WO2017022044A1 - 動力伝達装置 - Google Patents

動力伝達装置 Download PDF

Info

Publication number
WO2017022044A1
WO2017022044A1 PCT/JP2015/071902 JP2015071902W WO2017022044A1 WO 2017022044 A1 WO2017022044 A1 WO 2017022044A1 JP 2015071902 W JP2015071902 W JP 2015071902W WO 2017022044 A1 WO2017022044 A1 WO 2017022044A1
Authority
WO
WIPO (PCT)
Prior art keywords
power transmission
rotor
stator
transmission device
bearing
Prior art date
Application number
PCT/JP2015/071902
Other languages
English (en)
French (fr)
Inventor
則久 岩崎
正木 良三
榎本 裕治
卓男 王
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2015/071902 priority Critical patent/WO2017022044A1/ja
Publication of WO2017022044A1 publication Critical patent/WO2017022044A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • H02K5/173Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields using bearings with rolling contact, e.g. ball bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present invention relates to a power transmission device, and relates to a power transmission device using an axial gap type rotating electrical machine.
  • ⁇ Axial gap type rotating electrical machines can be used as a motor that can easily generate torque as the radial cross-sectional area increases, and the shape can be flattened. In such a flat structure, the larger the moment of inertia, the more advantageous the output torque. Therefore, the structure and characteristics of the axial gap type rotating electrical machine can be utilized and applied to various applications.
  • Patent document 1 discloses the technique of a flywheel. Flywheels have a mechanism for storing energy using inertial forces, but losses such as mechanical loss and windage loss of a rotating disk are harmful to energy storage. Patent Document 1 discloses a technique for reducing windage loss even in a non-closed space by digging a spiral groove in a flywheel disk and urging the air flow backward in the rotational direction.
  • the rotating electrical machine is mechanically connected to a load (such as a flywheel or an impeller) of an application device to which the rotating electrical machine is applied through a shaft that rotates together with the rotor.
  • a load such as a flywheel or an impeller
  • the load layout environment requires closeness, it is necessary to partition the rotating electrical machine and the load storage area with a partition wall, etc., and to provide a shaft penetration part in the partition wall. This causes a problem that mechanical loss occurs due to friction with the airtight holding member.
  • a coil is provided on the radially outer peripheral side of the tooth extending in the rotation axis direction, a stator that generates a magnetic flux in the rotation axis direction from the tooth end surface, and a plurality of magnets having different magnetic poles are annularly arranged, and the teeth end surface
  • An axial gap type rotating electrical machine having a rotor facing the surface through a predetermined gap, a casing having a space for storing the stator and the rotor, and a storage area of each of the stator and the rotor in the casing being discontinuous.
  • Power having a partition partitioning as a space, a bearing disposed on the partition and rotatably supporting the rotor, and a load device disposed on the opposite side of the stator in the axial direction and rotating together with the rotor It is a transmission device.
  • a stator having a coil on the radially outer peripheral side of the teeth, generating a magnetic flux in the direction of the rotation axis from the tooth end surface, and a plurality of magnets having different magnetic poles are arranged in an annular shape, and a predetermined gap is provided between the tooth end surface and a predetermined gap.
  • a power transmission device comprising an axial gap type rotating electrical machine having a rotor facing the surface, wherein the stator is molded on the outer surface with a resin, the stator after the resin molding, the rotor, Is disposed in the rotational axis direction via a bearing, and the rotor includes a load device that is disposed on the opposite side of the stator in the axial direction and rotates together with the rotor.
  • the stator, the rotor, and the load device It is a power transmission device provided with the housing
  • FIG. 1 is a developed perspective view schematically showing a configuration of an axial gap type rotating electrical machine according to a first embodiment. It is an axial direction longitudinal cross-sectional view which shows the structure of the electric pump apparatus by Example 2 to which this invention is applied.
  • FIG. 6 is a developed perspective view schematically showing configurations of an axial gap type rotating electric machine and an impeller according to Embodiment 2.
  • FIG. 10 is a developed perspective view illustrating the configuration of an axial gap type rotating electrical machine and an impeller according to a modification of the second embodiment.
  • FIG. 1 is a developed perspective view schematically showing a configuration of an axial gap type rotating electrical machine according to a first embodiment. It is an axial direction longitudinal cross-sectional view which shows the structure of the electric pump apparatus by Example 2 to which this invention is applied.
  • FIG. 6 is a developed perspective view schematically showing configurations of an axial gap type rotating electric machine and an impeller according to Embodiment 2.
  • FIG. 10 is a developed perspective view illustrating the configuration of an
  • FIG. 10 is a perspective view schematically showing a configuration of a magnet according to a modified example of Example 2. It is an axial direction longitudinal cross-sectional view which shows the structure of the electric pump apparatus by Example 3 to which this invention is applied. It is an axial direction longitudinal cross-sectional view which shows the structure of the electric pump apparatus by Example 4 to which this invention is applied.
  • FIG. 10 is a developed perspective view schematically showing configurations of an axial gap type rotating electric machine and an impeller according to a fourth embodiment.
  • FIG. 1 is a sectional view in the axial direction of a power transmission device 1 according to a first embodiment to which the present invention is applied.
  • the power transmission device 1 includes a stator 2, a rotor 3, a shaft 4, and a bearing 7, and includes a stator case 5 and a load-side case 6 as a casing for storing these in an internal space.
  • the power transmission device 1 uses an axial gap type rotating electrical machine as the rotating electrical machine.
  • the stator 2 is formed of an annular body in which a plurality of teeth extend in the rotation axis direction, and is installed in the stator case 5.
  • the stator case 5 has a cylindrical shape with one axial opening, and has an inner cylinder portion 5 a as a storage area for the stator 2.
  • a flange portion 5b extending along the outer periphery in the radial direction is formed in the vicinity of the opening end edge of the stator case 5.
  • the length in the rotation axis direction of the stator 2 is smaller than the length from the bottom surface in the axial direction of the inner cylinder portion 5a to the intersection with the extension line in the axial direction of the flange portion 5b. When it is installed, the load side end face of the stator 2 is arranged so as not to exceed the extension line.
  • the load-side case 6 has a flat surface portion 6a on one end face in the axial direction and an outer peripheral wall portion 6b on the radially outer side, and a hollow portion 6c for installing the rotor 3 and the like together with the flat surface portion 6. It is.
  • the stator 2 and the rotor 3 are configured to be installed in another space that is discontinuously partitioned by a partition wall called a flat portion 6a.
  • the diameter of the flat portion 6a is larger than the diameter of the flange portion 5b.
  • Stator case 5 is connected to flat surface portion 6a via bolt 8 at flange portion 5b.
  • a cylindrical recess 6d is formed in the center of the bottom surface of the stator 2 side in the axial direction of the hollow portion 6c (the back surface side of the flat surface portion 6a), and a radial bearing 7 (ball, roller, needle, etc.) is interposed in the recess 6d.
  • the rotor 3 is arranged. More specifically, the inner peripheral surface of the recess 6d and the outer ring of the radial bearing 7 are connected, and the inner ring of the radial bearing and the outer peripheral surface of the rotor 3 are connected. Further, the magnet surface of the rotor 3 and the bottom surface of the recess 6d are not in contact with each other.
  • the present invention is not necessarily limited to a closed space, and the other side of the hollow portion 6c of the load-side casing 6 communicates with the outside in accordance with the specification of the application to which the application is applied (the flywheel 9 in this embodiment). It may be a configuration.
  • the rotor 3 has a magnet 31 and a yoke 32.
  • the magnet 31 has an annular shape as will be described later, and one end surface in the axial direction is supported by the yoke 32 by adhesion, fitting, or the like.
  • the shaft 4 is connected so as to rotate together with the center of the yoke 32, and is connected to the flywheel 9 at the end opposite to the yoke 32.
  • FIG. 2 shows a developed perspective view of the axial gap type rotating electrical machine 10.
  • the axial gap rotating electrical machine 10 includes a core 21, a coil 22, a magnet 31, and a yoke 32.
  • the stator 2 includes a core 21 and a coil 22 that is wound around a radially outer periphery of teeth formed on the core 21.
  • the core 21 is made of a soft magnetic material such as an electromagnetic steel plate, a powder magnetic core, an amorphous metal, or permendur. Except in the case of applying a powder magnetic core, in order to suppress the eddy current of the core, it is preferable to laminate in the circumferential direction or the radial direction.
  • the magnetic core that constitutes the core is electrically insulated, which increases the electrical resistance of the core, so that lamination is not necessary.
  • a rotating electrical machine such as a motor is a radial gap type composed of a rotor supported rotatably in a circumferential direction and a stator arranged via a gap in a radial direction for generating torque.
  • the magnetic flux is mainly in the radial direction. Therefore, in order to reduce the eddy current of the core, most of the stators are laminated with steel plates in the axial direction. In the case of an axial gap type rotating electrical machine, the magnetic flux is mainly in the axial direction, and in order to reduce eddy currents in the in-plane direction, electrical insulation is performed in a direction perpendicular to the flow of magnetic flux in the radial direction and circumferential direction. Necessary. Insulating methods include insulating paper, resin bobbins, insulating agents, and the like.
  • the core 21 is obtained by winding a foil strip made of amorphous metal in a roll shape around the rotation axis to obtain an annular body, and then cutting and cutting one axial portion radially from the axis.
  • a tooth portion protruding in the axial direction is obtained.
  • the portion other than the teeth functions as a yoke.
  • the manufacturing method of the core 21 is not restricted to this.
  • the coil 22 is made of a conductive member such as copper or aluminum, and is wound around the radially outer periphery of the teeth of the core 21. Further, an insulator such as insulating paper or a bobbin is inserted between the tooth portion of the core 21 and the coil.
  • the magnet 31 is made of a permanent magnet such as a neodymium sintered magnet, a ferrite magnet, or a bonded magnet.
  • FIG. 2B shows a perspective view of the magnet 31.
  • the magnet 31 has a configuration in which the magnetic poles are sectioned in a sector shape radially from the axial center. In this example, there are 8 poles, and the magnetic poles adjacent to each other in the rotation direction are different from each other in the axial direction.
  • the rotor 3 is opposed to the core 21 and the flat portion 6a of the load-side casing 6 in the rotation axis direction through a gap (see FIG. 1).
  • a change in the magnetic flux is directly received, and there may be a phenomenon in which an eddy current flows so that the magnetic flux is generated in a direction to prevent the change.
  • the neodymium sintered magnet When a neodymium sintered magnet is applied, the neodymium sintered magnet has a large energy product and a large torque can be expected, but on the other hand, it has a characteristic that electric resistance is low and eddy current flows easily.
  • the magnet 31 may be embedded in the yoke 32 to take measures such as reducing the influence of changes in magnetic flux.
  • NdFeB-based or SmFeN bonded magnets have a high residual magnetic flux density and can be expected to have a high output.
  • the yoke 32 is made of a soft magnetic material such as an electromagnetic steel plate, a powder magnetic core, an amorphous metal, or permendur, similarly to the core 21 of the stator.
  • the yoke 32 also changes in magnetic flux when the motor is driven.
  • the yoke 32 may be configured as an integral iron member.
  • the yoke 32 has a shaft 4 connected to the flywheel 9 in the center of the stator 2 and the end surface opposite to the axial direction.
  • the axial gap type rotating electrical machine 10 configured as described above is arranged in the stator case 5 or the load side case 6 as shown in FIG. 1 and a current is applied to the stator 2 so that the rotor 3 and the flywheel 9 rotate.
  • a current is applied to the stator 2 so that the rotor 3 and the flywheel 9 rotate.
  • the magnetic flux that flows from the stator 2 through the hollow portion 6a and the pole of the magnet 31 are repeatedly attracted and repelled, and the rotor 2 and the flywheel 9 are rotated.
  • the stator 2 side and the rotor 3 side can be spatially separated.
  • the flywheel 9 supported by the shaft 4 on the rotor 3 side is driven in the hollow portion 6c in which the surrounding environment is maintained under a certain pressure, thereby reducing windage loss and storing energy of the flywheel.
  • the rotor 3 can be installed without penetrating the flat portion 6a of the load side case 6, and a seal applied to the penetrating portion or the like becomes unnecessary, and there is an effect of reducing mechanical loss.
  • Embodiment 2 to which the present invention is applied will be described.
  • the second embodiment is an example in which an impeller (impeller) 51 is applied as a load device in place of the flywheel 9 of the first embodiment, and the electric pump device 11 is applied as a power transmission device.
  • the electric pump device 11 will be described in detail.
  • the same member as another Example shall attach
  • FIG. 3 shows a longitudinal sectional view of the electric pump device 11 in the axial direction.
  • the stator 2 and the stator case 5 are the same as those in the first embodiment.
  • the storage area of the stator 2 and the rotor 3 is discontinuously partitioned by the flat portion 6 a of the load side case 6.
  • the electric pump device 50 transports a liquid as a transport fluid.
  • the rotor 3 side of the load side case 6 shall be the area
  • the rotor 3 has an impeller 51 that is integrally connected to an end surface on the opposite side to the stator 2 in the axial direction.
  • the radial bearing 7 is a sealed bearing, and prevents liquid from entering the gap between the axial bottom surface of the recess 6 d and the rotor 3. Since the resistance of the rotating body in the liquid becomes disadvantageous as the diameter increases, the resistance applied to the rotor 3 is reduced by preventing the liquid from entering the gap, thereby improving the efficiency.
  • FIG. 4 shows an exploded perspective view of the armature and impeller 51 of the axial gap type rotating electric machine 10.
  • the impeller 51 is an impeller that sends out a conveying pressure that circulates liquid by rotation, and is made of a material such as resin.
  • the impeller 51 has an annular protrusion 51a having an inner diameter substantially the same as the outer diameter of the yoke 32 in the axial direction from the edge on the yoke 32 side.
  • the annular protrusion 51a extends to the same extent as the axial width of the yoke 32 and the magnet 31, and covers the peripheral surfaces of both with the inner diameter.
  • the magnet 31 or the yoke 32 is subjected to a rust prevention treatment.
  • a rust prevention treatment is not essential, but when applying a ferrite magnet, it is preferable to carry out a rust prevention treatment.
  • martensitic magnetic stainless steel such as SUS440c
  • rust prevention treatment is unnecessary, but it is preferable to carry out rust prevention treatment for iron or the like.
  • the configuration in which the annular protrusion 51a covers the circumferential surfaces of the yoke 32 and the magnet 31 also helps to prevent rust.
  • the electric pump device 10 of the second embodiment it is not necessary to pass through the flat portion 6a that divides the stator 2 and the rotor, the mechanical loss due to the seal or the like is reduced, and the device is downsized by simplifying the configuration. Can be achieved. In particular, in the relationship with the liquid, leakage to the stator 2 side is eliminated, and the reliability as the apparatus is improved.
  • the impeller 51 according to the second embodiment has a configuration in which the annular protrusion 51a covers the circumferential surfaces of the magnet 31 and the yoke 32 on the inner diameter side, but may have a configuration in which the yoke 32 is not used.
  • FIG. 5 shows an example in which the modified impeller 51 is applied.
  • FIG. 5A shows an example in which a flat surface 51b is formed in the magnet direction without providing the annular protrusion 51a on the impeller 51, and the end surface of the magnet 31 is bonded with an adhesive or the like.
  • FIG. 5B shows an annular protrusion 51c in which the axial width of the annular protrusion 51a of the impeller 51 is equal to the axial width of the magnet 31, and the magnet 31 is fitted on the inner diameter side and bonded with an adhesive or the like. It is a structural example.
  • the magnet 31 has a sufficient strength because the peripheral surface is supported by the annular protrusion 51a. Since the yoke 32 is not used, it contributes to reduction in axial size and weight of the rotor 3.
  • the magnet 31 used in such a modification is polar anisotropic magnetization in which N-pole magnetic flux is concentrated in the axial direction. Since a bonded magnet can be relatively freely oriented, such polar anisotropic magnetization is possible. By having such a magnetic flux direction, there is no leakage of magnetic flux in the direction opposite to the N pole, so that it is not necessary to provide the yoke 32. Use of a bonded magnet is also preferable from the viewpoint of rust prevention.
  • Embodiment 3 to which the present invention is applied will be described.
  • the third embodiment is another configuration example when applied to the electric pump device 10 as a power transmission device.
  • the main difference from the electric pump device of the second embodiment is that the stator 2 and the rotor 3 are arranged in the internal space of the stator case 5 and the load side case 6, but the partition wall that divides both is a load side case 6, instead of the flat portion 6 a, the inner stator case 60 is a member independent of the stator case 5 and the load side case 6.
  • a thrust bearing 65 is applied as a bearing that rotatably supports the rotor 3.
  • FIG. 7 shows a sectional view in the axial direction of the electric pump device according to the third embodiment.
  • the electric pump device 11 includes a stator case 5 and a load side casing 6.
  • the stator case 5 is open at one end in the axial direction
  • the load-side case 6 is also open at one end in the axial direction so that both open end sections having the same inner and outer diameters are joined to each other.
  • the stator case 5 and the load-side case 6 may not be divided.
  • the inner stator case 60 has an outer peripheral surface that is approximately the same diameter as or slightly smaller than the inner diameter of the stator case 5, and has a circular cylindrical shape that opens only on the stator 2 side.
  • the bottom surface of the inner stator case 60 has a concavo-convex shape along the shape of the teeth and coil portions of the stator 2 and is configured to cover the stator 2 from the axial direction along the shape.
  • An insulating material is applied between the stator 2 and the inner stator case 60 to be electrically insulated.
  • the insulating material for example, insulating paper or an insulating agent may be applied, or resin sealing may be used.
  • the opening side (the arrangement side of the stator 2) of the inner stator case 60 is fitted into the inner cylindrical portion 5a of the stator case 5.
  • the outer peripheral surface of the inner stator case 60 and the inner cylindrical portion of the stator case 5 may be configured to be fitted with no gap.
  • the stator 2 may be sandwiched and fixed between the inner cylindrical portions of the stator casing 5 by using the fitting force.
  • one race of the thrust bearing 65 is fixed to the end surface of the recess of the inner stator case 60 along the teeth and the coil shape of the stator 2, and the impeller 51 is mounted to the other race.
  • the rotor 3 is fixed.
  • the rotor 3 and the impeller 51 may have any configuration of the second embodiment (FIG. 4) and its modification (FIG. 5).
  • the end sections of the stator case 5 and the load side case 6 are screwed together.
  • the thrust bearing 65 since the thrust bearing 65 is applied, there is an effect that if the joining portion with the inner stator case 6 is secured at least for the thickness of one race, the shaft can be shortened for the other race side. .
  • Embodiment 4 to which the present invention is applied will be described.
  • the fourth embodiment is another configuration example when the power transmission device is applied to the electric pump device 11 as in the second and third embodiments.
  • the difference between the other examples and the fourth example is that there is no partition wall that partitions the storage area between the stator 2 and the rotor 3 by molding the outer surface of the stator 2 with resin.
  • the resin-mold functions as a partition wall.
  • FIG. 8 is a sectional view in the axial direction of the electric pump device according to the fourth embodiment.
  • This example is based on the configuration of the third embodiment, and has a configuration in which the stator 2 and the rotor 3 are arranged in the axial direction through the thrust bearing 65 in the inner cylindrical space of the stator case 5 and the load side case 6.
  • the outer surface of the stator 2 around which the coil is wound around the core 22 is molded with the resin 100. Further, the outer peripheral side of the coil 22 is molded with a predetermined thickness, and after molding, the outer diameter is approximately the same as or slightly smaller than the inner cylinder portion 5a of the stator case 5. This is for securing the fitting property between the stator 2 and the stator case 5 and ensuring insulation. Further, by molding the outer surface of the stator 2 with resin, the rust prevention property of the stator 2 can be secured.
  • the stator 2 is fixed by the resin-molded stator 2 being fitted into the inner cylinder portion of the stator case 5 from the axial direction.
  • the stator 5 may be positioned and arranged on the inner cylinder portion of the stator case 5 and resin molded. Further fixing of the stator 2 and the stator case 5 can be expected.
  • the rotor 3 is connected to the stator 2 via a thrust bearing 65.
  • a bearing holding member 70 is arranged between the resin-molded stator 2 and the thrust bearing 65. Yes.
  • FIG. 9 schematically shows a developed perspective view of the armature, the bearing holding member 70, the thrust bearing 65, and the rotor 3.
  • the bearing holding member 70 is made of metal, resin, or the like, and has an annular main body portion 70a that holds one race outer peripheral corner portion of the thrust bearing 65 from the axial direction and the radial direction, and a plurality of radially extending radial portions from the main body portion 70a. Extending portion 70b. If the thrust bearing 65 is disposed directly on the resin mold portion of the stator 2, the resin may be damaged by the rotational stress of the rotor 3. For this reason, the thrust bearing 65 is fixed to the stator 2 via the bearing holding member 70.
  • the main body 70a has an inner diameter that can sufficiently fix the outer peripheral angle of the race when the one race of the thrust bearing 65 is fitted.
  • the extending portion 70b has a width in the rotational direction that is smaller than the width between the stator teeth and has a length in the radial direction that covers the axial end surface side of the coil 22, and is not covered by the resin or the coil. It is arranged in contact.
  • the extending portion 70b exerts stress against a rotational load applied to the main body portion 70a.
  • stretching part 70b is arbitrary.
  • the magnet 31 side of the impeller 51 is based on a flat surface, and has an annular protrusion 51d in the axial direction that is approximately the same diameter or slightly smaller in diameter than the inner circumference of the annular magnet 31. This is for ensuring workability and securing when assembling the impeller 51 to the magnet 31.
  • the planar outer peripheral side of the impeller 51 has an annular protrusion 51c as in the second embodiment.
  • the load of the rotor 3 is not limited to the flywheel 9 and the impeller 51, and may be a fan or another application.
  • the transport body of the electric pump device 11 may not be a fluid but may be a gas or powder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

負荷が設置される環境に影響されず、動力伝達の効率化及び装置の小型化に資する技術を提供する。動力伝達装置は、回転軸方向に延伸するティースの径方向外周側にコイルを有し、ティース端面から回転軸方向に磁束を発生するステータと、磁極の異なる複数の磁石を環状に配置し、前記ティース端面と所定のギャップを介して面対向するロータとを有するアキシャルギャップ型回転電機と、前記ステータ及び前記ロータを格納する空間を有する筺体と、前記筺体内で前記ステータとロータの格納領域を不連続空間として区画する隔壁と、前記隔壁に配置され、前記ロータを回転可能に支持する軸受と、前記ロータの前記ステータと軸方向反対側に配置されて前記ロータと共回りする負荷装置とを有する。

Description

動力伝達装置
 本発明は、動力伝達装置に関し、アキシャルギャップ型回転電機を用いた動力伝達装置に関する。
 省エネルギ化や輸送機器分野での電動化が進む中で、回転電機(モータ・ジェネレータ等)の小型・高効率化が急務となっている。一般に、小型と高効率は相反する要素であるが、その両立性をどれだけ高いレベルで実現できるかが近年の課題となっている。こうした背景の中、小型・省スペースで大トルクが期待できるアキシャルギャップ型回転電機への注目度が高まっている。
 アキシャルギャップ型回転電機は径方向の断面積が広い程トルクを出しやすいモータとしても利用でき、更に形状を扁平化できるという特性がある。このような扁平構造では、慣性モーメントが大きいほど出力トルクが有利になる。よって、アキシャルギャップ型回転電機の構造や特性を活かし、種々のアプリケーションに応用することができる。
 アプリケーションの一例としてフライホイルを適用する場合もある。特許文献1は、フライホイルの技術を開示する。フライホイルは、慣性力を利用してエネルギを蓄える仕組みになっているが、回転する円盤の機械損や風損といった損失がエネルギ貯蔵の弊害となる。特許文献1は、フライホイルの円盤に螺旋状の溝を掘り、空気の流れを回転方向の後ろに促すことで、閉鎖空間でなくても風損を低下させる技術を開示する。
 また、他のアプリケーションの一例として、羽根車を利用した流体のポンプ装置が挙げられる。アキシャルギャップ型回転電機の高トルク。扁平構造といった特性を利用し、ポンプ機構そのものを小型化する場合等に好適である。
特開2003-206992号公報
 ここで、動力の駆動手段からアプリケーション装置に動力を伝達する手段について考える。回転電機は、ロータと共回りするシャフトを介して、適用先のアプリケーション装置の負荷(フライホイルや羽根車等)と機械的に接続されることが多い。当該負荷の配置環境が閉鎖性を要求する場合には、回転電機と負荷の格納領域を隔壁等で区画し、隔壁にシャフト貫通部分を設ける必要があるが、筺体等の構造が複雑化し、シールといった気密保持部材との摩擦により、機械損失が発生するという課題を招来する。
 これに対しては、気密が保持された筺体の同一空間に回転電機と負荷を配置することで解消もできるが、当該空間の大型化が気密を保持する構成が複雑化するという課題や、装置全体の大型化という課題も招来する。
 また、仮に気密が保持された同一空間内に回転電機と負荷を配置したとしても、例えば、アプリケーション装置が液体等を搬送するポンプ装置である場合には、回転電機の電機子を保守するための構成を必要とし、構成の複雑化やそれに伴う装置の大型化するといった課題がある。
  負荷が設置される環境に影響されず、動力伝達の効率化及び装置の小型化に資する技術が望まれる。
 上記課題を解決するために、例えば、請求の範囲に記載の構成を適用する。即ち回転軸方向に延伸するティースの径方向外周側にコイルを有し、ティース端面から回転軸方向に磁束を発生するステータと、磁極の異なる複数の磁石を環状に配置して、前記ティース端面と所定のギャップを介して面対向するロータとを有するアキシャルギャップ型回転電機と、前記ステータ及び前記ロータを格納する空間を有する筺体と、前記筺体内で前記ステータとロータの夫々の格納領域を不連続空間として区画する隔壁と、前記隔壁に配置され、前記ロータを回転可能に支持する軸受と、前記ロータの前記ステータと軸方向反対側に配置されて前記ロータと共回りする負荷装置とを有する動力伝達装置である。
 更には、ティースの径方向外周側にコイルを有し、ティース端面から回転軸方向に磁束を発生するステータと、磁極の異なる複数の磁石を環状に配置し、前記ティース端面と所定のギャップを介して面対向するロータとを有するアキシャルギャップ型回転電機を備える動力伝達装置であって、前記ステータが、樹脂によって外表面がモールドされたものであり、該樹脂モールド後の前記ステータと、前記ロータとが軸受を介して回転軸方向に配置され、前記ロータが、前記ステータと軸方向反対側に配置されて前記ロータと共回りする負荷装置を有するものであり、前記ステータ、前記ロータ及び前記負荷装置を同一格納領域に格納する内空間を有する筺体を備える動力伝達装置である。
 本発明によれば、負荷の配置環境に影響されずに動力の伝達を効率化することができる。また、装置を小型化することができる。
  本発明が解決する更なる課題、構成及び効果は、以下の記載から明らかになる。
本発明を適用した実施例1による動力伝達装置の構成を示す軸方向縦断面図である。 実施例1によるアキシャルギャップ型回転電機の構成を模式的に示す展開斜視図である。 本発明を適用した実施例2による電動ポンプ装置の構成を示す軸方向縦断面図である。 実施例2によるアキシャルギャップ型回転電機及びインペラの構成を模式的に示す展開斜視図である。 実施例2の変形例によるアキシャルギャップ型回転電機及びインペラの構成を示す展開斜視図である。 実施例2の変形例による磁石の構成を模式的に示す斜視図である。 本発明を適用した実施例3による電動ポンプ装置の構成を示す軸方向縦断面図である。 本発明を適用した実施例4による電動ポンプ装置の構成を示す軸方向縦断面図である。 実施例4によるアキシャルギャップ型回転電機及びインペラの構成を模式的に示す展開斜視図である。
 以下,図面を用いて本発明を実施するための形態について説明する。
 図1に、本発明を適用した実施例1による動力伝達装置1の軸方向従断面図を示す。動力伝達装置1は、ステータ2と、ロータ3と、シャフト4と、軸受7とを有し、これらを内部空間に格納する筺体としてステータケース5及び負荷側ケース6を有する。動力伝達装置1は、回転電機としてアキシャルギャップ型回転電機を使用する。
 ステータ2は、回転軸方向に複数のティースが延伸する環状体からなり、ステータケース5内に設置される。ステータケース5は、軸方向の一方が開口した円筒形状を有し、ステータ2の格納領域として内筒部5aを有する。ステータケース5の開口端部縁付近には、径方向外周に沿って延伸するフランジ部5bが形成される。ステータ2の回転軸方向の長さは、内筒部5aの軸方向底面からフランジ部5bの軸心方向延長線との交点までの長さよりも小となっており、ステータ2を内筒部5aに設置したときに、ステータ2の負荷側端面が、当該延長線を越えることがないように配置される。
 負荷側ケース6は、軸方向の一方端面に平面部6aを有すると共に径方向外側に外周壁部6bを有し、平面部6と共にロータ3等を設置するための中空部6cが形成された筺体である。本実施例において、ステータ2と、ロータ3とは、平面部6aという隔壁によって不連続に区画された別の空間内に設置される構成となる。平面部6aの径は、フランジ部5bの径よりも大である。ステータケース5は、フランジ部5bにおいてボルト8を介して平面部6aと接続される。負荷側ケース6の軸方向反対側は、他の隔壁等(不図示)が配置され、中空部6cが、気密性の確保された(真空を含む)閉鎖空間となるようになっている。中空部6cの軸方向でステータ2側の底面(平面部6aの裏面側)中央には、円筒状の凹部6dが形成され、当該凹部6dにラジアル軸受7(玉、コロ、ニードル等)を介してロータ3が配置されるようになっている。より具体的には、凹部6dの内周面とラジアル軸受7の外輪が接続され、ラジアル軸受の内輪とロータ3の外周面が接続されるようになっている。また、ロータ3の磁石面と凹部6dの底面とは非接触である。
 なお、本発明は必ずしも閉鎖空間に限定されるものではなく、適用先のアプリケーション(本実施例ではフライホイル9)の仕様に応じて、負荷側ケーシング6の中空部6cの他方側が外部と連通する構成であってもよい。
 ロータ3は、磁石31、ヨーク32を有する。磁石31は、後述するように環状体の形状を有し、ヨーク32によって、軸方向の一方端面が接着や嵌め込み等によって支持されるようになっている。シャフト4は、ヨーク32の中心と共回りするように接続され、ヨーク32と反対側端部でフライホイル9と接続されるようになっている。
 図2に、アキシャルギャップ型回転電機10の展開斜視図を示す。
  同図(a)に示す様に、アキシャルギャップ回転電機10は、コア21、コイル22、磁石31及びヨーク32を有する。ステータ2は、コア21と、コア21に複数形成されたティースの径方向外周に巻き回すコイル22からなる。
 コア21は、電磁鋼板、圧紛磁心、アモルファス金属、パーメンジュール等の軟磁性材料で構成される。圧紛磁心を適用する場合以外は、コアの渦電流を抑えるために、周方向又は径方向に積層しているのが好ましい。圧紛磁心の場合は、コアを構成する磁心が電気的に絶縁されることでコアの電気抵抗が高くなることから、積層は必要なくなる。通常、モータといった回転電機は、周方向に回転可能に支持された回転子と径方向に空隙を介して配置される固定子とで構成されているラジアルギャップ型であり、トルクを発生させるための磁束は径方向が主となる。よって、コアの渦電流を低減させるために、ステータは鋼板を軸方向に積層しているものがほとんどである。アキシャルギャップ型回転電機の場合、磁束は軸方向が主となり、面内方向の渦電流を低減させるためには、径方向や周方向などの磁束の流れに対して垂直方向に電気的な絶縁が必要となる。絶縁方法としては、絶縁紙、樹脂製ボビン、絶縁剤等である。
 本実施例において、コア21は、アモルファス金属からなる箔帯を、回転軸を中心にロール状に巻いて環状体を得、その後、軸方向の一方側の部分を軸心から放射状に切除・切削して除くことにより軸方向に突出したティース部を得るようになっている。また、ティース以外の部分はヨークとして機能する。なお、コア21の製造方法はこれに限るものではない。
 コイル22は、銅やアルミなどの導電性部材からなり、コア21のティースの径方向外周に巻き回される。また、コア21のティース部とコイルの間には、絶縁紙やボビンなどのインシュレータを挿入するものとする。
 磁石31は、ネオジウム焼結磁石、フェライト磁石又はボンド磁石等の永久磁石からなる。図2(b)に磁石31の斜視図を示す。磁石31は、軸心から放射状に等角度の扇形で磁極が区分された構成を有する。本例では8極であり、回転方向に隣接する磁極は、軸方向に互いに異なる磁極である。
 ロータ3は、コア21及び負荷側ケーシング6の平面部6a対してギャップを介して回転軸方向に対向する(図1参照)。この場合、コア21と同様に、磁束の変化を直に受けることになり、その変化を妨げようとする向きに磁束が発生するように渦電流が流れる現象が起きる場合もある。ネオジム焼結磁石を適用する場合、ネオジム焼結磁石はエネルギ積が大きく大トルクが期待できるが、その反面、電気抵抗が低く渦電流が流れやすいという特性がある。よってネオジム磁石焼結を使用する場合、軸に対して垂直方向に磁石を分割して、電気的絶縁を施すのが好ましい。或いはヨーク32に磁石31を埋め込み、磁束の変化の影響を小さくする等の対策をするようにしてもよい。
 他方、磁石31にフェライト磁石を適応する場合、電気抵抗が高く,渦電流は流れ難くなるという利点がある。よって、磁石の分割やヨーク32に埋め込むといった対策は不要となる。また、フェライト磁石は酸化鉄からできているため防錆効果が期待できる。また、防錆の点では、ボンド磁石を使用するのも好適である。NdFeB系又はSmFeNのボンド磁石は残留磁束密度も高く、高出力も期待できる。
 ヨーク32は、ステータのコア21と同様に、電磁鋼板、圧紛磁心,アモルファス金属、パーメンジュールなどの軟磁性材料で構成される。ヨーク32もモータ駆動時に磁束の変化は生じるが、コア21よりも渦電流の影響が比較的小さいため、鉄の一体部材として構成しても良い。少しでも渦電流損失を抑制したい場合には、圧紛磁心を適用するか若しくは電磁鋼板、アモルファス金属、パーメンジュール等の薄板材料を積層した構成にするのが好ましい。ヨーク32は、ステータ2と軸方向と反対側端面の中央に、フライホイル9と接続されるシャフト4を有する。
 このように構成されたアキシャルギャップ型回転電機10が、図1に示す如くステータケース5や負荷側ケース6に配置されてステータ2に電流が印加されることで、ロータ3とフライホイル9が回転運動を行うようになっている。具体的には、ステータ2から中空部6aを透過して流れる磁束と、磁石31の極とが誘引・反発を繰り返し、ロータ2及びフライホイル9を回転させる。
 以上の構成を有する動力伝達装置1によれば、ステータ2側と、ロータ3側とを空間的に分離することができる。つまりロータ3側のシャフト4に支持されたフライホイル9は、一定の圧力下に周囲環境が維持された中空部6c内で駆動することになり、風損が軽減するし、フライホイルのエネルギ貯蔵を有利にすることができる。
 また、ロータ3が負荷側ケース6の平面部6aを貫通させることなく設置でき、貫通部等に施すシール等が不要になり、機械損失が低減する効果がある。
 更に、扁平性を有するアキシャルギャップ型回転電機を用いることで、装置の小型化にも資する。
 本発明を適用した実施例2を説明する。実施例2は、実施例1のフライホイル9に代えて、負荷装置としてインペラ(羽根車)51を適用し、動力伝達装置として、電動ポンプ装置11に適用する例である。以下、電動ポンプ装置11について詳細に説明する。なお、他の実施例と同一の部材は同一符号を付すものとし、詳細な説明は省略する場合がある。
 図3に、電動ポンプ装置11の軸方向縦断面図を示す。ステータ2及びステータケース5については実施例1と同様である。また同様に、ステータ2と、ロータ3との格納領域が負荷側ケース6の平面部6aによって不連続に区画される。電動ポンプ装置50は搬送流体として液体を搬送するものである。このため負荷側ケース6のロータ3側は、ステータ2及び他の外部空間に対して閉鎖された領域であるものとする。
 ロータ3は、ステータ2と軸方向の反対側端面に、一体的に接続されたインペラ51を有する。また、ラジアル軸受7はシール付き軸受を用い、凹部6dの軸方向底面と、ロータ3とのギャップに液体が入るのを防止するようになっている。液体中での回転体の抵抗は、直径が大きいほど不利になることから、ギャップへの液体の侵入を防止することでロータ3にかかる抵抗を低減し、効率向上を図っている。
 図4に、アキシャルギャップ型回転電機10の電機子とインペラ51の展開斜視図を示す。インペラ51は、回転によって液体を循環させる搬送圧を発送する羽根車となっており、樹脂等の材料からなる。インペラ51は、ヨーク32側の縁から軸方向に、ヨーク32の外径と略同径の内径を有する環状突部51aを有する。環状突部51aは、ヨーク32及び磁石31の軸方向幅と同程度に延伸し、両者の周面をその内径で覆う様になっている。
 磁石31、ヨーク32及びインペラ51は、液中に没するため、例えば、液体が水等である場合には磁石31やヨーク32に防錆処理を施す。主に酸化鉄からなるフェライト磁石や錆耐性の強いボンド磁石を適用する場合には、防錆処理は必須ではないが、フェライト磁石を適用する場合には、防錆処理をするのが好ましい。ヨーク32についても同様であり、例えば、SUS440c等のマルテンサイト系の磁性ステンレスを適用する場合は、防錆処理は不必要であるが、鉄等であれば防錆処理するのが好ましい。また、本実施例において、環状突部51aがヨーク32や磁石31の周面を覆う構成は、防錆の一助ともなる。
 実施例2の電動ポンプ装置10によれば、ステータ2とロータを区画する平面部6aを軸貫する必要がなく、シール等に起因する機械損失が低減し、構成の簡素化によって装置の小型化を図ることができる。特に、液体との関係では、ステータ2側への漏れが解消されており、装置としての信頼性も向上する。
 [変形例]
 実施例2のインペラ51は、環状突部51aが磁石31とヨーク32の周面を内径側に覆う構成であったが、ヨーク32を使用しない構成であってもよい。
  図5に、変形例のインペラ51を適用した場合の例を示す。同図(a)では、インペラ51に環状突部51aを設けずに磁石方向に平面51bを形成し、磁石31の端面と接着剤等で接着する例である。平面51bと磁石31の端面を接着することで磁石31の強度が確保され又ヨーク32が無い分、軸方向の小型化、更にはロータ3の軽量化に資する。
 また、図5(b)は、インペラ51の環状突部51aの軸方向幅を磁石31の軸方向幅分とする環状突部51cとし、内径側に磁石31を嵌め込み、接着剤等で接着する構成例である。磁石31は、更に周面が環状突起51aで支持される分、強度も確保される。ヨーク32を使用しない分、軸方向の小型化やロータ3の軽量化にも資する。
 なお、図6に示す様に、このような変形例で使用する磁石31は、軸方向にN極の磁束が集中するような極異方着磁とするのが好ましい。ボンド磁石では配向が比較的自由にできるため、こうした極異方着磁が可能となる。このような磁束方向を有することによって、N極とは反対の方向に磁束の漏れがないため,ヨーク32を設ける必要がなくなるためである。また、ボンド磁石を使用することは防錆の面からも好適である。
 本発明を適用した実施例3を説明する。実施例3は、動力伝達装置として電動ポンプ装置10に応用した場合の他の構成例である。実施例2の電動ポンプ装置との主な相違点は、ステータ2と、ロータ3とは、ステータケース5、負荷側ケース6の内部空間に配置されるが、両者を区画する隔壁が負荷側ケース6の平面部6aではなく、ステータケース5や負荷側ケース6とは独立した部材であるインナステータケース60となる点である。また、他の相違点は、ロータ3を回転可能に支持する軸受として、スラスト軸受65を適用する点である。
 図7に、実施例3による電動ポンプ装置の軸方向従断面図を示す。電動ポンプ装置11は、ステータケース5と、負荷側ケーシング6とを備える。ステータケース5は、軸方向一方端が開口し、負荷側ケース6も軸方向一方端が開口し、内外径を同一とする両者の開口端部断面同士を接合するようになっている。なお、仕様によっては、ステータケース5と負荷側ケース6が分割構成でなくてもよい。
 インナステータケース60は、ステータケース5の内径と概略同径或いは若干小径の外周面を有し、ステータ2側にのみ開口する円形の筒状からなる。また、インナステータケース60の底面は、ステータ2のティースやコイル部分の形状に沿った凹凸の形状を有し、ステータ2をその形状に沿って軸方向から覆うように構成されている。なお、ステータ2と、インナステータケース60との間には絶縁材が施され、電気的に絶縁される。絶縁材としては、例えば、絶縁紙や絶縁剤の塗布或いは、樹脂封入であってもよい。
 ステータ2がインナステータケース60に配置された後、インナステータケース60の開口側(ステータ2の配置側)がステータケース5の内筒部5aに嵌め込まれるようになっている。なお、気密確保の為に、インナステータケース60の外周面と、ステータケース5の内筒部とは隙間なく嵌着するように構成されるのがよい。なお、必要に応じてシール剤を用いるのも好ましい。また、当該嵌着力を利用して、ステータ2をステータケーシング5の内筒部に挟み、固定するようにしてもよい。
 他方、インナステータケース60の負荷側端面に、ステータ2のティースやコイル形状に沿って形成された凹部端面に、スラスト軸受65の一方レースが固定され、ス他方レースに、インペラ51が装着されたロータ3が固定される。ロータ3及びインペラ51は、実施例2(図4)及びその変形例(図5)の何れの構成であってもよい
 最後に、ステータケース5と、負荷側ケース6の端部断面同士がネジ等で固定されることで、ステータ2側と、ロータ3側とが区画された密閉構造を得ることができる。
 以上のように、実施例3の電動ポンプ装置10によれば、隔壁としてのインナステータケース60に貫通軸及びそれに施すシール等による機会損失が無い。また、装置が小型化するという効果を得ることができる。
 特に、実施例3では、スラスト軸受65を適用することから、インナステータケース6との接合部分を少なくとも一方レースの厚み分のみ確保すれば、他方レース側の分、軸短化できるという効果もある。
 本発明を適用した実施例4を説明する。実施例4は、実施例2及び3と同様に、動力伝達装置を電動ポンプ装置11に適用した場合の他の構成例である。他の例と実施4例の相違点は、ステータ2の外表面を樹脂によってモールディングすることでステータ2と、ロータ3との格納領域を区画する隔壁が無い点である。換言すれば、樹脂―モールドが隔壁としての機能を発揮するとも言える。
 図8に、実施例4の電動ポンプ装置の軸方向従断面図を示す。本例は第3実施例の構成を基調とし、ステータケース5、負荷側ケース6の内筒空間に、ステータ2と、ロータ3がスラスト軸受65を介して軸方向に配置された構成を有する。
 コア22にコイルが巻き回されたステータ2の外表面は、樹脂100によってモールドされるようになっている。また、コイル22の外周側は、所定の厚みをもってモールドされ、モールド後にステータケース5の内筒部5aと概略同径或いは若干小径の外径となるようになっている。ステータ2とステータケース5の嵌着性の確保と、絶縁性確保の為である。また、ステータ2の外表面を樹脂でモールディングすることで、ステータ2の防錆性も確保できる。
 樹脂モールドされたステータ2が、ステータケース5の内筒部に軸方向から嵌めこまれることで、ステータ2が固定される。なお、ステータケース5の内筒部にステータ5を位置決め・配置し、樹脂モールドするようにしてもよい。ステータ2とステータケース5の固定が更に期待できる。
 ロータ3は、スラスト軸受65を介してステータ2と接続されるが、本実施例では、樹脂モールドされたステータ2と、スラスト軸受65との間に、軸受保持部材70を配置するようになっている。
 図9に、電機子、軸受保持部材70、スラスト軸受65及びロータ3の展開斜視図を模式的に示す。軸受保持部材70は金属や樹脂等からなり、スラスト軸受65の一方レース外周角部を軸方向及び径方向から保持する環状の本体部70aと、本体部70aから径方向に放射状に延伸する複数の延伸部70bとを有する。ステータ2の樹脂モールド部分に直接スラスト軸受65を配置すると、ロータ3の回転応力によって樹脂が損傷する虞がある。このため軸受保持部材70を介して、スラスト軸受65をステータ2に固定するようになっている。
 本体部70aは、スラスト軸受65の一方レースを嵌め込んだ際、当該レースの外周角を十分に固着できる内径を有する。延伸部70bは、回転方向の幅が、ステータティース間の幅より小であり、コイル22の軸方向端面側を覆う程度の径方向の長さを有し、樹脂によってコイルにもティースにも非接触の状態で配置されるようになっている。延伸部70bは、本体部70aにかかる回転負荷に対する応力を発揮する。なお、延伸部70bの径方向長さは任意である。
 インペラ51の磁石31側は平面を基調とし、環状体からなる磁石31の内周径と概略同径或いは若干小径の環状突部51dを軸方向に有する。磁石31にインペラ51を組む際の作業性確保や固定確保の為である。また、インペラ51の平面外周側は、第2実施例等と同様に環状突部51cを有する。
 以上のように、実施例4の電動ポンプ装置11によれば、貫通軸やそのシール等がなく、その分機会損失が低減する。更に、ステータ2と、ロータ3とを設置する空間を区画する隔壁(平面部6aやインナステータケース60等)が無く(或いは樹脂モールドがその機能を発揮するため)、その分更に小型化や軸短化ができる。
  また、ステータ2の外表面が樹脂モールドされることで、防錆性が確保できる。
 以上、本発明を実施する形態例を説明したが、本発明は上記例に限定されるものではなく、その趣旨を逸脱しない範囲で種々の組合せや変更が可能である。例えば、ロータ3の負荷はフライホイル9やインペラ51に限定されるものではなく、ファンや他のアプリケーションであってもよい。同様に、電動ポンプ装置11の搬送体は流体でなく、気体や粉体であってもよい。
 動力伝達装置…1、ステータ…2、ロータ…3、シャフト…4、ステータケース…5、内筒部…5a、フランジ部…5b、負荷側ケース…6、平面部…6a、外周隔壁…6b、凹部…6d、ラジアル軸受…7、ボルト…8、フライホイル…9、電動ポンプ装置…11、コア…21、コイル…22、磁石…31、ヨーク…32、インペラ…51、平面部…51b、環状突部…51c、環状突部…51d、インナステータケース…60、スラスト軸受…65、軸受保持部材…70、本体部…70a、延伸部…70b、樹脂…100
 
 
 
 
 
 
 

 

Claims (15)

  1.  回転軸方向に延伸するティースの径方向外周側にコイルを有し、ティース端面から回転軸方向に磁束を発生するステータと、磁極の異なる複数の磁石を環状に配置し、前記ティース端面と所定のギャップを介して面対向するロータとを有するアキシャルギャップ型回転電機と、
     前記ステータ及び前記ロータを格納する空間を有する筺体と、
     前記筺体内で前記ステータとロータの格納領域を不連続空間として区画する隔壁と、
     前記隔壁に配置され、前記ロータを回転可能に支持する軸受と、
     前記ロータの前記ステータと軸方向反対側に配置されて前記ロータと共回りする負荷装置とを有する動力伝達装置。
  2.  請求項1に記載の動力伝達装置であって、
     前記筺体内で前記隔壁が区画する前記ロータの格納領域が、外部から密閉された空間である動力伝達装置。
  3.  請求項1に記載の動力伝達装置であって、
     前記筺体が、前記ステータを格納する領域を有するステータ筺体と、前記ロータ及び前記負荷装置を格納する領域を有する負荷側筺体とに分割されてなるものである動力伝達装置。
  4.  請求項1に記載の動力伝達装置であって、
     前記磁石が、回転軸方向極異方に着磁されたものである動力伝達装置。
  5.  請求項1に記載の動力伝達装置であって、
     前記ロータが、前記ステータと反対側端面から回転軸方向に延伸するシャフトを有し、
     前記負荷装置が、前記シャフトに配置されるものである動力伝達装置。
  6.  請求項1に記載の動力伝達装置であって、
     前記ロータが、前記ステータと反対側端面に前記負荷装置を一体的に配置するものである動力伝達装置。
  7.  請求項1に記載の動力伝達装置であって、
     前記軸受がラジアル軸受であり、
     前記ロータの外周と、前記隔壁との間に配置されたものである動力伝達装置。
  8.  請求項1に記載の動力伝達装置であって、
     前記軸受がスラスト軸受であり、
     前記ロータと、前記隔壁との間に配置されたものである動力伝達装置。
  9.  請求項5~8の何れか一項に記載の動力伝達装置であって、
     前記負荷装置が、フライホイルである動力伝達装置。
  10.  請求項5~8の何れか一項に記載の動力伝達装置であって、
     前記負荷装置が、羽根車である動力伝達装置。
  11.  請求項2に記載の動力伝達装置であって、
     前記負荷装置が、羽根車であり、
     前記ロータの格納領域内に液体が流通するものである動力伝達装置。
  12.  ティースの径方向外周側にコイルを有し、ティース端面から回転軸方向に磁束を発生するステータと、磁極の異なる複数の磁石を環状に配置し、前記ティース端面と所定のギャップを介して面対向するロータとを有するアキシャルギャップ型回転電機を備える動力伝達装置であって、
     前記ステータが、樹脂によって外表面がモールドされたものであり、
     該樹脂モールド後の前記ステータと、前記ロータとが軸受を介して回転軸方向に配置され、
     前記ロータが、前記ステータと軸方向反対側に配置されて前記ロータと共回りする負荷装置を有するものであり、
     前記ステータ、前記ロータ及び前記負荷装置を同一格納領域に格納する内空間を有する筺体を備えるものである動力伝達装置。
  13.  請求項12に記載の動力伝達装置であって、
     前記ステータと前記軸受の間に、該ステータと該軸受の接続状態を保持する軸受保持部材が配置されるものである動力伝達装置。
  14.  請求項12に記載の動力伝達装置であって、
     前記筺体の内空間が、外部から閉塞されて、液体が流通する空間であり、
     前記負荷装置が、回転によって前記液体を搬送する羽根車である動力伝達装置。
  15.  請求項12~14の何れか一項に記載の動力伝達装置であって、
     前記軸受が、スラスト軸受である動力伝達装置。
PCT/JP2015/071902 2015-08-03 2015-08-03 動力伝達装置 WO2017022044A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071902 WO2017022044A1 (ja) 2015-08-03 2015-08-03 動力伝達装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071902 WO2017022044A1 (ja) 2015-08-03 2015-08-03 動力伝達装置

Publications (1)

Publication Number Publication Date
WO2017022044A1 true WO2017022044A1 (ja) 2017-02-09

Family

ID=57942603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071902 WO2017022044A1 (ja) 2015-08-03 2015-08-03 動力伝達装置

Country Status (1)

Country Link
WO (1) WO2017022044A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013255A1 (ja) * 2021-08-05 2023-02-09 株式会社荏原製作所 モータポンプ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278924A (ja) * 1999-03-19 2000-10-06 Nippon Densan Corp 回転機
JP2001103722A (ja) * 1999-09-29 2001-04-13 Mitsubishi Electric Corp 扁平モータとそれを用いた遠心ポンプとその遠心ポンプを製氷機用給水ポンプに用いた冷蔵庫
JP2001309628A (ja) * 2000-04-19 2001-11-02 Unisia Jecs Corp モータポンプ
JP2002095209A (ja) * 2000-09-14 2002-03-29 Mitsubishi Heavy Ind Ltd 電力貯蔵用フライホイール装置
JP2006222131A (ja) * 2005-02-08 2006-08-24 Neomax Co Ltd 永久磁石体
JP2007325329A (ja) * 2006-05-30 2007-12-13 Aisan Ind Co Ltd アキシャルギャップ型モータ及び燃料ポンプ
JP2012120249A (ja) * 2010-11-29 2012-06-21 Fujitsu General Ltd ポンプ装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278924A (ja) * 1999-03-19 2000-10-06 Nippon Densan Corp 回転機
JP2001103722A (ja) * 1999-09-29 2001-04-13 Mitsubishi Electric Corp 扁平モータとそれを用いた遠心ポンプとその遠心ポンプを製氷機用給水ポンプに用いた冷蔵庫
JP2001309628A (ja) * 2000-04-19 2001-11-02 Unisia Jecs Corp モータポンプ
JP2002095209A (ja) * 2000-09-14 2002-03-29 Mitsubishi Heavy Ind Ltd 電力貯蔵用フライホイール装置
JP2006222131A (ja) * 2005-02-08 2006-08-24 Neomax Co Ltd 永久磁石体
JP2007325329A (ja) * 2006-05-30 2007-12-13 Aisan Ind Co Ltd アキシャルギャップ型モータ及び燃料ポンプ
JP2012120249A (ja) * 2010-11-29 2012-06-21 Fujitsu General Ltd ポンプ装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013255A1 (ja) * 2021-08-05 2023-02-09 株式会社荏原製作所 モータポンプ

Similar Documents

Publication Publication Date Title
JP5502463B2 (ja) アキシャルギャップ型回転電機及びそれに用いるロータ
US8497612B2 (en) Permanent magnet rotating machine
US7960884B2 (en) Axial gap type rotating machine
JP5898976B2 (ja) アキシャルギャップ回転子を有する羽根車システム
JP2010246171A (ja) アキシャルギャップ型回転電機
JP2005094955A (ja) アキシャル型永久磁石モータ
US9837867B2 (en) Electric machine, rotor and associated method
JP4970974B2 (ja) 回転電機
KR101597965B1 (ko) 복합 자속을 이용한 모터
JP6584331B2 (ja) 単相ブラシレスモータおよび単相ブラシレスモータの製造方法
US20230253838A1 (en) Electric motor
JP2019075952A (ja) アキシャルギャップ型回転電機
JP4687687B2 (ja) アキシャルギャップ型回転電機及び界磁子
JPWO2022019074A5 (ja)
JP4904251B2 (ja) ポンプ用dcモータ
JP2008092715A (ja) 永久磁石型モータ
JP2013106499A (ja) 回転電機および回転電機のロータ
CN112350545A (zh) 步进马达
CN112350544A (zh) 步进马达
WO2017022044A1 (ja) 動力伝達装置
WO2023276514A1 (ja) 回転子及びその製造方法、並びに電動機
JP2008187863A (ja) アキシャルギャップ型回転電機及び圧縮機
JP5128800B2 (ja) ハイブリッド式永久磁石回転電機
CN109075680B (zh) 旋转发电机
JP2020089130A (ja) ロータおよびモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15900357

Country of ref document: EP

Kind code of ref document: A1