WO2017022991A1 - Method for joining superhard materials using metal plating film having amorphous and heating characteristics - Google Patents

Method for joining superhard materials using metal plating film having amorphous and heating characteristics Download PDF

Info

Publication number
WO2017022991A1
WO2017022991A1 PCT/KR2016/008065 KR2016008065W WO2017022991A1 WO 2017022991 A1 WO2017022991 A1 WO 2017022991A1 KR 2016008065 W KR2016008065 W KR 2016008065W WO 2017022991 A1 WO2017022991 A1 WO 2017022991A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
cemented carbide
plating
carbide material
bonding
Prior art date
Application number
PCT/KR2016/008065
Other languages
French (fr)
Korean (ko)
Inventor
정재필
이준형
정도현
임동욱
Original Assignee
덕산하이메탈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산하이메탈(주) filed Critical 덕산하이메탈(주)
Publication of WO2017022991A1 publication Critical patent/WO2017022991A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils

Definitions

  • the present invention relates to a method of bonding a cemented carbide material using a metal plated film having amorphous and exothermic properties, and to forming a metal plated film having amorphous and exothermic properties on a low melting point core metal surface in the form of a foil by low temperature diffusion reaction.
  • melt-bonding (or welding) process has a problem that the mechanical properties of the base metal are changed by changing the structure of the surrounding base material such as coarsening of particles and formation of heat-affected zone due to the high working temperature.
  • the stress formation causes material defects such as stress corrosion cracking. Therefore, in recent years, studies have been actively conducted on low-temperature solid-state bonding technology capable of imparting sufficient tensile strength and adhesive strength and excellent leakage preventing properties between metals and alloys of such structural parts.
  • Figure 1 is a schematic diagram showing the bonding process of the tool steel and cemented carbide in the prior art.
  • the conventional tool steel and cemented carbide joining technology (Japanese Patent Laid-Open No. 60-250872) (10) uses a cemented carbide (12) and a tool steel (11) using a powder-inserted metal (13) of Ni and Co.
  • a technique of joining by bonding the center portion of the joining interface is uneven.
  • this method is inconvenient to separately process the tool steel (11).
  • it is important to provide an appropriate roughness to the joint surface, but there is a problem in that surface polishing is difficult due to uneven processing, and therefore, proper surface roughness cannot be provided.
  • the tool steel since the tool steel has a large coefficient of thermal expansion while the cemented carbide has a small coefficient of thermal expansion, there is a problem in that stress is generated at the time of bonding due to the difference, so that the cemented carbide tends to crack.
  • Figure 2 is a schematic diagram showing a conventional bonding process for joining tool steel and cemented carbide using a nickel-based metal.
  • a technique of joining tool steel and cemented carbide using a nickel-based metal (Korean patent application 1999-0033635) 20 is polished to a predetermined roughness for joining tool steel 21 and cemented carbide 22.
  • the joining of the tool steel with excellent bonding strength is performed by appropriately adjusting the solidification width and the size of the reaction layer while inserting a foil-like Ni-based metal 23 as a bonding medium between the tool steel 21 and the cemented carbide 22. to provide.
  • the cemented carbide 22 and the tool steel 21 are fixed through the jigs 25a, 25b, 25c, and 25d fixed by the fasteners 26a and 26b so that the polished surfaces face each other, and between them are foil-like.
  • the Ni-based metal 23 is inserted to form a laminate, and a flow inhibitor 24 of the Ni-based metal 23 on the foil is applied to the contact portion between the tool steel 21 and the cemented carbides 22. After that, the laminate is heated and joined at a temperature of 20 to 100 ° C. higher than the melting point of the Ni-based intercalation metal 23 in a vacuum furnace.
  • the melting point of Ni which is an insertion metal, is very high at 1455 ° C., which increases the junction temperature consumption energy, and may cause thermal damage to the base material.
  • the bonding is performed at a temperature higher than the melting temperature of the bonding medium, which leads to high energy consumption costs due to heating and sometimes to thermal damage to the base metal. There is also concern.
  • the melting point is lowered when using a powder-type bonding medium than when using a bulk-type bonding medium. It can be bonded at a relatively low temperature.
  • the powdered bonding medium has the following problems.
  • the powder is easily oxidized, and there is an inconvenience of covering the powder surface with a chemical to prevent this.
  • powders and pastes are difficult to store and difficult to manage such as preventing oxidation during manufacturing.
  • the powder can be harmful because it is easy to penetrate the human body.
  • the powder paste is difficult to use by applying it to a curved surface or a vertical surface, etc., thereby limiting its applicability.
  • An object of the present invention is to solve the problems of the prior art as described above, and to provide excellent bonding between tool steel and cemented carbide.
  • the present invention relates to a cemented carbide and tool steel joining method that is safe by exothermic reaction due to the change from amorphous to crystalline and can provide excellent bonding strength and bonding reliability even at low temperature.
  • the present invention for achieving the object as described above, preparing a water-based alloy plating solution containing two or more metal salts including a first metal salt and a second metal salt, the electrode is immersed in the water-based alloy plating solution electrolytic plating circuit Comprising a step, according to the reduction potential value of the metal salt to be plated to the control unit for controlling the electrolytic plating circuit, a voltage of + 2V to -4.5V or a corresponding current value based on a standard hydrogen electrode of 25 °C Applying a reduction potential or a current to the electrode, one surface of the first cemented carbide material or the second cemented carbide material, or one surface of both the first cemented carbide material and the second cemented carbide material by the standard reduction potential difference of the metal salts; At least two layers on both sides of the core metal to be disposed between the first cemented carbide material or the second cemented carbide material Forming a multilayer amorphous metal plating film and disposing the first cemented carbide material and the second cemented
  • the present invention by forming a multi-layered amorphous metal plated film between the cemented carbide materials to bond the cemented carbide materials, it is possible to form a junction showing excellent bonding strength even at a relatively low bonding temperature, the heat generated by the change from amorphous to crystalline It is safe by the reaction and there is an effect that can provide excellent bonding strength and bonding reliability even at low temperatures.
  • FIG. 1 is a schematic diagram showing a bonding process of tool steel and cemented carbide in the prior art.
  • Figure 2 is a schematic diagram showing a conventional bonding process for joining tool steel and cemented carbide using a nickel-based metal.
  • Figure 3 is a schematic diagram showing the bonding state of the tool steel and cemented carbide according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing the bonding process of the tool steel and cemented carbide according to an embodiment of the present invention.
  • Figure 5 is a graph showing the melting point according to the particle size of the multi-layer thin film junction in the bonding process of the tool steel and cemented carbide according to an embodiment of the present invention.
  • FIG. 6 is a graph illustrating a differential thermal analyzer (DTA) result of a Cu—Ni multilayer thin film joint in a process of joining tool steel and cemented carbide according to an embodiment of the present invention.
  • DTA differential thermal analyzer
  • Figure 7 is a graph showing the differential scanning calorimetry (DSC) results of the Sn-Cu multilayer thin film bonding in the process of bonding the tool steel and cemented carbide according to an embodiment of the present invention.
  • DTA differential thermal analyzer
  • FIG. 9 is a table showing whether the metal plating film is formed according to the content ratio and the reduction potential difference of the metal salt in the plating solution according to the present invention.
  • 10A through 10H are cross-sectional photographs of the metal plating film when the types of the first metal salt and the second metal salt and the reduction potential values of the plating solution according to the present invention are different.
  • 11 is a range graph showing whether a metal plating film is formed according to a content ratio of metal salts and a reduction potential in a plating solution according to the present invention.
  • FIG. 13 is a photograph showing a Cu-Ag, Cu-Zn based core metal alloy prepared using an induction furnace.
  • FIG. 14 is a photograph after processing with a rolling mill for core metal surface nanocomposite plating based on Cu—Ag and Cu—Zn.
  • 15A to 15B are joining pictures of tool steel and cemented carbide using Cu-Ag and Cu-Zn based core metal alloys according to the present invention.
  • 16 is a block diagram showing a bonding process of a tool steel and a cemented carbide material using a core metal in the present invention.
  • FIG. 17 is a scanning electron microscope (SEM) photograph showing an actual cross-section of a Ni—Cu multilayer thin film joint before bonding in the process of joining tool steel and cemented carbide according to an embodiment of the present invention.
  • FIG. 18 is a photograph of a Ni-Cu multilayer thin film joint formed on a tool steel sample surface without using a core alloy in a process of joining tool steel and cemented carbide according to an embodiment of the present invention.
  • 19 is a real picture of the cemented carbide and tool steel bonded to the tool steel and cemented carbide in accordance with one embodiment of the present invention, without using a core alloy.
  • FIG. 20 is a view showing the first and second plating metal layers (left) in the plated state as they were plated before heating (left) and the first and second plating layers disappeared due to diffusion after heating of the Sn-Cu metal plating film prepared according to the present invention (right). It is a photograph.
  • FIG. 21 is a photograph of the first and second plating layers (left) in the plated state as they were plated before heating and the first and second plating layers disappeared by the diffusion after heating (right) of the Ni—Cu metal plating film prepared according to the present invention. to be.
  • FIG. 22 is a graph showing amorphous characteristics (left) of the Sn-Cu metal plated film prepared according to the present invention as a result of phase analysis of the metal plated film as it is before heating by XRD, and the first and second plating layers by diffusion after heating. A phase analysis of this extinct state with XRD shows the appearance of crystalline properties (right).
  • FIG. 23 is an electron microscope (SEM) photograph showing a cross-section of a metal plated film, in which the sum of the thicknesses of the two plating layers is 5 ⁇ m thick.
  • FIG. 24 is a heating graph in which the sum of the thicknesses of the two plating layers of the metal plating film is 5 ⁇ m thick, and thermal characteristics are measured using a differential scanning calorimeter (DSC).
  • DSC differential scanning calorimeter
  • FIG. 25 is an optical microscope photograph showing the actual cross-section after bonding of the bonded portions in which the sum of the thicknesses of the two plating layers of the metal plating film is 5 ⁇ m thick.
  • FIG. 26 is an optical micrograph showing a cross section of a copper electrode fabricated by stacking the number of layers of a metal plating film into six layers.
  • FIG. 27 is an optical micrograph showing a cross-section of a Sn—Cu-based metal plated thin film manufactured by increasing the plating time of a metal plated film and having a total plating thickness of 300 ⁇ m.
  • Bonding method of cemented carbide comprises the steps of preparing an aqueous alloy plating solution containing two or more metal salts including a first metal salt and a second metal salt, immersing an electrode in the aqueous alloy plating solution to form an electrolytic plating circuit Step, according to the reduction potential value of the metal salt to be plated to the control unit for controlling the electrolytic plating circuit, by inputting a voltage or a corresponding current value of + 2V to -4.5V based on a standard hydrogen electrode of 25 °C Applying a reduction potential or current to the surface of the first carbide material or the second cemented carbide material, or one surface of both the first cemented carbide material and the second cemented carbide material by the difference in the standard reduction potential of the metal salts; At least two layers on both sides of the core metal to be disposed between the material or the second cemented carbide material Forming a multilayer amorphous metal plating film and disposing the first cemented carbide material and the second cemented carbide material in
  • the metal salt in the plating solution is ionized, and in order to deposit on the cathode by using a current, a voltage higher than the reduction potential of each element should be applied.
  • a voltage section in which the type of the deposited metal is different there is a difference in the standard reduction potentials of the two elements, resulting in a voltage section in which the type of the deposited metal is different.
  • the voltage section may be represented by a first section in which both the first metal and the second metal are plated, and a second section in which only the second metal is plated.
  • the plating layers that are alternately precipitated form a layered structure by stacking thin films having a wide surface shape in a regular order.
  • the thickness of the individual metal layer in the multi-layer plating layer is thinned to the nanometer class, its properties are significantly different from those of the bulk metal.
  • each plated layer having a nanometer thickness has an amorphous property and becomes unstable due to an increase in the surface area between the metal layers, and each plated layer easily exhibits an exothermic reaction when heated at a low temperature. This makes it easy to melt and form alloys even at temperatures below the melting point in the bulk material state. Therefore, in general, the bonding process performed at a high temperature may serve to perform at a low temperature.
  • the apparatus for implementing a metal plating film forming method having an amorphous and exothermic characteristics using the plating method of the present invention may include a PC as a container, a reference electrode, an anode, a cathode, a stirring magnetic and a control unit.
  • the container may be formed in the form of a plating bath in which an upper end of the opening is closed with a stopper and a stirring magnetic is installed at an inner bottom.
  • a saturated calomel electrode may be used as the reference electrode.
  • a 10 mm ⁇ 10 mm platinum (Pt) electrode may be used as the anode electrode, and a 10 mm ⁇ 10 mm copper (Cu) electrode may be used as the cathode electrode.
  • the anode and cathode can use different kinds of conductive metal and can be scaled according to the plating conditions.
  • the power supply can use both a constant current and a constant voltage.
  • the stirring magnetic is disposed on the bottom surface of the vessel to agitate the plating liquid stored in the vessel, and when the driving motor is provided with a driving magnet on the drive shaft at the bottom of the vessel by the magnetic force the driving magnetic is the bottom of the vessel
  • the stirring magnetic disposed on the surface can be operated using the principle of interlocking.
  • the PC is provided with software such as a power supply and a waveform control program that can adjust voltage and current waveforms, and control voltage and current waveforms through input and manipulation.
  • the PC is provided with a positive electrode of the power source to be electrically connected through the positive electrode and the wire, a reference electrode of the power source is installed to be electrically connected through the reference electrode and the wire, and the negative electrode and the wire of the power source to be electrically connected through the wire A negative electrode can be installed.
  • the preparing of the electrode and the aqueous alloy plating solution is preparing and preparing the electrodes and the aqueous alloy plating solution, respectively.
  • the electrode may include a reference electrode, an anode, and a cathode.
  • the plating solution may include a first metal salt and a second metal salt, and may include an acid and an additive.
  • the first and second metal salts are tin (Sn), copper (Cu), zinc (Zn), nickel (Ni), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), and manganese ( Mn), iron (Fe), cobalt (Co), gallium (Ga), germanium (Ge), arsenic (As), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), cadmium (Cd), indium (In), antimony (Sb), tellurium (Te), hafnium (Hf), tantalum (Ta), tungsten (W), Metals such as rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), thallium (Tl), lead (Pb), bismuth (Bi), and the
  • Two or more metal salts of elements having different reduction potentials in the range of 0.029 V or more and 1.0496 V or less can be selected and used.
  • the concentration ratio of the first and second metal salts in the plating liquid is preferably selected from the range of 2: 1 to 100: 1.
  • it is exemplified by multi-layer plating by selecting Cu, Sn, Bi, Ag, Ni, and Zn having the highest utilization.
  • hydrochloric acid sulfuric acid, methanesulfonite acid (MSA), nitric acid, boric acid, acetic acid, organic sulfuric acid, citric acid, formic acid, ascorbic acid, hydrofluoric acid, phosphoric acid, lactic acid, amino acid, hypochlorous acid, etc.
  • MSA methanesulfonite acid
  • acetic acid organic sulfuric acid
  • citric acid formic acid
  • ascorbic acid hydrofluoric acid
  • phosphoric acid lactic acid
  • amino acid amino acid
  • hypochlorous acid etc.
  • Easy acid may be used, and sulfuric acid was used in the examples, which is easy to obtain at low cost.
  • the surface of the plating film is made to be uniform, and a leveling agent (smoothing agent), an accelerator, and an inhibitor may be added.
  • various various additives such as a defoamer, a gloss agent, and a particle fine agent may be used in some cases.
  • polyoxyethylene lauryl ether (POELE) in the planarizer was used as an additive, but a multilayer film may be formed without using it.
  • the electroplating circuit configuration step is a step of immersing the reference electrode, the positive electrode and the negative electrode in the aqueous alloy plating solution and then connecting the power source to configure the electrolytic plating circuit. That is, in the electrolytic plating circuit construction step, the electron movement order of the circuit is performed in the process of moving through the anode-> power source-> cathode.
  • the reducing potential or current application step is a step of applying and applying a reduction potential (voltage) or current through software of a PC which is a control unit.
  • the pulse voltage and the current when the reducing potential or the current applying step are performed may be represented by a first section in which both the first metal and the second metal are plated and a second section in which only the second metal is plated.
  • the thickness condition input of the plated thin film is performed by inputting, through the software of the PC, a voltage or a corresponding current, time and number of cycles corresponding to the plating thickness having the desired exothermic properties for each metal plating layer.
  • the thickness condition input of the plated thin film is to have the heat generation characteristics of the 1st and 2nd layer by adjusting the voltage or the corresponding current and time value between + 2V and -4.5V based on the 25 ° C standard hydrogen electrode according to the thickness condition.
  • the plating thickness can be adjusted.
  • the plating thickness having the exothermic characteristics of the first and second section layers may be adjusted by adjusting a voltage or a corresponding current and time value between + 1.83V to -1.67V based on the standard hydrogen electrode.
  • plating may be performed by adjusting a voltage or a corresponding current and time value between + 1.83V to -1.67V based on a standard hydrogen electrode.
  • Elements where the reduction potential is lower than -1.67V for example, Li, Na, Ca, etc. are difficult to manufacture due to the reduction of the plating method of the present invention, and difficult to be ionized as a precious metal material at + 1.83V or more, which makes the plating difficult. .
  • Multi-layer plating of the metal plating film is a step of obtaining a metal plating film having amorphous and exothermic properties through sequential plating of each plating layer such as, for example, the first plating layer and the second plating layer.
  • the metal salt in the plating solution is in an ionized form, and a voltage higher than the reduction potential of each element must be applied in order to reduce and precipitate it on the cathode.
  • a layer in which one metal is deposited and two or all metals are alternately displayed.
  • the plating layers that appear alternately are unstable as the number of the stacked layers increases and the surface area between the plating layers becomes wider.
  • the plating current density should not exceed the limit current density.
  • the metal plating film having amorphous and exothermic properties is formed so that the sum of the thicknesses of the first plating layer and the second plating layer is in a range of 0.1 nm to 5 ⁇ m so that the first metal layer and the second metal layer may exhibit the heat generating characteristics. Can be.
  • the metal plating film having the amorphous and exothermic properties is preferably formed of a stacked structure of at least six layers of each of the amorphous metal plating films such as the first plating layer and the second plating layers.
  • each of these amorphous metal plated films is less than six layers, endothermic reactions occur more than exothermic reactions during bonding, resulting in poor crystal phase change of the amorphous bonding material into crystalline, resulting in poor bonding strength and low reliability. As it may, it is not desirable.
  • the metal plated film having the amorphous and exothermic properties can easily form a stack up to nanometer thickness in order to have the exothermic properties, the number of the stack may be increased by more than tens of thousands of layers.
  • Figure 3 is a schematic diagram showing the bonding state of the tool steel and cemented carbide according to an embodiment of the present invention
  • Figure 4 is a schematic diagram showing the bonding process of the tool steel and cemented carbide according to an embodiment of the present invention
  • Figure 5 is a graph showing the melting point according to the particle size of the multi-layer thin film junction in the bonding process of the tool steel and cemented carbide according to an embodiment of the present invention.
  • Figure 6 is a graph showing the differential thermal analyzer (DTA) results of the Cu-Ni multilayer thin film joint in the process of bonding the tool steel and cemented carbide according to an embodiment of the present invention
  • Figure 7 is an embodiment of the present invention
  • DSC differential scanning calorimetry
  • Figure 8 is a Cu- in the process of joining the tool steel and cemented carbide according to an embodiment of the present invention
  • a graph showing the differential thermal analyzer (DTA) results of an Ag multilayer thin film junction is shown.
  • the tool steel and cemented carbide joining method of the present invention comprises the steps of forming a metal coating layer 121 on one surface of the first cemented carbide material 110 and the second cemented carbide material 120, the amount of the core metal 140 Forming a metal plating film 130 on the surface, the metal plating film 130 is disposed between the first cemented carbide material 110 and the second cemented carbide material 120 to face each other and the metal plating And pressing the first cemented carbide material 110 and the second cemented carbide material 120 with each other while heating the film 130 to a melting temperature range.
  • the core metal 140 may use an alloy having a low melting point to increase the amount of molten metal, and a metal plating layer 130 is formed on the surface.
  • the nose metal 140 alloy is preferably an electrolytic solid alloy that does not produce an intermetallic compound, and the melting point of the alloy is preferably 700 ° C. or lower for low temperature bonding.
  • Bonding surfaces joined by the metal plated film 130 in the first cemented carbide material 110 and the second cemented carbide material 120 may be further improved in Ni, Cu, Sn,
  • One or more metal coating layers 121 selected from the group consisting of Ag and Au may be formed.
  • the metal plating film 130 serves as a bonding medium between materials, and may be formed in the form of a multilayer plating film using metal elements.
  • the metal plating film 130 is formed in the form of a multi-layer plating film of the nanometer thickness level by using the difference in the reduction potential of the metal salt on the bonding surface of the material, or, such a thin film (foil) made by peeling the plating film Can be used in between.
  • the metal plating layer 130 is a multi-layered thin film structure composed of heterogeneous elements, and has a large surface area between the films and a high surface energy, which is an unstable state. Therefore, even with a little heating, diffusion occurs easily and heat is generated in this process.
  • the metal element when the metal element is in the form of a thin film plating layer, it has a property of being easily amorphous. Since such an amorphous material is unstable, the metal element is crystallized and generates heat even when only a little heat is applied from the outside. Can be formed.
  • the metal plating film 130 has a phenomenon that the melting point of the multilayer thin film structure is lower than that of a normal bulk, similar to the powder state of the material. That is, the powder of material has a lower melting point as the particle size becomes smaller.
  • the powder of the metal particles has a lower melting point (T M (d)) compared to the melting point (T MB ) of the lumped metal, as shown in the Gibbs Thomson equation below, depending on the particle diameter (d). Therefore, as the diameter d of the particles decreases, the melting point thereof decreases.
  • the bonding process between materials that are generally performed at high temperatures can be performed at relatively low temperatures, and the bonding strength and the reliability of the bonding are excellent due to the characteristics of the multilayer thin film structure in which the melting temperature is low but the melting point is increased again after melt-solidification. Can be obtained.
  • the metal plating layer 130 may be disposed between the first cemented carbide material 110 and the second cemented carbide material 120 in various forms.
  • the multilayer plating film may be plated on the surface of the cemented carbide material or the core metal.
  • Form, multilayer thin film foil sheet, pulverized particle form of multilayer thin film foil sheet, paste form prepared by mixing pulverized particle of multilayer thin film foil sheet with liquid, and metal particle form having multilayer plated thin film formed on the surface It may be one or more forms selected from the group consisting of.
  • the liquid is, for example, alcohols, phenols, ethers, acetones, aliphatic hydrocarbons having 5 to 18 carbon atoms, kerosene, diesel oil, toluene, Aromatic hydrocarbons, such as xylene, silicone oil, etc. can be used, Among these, alcohols, ethers, or acetone which have some solubility in water can be used preferably.
  • the form of forming the multilayer plating film on the surface of the first cemented carbide material or the second cemented carbide material may be performed by, for example, electrolytic plating.
  • a plating solution, a metal salt, an additive, an electrode, a conductive substrate, a voltage and a current may be used.
  • the plated multi-layer plating thin film is removed and used in the form of a foil, it can be handled separately from the bonding material and can be used as a low temperature bonding material.
  • the multilayer plating thin film is easy to handle and safe.
  • the multi-layer plating thin film forming method is a simple mass production method.
  • the thickness of the multilayer plating thin film can be arbitrarily adjusted by adjusting the plating conditions such as voltage and plating time.
  • the junction temperature can be significantly lowered compared to the conventional bonding method, thereby significantly reducing the energy price.
  • the Sn-3.5 wt% Ag bonding medium used in the electronics industry has a melting point of about 221 ° C., and the bonding material to be bonded should be bonded at a temperature of about 250 ° C. or more.
  • the bonded material plated therewith has an advantage of being bonded at a temperature of about 160 ° C. or less.
  • the thickness of the thin film layer is thinner, bonding is possible at a lower temperature, and if the thickness of the thin film layer is thinner to the nano level, the bonding of materials is possible at almost room temperature.
  • the structure of the multilayer thin film of the metal plating film 130 is not particularly limited, and preferably, a multilayer thin film having a structure in which at least six thin film layers are stacked, or at least two thin film layers made of different elements are alternately stacked on each other. It can be formed in the form of a multilayer thin film having a structure.
  • the metal plating film 130 having a structure in which six or more thin film layers are stacked shows high electrical conductivity and bonding strength by diffusion of the multilayer plating layer when the first cemented carbide material 110 and the second cemented carbide material 120 are bonded.
  • the multilayer thin film having a structure in which at least two thin film layers made of different elements are alternately stacked with each other may have a temperature lower than a common metal bonding temperature at the time of bonding the first cemented carbide material 110 and the second cemented carbide material 120. Even when bonding, diffusion may occur due to the difference in mutual concentration of the thin film layers, and at the same time, an exothermic reaction may occur to achieve a stable and stable bonding.
  • the multilayer thin film structure has excellent characteristics in that the temperature at the time of bonding is lower than the temperature of the general metal, but after melting and solidifying at the time of melting, the melting point is increased to the melting point of the general metal.
  • Each thin film layer constituting the metal plating film 130 is Sn, Cu, Zn, Ni, Ti, V, Cr, Mn, Fe, Co, Ga, Ge, As, Al, Zr, Nb, Mo, Tc, Ru At least one metal element selected from the group consisting of Rh, Pd, Ag, Cd, In, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, and Po Can be used.
  • the multilayer thin film made of such a metal element may be formed of a structure in which a thin film made of an element such as Sn-Cu, Sn-Ag, Cu-Zn, Cu-Ni, Al-Ni, or an alloy thereof is alternately laminated. Can be.
  • the metal plated film 130 when stacked in two layers, the sum of the two film thickness is preferably implemented in a thickness ranging from 0.1nm to 5 ⁇ m, the overall thickness is 0.6nm to 300 It is preferred to be formed with a thickness in the range up to ⁇ .
  • the thickness of the metal plating film 130 is formed to be less than 0.6 nm, there is an advantage that can be bonded even at a temperature significantly lower than the junction temperature of a general metal electrode, but the formation of a thin film layer, the manufacturing cost can be greatly increased have.
  • the thickness of the metal plating film exceeds 300 ⁇ m the junction temperature is increased, the bonding strength and the bonding reliability may be lowered.
  • the melting temperature range of the metal plating film 130 is set to a temperature range lower than the melting point of the element having a low melting point among the elements included in each thin film layer constituting the metal plating film, or the melting point of the entire bulk composition constituting the metal plating film. Can be.
  • the melting temperature range of the metal plating film 130 is 0.5% to 80% of the melting point of the element having a low melting point among the elements included in each thin film layer constituting the metal plating film or the melting point of the alloy of the elements. It can be set in the temperature range of.
  • the junction temperature range of the metal plated film 130 is preferably the melting point of the element or the melting point of the elements of each of the elements included in each thin film layer constituting the metal plated film above the peak temperature at which the exothermic characteristics appear It can be set at a temperature range below the melting point of the alloy or below the melting point of the joined material.
  • the bonding medium is disposed between the materials to be joined and heated to a temperature above the melting point of the bonding medium to heat the joints of the materials.
  • the bonding temperature is higher than their melting point (melting point of copper 1083 ° C), and the typical brazing bonding temperature is about 1150-1200. °C.
  • the junction temperature reaches 1455 ° C.
  • the bonding temperature is 900 ° C., and the bonding can be performed at a temperature lower than about 550 ° C. That is, the bonding is possible at 38.1% of the bonding temperature when using the existing common bonding media. Therefore, compared to the conventional bonding temperature, the energy consumption of the junction temperature of the multilayer thin film junction according to the present invention is only about 38%, which is very economical. In addition, when the thickness of the thin film layer constituting the multilayer thin film in the metal plating film becomes thinner, the bonding is possible at a lower temperature.
  • the metal plating film 130 is characterized by alternately stacking a thin film layer containing elements other than Sn and Cu, for example, elements such as Sn-Ag, Cu-Zn, Cu-Ni, and Al-Ni. Similar results can be obtained with multilayer thin film junctions.
  • the excellent performance as a bonding medium of the multilayer thin film bonding unit 130 is realized by the principle that when the thin film layers are heated and pressurized, an exothermic reaction occurs in the diffusion process due to the difference in concentration, and thus the bonding is easily performed even at a low temperature.
  • the thin film layer of the metal plating film 130 is easy to reduce the surface energy due to the increase in the surface area by the reduction of the thickness is very unstable.
  • the reduction of the interfacial energy means that the area of the interface is reduced, which means that the junction occurs at both interfaces.
  • Nanometal particles, for example, are unstable and can be bonded together at temperatures below the melting point of the original bulk metal, or even at room temperature.
  • the second is by diffusion. Since the thin film layer of the metal plating layer 130 is formed by a structure in which different materials are alternately stacked, the dissimilar materials forming the stacked structure have a shorter diffusion distance as the interlayer spacing becomes shorter. As a result, the concentration gradient becomes severe and diffusion occurs actively. For example, when A and B thin-film metal layers are alternately laminated, A atom will diffuse into B layer, and B atom will spread to A layer. This diffusion can be seen that the diffusion flux J is inversely proportional to the distance through the first law of diffusion of the fix (Fick's).
  • the bonding between the material and the metal plating film is activated by diffusion due to such a difference in concentration, and thus bonding is performed.
  • the thin film layer of the metal plating film 130 is unstable, and an exothermic reaction occurs during heating.
  • the type of material to be bonded in the joining method of tool steel and cemented carbide according to the present invention is not particularly limited.
  • the first cemented carbide material is a metal material
  • the second cemented carbide material is a metal material different from the first cemented carbide material, and ceramics. It may be a material selected from the group consisting of a material, and a plastic material.
  • the first cemented carbide material may be tool steel
  • the second cemented carbide material may be hard metal alloy.
  • the cemented carbide may be a tungsten carbide (WC) and a cobalt (Co) based WC-Co-based cemented carbide, the cemented carbide and tool steel is characterized by a large thermal expansion coefficient difference due to the large interfacial stress due to the tendency to crack in the joint
  • WC tungsten carbide
  • Co cobalt
  • tool steel is characterized by a large thermal expansion coefficient difference due to the large interfacial stress due to the tendency to crack in the joint
  • bonding to the present invention using a metal plating film it can be obtained excellent bonding strength and bonding reliability.
  • FIG. 15A to 15B illustrate a bonding picture of a tool steel and a cemented carbide using a Cu-Ag and Cu-Zn-based core metal alloy according to the present invention
  • FIG. 16 shows a tool steel and a cemented carbide material using a core metal in the present invention
  • FIG. 17 is a block diagram illustrating a bonding process of FIG. 17.
  • FIG. 17 is a scanning electron microscope (SEM) photograph showing an actual cross-section of a Ni—Cu multilayer thin film joint before bonding in a process of joining a tool steel and a cemented carbide according to an embodiment of the present invention. Is disclosed.
  • FIG. 18 discloses a photograph of forming a Ni—Cu multilayer thin film joint on a tool steel sample surface without using a core alloy in the process of joining tool steel and cemented carbide according to an embodiment of the present invention
  • FIG. 19 In the process of joining the tool steel and the cemented carbide according to an embodiment, an actual photograph of the cemented cemented carbide and the tool steel is disclosed without using a core alloy.
  • a configuration required for joining a tool steel and a hard metal material includes a foil sheet and a multilayer of a low melting point core metal alloy for forming a multilayer thin film according to the present invention.
  • the pretreatment for joining the tool steel and the hard metal material is, for example, an acid dilution solution such as a 5 vol% hydrochloric acid solution on the surface of the multilayer thin film joint to remove contaminants or oxides on the surface where the multilayer thin film joint is formed.
  • an acid dilution solution such as a 5 vol% hydrochloric acid solution
  • the aqueous acid solution removes the metal oxide, which makes the bonding easier.
  • Bonding can be performed without flux in the case of a vacuum or non-oxidation atmosphere. If the materials are to be bonded in the air, a flux that operates at a low temperature may be used to remove the oxide layer on the surface of the multilayer thin film junction.
  • the tool steel may be prepared by using cemented carbide such as stainless steel, carbon steel, alloy tool steel, and WC. Since cemented carbides such as WC are difficult to be conventionally bonded to tool steel substrates such as stainless steel, the surface of the cemented carbide can be joined with tool steel by coating the surface with metal in a pretreatment for metallization.
  • cemented carbide such as stainless steel, carbon steel, alloy tool steel, and WC. Since cemented carbides such as WC are difficult to be conventionally bonded to tool steel substrates such as stainless steel, the surface of the cemented carbide can be joined with tool steel by coating the surface with metal in a pretreatment for metallization.
  • the core metal alloy is rolled and processed to facilitate bonding.
  • the core metal alloy may be polished to form the multilayer thin film joint of the processed core metal alloy, and then the multilayer thin film joint may be formed by electroplating.
  • the metal plating film developed in the present invention has a low melting point due to diffusion occurs at low temperatures between the laminated plating layers. Thermal properties were measured by DSC and DTA to confirm this.
  • thermoelectric elements the thermal characteristics of the multi-layer plated thin film containing Sn, Cu, Ni, Ag, which is considered to be high among the various elements used as the bonding medium for bonding the thermoelectric elements, were measured.
  • the melting point increases as Ni increases, so the lowest melting temperature is 1083, which is the melting point of (substantially Cu) at 100% Cu-0% Ni. °C.
  • the Cu-Ni multilayer plating thin film used in the thermoelectric device bonding method of the present invention showed a peak at 567 ° C., which is lower than that of a general bulk material alloy, when the thermal characteristics were measured using DTA. The multilayer plating thin film was melted. At this time, the thermal characteristics of the Ni-Cu multilayer plating thin film was measured by DTA and shown in FIG. 6. The peak of FIG. 6 corresponds to about 51.8% of 1083 ° C., which is the lowest melting point of the Cu—Ni based alloy.
  • the Sn-Cu multi-layer plated thin film developed in the present invention diffuses at low temperatures, heat is generated, and when measured by DSC, a peak appears at 144 ° C., and the Sn-Cu multi-layer plated thin film is melted. Thermal properties at this time were measured by DSC and shown in FIG. 7. The peak in FIG. 7 corresponds to about 63.4% of 227 ° C., the lowest melting point (eutectic temperature) of the Sn—Cu based alloy.
  • a Cu-Ag multilayer nano thin film was manufactured by the present invention, and the thermal properties thereof were measured by DTA and shown in FIG. 8. At this time, a peak appears at 678.54 ° C, which corresponds to about 87.1% of the lowest melting point (eutectic temperature, Cu-40% Ag) of Cu-Ag-based bulk alloy.
  • the plating was performed by dissolving the ratio of the first metal salt and the second metal salt in the alloy plating solution at a molar ratio of 1: 1 to 200: 1. 9 and 10A to 10H, when the ratio of the first metal salt to the second metal salt is less than 2: 1, for example, when the ratio is 6: 4 and 5: 5, the first metal layer and the second metal layer may be The difference in concentration of the second metal is small, so that the multilayer plating thin film is not formed.
  • the ratio of the first metal salt to the second metal salt exceeds 100: 1, for example, a ratio of 200: 1
  • the second metal salt is easily consumed during plating, so that the concentration of the second metal salt is diminished and the reduction of the second metal salt is reduced. Instead, hydrogen ions in the plating solution are reduced to generate hydrogen bubbles. Therefore, formation of a multilayer plating thin film becomes difficult.
  • a multi-layer plating was performed by selecting a metal salt of an element having a difference in the standard reduction potential of 0.004 V or more and 1.5614 V or less (FIGS. 9 and 10A to 9). 10h).
  • the reduction potential difference between the first and second metal salts becomes less than 0.029 V
  • both the first and second metal salts are reduced, and the boundary between the plating layers disappears, and thus the multilayer plating thin film is not formed.
  • the reduction potential difference between the first and second metal salts is greater than 1.0496V, the second metal interferes with the plating of the first metal, and thus the boundary between the plating layers disappears, and thus the multilayer plating thin film is not formed.
  • FIGS. 10A to 10H the cross-sectional view of the multilayer plating thin film corresponding to each condition of FIG. 9 is illustrated in FIGS. 10A to 10H, and it may be confirmed by a photograph whether the multilayer plating thin film is formed according to the plating conditions.
  • the numbers in FIGS. 10A to 10H correspond to the numbers in FIG. 9.
  • the photo of 2-3 'condition of FIG. 9 shows the' 2-3 'photo in FIGS. 10A to 10H.
  • FIG. 11 is a graph showing the range of conditions under which the multilayer plating resulting from FIG. 9 is formed.
  • a metal salt having a reduction potential difference between the first metal salt and the second metal salt in the plating liquid is in the range of 0.029 V or more and 1.0496 V or less.
  • the concentration ratio of the two metal salts is preferably in the range of 2: 1 to 100: 1.
  • the melting point of the core metal alloy is preferably 700 ° C. or lower for low temperature joining of tool steel, and should be excellent in workability for core metal surface nano composite plating.
  • Methods for the alloy include vacuum furnaces and induction furnaces, and Cu-Ag, Cu-Zn core metal alloys prepared using induction furnaces are shown in FIG. 13.
  • the core metal is preferably manufactured in the form of a thin foil, and the thickness of the alloy foil after rolling is preferably about 0.1 mm to 0.2 mm.
  • the Cu-Ag core metal alloy after rolling in FIG. 14 was shown.
  • a core metal including Cu, Zn and Ag among various elements used as a bonding medium was manufactured.
  • the tool steel and the cemented carbide were bonded using a vacuum furnace at a temperature of about 15 to 50 ° C. higher than the core metal melting temperature.
  • 15A shows a tool steel joint using a Cu—Ag based core metal
  • FIG. 15B shows a tool steel bonded using a Cu—Zn based core metal alloy.
  • the joining core metal was melted and diffused to achieve good joining.
  • Figure 16 a block diagram of the bonding process of the tool steel and the cemented carbide using the core metal.
  • 17 is a scanning electron microscope (SEM) photograph showing an actual cross section by forming a Ni—Cu multilayer thin film on the core metal of the present invention. It can be seen that the nano-grade metal multilayer thin film is uniformly plated.
  • the core metal used in this bonding helps to produce a uniform multilayer plated thin film, which helps to obtain a good bonding surface. However, it is possible to form a multi-layer thin film without core metal, and low temperature bonding is possible.
  • 18 is a photograph of a Ni-Cu multilayer thin film joint formed on a tool steel sample surface without using a core alloy in a process of joining tool steel and cemented carbide according to an embodiment of the present invention
  • FIG. 19 is an embodiment of the present invention. In the process of joining the tool steel and the cemented carbide according to the present invention, the actual photo of the cemented cemented carbide and the tool steel without the core alloy is shown.
  • FIG. 21 is a photograph of the first and second plating layers (left) in the state of being plated before heating and the first and second plating layers disappeared by heating and spreading (right) of the Ni—Cu metal plating film manufactured according to the present invention.
  • FIG. 22 is a graph showing an amorphous characteristic (left) as a result of phase analysis of the metal plated film in the plated state of the Sn-Cu metal plated film prepared according to the present invention before heating by XRD, and diffusion after heating. A graph showing the appearance of crystalline properties (right) as a result of phase analysis by XRD of the state of disappearance of the first and second plating layers.
  • FIG. 23 shows an electron micrograph (SEM) photograph showing a cross-section of a metal plated film having a thickness of two plating layers thicker than 5 ⁇ m.
  • FIG. 24 shows a metal plated film having a sum of thicknesses of two plating layers of 5 ⁇ m.
  • the heating graph is measured by using a differential scanning calorimeter (DSC) to measure the thermal properties of a thick film is disclosed.
  • An optical micrograph showing an actual cross section is disclosed.
  • FIG. 26 shows an optical micrograph showing a cross section of a copper electrode manufactured by stacking the number of layers of a metal plating film into six layers
  • FIG. 27 shows a total plating thickness of 300 ⁇ m by lengthening the plating time of the metal plating film.
  • An optical microscope photograph showing a cross section of a Sn-Cu-based metal plated thin film manufactured by the present invention is disclosed.
  • the metal plating film of the present invention is present in a layered structure in the plated state, when used as a bonding medium for low temperature bonding, the first and second plating layers of the metal plating film having heat generation and amorphous properties when heated are subjected to mutual diffusion. Are dissipated and easily melted to form a bond and crystallize. In fact, it was confirmed that the Sn-Cu series multilayer nano thin film layer having an exothermic property was heated at 160 ° C. and the multilayer nano thin film layer was extinguished. 20 shows the first and second plating layers before heating and the first and second plating layers disappeared by heating after diffusion of the metal plating film having Sn-Cu heating and amorphous properties at this time.
  • Fig. 22 shows a graph showing the appearance of crystalline characteristics (right) as a result of phase analysis by XRD of the state in which the first and second plating layers disappear due to diffusion after heating.
  • the area of the interface in the multilayer metal plating film becomes smaller.
  • the thickness of the entire plating layer is thicker than 300 ⁇ m, the ratio of defects in the plating layer is high, and thus no exothermic reaction occurs.
  • a Sn-Cu-based junction material was manufactured in which the sum of the thicknesses of the two layers was 5 ⁇ m thick so as not to have an exothermic reaction. At this time, the sum of the thicknesses of the two layers was 5 ⁇ m, and the cross-section of the Sn-Cu multilayer material was confirmed with an electron microscope and is shown in FIG. 23.
  • the semiconductor was heated at a temperature of 170 ° C. to the copper electrode using a material in which each plating layer was thickly prepared so as not to have an exothermic reaction at this time.
  • the junction between the semiconductor and the electrode at this time was observed with an optical microscope, and the bonding was not performed.
  • the results are shown in FIG. 25.
  • the bonded material, each plated layer was made thick, showed only the endothermic peak as a result of the thermal analysis and it can be determined that the bonded material is not bonded because the endothermic amount is larger than the calorific value.
  • a Sn-Cu-based multi-layer metal plating thin film having six plating layers was manufactured, and a copper electrode was bonded at low temperature at 160 ° C., and the cross section at this time is shown in FIG. 26. The junction at this time was partially bonded. This is because the number of plating layers was small and the calorific value was not enough, and the molten metal was not sufficient.
  • the plating time was extended to produce a Sn-Cu-based multilayer metal plating thin film having a total plating thickness of 300 ⁇ m, and a cross section at this time is shown in FIG. 27.
  • the multilayer metal thin film manufactured by the present invention may have defects on the surface of the plating layer as the plating proceeds, and the defects continue to grow in the vertical plane and when the plating layer is formed with a thickness of 300 ⁇ m or more, the ratio of defects in the multilayer plating layer is increased.
  • the plating layer is not well formed, there is no amorphous and exothermic properties, and there is no low temperature bonding.

Abstract

The present invention relates to a method for joining superhard materials, the method comprising: a step for preparing an aqueous alloy plating solution comprising at least two kinds of metal salts including a first metal salt and a second metal salt; a step for dipping an electrode in the aqueous alloy plating solution, thereby configuring an electroplating circuit; a step for inputting a voltage between +2V and -4.5V with reference to a standard hydrogen electrode at 25ºC, or a current value corresponding thereto, to a control unit, which controls the electroplating circuit, according to the reduction potential value of the metal salt to be plated, thereby applying the reduction potential or current to the electrode; a step for forming a multilayered amorphous metal plating film, which comprises at least two layers, on a surface of a first superhard material or of a second superhard material, on a surface of the first superhard material and on a surface of the second superhard material, or on both surfaces of a core metal that is to be arranged between the first superhard material and the second superhard material, by means of the difference in standard reduction potential between the metal salts; and a joining step for arranging the first superhard material and the second superhard material such that the multilayered amorphous metal plating film is arranged between the first superhard material and the second superhard material and faces the same, or arranging the core metal between the first superhard material and the second superhard material, and then pressurizing and joining the first superhard material and the second superhard material against each other, while heating the same in a melting temperature range, such that the multilayered amorphous metal plating film exhibits heating characteristics. The present invention is advantageous in that superhard materials, tool steel, etc. are joined by forming a metal plating film between the superhard materials, thereby making it possible to form a joining portion that exhibits an excellent joining strength even at a relatively low joining temperature, and to join superhard materials by an easy method.

Description

비정질 및 발열 특성을 갖는 금속 도금막을 이용한 초경재료의 접합방법Bonding method of cemented carbide material using metal plating film with amorphous and exothermic properties
본 발명은 비정질 및 발열 특성을 갖는 금속 도금막을 이용한 초경재료의 접합방법에 관한 것으로, 박판(foil) 형태의 저 융점 코어 메탈 표면에 비정질 및 발열 특성을 갖는 금속 도금막을 형성하여 저온 확산 반응에 의해 초경재료와 공구강을 접합함으로써, 상대적으로 낮은 접합온도에서도 우수한 접합부를 형성할 수 있으며, 용이한 방법으로 초경합금을 접합할 수 있는 방법에 관한 것이다.The present invention relates to a method of bonding a cemented carbide material using a metal plated film having amorphous and exothermic properties, and to forming a metal plated film having amorphous and exothermic properties on a low melting point core metal surface in the form of a foil by low temperature diffusion reaction. By joining a cemented carbide material and tool steel, it is possible to form an excellent joint even at a relatively low joining temperature, and to a method for joining cemented carbide in an easy manner.
일반적으로 건축물, 자동차, 선박, 비행기, 열차 등의 수송기기, 각종 배관 및 파이프류 등의 구조물에는 금속 또는 합금 간의 접합이 필요한 기기부품이 많이 존재하며 이러한 금속 및 합금 간의 접합에는 대부분 아크용접 기술을 이용한 고온 용융 용접 방식이 사용되고 있다. In general, there are many component parts that need to be joined between metals or alloys in structures such as buildings, automobiles, ships, airplanes, trains, and various pipes and pipes. The used hot melt welding method is used.
그러나 용융 접합(또는 용접) 공정은 작업 온도가 높아 입자의 조대화(Coarsening) 및 열영향부의 형성 등 주위 모재의 조직을 변화시켜 기계적 물성을 저하시키는 문제점을 나타내고 있을 뿐만 아니라, 고온 처리에 의한 내부 응력 형성으로 인해 응력부식균열 등의 소재적 결함을 초래한다. 따라서, 최근에는 이러한 구조 부품의 금속 및 합금 간에 충분한 인장강도 및 접착강도, 그리고 우수한 누설 방지 특성을 부여할 수 있는 저온 고상 접합 기술에 대한 연구가 활발히 진행되고 있다.However, the melt-bonding (or welding) process has a problem that the mechanical properties of the base metal are changed by changing the structure of the surrounding base material such as coarsening of particles and formation of heat-affected zone due to the high working temperature. The stress formation causes material defects such as stress corrosion cracking. Therefore, in recent years, studies have been actively conducted on low-temperature solid-state bonding technology capable of imparting sufficient tensile strength and adhesive strength and excellent leakage preventing properties between metals and alloys of such structural parts.
도 1에는 종래기술에서 공구강과 초경합금의 접합 과정을 나타낸 모식도가 도시되어 있다.Figure 1 is a schematic diagram showing the bonding process of the tool steel and cemented carbide in the prior art.
도 1을 참조하면, 기존의 공구강과 초경합금의 접합 기술(일본특허공개공보 소60-250872)(10)은 초경합금(12)과 공구강(11)을 Ni과 Co의 분말상 삽입금속(13)을 사용하여 접합시키는 기술로서, 그 접합계면의 중앙부가 요철되어 있다. 그러나, 이 방법은 별도로 공구강(11)을 요철가공해야 한다는 불편이 따른다. 또한, 접합부의 결함을 제거하여 접합강도 향상을 위해서는 접합면에 적당한 조도를 부여하는 것이 중요한데, 요철가공에 따라 표면연마가 힘들어 적당한 표면조도를 부여할 수 없다는 문제가 있다. 또한, 공구강은 열팽창계수가 큰 반면 초경합금은 열팽창계수가 작기 때문에 그 차이에 의해 접합(brazing)시 응력이 발생하여 초경합금에 균열이 발생하기 쉽다는 문제가 있다.Referring to Figure 1, the conventional tool steel and cemented carbide joining technology (Japanese Patent Laid-Open No. 60-250872) (10) uses a cemented carbide (12) and a tool steel (11) using a powder-inserted metal (13) of Ni and Co. As a technique of joining by bonding, the center portion of the joining interface is uneven. However, this method is inconvenient to separately process the tool steel (11). In addition, in order to remove the defects of the joints and to improve the joint strength, it is important to provide an appropriate roughness to the joint surface, but there is a problem in that surface polishing is difficult due to uneven processing, and therefore, proper surface roughness cannot be provided. In addition, since the tool steel has a large coefficient of thermal expansion while the cemented carbide has a small coefficient of thermal expansion, there is a problem in that stress is generated at the time of bonding due to the difference, so that the cemented carbide tends to crack.
도2에는 니켈계 금속을 사용하여 공구강과 초경합금을 접합하는 종래기술의 접합과정을 나타낸 모식도가 도시되어 있다.Figure 2 is a schematic diagram showing a conventional bonding process for joining tool steel and cemented carbide using a nickel-based metal.
도 2를 참조하면, 니켈계 금속을 사용하여 공구강과 초경합금을 접합하는 기술(국내특허출원 1999-0033635)(20)은 공구강(21)과 초경합금(22)의 접합을 위해, 소정의 조도로 연마된 공구강(21)과 초경합금(22)사이에 접합매개물로서 호일상 Ni계 금속(23)을 삽입하여 가열 접합시키면서, 그 응고폭 및 반응층의 크기를 적절히 조절함으로써 접합강도가 우수한 공구강의 접합을 제공한다. 구체적으로, 초경합금(22)과 공구강(21)을 연마된 면이 마주하도록 고정구(26a, 26b)에 의해 고정된 지그(25a, 25b, 25c, 25d)를 통해 고정하고, 그 사이에 호일상의 Ni계 금속(23)을 삽입하여 적층체를 형성하고 호일상의 Ni계 금속(23)의 흐름 방지제(24)를 공구강(21)과 초경합금(22)들과의 접촉부위에 도포한다. 그 후, 이러한 적층체를 진공로에서 Ni계 삽입금속(23)의 융점보다 20~100℃ 높은 온도로 가열하여 접합한다. Referring to FIG. 2, a technique of joining tool steel and cemented carbide using a nickel-based metal (Korean patent application 1999-0033635) 20 is polished to a predetermined roughness for joining tool steel 21 and cemented carbide 22. The joining of the tool steel with excellent bonding strength is performed by appropriately adjusting the solidification width and the size of the reaction layer while inserting a foil-like Ni-based metal 23 as a bonding medium between the tool steel 21 and the cemented carbide 22. to provide. Specifically, the cemented carbide 22 and the tool steel 21 are fixed through the jigs 25a, 25b, 25c, and 25d fixed by the fasteners 26a and 26b so that the polished surfaces face each other, and between them are foil-like. The Ni-based metal 23 is inserted to form a laminate, and a flow inhibitor 24 of the Ni-based metal 23 on the foil is applied to the contact portion between the tool steel 21 and the cemented carbides 22. After that, the laminate is heated and joined at a temperature of 20 to 100 ° C. higher than the melting point of the Ni-based intercalation metal 23 in a vacuum furnace.
그러나, 이 기술의 경우 별도의 시편 고정 장치가 필요하며, 삽입 금속의 흐름방지제를 도포해야 하는 불편함이 있다. 또한, 삽입 금속인 Ni의 융점은 1455℃로 매우 높아 접합 온도 소모 에너지가 높아지고, 모재에 열 손상을 유발시킬 수 있는 문제점이 있다.However, this technique requires a separate specimen holding device, there is an inconvenience to apply a flow inhibitor of the insertion metal. In addition, the melting point of Ni, which is an insertion metal, is very high at 1455 ° C., which increases the junction temperature consumption energy, and may cause thermal damage to the base material.
이와 같이, 기존의 벌크(bulk) 형태의 접합매개물을 사용하여 접합할 경우에는 접합매개물의 용융온도보다 높은 온도에서 접합하게 되므로, 가열에 따른 에너지 소모비용이 크고, 때로는 모재에 열 손상을 유발시킬 우려도 있다. As such, when using a bulk-type bonding medium in the past, the bonding is performed at a temperature higher than the melting temperature of the bonding medium, which leads to high energy consumption costs due to heating and sometimes to thermal damage to the base metal. There is also concern.
따라서, 이러한 벌크(bulk) 형태의 접합매개물을 사용할 때의 문제점을 해소할 수 있도록, 분말 형태의 접합매개물을 사용하는 경우에는 벌크(bulk) 형태의 접합매개물을 사용하는 경우에 비해 융점이 낮아지므로, 비교적 저온에서 접합할 수 있다.Therefore, in order to solve the problem of using a bulk-type bonding medium, the melting point is lowered when using a powder-type bonding medium than when using a bulk-type bonding medium. It can be bonded at a relatively low temperature.
그러나, 이러한 분말 형태의 접합매개물은 다음과 같은 문제점들이 있다.However, the powdered bonding medium has the following problems.
첫째, 분말이 산화되기 쉬우며, 이를 방지하기 위해 화학물질로 분말 표면을 피복해야 하는 불편함이 있다.First, the powder is easily oxidized, and there is an inconvenience of covering the powder surface with a chemical to prevent this.
둘째, 분말 자체의 급격한 산화로 인해서 폭발이나 화재의 위험성이 크다.Second, there is a high risk of explosion or fire due to the rapid oxidation of the powder itself.
셋째, 현재 산화가 어려운 귀금속인 Ag, Au 분말 등이 실용화되어 있지만, Cu나 Sn 등의 산화되기 쉬운 물질들은 실용화에 어려움이 있다.Third, Ag, Au powder, etc., which are difficult to oxidize, are practically used, but materials that are susceptible to oxidation, such as Cu or Sn, have difficulty in practical use.
넷째, 산화 방지를 위해 여러 가지 화학 물질을 분말 표면에 코팅하거나 분말과 섞어서 사용해야 하므로 공정이 복잡하다.Fourth, the process is complicated because various chemicals must be coated on the surface of the powder or mixed with the powder to prevent oxidation.
다섯째, 분말이나 페이스트는 보관이 어렵고, 제조 중에 산화를 방지해야 하는 등의 관리가 어렵다.Fifth, powders and pastes are difficult to store and difficult to manage such as preventing oxidation during manufacturing.
여섯째, 분말이나 페이스트는 고가이다.Sixth, powders and pastes are expensive.
일곱째, 분말은 인체에 침투하기 쉽기 때문에, 유해할 수 있다. Seventh, the powder can be harmful because it is easy to penetrate the human body.
여덟째, 분말 페이스트는 곡선이나 수직면 등에 발라서 사용하기가 어려워 적용성이 제한된다.Eighth, the powder paste is difficult to use by applying it to a curved surface or a vertical surface, etc., thereby limiting its applicability.
따라서, 저온에서도 우수한 접합강도로 접합할 수 있으며, 상기와 같은 문제점들은 발생시키지 않고 용이하게 접합할 수 있는 접합방법에 대한 필요성이 대두되고 있다.Therefore, there is a need for a bonding method that can be bonded with excellent bonding strength even at low temperatures, and can be easily bonded without causing the above problems.
본 발명의 목적은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 공구강과 초경합금의 우수한 접합성을 제공하는데 있다. 또한, 본 발명은 비정질에서 결정질로의 변화에 의한 발열 반응에 의해 안전하고, 저온에서 접합하여도 우수한 접합강도 및 접합 신뢰성을 제공할 수 있는 초경합금과 공구강의 접합방법에 관한 것이다. An object of the present invention is to solve the problems of the prior art as described above, and to provide excellent bonding between tool steel and cemented carbide. In addition, the present invention relates to a cemented carbide and tool steel joining method that is safe by exothermic reaction due to the change from amorphous to crystalline and can provide excellent bonding strength and bonding reliability even at low temperature.
상기한 바와 같은 목적을 달성하기 위한 본 발명은, 제1금속염 및 제2금속염을 포함하는 두 가지 이상의 금속염이 포함된 수계 합금 도금액을 준비하는 단계, 전극을 상기 수계 합금 도금액에 침지시켜 전해 도금 회로를 구성하는 단계, 상기 전해 도금 회로를 제어하는 제어부에 도금하고자 하는 상기 금속염의 환원전위 값에 따라, 25℃ 표준수소전극 기준으로 +2V에서 -4.5V사이의 전압 또는 그에 상응하는 전류 값을 입력하여 상기 전극에 환원 전위 또는 전류를 인가하는 단계, 상기 금속염들의 표준환원전위 차이에 의해 제1 초경재료 또는 제2 초경재료의 일면, 또는 제1 초경재료 및 제2 초경재료 모두의 일면, 또는 상기 제1 초경재료 또는 제2 초경재료의 사이에 배치될 코어 메탈의 양면에 적어도 2개층 이상의 다층 비정질 금속 도금막을 형성하는 단계 및 상기 제1 초경재료 및 제2 초경재료를 상기 다층 비정질 금속 도금막이 상기 제1 초경재료와 제2 초경재료 사이에 배치되어 마주보는 형태로 배치하거나, 상기 코어 메탈을 상기 제1 초경재료와 제2 초경재료 사이에 배치하고, 상기 다층 비정질 금속 도금막의 발열특성이 나타날 수 있도록 용융 온도범위로 가열하면서 상기 제1 초경재료와 제2 초경재료를 서로 가압하여 접합하는 접합단계를 포함한다.The present invention for achieving the object as described above, preparing a water-based alloy plating solution containing two or more metal salts including a first metal salt and a second metal salt, the electrode is immersed in the water-based alloy plating solution electrolytic plating circuit Comprising a step, according to the reduction potential value of the metal salt to be plated to the control unit for controlling the electrolytic plating circuit, a voltage of + 2V to -4.5V or a corresponding current value based on a standard hydrogen electrode of 25 ℃ Applying a reduction potential or a current to the electrode, one surface of the first cemented carbide material or the second cemented carbide material, or one surface of both the first cemented carbide material and the second cemented carbide material by the standard reduction potential difference of the metal salts; At least two layers on both sides of the core metal to be disposed between the first cemented carbide material or the second cemented carbide material Forming a multilayer amorphous metal plating film and disposing the first cemented carbide material and the second cemented carbide material in a form in which the multilayered amorphous metal plating film is disposed between the first cemented carbide material and the second cemented carbide material so as to face each other, or the core metal Is disposed between the first cemented carbide material and the second cemented carbide material, and the first cemented carbide material and the second cemented carbide material are pressed to each other while being heated to a melting temperature range so that the exothermic properties of the multilayer amorphous metal plated film are exhibited. A bonding step is included.
본 발명에 의하면, 초경재료들 사이에 다층 비정질 금속 도금막을 형성하여 초경재료들을 접합함으로써, 상대적으로 낮은 접합온도에서도 우수한 접합강도를 나타내는 접합부를 형성할 수 있으며, 비정질에서 결정질로의 변화에 의한 발열 반응에 의해 안전하고, 저온에서 접합하여도 우수한 접합강도 및 접합 신뢰성을 제공할 수 있는 효과가 있다.According to the present invention, by forming a multi-layered amorphous metal plated film between the cemented carbide materials to bond the cemented carbide materials, it is possible to form a junction showing excellent bonding strength even at a relatively low bonding temperature, the heat generated by the change from amorphous to crystalline It is safe by the reaction and there is an effect that can provide excellent bonding strength and bonding reliability even at low temperatures.
도 1은 종래기술에서 공구강과 초경합금의 접합 과정을 나타낸 모식도이다.1 is a schematic diagram showing a bonding process of tool steel and cemented carbide in the prior art.
도 2는 니켈계 금속을 사용하여 공구강과 초경합금을 접합하는 종래기술의 접합과정을 나타낸 모식도이다.Figure 2 is a schematic diagram showing a conventional bonding process for joining tool steel and cemented carbide using a nickel-based metal.
도 3은 본 발명의 일실시예에 따른 공구강과 초경합금의 접합 모습을 나타낸 모식도이다.Figure 3 is a schematic diagram showing the bonding state of the tool steel and cemented carbide according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정을 나타낸 모식도이다.Figure 4 is a schematic diagram showing the bonding process of the tool steel and cemented carbide according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 다층 박막 접합부의 입자크기에 따른 융점을 나타낸 그래프이다.Figure 5 is a graph showing the melting point according to the particle size of the multi-layer thin film junction in the bonding process of the tool steel and cemented carbide according to an embodiment of the present invention.
도 6은 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 Cu-Ni 다층 박막 접합부의 시차 열 분석기(DTA) 결과를 나타낸 그래프이다.FIG. 6 is a graph illustrating a differential thermal analyzer (DTA) result of a Cu—Ni multilayer thin film joint in a process of joining tool steel and cemented carbide according to an embodiment of the present invention.
도 7은 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 Sn-Cu 다층 박막 접합부의 시차 주사 열량계(DSC) 결과를 나타낸 그래프이다.Figure 7 is a graph showing the differential scanning calorimetry (DSC) results of the Sn-Cu multilayer thin film bonding in the process of bonding the tool steel and cemented carbide according to an embodiment of the present invention.
도 8은 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 Cu-Ag 다층 박막 접합부의 시차 열 분석기(DTA) 결과를 나타낸 그래프이다.8 is a graph illustrating a differential thermal analyzer (DTA) result of a Cu-Ag multilayer thin film joint in a process of joining a tool steel and a cemented carbide according to an embodiment of the present invention.
도 9는 본 발명에 따른 도금액에서 금속염의 함량비 및 환원전위 차이에 따른 금속 도금막 형성 여부를 나타낸 표이다.9 is a table showing whether the metal plating film is formed according to the content ratio and the reduction potential difference of the metal salt in the plating solution according to the present invention.
도 10a 내지 도 10h는 본 발명에 따른 도금액에 제 1금속염과 제 2금속염의 종류 및 환원전위 값 조건을 각각 다르게 하였을 경우의 금속 도금막 단면 사진이다.10A through 10H are cross-sectional photographs of the metal plating film when the types of the first metal salt and the second metal salt and the reduction potential values of the plating solution according to the present invention are different.
도 11은 본 발명에 따른 도금액에서 금속염의 함량비 및 환원전위 차이에 따른 금속 도금막의 형성 여부를 나타낸 범위 그래프이다.11 is a range graph showing whether a metal plating film is formed according to a content ratio of metal salts and a reduction potential in a plating solution according to the present invention.
도 12는 본 발명에 사용된 여러 가지 코어 메탈 합금 조성에 대한 표이다.12 is a table of the various core metal alloy compositions used in the present invention.
도 13은 유도 가열로를 사용하여 제조한 Cu-Ag, Cu-Zn 기반의 코어 메탈 합금을 나타낸 사진이다.13 is a photograph showing a Cu-Ag, Cu-Zn based core metal alloy prepared using an induction furnace.
도 14는 Cu-Ag, Cu-Zn 기반의 코어 메탈 표면 나노 복합 도금을 위해 압연기로 가공한 후의 사진이다.FIG. 14 is a photograph after processing with a rolling mill for core metal surface nanocomposite plating based on Cu—Ag and Cu—Zn.
도 15a 내지 도 15b는 본 발명에 따른 Cu-Ag 및 Cu-Zn 계열의 코어 메탈 합금을 이용한 공구강과 초경합금의 접합 사진이다.15A to 15B are joining pictures of tool steel and cemented carbide using Cu-Ag and Cu-Zn based core metal alloys according to the present invention.
도 16은 본 발명에서, 코어 메탈을 이용한 공구강과 초경재료의 접합 과정을 나타낸 블록도이다.16 is a block diagram showing a bonding process of a tool steel and a cemented carbide material using a core metal in the present invention.
도 17은 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 접합전의 Ni-Cu 다층 박막 접합부의 실제 단면부를 나타낸 주사전자현미경(SEM) 사진이다.FIG. 17 is a scanning electron microscope (SEM) photograph showing an actual cross-section of a Ni—Cu multilayer thin film joint before bonding in the process of joining tool steel and cemented carbide according to an embodiment of the present invention.
도 18은 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 코어 합금을 사용하지 않고, 공구강 샘플 표면에 Ni-Cu 다층 박막 접합부를 형성한 사진이다.18 is a photograph of a Ni-Cu multilayer thin film joint formed on a tool steel sample surface without using a core alloy in a process of joining tool steel and cemented carbide according to an embodiment of the present invention.
도 19는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서, 코어 합금을 사용하지 않고, 접합한 초경합금과 공구강의 실제 사진이다.19 is a real picture of the cemented carbide and tool steel bonded to the tool steel and cemented carbide in accordance with one embodiment of the present invention, without using a core alloy.
도 20은 본 발명에서 제조된 Sn-Cu 금속 도금막의 가열 전 도금된 상태 그대로의 제 1 및 제 2 도금금속층(좌)과 가열 후 확산으로 제1 및 제 2 도금층이 소멸된(우) 모습의 사진이다.20 is a view showing the first and second plating metal layers (left) in the plated state as they were plated before heating (left) and the first and second plating layers disappeared due to diffusion after heating of the Sn-Cu metal plating film prepared according to the present invention (right). It is a photograph.
도 21은 본 발명에서 제조된 Ni-Cu 금속 도금막의 가열 전 도금된 상태 그대로의 제 1 및 제 2 도금층(좌)과 가열 후 확산으로 제1 및 제 2도금층이 소멸된(우) 모습의 사진이다.FIG. 21 is a photograph of the first and second plating layers (left) in the plated state as they were plated before heating and the first and second plating layers disappeared by the diffusion after heating (right) of the Ni—Cu metal plating film prepared according to the present invention. to be.
도 22는 본 발명에서 제조된 Sn-Cu 금속 도금막의 가열 전 도금된 상태 그대로의 금속 도금막을 XRD로 상분석한 결과 비정질 특성(좌)이 나타나는 그래프와, 가열 후 확산으로 제1 및 제 2도금층이 소멸된 상태를 XRD로 상분석한 결과 결정질 특성(우)이 나타나는 모습의 그래프이다.FIG. 22 is a graph showing amorphous characteristics (left) of the Sn-Cu metal plated film prepared according to the present invention as a result of phase analysis of the metal plated film as it is before heating by XRD, and the first and second plating layers by diffusion after heating. A phase analysis of this extinct state with XRD shows the appearance of crystalline properties (right).
도 23은 금속 도금막을 각 두 개의 도금층 두께의 합이 5㎛로 두껍게 제조하여 단면부를 나타낸 전자현미경(SEM) 사진이다.FIG. 23 is an electron microscope (SEM) photograph showing a cross-section of a metal plated film, in which the sum of the thicknesses of the two plating layers is 5 μm thick.
도 24는 금속 도금막을 각 두 개의 도금층 두께의 합이 5㎛로 두껍게 제조하여 시차 주사 열량계(DSC)를 이용한 열특성을 측정한 가열 그래프이다.FIG. 24 is a heating graph in which the sum of the thicknesses of the two plating layers of the metal plating film is 5 μm thick, and thermal characteristics are measured using a differential scanning calorimeter (DSC).
도 25는 금속 도금막을 각 두 개의 도금층 두께의 합이 5㎛로 두껍게 제조하여 접합한 접합부의 접합 후 실제 단면을 나타낸 광학현미경 사진이다.FIG. 25 is an optical microscope photograph showing the actual cross-section after bonding of the bonded portions in which the sum of the thicknesses of the two plating layers of the metal plating film is 5 μm thick.
도 26은 금속 도금막의 층수를 6층으로 적층하는 것으로 제조하여 저온접합 한 구리전극 단면부를 나타낸 광학현미경 사진이다.FIG. 26 is an optical micrograph showing a cross section of a copper electrode fabricated by stacking the number of layers of a metal plating film into six layers.
도 27은 금속 도금막의 도금 시간을 길게 하여 전체 도금 두께가 300㎛인 것으로 제조한 Sn-Cu계 금속 도금 박막의 단면부를 나타낸 광학현미경 사진이다.FIG. 27 is an optical micrograph showing a cross-section of a Sn—Cu-based metal plated thin film manufactured by increasing the plating time of a metal plated film and having a total plating thickness of 300 μm.
본 명세서 및 청구범위에 사용된 용어나 단어는 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in the present specification and claims are meant to be consistent with the technical spirit of the present invention on the basis of the principle that the inventor can appropriately define the concept of the term in order to best explain his invention. It must be interpreted as and concepts.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless otherwise stated.
본 발명에 따른 초경재료의 접합방법은 제1금속염 및 제2금속염을 포함하는 두 가지 이상의 금속염이 포함된 수계 합금 도금액을 준비하는 단계, 전극을 상기 수계 합금 도금액에 침지시켜 전해 도금 회로를 구성하는 단계, 상기 전해 도금 회로를 제어하는 제어부에 도금하고자 하는 상기 금속염의 환원전위 값에 따라, 25℃ 표준수소전극 기준으로 +2V에서 -4.5V 사이의 전압 또는 그에 상응하는 전류 값을 입력하여 상기 전극에 환원 전위 또는 전류를 인가하는 단계, 상기 금속염들의 표준환원전위 차이에 의해 제1 초경재료 또는 제2 초경재료의 일면, 또는 제1 초경재료 및 제2 초경재료 모두의 일면, 또는 상기 제1 초경재료 또는 제2 초경재료의 사이에 배치될 코어 메탈의 양면에 적어도 2개층 이상의 다층 비정질 금속 도금막을 형성하는 단계 및 상기 제1 초경재료 및 제2 초경재료를 상기 다층 비정질 금속 도금막이 상기 제1 초경재료와 제2 초경재료 사이에 배치되어 마주보는 형태로 배치하거나, 상기 코어 메탈을 상기 제1 초경재료와 제2 초경재료 사이에 배치하고, 상기 다층 비정질 금속 도금막의 발열특성이 나타날 수 있도록 용융 온도범위로 가열하면서 상기 제1 초경재료와 제2 초경재료를 서로 가압하여 접합하는 접합단계를 포함하는 것으로 구성된다.Bonding method of cemented carbide according to the present invention comprises the steps of preparing an aqueous alloy plating solution containing two or more metal salts including a first metal salt and a second metal salt, immersing an electrode in the aqueous alloy plating solution to form an electrolytic plating circuit Step, according to the reduction potential value of the metal salt to be plated to the control unit for controlling the electrolytic plating circuit, by inputting a voltage or a corresponding current value of + 2V to -4.5V based on a standard hydrogen electrode of 25 ℃ Applying a reduction potential or current to the surface of the first carbide material or the second cemented carbide material, or one surface of both the first cemented carbide material and the second cemented carbide material by the difference in the standard reduction potential of the metal salts; At least two layers on both sides of the core metal to be disposed between the material or the second cemented carbide material Forming a multilayer amorphous metal plating film and disposing the first cemented carbide material and the second cemented carbide material in a form in which the multilayered amorphous metal plating film is disposed between the first cemented carbide material and the second cemented carbide material so as to face each other, or the core metal Is disposed between the first cemented carbide material and the second cemented carbide material, and the first cemented carbide material and the second cemented carbide material are pressed to each other while being heated to a melting temperature range so that the exothermic properties of the multilayer amorphous metal plated film are exhibited. It comprises a bonding step.
본 발명에서 도금액 속의 금속염은 이온화가 되어 있는 형태로서, 전류를 이용하여 음극에 석출시키기 위해서는 각 원소의 환원 전위 보다 높은 전압을 걸어 주어야 한다. 두 가지 이상의 금속염이 존재하는 도금액의 경우 두 원소의 표준 환원 전위 차이가 존재하며, 이에 따라 석출되는 금속의 종류가 달라지는 전압 구간이 나타난다. 이러한 전압구간을 교대로 인가하면 종류가 다른 금속층이 교대로 석출하게 된다. 이때의 전압 구간은 제1 금속과 제2 금속의 도금이 모두 일어나는 제1 구간과, 제2 금속만 도금되는 제2 구간으로 나타낼 수 있다.In the present invention, the metal salt in the plating solution is ionized, and in order to deposit on the cathode by using a current, a voltage higher than the reduction potential of each element should be applied. In the case of a plating solution in which two or more metal salts exist, there is a difference in the standard reduction potentials of the two elements, resulting in a voltage section in which the type of the deposited metal is different. When these voltage sections are alternately applied, different types of metal layers are alternately deposited. In this case, the voltage section may be represented by a first section in which both the first metal and the second metal are plated, and a second section in which only the second metal is plated.
이와 같이, 본 발명에서 교대로 석출되는 도금층은 넓은 면의 형태로 이루어진 박막이 규칙적인 순서로 쌓여 층상 구조를 이루게 된다. 이때, 다층 도금층 내의 개별 금속층의 두께가 나노미터 급으로 얇아지게 되면 그 특성이 벌크(Bulk) 금속의 특성과는 현저하게 달라지게 된다. 구체적으로 나노미터급 두께로 적층된 각각의 도금층은 비정질 특성을 갖게 되고 각 금속층 간 표면적의 증가로 인하여 불안정해지며, 적층된 각각의 도금층들은 저온에서 승온시 쉽게 발열 반응이 나타난다. 이로 인해 벌크 소재 상태에서의 용융점보다 낮은 온도에서도 쉽게 용융되어 합금을 형성할 수 있다. 따라서, 일반적으로 고온에서 수행되는 접합 공정을 저온에서도 수행할 수 있도록 하는 역할을 할 수 있다.As described above, in the present invention, the plating layers that are alternately precipitated form a layered structure by stacking thin films having a wide surface shape in a regular order. At this time, when the thickness of the individual metal layer in the multi-layer plating layer is thinned to the nanometer class, its properties are significantly different from those of the bulk metal. Specifically, each plated layer having a nanometer thickness has an amorphous property and becomes unstable due to an increase in the surface area between the metal layers, and each plated layer easily exhibits an exothermic reaction when heated at a low temperature. This makes it easy to melt and form alloys even at temperatures below the melting point in the bulk material state. Therefore, in general, the bonding process performed at a high temperature may serve to perform at a low temperature.
여기서, 본 발명의 도금법을 이용한 비정질 및 발열 특성을 갖는 금속 도금막 형성방법을 구현하기 위한 장치는 용기, 기준 전극, 양극, 음극, 교반용 마그네틱 및 제어부로서 PC를 포함할 수 있다.Here, the apparatus for implementing a metal plating film forming method having an amorphous and exothermic characteristics using the plating method of the present invention may include a PC as a container, a reference electrode, an anode, a cathode, a stirring magnetic and a control unit.
상기 용기는 개구된 상단을 마개로 마감하며, 내부 바닥에 교반용 마그네틱이 설치되는 도금욕 형태로 형성될 수 있다.The container may be formed in the form of a plating bath in which an upper end of the opening is closed with a stopper and a stirring magnetic is installed at an inner bottom.
상기 기준 전극으로는 포화 칼로멜 전극을 사용할 수 있다. 양극 전극으로는 10mm×10mm의 백금(Pt) 전극을 사용할 수 있으며, 음극 전극으로는 10mm×10mm의 구리(Cu) 전극을 사용할 수 있다. 양극과 음극은 도금 조건에 따라 다른 종류의 전도성 금속을 사용할 수 있으며 크기 조정도 가능하다. 전원은 일정전류와 일정전압을 줄 수 있는 것을 모두 사용할 수 있다.A saturated calomel electrode may be used as the reference electrode. A 10 mm × 10 mm platinum (Pt) electrode may be used as the anode electrode, and a 10 mm × 10 mm copper (Cu) electrode may be used as the cathode electrode. The anode and cathode can use different kinds of conductive metal and can be scaled according to the plating conditions. The power supply can use both a constant current and a constant voltage.
상기 교반용 마그네틱은 상기 용기의 바닥면에 배치되어 상기 용기 내에 저장된 도금액을 교반시키며, 상기 용기의 하단에서 구동축에 구동 마그네틱이 구비된 구동모터를 구동시키면 자력에 의해 상기 구동 마그네틱이 상기 용기의 바닥면에 배치된 교반용 마그네틱이 연동시키는 원리를 이용하여 작동될 수 있다.The stirring magnetic is disposed on the bottom surface of the vessel to agitate the plating liquid stored in the vessel, and when the driving motor is provided with a driving magnet on the drive shaft at the bottom of the vessel by the magnetic force the driving magnetic is the bottom of the vessel The stirring magnetic disposed on the surface can be operated using the principle of interlocking.
상기 제어부로서 PC는 전압 및 전류 파형이 조절 가능한 전원, 파형 조절 프로그램 등의 소프트웨어가 설치되어 있고, 입력 및 조작을 통해 전압 및 전류 파형 제어가 가능하다. 한편, 상기 PC는 양극과 전선을 통해 전기적으로 연결되도록 전원의 양극이 설치되고, 기준 전극과 전선을 통해 전기적으로 연결되도록 전원의 기준전극이 설치되며, 음극과 전선을 통해 전기적으로 연결되도록 전원의 음극이 설치될 수 있다.As the controller, the PC is provided with software such as a power supply and a waveform control program that can adjust voltage and current waveforms, and control voltage and current waveforms through input and manipulation. On the other hand, the PC is provided with a positive electrode of the power source to be electrically connected through the positive electrode and the wire, a reference electrode of the power source is installed to be electrically connected through the reference electrode and the wire, and the negative electrode and the wire of the power source to be electrically connected through the wire A negative electrode can be installed.
상기 전극 및 수계 합금 도금액 준비 단계는 전극과 수계 합금 도금액을 각각 준비, 제조하는 단계이다. 이때, 상기 전극은 기준 전극과, 양극 및 음극을 포함할 수 있다. 그리고 도금액에는 제1 금속염과 제2 금속염이 포함되며, 산 및 첨가제도 포함될 수 있다.The preparing of the electrode and the aqueous alloy plating solution is preparing and preparing the electrodes and the aqueous alloy plating solution, respectively. In this case, the electrode may include a reference electrode, an anode, and a cathode. The plating solution may include a first metal salt and a second metal salt, and may include an acid and an additive.
여기서, 제1, 2 금속염은 주석(Sn), 구리(Cu), 아연(Zn), 니켈(Ni), 알루미늄(Al), 티탄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 갈륨(Ga), 게르마늄(Ge), 비소(As), 지르코늄(Zr), 나이오븀(Nb), 몰리브덴(Mo), 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 은(Ag), 카드뮴(Cd), 인듐(In), 안티몬(Sb), 텔루륨(Te), 하프늄(Hf), 탄탈륨(Ta), 텅스텐(W), 레늄(Re), 오스뮴(Os), 이리듐(Ir), 백금(Pt), 금(Au), 탈륨(Tl), 납(Pb), 비스무트(Bi) 등의 금속을 포함하며, 바람직하게는 표준 환원 전위가 0.029V이상 1.0496V이하 범위에서 차이가 나는 원소의 금속염을 둘 이상 선택하여 사용할 수 있다. 또한, 도금액 중의 상기 제1, 2 금속염의 농도비는 바람직하게는 2:1에서 100:1의 범위에서 선택하여 사용한다. 이때, 본 실시 예에서는 가장 활용도가 높은 Cu, Sn, Bi, Ag, Ni, Zn을 선택하여 다층 도금을 실시하는 것으로 예시한다.Here, the first and second metal salts are tin (Sn), copper (Cu), zinc (Zn), nickel (Ni), aluminum (Al), titanium (Ti), vanadium (V), chromium (Cr), and manganese ( Mn), iron (Fe), cobalt (Co), gallium (Ga), germanium (Ge), arsenic (As), zirconium (Zr), niobium (Nb), molybdenum (Mo), ruthenium (Ru), rhodium (Rh), palladium (Pd), silver (Ag), cadmium (Cd), indium (In), antimony (Sb), tellurium (Te), hafnium (Hf), tantalum (Ta), tungsten (W), Metals such as rhenium (Re), osmium (Os), iridium (Ir), platinum (Pt), gold (Au), thallium (Tl), lead (Pb), bismuth (Bi), and the like. Two or more metal salts of elements having different reduction potentials in the range of 0.029 V or more and 1.0496 V or less can be selected and used. The concentration ratio of the first and second metal salts in the plating liquid is preferably selected from the range of 2: 1 to 100: 1. At this time, in the present embodiment, it is exemplified by multi-layer plating by selecting Cu, Sn, Bi, Ag, Ni, and Zn having the highest utilization.
그리고 산의 경우 염산, 황산, 메탄술포나이트산(MSA), 질산, 붕산, 아세트산, 유기 황산, 구연산, 포름산, 아스코로브산, 불산, 인산, 젖산, 아미노산, 하이포아염소산 등 이온화되어 전기를 통하기 쉬운 산을 사용할 수 있으며, 실시 예에서는 저가로 구하기가 용이한 황산을 사용하였다.And in the case of acid, hydrochloric acid, sulfuric acid, methanesulfonite acid (MSA), nitric acid, boric acid, acetic acid, organic sulfuric acid, citric acid, formic acid, ascorbic acid, hydrofluoric acid, phosphoric acid, lactic acid, amino acid, hypochlorous acid, etc. Easy acid may be used, and sulfuric acid was used in the examples, which is easy to obtain at low cost.
그리고 첨가제의 경우 도금막 표면을 균일하게 하기 위함이며, 평탄제(평활제), 가속제, 억제제를 첨가할 수 있다. 또한, 경우에 따라 거품제거제, 광택제, 입자미세화제 등 여러 가지 다양한 첨가제를 사용할 수 있다. 실시 예에서는 첨가제로 평탄제 중 폴리옥시에틸렌 라우릴 에테르(Polyoxiethylene Lauryl Ether, POELE)를 사용하였으나, 이를 사용하지 않아도 다층막 형성은 가능하다.In the case of an additive, the surface of the plating film is made to be uniform, and a leveling agent (smoothing agent), an accelerator, and an inhibitor may be added. In addition, various various additives such as a defoamer, a gloss agent, and a particle fine agent may be used in some cases. In the embodiment, polyoxyethylene lauryl ether (POELE) in the planarizer was used as an additive, but a multilayer film may be formed without using it.
상기 전해 도금 회로 구성 단계는 수계 합금 도금액에 기준 전극과, 양극 및 음극을 침지시킨 후 전원을 연결하여 전해 도금 회로를 구성하는 단계이다. 즉, 상기 전해 도금 회로 구성 단계에서 회로의 전자 이동 순서는 양극->전원->음극을 통해 이동하는 과정에서 수행된다.The electroplating circuit configuration step is a step of immersing the reference electrode, the positive electrode and the negative electrode in the aqueous alloy plating solution and then connecting the power source to configure the electrolytic plating circuit. That is, in the electrolytic plating circuit construction step, the electron movement order of the circuit is performed in the process of moving through the anode-> power source-> cathode.
상기 환원 전위 혹은 전류 인가 단계는 제어부인 PC의 소프트웨어를 통해 환원 전위(전압) 혹은 전류를 입력하여 인가하는 단계이다. The reducing potential or current application step is a step of applying and applying a reduction potential (voltage) or current through software of a PC which is a control unit.
이때, 상기 환원 전위 혹은 전류 인가 단계 수행시 펄스 전압 및 전류는 제1 금속과 제2 금속의 도금이 모두 일어나는 제1 구간과, 제2 금속만 도금되는 제2 구간으로 나타낼 수 있다. In this case, the pulse voltage and the current when the reducing potential or the current applying step are performed may be represented by a first section in which both the first metal and the second metal are plated and a second section in which only the second metal is plated.
도금 박막의 두께 조건 입력은 각각의 금속 도금층에 대해 원하는 발열 특성을 갖는 도금 두께에 맞는 전압 혹은 상응하는 전류, 시간 및 사이클 수를 PC의 소프트웨어를 통해 입력하는 것으로 수행된다.The thickness condition input of the plated thin film is performed by inputting, through the software of the PC, a voltage or a corresponding current, time and number of cycles corresponding to the plating thickness having the desired exothermic properties for each metal plating layer.
즉, 상기 도금 박막의 두께 조건 입력은 두께 조건에 따라 25℃ 표준수소전극 기준으로 +2V에서 -4.5V 사이의 전압 혹은 상응하는 전류, 시간 값을 조절함으로써 1, 2 구간층의 발열 특성을 갖도록 도금 두께를 조절할 수 있다. 바람직하게는 본 발명에서 표준수소전극 기준으로 +1.83V에서 -1.67V 사이의 전압 혹은 상응하는 전류, 시간 값을 조절함으로써 1, 2 구간층의 발열 특성을 갖는 도금 두께를 조절할 수 있다.That is, the thickness condition input of the plated thin film is to have the heat generation characteristics of the 1st and 2nd layer by adjusting the voltage or the corresponding current and time value between + 2V and -4.5V based on the 25 ° C standard hydrogen electrode according to the thickness condition. The plating thickness can be adjusted. Preferably, in the present invention, the plating thickness having the exothermic characteristics of the first and second section layers may be adjusted by adjusting a voltage or a corresponding current and time value between + 1.83V to -1.67V based on the standard hydrogen electrode.
더욱 바람직하게는 표준수소전극 기준으로 +1.83V에서 -1.67V 사이의 전압 혹은 상응하는 전류, 시간 값을 조절함으로써 도금을 수행할 수 있다. 환원 전위가 -1.67V보다 낮은 경우의 원소들은 (예를 들어 Li, Na, Ca등) 본 발명의 도금법으로 환원이 어려워서 제조가 어렵고, +1.83V 이상인 경우 귀금속 재료로서 이온화되기 어려워 도금이 곤란하다.More preferably, plating may be performed by adjusting a voltage or a corresponding current and time value between + 1.83V to -1.67V based on a standard hydrogen electrode. Elements where the reduction potential is lower than -1.67V (for example, Li, Na, Ca, etc.) are difficult to manufacture due to the reduction of the plating method of the present invention, and difficult to be ionized as a precious metal material at + 1.83V or more, which makes the plating difficult. .
상기 금속 도금막의 다층 도금은 예를 들어 제1 도금층과 제2 도금층과 같은 각 도금층의 순차적인 도금을 통해 비정질 및 발열 특성을 갖는 금속 도금막을 획득하는 단계이다. 도금액 속의 금속염은 이온화가 되어있는 형태로서 환원하여 음극에 석출시키기 위해서는 각 원소의 환원 전위보다 높은 전압을 걸어 주어야 한다. 이런 원리를 이용하여 하나의 금속이 석출되는 층과 두 가지 혹은 모든 금속이 석출되는 층이 교대로 나타나게 된다. 교대로 나타나는 도금층은 적층된 수가 많을수록 도금층간 표면적이 넓어져 불안정하다. 단, 도금시의 전류밀도는 한계 전류밀도를 넘지 않도록 하여야 한다.Multi-layer plating of the metal plating film is a step of obtaining a metal plating film having amorphous and exothermic properties through sequential plating of each plating layer such as, for example, the first plating layer and the second plating layer. The metal salt in the plating solution is in an ionized form, and a voltage higher than the reduction potential of each element must be applied in order to reduce and precipitate it on the cathode. Using this principle, a layer in which one metal is deposited and two or all metals are alternately displayed. The plating layers that appear alternately are unstable as the number of the stacked layers increases and the surface area between the plating layers becomes wider. However, the plating current density should not exceed the limit current density.
한편, 비정질 및 발열 특성을 갖는 금속 도금막은 상기와 같은 제1 금속층과 제2 금속층이 발열특성을 나타낼 수 있도록, 제 1 도금층 및 제 2 도금층 두께의 합이 0.1nm에서 5㎛ 범위의 두께로 형성될 수 있다. On the other hand, the metal plating film having amorphous and exothermic properties is formed so that the sum of the thicknesses of the first plating layer and the second plating layer is in a range of 0.1 nm to 5 μm so that the first metal layer and the second metal layer may exhibit the heat generating characteristics. Can be.
또한, 상기 비정질 및 발열 특성을 갖는 금속 도금막은 상기 제 1 도금층 및 제 2 도금층들과 같은 각각의 비정질 금속 도금막들은 적어도 6층 이상의 적층된 구조로 이루어지는 것이 바람직하다. 이러한 각각의 비정질 금속 도금막들이 6층 미만일 경우에는 접합 시 발열반응보다 흡열반응이 더 크게 발생하여 비정질인 접합소재의 결정질로의 결정상 변화가 잘 이루어지지 않아 접합부의 접합력이 떨어지고 접합신뢰도가 저하될 수 있으므로, 바람직하지 않다.In addition, the metal plating film having the amorphous and exothermic properties is preferably formed of a stacked structure of at least six layers of each of the amorphous metal plating films such as the first plating layer and the second plating layers. When each of these amorphous metal plated films is less than six layers, endothermic reactions occur more than exothermic reactions during bonding, resulting in poor crystal phase change of the amorphous bonding material into crystalline, resulting in poor bonding strength and low reliability. As it may, it is not desirable.
한편, 상기 비정질 및 발열 특성을 갖는 금속 도금막은 발열 특성을 갖도록 하기 위해 쉽게 나노미터 두께까지의 적층을 형성할 수 있으며, 적층의 수를 수만 층 이상 늘릴 수도 있다.On the other hand, the metal plated film having the amorphous and exothermic properties can easily form a stack up to nanometer thickness in order to have the exothermic properties, the number of the stack may be increased by more than tens of thousands of layers.
이하 도면을 참조하여 본 발명에 의한 초경재료의 접합방법에 대해 상세하게 설명하기로 한다.Hereinafter, a method of bonding cemented carbide materials according to the present invention will be described in detail with reference to the accompanying drawings.
도 3에는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합 모습을 나타낸 모식도가 도시되어 있고, 도 4에는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정을 나타낸 모식도가 도시되어 있으며, 도 5는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 다층 박막 접합부의 입자크기에 따른 융점을 나타낸 그래프가 도시되어 있다.Figure 3 is a schematic diagram showing the bonding state of the tool steel and cemented carbide according to an embodiment of the present invention, Figure 4 is a schematic diagram showing the bonding process of the tool steel and cemented carbide according to an embodiment of the present invention, Figure 5 is a graph showing the melting point according to the particle size of the multi-layer thin film junction in the bonding process of the tool steel and cemented carbide according to an embodiment of the present invention.
도 6에는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 Cu-Ni 다층 박막 접합부의 시차 열 분석기(DTA) 결과를 나타낸 그래프가 도시되어 있고, 도 7에는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 Sn-Cu 다층 박막 접합부의 시차 주사 열량계(DSC) 결과를 나타낸 그래프가 도시되어 있으며, 도 8은 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 Cu-Ag 다층 박막 접합부의 시차 열 분석기(DTA) 결과를 나타낸 그래프가 도시되어 있다.Figure 6 is a graph showing the differential thermal analyzer (DTA) results of the Cu-Ni multilayer thin film joint in the process of bonding the tool steel and cemented carbide according to an embodiment of the present invention, Figure 7 is an embodiment of the present invention According to the differential scanning calorimetry (DSC) results of the Sn-Cu multilayer thin film joint in the process of joining the tool steel and cemented carbide according to the present invention, Figure 8 is a Cu- in the process of joining the tool steel and cemented carbide according to an embodiment of the present invention A graph showing the differential thermal analyzer (DTA) results of an Ag multilayer thin film junction is shown.
이들 도면을 참조하면, 본 발명의 공구강과 초경합금 접합방법은 제1 초경재료(110) 및 제2 초경재료(120)의 일면에 금속 코팅층(121)을 형성하는 단계, 코어 메탈(140)의 양 표면에 금속 도금막(130)을 형성하는 단계, 금속 도금막(130)이 상기 제1 초경재료(110)와 제2 초경재료(120) 사이에 배치되어 마주보는 형태로 배치하는 단계 및 금속 도금막(130)을 용융 온도범위로 가열하면서 상기 제1 초경재료(110)와 제2 초경재료(120)를 서로 가압하여 접합하는 단계를 포함하는 것으로 구성된다.Referring to these drawings, the tool steel and cemented carbide joining method of the present invention comprises the steps of forming a metal coating layer 121 on one surface of the first cemented carbide material 110 and the second cemented carbide material 120, the amount of the core metal 140 Forming a metal plating film 130 on the surface, the metal plating film 130 is disposed between the first cemented carbide material 110 and the second cemented carbide material 120 to face each other and the metal plating And pressing the first cemented carbide material 110 and the second cemented carbide material 120 with each other while heating the film 130 to a melting temperature range.
상기 코어 메탈(140)은 용융 메탈의 양을 증가시키기 위해 융점이 낮은 합금을 사용할 수 있으며, 표면에 금속 도금막(130)이 형성된다.The core metal 140 may use an alloy having a low melting point to increase the amount of molten metal, and a metal plating layer 130 is formed on the surface.
상기 코에 메탈(140) 합금은 금속간 화합물을 생성하지 않는 전율 고용체 합금이 바람직하며, 저온 접합을 위해 합금 융점이 700℃ 이하가 바람직하다. 또한, 박판(foil) 형태로 가공하기 쉬운 연성 성질을 가진 것이 바람직하다.The nose metal 140 alloy is preferably an electrolytic solid alloy that does not produce an intermetallic compound, and the melting point of the alloy is preferably 700 ° C. or lower for low temperature bonding. In addition, it is desirable to have a soft property that is easy to process in the form of a foil (foil).
상기 제1 초경재료 (110) 및 제2 초경재료 (120)에서 금속 도금막(130)에 의해 접합되는 접합표면에는 접합강도를 더욱 향상시킬 수 있도록, 산화가 잘 되지 않는 Ni, Cu, Sn, Ag, 및 Au 로 이루어진 군에서 선택된 1종 이상의 금속 코팅층(121)을 형성할 수 있다. Bonding surfaces joined by the metal plated film 130 in the first cemented carbide material 110 and the second cemented carbide material 120 may be further improved in Ni, Cu, Sn, One or more metal coating layers 121 selected from the group consisting of Ag and Au may be formed.
상기 금속 도금막(130)은 소재들 사이에서 접합매개물의 역할을 하는 것으로서, 금속원소를 이용한 다층 도금막 형태로 형성될 수 있다.The metal plating film 130 serves as a bonding medium between materials, and may be formed in the form of a multilayer plating film using metal elements.
구체적으로, 상기 금속 도금막(130)은 소재의 접합표면에 금속염의 환원 전위 차이를 이용하여 나노미터 두께 수준의 다층 도금막 형태로 형성하거나, 이러한, 도금막을 벗겨서 만든 박판(foil)을 소재들 사이에 배치하여 사용할 수 있다. 이러한 금속 도금막(130)은 이종 원소로 이루어진 다층 박막 구조로서, 막들 사이의 표면적이 넓고 표면 에너지가 높아 불안정한 상태이다. 따라서, 조금만 가열하여도 확산이 쉽게 일어나며 이 과정에서 열이 발생된다. Specifically, the metal plating film 130 is formed in the form of a multi-layer plating film of the nanometer thickness level by using the difference in the reduction potential of the metal salt on the bonding surface of the material, or, such a thin film (foil) made by peeling the plating film Can be used in between. The metal plating layer 130 is a multi-layered thin film structure composed of heterogeneous elements, and has a large surface area between the films and a high surface energy, which is an unstable state. Therefore, even with a little heating, diffusion occurs easily and heat is generated in this process.
즉, 금속원소는 박막 도금층 형태일 경우, 비결정질(amorphous) 되기 쉬운 성질을 갖고 있으며, 이러한 비결정질은 불안정하므로 외부에서 조금만 가열하여도 결정화되면서 발열하게 되며, 박막 층들의 상호 확산 과정에서 매우 쉽게 합금을 형성할 수 있다. That is, when the metal element is in the form of a thin film plating layer, it has a property of being easily amorphous. Since such an amorphous material is unstable, the metal element is crystallized and generates heat even when only a little heat is applied from the outside. Can be formed.
이러한 금속 도금막(130)은 다층 박막 구조는 재료의 분말 상태와 유사하게 그 융점이 통상의 덩어리(bulk)에 비해 낮아지는 현상을 갖는다. 즉, 재료의 분말은 그 입자의 크기가 작아짐에 따라 융점이 점점 낮아진다. 예를 들어, 금속입자의 분말은 입자 직경(d)에 따라 그 융점 (TM(d))이 아래의 Gibbs Thomson 식과 같이 덩어리 금속의 융점 (TMB)에 비해 저하된다. 따라서, 입자의 직경 d가 작아질수록 그 융점은 저하된다.The metal plating film 130 has a phenomenon that the melting point of the multilayer thin film structure is lower than that of a normal bulk, similar to the powder state of the material. That is, the powder of material has a lower melting point as the particle size becomes smaller. For example, the powder of the metal particles has a lower melting point (T M (d)) compared to the melting point (T MB ) of the lumped metal, as shown in the Gibbs Thomson equation below, depending on the particle diameter (d). Therefore, as the diameter d of the particles decreases, the melting point thereof decreases.
[Gibbs Thomson Equation]Gibbs Thomson Equation
Figure PCTKR2016008065-appb-I000001
Figure PCTKR2016008065-appb-I000001
도 5에서 볼 수 있는 바와 같이 금속 도금막을 구성하는 입자크기가 작아질수록, 그 융점이 서서히 작아지다가 입자크기가 3nm 이하가 되는 시점부터는 그 융점이 현저하게 떨어지는 것을 관찰할 수 있다.As can be seen in FIG. 5, the smaller the particle size constituting the metal plating film is, the smaller the melting point is, the smaller the melting point becomes.
따라서, 일반적으로 고온에서 수행되는 소재들간의 접합공정을 비교적 저온에서도 수행할 수 있으며, 접합 시 온도는 낮지만 용융-응고 후에는 융점이 다시 높아지는 다층 박막 구조의 특성으로 인하여 우수한 접합 강도 및 접합 신뢰도를 얻을 수 있다.Therefore, the bonding process between materials that are generally performed at high temperatures can be performed at relatively low temperatures, and the bonding strength and the reliability of the bonding are excellent due to the characteristics of the multilayer thin film structure in which the melting temperature is low but the melting point is increased again after melt-solidification. Can be obtained.
상기 금속 도금막(130)은 다양한 형태로 제1 초경재료(110)와 제2 초경재료(120) 사이에 배치될 수 있으며, 예를 들어, 초경재료 또는 코어 메탈의 표면에 도금된 다층 도금막 형태, 다층 박막 포일 시트(foil sheet) 형태, 다층 박막 포일 시트의 분쇄입자 형태, 다층 박막 포일 시트의 분쇄입자를 액체와 혼합하여 제조한 페이스트 형태, 및 표면에 다층 도금 박막을 형성한 금속입자 형태로 이루어진 군에서 선택된 1종 이상의 형태일 수 있다.The metal plating layer 130 may be disposed between the first cemented carbide material 110 and the second cemented carbide material 120 in various forms. For example, the multilayer plating film may be plated on the surface of the cemented carbide material or the core metal. Form, multilayer thin film foil sheet, pulverized particle form of multilayer thin film foil sheet, paste form prepared by mixing pulverized particle of multilayer thin film foil sheet with liquid, and metal particle form having multilayer plated thin film formed on the surface It may be one or more forms selected from the group consisting of.
상기 다층 박막 포일 시트의 분쇄입자를 액체와 혼합하여 제조한 페이스트 형태에서 액체는 용제로서 예를 들어, 알콜류, 페놀류, 에테르류, 아세톤류, 탄소수 5∼18의 지방족 탄화수소, 등유, 경유, 톨루엔, 크실렌 등의 방향족 탄화수소, 실리콘 오일 등을 사용할 수 있으며, 이중에서도 물에 대한 용해도를 어느 정도 가진 알콜류, 에테르류, 또는 아세톤류가 바람직하게 사용될 수 있다.In the paste form prepared by mixing the pulverized particles of the multilayer thin film foil with a liquid, the liquid is, for example, alcohols, phenols, ethers, acetones, aliphatic hydrocarbons having 5 to 18 carbon atoms, kerosene, diesel oil, toluene, Aromatic hydrocarbons, such as xylene, silicone oil, etc. can be used, Among these, alcohols, ethers, or acetone which have some solubility in water can be used preferably.
상기 제1 초경재료 또는 제2 초경재료의 표면에 다층 도금막을 형성하는 형태는 예를 들어, 전해 도금법으로 수행될 수 있으며, 이때 필요한 구성으로서 도금액, 금속염, 첨가제, 전극, 전도성기판, 전압 및 전류 파형이 조절 가능한 전원, 파형 조절 프로그램 등이 있다.The form of forming the multilayer plating film on the surface of the first cemented carbide material or the second cemented carbide material may be performed by, for example, electrolytic plating. In this case, a plating solution, a metal salt, an additive, an electrode, a conductive substrate, a voltage and a current may be used. There are power supplies with adjustable waveforms, and waveform control programs.
이러한 도금법을 이용한 금속 도금막 형성의 장점은 다음과 같다.Advantages of metal plating film formation using this plating method are as follows.
첫째, 나노 분말 등의 분말형 접합매개물를 이용하여 다층 도금 박막을 형성하는 경우에 비해 폭발의 위험이 없고, 도금액 내에서 도금되기 때문에 대기와 직접 접촉하지 않아서 산화도 거의 없다. First, there is no risk of explosion compared to the case of forming a multi-layer plated thin film by using a powder-type bonding medium such as nano powder, and since it is plated in a plating solution, there is little oxidation since it is not in direct contact with the atmosphere.
둘째, 곡면이나 수직면 등에 구애되지 않고 적용 가능하기 때문에, 전극 등의 피 접합재의 곡면이나 수직면에 발라서 사용하기 어려운 솔더 페이스트 형태의 접합매개물의 단점을 보완할 수 있다. Second, since it can be applied without regard to curved surfaces or vertical surfaces, it is possible to compensate for the disadvantages of solder paste-type bonding media that are difficult to use by applying to curved surfaces or vertical surfaces of the joined material such as electrodes.
셋째, 도금된 다층 도금 박막을 떼어내서 포일(foil)형태로 사용하면, 피 접합재와 독립적으로 따로 취급 가능하며 저온 접합재료로 사용할 수 있다.Third, if the plated multi-layer plating thin film is removed and used in the form of a foil, it can be handled separately from the bonding material and can be used as a low temperature bonding material.
넷째, 귀금속은 물론 일반 금속(예; 구리, 주석, 아연, 니켈 등의 다양한 금속)도 모두 도금하여 다층 도금 박막으로 형성할 수 있으므로, 접합매개물의 가격이 분말형 접합매개물에 비해 매우 저렴해진다.Fourth, since precious metals as well as general metals (for example, various metals such as copper, tin, zinc, nickel) can be plated and formed into a multilayer plating thin film, the cost of the bonding medium becomes very low compared to the powder type bonding medium.
다섯째, 분말형 접합매개물은 급격한 산화 및 발열로 인한 폭발이나 화재의 위험이 있는 반면, 상기 다층 도금 박막은 취급이 용이하고, 안전하다.Fifth, while the powdered bonding medium has a risk of explosion or fire due to rapid oxidation and heat generation, the multilayer plating thin film is easy to handle and safe.
여섯째, 진공 중 증착(sputtering) 등의 물리적 증착법(PVD, physical vapor deposition)에 비해, 상기 다층 도금 박막 형성 방법은 간편하게 대량 생산이 가능한 방법이다.Sixth, compared with physical vapor deposition (PVD) such as sputtering in vacuum, the multi-layer plating thin film forming method is a simple mass production method.
일곱째, 상기 다층 도금 박막의 두께는 전압 및 도금시간과 같은 도금조건을 조절하여 임의로 조절이 가능하다.Seventh, the thickness of the multilayer plating thin film can be arbitrarily adjusted by adjusting the plating conditions such as voltage and plating time.
여덟째, 기존의 접합법에 비해 접합 온도를 크게 낮출 수 있어서 에너지 가격을 크게 절약할 수 있다. 구체적으로, 전자산업에서 많이 사용하는 Sn-3.5wt%Ag 접합매개물은 융점이 약 221℃로서, 통상 250℃ 내외의 온도에서 피 접합재를 접합해야 한다. 반면 Sn과 Ag과 같은 금속원소를 포함하는 박막층을 교대로 적층한 구조의 다층 도금 박막을 이용하면, 이를 도금한 피 접합재는 약 160℃ 내외 또는 그 이하의 온도에서 접합할 수 있는 장점이 있다. 또한, 박막층의 두께를 얇게 하면, 더 낮은 온도에서도 접합이 가능하고 박막층의 두께를 나노 수준으로까지 더욱 얇게 하면 거의 상온에서도 소재들의 접합이 가능하다.Eighth, the junction temperature can be significantly lowered compared to the conventional bonding method, thereby significantly reducing the energy price. Specifically, the Sn-3.5 wt% Ag bonding medium used in the electronics industry has a melting point of about 221 ° C., and the bonding material to be bonded should be bonded at a temperature of about 250 ° C. or more. On the other hand, when using a multi-layer plated thin film having a structure in which a thin film layer including metal elements such as Sn and Ag are alternately stacked, the bonded material plated therewith has an advantage of being bonded at a temperature of about 160 ° C. or less. In addition, if the thickness of the thin film layer is thinner, bonding is possible at a lower temperature, and if the thickness of the thin film layer is thinner to the nano level, the bonding of materials is possible at almost room temperature.
상기 금속 도금막(130)의 다층 박막의 구성은 특별히 제한되지 않으며, 바람직하게는 적어도 6개 이상의 박막층이 적층되어 있는 구조의 다층 박막, 또는 서로 다른 원소로 이루어진 적어도 2개의 박막층이 서로 교대로 적층되어 있는 구조의 다층 박막 형태로 형성할 수 있다.The structure of the multilayer thin film of the metal plating film 130 is not particularly limited, and preferably, a multilayer thin film having a structure in which at least six thin film layers are stacked, or at least two thin film layers made of different elements are alternately stacked on each other. It can be formed in the form of a multilayer thin film having a structure.
6개 이상의 박막층이 적층되어 있는 구조의 금속 도금막(130)은 제1 초경재료(110)와 제2 초경재료(120)의 접합 시, 다층 도금층의 확산에 의해 높은 전기 전도성 및 접합강도를 나타낼 수 있다. 또한, 서로 다른 원소로 이루어진 적어도 2개의 박막층이 서로 교대로 적층되어 있는 구조의 다층 박막은 제1 초경재료(110)와 제2 초경재료(120)의 접합 시 일반적인 금속의 접합온도보다 낮은 온도로 접합할 경우에도, 박막층들의 상호 농도 차이에 의한 확산이 일어나면서 동시에 발열반응이 나타나 견고하고 안정적인 접합이 달성될 수 있다.The metal plating film 130 having a structure in which six or more thin film layers are stacked shows high electrical conductivity and bonding strength by diffusion of the multilayer plating layer when the first cemented carbide material 110 and the second cemented carbide material 120 are bonded. Can be. In addition, the multilayer thin film having a structure in which at least two thin film layers made of different elements are alternately stacked with each other may have a temperature lower than a common metal bonding temperature at the time of bonding the first cemented carbide material 110 and the second cemented carbide material 120. Even when bonding, diffusion may occur due to the difference in mutual concentration of the thin film layers, and at the same time, an exothermic reaction may occur to achieve a stable and stable bonding.
또한, 이러한 다층 박막 구조는 접합 시 온도는 일반적인 금속의 접합온도보다 낮지만, 접합 시 용융되어 응고된 후에는 다시 융점이 일반적인 금속의 융점으로 높아지는 우수한 특성을 갖고 있다.In addition, the multilayer thin film structure has excellent characteristics in that the temperature at the time of bonding is lower than the temperature of the general metal, but after melting and solidifying at the time of melting, the melting point is increased to the melting point of the general metal.
상기 금속 도금막(130)을 이루는 각각의 박막층은 Sn, Cu, Zn, Ni, Ti, V, Cr, Mn, Fe, Co, Ga, Ge, As, Al, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, 및 Po로 이루어진 군에서 선택된 1종 이상의 금속원소를 사용할 수 있다.Each thin film layer constituting the metal plating film 130 is Sn, Cu, Zn, Ni, Ti, V, Cr, Mn, Fe, Co, Ga, Ge, As, Al, Zr, Nb, Mo, Tc, Ru At least one metal element selected from the group consisting of Rh, Pd, Ag, Cd, In, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, and Po Can be used.
이러한 금속원소로 이루어진 다층 박막은 예를 들어, Sn-Cu, Sn-Ag, Cu-Zn, Cu-Ni, Al-Ni 등의 원소 또는 이들의 합금으로 이루어진 박막을 교대로 적층하는 구조로 형성할 수 있다.The multilayer thin film made of such a metal element may be formed of a structure in which a thin film made of an element such as Sn-Cu, Sn-Ag, Cu-Zn, Cu-Ni, Al-Ni, or an alloy thereof is alternately laminated. Can be.
한편, 상기 금속 도금막(130)은 2개의 막으로의 적층 시, 상기 2개의 막 두께의 합이 0.1nm 내지 5㎛까지 범위의 두께로 구현되는 것이 바람직하며, 전체의 두께가 0.6nm 내지 300㎛까지 범위의 두께로 형성되는 것이 바람직하다.On the other hand, the metal plated film 130, when stacked in two layers, the sum of the two film thickness is preferably implemented in a thickness ranging from 0.1nm to 5㎛, the overall thickness is 0.6nm to 300 It is preferred to be formed with a thickness in the range up to 탆.
상기 금속 도금막(130)의 두께가 0.6 nm 미만으로 형성될 경우, 일반적인 금속전극의 접합온도보다 현저히 낮은 온도에서도 접합할 수 있는 장점이 있으나, 박막층 형성이 까다롭고, 제조비용이 크게 증가할 수 있다. 또한, 상기 금속 도금막의 두께가 300㎛를 초과할 경우에는 접합 온도가 상승하며, 접합강도 및 접합 신뢰도가 저하될 수 있다.When the thickness of the metal plating film 130 is formed to be less than 0.6 nm, there is an advantage that can be bonded even at a temperature significantly lower than the junction temperature of a general metal electrode, but the formation of a thin film layer, the manufacturing cost can be greatly increased have. In addition, when the thickness of the metal plating film exceeds 300㎛ the junction temperature is increased, the bonding strength and the bonding reliability may be lowered.
상기 금속 도금막(130)의 용융 온도범위는 상기 금속 도금막을 이루는 각각의 박막층에 포함되는 원소들 중 융점이 낮은 원소의 융점, 또는 금속 도금막을 구성하는 전체 벌크 조성의 융점보다 낮은 온도범위로 설정될 수 있다.The melting temperature range of the metal plating film 130 is set to a temperature range lower than the melting point of the element having a low melting point among the elements included in each thin film layer constituting the metal plating film, or the melting point of the entire bulk composition constituting the metal plating film. Can be.
예를 들어, 상기 금속 도금막(130)의 용융 온도범위는 상기 금속 도금막을 이루는 각각의 박막층에 포함되는 원소들 중 융점이 낮은 원소의 융점 또는 상기 원소들의 합금의 융점에 대해 0.5% 내지 80% 의 온도범위로 설정할 수 있다.For example, the melting temperature range of the metal plating film 130 is 0.5% to 80% of the melting point of the element having a low melting point among the elements included in each thin film layer constituting the metal plating film or the melting point of the alloy of the elements. It can be set in the temperature range of.
구체적으로, 상기 금속 도금막(130)의 접합 온도범위는 바람직하게는 발열특성이 나타나는 피크온도 이상에서 상기 금속 도금막을 이루는 각각의 박막층에 포함되는 원소들 중 융점이 낮은 원소의 융점 또는 상기 원소들의 합금의 융점이하 혹은 피접합재의 융점 이하의 온도범위에서 설정될 수 있다.Specifically, the junction temperature range of the metal plated film 130 is preferably the melting point of the element or the melting point of the elements of each of the elements included in each thin film layer constituting the metal plated film above the peak temperature at which the exothermic characteristics appear It can be set at a temperature range below the melting point of the alloy or below the melting point of the joined material.
기존의 공구강 등의 금속소재의 접합기술에서는 접합하려는 소재들 사이에 접합매개물을 배치하고 이러한 접합매개물의 융점이상의 온도로 가열하여 소재들의 접합부를 가열하여 접합을 수행하였다. 예를 들어, Cu-Ni 합금 또는 Ni 합금을 접합매개물로 사용하여 브레이징 접합할 경우에는 접합 온도가 이들의 융점보다 높은(구리의 융점 1083℃) 온도이며, 통상의 브레이징 접합온도는 약 1150-1200℃ 이다. 또한, Ni계 원소로 이루어진 접합매개물의 경우, 접합 온도가 1455℃에 달한다.In the conventional bonding technology of metal materials, such as tool steel, the bonding medium is disposed between the materials to be joined and heated to a temperature above the melting point of the bonding medium to heat the joints of the materials. For example, in the case of brazing by using Cu-Ni alloy or Ni alloy as the bonding medium, the bonding temperature is higher than their melting point (melting point of copper 1083 ° C), and the typical brazing bonding temperature is about 1150-1200. ℃. In addition, in the case of the junction medium consisting of Ni-based elements, the junction temperature reaches 1455 ° C.
그러나, Ni계 원소로 본 발명에 따른 금속 도금막을 형성하여 접합매개물로 이용할 경우, 접합 온도가 900℃로, 약 550℃ 낮은 온도에서 접합이 가능하다. 즉, 기존의 일반적인 접합매개물을 사용할 때의 접합 온도의 38.1%에서 접합이 가능하다. 따라서, 기존의 접합 온도 대비, 본 발명에 따른 다층 박막 접합부의 접합온도 소모 에너지는 약 38%에 불과하므로 매우 경제적이다. 또한, 금속 도금막에서 다층 박막을 이루는 박막층의 두께가 더욱 얇아지면 더 낮은 온도에서도 접합이 가능하다.However, when the metal plating film according to the present invention is formed of a Ni-based element and used as a bonding medium, the bonding temperature is 900 ° C., and the bonding can be performed at a temperature lower than about 550 ° C. That is, the bonding is possible at 38.1% of the bonding temperature when using the existing common bonding media. Therefore, compared to the conventional bonding temperature, the energy consumption of the junction temperature of the multilayer thin film junction according to the present invention is only about 38%, which is very economical. In addition, when the thickness of the thin film layer constituting the multilayer thin film in the metal plating film becomes thinner, the bonding is possible at a lower temperature.
이를 통해 소모 에너지 비용 절감 및 고온 가열에 의한 접합부의 강도 저하 (입자 (grain) 성장으로 인한 강도저하)와 고온 가열에 따른 접합부의 금속간 화합물의 성장 등도 억제할 수 있다.Through this, it is possible to reduce the energy consumption cost and to reduce the strength of the joints due to the high temperature heating (the decrease in strength due to grain growth) and the growth of the intermetallic compound of the joints due to the high temperature heating.
또한, 이러한 금속 도금막(130)의 특징은 Sn, Cu 외에 다른 금속들, 예를 들어 Sn-Ag, Cu-Zn, Cu-Ni, Al-Ni 등의 원소를 포함하는 박막층을 교대로 적층한 다층 박막 접합부의 경우에도 유사한 결과를 얻을 수 있다. 이러한 다층 박막 접합부(130)의 접합매개물로서의 우수한 성능은 박막층들이 가열, 가압되면 상호 농도차에 의한 확산 과정에서 발열반응이 일어나 저온에서도 용이하게 접합이 이루어지는 원리에 의해 구현된다.In addition, the metal plating film 130 is characterized by alternately stacking a thin film layer containing elements other than Sn and Cu, for example, elements such as Sn-Ag, Cu-Zn, Cu-Ni, and Al-Ni. Similar results can be obtained with multilayer thin film junctions. The excellent performance as a bonding medium of the multilayer thin film bonding unit 130 is realized by the principle that when the thin film layers are heated and pressurized, an exothermic reaction occurs in the diffusion process due to the difference in concentration, and thus the bonding is easily performed even at a low temperature.
상기 금속 도금막(130)의 소재들의 접합 시 가열 중 활성화 과정의 이론을 정리하면 다음과 같다.The theory of the activation process during heating when bonding the materials of the metal plating film 130 is summarized as follows.
첫째로 금속 도금막(130)의 박막층은 두께의 감소에 의한 표면적의 증가로 표면 에너지가 감소되기 쉬우며 매우 불안정하다. 또, 박막층의 층간 계면이 존재하며 계면 에너지가 감소되는 방향으로 반응이 진행되고자 한다. 계면에너지가 감소되는 것은 계면의 면적이 줄어드는 것을 의미하며, 이는 두 계면에서 접합이 일어남을 의미한다. 일례로, 나노 금속입자들은 불안정하여 원래 덩어리(bulk) 금속의 융점보다 낮은 온도나, 심지어 상온에서 서로 접합되기도 한다. First, the thin film layer of the metal plating film 130 is easy to reduce the surface energy due to the increase in the surface area by the reduction of the thickness is very unstable. In addition, there is an interlayer interface of the thin film layer and the reaction is to proceed in the direction of decreasing the interface energy. The reduction of the interfacial energy means that the area of the interface is reduced, which means that the junction occurs at both interfaces. Nanometal particles, for example, are unstable and can be bonded together at temperatures below the melting point of the original bulk metal, or even at room temperature.
두 번째는 확산에 의한 것으로, 금속 도금막(130)의 박막층은 이종재료가 교대로 적층된 구조로 형성되므로, 이러한 적층 구조를 형성하는 이종재료들은 층간 간격이 짧아짐에 따라 확산 거리가 짧아지게 되는데, 이로 인해 농도 구배가 심해져 확산이 활발히 일어나게 된다. 예를 들어 A, B 박막 금속층이 교대로 적층되어 있으면, A원자는 B층으로, B원자는 A층으로 확산되어 간다. 이러한 확산은 아래의 픽스(Fick's)의 확산 1법칙을 통해 확산 플럭스(Flux) J 가 거리에 반비례함을 알 수 있다.The second is by diffusion. Since the thin film layer of the metal plating layer 130 is formed by a structure in which different materials are alternately stacked, the dissimilar materials forming the stacked structure have a shorter diffusion distance as the interlayer spacing becomes shorter. As a result, the concentration gradient becomes severe and diffusion occurs actively. For example, when A and B thin-film metal layers are alternately laminated, A atom will diffuse into B layer, and B atom will spread to A layer. This diffusion can be seen that the diffusion flux J is inversely proportional to the distance through the first law of diffusion of the fix (Fick's).
[픽스의 확산 1법칙][1 law of diffusion of fixes]
Figure PCTKR2016008065-appb-I000002
Figure PCTKR2016008065-appb-I000002
JB: 단위시간당 단위 면적을 지나는 B 원자의 수 (Flux)J B : Number of B atoms passing through the unit area per unit time (Flux)
DB: B 원자의 확산계수D B : Diffusion coefficient of B atoms
CB: B 원자의 농도C B : concentration of B atoms
x: 확산거리x: diffusion distance
dCB/dx: x방향으로의 B농도 변화율dC B / dx: rate of change of B concentration in the x direction
따라서, 이러한 농도차에 의한 확산에 의해 소재와 금속 도금막의 접합이 활성화며, 이를 통해 접합이 이루어진다.Therefore, the bonding between the material and the metal plating film is activated by diffusion due to such a difference in concentration, and thus bonding is performed.
셋째로, 금속 도금막(130)의 박막층은 불안정하여 가열 중 발열반응이 일어나게 된다. Third, the thin film layer of the metal plating film 130 is unstable, and an exothermic reaction occurs during heating.
본 발명에 따른 공구강과 초경합금의 접합방법에서 접합되는 소재의 종류는 특별히 제한되지 않으며 예를 들어, 제1 초경재료는 금속 소재이고, 상기 제2 초경재료는 제1 초경재료와 다른 금속 소재, 세라믹 소재, 및 플라스틱 소재로 이루어진 군에서 선택된 소재일 수 있으며, 바람직하게는 상기 제1 초경재료는 공구강(Tool Steel)이고, 상기 제2 초경재료는 초경합금(hard Metal)일 수 있다.The type of material to be bonded in the joining method of tool steel and cemented carbide according to the present invention is not particularly limited. For example, the first cemented carbide material is a metal material, and the second cemented carbide material is a metal material different from the first cemented carbide material, and ceramics. It may be a material selected from the group consisting of a material, and a plastic material. Preferably, the first cemented carbide material may be tool steel, and the second cemented carbide material may be hard metal alloy.
여기서 상기 초경합금은 텅스텐 카바이드(WC)와 코발트(Co)를 주원료로 한 WC-Co계 초경합금일 수 있으며, 이러한 초경합금과 공구강은 큰 열팽창계수 차이 때문에 계면응력이 커져 접합부에 균열이 발생하기 쉬운 특징이 있으나 본 발명에 금속 도금막을 이용하여 접합할 경우 우수한 접합강도와 접합 신뢰도를 얻을 수 있다.The cemented carbide may be a tungsten carbide (WC) and a cobalt (Co) based WC-Co-based cemented carbide, the cemented carbide and tool steel is characterized by a large thermal expansion coefficient difference due to the large interfacial stress due to the tendency to crack in the joint However, when bonding to the present invention using a metal plating film it can be obtained excellent bonding strength and bonding reliability.
도 15a 내지 도 15b에는 본 발명에 따른 Cu-Ag 및 Cu-Zn 계열의 코어 메탈 합금을 이용한 공구강과 초경합금의 접합 사진이 개시되어 있고, 도 16에는 본 발명에서, 코어 메탈을 이용한 공구강과 초경재료의 접합 과정을 나타낸 블록도가 도시되어 있으며, 도 17에는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 접합전의 Ni-Cu 다층 박막 접합부의 실제 단면부를 나타낸 주사전자현미경(SEM) 사진이 개시되어 있다.15A to 15B illustrate a bonding picture of a tool steel and a cemented carbide using a Cu-Ag and Cu-Zn-based core metal alloy according to the present invention, and FIG. 16 shows a tool steel and a cemented carbide material using a core metal in the present invention. FIG. 17 is a block diagram illustrating a bonding process of FIG. 17. FIG. 17 is a scanning electron microscope (SEM) photograph showing an actual cross-section of a Ni—Cu multilayer thin film joint before bonding in a process of joining a tool steel and a cemented carbide according to an embodiment of the present invention. Is disclosed.
도 18에는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 코어 합금을 사용하지 않고, 공구강 샘플 표면에 Ni-Cu 다층 박막 접합부를 형성한 사진이 개시되어 있고, 도 19에는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서, 코어 합금을 사용하지 않고, 접합한 초경합금과 공구강의 실제 사진이 개시되어 있다.FIG. 18 discloses a photograph of forming a Ni—Cu multilayer thin film joint on a tool steel sample surface without using a core alloy in the process of joining tool steel and cemented carbide according to an embodiment of the present invention, and FIG. 19. In the process of joining the tool steel and the cemented carbide according to an embodiment, an actual photograph of the cemented cemented carbide and the tool steel is disclosed without using a core alloy.
이들 도면을 참조하면, 공구강(Tool Steel)과 초경합금(hard Metal) 소재를 접합하기 위해 필요한 구성으로는 본 발명에 따른 다층 박막을 형성하기 위한 저 융점 코어 메탈 합금의 포일 시트(foil sheet), 다층 박막 접합부를 형성하기 위한 도금 장치, 접합을 위한 가열장치, 경우에 따라 진공 가열 장치, 비산화성분위기 가열장치, 나노 도금층 표면의 세척을 위한 세척액, 경우에 따라 접합 시 산화물을 제거하는 용제 (flux) 등이 있다.Referring to these drawings, a configuration required for joining a tool steel and a hard metal material includes a foil sheet and a multilayer of a low melting point core metal alloy for forming a multilayer thin film according to the present invention. Plating apparatus for forming thin film junctions, heating apparatus for joining, optionally vacuum heating apparatus, non-oxidation risk heating apparatus, cleaning liquid for cleaning the surface of the nanoplating layer, and sometimes flux for removing oxides during bonding. Etc.
상기 공구강(Tool Steel)과 초경합금(hard Metal) 소재를 접합하기 위한 전처리는 예를 들어, 다층 박막 접합부가 형성된 표면의 오염물이나 산화물 제거를 위해 다층 박막 접합부 표면을 5 vol% 염산 수용액 등의 산 희석액으로 약 1분간 세척한 후, 증류수를 이용하여 세척(rinse) 하는 것으로 수행될 수 있다. 여기서 산 수용액이 금속산화물을 제거하게 되어 접합을 더욱 용이하게 한다.The pretreatment for joining the tool steel and the hard metal material is, for example, an acid dilution solution such as a 5 vol% hydrochloric acid solution on the surface of the multilayer thin film joint to remove contaminants or oxides on the surface where the multilayer thin film joint is formed. After washing for about 1 minute, it can be carried out by washing with distilled water (rinse). Here, the aqueous acid solution removes the metal oxide, which makes the bonding easier.
접합은 진공, 비산화성분위기에서 접합하는 경우에는 용제(flux) 없이 접합할 수 있다. 만일 상기 소재들을 대기 중에서 접합하고자 한다면, 다층 박막 접합부 표면의 산화층을 제거하기 위해 저온에서 작용하는 용제(flux)를 이용할 수 있다.Bonding can be performed without flux in the case of a vacuum or non-oxidation atmosphere. If the materials are to be bonded in the air, a flux that operates at a low temperature may be used to remove the oxide layer on the surface of the multilayer thin film junction.
상기 공구강은 예를 들어 스테인리스강, 탄소강, 합금공구강 및 WC 등의 초경합금을 준비하여 사용할 수 있다. WC 등의 초경합금은 스테인리스강 등의 공구강 기판과 통상적인 접합이 어렵기 때문에 초경합금의 표면을 금속화(metallization)하기 위한 전처리로 표면을 금속으로 코팅하여 공구강과 접합할 수 있다.For example, the tool steel may be prepared by using cemented carbide such as stainless steel, carbon steel, alloy tool steel, and WC. Since cemented carbides such as WC are difficult to be conventionally bonded to tool steel substrates such as stainless steel, the surface of the cemented carbide can be joined with tool steel by coating the surface with metal in a pretreatment for metallization.
상기 코어 메탈 합금의 다층 박막 형성을 위해, 코어 메탈 합금을 압연하여 접합이 용이할 수 있도록 가공한다. 가공된 코어 메탈 합금의 용이한 다층 박막 접합부 형성을 위해 코어 메탈 합금을 연마한 후 전해 도금법을 통해 다층 박막 접합부를 형성할 수 있다.In order to form a multilayer thin film of the core metal alloy, the core metal alloy is rolled and processed to facilitate bonding. The core metal alloy may be polished to form the multilayer thin film joint of the processed core metal alloy, and then the multilayer thin film joint may be formed by electroplating.
이하, 이들 도면을 참조하여 본 발명의 금속 도금막을 이용한 초경재료와 공구강의 저온접합의 구체적인 실시예에 대해 설명한다.Hereinafter, with reference to these drawings, the specific example of the low temperature joining of the cemented carbide material and tool steel using the metal plating film of this invention is demonstrated.
일예로, 본 발명의 금속 도금막을 형성하는 과정 및 초경재료와 공구강 저온 접합을 설명하면 다음과 같다. As an example, the process of forming the metal plating film of the present invention and the cemented carbide material and the tool steel at low temperature will be described.
[실시예1] 금속 도금막의 저융점 특성 측정Example 1 Measurement of Low Melting Point Characteristics of a Metal Plating Film
본 발명에서 개발한 금속 도금막은 적층된 도금층 간에 저온에서 확산이 일어나 열이 발생하게 되어 저융점을 갖는다. 이를 확인하기 위해 DSC 및 DTA로 열 특성을 측정하였다.The metal plating film developed in the present invention has a low melting point due to diffusion occurs at low temperatures between the laminated plating layers. Thermal properties were measured by DSC and DTA to confirm this.
본 실시예에서는 열전소자를 접합하기 위해 접합 매개물로 사용되는 여러 원소 중 사용 빈도가 높을 것으로 판단되는 Sn, Cu, Ni, Ag를 포함하는 다층도금 박막의 열 특성을 측정하였다. In this embodiment, the thermal characteristics of the multi-layer plated thin film containing Sn, Cu, Ni, Ag, which is considered to be high among the various elements used as the bonding medium for bonding the thermoelectric elements, were measured.
일반적으로 Ni-Cu계 합금(벌크 소재)을 접합 매개물로 사용할 경우 Ni이 증가함에 따라 융점이 증가하므로, 가장 낮은 용융온도는 100%Cu-0%Ni 일 때 (실질적으로 Cu)의 융점인 1083℃이다. 반면에 본 발명의 열전소자의 접합법에 사용되는 Cu-Ni 다층도금박막은 DTA를 이용하여 열특성을 측정한 결과 일반적 벌크소재 합금 보다 낮은 온도인 567℃에서 피크(peak)가 나타나고, Ni-Cu 다층 도금 박막은 용융되었다. 이때의 Ni-Cu 다층 도금 박막의 열 특성을 DTA로 측정하여 도 6에 나타내었다. 도 6의 피크는 Cu-Ni 계 합금의 최저융점인 1083℃의 약 51.8%에 해당한다.In general, when Ni-Cu alloy (bulk material) is used as a bonding medium, the melting point increases as Ni increases, so the lowest melting temperature is 1083, which is the melting point of (substantially Cu) at 100% Cu-0% Ni. ℃. On the other hand, the Cu-Ni multilayer plating thin film used in the thermoelectric device bonding method of the present invention showed a peak at 567 ° C., which is lower than that of a general bulk material alloy, when the thermal characteristics were measured using DTA. The multilayer plating thin film was melted. At this time, the thermal characteristics of the Ni-Cu multilayer plating thin film was measured by DTA and shown in FIG. 6. The peak of FIG. 6 corresponds to about 51.8% of 1083 ° C., which is the lowest melting point of the Cu—Ni based alloy.
또한, 본 발명에서 개발한 Sn-Cu 다층 도금 박막은 저온에서 확산하며 열이 발생하여 DSC로 측정하면 144℃에서 피크(peak)가 나타나고, Sn-Cu 다층 도금 박막은 용융된다. 이때의 열 특성을 DSC로 측정하여 도 7에 나타내었다. 도 7의 피크는 Sn-Cu계 합금의 최저융점 (eutectic 온도)인 227℃의 약 63.4%에 해당한다.In addition, the Sn-Cu multi-layer plated thin film developed in the present invention diffuses at low temperatures, heat is generated, and when measured by DSC, a peak appears at 144 ° C., and the Sn-Cu multi-layer plated thin film is melted. Thermal properties at this time were measured by DSC and shown in FIG. 7. The peak in FIG. 7 corresponds to about 63.4% of 227 ° C., the lowest melting point (eutectic temperature) of the Sn—Cu based alloy.
또 다른 실시예로, 본 발명법으로 Cu-Ag 다층 나노 박막을 제조 하였으며, 이때의 열 특성을 DTA로 측정하여 도 8에 나타내었다. 이때 678.54℃에서 피크(peak)가 나타나고, 이는 Cu-Ag계 벌크합금의 최저융점 (eutectic 온도, Cu-40%Ag)인 779℃의 약 87.1%에 해당한다.In another embodiment, a Cu-Ag multilayer nano thin film was manufactured by the present invention, and the thermal properties thereof were measured by DTA and shown in FIG. 8. At this time, a peak appears at 678.54 ° C, which corresponds to about 87.1% of the lowest melting point (eutectic temperature, Cu-40% Ag) of Cu-Ag-based bulk alloy.
[실시예2] 금속 도금막의 제조 가능 범위Example 2 Manufactureable Range of Metal Plating Film
본 실시 예에서는 합금 도금액 내 제1금속염과 제2금속염의 비율을 1:1~200:1의 몰 비율로 용해시켜 도금을 실시하였다. 도 9와 도 10a 내지 도 10h를 참조하면, 제1금속염과 제2금속염의 비율이 2:1 미만인 경우, 예를 들어 6:4, 5:5의 비율로 되면 제1금속층 및 제2금속층의 제2금속의 농도 차이가 적어져서 다층 도금 박막이 형성되지 않는다. 제1금속염과 제2금속염의 비율이 100:1을 초과하면, 예를 들어 200:1의 비율로 되면 도금 시 제2금속염이 쉽게 소모되어, 제2금속염의 농도가 희박해지고 제2금속염의 환원 대신 도금액내의 수소이온이 환원되어 수소 기포가 발생된다. 따라서 다층 도금 박막의 형성이 어려워진다. In this embodiment, the plating was performed by dissolving the ratio of the first metal salt and the second metal salt in the alloy plating solution at a molar ratio of 1: 1 to 200: 1. 9 and 10A to 10H, when the ratio of the first metal salt to the second metal salt is less than 2: 1, for example, when the ratio is 6: 4 and 5: 5, the first metal layer and the second metal layer may be The difference in concentration of the second metal is small, so that the multilayer plating thin film is not formed. When the ratio of the first metal salt to the second metal salt exceeds 100: 1, for example, a ratio of 200: 1, the second metal salt is easily consumed during plating, so that the concentration of the second metal salt is diminished and the reduction of the second metal salt is reduced. Instead, hydrogen ions in the plating solution are reduced to generate hydrogen bubbles. Therefore, formation of a multilayer plating thin film becomes difficult.
또한, 다층 도금 박막을 형성하는 제1, 2 금속염을 결정하기 위해 표준 환원 전위가 0.004V이상 1.5614V이하의 차이가 나는 원소의 금속염을 선택하여 다층 도금을 실시하였다 (도 9와 도 10a 내지 도 10h 참조). 제1, 2 금속염의 환원전위 차이가 0.029V미만으로 작아지게 되면 제1 도금층 및 제2 도금층을 형성할 때 제1, 2 금속염이 모두 환원되어 도금층 간 경계가 사라져 다층도금 박막이 형성되지 않았다. 또한, 제1, 2 금속염의 환원전위 차이가 1.0496V를 초과하여 커지는 경우 제2 금속이 제1금속의 도금을 방해하여 역시 도금층 간 경계가 사라져 다층도금 박막이 형성되지 않았다.In addition, in order to determine the first and second metal salts forming the multi-layer plating thin film, a multi-layer plating was performed by selecting a metal salt of an element having a difference in the standard reduction potential of 0.004 V or more and 1.5614 V or less (FIGS. 9 and 10A to 9). 10h). When the reduction potential difference between the first and second metal salts becomes less than 0.029 V, when forming the first plating layer and the second plating layer, both the first and second metal salts are reduced, and the boundary between the plating layers disappears, and thus the multilayer plating thin film is not formed. In addition, when the reduction potential difference between the first and second metal salts is greater than 1.0496V, the second metal interferes with the plating of the first metal, and thus the boundary between the plating layers disappears, and thus the multilayer plating thin film is not formed.
또한 도 9의 각 조건에 해당하는 다층 도금 박막 단면을 도 10a 내지 도 10h에 나타내었으며, 도금 조건에 따른 다층 도금 박막 형성 여부를 사진으로 확인할 수 있다. 도 10a 내지 도 10h의 숫자는 도 9의 숫자에 대응된다. 예를 들어, 도 9의 2-3’조건의 사진은 도 10a 내지 도 10h에서 ‘2-3’사진을 나타낸다.In addition, the cross-sectional view of the multilayer plating thin film corresponding to each condition of FIG. 9 is illustrated in FIGS. 10A to 10H, and it may be confirmed by a photograph whether the multilayer plating thin film is formed according to the plating conditions. The numbers in FIGS. 10A to 10H correspond to the numbers in FIG. 9. For example, the photo of 2-3 'condition of FIG. 9 shows the' 2-3 'photo in FIGS. 10A to 10H.
도 11에는 도 9의 결과인 다층 도금이 형성되는 조건의 범위를 설정하여 그래프로 나타내었다. FIG. 11 is a graph showing the range of conditions under which the multilayer plating resulting from FIG. 9 is formed.
결과적으로, 본 발명에 따른 제조방법에서 다층 도금 박막을 제조하기 위해서는 도금액 중 제 1금속염과 제2 금속염의 환원 전위 차이가 0.029V이상 1.0496V이하의 범위인 금속염을 사용하고, 제 1금속염과 제2 금속염의 농도비는 2:1에서 100:1의 범위인 것을 사용하는 것이 바람직하다.As a result, in order to manufacture the multilayer plating thin film in the manufacturing method according to the present invention, a metal salt having a reduction potential difference between the first metal salt and the second metal salt in the plating liquid is in the range of 0.029 V or more and 1.0496 V or less. The concentration ratio of the two metal salts is preferably in the range of 2: 1 to 100: 1.
[실시예3] 코어 메탈 합금의 제조Example 3 Preparation of Core Metal Alloy
본 실시 예에서는 공구강과 초경합금의 저온 접합을 위해, 접합 매개물로 사용되는 여러 원소 중 사용 빈도가 높을 것으로 판단되는 Cu, Zn, Ag, Si등을 포함하는 코어 메탈 합금을 제조하여 압연 가공한 후, 코어 메탈 표면에 합금 도금을 실시하였다.In the present embodiment, for the low-temperature bonding of tool steel and cemented carbide, after the core metal alloy containing Cu, Zn, Ag, Si, etc., which is considered to have high frequency of use among various elements used as a joining medium, is manufactured and rolled, Alloy plating was applied to the core metal surface.
일반적으로, Al계 코어 메탈 합금과 Cu-Ni 다층 도금 합금이 접합될 경우, Al-Ni 금속간 화합물이 생성되어, 접합부가 취성 특성을 보이게 된다. 이럴 경우, 접합 신뢰성이 저하되므로, 두 원소는 금속간 화합물을 생성하지 않는 전율 고용 체 합금이 바람직하다. 도 12에 코어 메탈 합금의 제조를 위해 사용된 여러 가지 합금 후보군을 나타내었다.In general, when the Al-based core metal alloy and the Cu-Ni multilayer plating alloy are bonded to each other, an Al-Ni intermetallic compound is generated, and the bonding portion exhibits brittle characteristics. In this case, the bonding reliability is lowered, so that an alloy of a high solid solution in which the two elements do not form an intermetallic compound is preferable. 12 shows various alloy candidate groups used for the production of core metal alloys.
또한, 공구강의 저온 접합을 위해서는 코어 메탈 합금의 융점이 700 ℃ 이하가 바람직하며, 코어 메탈 표면 나노 복합 도금을 위해서 가공성이 우수해야한다. In addition, the melting point of the core metal alloy is preferably 700 ° C. or lower for low temperature joining of tool steel, and should be excellent in workability for core metal surface nano composite plating.
합금을 위한 방법으로는, 진공로 및 유도 가열로가 있으며, 유도 가열로를 사용하여 제조한 Cu-Ag, Cu-Zn 코어 메탈 합금을 도 13에 나타내었다. Methods for the alloy include vacuum furnaces and induction furnaces, and Cu-Ag, Cu-Zn core metal alloys prepared using induction furnaces are shown in FIG. 13.
코어 메탈 표면에 합금 도금을 위해서, 코어 메탈을 얇은 foil 형태로 제조하는 것이 바람직하며, 압연 후의 합금 foil의 두께는 0.1 mm ~ 0.2 mm 정도가 바람직하다. 도 14에 압연한 후의 Cu-Ag core metal 합금을 나타내었다.For alloy plating on the core metal surface, the core metal is preferably manufactured in the form of a thin foil, and the thickness of the alloy foil after rolling is preferably about 0.1 mm to 0.2 mm. The Cu-Ag core metal alloy after rolling in FIG. 14 was shown.
[실시예4] 초경합금 공구강 접합실험Example 4 Cemented Carbide Tool Steel Welding Experiment
본 실시 예에서는 공구강과 초경합금의 저온 접합을 위해, 접합 매개물로 사용되는 여러 원소 중 Cu, Zn, Ag를 포함하는 코어 메탈을 제조하였다. 다층 도금박막을 사용하여, 코어 메탈 용융온도보다 약 15 ~ 50℃ 높은 온도에서 진공로를 사용하여 공구강과 초경합금을 접합하였다. 도 15a에 Cu-Ag 계열 코어 메탈을 이용한 공구강 접합을 나타내었으며, 도 15b에 Cu-Zn 계열 코어 메탈합금을 이용하여 공구강을 접합하였다. Cu-Ag 및 Cu-Zn 합금을 이용한 접합의 경우, 접합부 코어 메탈이 용융 및 확산되어 양호한 접합이 이루어졌음을 확인할 수 있다. 이때의 접합과정을 도 16에 코어 메탈을 이용한 공구강과 초경합금의 접합과정 블록도로 나타내었다. 도 17은 본 발명의 코어메탈 상에 Ni-Cu 다층 박막 형성하여 실제 단면부를 나타낸 주사전자현미경(SEM) 사진이다. 나노 급의 금속다층 박막이 균일하게 도금되어 있는 것을 확인할 수 있다.In this embodiment, for low temperature bonding of tool steel and cemented carbide, a core metal including Cu, Zn and Ag among various elements used as a bonding medium was manufactured. Using a multilayer plating thin film, the tool steel and the cemented carbide were bonded using a vacuum furnace at a temperature of about 15 to 50 ° C. higher than the core metal melting temperature. 15A shows a tool steel joint using a Cu—Ag based core metal, and FIG. 15B shows a tool steel bonded using a Cu—Zn based core metal alloy. In the case of the joining using the Cu-Ag and the Cu-Zn alloys, it can be confirmed that the joining core metal was melted and diffused to achieve good joining. The bonding process at this time is shown in Figure 16 a block diagram of the bonding process of the tool steel and the cemented carbide using the core metal. 17 is a scanning electron microscope (SEM) photograph showing an actual cross section by forming a Ni—Cu multilayer thin film on the core metal of the present invention. It can be seen that the nano-grade metal multilayer thin film is uniformly plated.
본 접합에서 사용한 코어메탈은 균일한 다층도금 박막을 제조하는데 도움을 주게 되어 양호한 접합면을 얻을 수 있도록 도와준다. 그러나 코어메탈이 없이도 다층 박막을 형성할 수 있으며, 저온접합이 가능하다. 도 18은 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서 코어 합금을 사용하지 않고, 공구강 샘플 표면에 Ni-Cu 다층 박막 접합부를 형성한 사진이며, 도 19는 본 발명의 일실시예에 따른 공구강과 초경합금의 접합과정에서, 코어 합금을 사용하지 않고, 접합한 초경합금과 공구강의 실제 사진이 나타나 있다.The core metal used in this bonding helps to produce a uniform multilayer plated thin film, which helps to obtain a good bonding surface. However, it is possible to form a multi-layer thin film without core metal, and low temperature bonding is possible. 18 is a photograph of a Ni-Cu multilayer thin film joint formed on a tool steel sample surface without using a core alloy in a process of joining tool steel and cemented carbide according to an embodiment of the present invention, and FIG. 19 is an embodiment of the present invention. In the process of joining the tool steel and the cemented carbide according to the present invention, the actual photo of the cemented cemented carbide and the tool steel without the core alloy is shown.
도 20에는 본 발명에서 제조된 Sn-Cu 금속 도금막의 가열 전 도금된 상태 그대로의 제 1 및 제 2 도금금속층(좌)과 가열 후 확산으로 제1 및 제 2 도금층이 소멸된(우) 모습의 사진이 개시되어 있다.20 shows the first and second plated metal layers (left) in the plated state as they were plated before heating and the first and second plated layers disappeared due to diffusion after heating of the Sn-Cu metal plated film prepared in the present invention (right). Photo is disclosed.
도 21에는 본 발명에서 제조된 Ni-Cu 금속 도금막의 가열 전 도금된 상태 그대로의 제 1 및 제 2 도금층(좌)과 가열 후 확산으로 제1 및 제 2도금층이 소멸된(우) 모습의 사진이 개시되어 있고, 도 22에는 본 발명에서 제조된 Sn-Cu 금속 도금막의 가열 전 도금된 상태 그대로의 금속 도금막을 XRD로 상분석한 결과 비정질 특성(좌)이 나타나는 그래프와, 가열 후 확산으로 제1 및 제 2도금층이 소멸된 상태를 XRD로 상분석한 결과 결정질 특성(우)이 나타나는 모습의 그래프가 도시되어 있다.FIG. 21 is a photograph of the first and second plating layers (left) in the state of being plated before heating and the first and second plating layers disappeared by heating and spreading (right) of the Ni—Cu metal plating film manufactured according to the present invention. FIG. 22 is a graph showing an amorphous characteristic (left) as a result of phase analysis of the metal plated film in the plated state of the Sn-Cu metal plated film prepared according to the present invention before heating by XRD, and diffusion after heating. A graph showing the appearance of crystalline properties (right) as a result of phase analysis by XRD of the state of disappearance of the first and second plating layers.
도 23에는 금속 도금막을 각 두 개의 도금층 두께의 합이 5㎛로 두껍게 제조하여 단면부를 나타낸 전자현미경(SEM) 사진이 개시되어 있고, 도 24에는 금속 도금막을 각 두 개의 도금층 두께의 합이 5㎛로 두껍게 제조하여 시차 주사 열량계(DSC)를 이용한 열특성을 측정한 가열 그래프가 개시되어 있으며, 도 25에는 금속 도금막을 각 두 개의 도금층 두께의 합이 5㎛로 두껍게 제조하여 접합한 접합부의 접합 후 실제 단면을 나타낸 광학현미경 사진이 개시되어 있다.23 shows an electron micrograph (SEM) photograph showing a cross-section of a metal plated film having a thickness of two plating layers thicker than 5 μm. FIG. 24 shows a metal plated film having a sum of thicknesses of two plating layers of 5 μm. The heating graph is measured by using a differential scanning calorimeter (DSC) to measure the thermal properties of a thick film is disclosed. An optical micrograph showing an actual cross section is disclosed.
도 26에는 금속 도금막의 층수를 6층으로 적층하는 것으로 제조하여 저온접합 한 구리전극 단면부를 나타낸 광학현미경 사진이 개시되어 있고, 도 27에는 금속 도금막의 도금 시간을 길게 하여 전체 도금 두께가 300㎛인 것으로 제조한 Sn-Cu계 금속 도금 박막의 단면부를 나타낸 광학현미경 사진이 개시되어 있다.FIG. 26 shows an optical micrograph showing a cross section of a copper electrode manufactured by stacking the number of layers of a metal plating film into six layers, and FIG. 27 shows a total plating thickness of 300 μm by lengthening the plating time of the metal plating film. An optical microscope photograph showing a cross section of a Sn-Cu-based metal plated thin film manufactured by the present invention is disclosed.
[실시예4]Example 4
본 발명의 금속 도금막은 도금된 상태에서는 층상의 구조로 존재하지만, 저온 접합을 위해 접합매개물로 사용하는 경우, 가열하면 발열 및 비정질 특성을 갖는 금속 도금막 중 제 1 및 제 2도금층은 상호 확산에 의해 소멸되며 쉽게 용융되어 접합부를 이루어 결정화된다. 실제로 발열특성을 갖는 Sn-Cu 계열 다층 나노 박막층을 형성하고, 이를 160℃에서 가열하여 다층 나노 박막층이 소멸됨을 확인하였다. 이때의 Sn-Cu 발열 및 비정질 특성을 갖는 금속 도금막의 가열 전 제 1 및 제 2 도금층과, 가열 후 확산으로 제1 및 제 2도금층이 소멸된 모습은 도 20에 나타내었다.Although the metal plating film of the present invention is present in a layered structure in the plated state, when used as a bonding medium for low temperature bonding, the first and second plating layers of the metal plating film having heat generation and amorphous properties when heated are subjected to mutual diffusion. Are dissipated and easily melted to form a bond and crystallize. In fact, it was confirmed that the Sn-Cu series multilayer nano thin film layer having an exothermic property was heated at 160 ° C. and the multilayer nano thin film layer was extinguished. 20 shows the first and second plating layers before heating and the first and second plating layers disappeared by heating after diffusion of the metal plating film having Sn-Cu heating and amorphous properties at this time.
또한 Ni-Cu 발열 및 비정질 특성을 갖는 금속 도금막을 형성하고, 이를 650℃에서 가열하여 다층 나노 박막층이 소멸됨을 확인하였다. 이때의 Ni-Cu 계열 다층 나노 박막층의 가열 전 제 1 및 제 2도금층과, 가열 후 확산으로 제1 및 제 2도금층이 소멸된 모습은 도 21에 나타내었다.In addition, it was confirmed that a metal plating film having Ni-Cu heating and amorphous properties was formed and heated at 650 ° C. to disappear the multilayer nano thin film layer. The first and second plating layers before the heating of the Ni-Cu series multi-layer nano thin film layer and the first and second plating layers disappeared by diffusion after heating are shown in FIG. 21.
또한, 발열 및 비정질 특성을 갖는 금속 도금막의 비정질 상 특성을 확인하기 위해 XRD를 이용하여 상을 분석하였다. 본 발명에 따른 금속 도금막 제조방법으로 제조된 Sn-Cu 발열 및 비정질 특성을 갖는 금속 도금막의 가열 전 도금된 상태 그대로의 발열 및 비정질 특성을 갖는 금속 도금막을 XRD로 상분석한 결과 비정질 특성(좌)이 나타나는 그래프와, 가열 후 확산으로 제1 및 제 2도금층이 소멸된 상태를 XRD로 상분석한 결과 결정질 특성(우)이 나타나는 모습을 도 22에 나타내었다. In addition, the phase was analyzed using XRD to confirm the amorphous phase characteristics of the metal plated film having exothermic and amorphous characteristics. As a result of phase analysis of the metal plated film having the exothermic and amorphous properties as plated state before heating of the metal plated film having Sn-Cu exothermic and amorphous properties prepared by the method according to the present invention by XRD, Fig. 22 shows a graph showing the appearance of crystalline characteristics (right) as a result of phase analysis by XRD of the state in which the first and second plating layers disappear due to diffusion after heating.
[비교예 1] 발열 반응이 없는 금속 도금막Comparative Example 1 Metal Plating Film Without Exothermic Reaction
다층 금속 도금막의 각 층의 두께가 두꺼워지거나, 도금층의 수가 줄어들면 다층 금속 도금막 내 계면의 면적이 작아진다. 또한 전체 도금층의 두께가 300㎛ 이상으로 두꺼워지면 도금층 내 결함의 비율이 높아져 발열반응을 나타내지 않는다. 본 비교예에서는 발열 반응을 갖지 않도록 두 층의 두께의 합이 5㎛로 두껍게 제조된 Sn-Cu계 접합소재를 제조 하였다. 이때의 두 층의 두께의 합이 5㎛로 제조된 Sn-Cu 다층 소재의 단면을 전자현미경으로 확인하여 도 23에 나타내었다. 또한, 이 다층 소재의 열 특성을 DTA로 측정하여 도 24에 나타내었다. 그 결과 DSC측정에서 저온발열피크가 나타나지 않고, 고온에서 도금을 구성하는 원소인 주석이 용융되는 온도인 228℃에서 흡열 피크가 나타났다. 즉, 두 층의 두께의 합이 40nm로 얇게 제조된 Sn-Cu계 접합소재에서 나타났던 144℃의 발열 피크가 5㎛로 두껍게 제조된 소재에서는 나타나지 않았다.As the thickness of each layer of the multilayer metal plating film becomes thick or the number of plating layers decreases, the area of the interface in the multilayer metal plating film becomes smaller. In addition, when the thickness of the entire plating layer is thicker than 300㎛, the ratio of defects in the plating layer is high, and thus no exothermic reaction occurs. In this comparative example, a Sn-Cu-based junction material was manufactured in which the sum of the thicknesses of the two layers was 5 μm thick so as not to have an exothermic reaction. At this time, the sum of the thicknesses of the two layers was 5 μm, and the cross-section of the Sn-Cu multilayer material was confirmed with an electron microscope and is shown in FIG. 23. In addition, the thermal characteristics of this multilayered material were measured by DTA and shown in FIG. As a result, the endothermic peak did not appear in the DSC measurement, but the endothermic peak appeared at 228 ° C. at which the tin, which is an element constituting the plating, was melted at a high temperature. That is, the exothermic peak at 144 ° C., which was observed in the Sn-Cu-based bonded material, in which the sum of the thicknesses of the two layers was 40 nm thin, did not appear in the material manufactured thickly at 5 μm.
이때의 발열 반응을 갖지 않도록 각 도금층이 두껍게 제조된 소재를 이용하여 반도체를 구리전극에 170℃온도에서 가열하였다. 이때의 반도체와 전극의 접합부를 광학현미경으로 관찰한 결과 접합되지 않았으며, 그 결과를 도 25에 나타내었다. 각 도금층이 두껍게 제조된 접합소재는 열분석결과 흡열피크만을 나타냈고 흡열량이 발열량보다 크기 때문에 접합되지 않은 것으로 판단할 수 있다.The semiconductor was heated at a temperature of 170 ° C. to the copper electrode using a material in which each plating layer was thickly prepared so as not to have an exothermic reaction at this time. The junction between the semiconductor and the electrode at this time was observed with an optical microscope, and the bonding was not performed. The results are shown in FIG. 25. The bonded material, each plated layer was made thick, showed only the endothermic peak as a result of the thermal analysis and it can be determined that the bonded material is not bonded because the endothermic amount is larger than the calorific value.
또한 도금층 수를 6층으로 제조된 Sn-Cu계 다층 금속 도금 박막을 제조하여 구리전극을 160℃에서 저온 접합하였으며, 이때의 단면을 도 26에 나타내었다. 이때의 접합부는 부분적으로 접합되었다. 이는 도금층 수가 적어 발열량이 충분하지 않았으며, 용융금속도 충분하지 않았기 때문이다. In addition, a Sn-Cu-based multi-layer metal plating thin film having six plating layers was manufactured, and a copper electrode was bonded at low temperature at 160 ° C., and the cross section at this time is shown in FIG. 26. The junction at this time was partially bonded. This is because the number of plating layers was small and the calorific value was not enough, and the molten metal was not sufficient.
또한 도금 시간을 길게 하여 전체의 도금 두께가 300㎛인 Sn-Cu계 다층 금속 도금 박막을 제조하였으며, 이때의 단면을 도 27에 나타내었다. 본 발명을 통해 제조하는 다층 금속 박막은 도금이 진행이 되면서 도금층 표면에 결함이 생길 수 있으며, 결함은 수직면으로 계속하여 성장하고 300㎛ 이상의 두께로 도금층이 형성되면 다층 도금층 내의 결함의 비율이 높아져 다층도금층이 잘 형성되지 않고 비정질 및 발열특성이 나타나지 않으며, 저온 접합이 되지 않는다.In addition, the plating time was extended to produce a Sn-Cu-based multilayer metal plating thin film having a total plating thickness of 300 μm, and a cross section at this time is shown in FIG. 27. The multilayer metal thin film manufactured by the present invention may have defects on the surface of the plating layer as the plating proceeds, and the defects continue to grow in the vertical plane and when the plating layer is formed with a thickness of 300 μm or more, the ratio of defects in the multilayer plating layer is increased. The plating layer is not well formed, there is no amorphous and exothermic properties, and there is no low temperature bonding.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described by way of limited embodiments and drawings, but the present invention is not limited to the above embodiments, and those skilled in the art to which the present invention pertains various modifications and variations from such descriptions. This is possible.
그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the claims below but also by the equivalents of the claims.
[부호의 설명][Description of the code]
110: 제1 초경재료110: first cemented carbide material
120: 제2 초경재료120: second cemented carbide material
130: 금속 도금층130: metal plating layer

Claims (16)

  1. 제1금속염 및 제2금속염을 포함하는 두 가지 이상의 금속염이 포함된 수계 합금 도금액을 준비하는 단계;Preparing an aqueous alloy plating solution containing two or more metal salts including a first metal salt and a second metal salt;
    전극을 상기 수계 합금 도금액에 침지시켜 전해 도금 회로를 구성하는 단계;Immersing an electrode in the aqueous alloy plating solution to form an electrolytic plating circuit;
    상기 전해 도금 회로를 제어하는 제어부에 도금하고자 하는 상기 금속염의 환원전위 값에 따라, 25℃ 표준수소전극 기준으로 +2V에서 -4.5V사이의 전압 또는 그에 상응하는 전류 값을 입력하여 상기 전극에 환원 전위 또는 전류를 인가하는 단계;According to the reduction potential value of the metal salt to be plated to the controller for controlling the electrolytic plating circuit, a voltage of + 2V to -4.5V or a corresponding current value is reduced to the electrode based on a standard hydrogen electrode of 25 ° C. Applying a potential or current;
    상기 금속염들의 표준환원전위 차이에 의해 제1 초경재료 또는 제2 초경재료의 일면, 또는 제1 초경재료 및 제2 초경재료 모두의 일면, 또는 상기 제1 초경재료 또는 제2 초경재료의 사이에 배치될 코어 메탈의 양면에 적어도 2개층 이상의 다층 비정질 금속 도금막을 형성하는 단계; 및The one side of the first cemented carbide material or the second cemented carbide material, or one side of both the first cemented carbide material and the second cemented carbide material, or between the first cemented carbide material and the second cemented carbide material according to the standard reduction potential difference of the metal salts. At least two layers on both sides of the core metal to be Forming a multilayer amorphous metal plating film; And
    상기 제1 초경재료 및 제2 초경재료를 상기 다층 비정질 금속 도금막이 상기 제1 초경재료와 제2 초경재료 사이에 배치되어 마주보는 형태로 배치하거나, 상기 코어 메탈을 상기 제1 초경재료와 제2 초경재료 사이에 배치하고, 상기 다층 비정질 금속 도금막의 발열특성이 나타날 수 있도록 용융 온도범위로 가열하면서 상기 제1 초경재료와 제2 초경재료를 서로 가압하여 접합하는 접합단계;The first cemented carbide material and the second cemented carbide material are disposed so that the multilayered amorphous metal plated film is disposed between the first cemented carbide material and the second cemented carbide material so as to face each other, or the core metal is disposed between the first cemented carbide material and the second cemented carbide material. A bonding step of disposing the cemented carbide material and pressing and bonding the first cemented carbide material and the second cemented carbide material to each other while heating to a melting temperature range such that the exothermic properties of the multilayer amorphous metal plating film are exhibited;
    를 포함하는 초경재료의 접합방법.Bonding method of cemented carbide material comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 금속염의 환원전위 값의 범위는 25℃ 표준수소전극 기준으로 +1.83V에서 -1.67V사이의 전압 또는 그에 상응하는 전류 값인 초경재료의 접합방법.The reduction potential value of the metal salt ranges from + 1.83V to -1.67V or a corresponding current value based on the standard hydrogen electrode 25 ℃ method of bonding cemented carbide material.
  3. 제1항에 있어서,The method of claim 1,
    상기 수계 합금 도금액은 물을 베이스로 한 도금액에 제1 금속염과 제 2 금속염, 산 및 염기, 첨가제를 포함하는 초경재료의 접합방법.The water-based alloy plating solution is a joining method of cemented carbide material comprising a first metal salt, a second metal salt, an acid, a base, and an additive in a plating solution based on water.
  4. 제3항에 있어서, The method of claim 3,
    상기 제1, 2 금속염은 Sn, Cu, Zn, Ni, Al, Ti, V, Cr, Mn, Fe, Co, Ga, Ge, As, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi 금속염으로 이루어진 군에서 선택된 1종 이상의 금속염인 초경재료의 접합방법.The first and second metal salts are Sn, Cu, Zn, Ni, Al, Ti, V, Cr, Mn, Fe, Co, Ga, Ge, As, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd , In, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi The cemented carbide material bonding method of at least one metal salt selected from the group consisting of metal salts.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1, 2 금속염은 표준 환원 전위의 차이가 나타나는 원소의 금속염을 둘 이상 선택하여 사용하는 초경재료의 접합방법.The first and second metal salts are bonded methods of cemented carbide materials used by selecting two or more metal salts of elements that show a difference in standard reduction potential.
  6. 제3항에 있어서,The method of claim 3,
    상기 산은 황산, 염산, 메탄술포나이트산(MSA), 질산, 붕산, 아세트산, 유기 황산, 구연산, 포름산, 아스코로브산, 불산, 인산, 젖산, 아미노산, 하이포아염소산 중에 선택하여 사용하는 초경재료의 접합방법.The acid may be selected from among sulfuric acid, hydrochloric acid, methanesulfonite acid (MSA), nitric acid, boric acid, acetic acid, organic sulfuric acid, citric acid, formic acid, ascorbic acid, hydrofluoric acid, phosphoric acid, lactic acid, amino acid, hypochlorous acid, and the like. Joining method.
  7. 제3항에 있어서,The method of claim 3,
    상기 첨가제는 폴리옥시에틸렌 라우릴 에테르(POELE), 도금 평탄제(평활제), 가속제, 억제제, 거품제거제, 광택제, 산화억제제 중에 선택하여 사용하는 초경재료의 접합방법.The additive is a method of joining cemented carbide materials selected from among polyoxyethylene lauryl ether (POELE), plating planarizer (smoothing agent), accelerator, inhibitor, defoamer, brightener, and antioxidant.
  8. 제1항에 있어서, The method of claim 1,
    상기 전극에 환원 전위 또는 전류를 인가하는 단계는 제1 금속과 제2 금속의 도금이 동시에 이루어지는 제1 전압구간과, 상기 제2 금속만 도금되는 제2 전압구간이 교대로 나타나도록 하는 초경재료의 접합방법.The step of applying a reduction potential or a current to the electrode is a cemented carbide material such that the first voltage section in which the plating of the first metal and the second metal is simultaneously performed, and the second voltage section in which only the second metal is plated alternately appear. Joining method.
  9. 제1항에 있어서,The method of claim 1,
    상기 금속 도금막은 초경재료 또는 코어 메탈의 표면에 도금된 다층 도금막 형태, 다층 박막 포일 시트(foil sheet) 형태, 다층 박막 포일 시트의 분쇄입자 형태, 다층 박막 포일 시트의 분쇄입자를 액체와 혼합하여 제조한 페이스트 형태, 및 표면에 다층 도금 박막을 형성한 금속입자 형태로 이루어진 군에서 선택된 1종 이상의 형태인 초경재료의 접합방법.The metal plating film is mixed with a liquid in the form of a multilayer plating film plated on the surface of the cemented carbide material or the core metal, in the form of a multilayer thin film foil sheet, in the form of a ground particle of the multilayer thin film foil sheet, and the ground particles of the multilayer thin film foil sheet. Bonding method of cemented carbide material of at least one type selected from the group consisting of a paste form prepared, and a metal particle form a multi-layer plating thin film formed on the surface.
  10. 제1항에 있어서,The method of claim 1,
    상기 금속 도금막은 서로 다른 금속 원소를 포함하는 적어도 2개의 박막층이 서로 교대로 적층되어 있는 구조의 다층 박막인 초경재료의 접합방법.The metal plating film is a cemented carbide material bonding method of the multi-layered thin film having a structure in which at least two thin film layers containing different metal elements are alternately stacked.
  11. 제1항에 있어서,The method of claim 1,
    상기 금속 도금막은 적어도 6개 이상의 박막층이 적층되어 있는 구조의 다층 박막인 초경재료의 접합방법.And the metal plating film is a multilayer thin film having a structure in which at least six thin film layers are laminated.
  12. 제1항에 있어서, The method of claim 1,
    상기 금속 도금막은 2개의 막으로의 적층 시, 상기 2개의 막 두께의 합이 0.1nm 내지 5㎛까지 범위의 두께로 구현되는 초경재료의 접합방법.When the metal plating film is laminated on two films, the bonding method of cemented carbide material in which the sum of the two film thicknesses is realized in a thickness ranging from 0.1 nm to 5 μm.
  13. 제1항에 있어서, The method of claim 1,
    상기 금속 도금막은 전체의 두께가 0.6nm 내지 300㎛까지 범위의 두께로 형성되는 초경재료의 접합방법.The metal plating film is a bonding method of the cemented carbide material is formed in a thickness of the entire range of 0.6nm to 300㎛.
  14. 제1항에 있어서, The method of claim 1,
    상기 금속 도금막의 용융 온도범위는 상기 금속 도금막을 이루는 각각의 박막층에 포함되는 원소들 중 융점이 낮은 원소의 융점, 또는 금속 도금막을 구성하는 전체 벌크 조성의 융점보다 낮은 온도범위인 초경재료의 접합방법.The melting temperature range of the metal plated film is a method of joining cemented carbide materials having a temperature range lower than the melting point of elements having a low melting point among the elements included in each thin film layer of the metal plated film, or a melting point of the entire bulk composition constituting the metal plated film. .
  15. 제1항에 있어서,The method of claim 1,
    상기 제1 초경재료는 금속 소재이고, 상기 제2 초경재료 제1초경재료와 다른 금속 소재, 세라믹 소재, 및 플라스틱 소재로 이루어진 군에서 선택된 소재인 초경재료의 접합방법.The first cemented carbide material is a metal material, the second cemented carbide material bonding method of the cemented carbide material is a material selected from the group consisting of a different metal material, ceramic material, and plastic material.
  16. 제1항에 있어서,The method of claim 1,
    상기 제1 초경재료는 공구강(Tool Steel)이고, 상기 제2 초경재료는 초경합금(hard Metal)인 초경재료의 접합방법.The first cemented carbide material is a tool steel (Tool Steel), the second cemented carbide material is a cemented carbide (hard metal) cemented carbide material bonding method.
PCT/KR2016/008065 2015-07-31 2016-07-22 Method for joining superhard materials using metal plating film having amorphous and heating characteristics WO2017022991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0108652 2015-07-31
KR1020150108652A KR101776151B1 (en) 2015-07-31 2015-07-31 Bonding method for cemented carbide material using metal coating layer with exothermic and amorphous characteristics

Publications (1)

Publication Number Publication Date
WO2017022991A1 true WO2017022991A1 (en) 2017-02-09

Family

ID=57943232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008065 WO2017022991A1 (en) 2015-07-31 2016-07-22 Method for joining superhard materials using metal plating film having amorphous and heating characteristics

Country Status (2)

Country Link
KR (1) KR101776151B1 (en)
WO (1) WO2017022991A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909666A (en) * 2021-11-04 2022-01-11 中南大学 Low-temperature diffusion connection method for tungsten alloy and stainless steel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101972576B1 (en) * 2017-07-20 2019-04-26 (주)에스엔텍 Bonding Material for device bonding having bonding-conductive layer and bonding-surface layer, and Preparing method thereof
KR101972497B1 (en) * 2017-07-27 2019-04-25 (주)에스엔텍 Bonding Material for device bonding having bonding-surface layers with different coefficient of expansion, and Preparing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930009665B1 (en) * 1991-07-16 1993-10-08 주식회사 종합폴스타 Ceramics/metal composite and production thereof
KR20010017892A (en) * 1999-08-16 2001-03-05 신현준 A method for brazing WC-Co and tool steel
KR20030028691A (en) * 2001-10-02 2003-04-10 쉬플리 캄파니, 엘.엘.씨. Plating bath and method for depositing a metal layer on a substrate
KR20110128859A (en) * 2009-05-27 2011-11-30 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Joined body
JP2012210639A (en) * 2011-03-30 2012-11-01 Tohoku Univ Joining method using amorphous metal and package of electronic part

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250872A (en) 1984-05-25 1985-12-11 彭 大雄 Method of brazing shank and tungsten carbide chip in punch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930009665B1 (en) * 1991-07-16 1993-10-08 주식회사 종합폴스타 Ceramics/metal composite and production thereof
KR20010017892A (en) * 1999-08-16 2001-03-05 신현준 A method for brazing WC-Co and tool steel
KR20030028691A (en) * 2001-10-02 2003-04-10 쉬플리 캄파니, 엘.엘.씨. Plating bath and method for depositing a metal layer on a substrate
KR20110128859A (en) * 2009-05-27 2011-11-30 내셔날 인스티튜트 오브 어드밴스드 인더스트리얼 사이언스 앤드 테크놀로지 Joined body
JP2012210639A (en) * 2011-03-30 2012-11-01 Tohoku Univ Joining method using amorphous metal and package of electronic part

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, JUN HYEONG: "Fabrication of Metal Nano Layers by Electroplating and Low Temperature Soldering for 3-Dimensional Packaging", THESIS FOR MASTER OF SCIENCE AND ENGINEERING, August 2014 (2014-08-01) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113909666A (en) * 2021-11-04 2022-01-11 中南大学 Low-temperature diffusion connection method for tungsten alloy and stainless steel

Also Published As

Publication number Publication date
KR101776151B1 (en) 2017-09-19
KR20170014777A (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP5160201B2 (en) Solder material and manufacturing method thereof, joined body and manufacturing method thereof, power semiconductor module and manufacturing method thereof
JP6160498B2 (en) Coated solder material and manufacturing method thereof
US10448504B2 (en) Method for producing a composite material
WO2017014605A1 (en) Metal plating film having heat-generating and amorphous properties and method for manufacturing same, use of same and low-temperature bonding method using same
WO2017217145A1 (en) Solder bonded part
WO2017022991A1 (en) Method for joining superhard materials using metal plating film having amorphous and heating characteristics
US20090186195A1 (en) Reactive Multilayer Joining With Improved Metallization Techniques
JP2008270353A (en) Power semiconductor module
TW201213552A (en) Bi-Sn-BASED HIGH-TEMPERATURE SOLDER ALLOY
JP5422494B2 (en) Superconducting wire metal terminal joint structure and superconducting wire and metal terminal joining method
WO2017014615A1 (en) Thermoelement using amorphous and exothermic binder, and production method therefor
JP2006088204A (en) Nonlead-based solder material
WO2017018749A1 (en) Method for manufacturing thin plate having heating and amorphous characteristics through plating
JP5672132B2 (en) Pb-free solder alloy mainly composed of Zn and method for producing the same
JP2008080393A (en) Joining body using peritectic system alloy, joining method, and semiconductor device
JP2018111111A (en) Manufacturing method for metal junction body and semiconductor device
JP6887183B1 (en) Solder alloys and molded solders
WO2017160132A2 (en) Thin film material for low temperature bonding
WO2016171525A1 (en) Bonding material with exothermic and amorphous characteristics and method for manufacturing same
WO2016171526A1 (en) Low-temperature sintering bonding material using exothermic reaction caused by nano-grain size, and method for manufacturing same
JP2008034721A (en) Thermoelectric power generation element, and its manufacturing method
JP2007175776A (en) Solder joining method and solder joint
Kim et al. Fluxless bonding of silicon to Ag-cladded copper using Sn-based alloys
CN116900545B (en) Microalloyed laminated soldering lug for rapid transient liquid phase connection and preparation method thereof
WO2001076335A1 (en) Mounting structure of electronic device and method of mounting electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16833227

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16833227

Country of ref document: EP

Kind code of ref document: A1