WO2017018771A1 - Method for preparing tetrasilane and pentasilane - Google Patents

Method for preparing tetrasilane and pentasilane Download PDF

Info

Publication number
WO2017018771A1
WO2017018771A1 PCT/KR2016/008140 KR2016008140W WO2017018771A1 WO 2017018771 A1 WO2017018771 A1 WO 2017018771A1 KR 2016008140 W KR2016008140 W KR 2016008140W WO 2017018771 A1 WO2017018771 A1 WO 2017018771A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
tetrasilane
pyrolysis
pentasilane
trisilane
Prior art date
Application number
PCT/KR2016/008140
Other languages
French (fr)
Korean (ko)
Inventor
송영하
권삼봉
김성수
Original Assignee
에스케이머티리얼즈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이머티리얼즈 주식회사 filed Critical 에스케이머티리얼즈 주식회사
Publication of WO2017018771A1 publication Critical patent/WO2017018771A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages

Definitions

  • the present invention relates to a method for producing tetrasilane and pentasilane having high added value as silicon for semiconductors in high yield.
  • the higher silane has a lower decomposition temperature than the lower silane, thereby lowering the temperature of the process of forming the thin film, and when the thin film is formed at the same temperature using the lower silane, the silicon thin film growth rate is faster than that of the lower silane. Homogeneous membrane deposition is possible.
  • higher order silane is expected to be widely used in the semiconductor field in the future.
  • a higher silane may be prepared using a reducing agent such as lithium aluminum hydride (LiAlH 4 ) on a hexachloro disilane or hexaethoxydisilane solvent.
  • a reducing agent such as lithium aluminum hydride (LiAlH 4 ) on a hexachloro disilane or hexaethoxydisilane solvent.
  • this method has a high price of hexadiclodisilane and a reducing agent, and it is difficult to separate organosilicon compounds produced as a by-product.
  • Another method is the production of higher silanes such as tetrasilane, as well as lower silanes such as disilane and trisilane, from monosilanes using the electric discharge method.
  • the method has been reported to obtain a higher yield of higher order silanes, such as tetrasilane, but it is difficult to develop the device for commercial production, it is still difficult to use in the actual manufacturing process.
  • US Patent No. 6027705 proposes a method for producing trisilane or higher silane, and pyrolyzing monosilane by continuously connecting two pyrolysis reactors.
  • this method is complicated to operate, low in yield, and difficult to apply to the actual process.
  • U.S. Patent No. 70609494 describes a method for producing trisilane by pyrolyzing disilane, but due to the reversible reaction mechanism, the yield of higher silane is low, and monosilane and disilane are excessively decomposed.
  • the production economy is low due to the generation of more by-products such as solid silicon powder than the amount converted to higher silane, and the continuous process is impossible due to the blockage of the line due to deposition of a large amount of product in the reactor or accumulation in the process line.
  • the main object of the present invention is to produce a higher-order silane which can economically and efficiently produce high-order silanes, particularly tetrasilane or pentasilane, useful for silicon precursors for semiconductors by thermally decomposing trisilane to solve the above problems. To provide.
  • Tetrasilane or pentasilane production method (a) pyrolysis step of pyrolyzing pure trisilane in a pyrolysis reactor; (b) removing the solid particles to remove the solid particles produced in the pyrolysis product; (c) a condensation step of liquefying and collecting silanes other than hydrogen from the pyrolysis product from which the solid particles are removed; (d) a first separation step of separating the lower silane having a silicon number of 3 or less from the liquefied silanes; (e) a second separation step of separating tetrasilane and pentasilane from the mixture from which the lower silane is removed; Characterized in that it comprises a.
  • the trisilane in step (a) is mixed with the diluent gas is introduced into the pyrolysis reactor, the diluent gas is helium, nitrogen, argon, hydrogen or a mixture thereof, the raw silane gas and dilution
  • the mixing ratio of the gas is characterized in that it is adjusted at a ratio of 50:50 ⁇ 1: 99% by volume.
  • the trisilane is introduced into the reactor at a temperature of 300 ° C or less, preferably 280 to 300 ° C.
  • reaction temperature is 300 °C to 400 °C, it is characterized in that more preferably 325 °C to 375 °C.
  • the pressure of the pyrolysis reactor is 1 bar to 3 bar, characterized in that the space velocity of the trisilane is 50 to 500 hr -1 .
  • the method for producing tetrasilane and pentasilane according to the present invention it is possible to improve the yield of tetrasilane and pentasilane at several times compared to the existing method even at low temperature, so that it is possible to manufacture a large amount of high value-added high-order silane with high economic efficiency. It works.
  • FIG. 1 is a schematic view of a high-order silane manufacturing process according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the conversion rate of monosilane according to the pyrolysis reaction temperature during monosilane pyrolysis.
  • 3 is a graph showing the yield of the product according to the pyrolysis reaction temperature during monosilane pyrolysis.
  • 5 is a graph showing the yield of the product according to the pyrolysis reaction temperature during disilane pyrolysis.
  • FIG. 6 is a graph showing the conversion rate of trisilane according to the pyrolysis reaction temperature according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the yield of the product according to the pyrolysis reaction temperature during trisilane pyrolysis according to an embodiment of the present invention.
  • higher order silane means a silane having a silicon number of 4 or more
  • low order silane means a silane having a silicon number of 4 or less
  • raw material silane refers to a silane compound introduced into a pyrolysis reactor and pyrolyzed to produce higher silane. Examples are monosilane, disilane, trisilane and the like.
  • Raw silane gas is intended to indicate that the silane is maintained in gaseous form.
  • the present invention is characterized in that pyrolysis is performed using trisilane, not monosilane or disilane, as a raw material for pyrolysis reaction in order to produce higher silanes such as tetrasilane and / or pentasilane.
  • FIG. 1 is a schematic diagram of a manufacturing process of tetrasilane and pentasilane according to an embodiment of the present invention.
  • trisilane is supplied to a pyrolysis reactor 100 to perform pyrolysis, and then the resulting pyrolysis product is transferred to a solid particle separator 200 to remove solid particles.
  • Silanes other than hydrogen generated lower silane, unreacted substance and higher silane
  • the higher silane is separated and transferred to the second separation unit 500.
  • the unreacted material (including the generated lower silane) from which the higher silane is recovered is separated, the trisilane is transferred to the pyrolysis reactor 100, and the remaining lower silane is separated and recovered from the third separation unit 400, and then used for other purposes. Collect and save.
  • the higher silane separated and recovered in the second separation unit 500 is purified by tetrasilane and pentasilane in the purification units 600 and 700, respectively, and filled in the charging units 610 and 710, respectively.
  • the manufacturing process is as follows.
  • the raw material silane is introduced into a pyrolysis reactor to perform pyrolysis of the raw material silane.
  • the raw material silane may be introduced in the form of gas and may be pyrolyzed without dilution gas, but is generally introduced into the reactor as the diluent gas.
  • the diluent gas may be helium (He), nitrogen (N 2), argon (Ar) gas, or a mixed gas in which hydrogen (H 2) is mixed in the inert gas, and the raw silane gas and the dilution gas are 50: 50 to 1: 99. It is used by adjusting the ratio of volume%.
  • the pyrolysis reaction temperature may be performed at 300 ° C to 375 ° C, preferably 325 ° C to 375 ° C. More preferably, it may be a temperature of 350 °C to 375 °C.
  • the pyrolysis reactor may be a tubular reactor composed of one or more tubes, but is not limited thereto.
  • the pyrolysis temperature is less than 300 °C, the yield of the desired higher silane is very low, if the pyrolysis temperature is higher than 400 °C, the production of solid particles is too high, if the temperature exceeds 400 °C tetrasilane and pentasilane Yield is reduced.
  • the trisilane gas when introduced into the pyrolysis reactor, it may be introduced at a temperature of 300 ° C. or less, preferably preheated to 280 ° C. to 300 ° C. When the preheating temperature exceeds 300 ° C., the pyrolysis reaction occurs in advance, which is not appropriate.
  • the pressure in the reactor during the pyrolysis reaction can be any of atmospheric pressure, pressurization and reduced pressure, but carrying out the reaction under pressure is economically advantageous in terms of separation efficiency, cooling cost and device size.
  • the reaction pressure is in the range of 1 or 3 bar, preferably 1 to 1.5 bar. Increasing the reaction pressure increases the conversion and yield, but in the case of trisilane having a low vapor pressure, an apparatus investment cost for the feeder increases.
  • the space velocity of the raw material silane gas from the reactors in the range of from 50 to 500hr -1, preferably in the range of 100 to 150hr -1.
  • the gas space velocity (SV) refers to the value divided by the reactor volume passing the volume of raw gas per hour flowing into the pyrolysis reactor measured at the reactor inlet. Also called space velocity.
  • SV gas space velocity
  • Increasing the gas space velocity has the advantage of reducing the amount of solid particles, but the amount of recycled unreacted raw silane gas is greatly increased, the volume of the reactor is increased, there is a disadvantage that the operating cost increases.
  • Such pyrolysis may be carried out by conventional methods used in the art, and the temperature inside the reactor may be raised or maintained using an electrical method or other known methods.
  • the said raw material silane is aimed at higher silane, it is preferable that it is trisilane rather than monosilane and disilane.
  • Pyrolysis using trisilane as a raw material has the advantage that the reaction temperature can be further lowered than that of conventional monosilane or disilane, and the yield of higher silane is several times higher than that of monosilane or disilane. It can increase by several orders of magnitude.
  • the pyrolysis gas produced as a result of performing pyrolysis of the raw silane gas in the reactor as described above includes unreacted material, lower silane, higher silane, hydrogen (boiling point 253 ° C.) and several hundred micron sized solid particles at sub-micron. .
  • the unreacted product may be trisilane (boiling point 53 ° C.), monosilane (boiling point ⁇ 112 ° C.) or disilane (boiling point 14 ° C.), and the higher silane is a silane having a silicon number of 4 or more including tetrasilane and pentasilane. .
  • the raw silane may be decomposed to produce lower silanes lower than the raw silane.
  • the resulting pyrolysis product is obtained to remove solid particles contained in the pyrolysis product.
  • the removal of solid particles in the pyrolysis product not only eliminates process troubles caused by the solid particles in subsequent process steps, but also leads to problems in semiconductor processes where higher order silane gas is used as the final product contains sub-micron particles. It can prevent.
  • Removal of the solid particles may be used without limitation as long as it is a known method for removing solid particles in a gas stream in the art. For example, it is possible to capture and remove solid particles by using a cyclone or a metal filter. Particularly, particles smaller than 0.1 micron are difficult to be removed by a metal filter. Additional traps can be installed to remove solid particles. At this time, the filter can be periodically recycled and reused.
  • the solid particles may be removed by passing a gas including the solid particles through a washing tower spraying an aqueous solution dissolving water or the solid particles. In this case, a separate adsorption tower may be installed for removal of an aqueous solution dissolving water and solid particles generated in the washing tower.
  • the higher silane, the unreacted raw material silane and the lower silane are separated from the pyrolysis product from which the solid particles are removed to recover the higher silane.
  • the lower silane produced during the pyrolysis process is also separated together with the unreacted material.
  • the separation method of the higher order silane and the unreacted raw material may be separated using their physical properties, and preferably, the boiling point difference of these compounds may be separated, but is not limited thereto.
  • tetrasilane or pentasilane is separated and recovered from the recovered higher silane.
  • the method of separating tetrasilane or pentasilane from higher silanes can be separated using their physical properties, similar to the method of separating unreacted substances from higher silanes, and preferably separated using the boiling point difference of these compounds. May be, but is not limited to.
  • the tetrasilane or pentasilane separated in this way may be liquefied and collected, and may further include a purification step and a collecting step to obtain a final target product, and the unreacted raw material separated from the higher silane is recovered to recover the above-described pyrolysis reactor. By recirculating, the loss of raw silane can be minimized.
  • the unreacted raw material silane When the unreacted raw material silane is recycled, it may be directly recycled to a pyrolysis reactor, or may be recycled to each unreacted raw material tank.
  • the reaction temperature was experimented using a reactor consisting of a 300 ⁇ 450 °C tubular reactor. At this time, the pressure was 1 bar (absolute pressure), and the space velocity was 120 h -1 based on the total gas flow rate including the diluent gas.
  • Trisilane was used as the reaction raw material silane gas, high purity nitrogen was used as the diluent gas, and the flow rate was supplied at a total flow rate of 95 ml / min including the diluent gas.
  • the dilution ratio was adjusted to a nitrogen: trisilane volume ratio of 7: 3.
  • the column filled with gas chromatography (Varian, CP3800) connected on-line to the reactor (Porapak Q, 100 ⁇ 120mesh, 6′X 1/8 ′′ x 2.0mm, CP914534) , Varian), and the product was analyzed by a Thermal Conductivity Detector (TCD).
  • gas chromatography Variarian, CP3800
  • Porapak Q 100 ⁇ 120mesh, 6′X 1/8 ′′ x 2.0mm, CP914534
  • Varian Thermal Conductivity Detector
  • Conversion and yield of each reactant was calculated by weight.
  • the conversion rate of the product is expressed as a percentage of (weight of the reacted raw silane gas) / (weight of the fed raw silane gas), and the selectivity is (weight of each generated component) / (reacted raw silane). Weight of gas) as a percentage. Yield was calculated as conversion x selectivity.
  • Example 2 The same method as in Example 1 was carried out, but pyrolysis was performed using disilane as the raw silane gas.
  • the pyrolysis temperature of the reaction proceeds after 400 °C to increase the monosilane conversion, from 430 °C to increase the temperature of the monosilane The conversion rate increased linearly.
  • tetrasilane Only tetrasilane was produced as a product of the higher silane, and no pentasilane was detected in the reaction product.
  • the amount of tetrasilane produced began to be significant at about 430 ° C., but the production of tetrasilane was less than 1 wt% at 450 ° C., and most of the pyrolysis products were disilane.
  • the monosilane conversion increased linearly in proportion to the yield of disilane, trisilane, and tetrasilane, and the monosilane conversion was almost increased to solid particles. It was due to the increase in the rate of conversion.
  • the conversion rate of the raw material silane into solid particles at 385 ° C is about 8 wt%, whereas at 400 ° C, the rate of conversion of the raw material silane to solid particles increases to 22 wt%.
  • Example 1 using trisilane as the raw silane gas, pentasilane was not only produced, but the yield was higher than that of tetrasilane, compared to Comparative Examples 1 and 2 using monosilane or disilane as the raw silane gas. .
  • the yields of higher silanes such as tetrasilane and pentasilane are several to several tens of times higher than those of Comparative Examples 1 and 2.
  • the yield decreases with increasing pyrolysis temperature at 375 ° C. as a peak for both tetrasilane and pentasilane. This is different from the tetrasilane production in FIG. 3 and FIG. 5, which show a tendency to gradually increase as temperature increases to 450 ° C. and 400 ° C., respectively.
  • the yield graph according to has a maximum at about 375 ° C.
  • the conversion rate to solid particles increases with temperature as the solid particles start to form around 350 ° C. and then increase very rapidly after 375 ° C.
  • the yield of tetrasilane and pentasilane is maximized at the initial stage of the rapid increase in the generation of solid particles, and thus the tetrasilane and the amount of solid particles are not high enough to affect the operation of the process. Since the yield of pentasilane is maximum, it is efficient because the yield of higher silane can be increased while reducing the amount of raw material silane recycled in process.
  • the present invention enables economic and efficient production of high value-added high-order silanes, particularly tetrasilane or pentasilane, in higher yields compared to existing processes, and thus the high-order silanes can be widely used in the semiconductor industry as semiconductor film forming materials. I think there will be.

Abstract

The present invention relates to a method, for preparing high order silane, which enables economical and efficient preparation of high value-added, high order silane, particularly tetrasilane or pentasilane, in a high yield compared to an existing process. More specifically, the present invention relates to a method for preparing high order silane by using trisilane as the material for silane for thermal decomposition.

Description

테트라실란 및 펜타실란의 제조방법Method for preparing tetrasilane and pentasilane
본 발명은 반도체용 실리콘으로서 고부가가치를 가지는 테트라실란 및 펜타실란을 고수율로 제조하기 위한 방법에 관한 것이다.The present invention relates to a method for producing tetrasilane and pentasilane having high added value as silicon for semiconductors in high yield.
최근 실리콘을 기반으로 하는 반도체 소자 구조의 전기적 성능 요구사항이 날로 높아짐에 따라 반도체 선폭의 미세화 및 고집적화를 위한 실리콘 성막공정은 점점 더 복잡해지고 있고 난이도 또한 증가하고 있다. 현재 반도체 공정의 다결정 실리콘 성막소재 및 실리콘 박막증착소재로는 모노실란 또는 디실란이 사용되고 있다. Recently, as the electrical performance requirements of silicon-based semiconductor device structures have increased, the silicon deposition process for miniaturization and integration of semiconductor line widths has become increasingly complex and the difficulty has increased. Currently, monosilane or disilane is used as a polycrystalline silicon film formation material and a silicon thin film deposition material in a semiconductor process.
향후 로직반도체 및 메모리반도체의 선폭이 수 나노미터대로 미세화 되어질 것으로 예상됨에 따라 기존의 성막소재인 모노실란 또는 디실란과 같은 저차 실란으로는 수 나노미터대 선폭의 성막 성능과 우수한 막질을 구현하기 어려울 수 있기 때문에 우수한 성막소재인 고차 실란으로의 소재전환이 예상되며, 이에 따라 고차 실란의 수요가 증가할 것으로 예상된다.As line widths of logic semiconductors and memory semiconductors are expected to be reduced to several nanometers in the future, it is difficult to realize film-forming performance and excellent film quality with line widths of several nanometers with low-order silanes such as monosilane or disilane, which are conventional film forming materials. As such, the company is expected to convert materials to higher order silanes, which are excellent film-forming materials, and thus, demand for higher order silanes is expected to increase.
고차 실란은 저차 실란에 비해 분해온도가 낮아 박막필름을 형성하는 공정의 온도를 낮출 수 있고, 저차 실란을 이용하는 온도와 동일한 온도로 박막필름을 형성하는 경우에는 저차 실란에 비해 실리콘 박막 성장속도가 빠르며, 균질한 막질증착이 가능하다. 또한 고차 실란을 이용하여 성장된 실리콘 박막필름의 저항도도 저차 실란을 이용한 것보다 우수하기 때문에 향후 고차실란은 반도체 분야에 넓게 이용될 수 있을 것으로 기대되고 있다.The higher silane has a lower decomposition temperature than the lower silane, thereby lowering the temperature of the process of forming the thin film, and when the thin film is formed at the same temperature using the lower silane, the silicon thin film growth rate is faster than that of the lower silane. Homogeneous membrane deposition is possible. In addition, since the resistivity of the silicon thin film grown using higher silane is also superior to that of lower silane, higher order silane is expected to be widely used in the semiconductor field in the future.
고차 실란을 제조하는 방법으로는 여러 가지 기술이 존재하고 있다. 마그네슘 실리사이드를 염산과 반응시키는 가수분해법은 고차 실란이 제조되기는 하나, 주생성물이 모노실란이고, 고차실란은 일부 부산물로서 생성된다. 따라서 고차실란을 대량 생산하는 제조 공법으로 상기 방법은 적절하지 않다. There are various techniques for producing higher silanes. Hydrolysis of reacting magnesium silicide with hydrochloric acid produces a higher order silane, but the main product is monosilane, and the higher order silane is produced as some by-product. Therefore, this method is not suitable as a manufacturing method for mass production of higher silane.
한편, 헥사클로로 디실란 또는 헥사에톡시디실란 용매상에서 리튬알루미늄하이드라이드(LiAlH4)와 같은 환원제를 사용하여 고차실란을 제조하기도 한다. 그러나 이 방법은 원료물질인 헥사디클로디실란과 환원제의 가격이 고가이며, 또한 부산물로 생성되는 유기규소 화합물을 분리하는 데 어려움이 있다. On the other hand, a higher silane may be prepared using a reducing agent such as lithium aluminum hydride (LiAlH 4 ) on a hexachloro disilane or hexaethoxydisilane solvent. However, this method has a high price of hexadiclodisilane and a reducing agent, and it is difficult to separate organosilicon compounds produced as a by-product.
다른 방법으로는, 전기방전법(electric discharge method)을 이용하여 모노실란으로부터 디실란 및 트리실란과 같은 저차 실란뿐만 아니라, 테트라실란과 같은 고차 실란을 제조하는 방법이 있다. 상기 방법은 테트라실란과 같은 고차 실란을 높은 수율로 얻어진다고 보고가 있으나, 상업생산을 위한 장치 개발의 어려움이 있어 아직까지는 실 제조공정에 사용하기는 어려운 실정이다. Another method is the production of higher silanes such as tetrasilane, as well as lower silanes such as disilane and trisilane, from monosilanes using the electric discharge method. The method has been reported to obtain a higher yield of higher order silanes, such as tetrasilane, but it is difficult to develop the device for commercial production, it is still difficult to use in the actual manufacturing process.
미국등록특허공보 제6027705호에서는 트리실란 혹은 고차실란을 제조하기 위한 것으로, 열분해 반응기 두개를 연속으로 연결하여 모노실란을 열분해하는 방법을 제안하고 있다. 그러 이 방법은 장치의 운전이 복잡하고 수율이 낮으며, 실제 공정에 적용하기 곤란하였다.US Patent No. 6027705 proposes a method for producing trisilane or higher silane, and pyrolyzing monosilane by continuously connecting two pyrolysis reactors. However, this method is complicated to operate, low in yield, and difficult to apply to the actual process.
미국등록특허공보 제7906094호에서는 디실란을 열분해하여 트리실란을 제조하는 방법을 기재하고 있으나, 상기 반응의 메커니즘상 가역반응으로 인하여 고차 실란의 수율이 낮고, 모노실란과 디실란이 과도한 분해반응을 일으켜 고차 실란으로 전환되는 양보다 고체 실리콘파우더와 같은 부산물이 많이 발생하여 생산경제성이 낮으며, 고체상의 생성물이 다량 반응기 내부에 침적되거나 공정라인에 쌓임으로 인해 라인이 막혀 연속공정이 불가능 하다.U.S. Patent No. 70609494 describes a method for producing trisilane by pyrolyzing disilane, but due to the reversible reaction mechanism, the yield of higher silane is low, and monosilane and disilane are excessively decomposed. The production economy is low due to the generation of more by-products such as solid silicon powder than the amount converted to higher silane, and the continuous process is impossible due to the blockage of the line due to deposition of a large amount of product in the reactor or accumulation in the process line.
따라서 고차 실란을 제조하는 공정의 경제성을 위해서는 고차 실란의 제조과정에서 부산물의 발생을 최소화하고, 고차실란으로의 선택성을 높여 고차 실란의 생산비용을 낮추고, 공정의 용이성이 확보되도록 할 필요성이 있다.Therefore, in order to improve the economic efficiency of the process of manufacturing the higher silane, it is necessary to minimize the generation of by-products in the manufacturing process of the higher silane, increase the selectivity to the higher silane, lower the production cost of the higher silane, and ensure the ease of the process.
본 발명의 주된 목적은 상기와 같은 문제점을 해결하기 위해 트리실란을 열분해시킴으로써, 반도체용 실리콘 전구체용으로 유용한 고차 실란, 특히 테트라실란 또는 펜타실란을 경제적이면서 효율적으로 제조할 수 있는 고차 실란의 제조방법을 제공하는 데 있다.The main object of the present invention is to produce a higher-order silane which can economically and efficiently produce high-order silanes, particularly tetrasilane or pentasilane, useful for silicon precursors for semiconductors by thermally decomposing trisilane to solve the above problems. To provide.
본 발명의 일 실시예에 따른 테트라실란 또는 펜타실란의 제조방법은, (a) 순수한 트리실란을 열분해 반응기에서 열분해하는 열분해단계; (b) 상기 열분해 생성물에서 생성된 고체입자를 제거하는 고체입자 제거 단계; (c) 상기 고체입자가 제거된 열분해 생성물에서 수소를 제외한 실란류를 액화하여 포집하는 응축단계; (d) 상기 액화된 실란류에서 실리콘수 3개 이하의 저차실란을 분리하는 제1분리단계; (e) 상기 저차실란이 제거된 혼합물에서 테트라실란 및 펜타실란을 각각 분리하는 제2분리단계; 를 포함하는 것을 특징으로 한다.Tetrasilane or pentasilane production method according to an embodiment of the present invention, (a) pyrolysis step of pyrolyzing pure trisilane in a pyrolysis reactor; (b) removing the solid particles to remove the solid particles produced in the pyrolysis product; (c) a condensation step of liquefying and collecting silanes other than hydrogen from the pyrolysis product from which the solid particles are removed; (d) a first separation step of separating the lower silane having a silicon number of 3 or less from the liquefied silanes; (e) a second separation step of separating tetrasilane and pentasilane from the mixture from which the lower silane is removed; Characterized in that it comprises a.
또한 일 실시예로서, 상기 (d) 단계에서 분리된 저차실란 중 트리실란만을 분리하여 다시 (a) 단계로 재순환시키는 (f) 단계;를 더 포함하는 것을 특징으로 한다.In addition, as an embodiment, the step (f) for separating only the trisilane out of the lower silane separated in the step (d) and back to step (a); characterized in that it further comprises.
또한 일 실시예로서, 상기 (a) 단계에서의 트리실란은 희석가스와 혼합되어 열분해반응기로 도입되며, 상기 희석가스로는 헬륨, 질소, 알곤, 수소 또는 이들의 혼합가스이고, 원료실란가스 및 희석가스의 혼합비는 50 : 50 ~ 1 : 99 부피%의 비율로 조절되어지는 것을 특징으로 한다.In addition, as an embodiment, the trisilane in step (a) is mixed with the diluent gas is introduced into the pyrolysis reactor, the diluent gas is helium, nitrogen, argon, hydrogen or a mixture thereof, the raw silane gas and dilution The mixing ratio of the gas is characterized in that it is adjusted at a ratio of 50:50 ~ 1: 99% by volume.
또한 일 실시예로서, 트리실란은 300℃ 이하의 온도 바람직하게는 280~300℃로 예열된 상태로 반응기로 도입됨을 특징으로 한다.In addition, as an embodiment, the trisilane is introduced into the reactor at a temperature of 300 ° C or less, preferably 280 to 300 ° C.
또한 일 실시예로서, 상기 반응온도는 300 ℃ 내지 400 ℃으로 하며, 보다 바람직하게는 325 ℃ 내지 375 ℃인 것을 특징으로 한다.In addition, as an embodiment, the reaction temperature is 300 ℃ to 400 ℃, it is characterized in that more preferably 325 ℃ to 375 ℃.
또한 일 실시예로서, 열분해반응기의 압력은 1 bar 내지 3 bar 이고, 트리실란의 공간속도가 50 내지 500 hr-1 인 것을 특징으로 한다.In addition, as an embodiment, the pressure of the pyrolysis reactor is 1 bar to 3 bar, characterized in that the space velocity of the trisilane is 50 to 500 hr -1 .
본 발명에 따른 테트라실란 및 펜타실란의 제조방법에 의하면 낮은 온도에서도 테트라실란 및 펜타실란의 수율을 기존 방법 대비 수배에서 수십배 향상시킬 수 있어, 경제성 높은 고부가가치의 고차실란을 대량으로 제조할 수 있는 효과가 있다.According to the method for producing tetrasilane and pentasilane according to the present invention, it is possible to improve the yield of tetrasilane and pentasilane at several times compared to the existing method even at low temperature, so that it is possible to manufacture a large amount of high value-added high-order silane with high economic efficiency. It works.
도 1은 본 발명의 일 실시예에 따른 고차실란 제조공정 개략도이다.1 is a schematic view of a high-order silane manufacturing process according to an embodiment of the present invention.
도 2는 모노실란 열분해 시 열분해 반응온도에 따른 모노실란의 전화율을 나타내는 그래프이다.2 is a graph showing the conversion rate of monosilane according to the pyrolysis reaction temperature during monosilane pyrolysis.
도 3은 모노실란 열분해 시 열분해 반응온도에 따른 생성물의 수율을 나타내는 그래프이다.3 is a graph showing the yield of the product according to the pyrolysis reaction temperature during monosilane pyrolysis.
도 4는 디실란 열분해 시 열분해 반응온도에 따른 디실란의 전화율을 나타내는 그래프이다.4 is a graph showing the conversion rate of disilane according to the pyrolysis reaction temperature during disilane pyrolysis.
도 5는 디실란 열분해 시 열분해 반응온도에 따른 생성물의 수율을 나타내는 그래프이다.5 is a graph showing the yield of the product according to the pyrolysis reaction temperature during disilane pyrolysis.
도 6은 본 발명의 일 실시예에 따른 열분해 반응온도에 따른 트리실란의 전화율을 나타내는 그래프이다.6 is a graph showing the conversion rate of trisilane according to the pyrolysis reaction temperature according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 트리실란 열분해 시 열분해 반응온도에 따른 생성물의 수율을 나타내는 그래프이다.7 is a graph showing the yield of the product according to the pyrolysis reaction temperature during trisilane pyrolysis according to an embodiment of the present invention.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 상세히 설명하기로 한다. 본원 명세서 전체에서 어떤 부분이 어떤 구성 요소를 '포함' 또는 '함유'한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Hereinafter, in order to enable those skilled in the art to easily carry out the present invention will be described in detail with respect to preferred embodiments of the present invention. In the present specification, when a part is said to include or include a certain component, it means that the component may further include other components, except for the case where there is no contrary description. .
본원 명세서 전체에서 “고차 실란”은 실리콘 수가 4 이상인 실란을 의미하고, “저차 실란”은 실리콘 수가 4 미만인 실란을 의미한다.Throughout this specification, "higher order silane" means a silane having a silicon number of 4 or more, and a "lower order silane" means a silane having a silicon number of 4 or less.
또한 본원 명세서 전체에서 “원료실란”이란 고차실란을 생성하기 위하여 열분해반응기로 도입되어 열분해되는 실란화합물을 말한다. 예로서, 모노실란, 디실란, 트리실란 등이다. In addition, throughout the present specification, "raw material silane" refers to a silane compound introduced into a pyrolysis reactor and pyrolyzed to produce higher silane. Examples are monosilane, disilane, trisilane and the like.
“원료실란가스”는 원료실란이 가스형태로 유지되고 있음을 나타내기 위함이다. "Raw silane gas" is intended to indicate that the silane is maintained in gaseous form.
본 발명은 테트라실란 및/또는 펜타실란 등의 고차실란을 제조하기 위하여 열분해반응의 원료로서 모노실란이나 디실란이 아닌 트리실란을 원료로 사용하여 열분해하는 것을 특징으로 한다. The present invention is characterized in that pyrolysis is performed using trisilane, not monosilane or disilane, as a raw material for pyrolysis reaction in order to produce higher silanes such as tetrasilane and / or pentasilane.
도 1은 본 발명의 일 실시예에 따른 테트라실란 및 펜타실란의 제조공정 개략도이다. 1 is a schematic diagram of a manufacturing process of tetrasilane and pentasilane according to an embodiment of the present invention.
도 1에 도시된 공정도를 참고하여 보면, 먼저 트리실란을 열분해 반응기(100)에 공급하여 열분해를 수행한 뒤, 생성된 열분해 생성물을 고체입자 분리부(200)로 이송하여 고체입자를 제거하고, 수소를 제외한 실란류(생성된 저차실란, 미반응물 및 고차 실란)를 제 1 분리부(300)로 응축 회수한 다음, 고차 실란을 분리하여 제2 분리부(500)로 이송하는 과정을 거친다. Referring to the process diagram shown in FIG. 1, first, trisilane is supplied to a pyrolysis reactor 100 to perform pyrolysis, and then the resulting pyrolysis product is transferred to a solid particle separator 200 to remove solid particles. Silanes other than hydrogen (generated lower silane, unreacted substance and higher silane) are condensed and recovered by the first separation unit 300, and then the higher silane is separated and transferred to the second separation unit 500.
고차 실란이 회수된 미반응물(발생한 저차 실란 포함)은 분리하여 트리실란은 다시 열분해 반응기(100)로 이송시키고, 나머지 저차 실란은 제3 분리부(400)에서 분리 회수한 다음, 다른 용도를 위하여 포집하여 저장한다. The unreacted material (including the generated lower silane) from which the higher silane is recovered is separated, the trisilane is transferred to the pyrolysis reactor 100, and the remaining lower silane is separated and recovered from the third separation unit 400, and then used for other purposes. Collect and save.
또한, 제2 분리부(500)에 분리 회수된 고차 실란은 정제부(600, 700)에서 테트라실란 및 펜타실란으로 각각 정제시켜 충전부(610, 710)에 각각 충전한다.In addition, the higher silane separated and recovered in the second separation unit 500 is purified by tetrasilane and pentasilane in the purification units 600 and 700, respectively, and filled in the charging units 610 and 710, respectively.
상기 제조공정을 구체적으로 보면 다음과 같다. Specifically, the manufacturing process is as follows.
원료실란을 열분해 반응기에 도입하여, 상기 원료실란의 열분해를 수행한다. 원료실란은 가스형태로 도입되며 희석가스 없이 열분해될 수도 있으나, 일반적으로는 희석가스와 같이 반응기로 도입된다. The raw material silane is introduced into a pyrolysis reactor to perform pyrolysis of the raw material silane. The raw material silane may be introduced in the form of gas and may be pyrolyzed without dilution gas, but is generally introduced into the reactor as the diluent gas.
상기 희석가스로는 헬륨(He), 질소(N2), 알곤(Ar) 가스 혹은 상기 불활성 가스 중에 수소(H2)가 혼합되어 있는 혼합가스이며, 원료실란가스 및 희석가스는 50 : 50 ~ 1 : 99 부피%의 비율로 조절되어 사용되어 진다.The diluent gas may be helium (He), nitrogen (N 2), argon (Ar) gas, or a mixed gas in which hydrogen (H 2) is mixed in the inert gas, and the raw silane gas and the dilution gas are 50: 50 to 1: 99. It is used by adjusting the ratio of volume%.
상기 열분해 반응온도는 300 ℃ 내지 375 ℃로 수행할 수 있으며, 바람직하게는 325 ℃ 내지 375 ℃일 수 있다. 더욱 바람직하게는 350 ℃ 내지 375 ℃ 온도일 수 있다.The pyrolysis reaction temperature may be performed at 300 ° C to 375 ° C, preferably 325 ° C to 375 ° C. More preferably, it may be a temperature of 350 ℃ to 375 ℃.
상기 열분해 반응기는 한 개 이상의 관으로 구성된 관형반응기일 수 있으나, 이에 한정되는 것은 아니다.The pyrolysis reactor may be a tubular reactor composed of one or more tubes, but is not limited thereto.
만일 열분해 온도가 300 ℃ 미만인 경우에는 목적하는 고차실란의 수율이 매우 낮게 나타나며, 열분해 온도가 400 ℃를 초과하는 경우에는 고체입자의 생성이 지나치게 높아지며, 400 ℃를 초과하는 경우에는 테트라실란 및 펜타실란의 수율이 감소하게 된다. If the pyrolysis temperature is less than 300 ℃, the yield of the desired higher silane is very low, if the pyrolysis temperature is higher than 400 ℃, the production of solid particles is too high, if the temperature exceeds 400 ℃ tetrasilane and pentasilane Yield is reduced.
또한 상기 열분해 반응기로 트리실란가스가 도입될 때에 미리 300℃ 이하의 온도로, 바람직하게는 280℃ 내지는 300℃로 예열된 상태로 도입될 수 있다. 상기 예열온도가 300℃를 초과하게 되면 열분해 반응이 미리 일어나게 되어 적절하지 못하다.In addition, when the trisilane gas is introduced into the pyrolysis reactor, it may be introduced at a temperature of 300 ° C. or less, preferably preheated to 280 ° C. to 300 ° C. When the preheating temperature exceeds 300 ° C., the pyrolysis reaction occurs in advance, which is not appropriate.
열분해 반응 시 반응기내의 압력은 상압, 가압, 감압 중 어느 것에서도 가능하지만, 가압 상태로 반응을 수행하는 것은, 분리 효율, 냉각 비용, 장치 사이즈에서 볼 때 경제적으로 유리하다. 반응압력의 범위는 1 또는 3 bar 로 반응을 수행하며, 바람직하게는 1 ~ 1.5 bar 이다. 반응압력이 증가하게 되면 전환율과 수율은 증가하지만, 증기압이 낮은 트리실란의 경우 공급장치를 위한 장치투자비가 증가하는 단점이 있다.The pressure in the reactor during the pyrolysis reaction can be any of atmospheric pressure, pressurization and reduced pressure, but carrying out the reaction under pressure is economically advantageous in terms of separation efficiency, cooling cost and device size. The reaction pressure is in the range of 1 or 3 bar, preferably 1 to 1.5 bar. Increasing the reaction pressure increases the conversion and yield, but in the case of trisilane having a low vapor pressure, an apparatus investment cost for the feeder increases.
반응기에서 원료실란가스의 공간속도는 50 내지 500hr-1의 범위에서 수행하며, 바람직하게는 100 내지 150hr-1의 범위이다. 가스공간속도(SV)란 반응기 입구에서 측정된 열분해 반응기로 유입되는 시간당 원료가스의 부피를 통과하는 반응기 부피로 나눈 값을 말한다. 공간속도라고도 한다. 가스공간속도를 늘이면 고체입자의 발생량이 적어지는 장점이 있지만 재순환되는 미반응 원료실란가스의 양이 매우 늘어나게 되어 반응기의 부피가 커지며, 운전코스트가 증가하는 단점이 있다.The space velocity of the raw material silane gas from the reactors in the range of from 50 to 500hr -1, preferably in the range of 100 to 150hr -1. The gas space velocity (SV) refers to the value divided by the reactor volume passing the volume of raw gas per hour flowing into the pyrolysis reactor measured at the reactor inlet. Also called space velocity. Increasing the gas space velocity has the advantage of reducing the amount of solid particles, but the amount of recycled unreacted raw silane gas is greatly increased, the volume of the reactor is increased, there is a disadvantage that the operating cost increases.
이와 같은 열분해는 해당 기술 분야에서 사용되는 통상의 방법으로 수행될 수 있으며, 전기적 방식 혹은 기타 공지된 방식을 사용하여 반응기 내부 온도를 승온시키거나 유지할 수 있다.Such pyrolysis may be carried out by conventional methods used in the art, and the temperature inside the reactor may be raised or maintained using an electrical method or other known methods.
상기 원료실란은 고차실란을 목적으로 할 경우, 모노실란이나 디실란보다 트리실란인 것이 바람직하다. When the said raw material silane is aimed at higher silane, it is preferable that it is trisilane rather than monosilane and disilane.
트리실란을 원료로 하여 열분해를 실시할 경우에는 종래의 모노실란이나 디실란을 원료로 하는 경우에 비하여 반응온도를 더욱 낮출 수 있다는 장점이 있으며 모노실란이나 디실란에 비하여 고차실란의 수율이 수배에서 수십배로 증가할 수 있다. Pyrolysis using trisilane as a raw material has the advantage that the reaction temperature can be further lowered than that of conventional monosilane or disilane, and the yield of higher silane is several times higher than that of monosilane or disilane. It can increase by several orders of magnitude.
상기와 같이 반응기 내에서 원료실란가스의 열분해를 수행하여 그 결과물로서 생성되는 열분해 가스는 미반응물, 저차 실란, 고차 실란, 수소(끓는점 253 ℃) 및 서브 미크론에서 수백 미크론 크기의 고체입자들을 포함한다. The pyrolysis gas produced as a result of performing pyrolysis of the raw silane gas in the reactor as described above includes unreacted material, lower silane, higher silane, hydrogen (boiling point 253 ° C.) and several hundred micron sized solid particles at sub-micron. .
상기 미반응물은 트리실란(끓는점 53 ℃), 모노실란(끓는점 -112 ℃) 또는 디실란(끓는점 14 ℃)일 수 있으며, 상기 고차 실란은 테트라실란, 펜타실란을 포함하는 실리콘 수가 4 이상인 실란이다. 또한 원료실란이 분해되어 원료실란보다 더 낮은 저차 실란이 생성될 수 있다. The unreacted product may be trisilane (boiling point 53 ° C.), monosilane (boiling point −112 ° C.) or disilane (boiling point 14 ° C.), and the higher silane is a silane having a silicon number of 4 or more including tetrasilane and pentasilane. . In addition, the raw silane may be decomposed to produce lower silanes lower than the raw silane.
상기와 같이 반응기 내에서 트리실란의 열분해를 수행한 후, 그 결과물로서 생성된 열분해 생성물을 수득하여, 열분해 생성물 내에 포함되어 있는 고체 입자를 제거한다.After pyrolysis of trisilane in the reactor as described above, the resulting pyrolysis product is obtained to remove solid particles contained in the pyrolysis product.
열분해 생성물 내 고체입자를 제거함으로써, 이후 공정 단계에서의 고체 입자에 의한 공정 트러블을 없앨 뿐만 아니라, 최종 제품에 서브 미크론의 입자들이 포함됨으로 인해 고차 실란 가스가 사용되는 반도체 공정에 문제가 발생하는 것을 방지할 수 있다.The removal of solid particles in the pyrolysis product not only eliminates process troubles caused by the solid particles in subsequent process steps, but also leads to problems in semiconductor processes where higher order silane gas is used as the final product contains sub-micron particles. It can prevent.
상기 고체입자의 제거는 당업계에서 가스 흐름상에서 고체입자들을 제거하는 공지방법이면 제한 없이 사용가능하다. 일례로 사이클론을 이용하거나, 금속필터 등을 사용하여 고체입자들을 포획 제거할 수 있고, 특히 0.1 미크론 이하의 입자는 금속필터로 제거하기 어려우므로, 금속필터 후단에 기공크기가 조절된 세라믹 지지체로 구성된 트랩을 추가로 설치하여 고체입자를 제거할 수 있다. 이때 필터는 주기적으로 재생하여 재사용할 수 있다. 또한 다른 예로는 고체입자를 포함한 가스를 물 또는 고체입자를 용해시키는 수용액을 분사하는 세척탑을 통과하게 하여 고체입자를 제거할 수도 있다. 이 경우 세척탑에서 발생되는 수분 및 고체입자를 용해시키는 수용액의 제거를 위한 별도의 흡착탑이 설치될 수 있다.Removal of the solid particles may be used without limitation as long as it is a known method for removing solid particles in a gas stream in the art. For example, it is possible to capture and remove solid particles by using a cyclone or a metal filter. Particularly, particles smaller than 0.1 micron are difficult to be removed by a metal filter. Additional traps can be installed to remove solid particles. At this time, the filter can be periodically recycled and reused. In another example, the solid particles may be removed by passing a gas including the solid particles through a washing tower spraying an aqueous solution dissolving water or the solid particles. In this case, a separate adsorption tower may be installed for removal of an aqueous solution dissolving water and solid particles generated in the washing tower.
상기와 같이 열분해 생성물 중에서 고체입자가 제거되면, 상기 고체 입자가 제거된 열분해 생성물에서 고차 실란과 미반응 원료실란 및 저차실란을 분리하여 고차 실란을 회수한다. 이와 같이 열분해 생성물에서 고차 실란과 미반응 원료실란을 분리할 때, 열분해 과정에서 생성된 저차 실란도 미반응물과 함께 분리한다.When the solid particles are removed from the pyrolysis product as described above, the higher silane, the unreacted raw material silane and the lower silane are separated from the pyrolysis product from which the solid particles are removed to recover the higher silane. As such, when the higher silane and the unreacted raw material silane are separated from the pyrolysis product, the lower silane produced during the pyrolysis process is also separated together with the unreacted material.
이때 고차 실란과 미반응 원료의 분리방법은 이들의 물리적 특성을 이용하여 분리할 수 있으며, 바람직하게는 이들 화합물의 비점 차이를 이용하여 분리할 수 있으나, 이에 국한되지는 않는다.In this case, the separation method of the higher order silane and the unreacted raw material may be separated using their physical properties, and preferably, the boiling point difference of these compounds may be separated, but is not limited thereto.
상기와 같이 열분해 결과물로부터 고차 실란을 회수한 후 상기 회수한 고차 실란에서 테트라실란 또는 펜타실란을 분리하여 회수한다. 고차 실란 중에서 테트라실란 또는 펜타실란을 분리하는 방법은 상기 고차 실란에서 미반응물을 분리하는 방법과 마찬가지로 이들의 물리적 특성을 이용하여 분리할 수 있으며, 바람직하게는 이들 화합물의 비점 차이를 이용하여 분리할 수 있으나, 이에 국한되지는 않는다. After recovering the higher silane from the pyrolysis product as described above, tetrasilane or pentasilane is separated and recovered from the recovered higher silane. The method of separating tetrasilane or pentasilane from higher silanes can be separated using their physical properties, similar to the method of separating unreacted substances from higher silanes, and preferably separated using the boiling point difference of these compounds. May be, but is not limited to.
이와 같이 분리된 테트라실란 또는 펜타실란은 액화시켜 포집하고, 최종목적 생성물을 수득하기 위해 정제단계 및 포집단계를 추가로 포함할 수 있으며, 고차 실란에서 분리된 미반응 원료는 회수하여 전술된 열분해반응기로 재순환시킴으로써, 원료실란의 손실을 최소화할 수 있다.The tetrasilane or pentasilane separated in this way may be liquefied and collected, and may further include a purification step and a collecting step to obtain a final target product, and the unreacted raw material separated from the higher silane is recovered to recover the above-described pyrolysis reactor. By recirculating, the loss of raw silane can be minimized.
상기 미반응 원료실란을 재순환할 때에는 열분해 반응기로 직접 재순환시킬 수도 있으며, 각 미반응 원료탱크로 재순환 할 수도 있다.When the unreacted raw material silane is recycled, it may be directly recycled to a pyrolysis reactor, or may be recycled to each unreacted raw material tank.
이하의 실시예를 통하여 본 발명이 더욱 상세하게 설명된다. 단, 실시예는 본 발명을 예시하기 위한 것으로서 이들만으로 본 발명의 범위가 한정되는 것은 아니다.The present invention is described in more detail through the following examples. However, the examples are provided to illustrate the present invention, and the scope of the present invention is not limited only to these examples.
<< 실시예Example 1> 1>
고차실란 제조 실험은 외경 1/2인치, 내경 1.1cm, 길이 50cm인 스테인레스강(SUS 316L) 관을 열분해 반응기로 사용하였다.In the high silane manufacturing experiment, a stainless steel (SUS 316L) tube having an outer diameter of 1/2 inch, an inner diameter of 1.1 cm, and a length of 50 cm was used as a pyrolysis reactor.
반응온도는 300 ~ 450℃관형반응기로 구성된 반응장치를 이용하여 실험을 하였다. 이 때, 압력은 1bar(절대압), 공간속도는 희석가스를 포함한 총 가스유량을 기준으로 하여 120 h-1로 하였다. The reaction temperature was experimented using a reactor consisting of a 300 ~ 450 ℃ tubular reactor. At this time, the pressure was 1 bar (absolute pressure), and the space velocity was 120 h -1 based on the total gas flow rate including the diluent gas.
반응 원료실란가스로는 트리실란을 사용하였으며, 희석가스로는 고순도 질소를 사용하였고, 유량은 희석가스를 포함하여 총 유량 95 ml/min 으로 공급하였다. 희석비는 질소:트리실란 부피비를 7:3으로 조절하였다.Trisilane was used as the reaction raw material silane gas, high purity nitrogen was used as the diluent gas, and the flow rate was supplied at a total flow rate of 95 ml / min including the diluent gas. The dilution ratio was adjusted to a nitrogen: trisilane volume ratio of 7: 3.
반응 조건에 따른 생성물의 분포를 분석하기 위하여 반응장치에 on-line으로 연결된 기체크로마토그래피(Varian, CP3800)에 충진 컬럼(Porapak Q, 100~120mesh, 6′X 1/8″x 2.0㎜, CP914534, Varian)을 장착하였으며, 생성물의 분석은 열전도도검출기(Thermal Conductivity Detector, TCD)로 분석하였다.In order to analyze the distribution of the product according to the reaction conditions, the column filled with gas chromatography (Varian, CP3800) connected on-line to the reactor (Porapak Q, 100 ~ 120mesh, 6′X 1/8 ″ x 2.0mm, CP914534) , Varian), and the product was analyzed by a Thermal Conductivity Detector (TCD).
각 반응물의 전환율 및 수율은 중량을 기준으로 계산되었다. 예를 들어, 생성물의 전환율은 (반응한 원료실란가스의 중량)/(공급된 원료실란가스의 중량)을 백분율로 나타내었으며, 선택도는 (생성된 각 성분의 중량)/(반응한 원료실란가스의 중량)을 백분율로 나타내었다. 수율은 전환율 x 선택도로 계산하였다.Conversion and yield of each reactant was calculated by weight. For example, the conversion rate of the product is expressed as a percentage of (weight of the reacted raw silane gas) / (weight of the fed raw silane gas), and the selectivity is (weight of each generated component) / (reacted raw silane). Weight of gas) as a percentage. Yield was calculated as conversion x selectivity.
<< 비교예Comparative example 1> 1>
실시예 1과 동일한 방법으로 수행하되, 원료실란가스로 모노실란을 사용하여 열분해 반응을 수행하였다.It carried out in the same manner as in Example 1, but the pyrolysis reaction was carried out using monosilane as the raw silane gas.
<< 비교예Comparative example 2> 2>
실시예 1과 동일한 방법으로 수행하되, 원료실란가스로 디실란을 사용하여 열분해반응을 수행하였다.The same method as in Example 1 was carried out, but pyrolysis was performed using disilane as the raw silane gas.
도 2 내지 7에 상기 실시예와 비교예 1 및 2에서의 원료실란의 전환율 및 각 생성물의 수율을 나타내었다.2 to 7 show the conversion rate of the raw material silane and the yield of each product in the above Examples and Comparative Examples 1 and 2.
도 2 및 도 3에 나타난 바와 같이, 비교예 1의 경우에는 열분해 온도가 400 ℃ 이후에서 반응이 진행되어 모노실란의 전환율이 증가하는 것으로 나타났고, 430 ℃에서부터는 온도가 증가함에 따라 모노실란의 전환율은 직선적으로 증가하였다.As shown in Figures 2 and 3, in the case of Comparative Example 1, the pyrolysis temperature of the reaction proceeds after 400 ℃ to increase the monosilane conversion, from 430 ℃ to increase the temperature of the monosilane The conversion rate increased linearly.
고차실란의 생성물로는 테트라실란만이 일부 생성됨을 볼 수 있었으며, 펜타실란 이상은 반응생성물에서 검출되지 않았다. 테트라실란의 생성량은 430℃ 정도에서 유의미한 정도가 생성되기 시작하지만 450 ℃에서도 테트라실란이 1 wt% 이하로 생성량은 크지 않으며, 대부분의 열분해 생성물은 디실란인 것으로 나타났다. Only tetrasilane was produced as a product of the higher silane, and no pentasilane was detected in the reaction product. The amount of tetrasilane produced began to be significant at about 430 ° C., but the production of tetrasilane was less than 1 wt% at 450 ° C., and most of the pyrolysis products were disilane.
열분해 온도가 증가함에 따라 모노실란의 전환율은 직선적으로 비례하여 증가하는데 비하여 디실란, 트리실란, 테트라실란의 수율은 거의 증가하지 않았으며, 상기 모노실란의 전환율의 증가는 주로 고체입자(powder)로 전환되는 비율의 증가에 기인하였다.As the pyrolysis temperature increased, the monosilane conversion increased linearly in proportion to the yield of disilane, trisilane, and tetrasilane, and the monosilane conversion was almost increased to solid particles. It was due to the increase in the rate of conversion.
도 4에 나타난 바와 같이, 디실란을 원료실란가스로 사용한 비교예 2의 경우에는 열분해 온도가 300 ℃ 이후에 반응이 진행되어 디실란의 전환율이 온도의 증가와 더불어 천천히 증가하다가, 350℃를 기점으로 온도의 증가에 따라 디실란 전환율이 급격히 증가하는 양상을 보인다.As shown in FIG. 4, in the case of Comparative Example 2 using disilane as a raw silane gas, the reaction proceeded after the pyrolysis temperature was 300 ° C., and the conversion rate of the disilane gradually increased with the temperature increase, starting at 350 ° C. As the temperature increases, the disilane conversion rate increases rapidly.
도 5에는 디실란의 열분해 온도별 열분해 생성물의 수율을 나타내었다.5 shows the yield of pyrolysis products according to pyrolysis temperature of disilane.
디실란의 열분해에서도 고차실란으로서 테트라실란만이 생성되었을 뿐, 펜타실란 이상은 실험온도 전범위에서 TCD에 의해 검출될 정도의 양으로 생성되지 않았다.Even in pyrolysis of disilane, only tetrasilane was produced as a higher silane, and pentasilane abnormalities were not produced in an amount that could be detected by TCD over the entire experimental temperature range.
열분해생성물로서는 모노실란만이 385 ℃를 정점으로 하여 그 수율이 줄어드는 경향을 보였으며, 고차실란의 수율은 열분해 온도를 높일수록 그 생성량은 증가되어, 400 ℃에서 테트라실란의 수율이 6 wt% 정도로 생성되었다.As the pyrolysis product, only monosilane showed a tendency to decrease the yield at the peak of 385 ℃, and the yield of higher silane was increased as the pyrolysis temperature was increased, and the yield of tetrasilane at 400 ℃ was about 6 wt%. Generated.
그러나 385℃에서 원료실란이 고체입자로의 전환되는 비율은 약 8 wt% 인데 비하여 400 ℃ 에서는 원료실란 중 고체입자(Power)로 전환되는 비율이 22 wt%로 급격히 늘어나므로 400 ℃의 열분해 반응은 원료실란의 소모가 많아 공정 경제성에서 문제가 있다.However, the conversion rate of the raw material silane into solid particles at 385 ° C is about 8 wt%, whereas at 400 ° C, the rate of conversion of the raw material silane to solid particles increases to 22 wt%. There is a problem in process economics because of the high consumption of raw material silane.
반면에 트리실란을 원료실란가스로 사용한 실시예 1의 경우에는 모노실란이나 디실란을 원료실란가스로 사용한 비교예1, 2에 비하여 펜타실란이 생성될 뿐만 아니라 오히려 테트라실란보다 그 수율이 높게 나타난다. 뿐만 아니라, 테트라실란과 펜타실란 등의 고차실란의 수율이 비교예1, 2에 비하여 수배 내지 수십배이다. On the other hand, in the case of Example 1 using trisilane as the raw silane gas, pentasilane was not only produced, but the yield was higher than that of tetrasilane, compared to Comparative Examples 1 and 2 using monosilane or disilane as the raw silane gas. . In addition, the yields of higher silanes such as tetrasilane and pentasilane are several to several tens of times higher than those of Comparative Examples 1 and 2.
또한, 트리실란을 원료실란가스로 사용한 경우, 모노실란이나 디실란의 경우와는 달리 고차실란의 생성량이 온도의 증가에 따라 증가하다가 감소하는 경향을 보인다.In addition, when trisilane is used as the raw silane gas, unlike the case of monosilane or disilane, the amount of higher silane production tends to increase and decrease with increasing temperature.
상기 도 7을 참조하면 테트라실란과 펜타실란 공히 375℃를 정점으로 하여 열분해 온도의 증가에 따라 그 수율이 떨어지는 것을 볼 수 있다. 이는 도 3, 도 5에서의 테트라실란 생성량이 각각 450℃, 400℃ 까지 온도의 상승에 따라 점차 상승하는 경향을 보이는 것과는 다르며, 트리실란을 원료로 하여 열분해반응을 실시할 경우, 고차실란은 온도에 따른 수율 그래프는 약 375℃에서 최대값을 가진다.Referring to FIG. 7, it can be seen that the yield decreases with increasing pyrolysis temperature at 375 ° C. as a peak for both tetrasilane and pentasilane. This is different from the tetrasilane production in FIG. 3 and FIG. 5, which show a tendency to gradually increase as temperature increases to 450 ° C. and 400 ° C., respectively. When the pyrolysis reaction is carried out using trisilane as a raw material, The yield graph according to has a maximum at about 375 ° C.
반면에 고체입자로의 전환율은 350℃ 근처에서 고체입자가 생성되기 시작하면서, 온도에 따라 증가하다가 375℃ 이후에서는 매우 빠른 속도로 늘어난다.On the other hand, the conversion rate to solid particles increases with temperature as the solid particles start to form around 350 ° C. and then increase very rapidly after 375 ° C.
따라서, 트리실란을 열분해할 경우에는 고체입자의 생성이 급격히 증가하는 초기에 테트라실란 및 펜타실란의 수율이 최대가 되어, 고체입자의 생성량이 공정 운영에 영향을 줄 정도로 높지 않은 상태에서 테트라실란 및 펜타실란의 수율이 최대가 되므로 공정면에서도 재순환되는 원료실란의 양을 작게 하면서 고차실란의 수율을 높일 수 있어 효율적이다.Therefore, in the case of pyrolysing trisilane, the yield of tetrasilane and pentasilane is maximized at the initial stage of the rapid increase in the generation of solid particles, and thus the tetrasilane and the amount of solid particles are not high enough to affect the operation of the process. Since the yield of pentasilane is maximum, it is efficient because the yield of higher silane can be increased while reducing the amount of raw material silane recycled in process.
본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.All simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.
본 발명은 기존 공정에 비하여 더 높은 수율로 고부가가치 고차 실란, 특히 테트라실란 또는 펜타실란을 경제적이면서 효율적으로 제조할 수 있도록 함으로써, 상기 고차실란은 반도체 성막소재로서 반도체 산업 분야에 있어서 넓게 이용될 수 있을 것으로 판단된다.The present invention enables economic and efficient production of high value-added high-order silanes, particularly tetrasilane or pentasilane, in higher yields compared to existing processes, and thus the high-order silanes can be widely used in the semiconductor industry as semiconductor film forming materials. I think there will be.

Claims (7)

  1. 테트라실란 및 펜타실란을 제조하는 방법에 있어서,In the method for producing tetrasilane and pentasilane,
    (a) 순수한 트리실란을 열분해 반응기에서 열분해하는 열분해단계;(a) pyrolysis step of pyrolyzing pure trisilane in a pyrolysis reactor;
    (b) 상기 열분해 생성물에서 생성된 고체입자를 제거하는 고체입자 제거 단계;(b) removing the solid particles to remove the solid particles produced in the pyrolysis product;
    (c) 상기 고체입자가 제거된 열분해 생성물에서 수소를 제외한 실란류를 액화하여 포집하는 응축단계;(c) a condensation step of liquefying and collecting silanes other than hydrogen from the pyrolysis product from which the solid particles are removed;
    (d) 상기 액화된 실란류에서 실리콘수 3개 이하의 저차실란을 분리하는 제1분리단계;(d) a first separation step of separating the lower silane having a silicon number of 3 or less from the liquefied silanes;
    (e) 상기 저차실란이 제거된 혼합물에서 테트라실란 및 펜타실란을 각각 분리하는 제2분리단계; 를 포함하는 것을 특징으로 하는 테트라실란 및 펜타실란의 제조방법. (e) a second separation step of separating tetrasilane and pentasilane from the mixture from which the lower silane is removed; Tetrasilane and pentasilane production method comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 (d) 단계에서 분리된 저차실란 중 트리실란만을 분리하여 다시 (a) 단계로 재순환시키는 (f) 단계;를 더 포함하는 것을 특징으로 하는 테트라실란 및 펜타실란의 제조방법.The method of manufacturing tetrasilane and pentasilane further comprising; (f) separating only trisilane from the lower silane separated in step (d) and recycling it back to step (a).
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 (a) 단계에서의 트리실란은 희석가스와 혼합되어 열분해반응기로 도입되는 것을 특징으로 하는 테트라실란 및 펜타실란의 제조방법.The trisilane in step (a) is mixed with the diluent gas is introduced into the pyrolysis reactor, the method for producing tetrasilane and pentasilane.
  4. 청구항 3에 있어서, 상기 희석가스로는 헬륨, 질소, 알곤, 수소 또는 이들의 혼합가스이며, 원료실란가스 및 희석가스의 혼합비는 50 : 50 ~ 1 : 99 부피%의 비율로 조절되어지는 것을 특징으로 하는 테트라실란 및 펜타실란의 제조방법.The method of claim 3, wherein the diluent gas is helium, nitrogen, argon, hydrogen or a mixed gas thereof, and the mixing ratio of the raw silane gas and the diluting gas is controlled at a ratio of 50:50 to 1: 99% by volume. Method for producing tetrasilane and pentasilane.
  5. 청구항 1에 있어서, The method according to claim 1,
    상기 트리실란은 300℃ 이하의 온도로 예열된 상태로 열분해 반응기로 도입되는 것을 특징으로 하는 테트라실란 및 펜타실란의 제조방법.The trisilane is a method of producing tetrasilane and pentasilane, characterized in that it is introduced into the pyrolysis reactor in a preheated state at a temperature of less than 300 ℃.
  6. 청구항 1에 있어서, The method according to claim 1,
    상기 (a) 단계에서 열분해온도는 300 ℃ 내지 400 ℃인 것을 특징으로 하는 테트라실란 및 펜타실란의 제조방법.The pyrolysis temperature in the step (a) is a method for producing tetrasilane and pentasilane, characterized in that 300 ℃ to 400 ℃.
  7. 청구항 1에 있어서, The method according to claim 1,
    열분해반응기의 압력은 1 bar 내지 3 bar 이고, 트리실란의 공간속도는 50 내지 500 hr-1 인 테트라실란 및 펜타실란의 제조방법.The pressure of the pyrolysis reactor is 1 bar to 3 bar, the space velocity of the trisilane is 50 to 500 hr -1 method for producing tetrasilane and pentasilane.
PCT/KR2016/008140 2015-07-27 2016-07-26 Method for preparing tetrasilane and pentasilane WO2017018771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0106035 2015-07-27
KR1020150106035A KR101758113B1 (en) 2015-07-27 2015-07-27 Method for Preparing Tetrasilane and Pentasilane

Publications (1)

Publication Number Publication Date
WO2017018771A1 true WO2017018771A1 (en) 2017-02-02

Family

ID=57885201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/008140 WO2017018771A1 (en) 2015-07-27 2016-07-26 Method for preparing tetrasilane and pentasilane

Country Status (3)

Country Link
KR (1) KR101758113B1 (en)
TW (1) TWI602824B (en)
WO (1) WO2017018771A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077177A1 (en) 2018-10-11 2020-04-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing isomer enriched higher silanes
DE102020211833A1 (en) 2020-09-22 2022-03-24 Evonik Operations Gmbh Process for the production of oligomeric hydridosilanes from SiH4

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI683788B (en) * 2018-08-16 2020-02-01 台灣特品化學股份有限公司 High-efficiency high-order silane conversion synthesis and purification recovery method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719211B2 (en) * 1989-12-13 1998-02-25 昭和電工株式会社 Manufacturing method of higher order silane
JPH11260729A (en) * 1998-01-08 1999-09-24 Showa Denko Kk Production of higher order silane
JP2008536784A (en) * 2005-04-05 2008-09-11 ボルテツクス・インコーポレイテツド System and method for producing SI2H6 and higher order silanes
KR101231370B1 (en) * 2012-06-13 2013-02-07 오씨아이머티리얼즈 주식회사 Method and device for producing disilane through pyrolysis of monosilane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906094B2 (en) 2007-01-18 2011-03-15 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for producing a high purity trisilane product from the pyrolysis of disilane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719211B2 (en) * 1989-12-13 1998-02-25 昭和電工株式会社 Manufacturing method of higher order silane
JPH11260729A (en) * 1998-01-08 1999-09-24 Showa Denko Kk Production of higher order silane
JP2008536784A (en) * 2005-04-05 2008-09-11 ボルテツクス・インコーポレイテツド System and method for producing SI2H6 and higher order silanes
KR101231370B1 (en) * 2012-06-13 2013-02-07 오씨아이머티리얼즈 주식회사 Method and device for producing disilane through pyrolysis of monosilane

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SIMON, J. ET AL.: "Thermal Dissociation of Disilane: Quadrupole Mass Spectrometry Investigation", JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, vol. 24, no. 1, 1992, pages 51 - 59, XP055349952 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020077177A1 (en) 2018-10-11 2020-04-16 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process for producing isomer enriched higher silanes
US11230474B2 (en) 2018-10-11 2022-01-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process for producing isomer enriched higher silanes
DE102020211833A1 (en) 2020-09-22 2022-03-24 Evonik Operations Gmbh Process for the production of oligomeric hydridosilanes from SiH4
WO2022063680A1 (en) 2020-09-22 2022-03-31 Evonik Operations Gmbh Process for preparing oligomeric hydridosilanes from sih4

Also Published As

Publication number Publication date
KR20170013080A (en) 2017-02-06
TWI602824B (en) 2017-10-21
TW201710271A (en) 2017-03-16
KR101758113B1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
WO2017018772A1 (en) High order silane selectivity adjustment method and high order silane production method using same
US9034292B2 (en) Method and apparatus for producing disilane through pyrolysis of monosilane
JP4778504B2 (en) Method for producing silicon
WO2017018771A1 (en) Method for preparing tetrasilane and pentasilane
CN102272047B (en) Process for producing polycrystalline silicon
KR101426099B1 (en) Process for production of multicrystal silicon and facility for production of multicrystal silicon
US4318942A (en) Process for producing polycrystalline silicon
JPS6259051B2 (en)
JPS6228083B2 (en)
WO2012015152A2 (en) Catalyst used in hydrodechlorination reaction of silicon tetrachloride for manufacturing trichlorosilane, and method for manufacturing same
US7815884B2 (en) Method for producing polycrystalline silicon
JP2015089859A (en) Method for treating tetrachlorosilane and method for producing polycrystalline silicon
KR102446634B1 (en) Synthesis of silicon-carbon composite in a gas phase reactor
JP2719211B2 (en) Manufacturing method of higher order silane
CN112441604B (en) Method for preparing high-purity fluoride
JP4343660B2 (en) Method for producing organosilane
WO2013032146A1 (en) Method of fabricating silicon carbide
WO2014163414A1 (en) Preparation method for polysilane
WO2022039401A1 (en) Trisilylamine preparation apparatus and preparation method
CN114656497B (en) Preparation method of phenylsilane
JPS59121109A (en) Production of high purity silicon
WO2015008889A1 (en) Device and method for manufacturing polysilicon
WO2011136517A2 (en) Method of preparing silicon tetrafluoride by using crystalline silica
CN117208914A (en) Preparation and purification method and equipment of high-purity diiodosilane
CN116902987A (en) Preparation method and application of disilane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830804

Country of ref document: EP

Kind code of ref document: A1