WO2017022575A1 - フッ素樹脂フィルムの製造方法 - Google Patents

フッ素樹脂フィルムの製造方法 Download PDF

Info

Publication number
WO2017022575A1
WO2017022575A1 PCT/JP2016/071905 JP2016071905W WO2017022575A1 WO 2017022575 A1 WO2017022575 A1 WO 2017022575A1 JP 2016071905 W JP2016071905 W JP 2016071905W WO 2017022575 A1 WO2017022575 A1 WO 2017022575A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
extrusion die
producing
flow rate
temperature
Prior art date
Application number
PCT/JP2016/071905
Other languages
English (en)
French (fr)
Inventor
樋口 義明
省吾 小寺
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to KR1020177031971A priority Critical patent/KR102443760B1/ko
Priority to JP2017532521A priority patent/JP6780645B2/ja
Priority to CN201680045549.XA priority patent/CN107848180B/zh
Priority to EP16832854.0A priority patent/EP3332941B1/en
Publication of WO2017022575A1 publication Critical patent/WO2017022575A1/ja
Priority to US15/786,787 priority patent/US10730219B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/251Design of extruder parts, e.g. by modelling based on mathematical theories or experiments
    • B29C48/2511Design of extruder parts, e.g. by modelling based on mathematical theories or experiments by modelling material flow, e.g. melt interaction with screw and barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/251Design of extruder parts, e.g. by modelling based on mathematical theories or experiments
    • B29C48/2511Design of extruder parts, e.g. by modelling based on mathematical theories or experiments by modelling material flow, e.g. melt interaction with screw and barrel
    • B29C48/2515Design of extruder parts, e.g. by modelling based on mathematical theories or experiments by modelling material flow, e.g. melt interaction with screw and barrel in the die zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/3001Extrusion nozzles or dies characterised by the material or their manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs

Definitions

  • the present invention relates to a method for producing a fluororesin film.
  • Fluoropolymer is a material with relatively high thermal stability and is used for applications that make use of heat resistance and chemical resistance. Recently, a fluororesin having an adhesive functional group has been proposed, and has attracted attention as a printed circuit board material that utilizes characteristics such as heat resistance, low dielectric constant, and low dielectric loss (Patent Document 1).
  • a fluororesin film can be produced by extruding the fluororesin from an extrusion die.
  • the fluororesin since the fluororesin has a high melting point, the fluororesin is easily deteriorated by being exposed to a high temperature during film production, and problems associated with the deterioration are likely to occur.
  • a fluororesin having an adhesive functional group is inferior in thermal stability due to the reactivity of the adhesive functional group, so that the fluororesin is likely to gel, and defects such as fish eyes accompanying gelation are likely to occur.
  • An object of the present invention is to provide a method for producing a fluororesin film in which defects (such as fish eyes due to gelation) due to deterioration of a fluororesin that can be melt-molded during production are unlikely to occur.
  • the present invention provides a method for producing a fluororesin film having the following configurations [1] to [10].
  • [1] A method for producing a fluororesin film by extruding a fluororesin material containing a melt-moldable fluororesin from an extrusion die, wherein the temperature of the extrusion die is 305 to 355 ° C., and the following formula (1)
  • the method for producing a fluororesin film, wherein the average flow velocity v 0.95 of the fluororesin material obtained in 1 is 1 ⁇ 10 ⁇ 4 m / sec or more.
  • v 0.95 Q 0.95 / A 0.95 (1)
  • the distance x from the inlet of the extrusion die to the end of the manifold of the extrusion die is 1
  • MFR 60 MFR 60 / MFR 0 (2)
  • MFR 60 is the melt flow rate of the fluororesin at an extrusion die temperature and a load of 49 N measured for the fluororesin after heating for 60 minutes at the temperature of the extrusion die in an air atmosphere
  • MFR 0 is the melt flow rate of the fluororesin at a temperature of the extrusion die and a load of 49 N, measured for the fluororesin before heating at the temperature of the extrusion die for 60 minutes.
  • the fluorine according to any one of [1] to [3], wherein the melt flow rate of the fluororesin measured at 372 ° C. and a load of 49 N is 20 to 70 g / 10 minutes, measured according to JIS K7210: 1999.
  • a method for producing a resin film [5] The method for producing a fluororesin film according to any one of [1] to [4], wherein the extrusion die is a coat hanger type die. [6] The method for producing a fluororesin film according to any one of [1] to [5], wherein the lip opening of the extrusion die is 0.5 to 3.0 mm.
  • [7] The method for producing a fluororesin film according to any one of [1] to [6], wherein the fluororesin is a fluororesin having an adhesive functional group.
  • the fluororesin is derived from a unit derived from tetrafluoroethylene, a unit derived from a monomer having an adhesive functional group, and a fluorine-containing monomer (excluding the tetrafluoroethylene).
  • a method for producing a fluororesin film according to any one of [1] to [7], wherein [9] The method for producing a fluororesin film according to [8], wherein the monomer having an adhesive functional group is a monomer having a cyclic acid anhydride group.
  • the fluorine-containing monomer is a monomer represented by hexafluoropropylene or CF 2 ⁇ CFOR f1 (where R f1 is a perfluoroalkyl group having 1 to 10 carbon atoms, or 2 to 10 carbon atoms)
  • R f1 is a perfluoroalkyl group having 1 to 10 carbon atoms, or 2 to 10 carbon atoms
  • defects such as fish eyes associated with gelation
  • defects due to deterioration of the fluororesin that can be melt-molded into the fluororesin film during production are unlikely to occur.
  • melt moldable means exhibiting melt fluidity. “Showing melt flowability” means that there is a temperature at which the melt flow rate is in the range of 0.1 to 1,000 g / 10 min at a temperature equal to or higher than the melting point of the resin under a load of 49 N. To do.
  • the “melting point” means a temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • the “melt flow rate” means a melt mass flow rate (MFR) defined in JIS K7210: 1999 (ISO 1133: 1997). “Unit” means a structural unit derived from a monomer formed by polymerization of the monomer.
  • the unit may be a structural unit directly formed by a polymerization reaction, or may be a structural unit in which a part of the unit is converted into another structure by treating the polymer.
  • the unit name is represented by adding “unit” to the monomer name.
  • the “acid anhydride group” means a group represented by —C ( ⁇ O) —O—C ( ⁇ O) —.
  • the method for producing a fluororesin film of the present invention is a method for producing a fluororesin film by extruding a fluororesin material containing a melt-moldable fluororesin from an extrusion die, wherein the temperature of the extrusion die is in a specific range, and It is characterized in that the flow rate of the fluororesin material flowing in the manifold of the extrusion die is in a specific range.
  • melt-moldable fluororesin examples include known ones such as tetrafluoroethylene / fluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), ethylene / Tetrafluoroethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), adhesive fluororesin described later, etc. Can be mentioned.
  • PFA tetrafluoroethylene / fluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • ETFE ethylene / Tetrafluoroethylene copolymer
  • PVDF polyvinylidene fluoride
  • PCTFE polychlorotrifluoroethylene
  • ECTFE
  • the melt-formable fluororesin is adhesive because it has excellent adhesion between the layer containing the fluororesin that can be melt-molded and other layers (polyimide film, glass cloth, metal foil, etc.).
  • a fluororesin having a functional group (hereinafter also referred to as an adhesive fluororesin) is preferable.
  • Adhesive functional groups include carbonyl group-containing groups (carboxy group, acid anhydride group, haloformyl group, keto group, carbonate group, amide bond, urethane bond, urea bond, ester bond), hydroxy group, epoxy group, isocyanate Group, amino group, thiol group, ether bond and the like.
  • the carbonyl group-containing group is preferably a carbonyl group-containing group selected from the group consisting of a carboxy group, an acid anhydride group, a fluoroformyl group, and a carbonate group.
  • the content of the adhesive functional group in the adhesive fluororesin is preferably 10 to 60,000, more preferably 100 to 50,000 per 1 ⁇ 10 6 main chain carbon atoms of the adhesive fluororesin. 100 to 10,000 is more preferable, and 300 to 5,000 is particularly preferable.
  • the content of the adhesive functional group is not less than the lower limit of the above range, the adhesiveness between the layer containing a fluororesin that can be melt-molded and other layers is particularly excellent when a laminate is formed.
  • the content of the adhesive functional group is not more than the upper limit of the above range, adhesion between the layer containing a fluororesin that can be melt-molded at a low processing temperature and other layers can be obtained.
  • the content of the adhesive functional group can be calculated by a method such as melt NMR analysis, fluorine content analysis, infrared absorption spectrum analysis. For example, as described in Japanese Patent Application Laid-Open No. 2007-314720, the proportion of units having an adhesive functional group (moles) in all units constituting the adhesive fluororesin using a method such as infrared absorption spectrum analysis. %) And the content of the adhesive functional group can be calculated from the ratio.
  • the adhesive fluororesin may be a polymer having a unit derived from a monomer having an adhesive functional group, and has an adhesive functional group derived from a polymerization initiator or a chain transfer agent at a main chain end or the like. It may be a polymer or a graft polymer obtained by graft polymerization of a monomer having an adhesive functional group to a fluororesin.
  • the adhesive fluororesin is a unit derived from tetrafluoroethylene (hereinafter also referred to as TFE) because it is excellent in melt moldability, chemical resistance, mechanical properties, heat resistance, low dielectric constant, low dielectric loss, and the like.
  • a copolymer having a unit derived from a monomer having an adhesive functional group and a unit derived from a fluorine-containing monomer (excluding TFE), or a TFE unit and the above-mentioned fluorine-containing monomer A copolymer having a unit derived from the body and having an adhesive functional group at the end of the main chain is preferred, and the former copolymer is particularly preferred.
  • unit (u1) a unit derived from TFE
  • unit (u2) a unit derived from a monomer having an adhesive functional group
  • unit (u3) a unit derived from a fluorinated monomer other than TFE.
  • unit (u3) a copolymer having the unit (u1), the unit (u2), and the unit (u3)
  • a copolymer having a functional group at the end of the main chain is referred to as “copolymer (A2)”.
  • the monomer constituting the unit (u2) is a monomer having a cyclic acid anhydride group from the viewpoint of excellent adhesion between the layer containing the copolymer (A1) and other layers when a laminate is formed.
  • a monomer is preferred.
  • the monomer having a cyclic acid anhydride group include itaconic anhydride (hereinafter also referred to as IAH), citraconic anhydride (hereinafter also referred to as CAH), 5-norbornene-2,3-dicarboxylic acid anhydride ( Hereinafter, it is also referred to as NAH.), Maleic anhydride and the like.
  • a monomer having a cyclic acid anhydride group selected from the group consisting of IAH, CAH and NAH is preferable from the viewpoint that the copolymer (A1) can be easily produced.
  • NAH is particularly preferable because it is particularly excellent in the adhesion between the layer containing and other layers.
  • the monomer which has an adhesive functional group may be used individually by 1 type, and may use 2 or more types together.
  • Fluoroolefin excluding TFE: vinyl fluoride, vinylidene fluoride (hereinafter also referred to as VDF), trifluoroethylene, chlorotrifluoroethylene (hereinafter also referred to as CTFE), hexafluoropropylene (hereinafter referred to as Etc.), etc.
  • CF 2 CFOR f3 CO 2 X 2 (wherein R f3 is a perfluoroalkylene group having 1 to 10 carbon atoms, or a group having an etheric oxygen atom between carbon atoms of a perfluoroalkylene group having 2 to 10 carbon atoms) X 2 is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms).
  • CF 2 CF (CF 2)
  • p OCF CF 2 (wherein X 3 is a hydrogen atom or a fluorine atom, q is an integer of 2 to 10, and X 4 is a hydrogen atom or a fluorine atom. ), Perfluoro (2-methylene-4-methyl-1,3-dioxolane) and the like.
  • a fluorine-containing monomer selected from the group consisting of q X 4 is preferable, and CF 2 ⁇ CFOR f1 or HFP is particularly preferable.
  • PPVE CFOCF 2 CF 2 CF 3
  • CF 2 CFO (CF 2) 8 F, and the like
  • PPVE is preferred.
  • CH 2 CX 3 (CF 2 ) q X 4
  • CH 2 CH (CF 2 ) 2 F
  • CH 2 CH (CF 2 ) 3 F
  • CH 2 CH (CF 2 ) 4 F
  • CH 2 ⁇ CH (CF 2 ) 6 F CH 2 ⁇ CF (CF 2 ) 3 H
  • CH 2 ⁇ CF (CF 2 ) 4 H CH 2 ⁇ CH (CF 2 ) 4 H
  • CH 2 ⁇ CH (CF 2 ) 4 F or CH 2 ⁇ CH (CF 2 ) 2 F is preferred.
  • a fluorine-containing monomer may be used individually by 1 type, and may use 2 or more types together.
  • the proportion of the unit (u1) is preferably from 50 to 99.89 mol%, more preferably from 50 to 99.45 mol%, based on the total of the unit (u1), the unit (u2) and the unit (u3), -98.95 mol% is particularly preferred.
  • the ratio of the unit (u2) is preferably 0.01 to 5 mol%, more preferably 0.05 to 3 mol%, based on the total of the unit (u1), the unit (u2) and the unit (u3). 0.05 to 2 mol% is particularly preferred.
  • the proportion of the unit (u3) is preferably from 0.1 to 49.99 mol%, and preferably from 0.5 to 49.9 mol%, based on the total of the unit (u1), the unit (u2) and the unit (u3). More preferred is 1 to 49.9 mol%. If the proportion of each unit is within the above range, the copolymer (A1) is melt moldable, chemical resistant, mechanical properties (elastic modulus at high temperature, flex resistance, etc.), heat resistance, low dielectric constant, It is excellent in low dielectric loss and the like, and particularly excellent in adhesion between the layer containing the copolymer (A1) and other layers when a laminate is formed. The ratio of each unit can be calculated by melt NMR analysis, fluorine content analysis, infrared absorption spectrum analysis, etc. of the copolymer (A1).
  • a part of the acid anhydride group is hydrolyzed to produce a dicarboxylic acid (itaconic acid, citraconic acid, 5-norbornene-2,3-dicarboxylic acid, maleic acid, etc. ) May be included.
  • a dicarboxylic acid itaconic acid, citraconic acid, 5-norbornene-2,3-dicarboxylic acid, maleic acid, etc.
  • the proportion of the unit is included in the unit (u2).
  • the copolymer (A1) and the copolymer (A2) are units derived from non-fluorinated monomers (excluding monomers having an adhesive functional group) (hereinafter, “unit (u4)”). May be included).
  • non-fluorinated monomers include olefins having 3 or less carbon atoms (ethylene, propylene, etc.), vinyl esters (vinyl acetate, etc.), and the like.
  • a non-fluorine-type monomer may be used individually by 1 type, and may use 2 or more types together.
  • the proportion of the unit (u4) is preferably from 5 to 90 mol%, more preferably from 5 to 80 mol%, more preferably from 10 to 65 mol%, based on the total of the unit (u1), the unit (u2) and the unit (u3). Is particularly preferred.
  • Preferred examples of the copolymer (A1) include TFE / PPVE / NAH copolymer, TFE / PPVE / IAH copolymer, TFE / PPVE / CAH copolymer, TFE / HFP / IAH copolymer, TFE.
  • TFE / VDF / IAH copolymer TFE / VDF / CAH copolymer
  • TFE / CH 2 CH (CF 2 ) 4 F / IAH / ethylene copolymer
  • TFE / CH 2 CH (CF 2 ) 4 F / CAH / ethylene copolymer
  • TFE / CH 2 CH (CF 2 ) 2 F / IAH / ethylene copolymer
  • TFE / CH 2 CH (CF 2 ) 2 F / CAH / Ethylene copolymer, and the like.
  • the copolymer (A1) can be produced by the method described in Patent Document 1.
  • Examples of the polymerization method and polymerization conditions include the method and conditions described in Patent Document 1, and the preferred forms are also the same.
  • Examples of the radical polymerization initiator, chain transfer agent, organic solvent and the like used for monomer polymerization include those described in Patent Document 1, and preferred forms are also the same.
  • the lower limit of the melting point of the copolymer (A1) is preferably 260 ° C, more preferably 280 ° C, particularly preferably 290 ° C.
  • the upper limit is preferably 320 ° C., particularly preferably 310 ° C.
  • the melt-moldable fluororesin preferably has an extrusion die temperature at the time of production of the fluororesin film and a melt flow rate at a load of 49 N of 7 g / 10 min or more, preferably 7-40 g / 10 min. More preferably, it is 10 to 30 g / 10 min. If the temperature of the extrusion die and the melt flow rate at a load of 49 N are equal to or higher than the lower limit of the above range, the stretchability of the molten resin is sufficient, and defects such as film breakage are unlikely to occur. Unevenness of thickness is suppressed.
  • the melt flow rate of the melt-moldable fluororesin satisfying the above at 372 ° C. and a load of 49 N is preferably 20 to 70 g / 10 minutes, more preferably 20 to 50 g / 10 minutes, and particularly preferably 30 to 50 g / 10 minutes. .
  • the melt-moldable fluororesin preferably has a melt flow rate stability S 60 calculated by the following formula (2) of 0.7 to 1.3, preferably 0.7 to 1.0. More preferred is 0.8 to 1.0.
  • S 60 MFR 60 / MFR 0 (2)
  • MFR 60 is the temperature of the extrusion die and the melt flow rate of the fluororesin at a load of 49 N measured for 60 minutes at the temperature of the extrusion die at the time of production of the fluororesin film in an air atmosphere.
  • MFR 0 is the melt flow rate of the fluororesin at an extrusion die temperature and a load of 49 N, measured for the fluororesin before heating at the extrusion die temperature for 60 minutes.
  • melt flow rate stability S 60 is less than the lower limit of the range, while suppressing defects due to degradation (fish eyes or the like due to gelation) can be produced stably for a long time with a fluorine resin film. If the melt flow rate stability S 60 is less than or equal to the upper limit of the above range, it is easy to thin the fluororesin film by stretching, and it has sufficient melt tension, so the film thickness deviation of the fluororesin film is reduced. it can.
  • the fluororesin material includes a melt-formable fluororesin.
  • the melt-moldable fluororesin may be used alone or in combination of two or more.
  • the fluororesin material may contain a non-fluorine resin and an additive that can be melt-molded as necessary within the range not impairing the effects of the present invention.
  • the content ratio of the non-fluorine resin that can be melt-molded is preferably 0.01 to 20% by mass, preferably 0.1 to 10% by mass is particularly preferred.
  • an inorganic filler having a low dielectric constant and dielectric loss tangent is preferable.
  • Inorganic fillers include silica, clay, talc, calcium carbonate, mica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, calcium hydroxide, magnesium hydroxide, water Aluminum oxide, basic magnesium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dosonite, hydrotalcite, calcium sulfate, barium sulfate, calcium silicate, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass Examples thereof include beads, silica-based balloons, carbon black, carbon nanotubes, carbon nanohorns, graphite, carbon fibers, glass balloons, carbon burns, wood flour, and zinc borate.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the content of the inorganic filler is preferably 0.1 to 100 parts by mass, particularly preferably 0.1 to 60 parts by mass with respect to 100 parts by mass of the resin component.
  • the fluororesin material is usually pelletized and used for film production.
  • the pelletization is performed, for example, by melt-extruding a fluororesin material into a strand shape using a twin screw extruder and then cutting with a pelletizer.
  • the fluororesin film is manufactured by using the manufacturing apparatus shown in FIG. 1 to melt pellets of fluororesin material by the extruder 100 and supplying the molten resin extruded from the extruder 100 to the extrusion die 102.
  • the molten resin is discharged from 102 in the form of a film, the film-like melt 104 is brought into contact with a pair of cooling rolls 106, and cooled to form a fluororesin film 108.
  • the film extrusion die only needs to have a manifold for distributing the material in the width direction of the extrusion die.
  • the extrusion die include a T die, a coat hanger die, a manifold inflation die, and the like.
  • FIG. 2 is a cross-sectional view showing an example of a T-die.
  • the T-type die 1 is obtained by superposing a pair of die plates 10 formed with recesses to be material flow paths, and has a flow path derived from the recesses formed therein.
  • the internal flow path includes an inlet 12 extending downward from the upper center, a manifold 14 extending left and right from the lower end of the inlet 12, a slit-like land 16 extending downward from the entire lower portion of the manifold 14, and a lower end of the land 16 And a lip 18 that is an opening.
  • FIG. 3 is a cross-sectional view showing an example of a coat hanger type die.
  • the coat hanger type die 2 is formed by stacking a pair of die plates 20 formed with recesses to be material channels, and a channel derived from the recesses is formed inside.
  • the internal flow path includes an inlet 22 that extends downward from the upper center, and a manifold 24 that slightly tilts downward from the lower end of the inlet 22 to the left and right, and decreases in cross-sectional area as it approaches the end.
  • a slit-like land 26 extending downward from the entire lower portion of the manifold 24 and a lip 28 which is an opening at the lower end of the land 26.
  • FIG. 4 is a cross-sectional view showing a cross-sectional shape of a paddle-shaped manifold in a coat hanger type die
  • FIG. 5 is a cross-sectional view showing a cross-sectional shape of the teardrop-shaped manifold.
  • symbol shows the site
  • the opening degree of the lip in the extrusion die is preferably 0.5 to 3.0 mm, more preferably 1.0 to 2.5 mm, and particularly preferably 1.5 to 2.5 mm.
  • the cross-sectional shape of the manifold in the extrusion die is not particularly limited. Examples of the cross-sectional shape of the manifold include a circle, a quadrangle as shown in FIGS. 2 and 3, a paddle shape as shown in FIG. 4, a tear shape as shown in FIG.
  • the temperature of the extrusion die during production of the fluororesin film is 305 to 355 ° C., preferably 315 to 340 ° C., particularly preferably 320 to 335 ° C. If the temperature of the extrusion die is not less than the lower limit of the above range, the fluororesin film can be stably melted and discharged, and the fluororesin material can be molded and the fluororesin film can be produced. If the temperature of the extrusion die is equal to or lower than the upper limit of the above range, defects (such as fish eyes accompanying gelation) associated with deterioration of the melt-moldable fluororesin are unlikely to occur.
  • the flow rate of the fluororesin material in the extrusion die manifold during the manufacture of the fluororesin film affects the defects (such as fish eyes) of the fluororesin film. That is, since the flow rate of the fluororesin material is reduced near both ends of the manifold, the flow rate of the fluororesin material is slower than the flow rate of the fluororesin material at the inlet of the extrusion die.
  • the fluororesin material tends to stay in the vicinity of both ends of the manifold, and as described above, the melt flow rate of the fluororesin decreases due to the deterioration (gelation, etc.) of the fluororesin, or the fluororesin melts due to thermal decomposition. The flow speed increases.
  • the average flow velocity v 0.95 of the fluororesin material obtained by the following formula (1) is 1 ⁇ 10 ⁇ 4 m / sec or more, and 2 ⁇ 10 ⁇ 4 m / sec. The above is preferable, and 3 ⁇ 10 ⁇ 4 m / sec or more is particularly preferable.
  • v 0.95 Q 0.95 / A 0.95 (1)
  • Q 0.95 can be determined from equation (3) below.
  • Q 0.95 1/2 ⁇ Q 0 ⁇ (1 ⁇ 0.95)
  • Q 0 is the flow rate (m 3 / sec) of the fluororesin material supplied to the inlet of the extrusion die.
  • Q 0 is a value obtained by dividing the discharge rate (kg / hour) of the extruder by the melt specific gravity (kg / m 3 ) of the fluororesin.
  • the melt specific gravity generally varies with temperature and pressure.
  • the melt specific gravity can be calculated by measuring the temperature dependency and pressure dependency using a PVT test system manufactured by Toyo Seiki Seisakusho, and extrapolating the melt specific gravity under atmospheric pressure conditions from the pressure dependency.
  • the manifold is designed symmetrically in order to evenly distribute the material over the width direction of the extrusion die, the average flow velocity v 0.95 of the fluororesin material is a manifold branched left and right from the inlet. What is necessary is just to obtain
  • the fluororesin film can be lengthened while suppressing defects (such as fish eyes due to gelation) due to deterioration of the meltable fluororesin. Can be manufactured stably over time.
  • the upper limit of the average flow velocity v 0.95 of the fluororesin material depends on the viscosity of the material inside the flow path, and the pressure gradient inside the extrusion die increases significantly due to the extremely high flow velocity, and the extrusion die deforms. Or 5 ⁇ 10 ⁇ 2 m / sec is preferable, and 1 ⁇ 10 ⁇ 2 m / sec is particularly preferable.
  • Examples 1 to 10 are production examples
  • examples 11 to 13, 16 to 19, 21 to 23, 25 to 28, 30 to 31 and 33 are examples
  • examples 14, 15, 20, 24, 29, 32 And 34 are comparative examples.
  • melt flow rate MFR 60 of the fluororesin at 49N was measured.
  • Thickness accuracy (maximum thickness of fluororesin film-minimum thickness of fluororesin film) / average thickness of fluororesin film x 100 (4)
  • Example 1 After vacuuming a 94-liter stainless steel polymerization tank equipped with a stirrer and a jacket, 1,3-dichloro-1,1,2,2 containing 0.107% by mass of methanol and 9.1% by mass of PPVE 86.8 kg (56 L) of a 2,3-pentafluoropropane (Asahi Glass Co., Ltd., AK225cb) (hereinafter also referred to as AK225cb) solution was charged, and the temperature inside the polymerization tank was set to 50 ° C. while stirring the inside of the polymerization tank.
  • AK225cb 2,3-pentafluoropropane
  • TFE gas was charged until the internal pressure of the polymerization tank reached 0.89 MPa (gauge pressure), and after the internal temperature was stabilized, a 0.4 mass% AK225cb solution of bis (perfluorobutyryl) peroxide was added at 3 mL / min ( 4.65 g / min) was added to initiate the polymerization.
  • TFE gas was added so that the internal pressure was constant at 0.89 MPa (gauge pressure). Further, the addition rate of a 0.4 mass% AK225cb solution of bis (perfluorobutyryl) peroxide was adjusted so that the consumption rate of TFE gas was maintained at 0.8 kg / hour.
  • a 0.73% by mass AK225cb solution of NAH (manufactured by Hitachi Chemical Co., Ltd., hymic anhydride) was continuously added at a ratio of 0.16 mol% with respect to the TFE gas added during the polymerization.
  • TFE gas 7.7 kg was added from the start of the reaction, the polymerization tank was cooled and the remaining gas was purged to complete the polymerization.
  • the slurry obtained by the polymerization is heated with stirring in the presence of water to separate the solvent and the residual monomer from the copolymer, and the copolymer is granulated to form a copolymer (A1-1). Of 7.9 kg was obtained.
  • the specific gravity of the copolymer (A1-1) was 2.15.
  • the melting point of the copolymer (A1-1) was 300 ° C., the temperature was 372 ° C., and the load was 49 N, and the melt flow rate was 20.9 g / 10 min.
  • the content of the adhesive functional group (acid anhydride group) in the copolymer (A1-1) is 1 with respect to 1 ⁇ 10 6 main chain carbon atoms of the copolymer (A1-1). , 000.
  • Example 2 Polymerization was conducted in the same manner as in Example 1 except that the concentration of methanol in the AK225cb solution charged in the polymerization tank was changed to 0.145% by mass to obtain 7.9 kg of copolymer (A1-2).
  • the specific gravity of the copolymer (A1-2) was 2.15.
  • the melting point of the copolymer (A1-2) was 300 ° C., the temperature was 372 ° C. and the load was 49 N, and the melt flow rate was 39.7 g / 10 min.
  • Example 3 Polymerization was carried out in the same manner as in Example 1 except that the concentration of methanol in the AK225cb solution charged in the polymerization tank was changed to 0.174% by mass to obtain 7.9 kg of copolymer (A1-3).
  • the specific gravity of the copolymer (A1-3) was 2.15.
  • the melting point of the copolymer (A1-3) was 300 ° C., the temperature was 372 ° C., and the load was 49 N, and the melt flow rate was 57.8 g / 10 min.
  • Example 4 Polymerization was carried out in the same manner as in Example 1 except that the concentration of methanol in the AK225cb solution charged in the polymerization tank was changed to 0.197% by mass to obtain 7.9 kg of copolymer (A1-4).
  • the specific gravity of the copolymer (A1-4) was 2.15.
  • the melting point of the copolymer (A1-4) was 300 ° C., the temperature was 372 ° C. and the load was 49 N, and the melt flow rate was 80.8 g / 10 min.
  • Example 5 A polymerization initiator solution in which (perfluorobutyryl) peroxide was dissolved in AK225cb at a concentration of 0.36% by mass was prepared. An NAH solution in which NAH was dissolved in AK225cb at a concentration of 0.3% by mass was prepared.
  • the NAH solution was continuously charged in an amount corresponding to 0.1 mol% with respect to the number of moles of TFE charged during the polymerization. 8 hours after the start of polymerization, when 32 kg of TFE gas was charged, the temperature in the polymerization tank was lowered to room temperature, and the pressure was purged to normal pressure. The resulting slurry was solid-liquid separated from AK225cb and then dried at 150 ° C. for 15 hours to obtain 33 kg of a granulated product of the copolymer (A1-5).
  • the specific gravity of the copolymer (A1-5) was 2.15.
  • the melting point of the copolymer (A1-5) was 300 ° C., the temperature was 372 ° C., and the load was 49 N.
  • the melt flow rate was 11.9 g / 10 min.
  • Example 6 Using the biaxial extruder with a vent mechanism (manufactured by Toshiba Machine Co.), the copolymer (A1-1) obtained in Example 1 was degassed and maintained at 0.1 atm. After extrusion at a discharge rate of 5 kg / hour and a rotational speed of 200 rpm (rotational speed per minute) in a strand shape, it was cut with a pelletizer to obtain copolymer (A1-1) pellets.
  • Copolymers (A1-1) to (A1-5) were prepared in the same manner as in Example 6 except that the copolymer (A1-1) was changed to copolymers (A1-2) to (A1-5). Pellets were obtained.
  • Example 11 As an extruder, a ⁇ 90 mm extruder manufactured by SML was prepared. As the extrusion die, a coat hanger type die (hereinafter also referred to as extrusion die (I)) having a width of 1.6 m and having a paddle shape as shown in FIG. 4 was prepared. The pellets of the copolymer (A1-1) are supplied to the extruder, and the copolymer (A1-1) is melt-extruded from the extruder at a temperature of 320 ° C. and a discharge rate of 50 kg / hour (line speed 10 m / min).
  • extrusion die (I) coat hanger type die having a width of 1.6 m and having a paddle shape as shown in FIG. 4 was prepared.
  • the pellets of the copolymer (A1-1) are supplied to the extruder, and the copolymer (A1-1) is melt-extruded from the extruder at a temperature of 320 ° C. and
  • the molten resin was directly supplied to the extrusion die (I), and the molten resin was discharged from the extrusion die (I) into a film.
  • the temperature of the extrusion die (I) was 325 ° C.
  • the lip opening degree of the extrusion die (I) was 0.8 mm.
  • the film-like melt discharged from the extrusion die (I) was stretched immediately after discharge, brought into contact with a cooling roll, and cooled to obtain a fluororesin film.
  • the air gap distance from the extrusion die (I) to contact with the cooling roll
  • fluororesin films having thicknesses of 100 ⁇ m, 25 ⁇ m and 12 ⁇ m were obtained.
  • Example 12 to 16 Except that the extrusion die temperature was changed as shown in Tables 1 and 2, the fluororesin films of Examples 12 to 15 were obtained in the same manner as Example 11.
  • the average flow velocity v 0.05 can be obtained from the following equation (5), and the flow rate Q 0.05 can be obtained from the following equation (6).
  • v 0.05 Q 0.05 / A 0.05 (5)
  • Q 0.05 1/2 ⁇ Q 0 ⁇ (1-0.05) (6)
  • Example 11 where the temperature of the extrusion die was 305 to 355 ° C. and the average flow velocity v 0.95 was 1 ⁇ 10 ⁇ 4 m / sec or more, no fish eye was seen in the fluororesin film.
  • Example 15 where the temperature of the extrusion die is 300 ° C., the melt flow rate of the copolymer (A1-1) at an extrusion die temperature and a load of 49 N is 0 g / 10 min. It did not flow and could not be extruded.
  • Example 14 where the temperature of the extrusion die exceeded 355 ° C., fish eyes were generated on the fluororesin film.
  • Example 17-18 and 20 Fluororesin films of Examples 17, 18, and 20 were obtained in the same manner as Example 12 except that the copolymer (A1-1) was changed to the copolymers (A1-2) to (A1-4).
  • Example 19 A fluororesin film of Example 19 was obtained in the same manner as Example 18 except that the exit die temperature was changed as shown in Table 2.
  • Example 16 to 19 in which the temperature of the extrusion die was 305 to 355 ° C. and the average flow velocity v 0.95 was 1 ⁇ 10 ⁇ 4 m / sec or more, no fish eye was seen in the fluororesin film.
  • Example 20 for melt flow rate stability S 60 of the copolymer (A1-5) is less than 0.7, fish eyes occurs in the fluororesin film when manufactured a long time.
  • Example 21 to 25 Fluororesin films of Examples 21 to 25 were obtained in the same manner as Example 12 except that the amount of copolymer (A1-1) discharged from the extruder was changed as shown in Table 3. In Examples 21, 22 and 25, the lip opening was 1.8 mm.
  • Example 21 to 23 and 25 in which the temperature of the extrusion die was 305 to 335 ° C. and the average flow velocity v 0.95 was 1 ⁇ 10 ⁇ 4 m / sec or more, no fish eye was seen in the fluororesin film. .
  • Example 25 since the average flow velocity v 0.05 was too high, the extrusion die was deformed, the film thickness control became difficult, and the thickness accuracy was inferior.
  • Example 24 in which the average flow velocity v 0.95 was less than 1 ⁇ 10 ⁇ 4 m / sec, fish eyes were generated on the fluororesin film 4 hours after the start of production.
  • melt flow rate of the fluororesin decreases with time, in the case of Example 24 where the average flow rate is low, the fluororesin material thickens during the flow inside the extrusion die and nonuniformity due to the generation of fish eyes Due to a synergistic effect with the increase in the melt stretchability, the melt stretchability is impaired. As a result, at the “ear”, which is the end of the film having the greatest stretching modification during film formation, continuous and steady melt drawing of the fluororesin film could not be performed, and an ear break occurred. Furthermore, since the stretch molding of the film end was not stable, the entire fluororesin film vibrated and the thickness accuracy was reduced.
  • Example 26 to 29 The fluororesin films of Examples 26 to 29 were obtained in the same manner as Example 12 except that the extrusion die (I) was changed to the extrusion dies (II) to (V). Extrusion dies (II) to (V) have a teardrop shape of the manifold shown in FIG. 5 and a width of 1.6 m, and the manifold cross-sectional areas A 0.05 and A 0.95 are shown in Table 4. It is a coat hanger type die which is a value shown.
  • Example 26 In Examples 26 to 28 in which the temperature of the extrusion die was 305 to 335 ° C. and the average flow velocity v 0.95 was 1 ⁇ 10 ⁇ 4 m / sec or more, no fish eye was seen in the fluororesin film.
  • Example 29 in which the average flow velocity v 0.95 is less than 1 ⁇ 10 ⁇ 4 m / sec, the flow rate of the fluororesin material inside the extrusion die is extremely slow, so that the fluororesin material stays and there is a large amount of fish eyes. Occurred. In addition, because of the fish eye, the thickness accuracy was also significantly reduced.
  • Examples 30 to 32 The fluorine of Examples 30 to 32 was the same as Example 11 except that the copolymer (A1-1) was changed to the copolymer (A1-5) and the temperature of the extrusion die was changed as shown in Table 5. A resin film was obtained.
  • Example 32 where the temperature of the extrusion die was higher than 355 ° C., fish eyes were generated in the fluororesin film 3 hours after the start of production. Moreover, since the melt flow rate was less than 7 g / 10 minutes, the ear break occurred and the thickness accuracy was inferior.
  • Example 33 As the copper foil, an electrolytic copper foil (manufactured by Fukuda Metal Foil Powder Co., Ltd., CF-T4X-SVR-12, thickness: 12 ⁇ m, Rz: 1.2 ⁇ m) was prepared. The fluororesin film having a thickness of 25 ⁇ m obtained in Example 11 and a copper foil are laminated in the order of film / copper foil / film, and pressed for 10 minutes under the conditions of a temperature of 360 ° C. and a pressure of 1.3 MPa. A composite film was obtained.
  • a 25 mm wide test piece was cut out from the composite film.
  • the interface between the fluororesin film on one side and the copper foil is peeled off in the direction of 180 degrees at a pulling speed of 50 mm / min using a tensile tester (manufactured by A & D, product name: TENSILON).
  • the maximum load was taken as the peel strength.
  • the peel strength was 12 N / cm.
  • Example 34 A composite film was obtained in the same manner as in Example 33 except that the fluororesin film was changed to the fluororesin film having a thickness of 25 ⁇ m obtained in Example 14, and the peel strength was measured. The peel strength was 5.5 N / cm.
  • the fluororesin film of the present invention comprises a metal-clad laminate in which a glass cloth and a metal foil (copper foil, etc.) are bonded via an adhesive fluororesin film; a heat-resistant resin film (polyimide film, etc.) and a metal foil.
  • Substrate Useful as a basic component material for high-frequency electronic substrates that require low transmission loss.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

製造時に溶融成形可能なフッ素樹脂の劣化に伴う欠陥(ゲル化に伴うフィッシュアイ等)が発生しにくいフッ素樹脂フィルムの製造方法の提供。 溶融成形可能なフッ素樹脂を含むフッ素樹脂材料を押出ダイから押し出してフッ素樹脂フィルムを製造する方法であって、押出ダイの温度が305~355℃であり、v0.95=Q0.95/A0.95で求められるフッ素樹脂材料の平均流速v0.95が1×10-4m/秒以上であるフッ素樹脂フィルムの製造方法。ただし、押出ダイの流入口22から押出ダイのマニホールド24の端部までの距離をx=1とし、Q0.95は流入口22からx=0.95の位置におけるマニホールド24内を流れるフッ素樹脂材料の流量(m/秒)であり、A0.95は流入口22からx=0.95の位置におけるマニホールド24の断面積(m)である。

Description

フッ素樹脂フィルムの製造方法
 本発明は、フッ素樹脂フィルムの製造方法に関する。
 フッ素樹脂は、比較的熱安定性の高い材料で、耐熱性、耐薬品性等を生かした用途に用いられている。最近では、接着性官能基を有するフッ素樹脂が提案されており、耐熱性、低誘電率、低誘電損失等の特性を生かしたプリント基板用材料として注目されている(特許文献1)。
国際公開第2015/080260号
 溶融成形可能なフッ素樹脂については、フッ素樹脂を押出ダイから押し出してフッ素樹脂フィルムを製造することができる。しかし、フッ素樹脂は融点が高いため、フィルム製造時に高温にさらされてフッ素樹脂が劣化しやすく、劣化に伴う問題が発生しやすい。たとえば、接着性官能基を有するフッ素樹脂は、接着性官能基の反応性のため熱安定性に劣るため、フッ素樹脂がゲル化しやすく、ゲル化に伴うフィッシュアイ等の欠陥が発生しやすい。
 本発明は、製造時に溶融成形可能なフッ素樹脂の劣化に伴う欠陥(ゲル化に伴うフィッシュアイ等)が発生しにくいフッ素樹脂フィルムの製造方法の提供を目的とする。
 本発明は、下記[1]~[10]の構成を有するフッ素樹脂フィルムの製造方法を提供する。
 [1]溶融成形可能なフッ素樹脂を含むフッ素樹脂材料を押出ダイから押し出してフッ素樹脂フィルムを製造する方法であって、前記押出ダイの温度が、305~355℃であり、下式(1)で求められる前記フッ素樹脂材料の平均流速v0.95が、1×10-4m/秒以上である、フッ素樹脂フィルムの製造方法。
 v0.95=Q0.95/A0.95  (1)
 ただし、前記押出ダイの流入口から前記押出ダイのマニホールドの端部までの距離xを1とし、
 Q0.95は、前記流入口からx=0.95の位置における前記マニホールド内を流れる前記フッ素樹脂材料の流量(m/秒)であり、
 A0.95は、前記流入口からx=0.95の位置における前記マニホールドの断面積(m)である。
 [2]前記押出ダイの温度および荷重49Nにおける前記フッ素樹脂の溶融流れ速度が、7g/10分以上である、[1]のフッ素樹脂フィルムの製造方法。
 [3]下式(2)で求められる前記フッ素樹脂の溶融流れ速度安定性S60が、0.7~1.3である、[1]または[2]のフッ素樹脂フィルムの製造方法。
 S60=MFR60/MFR  (2)
 ただし、MFR60は、空気雰囲気下で前記押出ダイの温度で60分間加熱した後の前記フッ素樹脂について測定した、前記押出ダイの温度および荷重49Nにおける前記フッ素樹脂の溶融流れ速度であり、
 MFRは、前記押出ダイの温度で60分間加熱する前の前記フッ素樹脂について測定した、前記押出ダイの温度および荷重49Nにおける前記フッ素樹脂の溶融流れ速度である。
 [4]JIS K7210:1999に準じて測定される、372℃および荷重49Nにおける前記フッ素樹脂の溶融流れ速度が、20~70g/10分である、[1]~[3]のいずれかのフッ素樹脂フィルムの製造方法。
 [5]前記押出ダイがコートハンガー型ダイである、[1]~[4]のいずれかのフッ素樹脂フィルムの製造方法。
 [6]前記押出ダイのリップ開度が0.5~3.0mmである、[1]~[5]のいずれかのフッ素樹脂フィルムの製造方法。
 [7]前記フッ素樹脂が、接着性官能基を有するフッ素樹脂である、[1]~[6]のいずれかのフッ素樹脂フィルムの製造方法。
 [8]前記フッ素樹脂が、テトラフルオロエチレンに由来する単位と、接着性官能基を有する単量体に由来する単位と、含フッ素単量体(ただし、前記テトラフルオロエチレンを除く。)に由来する単位とを有する共重合体である、[1]~[7]のいずれかのフッ素樹脂フィルムの製造方法。
 [9]前記接着性官能基を有する単量体が環状酸無水物基を有する単量体である、[8]のフッ素樹脂フィルムの製造方法。
 [10]前記含フッ素単量体が、ヘキサフルオロプロピレンまたはCF=CFORf1で表される単量体(ただし、Rf1は、炭素数1~10のペルフルオロアルキル基、または炭素数2~10のペルフルオロアルキル基の炭素原子間にエーテル性酸素原子を有する基である。)である、[8]または[9]のフッ素樹脂フィルムの製造方法。
 本発明のフッ素樹脂フィルムの製造方法によれば、製造時にフッ素樹脂フィルムに溶融成形可能なフッ素樹脂の劣化に伴う欠陥(ゲル化に伴うフィッシュアイ等)が発生しにくい。
フッ素樹脂フィルムの製造装置の一例を示す概略構成図である。 T型ダイの一例を示す断面図である。 コートハンガー型ダイの一例を示す断面図である。 コートハンガー型ダイにおけるパドル形マニホールドの断面形状を示す断面図である。 コートハンガー型ダイにおける涙形マニホールドの断面形状を示す断面図である。
 「溶融成形可能」であるとは、溶融流動性を示すことを意味する。
 「溶融流動性を示す」とは、荷重49Nの条件下、樹脂の融点以上の温度において、溶融流れ速度が0.1~1,000g/10分の範囲内にある温度が存在することを意味する。
 「融点」とは、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度を意味する。
 「溶融流れ速度」とは、JIS K7210:1999(ISO 1133:1997)に規定されるメルトマスフローレート(MFR)を意味する。
 「単位」とは、単量体が重合することによって形成された該単量体に由来する構成単位を意味する。単位は、重合反応によって直接形成された構成単位であってもよく、重合体を処理することによって該単位の一部が別の構造に変換された構成単位であってもよい。なお、単位名は単量体名に「単位」を付して表す。
 「酸無水物基」とは、-C(=O)-O-C(=O)-で表される基を意味する。
[フッ素樹脂フィルムの製造方法]
 本発明のフッ素樹脂フィルムの製造方法は、溶融成形可能なフッ素樹脂を含むフッ素樹脂材料を押出ダイから押し出してフッ素樹脂フィルムを製造する方法であって、押出ダイの温度を特定の範囲とし、かつ押出ダイのマニホールド内を流れるフッ素樹脂材料の流量を特定の範囲とすることに特徴がある。
(溶融成形可能なフッ素樹脂)
 溶融成形可能なフッ素樹脂としては、公知のものが挙げられ、たとえば、テトラフルオロエチレン/フルオロアルキルビニルエーテル系共重合体(PFA)、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体(FEP)、エチレン/テトラフルオロエチレン系共重合体(ETFE)、ポリビニリデンフルオライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン/クロロトリフルオロエチレン系共重合体(ECTFE)、後述する接着性フッ素樹脂等が挙げられる。
 溶融成形可能なフッ素樹脂としては、積層体とした際に溶融成形可能なフッ素樹脂を含む層と他の層(ポリイミドフィルム、ガラスクロス、金属箔等)との接着性に優れる点から、接着性官能基を有するフッ素樹脂(以下、接着性フッ素樹脂とも記す。)が好ましい。
 接着性官能基としては、カルボニル基含有基(カルボキシ基、酸無水物基、ハロホルミル基、ケト基、カーボネート基、アミド結合、ウレタン結合、ウレア結合、エステル結合)、ヒドロキシ基、エポキシ基、イソシアナート基、アミノ基、チオール基およびエーテル結合等が挙げられる。積層体とした際に溶融成形可能なフッ素樹脂を含む層と他の層との接着性に特に優れる点から、カルボニル基含有基、ヒドロキシ基、エポキシ基およびイソシアナート基からなる群から選択される接着性官能基が好ましく、カルボニル基含有基が特に好ましい。カルボニル基含有基としては、カルボキシ基、酸無水物基、フルオロホルミル基およびカーボネート基からなる群から選ばれるカルボニル基含有基が好ましい。
 接着性フッ素樹脂中の接着性官能基の含有量は、接着性フッ素樹脂の主鎖炭素数1×10個に対して10~60,000個が好ましく、100~50,000個がより好ましく、100~10,000個がさらに好ましく、300~5,000個が特に好ましい。接着性官能基の含有量が前記範囲の下限値以上であれば、積層体とした際に溶融成形可能なフッ素樹脂を含む層と他の層との接着性に特に優れる。接着性官能基の含有量が前記範囲の上限値以下であれば、低い加工温度で溶融成形可能なフッ素樹脂を含む層と他の層との接着性が得られる。
 接着性官能基の含有量は、溶融NMR分析、フッ素含有量分析、赤外吸収スペクトル分析等の方法によって算出できる。たとえば、特開2007-314720号公報に記載のように、赤外吸収スペクトル分析等の方法を用いて、接着性フッ素樹脂を構成する全単位中の、接着性官能基を有する単位の割合(モル%)を求め、該割合から接着性官能基の含有量を算出できる。
 接着性フッ素樹脂は、接着性官能基を有する単量体に由来する単位を有する重合体であってもよく、重合開始剤または連鎖移動剤に由来する接着性官能基を主鎖末端等に有する重合体であってもよく、フッ素樹脂に接着性官能基を有する単量体をグラフト重合させたグラフト重合体であってもよい。
 接着性フッ素樹脂としては、溶融成形性、耐薬品性、機械的特性、耐熱性、低誘電率、低誘電損失等に優れる点から、テトラフルオロエチレン(以下、TFEとも記す。)に由来する単位と、接着性官能基を有する単量体に由来する単位と、含フッ素単量体(ただし、TFEを除く。)に由来する単位とを有する共重合体、またはTFE単位と上記含フッ素単量体に由来する単位とを有し、接着性官能基を主鎖末端に有する共重合体が好ましく、前者の共重合体が特に好ましい。
 以下、TFEに由来する単位を「単位(u1)」と記し、接着性官能基を有する単量体に由来する単位を「単位(u2)」と記し、TFE以外の含フッ素単量体に由来する単位を「単位(u3)」と記す。また、単位(u1)と単位(u2)と単位(u3)とを有する共重合体を「共重合体(A1)」と記し、単位(u1)と単位(u3)とを有し、接着性官能基を主鎖末端に有する共重合体を「共重合体(A2)」と記す。
 単位(u2)を構成する単量体としては、積層体とした際に共重合体(A1)を含む層と他の層との接着性に特に優れる点から、環状酸無水物基を有する単量体が好ましい。
 環状酸無水物基を有する単量体としては、無水イタコン酸(以下、IAHとも記す。)、無水シトラコン酸(以下、CAHとも記す。)、5-ノルボルネン-2,3-ジカルボン酸無水物(以下、NAHとも記す。)、無水マレイン酸等が挙げられる。共重合体(A1)を容易に製造できる点から、IAH、CAHおよびNAHからなる群から選ばれる環状酸無水物基を有する単量体が好ましく、積層体とした際に共重合体(A1)を含む層と他の層との接着性に特に優れる点から、NAHが特に好ましい。
 接着性官能基を有する単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 単位(u3)を構成する含フッ素単量体としては、下記のものが挙げられる。
 フルオロオレフィン(ただし、TFEを除く。):ビニルフルオリド、ビニリデンフルオリド(以下、VDFとも記す。)、トリフルオロエチレン、クロロトリフルオロエチレン(以下、CTFEとも記す。)、ヘキサフルオロプロピレン(以下、HFPとも記す。)等、
 CF=CFORf1(ただし、Rf1は、炭素数1~10のペルフルオロアルキル基、または炭素数2~10のペルフルオロアルキル基の炭素原子間にエーテル性酸素原子を有する基である。)、
 CF=CFORf2SO(ただし、Rf2は、炭素数1~10のペルフルオロアルキレン基、または炭素数2~10のペルフルオロアルキレン基の炭素原子間にエーテル性酸素原子を有する基であり、Xは、ハロゲン原子またはヒドロキシ基である。)、
 CF=CFORf3CO(ただし、Rf3は、炭素数1~10のペルフルオロアルキレン基、または炭素数2~10のペルフルオロアルキレン基の炭素原子間にエーテル性酸素原子を有する基であり、Xは、水素原子または炭素数1~3のアルキル基である。)、
 CF=CF(CFOCF=CF(ただし、pは、1または2である。)、
 CH=CX(CF(ただし、Xは、水素原子またはフッ素原子であり、qは、2~10の整数であり、Xは、水素原子またはフッ素原子である。)、
 ペルフルオロ(2-メチレン-4-メチル-1、3-ジオキソラン)等。
 含フッ素単量体としては、溶融成形性、機械的特性等に優れる共重合体(A1)が得られる点から、VDF、CTFE、HFP、CF=CFORf1およびCH=CX(CFからなる群から選ばれる含フッ素単量体が好ましく、CF=CFORf1またはHFPが特に好ましい。
 CF=CFORf1としては、CF=CFOCFCF、CF=CFOCFCFCF(以下、PPVEとも記す。)、CF=CFOCFCFCFCF、CF=CFO(CFF等が挙げられ、PPVEが好ましい。
 CH=CX(CFとしては、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFH等が挙げられ、CH=CH(CFFまたはCH=CH(CFFが好ましい。
 含フッ素単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 単位(u1)の割合は、単位(u1)、単位(u2)および単位(u3)の合計に対して、50~99.89モル%が好ましく、50~99.45モル%がより好ましく、50~98.95モル%が特に好ましい。
 単位(u2)の割合は、単位(u1)、単位(u2)および単位(u3)の合計に対して、0.01~5モル%が好ましく、0.05~3モル%がより好ましく、0.05~2モル%が特に好ましい。
 単位(u3)の割合は、単位(u1)、単位(u2)および単位(u3)の合計に対して、0.1~49.99モル%が好ましく、0.5~49.9モル%がより好ましく、1~49.9モル%が特に好ましい。
 各単位の割合が前記範囲内であれば、共重合体(A1)が溶融成形性、耐薬品性、機械的特性(高温での弾性率、耐屈曲性等)、耐熱性、低誘電率、低誘電損失等に優れ、積層体とした際に共重合体(A1)を含む層と他の層との接着性に特に優れる。
 各単位の割合は、共重合体(A1)の溶融NMR分析、フッ素含有量分析、赤外吸収スペクトル分析等によって算出できる。
 単位(u2)を有する共重合体(A1)においては、酸無水物基の一部が加水分解し、ジカルボン酸(イタコン酸、シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸、マレイン酸等)に由来する単位が含まれる場合がある。ジカルボン酸に由来する単位が含まれる場合、該単位の割合は、単位(u2)に含まれるものとする。
 共重合体(A1)および共重合体(A2)は、非フッ素系単量体(ただし、接着性官能基を有する単量体を除く。)に由来する単位(以下、「単位(u4)」と記す。)を有していてもよい。
 非フッ素系単量体としては、炭素数3以下のオレフィン(エチレン、プロピレン等)、ビニルエステル(酢酸ビニル等)等が挙げられる。
 非フッ素系単量体は、1種を単独で用いてもよく、2種以上を併用してもよい。
 単位(u4)の割合は、単位(u1)、単位(u2)および単位(u3)の合計に対して、5~90モル%が好ましく、5~80モル%がより好ましく、10~65モル%が特に好ましい。
 共重合体(A1)の好ましい具体例としては、TFE/PPVE/NAH共重合体、TFE/PPVE/IAH共重合体、TFE/PPVE/CAH共重合体、TFE/HFP/IAH共重合体、TFE/HFP/CAH共重合体、TFE/VDF/IAH共重合体、TFE/VDF/CAH共重合体、TFE/CH=CH(CFF/IAH/エチレン共重合体、TFE/CH=CH(CFF/CAH/エチレン共重合体、TFE/CH=CH(CFF/IAH/エチレン共重合体、TFE/CH=CH(CFF/CAH/エチレン共重合体、等が挙げられる。
 共重合体(A1)は、特許文献1に記載された方法によって製造できる。
 重合方法、重合条件等としては、特許文献1に記載された方法または条件が挙げられ、好ましい形態も同様である。
 単量体の重合に用いられるラジカル重合開始剤、連鎖移動剤、有機溶媒等としては、特許文献1に記載されたものが挙げられ、好ましい形態も同様である。
 共重合体(A1)の融点の下限値は、260℃が好ましく、280℃がより好ましく、290℃が特に好ましい。上限値は、320℃が好ましく、310℃が特に好ましい。
(フッ素樹脂の溶融流れ速度)
 溶融成形可能なフッ素樹脂としては、フッ素樹脂フィルムの製造時の押出ダイの温度および荷重49Nにおける溶融流れ速度が、7g/10分以上であるものが好ましく、7~40g/10分であるものがより好ましく、10~30g/10分であるものが特に好ましい。押出ダイの温度および荷重49Nにおける溶融流れ速度が前記範囲の下限値以上であれば、溶融樹脂の延伸性が充分となり、フィルムの耳切れ等の欠陥が発生しにくく、また、フッ素樹脂フィルムの膜厚のムラが抑えられる。押出ダイの温度および荷重49Nにおける溶融流れ速度が前記範囲の上限値以下であれば、フッ素樹脂フィルムの延伸による薄肉化が容易であり、かつ、充分な溶融張力を有するため、フッ素樹脂フィルムの膜厚偏差を小さくできる。
 上記を満足する溶融成形可能なフッ素樹脂の372℃および荷重49Nにおける溶融流れ速度は、20~70g/10分が好ましく、20~50g/10分がより好ましく、30~50g/10分が特に好ましい。
 溶融成形可能なフッ素樹脂としては、下式(2)で求められる溶融流れ速度安定性S60が、0.7~1.3であるものが好ましく、0.7~1.0であるものがより好ましく、0.8~1.0であるものが特に好ましい。
 S60=MFR60/MFR  (2)
 ただし、MFR60は、空気雰囲気下でフッ素樹脂フィルムの製造時の押出ダイの温度で60分間加熱した後のフッ素樹脂について測定した、押出ダイの温度および荷重49Nにおけるフッ素樹脂の溶融流れ速度であり、MFRは、押出ダイの温度で60分間加熱する前のフッ素樹脂について測定した、押出ダイの温度および荷重49Nにおけるフッ素樹脂の溶融流れ速度である。
 フッ素樹脂フィルムを長時間にわたって製造する場合、滞留時間が長いフッ素樹脂が架橋してゲル化し、フッ素樹脂の溶融流れ速度が低下したり、滞留時間が長いフッ素樹脂が熱分解し、フッ素樹脂の溶融流れ速度が上昇したりする。溶融流れ速度安定性S60が前記範囲の下限値以上であれば、劣化に伴う欠陥(ゲル化に伴うフィッシュアイ等)を抑えつつ、フッ素樹脂フィルムを長時間安定して製造できる。溶融流れ速度安定性S60が前記範囲の上限値以下であれば、フッ素樹脂フィルムの延伸による薄肉化が容易であり、かつ、充分な溶融張力を有するため、フッ素樹脂フィルムの膜厚偏差を小さくできる。
(フッ素樹脂材料)
 フッ素樹脂材料は、溶融成形可能なフッ素樹脂を含む。
 溶融成形可能なフッ素樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 フッ素樹脂材料は、本発明の効果を損なわない範囲内において、必要に応じて溶融成形可能な非フッ素系樹脂、添加剤を含んでいてもよい。
 溶融成形可能な非フッ素系樹脂としては、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド等が挙げられる。
 フッ素樹脂材料が溶融成形可能な非フッ素系樹脂を含む場合、溶融成形可能な非フッ素系樹脂の含有割合は、フッ素樹脂材料に対して、0.01~20質量%が好ましく、0.1~10質量%が特に好ましい。
 添加剤としては、誘電率や誘電正接が低い無機フィラーが好ましい。無機フィラーとしては、シリカ、クレー、タルク、炭酸カルシウム、マイカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、珪酸カルシウム、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルーン、カーボンブラック、カーボンナノチューブ、カーボンナノホーン、グラファイト、炭素繊維、ガラスバルーン、炭素バーン、木粉、ホウ酸亜鉛等が挙げられる。無機フィラーは、1種単独で用いてもよく、2種以上を併用してもよい。
 フッ素樹脂材料が無機フィラーを含む場合、無機フィラーの含有量は、樹脂成分100質量部に対して、0.1~100質量部が好ましく、0.1~60質量部が特に好ましい。
(ペレット化)
 フッ素樹脂材料は、通常、ペレット化され、フィルム製造に用いられる。
 ペレット化は、たとえば、2軸押出機を用いてフッ素樹脂材料をストランド状に溶融押出した後、ペレタイザで切断することによって行われる。
(フッ素樹脂フィルムの製造装置)
 フッ素樹脂フィルムの製造は、たとえば、図1に示す製造装置を用い、押出機100によってフッ素樹脂材料のペレットを溶融し、押出機100から押し出された溶融樹脂を押出ダイ102に供給し、押出ダイ102から溶融樹脂をフィルム状に吐出し、フィルム状溶融体104を一対の冷却ロール106に接触させ、冷却してフッ素樹脂フィルム108とすることによって行われる。
(フィルム用押出ダイ)
 フィルム用押出ダイは、押出ダイの幅方向にわたって材料を分配するためのマニホールドを内部に有するものであればよい。押出ダイとしては、T型ダイ、コートハンガー型ダイ、マニホールド型インフレーションダイ等が挙げられる。
 図2は、T型ダイの一例を示す断面図である。T型ダイ1は、材料の流路となる凹部が形成された一対のダイプレート10を重ねあわせたものであり、該凹部に由来する流路が内部に形成されたものである。内部の流路は、上部中央から下方に延びる流入口12と、流入口12の下端から左右に延びるマニホールド14と、マニホールド14の下部全体から下方に延びるスリット状のランド16と、ランド16の下端の開口であるリップ18とから構成される。
 図3は、コートハンガー型ダイの一例を示す断面図である。コートハンガー型ダイ2は、材料の流路となる凹部が形成された一対のダイプレート20を重ねあわせたものであり、該凹部に由来する流路が内部に形成されたものである。内部の流路は、上部中央から下方に延びる流入口22と、流入口22の下端から左右に、下方に微かに傾斜しながら、かつ端部に近づくにつれて断面積を小さくしながら延びるマニホールド24と、マニホールド24の下部全体から下方に延びるスリット状のランド26と、ランド26の下端の開口であるリップ28とから構成される。
 また、図4は、コートハンガー型ダイにおけるパドル形マニホールドの断面形状を示す断面図であり、図5は、同じく涙形マニホールドの断面形状を示す断面図である。いずれの図においても、符号は、図3と同じ符号の部位を示す。
 押出ダイにおけるリップ開度としては、0.5~3.0mmが好ましく、1.0~2.5mmがより好ましく、1.5~2.5mmが特に好ましい。
 押出ダイにおけるマニホールドの断面形状は、特に限定されない。マニホールドの断面形状としては、円形、図2および図3に示すような四角形、図4に示すようなパドル形、図5に示すような涙形等が挙げられる。
(押出ダイの温度)
 フッ素樹脂フィルムの製造時の押出ダイの温度は、305~355℃であり、315~340℃が好ましく、320~335℃が特に好ましい。押出ダイの温度が前記範囲の下限値以上であれば、フッ素樹脂フィルムを安定して溶融吐出でき、フッ素樹脂材料の成形およびフッ素樹脂フィルムの製造が可能である。押出ダイの温度が前記範囲の上限値以下であれば、溶融成形可能なフッ素樹脂の劣化に伴う欠陥(ゲル化に伴うフィッシュアイ等)が発生しにくい。
(マニホールド内のフッ素樹脂材料の流速)
 フッ素樹脂フィルムの製造時における、押出ダイのマニホールド内のフッ素樹脂材料の流速は、フッ素樹脂フィルムの欠陥(フィッシュアイ等)に影響を与える。すなわち、マニホールドの両端付近では、フッ素樹脂材料の流量が少なくなるため、フッ素樹脂材料の流速が、押出ダイの流入口におけるフッ素樹脂材料の流速に比べ、遅くなる。その結果、マニホールドの両端付近においてフッ素樹脂材料が滞留しやすくなり、上述したように、フッ素樹脂の劣化(ゲル化等)によってフッ素樹脂の溶融流れ速度が低下したり、熱分解によってフッ素樹脂の溶融流れ速度が上昇したりする。
 したがって、フッ素樹脂フィルムの製造時における、下式(1)で求められるフッ素樹脂材料の平均流速v0.95は、1×10-4m/秒以上であり、2×10-4m/秒以上が好ましく、3×10-4m/秒以上が特に好ましい。
 v0.95=Q0.95/A0.95  (1)
 ただし、図2および図3に示すように、押出ダイの流入口の中央から押出ダイのマニホールドの端部までの距離をx=1とし、Q0.95は、流入口からx=0.95の位置におけるマニホールド内を流れるフッ素樹脂材料の流量(m/秒)であり、A0.95は、流入口からx=0.95の位置におけるマニホールドの断面積(m)である。
 マニホールドは、押出ダイの幅方向にわたって材料を均一に分配するように設計されていることから、Q0.95は、下式(3)から求めることができる。
 Q0.95=1/2×Q×(1-0.95)  (3)
 ただし、Qは、押出ダイの流入口に供給されるフッ素樹脂材料の流量(m/秒)である。Qは、押出機の吐出量(kg/時間)をフッ素樹脂の溶融比重(kg/m)で割った値である。溶融比重は、一般に温度および圧力に応じて変化する。溶融比重は、東洋精機製作所社製P-V-Tテストシステムを用いて、その温度依存性・圧力依存性を測定し、圧力依存性から大気圧条件での溶融比重を外挿して算出できる。
 また、マニホールドは、押出ダイの幅方向にわたって材料を均一に分配するために、左右対称に設計されていることから、フッ素樹脂材料の平均流速v0.95は、流入口から左右に分岐したマニホールドのうちのいずれか一方側において求めればよい。
 フッ素樹脂材料の平均流速v0.95が前記範囲の下限値以上であれば、溶融成形可能なフッ素樹脂の劣化に伴う欠陥(ゲル化に伴うフィッシュアイ等)を抑えつつ、フッ素樹脂フィルムを長時間安定して製造できる。
 フッ素樹脂材料の平均流速v0.95の上限値は、流路内部での材料の粘度に依存し、極端に流速が上昇することにより押出ダイ内部の圧力勾配が著しく増大し、押出ダイが変形したり、材料の流動によって材料が発熱する等の現象が生じることから、5×10-2m/秒が好ましく、1×10-2m/秒が特に好ましい。
(作用機序)
 以上説明した本発明のフッ素樹脂フィルムの製造方法にあっては、押出ダイの温度を305~355℃としているため、溶融成形可能なフッ素樹脂の劣化に伴う欠陥(ゲル化に伴うフィッシュアイ等)を抑えつつ、フッ素樹脂フィルムを安定性して製造できる。また、上述したフッ素樹脂材料の平均流速v0.95を1×10-4m/秒以上としているため、溶融成形可能なフッ素樹脂の劣化に伴う欠陥(ゲル化に伴うフィッシュアイ等)を抑えつつ、フッ素樹脂フィルムを長時間安定して製造できる。
 以下に、本発明に関わる実施例と比較例を記載する。ただし、本発明は実施例のみに限定されるものではない。
 例1~10は製造例であり、例11~13、16~19、21~23、25~28、30~31および33は実施例であり、例14、15、20、24、29、32および34は比較例である。
[評価方法]
(融点)
 示差走査熱量計(DSC装置、セイコーインスツル社製)を用い、フッ素樹脂を10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度(℃)を融点とした。
(溶融比重)
 東洋精機製作所社製P-V-Tテストシステムを用い、各材料の305℃から360℃の大気圧下での溶融比重を求め、その平均値を求めたところ、1,500kg/mであった。
(溶融流れ速度)
 メルトインデクサー(テクノセブン社製)を用い、所定の温度および荷重49Nの条件下で直径2mm、長さ8mmのノズルから、10分間に流出するフッ素樹脂の質量(g)を測定した。
(溶融流れ速度安定性)
 フッ素樹脂のペレットの一部をサンプリングし、フッ素樹脂フィルムの製造時の押出ダイの温度および荷重49Nにおけるフッ素樹脂の溶融流れ速度MFRを測定した。また、フッ素樹脂のペレットの一部をサンプリングし、空気雰囲気のオーブン中でフッ素樹脂フィルムの製造時の押出ダイの温度で60分間加熱した後、フッ素樹脂フィルムの製造時の押出ダイの温度および荷重49Nにおけるフッ素樹脂の溶融流れ速度MFR60を測定した。下式(2)から溶融流れ速度安定性S60を求めた。
 S60=MFR60/MFR  (2)
(フッ素樹脂フィルムの厚さ)
 フッ素樹脂フィルムの厚さは、高精度デジマチックマイクロメータ MDH-25M(ミツトヨ社製)を用いて測定した。
(フィッシュアイ)
 フッ素樹脂フィルムにおけるフィッシュアイは、フッ素樹脂フィルムを目視で観察し、フッ素樹脂フィルムの製造開始を0時間としたときのフィッシュアイが確認された時間を記録した。
(耳切れ)
 フッ素樹脂フィルムの製造時に、押し出ししながらその端部の押出ダイを出た後の変形挙動を目視で観察した。定常状態において、フィルム端部の形状が大きく変化せず、成形されるフッ素樹脂フィルムの幅も安定している状態で、いわゆる安定的なネッキングを示した場合を「耳切れなし」と評価した。一方で、定常状態でフィルム端部が延伸された際に伸びたり、切れたりする周期的な変形挙動を示す場合を、「耳切れあり」と評価した。
(厚薄精度)
 フッ素樹脂フィルムの厚薄精度は、下式(4)から求めた。
 厚薄精度(%)=(フッ素樹脂フィルムの最大厚さ-フッ素樹脂フィルムの最小厚さ)/フッ素樹脂フィルムの平均厚さ×100  (4)
[例1]
 撹拌機およびジャケットを備えた内容積94Lのステンレス製重合槽を真空引きした後、メタノールの0.107質量%、PPVEの9.1質量%を含む1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(旭硝子社製、AK225cb)(以下、AK225cbとも記す。)溶液の86.8kg(56L)を仕込み、重合槽内部を撹拌しながら、槽内温を50℃にした。次いで、重合槽の内圧が0.89MPa(ゲージ圧)になるまでTFEガスを仕込み、内温が安定してから、ビス(ペルフルオロブチリル)ペルオキシドの0.4質量%AK225cb溶液を3mL/分(4.65g/分)の速度で添加して重合を開始した。重合中、内圧が0.89MPa(ゲージ圧)で一定になるよう、TFEガスを添加した。また、TFEガスの消費速度が0.8kg/時間を維持するように、ビス(ペルフルオロブチリル)ペルオキシドの0.4質量%AK225cb溶液の添加速度を調整した。併せて、重合中に添加されるTFEガスに対して0.16モル%の比率で、NAH(日立化成社製、無水ハイミック酸)の0.73質量%AK225cb溶液を連続的に添加した。反応開始からTFEガスの7.7kgを添加したところで重合槽を冷却し、残ガスをパージして重合を終了した。
 重合で得られたスラリは、水の共存下に撹拌しながら加熱し、溶媒および残モノマーを共重合体から分離するとともに、共重合体を粒状に造粒し、共重合体(A1-1)の7.9kgを得た。
 共重合体(A1-1)の比重は2.15であった。共重合体(A1-1)の組成は、TFE単位/PPVE単位/NAH単位=97.9/2.0/0.1(モル%)であった。共重合体(A1-1)の融点は300℃、温度372℃および荷重49Nにおける溶融流れ速度は、20.9g/10分であった。共重合体(A1-1)中の接着性官能基の含有量(酸無水物基)の含有量は、共重合体(A1-1)の主鎖炭素数1×10個に対して1,000個であった。
[例2]
 重合槽に仕込むAK225cb溶液中のメタノールの濃度を0.145質量%に変更する以外は例1と同様に重合を行い、共重合体(A1-2)の7.9kgを得た。
 共重合体(A1-2)の比重は2.15であった。共重合体(A1-2)の組成は、TFE単位/PPVE単位/NAH単位=97.9/2.0/0.1(モル%)であった。共重合体(A1-2)の融点は300℃、温度372℃および荷重49Nにおける溶融流れ速度は、39.7g/10分であった。
[例3]
 重合槽に仕込むAK225cb溶液中のメタノールの濃度を0.174質量%に変更する以外は例1と同様に重合を行い、共重合体(A1-3)の7.9kgを得た。
 共重合体(A1-3)の比重は2.15であった。共重合体(A1-3)の組成は、TFE単位/PPVE単位/NAH単位=97.9/2.0/0.1(モル%)であった。共重合体(A1-3)の融点は300℃、温度372℃および荷重49Nにおける溶融流れ速度は、57.8g/10分であった。
[例4]
 重合槽に仕込むAK225cb溶液中のメタノールの濃度を0.197質量%に変更する以外は例1と同様に重合を行い、共重合体(A1-4)の7.9kgを得た。
 共重合体(A1-4)の比重は2.15であった。共重合体(A1-4)の組成は、TFE単位/PPVE単位/NAH単位=97.9/2.0/0.1(モル%)であった。共重合体(A1-4)の融点は300℃、温度372℃および荷重49Nにおける溶融流れ速度は、80.8g/10分であった。
[例5]
 (ペルフルオロブチリル)ペルオキシドを0.36質量%の濃度でAK225cbに溶解した重合開始剤溶液を調製した。
 NAHを0.3質量%の濃度でAK225cbに溶解したNAH溶液を調製した。
 AK225cbの369kgと、PPVE(旭硝子社製)の30kgとを、あらかじめ脱気された内容積430Lの撹拌機付き重合槽に仕込んだ。重合槽内を加熱して50℃に昇温し、TFEガスの50kgを仕込んだ後、重合槽内の圧力を0.89MPa(ゲージ圧)まで昇圧した。重合槽中に重合開始剤溶液の3Lを1分間に6.25mLの速度にて連続的に添加しながら重合を行った。また、重合反応中における重合槽内の圧力が0.89MPa(ゲージ圧)を保持するようにTFEガスを連続的に仕込んだ。また、NAH溶液を、重合中に仕込むTFEのモル数に対して0.1モル%に相当する量ずつ連続的に仕込んだ。
 重合開始8時間後、TFEガスの32kgを仕込んだ時点で、重合槽内の温度を室温まで降温するとともに、圧力を常圧までパージした。得られたスラリをAK225cbと固液分離した後、150℃で15時間乾燥することによって、共重合体(A1-5)の造粒物の33kgを得た。
 共重合体(A1-5)の比重は2.15であった。共重合体(A1-5)の組成は、TFE単位/PPVE単位/NAH単位=97.9/2.0/0.1(モル%)であった。共重合体(A1-5)の融点は300℃、温度372℃および荷重49Nにおける溶融流れ速度は、11.9g/10分であった。
[例6]
 例1で得た共重合体(A1-1)を、ベント機構つき2軸押出機(東芝機械社製)を用い、ベント部を脱気して0.1気圧に維持しながら、温度320℃、吐出量5kg/時間、回転数200rpm(1分間あたりの回転数)でストランド状に押し出した後、ペレタイザで切断し、共重合体(A1-1)のペレットを得た。
[例7~10]
 共重合体(A1-1)を、共重合体(A1-2)~(A1-5)に変更した以外は、例6と同様にして共重合体(A1-1)~(A1-5)のペレットを得た。
[例11]
 押出機としては、SML社製φ90mm押出機を用意した。押出ダイとしては、マニホールドの断面形状が図4に示すパドル形である、幅1.6mのコートハンガー型ダイ(以下、押出ダイ(I)とも記す。)を用意した。
 共重合体(A1-1)のペレットを押出機に供給し、押出機から、温度320℃、吐出量50kg/時間(ライン速度10m/分)で共重合体(A1-1)を溶融押し出しし、溶融樹脂を直接押出ダイ(I)に供給し、押出ダイ(I)から溶融樹脂をフィルム状に吐出した。この際、押出ダイ(I)の温度は325℃であり、押出ダイ(I)のリップ開度は0.8mmであった。押出ダイ(I)から吐出したフィルム状溶融体を、吐出直後に延伸させ、冷却ロールと接触させ、冷却してフッ素樹脂フィルムとした。この際、エアーギャップ(押出ダイ(I)から吐出して冷却ロールに接触するまでの距離)は100mmであった。フッ素樹脂フィルムの引取速度を調節することによって、厚さが100μm、25μmおよび12μmのフッ素樹脂フィルムを得た。
[例12~16]
 押出ダイ温度を表1および2に示すように変更した以外は、例11と同様にして例12~15のフッ素樹脂フィルムを得た。
 例11~16における、押出ダイの温度および荷重49Nにおけるフッ素樹脂の溶融流れ速度MFRおよび溶融流れ速度安定性S60、ならびに押出ダイの流入口に供給されるフッ素樹脂材料の流量Q、ならびに流入口からx=0.05の位置におけるマニホールド内を流れるフッ素樹脂材料の流量Q0.05、マニホールドの断面積A0.05およびフッ素樹脂材料の平均流速v0.05、ならびに流入口からx=0.95の位置におけるマニホールド内を流れるフッ素樹脂材料の流量Q0.95、マニホールドの断面積A0.95およびフッ素樹脂材料の平均流速v0.95、ならびに得られたフッ素樹脂フィルムの評価結果を表1および2に示す。
 なお、平均流速v0.05は下式(5)から、流量Q0.05は下式(6)から求めることができる。
 v0.05=Q0.05/A0.05  (5)
 Q0.05=1/2×Q×(1-0.05)  (6)
Figure JPOXMLDOC01-appb-T000001
 押出ダイの温度が305~355℃であり、平均流速v0.95が1×10-4m/秒以上である例11~13においては、フッ素樹脂フィルムにフィッシュアイは見られなかった。押出ダイの温度が300℃である例15においては、押出ダイの温度および荷重49Nにおける共重合体(A1-1)の溶融流れ速度が0g/10分となるため、フッ素樹脂材料が押出機において流動せず、押出成形できなかった。
 押出ダイの温度が355℃超である例14においては、フッ素樹脂フィルムにフィッシュアイが発生した。
[例17、18、20]
 共重合体(A1-1)を共重合体(A1-2)~(A1-4)に変更した以外は、例12と同様にして例17、18、20のフッ素樹脂フィルムを得た。
[例19]
 出ダイ温度を表2に示すように変更した以外は、例18と同様にして例19のフッ素樹脂フィルムを得た。
 例16~20における、MFR、S60、Q、Q0.05、A0.05、v0.05、Q0.95、A0.95、v0.95、得られたフッ素樹脂フィルムの評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 押出ダイの温度が305~355℃であり、平均流速v0.95が1×10-4m/秒以上である例16~19においては、フッ素樹脂フィルムにフィッシュアイは見られなかった。例20は、共重合体(A1-5)の溶融流れ速度安定性S60が0.7未満であるため、長時間製造した際にはフッ素樹脂フィルムにフィッシュアイが発生した。
[例21~25]
 共重合体(A1-1)の押出機からの吐出量を表3に示すように変更した以外は、例12と同様にして例21~25のフッ素樹脂フィルムを得た。例21、22および25においては、リップ開度を1.8mmとした。
 例21~25における、MFR、S60、Q、Q0.05、A0.05、v0.05、Q0.95、A0.95、v0.95、得られたフッ素樹脂フィルムの評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 押出ダイの温度が305~335℃であり、平均流速v0.95が1×10-4m/秒以上である例21~23、25においては、フッ素樹脂フィルムにフィッシュアイは見られなかった。例25は、平均流速v0.05が高すぎたため、押出ダイが変形し、膜厚制御が困難となり、厚薄精度に劣った。
 一方、平均流速v0.95が1×10-4m/秒未満である例24においては、製造開始から4時間後にフッ素樹脂フィルムにフィッシュアイが発生した。また、経時的にフッ素樹脂の溶融流れ速度が低下することから、平均流速が低い例24の場合、フッ素樹脂材料が押出ダイの内部を流動中に増粘し、フィッシュアイの発生による不均一性の増加との相乗効果により、溶融延伸性が損なわれる。その結果、フィルム成形時に最も延伸変性が大きいフィルム端部である「耳」のところで、フッ素樹脂フィルムの連続的かつ定常的な溶融延伸ができなくなり、耳切れが発生した。さらに、フィルム端部の延伸成形が安定的でないため、フッ素樹脂フィルム全体が振動し、厚薄精度が低下した。
[例26~29]
 押出ダイ(I)を、押出ダイ(II)~(V)に変更した以外は、例12と同様にして例26~29のフッ素樹脂フィルムを得た。
 押出ダイ(II)~(V)は、マニホールドの断面形状が図5に示す涙形であり、幅が1.6mであり、マニホールドの断面積A0.05およびA0.95が表4に示す値であるコートハンガー型ダイである。
 例26~29における、MFR、S60、Q、Q0.05、A0.05、v0.05、Q0.95、A0.95、v0.95、得られたフッ素樹脂フィルムの評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 押出ダイの温度が305~335℃であり、平均流速v0.95が1×10-4m/秒以上である例26~28においては、フッ素樹脂フィルムにフィッシュアイは見られなかった。
 平均流速v0.95が1×10-4m/秒未満である例29においては、押出ダイの内部におけるフッ素樹脂材料の流速が著しく遅いため、フッ素樹脂材料の滞留が起こり、フィッシュアイが多量に発生した。また、フィッシュアイがあるため、厚薄精度も著しく低下した。
[例30~32]
 共重合体(A1-1)を共重合体(A1-5)に変更し、かつ押出ダイの温度を表5に示すように変更した以外は、例11と同様にして例30~32のフッ素樹脂フィルムを得た。
Figure JPOXMLDOC01-appb-T000005
 押出ダイの温度が305~335℃であり、平均流速v0.95が1×10-4m/秒以上である例30および31においては、フッ素樹脂フィルムにフィッシュアイは見られなかった。共重合体(A1-5)の押出ダイの温度および荷重49Nにおける溶融流れ速度が7g/10分未満であるため、耳切れが発生し、厚薄精度にも劣った。また、押出ダイの温度および荷重49Nにおける溶融流れ速度が7g/10分未満であるため、厚さが25μmおよび12μmのフッ素樹脂フィルムは、耳切れが著しく、成形できなかった。
 押出ダイの温度が355℃超である例32においては、製造開始から3時間後にフッ素樹脂フィルムにフィッシュアイが発生した。また、溶融流れ速度が7g/10分未満であるため、耳切れが発生し、厚薄精度にも劣った。
[例33]
 銅箔として、電解銅箔(福田金属箔粉社製、CF-T4X-SVR-12、厚さ:12μm、Rz:1.2μm)を用意した。
 例11で得た厚さ25μmのフッ素樹脂フィルムと銅箔とを、フィルム/銅箔/フィルムの順序で積層し、温度360℃、圧力1.3MPaの条件で10分間プレスして、3層構成のコンポジットフィルムを得た。
 コンポジットフィルムから25mm幅の試験片を切り出した。片側のフッ素樹脂フィルムと銅箔との界面を、引張り試験機(エー・アンド・ディ社製、製品名:TENSILON)を用いて、引張り速度50mm/分で180度の方向に剥離し、1cm幅あたりの最大荷重を剥離強度とした。剥離強度は、12N/cmであった。
[例34]
 フッ素樹脂フィルムを、例14で得られた厚さ25μmのフッ素樹脂フィルムに変更した以外は、例33と同様にしてコンポジットフィルムを得て、剥離強度を測定した。剥離強度は、5.5N/cmであった。
 本発明のフッ素樹脂フィルムは、ガラスクロスと金属箔(銅箔等)とが接着性フッ素樹脂フィルムを介して貼り合わされた金属張積層板;耐熱性樹脂フィルム(ポリイミドフィルム等)と金属箔とが接着性フッ素樹脂フィルムを介して貼り合わされたフレキシブル金属張積層板;金属箔と接着性フッ素樹脂フィルムとが積層された高耐熱放射シート;自動車の対人衝突防止のためのミリ波レーダー等の高周波電子基板;低伝送損失を必要とする高周波電子基板の基本構成材料等として有用である。
 なお、2015年8月4日に出願された日本特許出願2015-153854号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1 T型ダイ、2 コートハンガー型ダイ、10 ダイプレート、12 流入口、14 マニホールド、16 ランド、18 リップ、20 ダイプレート、22 流入口、24 マニホールド、26 ランド、28 リップ、100 押出機、102 押出ダイ、104 フィルム状溶融体、106 冷却ロール、108 フッ素樹脂フィルム。

Claims (10)

  1.  溶融成形可能なフッ素樹脂を含むフッ素樹脂材料を押出ダイから押し出してフッ素樹脂フィルムを製造する方法であって、
     前記押出ダイの温度が、305~355℃であり、
     下式(1)で求められる前記フッ素樹脂材料の平均流速v0.95が、1×10-4m/秒以上である、フッ素樹脂フィルムの製造方法。
     v0.95=Q0.95/A0.95  (1)
     ただし、前記押出ダイの流入口から前記押出ダイのマニホールドの端部までの距離xを1とし、
     Q0.95は、前記流入口からx=0.95の位置における前記マニホールド内を流れる前記フッ素樹脂材料の流量(m/秒)であり、
     A0.95は、前記流入口からx=0.95の位置における前記マニホールドの断面積(m)である。
  2.  前記押出ダイの温度および荷重49Nにおける前記フッ素樹脂の溶融流れ速度が、7g/10分以上である、請求項1に記載のフッ素樹脂フィルムの製造方法。
  3.  下式(2)で求められる前記フッ素樹脂の溶融流れ速度安定性S60が、0.7~1.3である、請求項1または2に記載のフッ素樹脂フィルムの製造方法。
     S60=MFR60/MFR  (2)
     ただし、
     MFR60は、空気雰囲気下で前記押出ダイの温度で60分間加熱した後の前記フッ素樹脂について測定した、前記押出ダイの温度および荷重49Nにおける前記フッ素樹脂の溶融流れ速度であり、
     MFRは、前記押出ダイの温度で60分間加熱する前の前記フッ素樹脂について測定した、前記押出ダイの温度および荷重49Nにおける前記フッ素樹脂の溶融流れ速度である。
  4.  JIS K7210:1999に準じて測定される、372℃および荷重49Nにおける前記フッ素樹脂の溶融流れ速度が、20~70g/10分である、請求項1~3のいずれか一項に記載のフッ素樹脂フィルムの製造方法。
  5.  前記押出ダイがコートハンガー型ダイである、請求項1~4のいずれか一項に記載のフッ素樹脂フィルムの製造方法。
  6.  前記押出ダイのリップ開度が0.5~3.0mmである、請求項1~5のいずれか一項に記載のフッ素樹脂フィルムの製造方法。
  7.  前記フッ素樹脂が、接着性官能基を有するフッ素樹脂である、請求項1~6のいずれか一項に記載のフッ素樹脂フィルムの製造方法。
  8.  前記フッ素樹脂が、テトラフルオロエチレンに由来する単位と、接着性官能基を有する単量体に由来する単位と、含フッ素単量体(ただし、前記テトラフルオロエチレンを除く。)に由来する単位とを有する共重合体である、請求項1~7のいずれか一項に記載のフッ素樹脂フィルムの製造方法。
  9.  前記接着性官能基を有する単量体が環状酸無水物基を有する単量体である、請求項8に記載のフッ素樹脂フィルムの製造方法。
  10.  前記含フッ素単量体が、ヘキサフルオロプロピレンまたはCF=CFORf1で表される単量体(ただし、Rf1は、炭素数1~10のペルフルオロアルキル基、または炭素数2~10のペルフルオロアルキル基の炭素原子間にエーテル性酸素原子を有する基である。)である、請求項8または9に記載のフッ素樹脂フィルムの製造方法。
PCT/JP2016/071905 2015-08-04 2016-07-26 フッ素樹脂フィルムの製造方法 WO2017022575A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177031971A KR102443760B1 (ko) 2015-08-04 2016-07-26 불소 수지 필름의 제조 방법
JP2017532521A JP6780645B2 (ja) 2015-08-04 2016-07-26 フッ素樹脂フィルムの製造方法
CN201680045549.XA CN107848180B (zh) 2015-08-04 2016-07-26 氟树脂膜的制造方法
EP16832854.0A EP3332941B1 (en) 2015-08-04 2016-07-26 Method for producing fluororesin film
US15/786,787 US10730219B2 (en) 2015-08-04 2017-10-18 Method for producing fluororesin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015153854 2015-08-04
JP2015-153854 2015-08-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/786,787 Continuation US10730219B2 (en) 2015-08-04 2017-10-18 Method for producing fluororesin film

Publications (1)

Publication Number Publication Date
WO2017022575A1 true WO2017022575A1 (ja) 2017-02-09

Family

ID=57943892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071905 WO2017022575A1 (ja) 2015-08-04 2016-07-26 フッ素樹脂フィルムの製造方法

Country Status (7)

Country Link
US (1) US10730219B2 (ja)
EP (1) EP3332941B1 (ja)
JP (1) JP6780645B2 (ja)
KR (1) KR102443760B1 (ja)
CN (1) CN107848180B (ja)
TW (1) TWI698469B (ja)
WO (1) WO2017022575A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022107398A (ja) * 2021-01-08 2022-07-21 日本碍子株式会社 押出成形用ダイ及び押出成形機

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7251550B2 (ja) * 2018-08-24 2023-04-04 Agc株式会社 フィルム、フィルムの製造方法、積層体及び包装材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030238A (ja) * 2008-07-31 2010-02-12 Japan Steel Works Ltd:The 押出成形用ダイ及びダイ流路決定方法
JP2014141646A (ja) * 2012-12-25 2014-08-07 Daikin Ind Ltd 透明性に優れたフッ素樹脂フィルム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3920805B2 (ja) * 2003-04-10 2007-05-30 五洋紙工株式会社 光学用フィルムの製造法
US20060237864A1 (en) * 2003-04-10 2006-10-26 Yoshikuni Morita Method for producing optical film
US7579418B2 (en) * 2003-05-14 2009-08-25 E. I. Du Pont De Nemours And Company Extrusion process and product
US7122609B2 (en) * 2003-05-14 2006-10-17 E. I. Du Pont De Nemours And Company High melt flow fluoropolymer
JP4957079B2 (ja) * 2006-05-29 2012-06-20 旭硝子株式会社 プリント回路基板およびその製造方法
US20110040021A1 (en) * 2007-07-11 2011-02-17 3M Innovation Properties Company Methods for melt-processing thermoplastic fluoropolymers
GB0801194D0 (en) * 2008-01-23 2008-02-27 3M Innovative Properties Co Processing aid compositions comprising fluoropolymers having long-chain branches
JP2010030283A (ja) * 2008-06-30 2010-02-12 Riso Kagaku Corp インクジェット印刷方法及びインクセット
US20100034919A1 (en) * 2008-08-08 2010-02-11 E. I. Du Pont De Nemours And Company Melt Processible Semicrystalline Fluoropolymer having Repeating Units Arising from Tetrafluoroethylene, Hexafluoropropylene, and Hydrocarbon Monomer Having a Carboxyl Group and a Polymerizable Carbon-Carbon Double Bond and Multi-Layer Articles Comprising a Layer of the Melt Processible Semicrystalline Fluoropolymer
JP2011530627A (ja) * 2008-08-08 2011-12-22 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー テトラフルオロエチレン、ヘキサフルオロプロピレン、カルボキシル基および重合可能な炭素−炭素二重結合を有する炭化水素モノマーから生じる繰り返し単位を有する溶融処理可能な半結晶フルオロポリマーならびに溶融処理可能な半結晶フルオロポリマーの層を含む多層物品
JP2012056083A (ja) * 2009-01-08 2012-03-22 Asahi Glass Co Ltd フッ素樹脂フィルムの製造方法、および農業ハウス用フィルムならびに太陽電池パネル用表皮材フィルム
RU2012132433A (ru) * 2009-12-30 2014-02-10 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Способ экструзии полимера
KR101295525B1 (ko) * 2011-06-17 2013-08-12 (주)이쎌텍 전지의 분리막용 미세다공성 필름 제조 장치 및 그 장치를 이용한 필름 제조방법
JP5752106B2 (ja) * 2011-12-22 2015-07-22 ダイキン工業株式会社 離型フィルム
TWI639462B (zh) * 2012-04-20 2018-11-01 Daikin Industries, Ltd. 以聚四氟乙烯(ptfe)為主成分之組合物、混合粉末及成形用材料
TWI691576B (zh) 2013-11-29 2020-04-21 日商Agc股份有限公司 接著薄膜及撓性金屬積層板
JP6256075B2 (ja) * 2014-02-13 2018-01-10 住友電気工業株式会社 炭化珪素半導体装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030238A (ja) * 2008-07-31 2010-02-12 Japan Steel Works Ltd:The 押出成形用ダイ及びダイ流路決定方法
JP2014141646A (ja) * 2012-12-25 2014-08-07 Daikin Ind Ltd 透明性に優れたフッ素樹脂フィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3332941A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022107398A (ja) * 2021-01-08 2022-07-21 日本碍子株式会社 押出成形用ダイ及び押出成形機
JP7213275B2 (ja) 2021-01-08 2023-01-26 日本碍子株式会社 押出成形用ダイ及び押出成形機

Also Published As

Publication number Publication date
TW201714930A (zh) 2017-05-01
CN107848180B (zh) 2019-10-18
JPWO2017022575A1 (ja) 2018-05-31
KR102443760B1 (ko) 2022-09-15
TWI698469B (zh) 2020-07-11
KR20180037137A (ko) 2018-04-11
CN107848180A (zh) 2018-03-27
EP3332941B1 (en) 2021-10-13
JP6780645B2 (ja) 2020-11-04
EP3332941A1 (en) 2018-06-13
EP3332941A4 (en) 2019-03-20
US10730219B2 (en) 2020-08-04
US20180036931A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP6565936B2 (ja) 積層板およびフレキシブルプリント基板の製造方法
US10507631B2 (en) Laminate, printed circuit board and method for producing laminate
JP7405074B2 (ja) スピーカー振動板及び医療用カテーテル
US10729018B2 (en) Process for producing laminate and process for producing printed board
TW201711540A (zh) 印刷基板用材料、金屬積層板、彼等之製造方法及印刷基板之製造方法
WO2017209133A1 (ja) フッ素樹脂の製造方法
WO2017022575A1 (ja) フッ素樹脂フィルムの製造方法
JP4959911B2 (ja) フッ素樹脂フィルム及び該フィルムの層を含有する積層体
US10144792B2 (en) Method for producing electric wire, method for producing molded artile, and method for producing resin material containing modified fluororesin
WO2015002251A1 (ja) 被覆用絶縁テープ、および構造体の製造方法
JP2017119741A (ja) 樹脂およびフィルム
JP7009858B2 (ja) 立体成形回路部品用樹脂組成物、立体成形品及びその製造方法、ならびに立体成形回路部品及びその製造方法
WO2020040023A1 (ja) フィルム、フィルムの製造方法、積層体及び包装材料
JP2015133480A (ja) カバーレイ用接着フィルム、カバーレイ、配線板、及び電子機器の製造方法
WO2021200627A1 (ja) フッ素樹脂フィルム及びその製法
JP2014030998A (ja) 積層体
JP7320412B2 (ja) 高周波回路基板用樹脂フィルム及びその製造方法、並びに高周波回路基板
JP7336417B2 (ja) スピーカの振動板用樹脂フィルム及びその製造方法、並びにスピーカの振動板
JP4993343B2 (ja) フッ素樹脂製接着性フィルム
WO2023286801A1 (ja) 樹脂組成物、樹脂組成物の製造方法および成形体
TW202402918A (zh) 固體組成物、電路基板、及固體組成物之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177031971

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017532521

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016832854

Country of ref document: EP