WO2017026128A1 - Motor device - Google Patents

Motor device Download PDF

Info

Publication number
WO2017026128A1
WO2017026128A1 PCT/JP2016/050533 JP2016050533W WO2017026128A1 WO 2017026128 A1 WO2017026128 A1 WO 2017026128A1 JP 2016050533 W JP2016050533 W JP 2016050533W WO 2017026128 A1 WO2017026128 A1 WO 2017026128A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
housing
substrate
lid
heat
Prior art date
Application number
PCT/JP2016/050533
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 健次
一法師 茂俊
一喜 渡部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016540701A priority Critical patent/JP6026063B1/en
Publication of WO2017026128A1 publication Critical patent/WO2017026128A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits

Definitions

  • the present invention relates to a motor device in which a control device is attached to a motor.
  • the power substrate is provided with a power conversion element having a larger calorific value than the control board
  • the control board is provided with electronic components having a lower allowable temperature than the power conversion element.
  • the temperature of the control device is reduced due to a decrease in heat dissipation. It is necessary to limit the heat generation of the power conversion element provided on the power board based on the allowable temperature of the electronic parts provided on the control board so that the electronic parts on the control board do not break down when the temperature rises. Therefore, the upper limit of the motor output (for example, torque or rotation speed) is limited.
  • cooling fins are provided outside the storage portion of the control device to reduce the influence of heat generation from the power board. It is desired to further improve the upper limit of the motor output by suppressing a decrease in heat dissipation performance that depends on the installation direction of the storage unit.
  • the present invention has been made to solve the above-described problems, and provides a motor device that can be reduced in size and can suppress an increase in temperature of a control component in a housing of the control device. For the purpose.
  • the motor device includes a motor and a control device that is provided in the motor and controls the operation of the motor.
  • the control device includes a control component group including a first substrate and a second substrate, a housing provided with an opening and containing the control component group, and a low heat conduction unit having a lower thermal conductivity than the housing. And a lid that closes the opening in contact with the body.
  • the first substrate is attached to the lid.
  • the second substrate has a power conversion element that generates a larger amount of heat than the first substrate.
  • the power conversion element is arranged away from the first substrate in the direction along the axis of the motor. A part of the second substrate is in a position aligned with the first substrate in a direction perpendicular to the axis of the motor.
  • the motor device of the present invention it is possible to make it difficult for heat from the housing to be transmitted to the first substrate. Further, since the power conversion element is arranged away from the first substrate in the direction along the axis of the motor, the first substrate can be made less susceptible to the heat generated by the power conversion element. Thereby, the temperature rise of the 1st board
  • the motor device can be reduced in size.
  • FIG. 1 is a perspective view showing a motor device according to Embodiment 1 of the present invention.
  • FIG. 2 is a partial cross-sectional view showing the motor device 1 of FIG.
  • the motor device 1 has a motor 2 and a control device 3 provided on the motor 2 and controlling the operation of the motor 2.
  • the motor 2 has a motor body and a motor housing 4 that supports the motor body.
  • the motor body has a shaft 5, a cylindrical stator surrounding the shaft 5, and a rotor fixed to the shaft 5 and disposed inside the stator.
  • the stator has a stator coil
  • the rotor has a permanent magnet.
  • the shaft 5, the stator and the rotor are arranged coaxially with the axis of the motor 2.
  • the rotor and the shaft 5 rotate integrally with respect to the stator about the axis of the motor 2 by supplying power to the stator coil.
  • the motor housing 4 includes a cylindrical motor frame 6 that surrounds the stator, and a front bracket 7 and a rear bracket 8 that are a pair of plate-like brackets fixed to the motor frame 6 with, for example, a plurality of bolts. Yes.
  • the stator of the motor body is fixed to the inner surface of the motor frame 6.
  • a front bracket 7 is fixed to one end of the motor frame 6 in the axial direction, and a rear bracket 8 is fixed to the other end of the motor frame 6 in the axial direction. Thereby, the stator, the front bracket 7 and the rear bracket 8 are in contact with the motor frame 6.
  • the shaft 5 passes through the front bracket 7 and the rear bracket 8.
  • the shaft 5 is rotatably supported by the front bracket 7 and the rear bracket 8 via a bearing 9.
  • the rear bracket 8 is provided with an encoder 10 that is a rotation detector that generates a signal corresponding to the rotation of the shaft 5.
  • the control device 3 includes a housing 13 provided with an upper opening 11 and a lower opening 12, a plate-like upper lid 14 that closes the upper opening 11, and a lower opening 12. It has a plate-like lower lid 15 to be closed and a control component group 16 provided in the housing 13.
  • the housing 13 is integrated with the front bracket 7.
  • a single material formed by integral molding constitutes a bracket-integrated housing composed of the housing 13 and the front bracket 7. That is, in this example, a part of the single material formed by integral molding is the front bracket 7 and the remaining part is the housing 13.
  • the bracket-integrated case composed of the front bracket 7 and the case 13 is made of a metal having high thermal conductivity such as aluminum. In this example, the thickness of the front bracket 7 is greater than the thickness of the wall of the housing 13.
  • the upper opening 11 is provided on the upper surface of the housing 13, and the lower opening 12 is provided on the lower surface of the housing 13.
  • the lower opening 12 is larger than the upper opening 11.
  • the housing 13 is arranged with the lower opening 12 facing the motor 2.
  • the upper lid 14 is attached to the casing 13 with a plurality of screws 17 with the outer periphery of the upper lid 14 in contact with the casing 13. Further, the upper lid 14 is a low heat conducting portion made of a material having a lower thermal conductivity than the housing 13. In this example, the upper lid 14 is made of resin. As a material constituting the upper lid 14, for example, plastic or rubber may be used.
  • the lower lid 15 is attached to the housing 13 with a plurality of screws (not shown) with the outer periphery of the lower lid 15 in contact with the housing 13.
  • the lower lid 15 is made of resin or metal.
  • the control component group 16 includes a control substrate (that is, a first substrate) 18 that is a first control component attached to the upper lid 14, and a second that is provided in the housing 13 apart from the upper lid 14. And a power board (that is, a second board) 19 as control parts.
  • the control board 18 and the power board 19 are accommodated in a common housing 13. Further, the control board 18 and the power board 19 are arranged in parallel to each other along the axis of the motor 2.
  • the power board 19 is accommodated in the housing 13 in a state of being separated from the upper lid 14 and the lower lid 15.
  • the power board 19 has a board and a plurality of electronic components mounted on the board.
  • the size of the power board 19 is larger than the size of the control board 18.
  • a part of the power board 19 is aligned with the control board 18 in a direction orthogonal to the axis of the motor 2. That is, the power board 19 is accommodated in the housing 13 with a part of the board of the power board 19 facing the control board 18 in a direction orthogonal to the axis of the motor 2.
  • the plurality of electronic components on the power board 19 include a power conversion element 20 that is a heat-generating component having a larger heat generation amount than the total heat generation amount of the control board 18.
  • the power conversion element 20 is an element that supplies a current to the stator coil of the motor 2.
  • the control component group 16 controls the rotation speed and torque of the shaft 5 of the motor 2 by controlling the current from the power conversion element 20.
  • the power board 19 is disposed in the housing 13 with the power conversion element 20 attached to the inner surface of the housing 13.
  • the power conversion element 20 is attached to the wall of the housing 13 where the upper opening 11 is formed. That is, in this example, the housing 13 has an element mounting wall disposed at a position farther from the motor 2 than the power board 19 in the direction orthogonal to the axis of the motor 2, and the power conversion element 20 is the housing. It is attached to 13 element attachment walls. Therefore, in this example, the substrate of the power substrate 19 is disposed at a position closer to the motor 2 than the power conversion element 20. Between the inner surface of the element mounting wall of the housing 13 and the power conversion element 20, a heat conducting material 21 for transferring heat between the housing 13 and the power conversion element 20 is interposed. The heat conducting material 21 is in close contact with the inner surface of the element mounting wall of the housing 13 and the power conversion element 20.
  • the power conversion element 20 is arranged away from the control board 18 in the direction along the axis of the motor 2.
  • the power conversion element 20 is arranged between the front bracket 7 and the control board 18 in the direction along the axis of the motor 2. That is, the power conversion element 20 is disposed at a position closer to the front bracket 7 than the control board 18 in the direction along the axis of the motor 2.
  • the motor 2, the lower lid 15, the substrate of the power board 19, the power conversion element 20, and the housing 13 are in the direction orthogonal to the axis of the motor 2. They are arranged in the order of the element mounting wall.
  • the control board 18 has a board and a plurality of electronic components mounted on the board.
  • the plurality of electronic components of the control board 18 include components having a lower allowable temperature than the electronic components of the power board 19, that is, components that are vulnerable to heat.
  • the electronic component of the control board 18 controls the power conversion element 20 by sending a control signal to the power conversion element 20. Therefore, the amount of current supplied to the control board 18 is smaller than the amount of current supplied to the power conversion element 20, and the total heat generation amount of the control board 18 is smaller than the heat generation amount of the power conversion element 20. In the general motor device 1, the total value of the heat generation amount of each electronic component of the control board 18 is 1/10 or less of the heat generation amount of the power conversion element 20.
  • the control board 18 is attached to the upper lid 14 with the plurality of electronic components of the control board 18 facing the upper lid 14. Between the control board 18 and the upper lid 14, a heat conductive material 22 for transferring heat between the control board 18 and the upper lid 14 is interposed.
  • the heat conductive material 22 is in close contact with each of the control board 18 and the upper lid 14.
  • a thermal sheet or thermal grease is used as the heat conductive materials 21 and 22, for example.
  • the control board 18 is disposed closer to the motor 2 than the upper lid 14. At the position of the control board 18 in the direction along the axis of the motor 2, the motor 2, the lower lid 15, the control board 18, and the upper lid 14 are arranged in this order in the direction orthogonal to the axis of the motor 2.
  • a plurality of fixing bases 23 are fixed to the inner surface of the housing 13.
  • the control board 18 is placed on each fixed base 23 via a washer 24.
  • Each screw 17 for attaching the upper lid 14 to the housing 13 is attached to the fixed base 23 from outside the housing 13 through the upper lid 14, the control board 18 and the washer 24.
  • the washer 24 is made of a material having a lower thermal conductivity than the housing 13 and a higher electrical insulation than the housing 13.
  • the washer 24 is made of resin.
  • plastic or rubber may be used as a material constituting the washer 24, for example.
  • the heat generated in the power conversion element 20 is transmitted to the entire bracket-integrated casing through the heat conducting material 21 because the bracket-integrated casing including the casing 13 and the front bracket 7 is a single material.
  • the entire bracket-integrated casing is discharged out of the motor device 1 by natural convection and radiation.
  • the heat generated in the motor body is transmitted to the entire bracket-integrated housing via the motor frame 6 and released outside the motor device 1.
  • the temperature of the power conversion element 20 is higher than the temperature of the motor frame 6, the heat generated in the power conversion element 20 is transmitted to the motor frame 6 through the entire bracket-integrated housing, and out of the motor device 1. Released.
  • the control board 18 is arranged away from the power conversion element 20 in the direction along the axis of the motor 2.
  • the control board 18 is disposed at a position farther from the front bracket 7 than the power conversion element 20 in the direction along the axis of the motor 2. Therefore, in the control board 18, the temperature rise depending on each temperature rise of the power conversion element 20 and the motor 2 is suppressed.
  • the upper lid 14 that closes the upper opening 11 of the housing 13 has a low heat conducting portion made of a material having a lower thermal conductivity than the housing 13.
  • the control board 18 is attached to the upper lid 14. Therefore, the heat from the housing 13 becomes difficult to be transmitted in the surface direction of the upper lid 14 by the low heat conduction part, and the control board 18 suppresses the temperature rise depending on the temperature rise of each of the power conversion element 20 and the motor 2. The In other words, heat from the housing 13 to the control board 18 is less likely to be transmitted by the upper lid 14. Thereby, the temperature rise of the control board 18 is suppressed.
  • the power conversion element 20 is attached to the element mounting wall of the housing 13 disposed at a position farther from the motor 2 than the power board 19, and the control board 18 attached to the upper lid 14 is attached to the upper lid 14. It is arranged at a position closer to the motor 2 than 14. Therefore, in the power conversion element 20 and the control board 18, heat is radiated at a position opposite to the motor 2 side, and the temperature of the control board 18 due to the temperature rise of the motor 2 that has become high temperature due to heat generation of the stator coil. The rise is suppressed.
  • the upper lid 14 is a low heat conducting portion, it is possible to make it difficult for the heat from the housing 13 to be transmitted to the control board 18 by the upper lid 14.
  • the power conversion element 20 is arranged away from the control board 18 in the direction along the axis of the motor 2, it is possible to make it difficult for heat from the power conversion element 20 to be transmitted to the control board 18. Thereby, the temperature rise of the control board 18 can be suppressed and the control board 18 can be made difficult to break down. Therefore, the power board 19 including the power conversion element 20 that is a heat-generating component and the control board 18 including a heat-sensitive component can be arranged in a space in the common housing 13.
  • the arrangement space of the control board 18 and the power board 19 is reduced in the direction along the axis of the motor 2. Can do. Thereby, size reduction of the motor apparatus 1 can also be achieved. Further, the downsizing of the control device 3 can improve the vibration resistance of the control device 3 with respect to the vibrating motor 2.
  • control board 18 and the power board 19 are arranged in parallel with each other along the axis of the motor 2, the height of the control device 3 can be reduced. Thereby, size reduction of the motor apparatus 1 and the improvement of the vibration resistance of the control apparatus 3 with respect to the motor 2 can further be aimed at.
  • the control board 18 can be moved away from the front bracket 7. Heat transmitted to the housing 13 via the front bracket 7 can be prevented from reaching the control board 18. Thereby, the temperature rise of the control board 18 can be further suppressed.
  • the casing 13 has an element mounting wall disposed at a position farther from the motor 2 than the power board 19 in the direction orthogonal to the axis of the motor 2, and the power conversion element 20 is mounted on the element of the casing 13. Since it is attached to the wall and the control board 18 is arranged at a position closer to the motor 2 than the upper lid 14, the power conversion element 20 and the power conversion element at a position opposite to the motor 2 side of the control board 18 20 and the control board 18 can be radiated, and even when the motor 2 rises in temperature, the power conversion element 20 and the control board 18 can be radiated effectively. Thereby, the temperature rise of the control board 18 can be further suppressed.
  • the heat conductive material 22 is interposed between the control board 18 and the upper lid 14, it is possible to easily transfer the heat generated in the control board 18 to the upper lid 14. Thereby, the temperature of the control board 18 can be actively reduced.
  • bracket-integrated case composed of the case 13 and the front bracket 7 is a single material formed by integral molding, so that the heat conduction state between the case 13 and the front bracket 7 is remarkably improved. And can easily diffuse the heat. Thereby, heat from the power conversion element 20 and the motor frame 6 can be released to the outside of the motor device 1 by the entire bracket-integrated housing, and the temperature rise of the power board 19 and the entire motor device 1 is effectively suppressed. be able to.
  • control board 18 overlaps the fixed base 23 via a washer 24 having a lower thermal conductivity than the housing 13, for example, when the fixed base 23 becomes high temperature due to heat from the power conversion element 20. Even if it exists, the heat from the fixed base 23 can be made difficult to be transmitted to the control board 18 by the washer 24. Thereby, the temperature rise of the control board 18 can be further suppressed.
  • the thickness of the front bracket 7 is thicker than the thickness of the wall of the housing 13, heat is easily diffused by the front bracket 7, and the heat dissipation effect in the motor device 1 can be further improved. .
  • the power board 19 having the power conversion element 20 having a high allowable temperature but a large calorific value and the control board 18 having electronic components having a small calorific value but a low allowable temperature are accommodated in one casing 13. Even so, while the heat generation of the power conversion element 20 is cooled by the entire housing 13, the influence of the temperature increase of the power conversion element 20 and the housing 13 having a large heat generation amount on the temperature increase of the control board 18 can be minimized. it can. Thereby, the control device 3 in which two substrates coexist can be efficiently cooled, and the upper limit of the output of the motor 2 can be improved.
  • FIG. FIG. 3 is a partial cross-sectional view showing a motor device according to Embodiment 2 of the present invention.
  • the front bracket 7 has a plate-like bracket main body 71 and a plate-like bracket protrusion 72 protruding from the bracket main body 71.
  • the shaft 5 passes through the bracket body 71, and the shaft 5 is rotatably supported via the bearing 9.
  • the bracket protrusion 72 protrudes along the shaft 5 from the end of the bracket body 71 toward the rear bracket 8.
  • the cross-sectional shape of the front bracket 7 is L-shaped by the bracket main body 71 and the bracket protrusion 72.
  • the front bracket 7 is a single material formed by integral molding.
  • the housing 13 is a separate member from the front bracket 7. An end portion of the housing 13 is attached to a boundary portion between the bracket main body 71 and the bracket projecting portion 72 of the front bracket 7 with an attachment screw 31. Thereby, the housing 13 is integrated with the front bracket 7. The end of the housing 13 is in contact with the front bracket 7. Further, a part of the lower opening 12 of the housing 13 is closed by the bracket protrusion 72, and the remaining part is closed by the lower lid 15. The upper surface of the bracket protrusion 72 is exposed in the housing 13.
  • the power conversion element 20 of the power board 19 is attached to the surface of the bracket protrusion 72 exposed in the housing 13.
  • the power board 19 is disposed in the housing 13 apart from the control board 18, the upper lid 14, and the lower lid 15 with the power conversion element 20 attached to the bracket protrusion 72.
  • the power conversion element 20 is disposed at a position closer to the motor 2 than the substrate of the power substrate 19 in the direction orthogonal to the axis of the motor 2.
  • the heat conductive material 21 similar to that in the first embodiment is interposed between the surface of the bracket protrusion 72 exposed in the housing 13 and the power conversion element 20.
  • the heat conducting material 21 is in close contact with each of the bracket protrusion 72 and the power conversion element 20.
  • Other configurations are the same as those in the first embodiment.
  • the heat generated in the power conversion element 20 is transmitted to the bracket protrusion 72 via the heat conductive material 21, and is transmitted from the bracket protrusion 72 to the housing 13, the bracket body 71 and the motor frame 6. Heat transmitted to the housing 13, the bracket body 71 and the motor frame 6 is released from the surfaces of the housing 13, the bracket body 71 and the motor frame 6 to the outside of the motor device 1 by natural convection and radiation.
  • the heat generated in the motor body is transmitted to the front bracket 7 and the housing 13 via the motor frame 6 and released to the outside of the motor device 1.
  • the temperature of the power conversion element 20 is higher than the temperature of the motor frame 6
  • the heat generated in the power conversion element 20 is transmitted to the housing 13 and the motor frame 6 via the front bracket 7, and the outside of the motor device 1. Is released.
  • the control board 18 is disposed away from the power conversion element 20 in the direction along the axis of the motor 2, and is further away from the front bracket 7 than the power conversion element 20 in the direction along the axis of the motor 2. Placed in position. Therefore, in the control board 18, the temperature rise depending on each temperature rise of the power conversion element 20 and the motor 2 is suppressed.
  • the upper lid 14 that closes the upper opening 11 of the housing 13 has a low heat conducting portion made of a material having a lower thermal conductivity than the housing 13.
  • the control board 18 is attached to the upper lid 14. Therefore, the heat from the housing 13 becomes difficult to be transmitted in the surface direction of the upper lid 14 by the low heat conduction part, and the control board 18 suppresses the temperature rise depending on the temperature rise of each of the power conversion element 20 and the motor 2. The In other words, heat from the housing 13 to the control board 18 is less likely to be transmitted by the upper lid 14. Thereby, the temperature rise of the control board 18 is suppressed.
  • the housing 13 is a separate member from the front bracket 7, and the power conversion element 20, which is a heat generating component, is attached to the bracket protrusion 72 of the front bracket 7.
  • the heat generated at 20 can be transmitted to the housing 13, the bracket body 71 and the motor frame 6 via the bracket protrusion 72. Further, heat generated in the motor main body can be transferred to the motor frame 6, the bracket main body 71 and the housing 13. Thereby, the heat from the power conversion element 20 and the motor body can be released from the respective surfaces of the motor frame 6, the bracket body 71, and the housing 13 to the outside of the motor device 1, and the control board 18, the power board 19, and the motor The temperature rise of the entire apparatus 1 can be effectively suppressed.
  • the housing 13 is a separate member from the front bracket 7, the power board 19 can be attached to the front bracket 7 with the front bracket 7 attached to the motor frame 6. Therefore, a wide working space can be secured when the power board 19 is attached, and the manufacture of the motor device 1 can be facilitated.
  • the thickness of the front bracket 7 thicker than the thickness of the wall of the housing 13, heat is easily diffused in the front bracket 7, and the heat dissipation effect in the motor device 1 can be further improved.
  • FIG. FIG. 4 is a partial sectional view showing a motor device according to Embodiment 3 of the present invention.
  • the housing 13 is a separate member from the plate-shaped front bracket 7.
  • the end portion of the housing 13 is attached to the end portion of the front bracket 7 (the upper end portion of the front bracket 7 in FIG. 4) with a mounting screw 31.
  • the housing 13 is integrated with the front bracket 7.
  • the end of the housing 13 is in contact with the end of the front bracket 7.
  • Other configurations are the same as those in the first embodiment.
  • the heat generated in the power conversion element 20 is transmitted to the housing 13 via the heat conducting material 21, and is transmitted from the housing 13 to the front bracket 7 and the motor frame 6.
  • the heat transmitted to the housing 13, the front bracket 7, and the motor frame 6 is released from the surfaces of the housing 13, the front bracket 7, and the motor frame 6 to the outside of the motor device 1 by natural convection and radiation.
  • the heat generated in the motor body is transmitted to the front bracket 7 and the housing 13 via the motor frame 6 and released to the outside of the motor device 1.
  • the temperature of the power conversion element 20 is higher than the temperature of the motor frame 6
  • the heat generated in the power conversion element 20 is transmitted to the housing 13 and the motor frame 6 via the front bracket 7, and the outside of the motor device 1. Is released.
  • the control board 18 is disposed away from the power conversion element 20 in the direction along the axis of the motor 2, and is further away from the front bracket 7 than the power conversion element 20 in the direction along the axis of the motor 2. Placed in position. Therefore, in the control board 18, the temperature rise depending on each temperature rise of the power conversion element 20 and the motor 2 is suppressed.
  • the upper lid 14 that closes the upper opening 11 of the housing 13 has a low heat conducting portion made of a material having a lower thermal conductivity than the housing 13.
  • the control board 18 is attached to the upper lid 14. Therefore, the heat from the housing 13 becomes difficult to be transmitted in the surface direction of the upper lid 14 by the low heat conduction part, and the control board 18 suppresses the temperature rise depending on the temperature rise of each of the power conversion element 20 and the motor 2. The In other words, heat from the housing 13 to the control board 18 is less likely to be transmitted by the upper lid 14. Thereby, the temperature rise of the control board 18 is suppressed.
  • the power conversion element 20 is attached to the element mounting wall of the housing 13 disposed at a position farther from the motor 2 than the power board 19, and the control board 18 attached to the upper lid 14 is attached to the upper lid 14. It is arranged at a position closer to the motor 2 than 14. Therefore, in the power conversion element 20 and the control board 18, heat is radiated at a position opposite to the motor 2 side, and the temperature of the control board 18 due to the temperature rise of the motor 2 that has become high temperature due to heat generation of the stator coil. The rise is suppressed.
  • the housing 13 is a separate member from the front bracket 7, the separately manufactured motor 2 and the control device 3 can be combined with each other, and the manufacture of the motor device 1 is facilitated. be able to. Further, the control device 3 can be easily detached from the motor 2, and for example, work such as repair when the control device 3 breaks down can be facilitated. Further, by making the thickness of the front bracket 7 thicker than the thickness of the wall of the housing 13, heat can be easily diffused in the front bracket 7, and the heat dissipation effect in the motor device 1 can be further improved.
  • FIG. 5 is a partial sectional view showing a motor device according to Embodiment 4 of the present invention.
  • a heat insulating material 32 that suppresses heat transfer between the control board 18 and the housing 13 overlaps the surface of the control board 18 exposed in the housing 13.
  • the heat conductivity of the heat insulating material 32 is lower than the heat conductivity of the housing 13.
  • the heat insulating material 32 overlaps the entire surface of the control board 18 exposed in the housing 13.
  • the control board 18 is placed on top of each other via a heat insulating material 32.
  • Other configurations are the same as those in the first embodiment.
  • the configuration in which the heat insulating material 32 is stacked on the surface of the control board 18 exposed in the casing 13 is applied to the motor device 1 of the first embodiment.
  • a configuration in which the heat insulating material 32 is overlaid on the surface exposed to may be applied to the motor devices 1 of the second and third embodiments.
  • FIG. FIG. 6 is a partial cross-sectional view showing a motor device according to Embodiment 5 of the present invention.
  • the control board 18 is arranged away from the upper lid 14 downward. Thereby, a gap which is a space exists between the control board 18 and the upper lid 14.
  • the control board 18 is placed on each fixed base 23 with its own weight via a heat insulating material 32.
  • Other configurations are the same as those of the fourth embodiment.
  • the configuration in which the control board 18 is arranged away from the upper lid 14 is applied to the motor device 1 of the fourth embodiment.
  • the present invention may be applied to the motor device 1 according to the first to third embodiments.
  • FIG. FIG. 7 is a partial cross-sectional view showing a motor device according to Embodiment 6 of the present invention.
  • the upper lid 14 includes a metal lid main body 41 and a low heat conduction portion 42 interposed between the lid main body 41 and the housing 13.
  • the lid body 41 covers the entire upper opening 11. Further, the lid main body 41 is arranged away from the housing 13 by the low heat conducting portion 42.
  • the low heat conducting portion 42 is provided on the lid main body 41 along the outer peripheral portion of the upper opening 11. Further, the low heat conducting portion 42 is in contact with the housing 13.
  • the lid main body 41 is a high heat conduction portion made of a metal having high thermal conductivity, such as aluminum or copper.
  • a ceramic having a high thermal conductivity for example, aluminum nitride (AlN)
  • a graphite composite material may be used as a material constituting the lid main body 41.
  • the thermal conductivity of the low thermal conductive portion 42 is lower than the thermal conductivity of the housing 13 and the lid body 41. This makes it difficult for heat from the housing 13 to be transmitted to the lid body 41.
  • the heat conductive material 22 that is in close contact with the control board 18 and the lid body 41 is interposed.
  • the heat conducting material 22 is made of a material having electrical insulation.
  • Other configurations are the same as those in the first embodiment.
  • the low heat conductive portion 42 is interposed between the metal lid main body 41 and the housing 13, and the heat conductive material 22 in close contact with the control board 18 and the lid main body 41 is controlled. Since it is interposed between the substrate 18 and the lid body 41, even if there are components having a high heat generation density among the components included in the control substrate 18, the lid body 41 having a high thermal conductivity is used for the control substrate. The heat concentration can be reduced by diffusing the heat from 18. Thereby, the temperature rise of the control board 18 can be suppressed.
  • the low heat conduction portion 42 is interposed between the lid main body 41 and the housing 13, it becomes difficult for heat to be transmitted from the housing 13, which has become high temperature due to the heat generated by the power conversion element 20, to the lid main body 41.
  • the temperature rise of the substrate 18 can be further suppressed.
  • the configuration in which the upper lid 14 includes the lid main body 41 and the low heat conduction portion 42 is applied to the upper lid 14 of the motor device 1 of the first embodiment.
  • the configuration including the low heat conduction unit 42 may be applied to the upper lid 14 of the motor device 1 of the second to fourth embodiments.
  • FIG. FIG. 8 is a partial sectional view showing a motor device according to Embodiment 7 of the present invention.
  • FIG. 9 is a top view showing the upper lid 14 of FIG.
  • the upper lid 14 includes a metal plate 45 and a resin-made low heat conduction portion 46 integrated with the metal plate 45.
  • the low heat conducting portion 46 is integrated with the metal plate 45 in a state where it is in contact with the metal plate 45.
  • the metal plate 45 is a high heat conduction part made of a metal having high thermal conductivity, such as aluminum or copper.
  • the thermal conductivity of the low thermal conductive portion 42 is lower than the thermal conductivity of the housing 13 and the metal plate 45.
  • the upper lid 14 is attached to the housing 13 in a state where the metal plate 45 and the low heat conducting portion 46 are in contact with the housing 13.
  • the plurality of screws 17 for attaching the upper lid 14 to the housing 13 all pass through the low heat conducting portion 46.
  • the low heat conducting portion 46 is a U-shaped plate as shown in FIG. Further, in this example, the metal plate 45 is fixed in a U-shaped inner space of the low heat conducting portion 46. Therefore, in this example, the upper lid 14 is in a state in which the low heat conduction portion 46 is in contact with three sides of the four sides of the rectangular upper opening 11 and the metal plate 45 is in contact with the remaining one side. 13 is attached. In this example, the metal plate 45 is in contact with one of the four sides of the upper opening 11 that is farthest from the position of the power conversion element 20.
  • the heat conductive material 22 is interposed between each of the metal plate 45 and the low heat conductive portion 46 and the control board 18.
  • the heat conducting material 22 is in close contact with each of the metal plate 45 and the low heat conducting portion 46.
  • the heat conducting material 22 is made of a material having electrical insulation. Other configurations are the same as those in the first embodiment.
  • the upper lid 14 is attached to the housing 13 with the metal plate 45 and the low thermal conduction portion 46 in contact with the housing 13, and is attached to each of the control board 18 and the metal plate 45. Since the heat conductive material 22 that is in close contact is interposed between the control board 18 and the metal plate 45, even if there are parts with high heat generation density among the parts included in the control board 18, the thermal conductivity The high metal plate 45 can diffuse the heat from the control board 18 to alleviate the concentration of heat, and the temperature rise of the control board 18 can be suppressed. In addition, since the low heat conducting portion 46 is in contact with the housing 13, it is difficult for heat to be transmitted from the housing 13 to the metal plate 45, and the temperature rise of the control board 18 can be further suppressed.
  • the configuration in which the upper lid 14 includes the metal plate 45 and the low thermal conductivity portion 46 is applied to the upper lid 14 of the motor device 1 of the first embodiment.
  • the configuration including the low heat conduction unit 46 may be applied to the upper lid 14 of the motor device 1 of the second to fourth embodiments.
  • the metal plate 45 is the high thermal conductivity portion of the upper lid 14, but the upper plate is made of a ceramic having a high thermal conductivity (eg, aluminum nitride (AlN)) or a graphite composite material.
  • the lid 14 may be a high heat conducting portion.
  • FIG. 10 is a partial cross-sectional view showing a motor device according to an eighth embodiment of the present invention.
  • a heat radiating plate 51 having a higher heat conductivity than that of the low heat conducting portion 46 is attached to the upper lid 14 outside the housing 13.
  • the heat radiating plate 51 overlaps the upper lid 14 while being in contact with the metal plate 45 and the low heat conducting portion 46, respectively.
  • the heat radiating plate 51 is attached to the upper lid 14 by a plurality of screws 17 that attach the upper lid 14 to the housing 13.
  • the length of the heat sink 51 is longer than the length of the upper lid 14.
  • the surface area of the heat sink 51 is larger than the surface area of the upper lid 14.
  • the heat sink 51 extends from the end of the metal plate 45 to the outside of the upper lid 14.
  • the heat sink 51 is comprised, for example with aluminum or copper. Other configurations are the same as those of the seventh embodiment.
  • the heat radiating plate 51 having a higher thermal conductivity than the low heat conducting portion 46 is attached to the upper lid 14 outside the housing 13, the heat of the upper lid 14 is effectively transferred from the heat radiating plate 51.
  • the temperature rise of the control substrate 18 can be further suppressed. For example, even when there is a part having a high heat generation density among the parts included in the control board 18, the heat of the upper lid 14 can be effectively released to the outside of the housing 13, and the temperature of the control board 18 The rise can be suppressed.
  • the metal plate 45 is the high thermal conductivity portion of the upper lid 14, but the upper plate is made of a ceramic having a high thermal conductivity (eg, aluminum nitride (AlN)) or a graphite composite material.
  • the lid 14 may be a high heat conducting portion.
  • FIG. FIG. 11 is a partial cross-sectional view showing a motor device according to Embodiment 9 of the present invention.
  • a rubber O-ring 55 as a seal material is interposed between the upper lid 14 and the housing 13.
  • a rubber O-ring 56 as a sealing material is interposed between the lower lid 15 and the housing 13.
  • Other configurations are the same as those in the first embodiment.
  • a configuration in which a sealing material is interposed between each of the upper lid 14 and the lower lid 15 and the housing 13 is applied to the motor device 1 of the first embodiment.
  • a configuration in which a sealing material is interposed between each of the lower lids 15 and the housing 13 may be applied to the motor devices 1 of the second to eighth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

The purpose of the invention is to obtain a motor device able to minimize increases in temperature of control components inside a casing of a control device while also achieving a reduction in size. A control device 3 provided in a motor 2 includes: a control component group 16 that includes a first substrate 18 and a second substrate 19; a casing 13 for accommodating the control component group 16, an opening 11 being provided to said casing 13; and a low-heat-conduction section 42 having lower heat conductivity than the housing 13. The control device 3 has a lid 14 for closing off the opening section 11 once in contact with the casing 13. The first substrate 18 is attached to the lid 14. The second substrate 19 has a power conversion element 20 that emits more heat than the total amount of heat emitted by the first substrate 18, and is accommodated inside the casing 13 once separated from the lid 14. The power conversion element 20 is set apart from the first substrate 18 in the direction tracing the axis of the motor 2. A portion of the second substrate 19 lines up with the first substrate 18 in the direction intersecting the axis of the motor 2.

Description

モータ装置Motor equipment
 この発明は、モータに制御装置が取り付けられているモータ装置に関するものである。 The present invention relates to a motor device in which a control device is attached to a motor.
 従来、制御装置を収納する収納部をモータのブラケット部材に設け、収納部の外面に冷却フィンを設けることにより、制御装置が発生した熱を外部に放出できるようにしたブラシレスモータが知られている。このような従来のブラシレスモータでは、モータと制御装置とを一体化し、モータを制御するパワー基板と制御基板とを制御装置の1つの収納部内に搭載することでコンパクトにした構成も見られる(例えば特許文献1参照)。 2. Description of the Related Art Conventionally, there is known a brushless motor in which a storage unit that stores a control device is provided in a bracket member of the motor and a cooling fin is provided on an outer surface of the storage unit so that heat generated by the control device can be released to the outside. . In such a conventional brushless motor, a compact configuration can be seen by integrating the motor and the control device and mounting the power board and the control board for controlling the motor in one storage part of the control device (for example, Patent Document 1).
特開2013-94025号公報JP 2013-94025 A
 しかし、従来のブラシレスモータでは、収納部の設置方向が変更されると、冷却フィンの放熱性能が低下し、制御装置の温度が上昇してしまう。 However, in the conventional brushless motor, when the installation direction of the storage unit is changed, the heat dissipation performance of the cooling fins is lowered and the temperature of the control device is increased.
 また一般的に、パワー基板には制御基板と比べて発熱量の大きい電力変換素子が設けられており、制御基板には電力変換素子と比べて許容温度が低い電子部品が設けられている。発熱量が大きい電力変換素子を設けたパワー基板と、許容温度が電力変換素子よりも低い電子部品を設けた制御基板とを同一の収納部内に搭載した状況では、放熱性低下によって制御装置の温度が上昇した場合に制御基板の電子部品が故障しないように、制御基板に設けた電子部品の許容温度に基づいてパワー基板に設けた電力変換素子の発熱を制限する必要がある。そのため、モータの出力(例えばトルク又は回転数等)の上限が制限されてしまう。 In general, the power substrate is provided with a power conversion element having a larger calorific value than the control board, and the control board is provided with electronic components having a lower allowable temperature than the power conversion element. In a situation where a power board provided with a power conversion element with a large amount of heat generation and a control board provided with electronic components whose allowable temperature is lower than that of the power conversion element are mounted in the same storage unit, the temperature of the control device is reduced due to a decrease in heat dissipation. It is necessary to limit the heat generation of the power conversion element provided on the power board based on the allowable temperature of the electronic parts provided on the control board so that the electronic parts on the control board do not break down when the temperature rises. Therefore, the upper limit of the motor output (for example, torque or rotation speed) is limited.
 特許文献1に示されている従来のブラシレスモータでは、モータ出力の上限を上げるために、制御装置の収納部の外側に冷却フィンを設けてパワー基板からの発熱の影響を低減しているが、収納部の設置方向に依存する放熱性能低下を抑制してモータ出力上限を更に向上することが望まれている。 In the conventional brushless motor shown in Patent Document 1, in order to increase the upper limit of the motor output, cooling fins are provided outside the storage portion of the control device to reduce the influence of heat generation from the power board. It is desired to further improve the upper limit of the motor output by suppressing a decrease in heat dissipation performance that depends on the installation direction of the storage unit.
 この発明は、上記のような課題を解決するためになされたものであり、小型化を図ることができるとともに、制御装置の筐体内の制御部品の温度上昇を抑制することができるモータ装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and provides a motor device that can be reduced in size and can suppress an increase in temperature of a control component in a housing of the control device. For the purpose.
 この発明によるモータ装置は、モータと、モータに設けられ、モータの動作を制御する制御装置とを備えている。制御装置は、第1基板及び第2基板を含む制御部品群と、開口部が設けられ、制御部品群を収容する筐体と、筐体よりも熱伝導率の低い低熱伝導部を含み、筐体に接触した状態で開口部を塞ぐ蓋とを有している。第1基板は、蓋に取り付けられている。第2基板は、第1基板の総発熱量よりも発熱量が大きい電力変換素子を有している。電力変換素子は、モータの軸線に沿った方向について第1基板から離して配置されている。第2基板の一部は、モータの軸線と直交する方向について第1基板と並ぶ位置にある。 The motor device according to the present invention includes a motor and a control device that is provided in the motor and controls the operation of the motor. The control device includes a control component group including a first substrate and a second substrate, a housing provided with an opening and containing the control component group, and a low heat conduction unit having a lower thermal conductivity than the housing. And a lid that closes the opening in contact with the body. The first substrate is attached to the lid. The second substrate has a power conversion element that generates a larger amount of heat than the first substrate. The power conversion element is arranged away from the first substrate in the direction along the axis of the motor. A part of the second substrate is in a position aligned with the first substrate in a direction perpendicular to the axis of the motor.
 この発明によるモータ装置によれば、筐体からの熱を第1基板に伝わりにくくすることができる。また、電力変換素子がモータの軸線に沿った方向について第1基板から離して配置されているので、第1基板が電力変換素子の発熱の影響を受けにくくすることができる。これにより、制御装置の設置方向に依存せずに制御部品である第1基板の温度上昇を抑制することができ、第1基板を故障しにくくすることができる。また、電力変換素子で発生した熱を筐体に拡散させることができる。これにより、第2基板及びモータ装置全体の温度上昇も効果的に抑制することができる。さらに、第2基板の一部がモータの軸線と直交する方向について第1基板と並ぶ位置にあるので、第1基板及び第2基板の全体の配置スペースをモータの軸線に沿った方向について小さくすることができ、モータ装置の小型化を図ることができる。 According to the motor device of the present invention, it is possible to make it difficult for heat from the housing to be transmitted to the first substrate. Further, since the power conversion element is arranged away from the first substrate in the direction along the axis of the motor, the first substrate can be made less susceptible to the heat generated by the power conversion element. Thereby, the temperature rise of the 1st board | substrate which is a control component can be suppressed irrespective of the installation direction of a control apparatus, and it can make it difficult to break down a 1st board | substrate. Further, heat generated by the power conversion element can be diffused into the housing. Thereby, the temperature rise of the 2nd board | substrate and the whole motor apparatus can also be suppressed effectively. Furthermore, since a part of the second substrate is in a position aligned with the first substrate in a direction orthogonal to the motor axis, the entire arrangement space of the first substrate and the second substrate is reduced in the direction along the motor axis. Therefore, the motor device can be reduced in size.
この発明の実施の形態1によるモータ装置を示す斜視図である。It is a perspective view which shows the motor apparatus by Embodiment 1 of this invention. 図1のモータ装置を示す部分断面図である。It is a fragmentary sectional view which shows the motor apparatus of FIG. この発明の実施の形態2によるモータ装置を示す部分断面図である。It is a fragmentary sectional view which shows the motor apparatus by Embodiment 2 of this invention. この発明の実施の形態3によるモータ装置を示す部分断面図である。It is a fragmentary sectional view which shows the motor apparatus by Embodiment 3 of this invention. この発明の実施の形態4によるモータ装置を示す部分断面図である。It is a fragmentary sectional view which shows the motor apparatus by Embodiment 4 of this invention. この発明の実施の形態5によるモータ装置を示す部分断面図である。It is a fragmentary sectional view which shows the motor apparatus by Embodiment 5 of this invention. この発明の実施の形態6によるモータ装置を示す部分断面図である。It is a fragmentary sectional view which shows the motor apparatus by Embodiment 6 of this invention. この発明の実施の形態7によるモータ装置を示す部分断面図である。It is a fragmentary sectional view which shows the motor apparatus by Embodiment 7 of this invention. 図8の上部蓋を示す上面図である。It is a top view which shows the upper cover of FIG. この発明の実施の形態8によるモータ装置を示す部分断面図である。It is a fragmentary sectional view which shows the motor apparatus by Embodiment 8 of this invention. この発明の実施の形態9によるモータ装置を示す部分断面図である。It is a fragmentary sectional view which shows the motor apparatus by Embodiment 9 of this invention.
 以下、この発明の好適な実施の形態について図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1によるモータ装置を示す斜視図である。また、図2は、図1のモータ装置1を示す部分断面図である。図において、モータ装置1は、モータ2と、モータ2に設けられ、モータ2の動作を制御する制御装置3とを有している。
Preferred embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
1 is a perspective view showing a motor device according to Embodiment 1 of the present invention. FIG. 2 is a partial cross-sectional view showing the motor device 1 of FIG. In the figure, the motor device 1 has a motor 2 and a control device 3 provided on the motor 2 and controlling the operation of the motor 2.
 モータ2は、モータ本体と、モータ本体を支持するモータハウジング4とを有している。 The motor 2 has a motor body and a motor housing 4 that supports the motor body.
 モータ本体は、シャフト5と、シャフト5の周囲を囲む筒状のステータと、シャフト5に固定され、ステータの内側に配置されているロータとを有している。この例では、ステータがステータコイルを有し、ロータが永久磁石を有している。シャフト5、ステータ及びロータは、モータ2の軸線と同軸に配置されている。ロータ及びシャフト5は、ステータコイルへの給電により、モータ2の軸線を中心としてステータに対して一体に回転する。 The motor body has a shaft 5, a cylindrical stator surrounding the shaft 5, and a rotor fixed to the shaft 5 and disposed inside the stator. In this example, the stator has a stator coil, and the rotor has a permanent magnet. The shaft 5, the stator and the rotor are arranged coaxially with the axis of the motor 2. The rotor and the shaft 5 rotate integrally with respect to the stator about the axis of the motor 2 by supplying power to the stator coil.
 モータハウジング4は、ステータを囲む筒状のモータフレーム6と、例えば複数のボルト等によりモータフレーム6に固定されている一対の板状のブラケットである前方ブラケット7及び後方ブラケット8とを有している。 The motor housing 4 includes a cylindrical motor frame 6 that surrounds the stator, and a front bracket 7 and a rear bracket 8 that are a pair of plate-like brackets fixed to the motor frame 6 with, for example, a plurality of bolts. Yes.
 モータフレーム6の内面には、モータ本体のステータが固定されている。また、モータフレーム6の軸線方向一端部には前方ブラケット7が固定され、モータフレーム6の軸線方向他端部には後方ブラケット8が固定されている。これにより、ステータ、前方ブラケット7及び後方ブラケット8は、モータフレーム6に接触している。 The stator of the motor body is fixed to the inner surface of the motor frame 6. A front bracket 7 is fixed to one end of the motor frame 6 in the axial direction, and a rear bracket 8 is fixed to the other end of the motor frame 6 in the axial direction. Thereby, the stator, the front bracket 7 and the rear bracket 8 are in contact with the motor frame 6.
 シャフト5は、前方ブラケット7及び後方ブラケット8を貫通している。また、シャフト5は、ベアリング9を介して前方ブラケット7及び後方ブラケット8に回転自在に支持されている。後方ブラケット8には、シャフト5の回転に応じた信号を発生する回転検出器であるエンコーダ10が設けられている。 The shaft 5 passes through the front bracket 7 and the rear bracket 8. The shaft 5 is rotatably supported by the front bracket 7 and the rear bracket 8 via a bearing 9. The rear bracket 8 is provided with an encoder 10 that is a rotation detector that generates a signal corresponding to the rotation of the shaft 5.
 制御装置3は、図2に示すように、上部開口部11及び下部開口部12が設けられている筐体13と、上部開口部11を塞ぐ板状の上部蓋14と、下部開口部12を塞ぐ板状の下部蓋15と、筐体13内に設けられている制御部品群16とを有している。 As shown in FIG. 2, the control device 3 includes a housing 13 provided with an upper opening 11 and a lower opening 12, a plate-like upper lid 14 that closes the upper opening 11, and a lower opening 12. It has a plate-like lower lid 15 to be closed and a control component group 16 provided in the housing 13.
 筐体13は、前方ブラケット7と一体になっている。この例では、一体成形により形成された単一材が、筐体13及び前方ブラケット7からなるブラケット一体型筐体を構成している。即ち、この例では、一体成形により形成されている単一材のうち、一部が前方ブラケット7になっているとともに、残りの部分が筐体13になっている。前方ブラケット7及び筐体13からなるブラケット一体型筐体は、例えばアルミニウム等の熱伝導率の高い金属により構成されている。また、この例では、前方ブラケット7の厚さが筐体13の壁の厚さよりも厚くなっている。 The housing 13 is integrated with the front bracket 7. In this example, a single material formed by integral molding constitutes a bracket-integrated housing composed of the housing 13 and the front bracket 7. That is, in this example, a part of the single material formed by integral molding is the front bracket 7 and the remaining part is the housing 13. The bracket-integrated case composed of the front bracket 7 and the case 13 is made of a metal having high thermal conductivity such as aluminum. In this example, the thickness of the front bracket 7 is greater than the thickness of the wall of the housing 13.
 上部開口部11は筐体13の上面に設けられ、下部開口部12は筐体13の下面に設けられている。この例では、下部開口部12が上部開口部11よりも大きくなっている。筐体13は、下部開口部12をモータ2に向けて配置されている。 The upper opening 11 is provided on the upper surface of the housing 13, and the lower opening 12 is provided on the lower surface of the housing 13. In this example, the lower opening 12 is larger than the upper opening 11. The housing 13 is arranged with the lower opening 12 facing the motor 2.
 上部蓋14は、上部蓋14の外周部を筐体13に接触させて、複数のねじ17で筐体13に取り付けられている。また、上部蓋14は、筐体13よりも熱伝導率の低い材料で構成された低熱伝導部になっている。この例では、上部蓋14が樹脂で構成されている。上部蓋14を構成する材料として、例えばプラスチック又はゴム等を用いてもよい。 The upper lid 14 is attached to the casing 13 with a plurality of screws 17 with the outer periphery of the upper lid 14 in contact with the casing 13. Further, the upper lid 14 is a low heat conducting portion made of a material having a lower thermal conductivity than the housing 13. In this example, the upper lid 14 is made of resin. As a material constituting the upper lid 14, for example, plastic or rubber may be used.
 下部蓋15は、下部蓋15の外周部を筐体13に接触させて、図示しない複数のねじで筐体13に取り付けられている。この例では、下部蓋15が樹脂又は金属で構成されている。 The lower lid 15 is attached to the housing 13 with a plurality of screws (not shown) with the outer periphery of the lower lid 15 in contact with the housing 13. In this example, the lower lid 15 is made of resin or metal.
 制御部品群16は、上部蓋14に取り付けられている第1の制御部品である制御基板(即ち、第1基板)18と、上部蓋14から離して筐体13内に設けられている第2の制御部品であるパワー基板(即ち、第2基板)19とを有している。制御基板18及びパワー基板19は、共通の筐体13内に収容されている。また、制御基板18及びパワー基板19は、モータ2の軸線に沿って互いに平行に配置されている。 The control component group 16 includes a control substrate (that is, a first substrate) 18 that is a first control component attached to the upper lid 14, and a second that is provided in the housing 13 apart from the upper lid 14. And a power board (that is, a second board) 19 as control parts. The control board 18 and the power board 19 are accommodated in a common housing 13. Further, the control board 18 and the power board 19 are arranged in parallel to each other along the axis of the motor 2.
 パワー基板19は、上部蓋14及び下部蓋15から離れた状態で筐体13内に収容されている。また、パワー基板19は、基板と、基板に実装されている複数の電子部品とを有している。パワー基板19の大きさは、制御基板18の大きさよりも大きくなっている。パワー基板19の一部は、モータ2の軸線と直交する方向について制御基板18と並んでいる。即ち、パワー基板19は、モータ2の軸線と直交する方向についてパワー基板19の基板の一部を制御基板18と対向させた状態で、筐体13内に収容されている。パワー基板19の複数の電子部品には、制御基板18の総発熱量よりも発熱量が大きい発熱部品である電力変換素子20が含まれている。 The power board 19 is accommodated in the housing 13 in a state of being separated from the upper lid 14 and the lower lid 15. The power board 19 has a board and a plurality of electronic components mounted on the board. The size of the power board 19 is larger than the size of the control board 18. A part of the power board 19 is aligned with the control board 18 in a direction orthogonal to the axis of the motor 2. That is, the power board 19 is accommodated in the housing 13 with a part of the board of the power board 19 facing the control board 18 in a direction orthogonal to the axis of the motor 2. The plurality of electronic components on the power board 19 include a power conversion element 20 that is a heat-generating component having a larger heat generation amount than the total heat generation amount of the control board 18.
 電力変換素子20は、モータ2のステータコイルに電流を供給する素子である。制御部品群16は、電力変換素子20からの電流を制御することにより、モータ2のシャフト5の回転数及びトルクを制御する。 The power conversion element 20 is an element that supplies a current to the stator coil of the motor 2. The control component group 16 controls the rotation speed and torque of the shaft 5 of the motor 2 by controlling the current from the power conversion element 20.
 パワー基板19は、電力変換素子20を筐体13の内面に取り付けた状態で筐体13内に配置されている。この例では、筐体13の上部開口部11が形成されている壁に電力変換素子20が取り付けられている。即ち、この例では、筐体13が、モータ2の軸線と直交する方向についてパワー基板19よりもモータ2から離れた位置に配置されている素子取付壁を有し、電力変換素子20が筐体13の素子取付壁に取り付けられている。従って、この例では、パワー基板19の基板が、電力変換素子20よりもモータ2に近い位置に配置されている。筐体13の素子取付壁の内面と電力変換素子20との間には、筐体13と電力変換素子20との間で熱を伝えるための熱伝導材21が介在している。熱伝導材21は、筐体13の素子取付壁の内面及び電力変換素子20のそれぞれに密着している。 The power board 19 is disposed in the housing 13 with the power conversion element 20 attached to the inner surface of the housing 13. In this example, the power conversion element 20 is attached to the wall of the housing 13 where the upper opening 11 is formed. That is, in this example, the housing 13 has an element mounting wall disposed at a position farther from the motor 2 than the power board 19 in the direction orthogonal to the axis of the motor 2, and the power conversion element 20 is the housing. It is attached to 13 element attachment walls. Therefore, in this example, the substrate of the power substrate 19 is disposed at a position closer to the motor 2 than the power conversion element 20. Between the inner surface of the element mounting wall of the housing 13 and the power conversion element 20, a heat conducting material 21 for transferring heat between the housing 13 and the power conversion element 20 is interposed. The heat conducting material 21 is in close contact with the inner surface of the element mounting wall of the housing 13 and the power conversion element 20.
 電力変換素子20は、モータ2の軸線に沿った方向について制御基板18から離して配置されている。また、電力変換素子20は、モータ2の軸線に沿った方向について前方ブラケット7と制御基板18との間に配置されている。即ち、電力変換素子20は、モータ2の軸線に沿った方向について制御基板18よりも前方ブラケット7に近い位置に配置されている。モータ2の軸線に沿った方向についての電力変換素子20の位置では、モータ2の軸線と直交する方向について、モータ2、下部蓋15、パワー基板19の基板、電力変換素子20、筐体13の素子取付壁の順に並んでいる。 The power conversion element 20 is arranged away from the control board 18 in the direction along the axis of the motor 2. The power conversion element 20 is arranged between the front bracket 7 and the control board 18 in the direction along the axis of the motor 2. That is, the power conversion element 20 is disposed at a position closer to the front bracket 7 than the control board 18 in the direction along the axis of the motor 2. At the position of the power conversion element 20 in the direction along the axis of the motor 2, the motor 2, the lower lid 15, the substrate of the power board 19, the power conversion element 20, and the housing 13 are in the direction orthogonal to the axis of the motor 2. They are arranged in the order of the element mounting wall.
 制御基板18は、基板と、基板に実装されている複数の電子部品とを有している。制御基板18の複数の電子部品には、パワー基板19の電子部品よりも許容温度の低い部品、即ち熱に弱い部品が含まれている。 The control board 18 has a board and a plurality of electronic components mounted on the board. The plurality of electronic components of the control board 18 include components having a lower allowable temperature than the electronic components of the power board 19, that is, components that are vulnerable to heat.
 制御基板18の電子部品は、電力変換素子20へ制御信号を送ることにより電力変換素子20の制御を行う。従って、制御基板18への電流供給量は電力変換素子20への電流供給量に比べて少なく、制御基板18の総発熱量は電力変換素子20の発熱量よりも少ない。一般的なモータ装置1では、制御基板18の各電子部品の発熱量の合計値が、電力変換素子20の発熱量の10分の1以下である。 The electronic component of the control board 18 controls the power conversion element 20 by sending a control signal to the power conversion element 20. Therefore, the amount of current supplied to the control board 18 is smaller than the amount of current supplied to the power conversion element 20, and the total heat generation amount of the control board 18 is smaller than the heat generation amount of the power conversion element 20. In the general motor device 1, the total value of the heat generation amount of each electronic component of the control board 18 is 1/10 or less of the heat generation amount of the power conversion element 20.
 制御基板18は、制御基板18の複数の電子部品を上部蓋14に向けて上部蓋14に取り付けられている。制御基板18と上部蓋14との間には、制御基板18と上部蓋14との間で熱を伝えるための熱伝導材22が介在している。熱伝導材22は、制御基板18及び上部蓋14のそれぞれに密着している。熱伝導材21,22としては、例えばサーマルシート又はサーマルグリース等が用いられている。 The control board 18 is attached to the upper lid 14 with the plurality of electronic components of the control board 18 facing the upper lid 14. Between the control board 18 and the upper lid 14, a heat conductive material 22 for transferring heat between the control board 18 and the upper lid 14 is interposed. The heat conductive material 22 is in close contact with each of the control board 18 and the upper lid 14. As the heat conductive materials 21 and 22, for example, a thermal sheet or thermal grease is used.
 制御基板18は、上部蓋14よりもモータ2に近い位置に配置されている。モータ2の軸線に沿った方向についての制御基板18の位置では、モータ2の軸線と直交する方向について、モータ2、下部蓋15、制御基板18、上部蓋14の順に並んでいる。 The control board 18 is disposed closer to the motor 2 than the upper lid 14. At the position of the control board 18 in the direction along the axis of the motor 2, the motor 2, the lower lid 15, the control board 18, and the upper lid 14 are arranged in this order in the direction orthogonal to the axis of the motor 2.
 筐体13の内側面には、複数の固定台23が固定されている。制御基板18は、ワッシャ24を介して各固定台23に重ねて載せられている。上部蓋14を筐体13に取り付ける各ねじ17は、筐体13外から、上部蓋14、制御基板18及びワッシャ24を貫通して固定台23に取り付けられている。各ねじ17が各固定台23に対して締め付けられることにより、制御基板18が上部蓋14に固定されるとともに、上部蓋14が筐体13に固定される。ワッシャ24は、筐体13よりも熱伝導率が低く、かつ筐体13よりも電気絶縁性の高い材料で構成されている。この例では、ワッシャ24が樹脂で構成されている。ワッシャ24を構成する材料として、例えばプラスチック又はゴム等を用いてもよい。 A plurality of fixing bases 23 are fixed to the inner surface of the housing 13. The control board 18 is placed on each fixed base 23 via a washer 24. Each screw 17 for attaching the upper lid 14 to the housing 13 is attached to the fixed base 23 from outside the housing 13 through the upper lid 14, the control board 18 and the washer 24. By tightening each screw 17 with respect to each fixing base 23, the control board 18 is fixed to the upper lid 14 and the upper lid 14 is fixed to the housing 13. The washer 24 is made of a material having a lower thermal conductivity than the housing 13 and a higher electrical insulation than the housing 13. In this example, the washer 24 is made of resin. As a material constituting the washer 24, for example, plastic or rubber may be used.
 次に、モータ装置1での熱の伝わり方について説明する。電力変換素子20で発生した熱は、筐体13及び前方ブラケット7からなるブラケット一体型筐体が単一材になっているため、熱伝導材21を介してブラケット一体型筐体全体に伝わり、ブラケット一体型筐体全体から自然対流及び輻射によってモータ装置1外へ放出される。 Next, how heat is transmitted in the motor device 1 will be described. The heat generated in the power conversion element 20 is transmitted to the entire bracket-integrated casing through the heat conducting material 21 because the bracket-integrated casing including the casing 13 and the front bracket 7 is a single material. The entire bracket-integrated casing is discharged out of the motor device 1 by natural convection and radiation.
 例えば、モータフレーム6の温度が電力変換素子20の温度よりも高いときには、モータ本体で発生した熱が、モータフレーム6を介してブラケット一体型筐体全体に伝わり、モータ装置1外へ放出される。逆に、電力変換素子20の温度がモータフレーム6の温度よりも高いときには、電力変換素子20で発生した熱が、ブラケット一体型筐体全体を介してモータフレーム6に伝わり、モータ装置1外へ放出される。 For example, when the temperature of the motor frame 6 is higher than the temperature of the power conversion element 20, the heat generated in the motor body is transmitted to the entire bracket-integrated housing via the motor frame 6 and released outside the motor device 1. . On the contrary, when the temperature of the power conversion element 20 is higher than the temperature of the motor frame 6, the heat generated in the power conversion element 20 is transmitted to the motor frame 6 through the entire bracket-integrated housing, and out of the motor device 1. Released.
 制御基板18は、モータ2の軸線に沿った方向について電力変換素子20から離れて配置されている。また、制御基板18は、モータ2の軸線に沿った方向について、電力変換素子20よりも前方ブラケット7から離れた位置に配置されている。そのため、制御基板18では、電力変換素子20及びモータ2のそれぞれの温度上昇に依存した温度上昇が抑制される。 The control board 18 is arranged away from the power conversion element 20 in the direction along the axis of the motor 2. The control board 18 is disposed at a position farther from the front bracket 7 than the power conversion element 20 in the direction along the axis of the motor 2. Therefore, in the control board 18, the temperature rise depending on each temperature rise of the power conversion element 20 and the motor 2 is suppressed.
 また、筐体13の上部開口部11を塞いでいる上部蓋14は、筐体13よりも熱伝導率の低い材料で構成された低熱伝導部を有している。さらに、制御基板18は、上部蓋14に取り付けられている。そのため、筐体13からの熱は、低熱伝導部によって上部蓋14の面方向に伝わりにくくなり、制御基板18では、電力変換素子20及びモータ2のそれぞれの温度上昇に依存した温度上昇が抑制される。言い換えると、筐体13から制御基板18への熱は、上部蓋14によって伝わりにくくなる。これにより、制御基板18の温度上昇が抑制される。 Also, the upper lid 14 that closes the upper opening 11 of the housing 13 has a low heat conducting portion made of a material having a lower thermal conductivity than the housing 13. Further, the control board 18 is attached to the upper lid 14. Therefore, the heat from the housing 13 becomes difficult to be transmitted in the surface direction of the upper lid 14 by the low heat conduction part, and the control board 18 suppresses the temperature rise depending on the temperature rise of each of the power conversion element 20 and the motor 2. The In other words, heat from the housing 13 to the control board 18 is less likely to be transmitted by the upper lid 14. Thereby, the temperature rise of the control board 18 is suppressed.
 さらに、制御基板18の熱は、上部蓋14を介して筺体13外へ放熱されるため、筐体13から伝わる熱に起因した制御基板18の温度上昇が抑制されるだけでなく、制御基板18自身の温度が積極的に低減される。 Furthermore, since the heat of the control board 18 is radiated to the outside of the housing 13 through the upper lid 14, not only the temperature rise of the control board 18 due to the heat transmitted from the housing 13 is suppressed, but also the control board 18. Its own temperature is actively reduced.
 また、電力変換素子20は、パワー基板19よりもモータ2から離れた位置に配置されている筐体13の素子取付壁に取り付けられ、上部蓋14に取り付けられている制御基板18は、上部蓋14よりもモータ2に近い位置に配置されている。そのため、電力変換素子20及び制御基板18では、モータ2側と反対側の位置で放熱されることになり、ステータコイルの発熱で高温となったモータ2の温度上昇に起因した制御基板18の温度上昇が抑制される。 Further, the power conversion element 20 is attached to the element mounting wall of the housing 13 disposed at a position farther from the motor 2 than the power board 19, and the control board 18 attached to the upper lid 14 is attached to the upper lid 14. It is arranged at a position closer to the motor 2 than 14. Therefore, in the power conversion element 20 and the control board 18, heat is radiated at a position opposite to the motor 2 side, and the temperature of the control board 18 due to the temperature rise of the motor 2 that has become high temperature due to heat generation of the stator coil. The rise is suppressed.
 このようなモータ装置1では、上部蓋14が低熱伝導部になっているので、筐体13からの熱を制御基板18に上部蓋14によって伝わりにくくすることができる。また、電力変換素子20がモータ2の軸線に沿った方向について制御基板18から離して配置されているので、電力変換素子20からの熱を制御基板18に伝わりにくくすることができる。これにより、制御基板18の温度上昇を抑制することができ、制御基板18を故障しにくくすることができる。従って、発熱部品である電力変換素子20を含むパワー基板19と、熱に弱い部品を含む制御基板18とを共通の筐体13内の空間に配置することができる。さらに、パワー基板19の一部がモータ2の軸線と直交する方向について制御基板18と並んでいるので、制御基板18及びパワー基板19の配置スペースをモータ2の軸線に沿った方向について小さくすることができる。これにより、モータ装置1の小型化を図ることもできる。また、制御装置3の小型化によって、振動するモータ2に対する制御装置3の耐振性の向上も図ることができる。 In such a motor device 1, since the upper lid 14 is a low heat conducting portion, it is possible to make it difficult for the heat from the housing 13 to be transmitted to the control board 18 by the upper lid 14. In addition, since the power conversion element 20 is arranged away from the control board 18 in the direction along the axis of the motor 2, it is possible to make it difficult for heat from the power conversion element 20 to be transmitted to the control board 18. Thereby, the temperature rise of the control board 18 can be suppressed and the control board 18 can be made difficult to break down. Therefore, the power board 19 including the power conversion element 20 that is a heat-generating component and the control board 18 including a heat-sensitive component can be arranged in a space in the common housing 13. Furthermore, since a part of the power board 19 is aligned with the control board 18 in the direction orthogonal to the axis of the motor 2, the arrangement space of the control board 18 and the power board 19 is reduced in the direction along the axis of the motor 2. Can do. Thereby, size reduction of the motor apparatus 1 can also be achieved. Further, the downsizing of the control device 3 can improve the vibration resistance of the control device 3 with respect to the vibrating motor 2.
 また、制御基板18及びパワー基板19は、モータ2の軸線に沿って互いに平行に配置されているので、制御装置3の高さ寸法を小さくすることができる。これにより、モータ装置1の小型化、及びモータ2に対する制御装置3の耐振性の向上をさらに図ることができる。 Further, since the control board 18 and the power board 19 are arranged in parallel with each other along the axis of the motor 2, the height of the control device 3 can be reduced. Thereby, size reduction of the motor apparatus 1 and the improvement of the vibration resistance of the control apparatus 3 with respect to the motor 2 can further be aimed at.
 また、電力変換素子20は、モータ2の軸線に沿った方向について前方ブラケット7と制御基板18との間に配置されているので、前方ブラケット7から制御基板18を遠ざけることができ、モータ2から前方ブラケット7を介して筐体13に伝わる熱が制御基板18に達することを抑制することができる。これにより、制御基板18の温度上昇をさらに抑制することができる。 Further, since the power conversion element 20 is disposed between the front bracket 7 and the control board 18 in the direction along the axis of the motor 2, the control board 18 can be moved away from the front bracket 7. Heat transmitted to the housing 13 via the front bracket 7 can be prevented from reaching the control board 18. Thereby, the temperature rise of the control board 18 can be further suppressed.
 また、筐体13は、モータ2の軸線と直交する方向についてパワー基板19よりもモータ2から離れた位置に配置されている素子取付壁を有し、電力変換素子20が筐体13の素子取付壁に取り付けられており、制御基板18が上部蓋14よりもモータ2に近い位置に配置されているので、電力変換素子20及び制御基板18のモータ2側とは反対側の位置で電力変換素子20及び制御基板18のそれぞれの放熱を行うことができ、モータ2が温度上昇した場合でも電力変換素子20及び制御基板18の放熱を効果的に行うことができる。これにより、制御基板18の温度上昇をさらに抑制することができる。 The casing 13 has an element mounting wall disposed at a position farther from the motor 2 than the power board 19 in the direction orthogonal to the axis of the motor 2, and the power conversion element 20 is mounted on the element of the casing 13. Since it is attached to the wall and the control board 18 is arranged at a position closer to the motor 2 than the upper lid 14, the power conversion element 20 and the power conversion element at a position opposite to the motor 2 side of the control board 18 20 and the control board 18 can be radiated, and even when the motor 2 rises in temperature, the power conversion element 20 and the control board 18 can be radiated effectively. Thereby, the temperature rise of the control board 18 can be further suppressed.
 また、制御基板18と上部蓋14との間には、熱伝導材22が介在しているので、制御基板18で発生した熱を上部蓋14へ伝えやすくすることができる。これにより、制御基板18の温度を積極的に低減させることができる。 Further, since the heat conductive material 22 is interposed between the control board 18 and the upper lid 14, it is possible to easily transfer the heat generated in the control board 18 to the upper lid 14. Thereby, the temperature of the control board 18 can be actively reduced.
 また、筐体13及び前方ブラケット7からなるブラケット一体型筐体が、一体成形により形成された単一材になっているので、筐体13及び前方ブラケット7間の熱伝導状態を格段に向上させることができ、熱を拡散させやすくすることができる。これにより、電力変換素子20及びモータフレーム6からの熱をブラケット一体型筐体全体でモータ装置1外へ放出させることができ、パワー基板19及びモータ装置1全体の温度上昇を効果的に抑制することができる。 In addition, the bracket-integrated case composed of the case 13 and the front bracket 7 is a single material formed by integral molding, so that the heat conduction state between the case 13 and the front bracket 7 is remarkably improved. And can easily diffuse the heat. Thereby, heat from the power conversion element 20 and the motor frame 6 can be released to the outside of the motor device 1 by the entire bracket-integrated housing, and the temperature rise of the power board 19 and the entire motor device 1 is effectively suppressed. be able to.
 また、制御基板18は、筐体13よりも熱伝導率の低いワッシャ24を介して固定台23に重なっているので、例えば電力変換素子20からの熱により固定台23が高温になった場合であっても、固定台23からの熱を制御基板18にワッシャ24によって伝わりにくくすることができる。これにより、制御基板18の温度上昇をさらに抑制することができる。 Further, since the control board 18 overlaps the fixed base 23 via a washer 24 having a lower thermal conductivity than the housing 13, for example, when the fixed base 23 becomes high temperature due to heat from the power conversion element 20. Even if it exists, the heat from the fixed base 23 can be made difficult to be transmitted to the control board 18 by the washer 24. Thereby, the temperature rise of the control board 18 can be further suppressed.
 また、前方ブラケット7の厚さは、筐体13の壁の厚さよりも厚くなっているので、前方ブラケット7で熱が拡散しやすくなり、モータ装置1での放熱効果をさらに向上させることができる。 Further, since the thickness of the front bracket 7 is thicker than the thickness of the wall of the housing 13, heat is easily diffused by the front bracket 7, and the heat dissipation effect in the motor device 1 can be further improved. .
 以上のように、許容温度は高いが発熱量が大きい電力変換素子20を有するパワー基板19と、発熱量は小さいが許容温度は低い電子部品を有する制御基板18とを1つの筺体13内に収容しても、電力変換素子20の発熱は筺体13全体で冷却しつつ、発熱量が大きい電力変換素子20及び筺体13の温度上昇が制御基板18の温度上昇に与える影響を最小限にすることができる。これにより、2つの基板が共存する制御装置3の冷却を効率良く行うことができ、モータ2の出力の上限を向上させることができる。 As described above, the power board 19 having the power conversion element 20 having a high allowable temperature but a large calorific value and the control board 18 having electronic components having a small calorific value but a low allowable temperature are accommodated in one casing 13. Even so, while the heat generation of the power conversion element 20 is cooled by the entire housing 13, the influence of the temperature increase of the power conversion element 20 and the housing 13 having a large heat generation amount on the temperature increase of the control board 18 can be minimized. it can. Thereby, the control device 3 in which two substrates coexist can be efficiently cooled, and the upper limit of the output of the motor 2 can be improved.
 実施の形態2.
 図3は、この発明の実施の形態2によるモータ装置を示す部分断面図である。前方ブラケット7は、板状のブラケット本体71と、ブラケット本体71から突出する板状のブラケット突出部72とを有している。
Embodiment 2. FIG.
FIG. 3 is a partial cross-sectional view showing a motor device according to Embodiment 2 of the present invention. The front bracket 7 has a plate-like bracket main body 71 and a plate-like bracket protrusion 72 protruding from the bracket main body 71.
 ブラケット本体71には、シャフト5が貫通しており、ベアリング9を介してシャフト5が回転自在に支持されている。ブラケット突出部72は、ブラケット本体71の端部から後方ブラケット8に向かってシャフト5に沿って突出している。これにより、前方ブラケット7の断面形状は、ブラケット本体71及びブラケット突出部72によってL字状になっている。前方ブラケット7は、一体成形により形成された単一材になっている。 The shaft 5 passes through the bracket body 71, and the shaft 5 is rotatably supported via the bearing 9. The bracket protrusion 72 protrudes along the shaft 5 from the end of the bracket body 71 toward the rear bracket 8. Thereby, the cross-sectional shape of the front bracket 7 is L-shaped by the bracket main body 71 and the bracket protrusion 72. The front bracket 7 is a single material formed by integral molding.
 筐体13は、前方ブラケット7と別部材になっている。筐体13の端部は、前方ブラケット7のブラケット本体71とブラケット突出部72との境界部分に取付ねじ31により取り付けられている。これにより、筐体13が前方ブラケット7と一体になっている。また、筐体13の端部は、前方ブラケット7に接触している。さらに、筐体13の下部開口部12のうち、一部がブラケット突出部72により塞がっており、残りの部分が下部蓋15により塞がっている。筐体13内には、ブラケット突出部72の上面が露出している。 The housing 13 is a separate member from the front bracket 7. An end portion of the housing 13 is attached to a boundary portion between the bracket main body 71 and the bracket projecting portion 72 of the front bracket 7 with an attachment screw 31. Thereby, the housing 13 is integrated with the front bracket 7. The end of the housing 13 is in contact with the front bracket 7. Further, a part of the lower opening 12 of the housing 13 is closed by the bracket protrusion 72, and the remaining part is closed by the lower lid 15. The upper surface of the bracket protrusion 72 is exposed in the housing 13.
 パワー基板19の電力変換素子20は、ブラケット突出部72の筐体13内に露出した面に取り付けられている。パワー基板19は、電力変換素子20をブラケット突出部72に取り付けた状態で、制御基板18、上部蓋14及び下部蓋15のそれぞれから離して筐体13内に配置されている。これにより、電力変換素子20は、モータ2の軸線と直交する方向についてパワー基板19の基板よりもモータ2に近い位置に配置されている。 The power conversion element 20 of the power board 19 is attached to the surface of the bracket protrusion 72 exposed in the housing 13. The power board 19 is disposed in the housing 13 apart from the control board 18, the upper lid 14, and the lower lid 15 with the power conversion element 20 attached to the bracket protrusion 72. Thereby, the power conversion element 20 is disposed at a position closer to the motor 2 than the substrate of the power substrate 19 in the direction orthogonal to the axis of the motor 2.
 ブラケット突出部72の筐体13内に露出した面と電力変換素子20との間には、実施の形態1と同様の熱伝導材21が介在している。熱伝導材21は、ブラケット突出部72及び電力変換素子20のそれぞれに密着している。他の構成は実施の形態1と同様である。 The heat conductive material 21 similar to that in the first embodiment is interposed between the surface of the bracket protrusion 72 exposed in the housing 13 and the power conversion element 20. The heat conducting material 21 is in close contact with each of the bracket protrusion 72 and the power conversion element 20. Other configurations are the same as those in the first embodiment.
 次に、モータ装置1での熱の伝わり方について説明する。電力変換素子20で発生した熱は、熱伝導材21を介してブラケット突出部72に伝わり、ブラケット突出部72から筐体13、ブラケット本体71及びモータフレーム6に伝わる。筐体13、ブラケット本体71及びモータフレーム6に伝わった熱は、筐体13、ブラケット本体71及びモータフレーム6のそれぞれの表面から自然対流及び輻射によってモータ装置1外へ放出される。 Next, how heat is transmitted in the motor device 1 will be described. The heat generated in the power conversion element 20 is transmitted to the bracket protrusion 72 via the heat conductive material 21, and is transmitted from the bracket protrusion 72 to the housing 13, the bracket body 71 and the motor frame 6. Heat transmitted to the housing 13, the bracket body 71 and the motor frame 6 is released from the surfaces of the housing 13, the bracket body 71 and the motor frame 6 to the outside of the motor device 1 by natural convection and radiation.
 例えば、モータフレーム6の温度が電力変換素子20の温度よりも高いときには、モータ本体で発生した熱が、モータフレーム6を介して前方ブラケット7及び筐体13に伝わり、モータ装置1外へ放出される。逆に、電力変換素子20の温度がモータフレーム6の温度よりも高いときには、電力変換素子20で発生した熱が、前方ブラケット7を介して筐体13及びモータフレーム6に伝わり、モータ装置1外へ放出される。 For example, when the temperature of the motor frame 6 is higher than the temperature of the power conversion element 20, the heat generated in the motor body is transmitted to the front bracket 7 and the housing 13 via the motor frame 6 and released to the outside of the motor device 1. The On the other hand, when the temperature of the power conversion element 20 is higher than the temperature of the motor frame 6, the heat generated in the power conversion element 20 is transmitted to the housing 13 and the motor frame 6 via the front bracket 7, and the outside of the motor device 1. Is released.
 制御基板18は、モータ2の軸線に沿った方向について電力変換素子20から離れて配置されており、かつ、モータ2の軸線に沿った方向について、電力変換素子20よりも前方ブラケット7から離れた位置に配置されている。そのため、制御基板18では、電力変換素子20及びモータ2のそれぞれの温度上昇に依存した温度上昇が抑制される。 The control board 18 is disposed away from the power conversion element 20 in the direction along the axis of the motor 2, and is further away from the front bracket 7 than the power conversion element 20 in the direction along the axis of the motor 2. Placed in position. Therefore, in the control board 18, the temperature rise depending on each temperature rise of the power conversion element 20 and the motor 2 is suppressed.
 また、筐体13の上部開口部11を塞いでいる上部蓋14は、筐体13よりも熱伝導率の低い材料で構成された低熱伝導部を有している。さらに、制御基板18は、上部蓋14に取り付けられている。そのため、筐体13からの熱は、低熱伝導部によって上部蓋14の面方向に伝わりにくくなり、制御基板18では、電力変換素子20及びモータ2のそれぞれの温度上昇に依存した温度上昇が抑制される。言い換えると、筐体13から制御基板18への熱は、上部蓋14によって伝わりにくくなる。これにより、制御基板18の温度上昇が抑制される。 Also, the upper lid 14 that closes the upper opening 11 of the housing 13 has a low heat conducting portion made of a material having a lower thermal conductivity than the housing 13. Further, the control board 18 is attached to the upper lid 14. Therefore, the heat from the housing 13 becomes difficult to be transmitted in the surface direction of the upper lid 14 by the low heat conduction part, and the control board 18 suppresses the temperature rise depending on the temperature rise of each of the power conversion element 20 and the motor 2. The In other words, heat from the housing 13 to the control board 18 is less likely to be transmitted by the upper lid 14. Thereby, the temperature rise of the control board 18 is suppressed.
 さらに、制御基板18の熱は、上部蓋14を介して筺体13外へ放熱されるため、筐体13から伝わる熱に起因した制御基板18の温度上昇が抑制されるだけでなく、制御基板18自身の温度が積極的に低減される。 Furthermore, since the heat of the control board 18 is radiated to the outside of the housing 13 through the upper lid 14, not only the temperature rise of the control board 18 due to the heat transmitted from the housing 13 is suppressed, but also the control board 18. Its own temperature is actively reduced.
 このようなモータ装置1では、筐体13が前方ブラケット7と別部材になっており、発熱部品である電力変換素子20が前方ブラケット7のブラケット突出部72に取り付けられているので、電力変換素子20で発生した熱を、ブラケット突出部72を介して筐体13、ブラケット本体71及びモータフレーム6に伝えることができる。また、モータ本体で発生した熱も、モータフレーム6、ブラケット本体71及び筐体13に伝えることができる。これにより、電力変換素子20及びモータ本体からの熱をモータフレーム6、ブラケット本体71及び筐体13のそれぞれの表面からモータ装置1外へ放出させることができ、制御基板18、パワー基板19及びモータ装置1全体の温度上昇を効果的に抑制することができる。また、筐体13が前方ブラケット7と別部材になっているので、前方ブラケット7をモータフレーム6に取り付けた状態で、パワー基板19を前方ブラケット7に取り付けることができる。従って、パワー基板19を取り付けるときの作業スペースを広く確保することができ、モータ装置1の製造を容易にすることができる。 In such a motor device 1, the housing 13 is a separate member from the front bracket 7, and the power conversion element 20, which is a heat generating component, is attached to the bracket protrusion 72 of the front bracket 7. The heat generated at 20 can be transmitted to the housing 13, the bracket body 71 and the motor frame 6 via the bracket protrusion 72. Further, heat generated in the motor main body can be transferred to the motor frame 6, the bracket main body 71 and the housing 13. Thereby, the heat from the power conversion element 20 and the motor body can be released from the respective surfaces of the motor frame 6, the bracket body 71, and the housing 13 to the outside of the motor device 1, and the control board 18, the power board 19, and the motor The temperature rise of the entire apparatus 1 can be effectively suppressed. Further, since the housing 13 is a separate member from the front bracket 7, the power board 19 can be attached to the front bracket 7 with the front bracket 7 attached to the motor frame 6. Therefore, a wide working space can be secured when the power board 19 is attached, and the manufacture of the motor device 1 can be facilitated.
 また、前方ブラケット7の厚さを筐体13の壁の厚さよりも厚くすることにより、前方ブラケット7で熱が拡散しやすくなり、モータ装置1での放熱効果をさらに向上させることができる。 Also, by making the thickness of the front bracket 7 thicker than the thickness of the wall of the housing 13, heat is easily diffused in the front bracket 7, and the heat dissipation effect in the motor device 1 can be further improved.
 実施の形態3.
 図4は、この発明の実施の形態3によるモータ装置を示す部分断面図である。筐体13は、板状の前方ブラケット7と別部材になっている。筐体13の端部は、前方ブラケット7の端部(図4では、前方ブラケット7の上端部)に取付ねじ31により取り付けられている。これにより、筐体13は、前方ブラケット7と一体になっている。また、筐体13の端部は、前方ブラケット7の端部に接触している。他の構成は実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 4 is a partial sectional view showing a motor device according to Embodiment 3 of the present invention. The housing 13 is a separate member from the plate-shaped front bracket 7. The end portion of the housing 13 is attached to the end portion of the front bracket 7 (the upper end portion of the front bracket 7 in FIG. 4) with a mounting screw 31. Thereby, the housing 13 is integrated with the front bracket 7. Further, the end of the housing 13 is in contact with the end of the front bracket 7. Other configurations are the same as those in the first embodiment.
 電力変換素子20で発生した熱は、熱伝導材21を介して筐体13に伝わり、筐体13から前方ブラケット7及びモータフレーム6に伝わる。筐体13、前方ブラケット7及びモータフレーム6に伝わった熱は、筐体13、前方ブラケット7及びモータフレーム6のそれぞれの表面から自然対流及び輻射によってモータ装置1外へ放出される。 The heat generated in the power conversion element 20 is transmitted to the housing 13 via the heat conducting material 21, and is transmitted from the housing 13 to the front bracket 7 and the motor frame 6. The heat transmitted to the housing 13, the front bracket 7, and the motor frame 6 is released from the surfaces of the housing 13, the front bracket 7, and the motor frame 6 to the outside of the motor device 1 by natural convection and radiation.
 例えば、モータフレーム6の温度が電力変換素子20の温度よりも高いときには、モータ本体で発生した熱が、モータフレーム6を介して前方ブラケット7及び筐体13に伝わり、モータ装置1外へ放出される。逆に、電力変換素子20の温度がモータフレーム6の温度よりも高いときには、電力変換素子20で発生した熱が、前方ブラケット7を介して筐体13及びモータフレーム6に伝わり、モータ装置1外へ放出される。 For example, when the temperature of the motor frame 6 is higher than the temperature of the power conversion element 20, the heat generated in the motor body is transmitted to the front bracket 7 and the housing 13 via the motor frame 6 and released to the outside of the motor device 1. The On the other hand, when the temperature of the power conversion element 20 is higher than the temperature of the motor frame 6, the heat generated in the power conversion element 20 is transmitted to the housing 13 and the motor frame 6 via the front bracket 7, and the outside of the motor device 1. Is released.
 制御基板18は、モータ2の軸線に沿った方向について電力変換素子20から離れて配置されており、かつ、モータ2の軸線に沿った方向について、電力変換素子20よりも前方ブラケット7から離れた位置に配置されている。そのため、制御基板18では、電力変換素子20及びモータ2のそれぞれの温度上昇に依存した温度上昇が抑制される。 The control board 18 is disposed away from the power conversion element 20 in the direction along the axis of the motor 2, and is further away from the front bracket 7 than the power conversion element 20 in the direction along the axis of the motor 2. Placed in position. Therefore, in the control board 18, the temperature rise depending on each temperature rise of the power conversion element 20 and the motor 2 is suppressed.
 また、筐体13の上部開口部11を塞いでいる上部蓋14は、筐体13よりも熱伝導率の低い材料で構成された低熱伝導部を有している。さらに、制御基板18は、上部蓋14に取り付けられている。そのため、筐体13からの熱は、低熱伝導部によって上部蓋14の面方向に伝わりにくくなり、制御基板18では、電力変換素子20及びモータ2のそれぞれの温度上昇に依存した温度上昇が抑制される。言い換えると、筐体13から制御基板18への熱は、上部蓋14によって伝わりにくくなる。これにより、制御基板18の温度上昇が抑制される。 Also, the upper lid 14 that closes the upper opening 11 of the housing 13 has a low heat conducting portion made of a material having a lower thermal conductivity than the housing 13. Further, the control board 18 is attached to the upper lid 14. Therefore, the heat from the housing 13 becomes difficult to be transmitted in the surface direction of the upper lid 14 by the low heat conduction part, and the control board 18 suppresses the temperature rise depending on the temperature rise of each of the power conversion element 20 and the motor 2. The In other words, heat from the housing 13 to the control board 18 is less likely to be transmitted by the upper lid 14. Thereby, the temperature rise of the control board 18 is suppressed.
 さらに、制御基板18の熱は、上部蓋14を介して筺体13外へ放熱されるため、筐体13から伝わる熱に起因した制御基板18の温度上昇が抑制されるだけでなく、制御基板18自身の温度が積極的に低減される。 Furthermore, since the heat of the control board 18 is radiated to the outside of the housing 13 through the upper lid 14, not only the temperature rise of the control board 18 due to the heat transmitted from the housing 13 is suppressed, but also the control board 18. Its own temperature is actively reduced.
 また、電力変換素子20は、パワー基板19よりもモータ2から離れた位置に配置されている筐体13の素子取付壁に取り付けられ、上部蓋14に取り付けられている制御基板18は、上部蓋14よりもモータ2に近い位置に配置されている。そのため、電力変換素子20及び制御基板18では、モータ2側と反対側の位置で放熱されることになり、ステータコイルの発熱で高温となったモータ2の温度上昇に起因した制御基板18の温度上昇が抑制される。 Further, the power conversion element 20 is attached to the element mounting wall of the housing 13 disposed at a position farther from the motor 2 than the power board 19, and the control board 18 attached to the upper lid 14 is attached to the upper lid 14. It is arranged at a position closer to the motor 2 than 14. Therefore, in the power conversion element 20 and the control board 18, heat is radiated at a position opposite to the motor 2 side, and the temperature of the control board 18 due to the temperature rise of the motor 2 that has become high temperature due to heat generation of the stator coil. The rise is suppressed.
 このようなモータ装置1では、筐体13が前方ブラケット7と別部材になっているので、別々に作製したモータ2及び制御装置3を互いに組み合わせることができ、モータ装置1の製造を容易にすることができる。また、制御装置3をモータ2から容易に取り外すことができ、例えば制御装置3が故障した場合の修理等の作業を容易にすることができる。また、前方ブラケット7の厚さを筐体13の壁の厚さよりも厚くすることにより、前方ブラケット7で熱が拡散しやすくなり、モータ装置1での放熱効果をさらに向上させることができる。 In such a motor device 1, since the housing 13 is a separate member from the front bracket 7, the separately manufactured motor 2 and the control device 3 can be combined with each other, and the manufacture of the motor device 1 is facilitated. be able to. Further, the control device 3 can be easily detached from the motor 2, and for example, work such as repair when the control device 3 breaks down can be facilitated. Further, by making the thickness of the front bracket 7 thicker than the thickness of the wall of the housing 13, heat can be easily diffused in the front bracket 7, and the heat dissipation effect in the motor device 1 can be further improved.
 実施の形態4.
図5は、この発明の実施の形態4によるモータ装置を示す部分断面図である。制御基板18の筐体13内に露出する面には、制御基板18と筐体13との間での熱移動を抑制する断熱材32が重なっている。断熱材32の熱伝導率は、筐体13の熱伝導率よりも低くなっている。この例では、制御基板18の筐体13内に露出する面の全面に断熱材32が重なっている。各固定台23には、断熱材32を介して制御基板18が重ねて載せられている。他の構成は実施の形態1と同様である。
Embodiment 4 FIG.
5 is a partial sectional view showing a motor device according to Embodiment 4 of the present invention. A heat insulating material 32 that suppresses heat transfer between the control board 18 and the housing 13 overlaps the surface of the control board 18 exposed in the housing 13. The heat conductivity of the heat insulating material 32 is lower than the heat conductivity of the housing 13. In this example, the heat insulating material 32 overlaps the entire surface of the control board 18 exposed in the housing 13. On each fixing base 23, the control board 18 is placed on top of each other via a heat insulating material 32. Other configurations are the same as those in the first embodiment.
 このようなモータ装置1では、制御基板18の筐体13内に露出する面に断熱材32が重なっているので、例えば電力変換素子20からの輻射熱等により筐体13内の温度が上昇した場合であっても、筐体13内からの熱が断熱材32によって制御基板18に伝わりにくくすることができる。これにより、制御基板18の温度上昇をさらに抑制することができる。 In such a motor device 1, since the heat insulating material 32 overlaps the surface exposed in the housing 13 of the control board 18, for example, when the temperature in the housing 13 rises due to, for example, radiant heat from the power conversion element 20 Even so, heat from the inside of the housing 13 can be made difficult to be transmitted to the control board 18 by the heat insulating material 32. Thereby, the temperature rise of the control board 18 can be further suppressed.
 なお、上記の例では、制御基板18の筐体13内に露出する面に断熱材32を重ねる構成が実施の形態1のモータ装置1に適用されているが、制御基板18の筐体13内に露出する面に断熱材32を重ねる構成を実施の形態2及び3のモータ装置1に適用してもよい。 In the above example, the configuration in which the heat insulating material 32 is stacked on the surface of the control board 18 exposed in the casing 13 is applied to the motor device 1 of the first embodiment. A configuration in which the heat insulating material 32 is overlaid on the surface exposed to may be applied to the motor devices 1 of the second and third embodiments.
 実施の形態5.
 図6は、この発明の実施の形態5によるモータ装置を示す部分断面図である。制御基板18は、上部蓋14から下方へ離して配置されている。これにより、制御基板18と上部蓋14との間には、空間である隙間が存在している。各固定台23には、制御基板18が断熱材32を介して自重で載せられている。他の構成は実施の形態4と同様である。
Embodiment 5 FIG.
FIG. 6 is a partial cross-sectional view showing a motor device according to Embodiment 5 of the present invention. The control board 18 is arranged away from the upper lid 14 downward. Thereby, a gap which is a space exists between the control board 18 and the upper lid 14. The control board 18 is placed on each fixed base 23 with its own weight via a heat insulating material 32. Other configurations are the same as those of the fourth embodiment.
 このようなモータ装置1では、制御基板18が上部蓋14から離して配置されているので、制御基板18と上部蓋14との間に介在させる熱伝導材をなくすことができ、コストの低減化を図ることができる。また、製造工程数も減らすことができるので、モータ装置1の製造も容易にすることができる。 In such a motor device 1, since the control board 18 is arranged away from the upper lid 14, it is possible to eliminate a heat conductive material interposed between the control board 18 and the upper lid 14, thereby reducing costs. Can be achieved. In addition, since the number of manufacturing steps can be reduced, the motor device 1 can be easily manufactured.
 なお、上記の例では、制御基板18を上部蓋14から離して配置する構成が実施の形態4のモータ装置1に適用されているが、制御基板18を上部蓋14から離して配置する構成を実施の形態1~3のモータ装置1に適用してもよい。 In the above example, the configuration in which the control board 18 is arranged away from the upper lid 14 is applied to the motor device 1 of the fourth embodiment. However, the configuration in which the control board 18 is arranged away from the upper lid 14. The present invention may be applied to the motor device 1 according to the first to third embodiments.
 実施の形態6.
 図7は、この発明の実施の形態6によるモータ装置を示す部分断面図である。上部蓋14は、金属製の蓋本体41と、蓋本体41と筐体13との間に介在する低熱伝導部42とを有している。
Embodiment 6 FIG.
FIG. 7 is a partial cross-sectional view showing a motor device according to Embodiment 6 of the present invention. The upper lid 14 includes a metal lid main body 41 and a low heat conduction portion 42 interposed between the lid main body 41 and the housing 13.
 蓋本体41は、上部開口部11の全体を覆っている。また、蓋本体41は、低熱伝導部42によって筐体13から離して配置されている。低熱伝導部42は、上部開口部11の外周部に沿って蓋本体41に設けられている。また、低熱伝導部42は、筐体13に接触している。蓋本体41は、熱伝導率の高い金属、例えばアルミニウム又は銅等で構成された高熱伝導部になっている。なお、蓋本体41を構成する材料として、熱伝導率の高いセラミック(例えば窒化アルミニウム(AlN)等)又はグラファイト複合材料等を用いてもよい。低熱伝導部42の熱伝導率は、筐体13及び蓋本体41の熱伝導率よりも低くなっている。これにより、筐体13からの熱が蓋本体41に伝わりにくくなっている。 The lid body 41 covers the entire upper opening 11. Further, the lid main body 41 is arranged away from the housing 13 by the low heat conducting portion 42. The low heat conducting portion 42 is provided on the lid main body 41 along the outer peripheral portion of the upper opening 11. Further, the low heat conducting portion 42 is in contact with the housing 13. The lid main body 41 is a high heat conduction portion made of a metal having high thermal conductivity, such as aluminum or copper. As a material constituting the lid main body 41, a ceramic having a high thermal conductivity (for example, aluminum nitride (AlN)) or a graphite composite material may be used. The thermal conductivity of the low thermal conductive portion 42 is lower than the thermal conductivity of the housing 13 and the lid body 41. This makes it difficult for heat from the housing 13 to be transmitted to the lid body 41.
 制御基板18と蓋本体41との間には、制御基板18及び蓋本体41のそれぞれに密着する熱伝導材22が介在している。この例では、熱伝導材22が電気絶縁性を持つ材料で構成されている。他の構成は実施の形態1と同様である。 Between the control board 18 and the lid body 41, the heat conductive material 22 that is in close contact with the control board 18 and the lid body 41 is interposed. In this example, the heat conducting material 22 is made of a material having electrical insulation. Other configurations are the same as those in the first embodiment.
 このようなモータ装置1では、金属製の蓋本体41と筐体13との間に低熱伝導部42が介在しており、制御基板18及び蓋本体41のそれぞれに密着する熱伝導材22が制御基板18と蓋本体41との間に介在しているので、制御基板18に含まれる部品の中に発熱密度の高い部品がある場合であっても、熱伝導率の高い蓋本体41で制御基板18からの熱を拡散させて熱の集中を緩和させることができる。これにより、制御基板18の温度上昇を抑制することができる。また、蓋本体41と筐体13との間に低熱伝導部42が介在しているので、電力変換素子20の発熱で高温となった筐体13から蓋本体41へ熱が伝わりにくくなり、制御基板18の温度上昇をさらに抑制することができる。 In such a motor device 1, the low heat conductive portion 42 is interposed between the metal lid main body 41 and the housing 13, and the heat conductive material 22 in close contact with the control board 18 and the lid main body 41 is controlled. Since it is interposed between the substrate 18 and the lid body 41, even if there are components having a high heat generation density among the components included in the control substrate 18, the lid body 41 having a high thermal conductivity is used for the control substrate. The heat concentration can be reduced by diffusing the heat from 18. Thereby, the temperature rise of the control board 18 can be suppressed. In addition, since the low heat conduction portion 42 is interposed between the lid main body 41 and the housing 13, it becomes difficult for heat to be transmitted from the housing 13, which has become high temperature due to the heat generated by the power conversion element 20, to the lid main body 41. The temperature rise of the substrate 18 can be further suppressed.
 なお、上記の例では、上部蓋14が蓋本体41及び低熱伝導部42を含む構成が実施の形態1のモータ装置1の上部蓋14に適用されているが、上部蓋14が蓋本体41及び低熱伝導部42を含む構成を実施の形態2~4のモータ装置1の上部蓋14に適用してもよい。 In the above example, the configuration in which the upper lid 14 includes the lid main body 41 and the low heat conduction portion 42 is applied to the upper lid 14 of the motor device 1 of the first embodiment. The configuration including the low heat conduction unit 42 may be applied to the upper lid 14 of the motor device 1 of the second to fourth embodiments.
 実施の形態7.
 図8は、この発明の実施の形態7によるモータ装置を示す部分断面図である。また、図9は、図8の上部蓋14を示す上面図である。上部蓋14は、金属板45と、金属板45と一体になっている樹脂製の低熱伝導部46とを有している。低熱伝導部46は、金属板45と接触した状態で金属板45と一体になっている。
Embodiment 7 FIG.
FIG. 8 is a partial sectional view showing a motor device according to Embodiment 7 of the present invention. FIG. 9 is a top view showing the upper lid 14 of FIG. The upper lid 14 includes a metal plate 45 and a resin-made low heat conduction portion 46 integrated with the metal plate 45. The low heat conducting portion 46 is integrated with the metal plate 45 in a state where it is in contact with the metal plate 45.
 金属板45は、熱伝導率の高い金属、例えばアルミニウム又は銅等で構成された高熱伝導部になっている。低熱伝導部42の熱伝導率は、筐体13及び金属板45の熱伝導率よりも低くなっている。上部蓋14は、金属板45及び低熱伝導部46のそれぞれを筐体13に接触させた状態で筐体13に取り付けられている。上部蓋14を筐体13に取り付ける複数のねじ17は、すべて低熱伝導部46を貫通している。 The metal plate 45 is a high heat conduction part made of a metal having high thermal conductivity, such as aluminum or copper. The thermal conductivity of the low thermal conductive portion 42 is lower than the thermal conductivity of the housing 13 and the metal plate 45. The upper lid 14 is attached to the housing 13 in a state where the metal plate 45 and the low heat conducting portion 46 are in contact with the housing 13. The plurality of screws 17 for attaching the upper lid 14 to the housing 13 all pass through the low heat conducting portion 46.
 この例では、低熱伝導部46が、図9に示すように、U字状の板になっている。また、この例では、金属板45が低熱伝導部46のU字状の内側の空間に固定されている。従って、この例では、矩形状の上部開口部11の4辺のうち、3辺に低熱伝導部46を接触させ、残りの1辺に金属板45を接触させた状態で上部蓋14が筐体13に取り付けられている。また、この例では、上部開口部11の4辺のうち、電力変換素子20の位置から最も離れた1辺に金属板45が接触している。 In this example, the low heat conducting portion 46 is a U-shaped plate as shown in FIG. Further, in this example, the metal plate 45 is fixed in a U-shaped inner space of the low heat conducting portion 46. Therefore, in this example, the upper lid 14 is in a state in which the low heat conduction portion 46 is in contact with three sides of the four sides of the rectangular upper opening 11 and the metal plate 45 is in contact with the remaining one side. 13 is attached. In this example, the metal plate 45 is in contact with one of the four sides of the upper opening 11 that is farthest from the position of the power conversion element 20.
 金属板45及び低熱伝導部46のそれぞれと制御基板18との間には、熱伝導材22が介在している。熱伝導材22は、金属板45及び低熱伝導部46のそれぞれに密着している。この例では、熱伝導材22が電気絶縁性を持つ材料で構成されている。他の構成は実施の形態1と同様である。 The heat conductive material 22 is interposed between each of the metal plate 45 and the low heat conductive portion 46 and the control board 18. The heat conducting material 22 is in close contact with each of the metal plate 45 and the low heat conducting portion 46. In this example, the heat conducting material 22 is made of a material having electrical insulation. Other configurations are the same as those in the first embodiment.
 このようなモータ装置1では、上部蓋14が、金属板45及び低熱伝導部46のそれぞれを筐体13に接触させた状態で筐体13に取り付けられ、制御基板18及び金属板45のそれぞれに密着する熱伝導材22が制御基板18と金属板45との間に介在しているので、制御基板18に含まれる部品の中に発熱密度の高い部品がある場合であっても、熱伝導率の高い金属板45で制御基板18からの熱を拡散させて熱の集中を緩和させることができ、制御基板18の温度上昇を抑制することができる。また、低熱伝導部46が筐体13に接触しているので、筐体13から金属板45まで熱が伝わりにくくなり、制御基板18の温度上昇をさらに抑制することができる。 In such a motor device 1, the upper lid 14 is attached to the housing 13 with the metal plate 45 and the low thermal conduction portion 46 in contact with the housing 13, and is attached to each of the control board 18 and the metal plate 45. Since the heat conductive material 22 that is in close contact is interposed between the control board 18 and the metal plate 45, even if there are parts with high heat generation density among the parts included in the control board 18, the thermal conductivity The high metal plate 45 can diffuse the heat from the control board 18 to alleviate the concentration of heat, and the temperature rise of the control board 18 can be suppressed. In addition, since the low heat conducting portion 46 is in contact with the housing 13, it is difficult for heat to be transmitted from the housing 13 to the metal plate 45, and the temperature rise of the control board 18 can be further suppressed.
 なお、上記の例では、上部蓋14が金属板45及び低熱伝導部46を含む構成が実施の形態1のモータ装置1の上部蓋14に適用されているが、上部蓋14が金属板45及び低熱伝導部46を含む構成を実施の形態2~4のモータ装置1の上部蓋14に適用してもよい。 In the above example, the configuration in which the upper lid 14 includes the metal plate 45 and the low thermal conductivity portion 46 is applied to the upper lid 14 of the motor device 1 of the first embodiment. The configuration including the low heat conduction unit 46 may be applied to the upper lid 14 of the motor device 1 of the second to fourth embodiments.
 また、上記の例では、金属板45が上部蓋14の高熱伝導部になっているが、熱伝導率の高いセラミック(例えば窒化アルミニウム(AlN)等)又はグラファイト複合材料等で構成した板を上部蓋14の高熱伝導部にしてもよい。 In the above example, the metal plate 45 is the high thermal conductivity portion of the upper lid 14, but the upper plate is made of a ceramic having a high thermal conductivity (eg, aluminum nitride (AlN)) or a graphite composite material. The lid 14 may be a high heat conducting portion.
 実施の形態8.
 図10は、この発明の実施の形態8によるモータ装置を示す部分断面図である。上部蓋14には、低熱伝導部46よりも熱伝導率の高い放熱板51が筐体13外で取り付けられている。
Embodiment 8 FIG.
10 is a partial cross-sectional view showing a motor device according to an eighth embodiment of the present invention. A heat radiating plate 51 having a higher heat conductivity than that of the low heat conducting portion 46 is attached to the upper lid 14 outside the housing 13.
 放熱板51は、金属板45及び低熱伝導部46のそれぞれに接触した状態で上部蓋14に重なっている。また、放熱板51は、上部蓋14を筐体13に取り付ける複数のねじ17によって上部蓋14に取り付けられている。放熱板51の長さは、上部蓋14の長さよりも長くなっている。これにより、放熱板51の表面積が上部蓋14の表面積よりも大きくなっている。放熱板51は、金属板45の端部から上部蓋14の外側へ延びている。また、放熱板51は、例えばアルミニウム又は銅等で構成されている。他の構成は実施の形態7と同様である。 The heat radiating plate 51 overlaps the upper lid 14 while being in contact with the metal plate 45 and the low heat conducting portion 46, respectively. The heat radiating plate 51 is attached to the upper lid 14 by a plurality of screws 17 that attach the upper lid 14 to the housing 13. The length of the heat sink 51 is longer than the length of the upper lid 14. Thereby, the surface area of the heat sink 51 is larger than the surface area of the upper lid 14. The heat sink 51 extends from the end of the metal plate 45 to the outside of the upper lid 14. Moreover, the heat sink 51 is comprised, for example with aluminum or copper. Other configurations are the same as those of the seventh embodiment.
 このようなモータ装置1では、低熱伝導部46よりも熱伝導率の高い放熱板51が筐体13外で上部蓋14に取り付けられているので、上部蓋14の熱を放熱板51から効果的に放出することができ、制御基板18の温度上昇をさらに抑制することができる。例えば、制御基板18に含まれる部品の中に発熱密度の高い部品がある場合であっても、上部蓋14の熱を筐体13外へ効果的に放出することができ、制御基板18の温度上昇を抑制することができる。 In such a motor device 1, since the heat radiating plate 51 having a higher thermal conductivity than the low heat conducting portion 46 is attached to the upper lid 14 outside the housing 13, the heat of the upper lid 14 is effectively transferred from the heat radiating plate 51. The temperature rise of the control substrate 18 can be further suppressed. For example, even when there is a part having a high heat generation density among the parts included in the control board 18, the heat of the upper lid 14 can be effectively released to the outside of the housing 13, and the temperature of the control board 18 The rise can be suppressed.
 なお、上記の例では、放熱板51を上部蓋14に取り付ける構成が実施の形態7のモータ装置1に適用されているが、放熱板51を上部蓋14に取り付ける構成を実施の形態1~6のモータ装置1に適用してもよい。 In the above example, the configuration in which the heat radiating plate 51 is attached to the upper lid 14 is applied to the motor device 1 of the seventh embodiment, but the configuration in which the heat radiating plate 51 is attached to the upper lid 14 is described in the first to sixth embodiments. You may apply to the motor apparatus 1 of.
 また、上記の例では、金属板45が上部蓋14の高熱伝導部になっているが、熱伝導率の高いセラミック(例えば窒化アルミニウム(AlN)等)又はグラファイト複合材料等で構成した板を上部蓋14の高熱伝導部にしてもよい。 In the above example, the metal plate 45 is the high thermal conductivity portion of the upper lid 14, but the upper plate is made of a ceramic having a high thermal conductivity (eg, aluminum nitride (AlN)) or a graphite composite material. The lid 14 may be a high heat conducting portion.
 実施の形態9.
 図11は、この発明の実施の形態9によるモータ装置を示す部分断面図である。上部蓋14と筐体13との間には、シール材であるゴム製のOリング55が介在している。また、下部蓋15と筐体13との間にも、シール材であるゴム製のOリング56が介在している。他の構成は実施の形態1と同様である。
Embodiment 9 FIG.
FIG. 11 is a partial cross-sectional view showing a motor device according to Embodiment 9 of the present invention. Between the upper lid 14 and the housing 13, a rubber O-ring 55 as a seal material is interposed. Further, a rubber O-ring 56 as a sealing material is interposed between the lower lid 15 and the housing 13. Other configurations are the same as those in the first embodiment.
 このようなモータ装置1では、上部蓋14及び下部蓋15のそれぞれと筐体13との間にシール材であるOリング55,56が介在しているので、筐体13内を外気から遮断して密閉することができ、例えば水、粉塵又は工場内のオイルミスト等の異物の筐体13内への侵入を防止することができる。これにより、制御装置3を故障しにくくすることができる。 In such a motor device 1, since the O- rings 55 and 56, which are sealing materials, are interposed between the upper lid 14 and the lower lid 15 and the housing 13, the inside of the housing 13 is blocked from outside air. For example, foreign matter such as water, dust or oil mist in the factory can be prevented from entering the housing 13. Thereby, it is possible to make the control device 3 difficult to break down.
 なお、上記の例では、上部蓋14及び下部蓋15のそれぞれと筐体13との間にシール材を介在させる構成が実施の形態1のモータ装置1に適用されているが、上部蓋14及び下部蓋15のそれぞれと筐体13との間にシール材を介在させる構成を実施の形態2~8のモータ装置1に適用してもよい。 In the above example, a configuration in which a sealing material is interposed between each of the upper lid 14 and the lower lid 15 and the housing 13 is applied to the motor device 1 of the first embodiment. A configuration in which a sealing material is interposed between each of the lower lids 15 and the housing 13 may be applied to the motor devices 1 of the second to eighth embodiments.
 この発明は各上記実施の形態に限定されるものではなく、この発明の基本的技術的思想及び教示に基づいて種々変更して実施することができる。 The present invention is not limited to the above-described embodiments, and various modifications can be made based on the basic technical idea and teachings of the present invention.
 1 モータ装置、2 モータ、3 制御装置、4 モータハウジング、7 前方ブラケット、11 上部開口部、13 筐体、14 上部蓋、16 制御部品群、18 制御基板(第1基板)、19 パワー基板(第2基板)、20 電力変換素子、32 断熱材、41 蓋本体、42 低熱伝導部、45 金属板(高熱伝導部)、46 低熱伝導部、51 放熱板、55 Oリング(シール材)、71 ブラケット本体、72 ブラケット突出部。 1 motor device, 2 motor, 3 control device, 4 motor housing, 7 front bracket, 11 upper opening, 13 housing, 14 upper lid, 16 control parts group, 18 control board (first board), 19 power board ( 2nd substrate), 20 power conversion element, 32 heat insulating material, 41 lid body, 42 low heat conduction part, 45 metal plate (high heat conduction part), 46 low heat conduction part, 51 heat radiation plate, 55 O-ring (sealing material), 71 Bracket body, 72 bracket protrusion.

Claims (10)

  1.  モータと、
     前記モータに設けられ、前記モータの動作を制御する制御装置と
     を備え、
     前記制御装置は、
      第1基板及び第2基板を含む制御部品群と、
      開口部が設けられ、前記制御部品群を収容する筐体と、
      前記筐体よりも熱伝導率の低い低熱伝導部を含み、前記筐体に接触した状態で前記開口部を塞ぐ蓋と
      を有し、
     前記第1基板は、前記蓋に取り付けられており、
     前記第2基板は、前記蓋から離れた状態で前記筐体内に収容されており、
     前記第2基板は、前記第1基板の総発熱量よりも発熱量が大きい電力変換素子を有し、
     前記電力変換素子は、前記モータの軸線に沿った方向について前記第1基板から離して配置され、
     前記第2基板の一部は、前記モータの軸線と直交する方向について前記第1基板と並んでいる
     モータ装置。
    A motor,
    A control device provided in the motor for controlling the operation of the motor;
    The controller is
    A control component group including a first substrate and a second substrate;
    A housing provided with an opening and accommodating the control component group;
    Including a low thermal conductivity portion having a lower thermal conductivity than the casing, and having a lid for closing the opening in contact with the casing;
    The first substrate is attached to the lid;
    The second substrate is accommodated in the housing in a state separated from the lid,
    The second substrate has a power conversion element having a heat generation amount larger than a total heat generation amount of the first substrate,
    The power conversion element is disposed away from the first substrate in a direction along an axis of the motor;
    A part of the second substrate is aligned with the first substrate in a direction orthogonal to the axis of the motor.
  2.  前記モータは、モータ本体と、前記モータ本体を支持するモータハウジングとを有し、
     前記モータハウジングは、前記筐体と一体になっているブラケットを有し、
     前記電力変換素子は、前記モータの軸線に沿った方向について前記ブラケットと前記第1基板との間に配置されている
     請求項1に記載のモータ装置。
    The motor has a motor body and a motor housing that supports the motor body,
    The motor housing has a bracket integrated with the housing,
    The motor device according to claim 1, wherein the power conversion element is disposed between the bracket and the first substrate in a direction along an axis of the motor.
  3.  前記筐体は、前記ブラケットと別部材である
     請求項2に記載のモータ装置。
    The motor device according to claim 2, wherein the casing is a separate member from the bracket.
  4.  前記ブラケットは、前記モータ本体を支持するブラケット本体と、前記ブラケット本体から前記モータの軸線に沿った方向へ突出するブラケット突出部とを有し、
     前記電力変換素子は、前記ブラケット突出部に取り付けられている
     請求項2又は請求項3に記載のモータ装置。
    The bracket has a bracket body that supports the motor body, and a bracket protrusion that protrudes from the bracket body in a direction along the axis of the motor,
    The motor device according to claim 2, wherein the power conversion element is attached to the bracket protrusion.
  5.  前記筐体は、前記モータの軸線と直交する方向について前記第2基板よりも前記モータから離れた位置に配置されている素子取付壁を有し、
     前記電力変換素子は、前記素子取付壁に取り付けられており、
     前記第1基板は、前記蓋よりも前記モータに近い位置に配置されている
     請求項1~請求項3のいずれか一項に記載のモータ装置。
    The housing includes an element mounting wall disposed at a position farther from the motor than the second substrate in a direction orthogonal to the axis of the motor.
    The power conversion element is attached to the element mounting wall,
    The motor device according to any one of claims 1 to 3, wherein the first substrate is disposed closer to the motor than the lid.
  6.  前記第1基板には、前記第1基板と前記筐体との間での熱移動を抑制する断熱材が重なっている
     請求項1~請求項5のいずれか一項に記載のモータ装置。
    The motor device according to any one of claims 1 to 5, wherein a heat insulating material that suppresses heat transfer between the first substrate and the housing overlaps the first substrate.
  7.  前記蓋は、前記第1基板が取り付けられている蓋本体を有し、
     前記蓋本体と前記筐体との間には、前記低熱伝導部が介在しており、
     前記蓋本体の熱伝導率は、前記低熱伝導部の熱伝導率よりも高くなっている
     請求項1~請求項6のいずれか一項に記載のモータ装置。
    The lid has a lid body to which the first substrate is attached;
    Between the lid body and the housing, the low thermal conduction portion is interposed,
    The motor device according to any one of claims 1 to 6, wherein a thermal conductivity of the lid main body is higher than a thermal conductivity of the low thermal conductivity portion.
  8.  前記蓋は、前記低熱伝導部と接触している高熱伝導部を有し、
     前記高熱伝導部の熱伝導率は、前記低熱伝導部の熱伝導率よりも高くなっている
     請求項1~請求項6のいずれか一項に記載のモータ装置。
    The lid has a high thermal conductivity portion in contact with the low thermal conductivity portion;
    The motor device according to any one of claims 1 to 6, wherein a thermal conductivity of the high thermal conductivity portion is higher than a thermal conductivity of the low thermal conductivity portion.
  9.  前記蓋には、前記低熱伝導部よりも熱伝導率の高い放熱板が前記筐体外で取り付けられている
     請求項1~請求項8のいずれか一項に記載のモータ装置。
    The motor device according to any one of claims 1 to 8, wherein a heat radiating plate having a higher thermal conductivity than the low thermal conductive portion is attached to the lid outside the casing.
  10.  前記蓋と前記筐体との間には、シール材が介在している
     請求項1~請求項9のいずれか一項に記載のモータ装置。
    The motor device according to any one of claims 1 to 9, wherein a sealing material is interposed between the lid and the housing.
PCT/JP2016/050533 2015-08-11 2016-01-08 Motor device WO2017026128A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016540701A JP6026063B1 (en) 2015-08-11 2016-01-08 Motor equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-158928 2015-08-11
JP2015158928 2015-08-11

Publications (1)

Publication Number Publication Date
WO2017026128A1 true WO2017026128A1 (en) 2017-02-16

Family

ID=57983126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050533 WO2017026128A1 (en) 2015-08-11 2016-01-08 Motor device

Country Status (1)

Country Link
WO (1) WO2017026128A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230211A1 (en) * 2017-06-16 2018-12-20 日立オートモティブシステムズ株式会社 Electric driving device and electric power steering device
JP2019050704A (en) * 2017-09-12 2019-03-28 東芝産業機器システム株式会社 Rotary electric machine
IT202100001841A1 (en) * 2021-01-29 2022-07-29 Amer Spa CLOSING CAP FOR ELECTRIC MOTORS, AND MOTOR UNIT INCLUDING AN ELECTRIC MOTOR ASSOCIATED WITH THE ABOVE-MENTIONED CLOSING CAP
WO2023079839A1 (en) * 2021-11-04 2023-05-11 株式会社豊田自動織機 Electric fluid machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306671A (en) * 2006-05-09 2007-11-22 Denso Corp Motor drive device for vehicle
JP2012092747A (en) * 2010-10-27 2012-05-17 Mitsubishi Heavy Ind Ltd Inverter-integrated electric compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007306671A (en) * 2006-05-09 2007-11-22 Denso Corp Motor drive device for vehicle
JP2012092747A (en) * 2010-10-27 2012-05-17 Mitsubishi Heavy Ind Ltd Inverter-integrated electric compressor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230211A1 (en) * 2017-06-16 2018-12-20 日立オートモティブシステムズ株式会社 Electric driving device and electric power steering device
CN110710087A (en) * 2017-06-16 2020-01-17 日立汽车***株式会社 Electric drive device and electric power steering device
JP2019050704A (en) * 2017-09-12 2019-03-28 東芝産業機器システム株式会社 Rotary electric machine
IT202100001841A1 (en) * 2021-01-29 2022-07-29 Amer Spa CLOSING CAP FOR ELECTRIC MOTORS, AND MOTOR UNIT INCLUDING AN ELECTRIC MOTOR ASSOCIATED WITH THE ABOVE-MENTIONED CLOSING CAP
WO2022162599A1 (en) * 2021-01-29 2022-08-04 Amer S.P.A. End cap for electric motors, and motor unit comprising an electric motor associated with said end cap
WO2023079839A1 (en) * 2021-11-04 2023-05-11 株式会社豊田自動織機 Electric fluid machine

Similar Documents

Publication Publication Date Title
US7812487B2 (en) Controller for a direct current brushless motor
JP5186899B2 (en) Brushless motor
JP2015198168A (en) Electronic device, power converter and dynamo-electric machine
WO2017026128A1 (en) Motor device
TWI643433B (en) Rotary electric machine
US11005329B2 (en) Electric motor with rotating first concentric cooling fins and second concentric fins on the housing
CA2931049C (en) Motor controller and motor applying same
JP2010098816A (en) Blower motor
JP5893099B1 (en) Electric power supply unit integrated rotating electric machine
JP6505311B2 (en) Motor and ventilation fan
JP2015146710A (en) Cooling device of mechatronic drive unit
CN209170108U (en) A kind of heat-radiation structure of casing
JP4951774B2 (en) Motor cooling structure and motor
JP2017229124A (en) Dc brushless motor and ventilation blower
JP4879772B2 (en) Electrical equipment
WO2019130442A1 (en) Motor drive device
JP2007209062A (en) Structure for cooling motor driving device
JP6026063B1 (en) Motor equipment
JP2017017123A (en) Housing structure and electronic equipment using the same
JPWO2017158707A1 (en) Air conditioner outdoor unit
JP5532156B2 (en) Blower
WO2015151445A1 (en) Electric motor device
JP2014146769A (en) Housing structure of electronic apparatus and power conditioner
JP6961990B2 (en) Motor unit
JP5217900B2 (en) Blower

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016540701

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16834826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16834826

Country of ref document: EP

Kind code of ref document: A1