图16中第二导电块与显示模组的下表面之间的间隙),其中,所述第二导电块5042、所述显示模组502的下表面52和所述第二间隙形成第二电容器,即:第二导电块看做第二电容器的一个极板,显示模组的下表面看做第二电容器的另一个极板,其中,所述第一电容器和所述第二电容器 的电容变化反应出作用于所述盖板501上的第一压力的大小。
本发明实施例中,第一导电块,显示模组的下表面以及第一间隙形成第一电容器,第二导电块,显示模组的下表面以及第二间隙形成第二电容器,由于第一导电块与第二导电块连接,因此,第一电容器和第二电容器的电容变化反应出作用于盖板上的第一压力的大小,比如:单指按压触摸屏盖板时,单指施加的压力可导致第一电容器和第二电容器的电容发生变化,从而第一电容器和第二电容器的电容变化可以反应出作用于触摸屏盖板上的单指按压的压力的大小。
在图15所示实施例的基础上,请参阅图17,为终端1700的一个结构示意图,其中,所述导电层504至少包括第三导电块5043和第四导电块5044;所述第三导电块5043与所述第四导电块5044不连接;
与现有技术不同的是,将导电层分为不同导电块,其中,各个导电块之间的模式可以为自容式,也可以为互容式,终端可以识别出作用于盖板上的压力的位置点所对应的在导电块的位置点。另外,作用在盖板上的力引起整个导电层的变形,而导电层在各个位置点的变形程度也不相同,因此,可感应出不同电容器的电容的变化。
需要说明的是,导电层的材质为ITO膜或FPC,当然,也可以是其他具有导电性的材质,此处不做具体限定。
所述第三导电块5043和所述第四导电块5044分别贴合于所述中框503的上表面53;
所述第三导电块5043与所述显示模组502的下表面52之间存在第三间隙(如图17中第三导电块与显示模组的下表面之间的间隙),其中,所述第三导电块5043、所述显示模组502的下表面52和所述第三间隙形成第三电容器,即:第三导电块看做第三电容器的一个极板,显示模组的下表面看做第三电容器的另一个极板,其中,所述第三电容器的电容变化反应出作用于所述盖板501上的第二压力的大小;
所述第四导电块5044与所述显示模组502的下表面52之间存在第四间隙(如图17中第一导电块与显示模组的下表面之间的间隙),其中,所述第四导电块5044、所述显示模组502的下表面和所述第四间隙形成第四电容器, 即:第四导电块看做第四电容器的一个极板,显示模组的下表面看做第四电容器的另一个极板,其中,所述第四电容器的电容变化反应出作用于所述盖板501上的第三压力的大小。
本发明实施例中,第三导电块,显示模组的下表面以及第三间隙形成第三电容器,第四导电块,显示模组的下表面以及第四间隙形成第四电容器,由于第三导电块与第四导电块不连接,因此,第三电容器的电容变化反应出作用于盖板上的第二压力的大小,第四电容器的电容变化反应出作用于盖板上的第三压力的大小,比如:双指按压触摸屏盖板时,双指中的第一指作用于第一导电块对应的盖板的第一区域,双指中的第二指作用于第二导电块对应的盖板的第二区域,第一指产生的压力使得第三电容器的电容发生变化,第二指产生的压力使得第四电容器的电容发生变化,从而第三电容器的电容变化可以反应出作用于触摸屏盖板上的双指中其中一个手指按压的压力的大小,第四电容器的电容变化可以反应出作用于触摸屏盖板上的双指中另一个手指按压的压力的大小。可见,将第一导电块与第二导电块不连接,可以实现多指触控,有效提高了用户体验。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可 以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的一种数据传输的方法及相关设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (20)

  1. 一种终端,所述终端包括盖板、显示模组和金属中框,其中,所述显示模组位于所述盖板和所述金属中框之间,所述金属中框接地,其特征在于,所述终端还包括:
    导电层,所述导电层贴合于所述显示模组的下表面;
    所述导电层和所述金属中框之间存在至少一个间隙,其中,所述导电层、所述金属中框和所述至少一个间隙形成至少一个电容器,其中,所述至少一个电容器的电容变化反应出作用于所述盖板上的至少一个压力的大小。
  2. 根据权利要求1所述的终端,其特征在于,所述导电层至少包括第一导电块和第二导电块,所述第一导电块和所述第二导电块连接;
    所述第一导电块和所述第二导电块分别贴合于所述显示模组的下表面;
    所述第一导电块与所述金属中框之间存在第一间隙,其中,所述第一导电块、所述金属中框和所述第一间隙形成第一电容器;所述第二导电块与所述金属中框之间存在第二间隙,其中,所述第二导电块、所述金属中框和所述第二间隙形成第二电容器,其中,所述第一电容器和所述第二电容器的电容变化反应出作用于所述盖板上的第一压力的大小。
  3. 根据权利要求1所述的终端,其特征在于,所述导电层至少包括第三导电块和第四导电块;所述第三导电块与所述第四导电块不连接;
    所述第三导电块和所述第四导电块分别贴合于所述显示模组的下表面;
    所述第三导电块与所述金属中框之间存在第三间隙,其中,所述第三导电块、所述金属中框和所述第三间隙形成第三电容器,其中,所述第三电容器的电容变化反应出作用于所述盖板上的第二压力的大小;
    所述第四导电块与所述金属中框之间存在第四间隙,其中,所述第四导电块、所述金属中框和所述第四间隙形成第四电容器,其中,所述第四电容器的电容变化反应出作用于所述盖板上的第三压力的大小。
  4. 根据权利要求2所述的终端,其特征在于,
    通过框胶或者整面胶体将所述第一导电块贴合于所述显示模组的下表面,或者,通过框胶或者整面胶体将所述第二导电块贴合于所述显示模组的下表面,其中,所述第一导电块和所述第二导电块的贴合区域不重叠。
  5. 根据权利要求3所述的终端,其特征在于,
    通过框胶或者整面胶体将所述第三导电块贴合于所述显示模组的下表面,或者,通过框胶或者整面胶体将所述第四导电块贴合于所述显示模组的下表面,其中,所述第三导电块和所述第四导电块的贴合区域不重叠。
  6. 根据权利要求1至5任一项所述的终端,其特征在于,
    所述导电层的下表面或者所述金属中框的上表面贴合至少一个弹性胶体。
  7. 根据权利要求1至6任一项所述的终端,其特征在于,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
  8. 一种终端,所述终端包括盖板、显示模组和金属中框,其中,所述显示模组位于所述盖板和所述金属中框之间,所述金属中框接地,其特征在于,所述终端还包括:
    导电层,所述导电层通过至少一个弹性胶体贴合于所述金属中框的上表面,其中,所述至少一个弹性胶体不导电,所述导电层、所述金属中框和所述至少一个弹性胶体形成至少一个电容器,其中,所述至少一个电容器的电容变化反应出作用于所述盖板上的至少一个压力的大小。
  9. 根据权利要求8所述的终端,其特征在于,所述导电层至少包括第一导电块和第二导电块,所述第一导电块和所述第二导电块连接;
    所述第一导电块贴合于第一弹性胶体的上表面,其中,所述第一导电块、所述金属中框和所述第一弹性胶体形成第一电容器;
    所述第二导电块贴合于第二弹性胶体的上表面,其中,所述第二导电块、所述金属中框和所述第二弹性胶体形成第二电容器,其中,所述第一电容器和所述第二电容器的电容变化反应出作用于所述盖板上的第一压力的大小。
  10. 根据权利要求8所述的终端,其特征在于,所述导电层至少包括第三导电块和第四导电块;所述第三导电块与所述第四导电块不连接;
    所述第三导电块贴合于第三弹性胶体的上表面,其中,所述第三导电块、所述金属中框和所述第三弹性胶体形成第三电容器,其中,所述第三电容器的电容变化反应出作用于所述盖板上的第二压力的大小;
    所述第四导电块贴合于第四弹性胶体的上表面,其中,所述第四导电块、所述金属中框和所述第四弹性胶体形成第四电容器,其中,所述第四电容器的 电容变化反应出作用于所述盖板上的第三压力的大小。
  11. 根据权利要求8至10任一项所述的终端,其特征在于,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
  12. 一种终端,所述终端包括盖板和显示模组,所述盖板位于所述显示模组的上方;所述显示模组包括背光单元、薄膜晶体管TFT基板和TFT电路,所述TFT基板位于所述背光单元和所述TFT电路之间,所述TFT电路包括恒压层,其特征在于,所述终端还包括:
    导电层,所述导电层贴合于所述背光单元的下表面;
    所述导电层与所述TFT电路中的恒压层之间存在电介质,其中,所述导电层、所述TFT电路中的恒压层和所述电介质形成至少一个电容器,其中,所述至少一个电容器的电容变化反应出作用于所述盖板的至少一个压力的大小,所述电介质包含所述TFT基板。
  13. 根据权利要求12所述的终端,其特征在于,所述导电层至少包括第一导电块和第二导电块,所述第一导电块和所述第二导电块连接;
    所述第一导电块和所述第二导电块分别贴合于所述背光单元的下表面;
    所述第一导电块与所述TFT电路中的恒压层之间存在第一电介质,其中,所述第一导电块、所述TFT电路中的恒压层和所述第一电介质形成第一电容器;所述第二导电块与所述TFT电路中的恒压层之间存在第二电介质,其中,所述第二导电块、所述TFT电路中的恒压层和所述第二电介质形成第二电容器,其中,所述第一电容器和所述第二电容器的电容变化反应出作用于所述盖板上的第一压力的大小。
  14. 根据权利要求12所述的终端,其特征在于,所述导电层至少包括第三导电块和第四导电块;所述第三导电块与所述第四导电块不连接;
    所述第三导电块和所述第四导电块分别贴合于所述背光单元的下表面;
    所述第三导电块与所述TFT电路中的恒压层之间存在第三电介质,其中,所述第三导电块、所述TFT电路中的恒压层和所述第三电介质形成第三电容器,其中,所述第三电容器的电容变化反应出作用于所述盖板上的第二压力的大小;
    所述第四导电块与所述TFT电路中的恒压层之间存在第四电介质,其中, 所述第四导电块、所述TFT电路中的恒压层和所述第四电介质形成第四电容器,其中,所述第四电容器的电容变化反应出作用于所述盖板上的第三压力的大小。
  15. 根据权利要求12至14任一项所述的终端,其特征在于,所述终端还包括:
    金属中框,所述金属中框位于所述导电层的下方;
    所述导电层的下表面或者所述金属中框的上表面贴合有至少一个弹性胶体。
  16. 根据权利要求12至15任一项所述的终端,其特征在于,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
  17. 一种终端,所述终端包括盖板、显示模组和中框,其中,所述显示模组位于所述盖板和所述中框之间,其特征在于,所述终端还包括:
    导电层,所述导电层贴合于所述中框的上表面;
    所述导电层和所述显示模组的下表面之间存在至少一个间隙,其中,所述显示模组的下表面为金属材质,所述显示模组的下表面接地,所述导电层、所述显示模组的下表面和所述至少一个间隙形成至少一个电容器,其中,所述至少一个电容器的变化反应出作用于所述盖板上的至少一个压力的大小。
  18. 根据权利要求17所述的终端,其特征在于,所述导电层至少包括第一导电块和第二导电块,所述第一导电块和所述第二导电块连接;
    所述第一导电块和所述第二导电块分别贴合于所述中框的上表面;
    所述第一导电块与所述显示模组的下表面之间存在第一间隙,其中,所述第一导电块、所述显示模组的下表面和所述第一间隙形成第一电容器;所述第二导电块与所述显示模组的下表面之间存在第二间隙,其中,所述第二导电块、所述显示模组的下表面和所述第二间隙形成第二电容器,其中,所述第一电容器和所述第二电容器的电容变化反应出作用于所述盖板上的第一压力的大小。
  19. 根据权利要求17所述的终端,其特征在于,所述导电层至少包括第三导电块和第四导电块;所述第三导电块与所述第四导电块不连接;
    所述第三导电块和所述第四导电块分别贴合于所述中框的上表面;
    所述第三导电块与所述显示模组的下表面之间存在第三间隙,其中,所述 第三导电块、所述显示模组的下表面和所述第三间隙形成第三电容器,其中,所述第三电容器的电容变化反应出作用于所述盖板上的第二压力的大小;
    所述第四导电块与所述显示模组的下表面之间存在第四间隙,其中,所述第四导电块、所述显示模组的下表面和所述第四间隙形成第四电容器,其中,所述第四电容器的电容变化反应出作用于所述盖板上的第三压力的大小。
  20. 根据权利要求17至19任一项所述的终端,其特征在于,所述导电层的材质为氧化铟锡ITO膜或铜箔柔性电路板FPC。
PCT/CN2015/088009 2015-08-25 2015-08-25 一种终端 WO2017031687A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP15901958.7A EP3267242B1 (en) 2015-08-25 2015-08-25 Terminal
CN201580028660.3A CN107077017B (zh) 2015-08-25 2015-08-25 一种终端
JP2017557078A JP6521407B2 (ja) 2015-08-25 2015-08-25 端末
PCT/CN2015/088009 WO2017031687A1 (zh) 2015-08-25 2015-08-25 一种终端
KR1020177030000A KR102021218B1 (ko) 2015-08-25 2015-08-25 단말
US15/562,536 US10817097B2 (en) 2015-08-25 2015-08-25 Terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/088009 WO2017031687A1 (zh) 2015-08-25 2015-08-25 一种终端

Publications (1)

Publication Number Publication Date
WO2017031687A1 true WO2017031687A1 (zh) 2017-03-02

Family

ID=58099443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088009 WO2017031687A1 (zh) 2015-08-25 2015-08-25 一种终端

Country Status (6)

Country Link
US (1) US10817097B2 (zh)
EP (1) EP3267242B1 (zh)
JP (1) JP6521407B2 (zh)
KR (1) KR102021218B1 (zh)
CN (1) CN107077017B (zh)
WO (1) WO2017031687A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110825274A (zh) * 2018-08-10 2020-02-21 无锡变格新材料科技有限公司 一种电容式触控面板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110096176B (zh) * 2019-04-25 2021-12-28 京东方科技集团股份有限公司 一种触控显示装置及其制作方法、终端设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823592A (zh) * 2014-02-26 2014-05-28 汕头超声显示器(二厂)有限公司 一种带有力学感应功能的显示装置
JP2014109991A (ja) * 2012-12-04 2014-06-12 Panasonic Corp タッチパネル、タッチパネルユニット及び電子機器
US20150153942A1 (en) * 2013-12-04 2015-06-04 Hideep Inc. System and method for controlling object motion based on touch
CN104698634A (zh) * 2014-08-22 2015-06-10 努比亚技术有限公司 显示面板组件和显示装置
CN104834419A (zh) * 2014-02-12 2015-08-12 苹果公司 采用薄片传感器及电容式阵列的力确定

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055378B2 (ja) * 2001-07-06 2008-03-05 松下電器産業株式会社 タッチパネルスイッチ
JP4821290B2 (ja) * 2005-12-01 2011-11-24 パナソニック株式会社 タッチパネル
US9318108B2 (en) 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
US7784366B2 (en) 2008-07-29 2010-08-31 Motorola, Inc. Single sided capacitive force sensor for electronic devices
US8274486B2 (en) * 2008-12-22 2012-09-25 Flextronics Ap, Llc Diamond pattern on a single layer
US9024907B2 (en) * 2009-04-03 2015-05-05 Synaptics Incorporated Input device with capacitive force sensor and method for constructing the same
CN102822777A (zh) * 2010-03-29 2012-12-12 夏普株式会社 显示装置、压力检测装置和显示装置的制造方法
JP2013008231A (ja) * 2011-06-24 2013-01-10 Nissha Printing Co Ltd 静電容量方式にも抵抗膜方式にも対応可能な押圧検出機能を有するタッチパネル
JP2013142613A (ja) * 2012-01-11 2013-07-22 Seiko Epson Corp センサー基板、検出装置、電子機器及びロボット
WO2013107474A1 (en) * 2012-01-20 2013-07-25 Sony Ericsson Mobile Communications Ab Touch screen, portable electronic device, and method of operating a touch screen
US8941014B2 (en) * 2012-06-28 2015-01-27 Atmel Corporation Complex adhesive boundaries for touch sensors
DE112013005988B4 (de) * 2012-12-14 2023-09-21 Apple Inc. Krafterfassung durch Kapazitätsänderungen
US9250753B2 (en) * 2013-01-07 2016-02-02 Microsoft Technology Licensing, Llc Capacitive touch surface in close proximity to display
JP2015056005A (ja) * 2013-09-11 2015-03-23 ソニー株式会社 センサ装置、入力装置及び電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014109991A (ja) * 2012-12-04 2014-06-12 Panasonic Corp タッチパネル、タッチパネルユニット及び電子機器
US20150153942A1 (en) * 2013-12-04 2015-06-04 Hideep Inc. System and method for controlling object motion based on touch
CN104834419A (zh) * 2014-02-12 2015-08-12 苹果公司 采用薄片传感器及电容式阵列的力确定
CN103823592A (zh) * 2014-02-26 2014-05-28 汕头超声显示器(二厂)有限公司 一种带有力学感应功能的显示装置
CN104698634A (zh) * 2014-08-22 2015-06-10 努比亚技术有限公司 显示面板组件和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110825274A (zh) * 2018-08-10 2020-02-21 无锡变格新材料科技有限公司 一种电容式触控面板

Also Published As

Publication number Publication date
US20180113554A1 (en) 2018-04-26
EP3267242A1 (en) 2018-01-10
EP3267242B1 (en) 2019-07-24
CN107077017A (zh) 2017-08-18
US10817097B2 (en) 2020-10-27
JP2018522318A (ja) 2018-08-09
KR20170129235A (ko) 2017-11-24
EP3267242A4 (en) 2018-04-18
JP6521407B2 (ja) 2019-05-29
CN107077017B (zh) 2021-08-03
KR102021218B1 (ko) 2019-09-11

Similar Documents

Publication Publication Date Title
EP3293617B1 (en) Touch sensor, touch detection apparatus and detection method, and touch control device
US8808483B2 (en) Method of making a curved touch panel
CN204926052U (zh) 触摸显示装置
US20160098110A1 (en) Display device including touch sensor
US10234977B2 (en) Pressure sensing touch device
US20170153724A1 (en) Touch panel module with conductive through holes and touch display device having the same
TWI477853B (zh) 觸控面板及其製造方法
CN103729083A (zh) 触控显示装置与手持式电子装置
CN107291284B (zh) 触摸显示装置
TW201712504A (zh) 觸摸顯示裝置
CN105676509A (zh) 压力触控液晶显示面板及制作方法
US10007374B2 (en) Touch control elastic structure, pressure detection method and display device
TWI588729B (zh) Capacitive pressure sensitive display device
WO2017031687A1 (zh) 一种终端
CN102236446A (zh) 薄型化触控装置
CN103761008A (zh) 一种面板装置及其制作方法
CN207336993U (zh) 一种压力感应触控显示面板
CN107402653B (zh) 触控模组及电子设备
CN105718095A (zh) 触控显示装置
CN204288172U (zh) 触控显示装置
CN203720805U (zh) 一种面板装置
CN205160744U (zh) 带电容触摸屏的智能耳机
CN210864678U (zh) 一种电容触摸屏
JP3174469U (ja) 引っ掻き防止層を具えた抵抗式タッチパネル
US20180172525A1 (en) Portable electronic device and sensing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901958

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562536

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015901958

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177030000

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017557078

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE