WO2017014067A1 - ガラス充填材及びそれを用いた立体造形用樹脂組成物 - Google Patents

ガラス充填材及びそれを用いた立体造形用樹脂組成物 Download PDF

Info

Publication number
WO2017014067A1
WO2017014067A1 PCT/JP2016/070252 JP2016070252W WO2017014067A1 WO 2017014067 A1 WO2017014067 A1 WO 2017014067A1 JP 2016070252 W JP2016070252 W JP 2016070252W WO 2017014067 A1 WO2017014067 A1 WO 2017014067A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
resin composition
particles
filler
glass filler
Prior art date
Application number
PCT/JP2016/070252
Other languages
English (en)
French (fr)
Inventor
岡 卓司
北村 嘉朗
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to JP2017529546A priority Critical patent/JPWO2017014067A1/ja
Publication of WO2017014067A1 publication Critical patent/WO2017014067A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/10Non-chemical treatment
    • C03B37/16Cutting or severing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a glass filler and a resin composition for three-dimensional modeling using the same.
  • a filler such as glass particles is added to the resin composition that is molded into a block shape, a film shape, etc., to increase rigidity, and deformation of the molded product It is preventing.
  • This technique is also used in the field of a method of obtaining a three-dimensional model by laminating a resin composition using a 3D printer, for example, an optical modeling method (see, for example, Patent Document 1).
  • the stereolithography method creates a three-dimensional model as follows. First, a modeling stage is provided in a tank filled with a liquid photocurable resin composition, and the photocurable resin composition on the modeling stage is irradiated with an active energy ray such as an ultraviolet laser to form a cured layer having a desired pattern. To do. When one cured layer is formed in this way, the modeling stage is lowered by one layer, an uncured photocurable resin composition is introduced onto the cured layer, and active energy rays are similarly formed into the photocurable resin composition. An object is irradiated and a new hardened layer is stacked on the hardened layer. By repeating this operation, a predetermined three-dimensional model is obtained.
  • spherical fillers such as glass beads.
  • glass beads require a process such as melting and spheroidizing a crushed glass through a flame and cannot be provided at low cost.
  • an object of the present invention is to provide a glass filler that can be blended in a large amount in a resin composition at a low cost.
  • the glass filler of the present invention comprises an aggregate of pulverized glass fiber particles, and the proportion of particles having an aspect ratio of 0.7 to 1.3 determined by the long diameter / fiber diameter of the particles is 70 volume of the whole particles. It is characterized by occupying% or more.
  • Glass fiber means a long glass fiber obtained by spinning molten glass.
  • Longer diameter of particle means the particle diameter of pulverized glass fiber particles as measured with a laser diffraction particle size distribution analyzer.
  • Fiber diameter means the fiber diameter of the glass fiber before pulverization.
  • the glass filler of the present invention having the above configuration is obtained by pulverizing glass fibers. Since the surface of the glass fiber is a fire-making surface, a smooth fire-making surface without unevenness tends to remain on a part of the surface of the pulverized glass fiber. Furthermore, the glass filler of the present invention regulates the ratio of fine particles and coarse particles generated by pulverization. Because of these characteristics, the glass filler of the present invention has a small specific surface area, excellent fluidity, and a large amount is filled in the resin composition without significantly increasing the viscosity of the resin composition. can do. Moreover, since the specific surface area is small, it is possible to obtain a highly transparent resin molded product.
  • the glass filler of the present invention can be produced by pulverizing and classifying glass fibers, heat treatment for spheroidization is not necessary and can be manufactured at low cost.
  • the glass fiber pulverized particles preferably have a fire-making surface on a part of the surface.
  • the angle of repose of the glass filler is preferably 50 ° or less.
  • “Repose angle” is a value measured by a powder characteristic measuring device, which is an angle formed by a tangent line between a plane and a powder when a glass filler is continuously dropped and deposited on the plane.
  • the specific surface area is preferably 2.0 m 2 / g or less.
  • the resin composition for three-dimensional modeling of the present invention contains the above glass filler and a curable resin composition.
  • the viscosity of the resin composition does not increase greatly even if a large amount of glass filler is contained. Therefore, it is suitable as a resin composition for producing a three-dimensional modeled object that requires rigidity.
  • a liquid layer made of a resin composition is selectively irradiated with active energy rays to form a cured layer having a predetermined pattern, and a new liquid layer is formed on the cured layer.
  • a manufacturing method of a three-dimensional structure that repeats lamination of the hardened layer until a predetermined three-dimensional structure is obtained by forming a new hardened layer having a predetermined pattern continuous with the hardened layer by irradiation with active energy rays Then, the above-described resin composition for three-dimensional modeling is used as the resin composition.
  • a glass filler that can suppress an increase in viscosity when blended in a resin composition can be provided at low cost.
  • the resin molded product to which the filler of the present invention is added is excellent in transparency because the surface of the filler is smooth and there is little scattering at the interface between the filler and the resin.
  • Sample No. It is a SEM photograph of 1 filler. Sample No. It is a photograph which shows the external appearance of the resin molding using the 1 filler. Sample No. 8 is a photograph showing the appearance of a resin molded product using No. 8 filler. Sample No. 9 is a photograph showing the appearance of a resin molded product using No. 9 filler.
  • the glass filler of the present invention comprises an aggregate of pulverized glass fiber particles.
  • the glass fiber pulverized particles are obtained by pulverizing long glass fibers such as E fibers into particles.
  • the particle shape of the glass fiber pulverized product is indefinite, but the surface derived from the glass fiber remains in most of the pulverized product particles. Since the surface derived from glass fiber is a fire-making surface, the more the surface derived from glass fiber remains on the surface of the pulverized product particles, the smaller the specific surface area becomes.
  • pulverization method suitably, in order to adjust the residual ratio of the surface derived from glass fiber.
  • the glass filler of the present invention is substantially composed of an aggregate of pulverized glass fiber particles, but other particles may be mixed within a range not impairing the function of the present invention.
  • the proportion of particles other than glass fiber pulverized particles in the glass filler is preferably 1% by volume or less, 0.5% by volume or less, and particularly preferably 0.1% by volume or less.
  • the proportion of particles having an aspect ratio of 0.7 to 1.3 determined by the major axis / fiber diameter of the particles accounts for 70% by volume or more of the whole particles.
  • particles having an aspect ratio of 0.7 to 1.3 occupy 75% by volume or more, particularly 78% by volume or more of the entire filler particles.
  • the particles constituting the glass filler are not spherical, but many particles having a cylindrical surface derived from glass fibers are included. Moreover, most of the particles have an aspect ratio close to 1. For this reason, the fluidity close
  • the fluidity can be evaluated by the angle of repose.
  • the repose angle of the glass filler is preferably 50 ° or less, 47 ° or less, particularly 45 ° or less.
  • the glass filler preferably has an average particle diameter D50 of 3 to 25 ⁇ m, particularly 4 to 20 ⁇ m. If the average particle diameter D50 is too small, it becomes easy to increase the viscosity of the resin composition, and it becomes difficult to contain a large amount of filler, and if it is too large, the surface smoothness of the resin molded product is impaired.
  • the glass filler preferably has a specific surface area of 2.0 m 2 / g or less, 1.6 m 2 / g or less, particularly 1.2 m 2 / g or less.
  • a specific surface area of 2.0 m 2 / g or less, 1.6 m 2 / g or less, particularly 1.2 m 2 / g or less.
  • the composition of the glass constituting the glass filler is not particularly limited as long as it can be fiberized, and may be appropriately selected according to the application. Moreover, glass fiber compositions, such as well-known E glass, A glass, C glass, D glass, are employable. In this case, since commercially available glass fiber can be used, it can be provided at a lower cost.
  • the surface of the glass filler is preferably treated with a silane coupling agent. If it does in this way, in the resin composition after hardening, the bond strength of a glass filler and resin can be raised, and it becomes possible to obtain the resin molding which was excellent in mechanical strength.
  • a silane coupling agent for example, aminosilane, epoxy silane, acrylic silane and the like are preferable.
  • the silane coupling agent may be appropriately selected according to the curable resin to be used. For example, when a vinyl unsaturated compound is used as the photocurable resin, an acrylic silane silane coupling agent or an epoxy compound is used. It is preferable to use an epoxy silane-based silane coupling agent.
  • the glass fiber bundle is obtained by drawing out molten glass from a bushing into a fiber and converging a plurality of glass fibers.
  • the fiber diameter of the glass fiber is preferably 3.5 to 25.0 ⁇ m, particularly 4.0 to 20.0 ⁇ m. If the fiber diameter of the glass fiber is too large, the surface smoothness of the resin molded product is impaired, and if it is too thin, the viscosity of the resin composition increases and fluidity decreases.
  • the length of the glass fiber bundle is preferably 25 mm or less, particularly preferably 10 mm or less. If the length of the glass fiber bundle is too long, it takes a long time to pulverize to a desired length in the subsequent pulverization step.
  • the glass fiber bundle is pulverized and classified.
  • the pulverization method is not particularly limited, and a ball mill, a vibration mill, a jet mill, a crusher, a stone mortar or the like can be used alone or in combination.
  • a method may be employed in which after coarse pulverization with a ball mill, fine pulverization and classification are simultaneously performed with a jet mill.
  • the glass filler produced in this manner is subjected to a surface treatment such as a silane coupling treatment as required, and then used for a filler for a resin composition.
  • a surface treatment such as a silane coupling treatment as required
  • it may replace with the surface treatment here and may perform the surface treatment required at the time of preparation of a glass fiber bundle.
  • the glass filler of the present invention is not limited to the resin filler for three-dimensional modeling described later, but can be used for fillers of various resins molded into a normal sheet shape or block shape. is there.
  • resins for example, polypropylene, polyethylene, ABS resin, polycarbonate, polyetheretherketone, polyamide, thermoplastic polyimide, polyamideimide, polyetherimide, polyacetal, polyethylene terephthalate, polybutylene terephthalate, modified polyphenylene ether, polyphenylene sulfide, polysulfone, polyethersulfone, etc.
  • thermosetting resins such as epoxy resins, polyurethanes, polyimides, unsaturated polyesters, and silicones.
  • the glass filler of the present invention can be added in large amounts to these resins without significantly increasing the viscosity, a highly rigid sheet-like or block-like resin molding can be easily obtained. Can do. Furthermore, since the glass filler of the present invention has a small specific surface area, the resulting resin molded product is characterized by high transparency.
  • the resin composition for three-dimensional modeling of the present invention contains a curable resin and the above glass filler.
  • the respective content ratios are preferably volume%, curable resin 10 to 99%, and glass filler 1 to 90%. More preferably, the curable resin is 35 to 95%, 40 to 90%, particularly 45 to 85%, and the glass filler is 5 to 65%, 10 to 60%, particularly 15 to 55%.
  • the contact area with curable resin in each glass filler becomes small, and there exists a tendency for the mechanical strength of the three-dimensional molded item obtained to become low on the contrary. Further, in the case of the optical modeling method, the viscosity of the resin composition becomes too high, and problems such as difficulty in forming a new liquid layer on the modeling stage are likely to occur.
  • the glass filler of the present invention is easy to enjoy the effect particularly in the case of the optical modeling method, it is preferable to use a photocurable resin (liquid photocurable resin) as the curable resin.
  • a photocurable resin liquid photocurable resin
  • photocurable resin various resins such as polymerizable vinyl compounds and epoxy compounds can be selected. Monofunctional or polyfunctional compound monomers or oligomers are also used. These monofunctional compounds and polyfunctional compounds are not particularly limited. For example, typical examples of the photocurable resin are listed below.
  • Monofunctional compounds of the polymerizable vinyl compound include isobornyl acrylate, isobornyl methacrylate, ginklopentenyl acrylate, bornyl acrylate, bornyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, propylene glycol Examples include acrylate, vinyl pyrrolidone, acrylamide, vinyl acetate, and styrene.
  • polyfunctional compound examples include trimethylolpropane triacrylate, EO-modified trimethylolpropane triacrylate, ethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6 -Hexanediol diacrylate, neopentyl glycol diacrylate, dicyclopentenyl diacrylate, polyester diacrylate, diallyl phthalate and the like.
  • these monofunctional compounds and polyfunctional compounds can be used alone or in the form of a mixture.
  • a photopolymerization initiator As the polymerization initiator for the vinyl compound, a photopolymerization initiator is used.
  • photopolymerization initiators 2,2-dimethoxy-2-phenylacetophenone, 1-hydroxycyclohexyl phenyl ketone, acetophenone, benzophenone, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 3-methylacetophenone, Michler's ketone and the like can be mentioned as typical ones, and these initiators can be used alone or in combination of two or more. If necessary, a sensitizer such as an amine compound can be used in combination.
  • the amount of these polymerization initiators used is preferably 0.1 to 10% by mass relative to the vinyl compound.
  • Epoxy compounds include hydrogenated bisphenol A diglycidyl ether, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 2- (3,4-epoxycyclohexyl-5,5-spiro-3,4 -Epoxy) cyclohexane-m-dioxane, bis (3,4-epoxycyclohexylmethyl) adipate and the like.
  • an energy active cationic initiator such as triphenylsulfonium hexafluoroantimonate can be used.
  • a leveling agent a surfactant, an organic polymer compound, an organic plasticizer, etc. may be added to the photocurable resin as necessary.
  • one liquid layer made of a photocurable resin composition is prepared.
  • a modeling stage is provided in a tank filled with a liquid photocurable resin composition, and the stage upper surface is positioned so as to have a desired depth (for example, about 0.2 mm) from the liquid surface.
  • a desired depth for example, about 0.2 mm
  • the liquid layer is irradiated with an active energy ray, for example, an ultraviolet laser to cure the photocurable resin composition, thereby forming a cured layer having a predetermined pattern.
  • an active energy ray for example, an ultraviolet laser to cure the photocurable resin composition, thereby forming a cured layer having a predetermined pattern.
  • an active energy ray for example, an ultraviolet laser to cure the photocurable resin composition, thereby forming a cured layer having a predetermined pattern.
  • an active energy ray for example, an ultraviolet laser to cure the photocurable resin composition, thereby forming a cured layer having a predetermined pattern.
  • laser light such as visible light and infrared light can be used in addition to ultraviolet light.
  • a new liquid layer made of the photocurable resin composition is prepared on the formed cured layer.
  • the photocurable resin composition can be introduced onto the cured layer to prepare a new liquid layer.
  • the hardened layer is continuously laminated to obtain a predetermined three-dimensional object.
  • Table 1 shows examples of the glass filler of the present invention (sample Nos. 1 to 5), and Table 2 shows comparative examples (samples No. 6 to 9).
  • the filler of No. 6 was produced as follows. First, an E glass fiber bundle (fiber diameter: 9 ⁇ m) cut to a length of 13 mm was coarsely pulverized using a ball mill. Subsequently, a coarsely pulverized product of glass fibers was put into a jet mill, and fine pulverization and classification were performed to obtain a sample.
  • the filler No. 7 was produced as follows. First, an E glass fiber bundle (fiber diameter: 5 ⁇ m) cut to a length of 9 mm was coarsely pulverized using a ball mill. Subsequently, a coarsely pulverized product of glass fibers was put into a jet mill, and fine pulverization and classification were performed to obtain a sample.
  • Sample No. 3 was produced as follows. First, an E glass fiber bundle (fiber diameter: 20 ⁇ m) cut to a length of 6 mm was coarsely pulverized using a crusher. Subsequently, a coarsely pulverized product of glass fibers was put into a jet mill, and fine pulverization and classification were performed to obtain a sample.
  • the filler 5 was prepared as follows. First, an A glass fiber bundle (fiber diameter: 14 ⁇ m) cut to a length of 9 mm was coarsely pulverized using a ball mill. Subsequently, a coarsely pulverized product of glass fibers was put into a jet mill, and fine pulverization and classification were performed to obtain a sample.
  • silica beads (FE920A-SQ) manufactured by Admatechs Co., Ltd. were used.
  • Sample No. No. 9 was prepared by roughly pulverizing a 1 mm thick film glass using a crusher, followed by fine pulverization and classification using a jet mill.
  • Sample No. The particle size distribution of each sample except 8 was adjusted by changing the classification point of the jet mill.
  • No. is a comparative example.
  • No. 6 is an example of the present invention.
  • 1 is a pulverized glass fiber using glass fibers having the same fiber diameter as 1, but contains a large number of short fibrous particles having a large average particle diameter and an aspect ratio larger than 1.3. For this reason, the resin viscosity is high because of the increased resistance when mixed with the resin. Further, fluffy protrusions were observed on the surface of the resin molded product which was cured by adding a filler, and there was a problem in smoothness.
  • No. 7 is an example of the present invention.
  • 2 is a pulverized glass fiber using glass fibers having the same fiber diameter as 2, but contains a large amount of fine particles having a small average particle diameter and an aspect ratio of less than 0.7. Therefore, the resin viscosity was high because the specific surface area was large. Therefore, it is considered that there is a problem in formability.
  • No. 9 which is a comparative example. Since No. 9 is not a glass fiber pulverized product, there is almost no fire-making surface on the surface of the pulverized product. Therefore, the specific surface area is large, and the fluidity of the pulverized product is poor. As a result, when the resin was filled, the resin viscosity increased significantly. Therefore, it is considered that there is a problem in formability.
  • the particle size distribution and average particle size D50 were measured using a laser diffraction particle size distribution measuring device (SALD-7500, manufactured by Shimadzu Corporation).
  • the aspect ratio was calculated by dividing the particle diameter by the fiber diameter of the glass fiber before pulverization using the particle size distribution data obtained by the laser diffraction particle size distribution measuring apparatus.
  • the angle of repose was measured using a powder property measuring device (ABD-72, manufactured by Tsutsui Rika Instruments Co., Ltd.).
  • the specific surface area was measured using a specific surface area measuring device (Macsorb HM model-1201 manufactured by Mountec Co., Ltd.).
  • the viscosity of the resin after kneading the resin composition was measured as follows. First, an acrylic photocurable resin used for three-dimensional modeling was prepared, and a pulverized product was added to the resin so as to be 30 volume%. This mixed solution was defoamed and stirred using a planetary stirring and defoaming device to obtain a sample for resin viscosity measurement. The resin viscosity was measured using a B-type viscometer (DV3 manufactured by Brookfield) at a liquid temperature of 25 ° C. and a shear rate of 8 (1 / second).
  • the transparency of the resin molding was evaluated as follows. First, the same mixed solution as that used in the measurement of the resin viscosity was prepared. This was filled in a Teflon (registered trademark) mold so that the thickness after curing was 3 mm, and cured by irradiating with ultraviolet rays from the upper surface was used as a sample for confirming transparency. Thereafter, the sample was placed on a surface plate on which characters were printed, and was observed visually from above.
  • Teflon registered trademark
  • the glass filler of the present invention is suitable as a filler for a resin composition formed into a film shape, a block shape or the like, or a filler for a resin composition using a three-dimensional modeling method by a 3D printer.

Abstract

 樹脂組成物中に多量に配合可能なガラス充填材を安価に提供することを目的とする。ガラス繊維粉砕物粒子の集合体からなり、粒子の長径/繊維径で求められるアスペクト比が0.7~1.3である粒子の割合が、粒子全体の70体積%以上を占めることを特徴とする。

Description

ガラス充填材及びそれを用いた立体造形用樹脂組成物
 本発明は、ガラス充填材及びそれを用いた立体造形用樹脂組成物に関する。
 従来、樹脂組成物に充填材を添加して、樹脂の剛性を高めることが広く行われている。例えば自動車や家電等の部品、絶縁用フィルム等の用途において、ブロック状、フィルム状等に成形される樹脂組成物中にガラス粒子等の充填材を添加して剛性を高め、成形物の変形を防止している。
 この技術は、3Dプリンタを使用して樹脂組成物を積層し、立体造形物を得る方法、例えば光造形法等の分野でも利用されている(例えば特許文献1参照)。なお光造形法は以下のようにして立体造形物を作製するものである。まず液状の光硬化性樹脂組成物を満たした槽内に造形ステージを設け、造形ステージ上の光硬化性樹脂組成物に紫外線レーザー等の活性エネルギー線を照射して所望のパターンの硬化層を形成する。このようにして硬化層を1層形成すると造形ステージを1層分だけ下げて、硬化層上に未硬化の光硬化性樹脂組成物を導入し、同様にして活性エネルギー線を光硬化性樹脂組成物に照射して前記硬化層上に新たな硬化層を積み上げる。この操作を繰り返すことにより、所定の立体造形物を得る。
特開平7-26060号公報
 立体造形物等の樹脂成形物の剛性(機械的強度)を向上させるためには、樹脂組成物中における充填材の配合量を多くする必要がある。しかしながら、その場合、樹脂組成物の粘度が著しく上昇して流動性が低下することから、樹脂成形物の製造が困難になるという問題がある。
 充填材の配合量を増やすには、ガラスビーズ等の球状の充填材を採用することが考えられる。しかしガラスビーズは、ガラス粉砕物を火炎に通して溶融、球状化させる等の工程が必要となり、安価に提供することができない。
 以上に鑑み、本発明は、樹脂組成物中に多量に配合可能なガラス充填材を安価に提供することを目的とする。
 本発明のガラス充填材は、ガラス繊維粉砕物粒子の集合体からなり、粒子の長径/繊維径で求められるアスペクト比が0.7~1.3である粒子の割合が、粒子全体の70体積%以上を占めることを特徴とする。「ガラス繊維」とは、溶融ガラスを紡糸して得たガラス長繊維を意味する。「粒子の長径」とは、レーザー回折式粒度分布測定装置で測定したときのガラス繊維粉砕物粒子の粒子径を意味する。「繊維径」とは、粉砕前のガラス繊維の繊維径を意味する。
 上記構成を有する本発明のガラス充填材は、ガラス繊維を粉砕したものである。ガラス繊維の表面は火造り面であることから、ガラス繊維粉砕物の表面の一部には凹凸のない滑らかな火造り表面が残りやすい。さらに本発明のガラス充填材は、粉砕によって生じる微細粒子や粗大粒子の割合を規制している。これらの特徴を有するために、本発明のガラス充填材は、比表面積が小さく、優れた流動性を有しており、樹脂組成物の粘度をあまり上昇させることなく樹脂組成物中に多量に充填することができる。また比表面積が小さいことから、透明性の高い樹脂成形物を得ることが可能である。
 また本発明のガラス充填材は、ガラス繊維を粉砕し、分級することによって作製可能であることから、球状化のための熱処理等が不要であり、安価に製造することができる。
 本発明においては、ガラス繊維粉砕物粒子が、表面の一部に火造り面を有することが好ましい。
 本発明においては、ガラス充填材の安息角が50°以下であることが好ましい。「安息角」は、ガラス充填材を平面上に連続的に落下堆積させたときの平面と粉末の接線の作る角度を、粉末特性測定装置にて測定したものである。
 本発明においては、比表面積が2.0m/g以下であることが好ましい。
 本発明の立体造形用樹脂組成物は、上記したガラス充填材と、硬化性樹脂組成物を含有する。
 上記構成を採用すれば、ガラス充填材を多量に含有しても樹脂組成物の粘度が大きく上昇しない。それゆえ剛性が求められる立体造形物を作製するための樹脂組成物として好適である。
 本発明の立体造形物の製造方法は、樹脂組成物からなる液状層に選択的に活性エネルギー線を照射して所定のパターンを有する硬化層を形成し、前記硬化層上に新たな液状層を形成した後に活性エネルギー線を照射して前記硬化層と連続した所定パターンを有する新たな硬化層を形成し、所定の立体造形物が得られるまで前記硬化層の積層を繰り返す立体造形物の製造方法であって、樹脂組成物として、上記した立体造形用樹脂組成物を使用することを特徴とする。
 上記構成を採用すれば、ガラス充填材を多量に含有し、剛性の高い立体造形物を精度良く作製することができる。
 本発明によれば、樹脂組成物中に配合した場合の粘度上昇を抑制できるガラス充填材を安価に提供することができる。また本発明の充填材を添加した樹脂成形物は、充填材の表面が平滑であり、充填材と樹脂との界面での散乱が少ないため透明性に優れている。
試料No.1の充填材のSEM写真である。 試料No.1の充填材を使用した樹脂成形物の外観を示す写真である。 試料No.8の充填材を使用した樹脂成形物の外観を示す写真である。 試料No.9の充填材を使用した樹脂成形物の外観を示す写真である。
 本発明のガラス充填材は、ガラス繊維粉砕物粒子の集合体からなる。ガラス繊維の粉砕物粒子とは、Eファイバ等のガラス長繊維を粉砕して粒子状にしたものである。ガラス繊維粉砕物の粒子形状は不定形であるが、殆どの粉砕物粒子にはガラス繊維由来の表面が残っている。ガラス繊維由来の表面は、火造り面であることから、ガラス繊維由来の表面が粉砕物粒子表面に多く残っているほど比表面積が小さくなって好ましい。なおガラス繊維由来の表面の残存割合を調整するには、粉砕条件や粉砕方法を適宜調整すればよい。
 また本発明のガラス充填材は、実質的にガラス繊維粉砕物粒子の集合体からなるものであるが、本発明の機能を損なわない範囲で他の粒子が混入していても差し支えない。ガラス繊維粉砕物粒子以外の粒子がガラス充填材中に占める割合は、1体積%以下、0.5体積%以下、特に0.1体積%以下であることが好ましい。
 またガラス充填材は、粒子の長径/繊維径で求められるアスペクト比が0.7~1.3である粒子の割合が、粒子全体の70体積%以上を占める。好ましくはアスペクト比が0.7~1.3の粒子が、充填材粒子全体の75体積%以上、特に78体積%以上を占める。アスペクト比0.7~1.3の粒子の占める割合が多いほど、ガラス充填材の比表面積が小さくなって樹脂組成物の粘度を上昇させにくくなり、充填材を多量に含有させることが容易になる。
 ガラス充填材を構成する粒子は、球状ではないが、ガラス繊維由来の円柱表面を有するものが多く含まれる。しかもアスペクト比が1に近い粒子が大半を占める。このため、粉砕物やミルドファイバ(ロッド状繊維)よりもビーズに近い流動性を示す。なお流動性は安息角で評価することが可能である。本発明においては、ガラス充填材の安息角が50°以下、47°以下、特に45°以下であることが好ましい。
 ガラス充填材は、平均粒子径D50が3~25μm、特に4~20μmであることが好ましい。平均粒子径D50が小さすぎると樹脂組成物の粘度を上昇させやすくなり、充填材を多量に含有させることが困難になり、大きすぎると樹脂成形物の表面平滑性が損なわれる不具合がある。
 ガラス充填材は、比表面積が2.0m/g以下、1.6m/g以下、特に1.2m/g以下であることが好ましい。比表面積が大きすぎると、樹脂組成物の粘度を上昇させやすくなり、充填材を多量に含有させることが困難になる。
 ガラス充填材を構成するガラスの組成は、繊維化可能なものであれば特に制限がなく、用途等に応じて適宜選択すればよい。また周知のEガラス、Aガラス、Cガラス、Dガラス等のガラス繊維組成を採用することができる。この場合、市販のガラス繊維を利用できることから、より安価に提供することが可能になる。
 ガラス充填材は、表面がシランカップリング剤によって処理されていることが好ましい。このようにすれば、硬化後の樹脂組成物において、ガラス充填材と樹脂との結合力を高めることができ、より機械的強度に優れた樹脂成形物を得ることが可能になる。シランカップリング剤としては、例えばアミノシラン、エポキシシラン、アクリルシラン等が好ましい。なおシランカップリング剤は、用いる硬化性樹脂に応じて適宜選択すればよく、例えば光硬化性樹脂としてビニル系不飽和化合物を用いる場合にはアクリルシラン系シランカップリング剤、エポキシ系化合物を用いる場合にはエポキシシラン系シランカップリング剤を用いることが好ましい。
 次に本発明のガラス充填材の製造方法を説明する。なお以下の説明は一例であり、本発明のガラス充填材を作製する方法はこれに限定されるものではない。
 まず適当な長さのガラス繊維束を用意する。ガラス繊維束は、溶融したガラスをブッシングから引き出して繊維化するとともに複数本のガラス繊維を集束させたものである。ガラス繊維の繊維径は3.5~25.0μm、特に4.0~20.0μmであることが好ましい。ガラス繊維の繊維径が大きすぎると樹脂成形物の表面平滑性が損なわれ、細すぎると樹脂組成物の粘度が上昇して流動性が低下する不具合が生じる。ガラス繊維束の長さは25mm以下、特に10mm以下であることが好ましい。ガラス繊維束の長さが長すぎると、後の粉砕工程で所望の長さに粉砕するのに長時間を要する。
 次にガラス繊維束を粉砕、分級する。粉砕の方法は特に限定されるものではなく、ボールミル、振動ミル、ジェットミル、擂潰機、石臼等を単独又は組み合わせて使用することができる。例えばボールミルで粗粉砕した後、ジェットミルで微粉砕と分級を同時に行うという方法を採用してもよい。
 このようにして作製したガラス充填材は、必要に応じてシランカップリング処理等の表面処理を施した後、樹脂組成物の充填材用途に供される。なおここでの表面処理に代えて、ガラス繊維束の作製時に必要な表面処理を施しておいてもよい。
 本発明のガラス充填材は、後述の立体造形用樹脂充填材用途に限定されるものではなく、通常のシート状、或いはブロック状に成形される各種樹脂の充填材用途に使用することが可能である。例えばポリプロピレン、ポリエチレン、ABS樹脂、ポリカーボネート、ポリエーテルエーテルケトン、ポリアミド、熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリスルホン、ポリエーテルスルホン等の熱可塑性樹脂や、エポキシ、ポリウレタン、ポリイミド、不飽和ポリエステル、シリコーン等の熱硬化性樹脂の充填材用途として使用することが可能である。本発明のガラス充填材は、粘度を大幅に上昇させることなく、これらの樹脂に多量に添加することが可能であるため、剛性の高いシート状、或いはブロック状の樹脂成形物を容易に得ることができる。さらに、本発明のガラス充填材は比表面積が小さいことから、得られる樹脂成形物は透明性が高いという特徴がある。
 本発明の立体造形用樹脂組成物は、硬化性樹脂と、上記のガラス充填材とを含有する。各々の含有量割合は、体積%で、硬化性樹脂 10~99%、ガラス充填材 1~90%であることが好ましい。より好ましくは、硬化性樹脂が35~95%、40~90%、特に45~85%であり、ガラス充填材が5~65%、10~60%、特に15~55%である。ガラス充填材の含有量が少なすぎると、得られる立体造形物の機械的強度向上の効果が得られにくくなる。一方、ガラス充填材の含有量が多すぎる場合は、各ガラス充填材における硬化性樹脂との接触面積が小さくなり、得られる立体造形物の機械的強度がかえって低くなる傾向がある。また光造形法の場合は、樹脂組成物の粘度が高くなり過ぎて、造形ステージ上に新たな液状層を形成しにくくなる等の不具合が発生しやすくなる。
 本発明のガラス充填材は、特に光造形法の場合にその効果を享受しやすいため、硬化性樹脂としては光硬化性樹脂(液状の光硬化性樹脂)を用いることが好ましい。
 光硬化性樹脂としては、重合性のビニル系化合物、エポキシ系化合物等種々の樹脂を選択することができる。また単官能性化合物や多官能性化合物のモノマーやオリゴマーが用いられる。これらの単官能性化合物、多官能性化合物は、特に限定されるものではない。例えば、以下に光硬化性樹脂の代表的なものを挙げる。
 重合性のビニル系化合物の単官能性化合物としては、イソボルニルアクリレート、イソボルニルメタクリレート、ジンクロペンテニルアクリレート、ボルニルアクリレート、ボルニルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、プロピレングリコールアクリレート、ビニルピロリドン、アクリルアミド、酢酸ビニル、スチレン等が挙げられる。また多官能性化合物としては、トリメチロールプロパントリアクリレート、EO変性トリメチロールプロパントリアクリレート、エチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジシクロペンテニルジアクリレート、ポリエステルジアクリレート、ジアリルフタレート等が挙げられる。これらの単官能性化合物や多官能性化合物の1種以上を単独または混合物の形で使用することができる。
 ビニル系化合物の重合開始剤としては、光重合開始剤が用いられる。光重合開始剤としては、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、アセトフェノン、ベンゾフェノン、キサントン、フルオレノン、ベンズアルデヒド、フルオレン、アントラキノン、トリフェニルアミン、カルバゾール、3-メチルアセトフェノン、ミヒラーケトン等が代表的なものとして挙げることができ、これらの開始剤を1種または2種以上組み合わせて使用することができる。必要に応じてアミン系化合物等の増感剤を併用することも可能である。これらの重合開始剤の使用量は、ビニル系化合物に対してそれぞれ0.1~10質量%であることが好ましい。
 エポキシ系化合物としては、水素添加ビスフェノールAジグリシジルエーテル、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、2-(3,4-エポキシシクロヘキシル-5,5-スピロ-3,4-エポキシ)シクロヘキサン-m-ジオキサン、ビス(3,4-エポキシシクロヘキシルメチル)アジペート等が挙げられる。これらのエポキシ系化合物を用いる場合には、トリフェニルスルホニウムヘキサフルオロアンチモネート等のエネルギー活性カチオン開始剤を用いることができる。
 さらに光硬化性樹脂には、レベリング剤、界面活性剤、有機高分子化合物、有機可塑剤等を必要に応じて添加してもよい。
 次に、本発明の立体造形物の製造方法の一例を説明する。具体的には、光硬化性樹脂を含む樹脂組成物を用いた立体造形物の製造方法について説明する。なお樹脂組成物は既述の通りであり、ここでは説明を省略する。
 まず光硬化性樹脂組成物からなる1層の液状層を準備する。例えば液状の光硬化性樹脂組成物を満たした槽内に造形用ステージを設け、ステージ上面が液面から所望の深さ(例えば0.2mm程度)となるように位置させる。このようにすることで、ステージ上に液状層を準備することができる。
 次に、この液状層に活性エネルギー線、例えば紫外線レーザーを照射して光硬化性樹脂組成物を硬化させ、所定のパターンを有する硬化層を形成する。なお活性エネルギー線としては、紫外線の他に、可視光線、赤外線等のレーザー光を用いることができる。
 続いて、形成した硬化層上に、光硬化性樹脂組成物からなる新たな液状層を準備する。例えば、前記した造形用ステージを1層分下降させることにより、硬化層上に光硬化性樹脂組成物を導入し、新たな液状層を準備することができる。
 その後、硬化層上に準備した新たな液状層に活性エネルギー線を照射して、前記硬化層と連続した新たな硬化層を形成する。
 以上の操作を繰り返すことによって硬化層を連続的に積層し、所定の立体造形物を得る。
 以下に、本発明を実施例に基づいて説明するが、本発明は以下の実施例に何ら限定されるものではない。
 表1は本発明のガラス充填材の実施例(試料No.1~5)を、表2は比較例(試料No.6~9)をそれぞれ示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 試料No.1及びNo.6の充填材は次のようにして作製した。まず長さ13mmに切断されたEガラス繊維束(繊維径9μm)を、ボールミルを用いて粗粉砕した。続いてジェットミル内にガラス繊維の粗粉砕物を投入し、微粉砕と分級を行うことにより試料を得た。
 試料No.2及びNo.7の充填材は次のようにして作製した。まず長さ9mmに切断されたEガラス繊維束(繊維径5μm)を、ボールミルを用いて粗粉砕した。続いてジェットミル内にガラス繊維の粗粉砕物を投入し、微粉砕と分級を行うことにより試料を得た。
 試料No.3の充填材は次のようにして作製した。まず長さ6mmに切断されたEガラス繊維束(繊維径20μm)を、擂潰機を用いて粗粉砕した。続いてジェットミル内にガラス繊維の粗粉砕物を投入し、微粉砕と分級を行うことにより試料を得た。
 試料No.4及びNo.5の充填材は次のようにして作製した。まず長さ9mmに切断されたAガラス繊維束(繊維径14μm)を、ボールミルを用いて粗粉砕した。続いてジェットミル内にガラス繊維の粗粉砕物を投入し、微粉砕と分級を行うことにより試料を得た。
 試料No.8は、(株)アドマテックス製シリカビーズ(FE920A-SQ)を用いた。
 試料No.9は、厚さ1mmのフィルム状ガラスを、擂潰機を用いて粗粉砕した後、ジェットミルで微粉砕と分級を行うことにより作製した。
 なお試料No.8を除く各試料の粒度分布は、ジェットミルの分級点を変更することにより調節した。
 次に得られた試料について、粒度分布、平均粒子径D50、比表面積、安息角、及び樹脂組成物混練後の樹脂の粘度について評価した。結果を表1に示す。また試料No.1の充填材のSEM画像を図1に示す。また試料No.1、No.8及びNo.9の充填材を添加して硬化させた樹脂成形物の外観写真をそれぞれ図2~4に示す。
 表1から明らかなように、本発明の実施例である試料No.1~5は、樹脂組成物の粘度上昇が比較例に比べて小さかった。
 詳述すると、比較例であるNo.6は、本発明の実施例であるNo.1と同じ繊維径のガラス繊維を用いたガラス繊維粉砕物であるが、平均粒子径が大きく、アスペクト比が1.3よりも大きな短繊維状粒子を多く含んでいる。そのため、樹脂と混ぜたときの抵抗が大きくなるために樹脂粘度が高かった。また、充填材を添加して硬化させた樹脂成形物の表面には毛羽状の突起が認められ、平滑性に問題があった。
 比較例であるNo.7は、本発明の実施例であるNo.2と同じ繊維径のガラス繊維を用いたガラス繊維粉砕物であるが、平均粒子径が小さく、アスペクト比が0.7よりも小さな微粒子を多く含んでいる。そのため、比表面積が大きくなるために樹脂粘度が高かった。そのため成形性に問題があると考えられる。
 比較例であるNo.8は、球状であるシリカビーズを使用したにも関わらず、樹脂に充填すると樹脂粘度が比較的大きくなった。この理由についてSEMを用いて調査したところ、シリカビーズの粒径が揃っていないこと及びビーズ表面に微細な粒子が存在していることが判明し、これらが粘度上昇の主な要因であると推測される。
 比較例であるNo.9は、ガラス繊維粉砕物でないことから、粉砕物表面に火造り面が殆ど存在してない。そのため、比表面積が大きく、粉砕物の流動性も悪い。その結果、樹脂に充填すると樹脂粘度が大幅に上昇した。そのため成形性に問題があると考えられる。
 なお、粒度分布および平均粒子径D50は、レーザー回折式粒度分布測定装置((株)島津製作所製 SALD-7500)を使用して測定した。
 アスペクト比の算出には、上記レーザー回折式粒度分布測定装置で得られる粒度分布データを用い、粒子径を粉砕前のガラス繊維の繊維径で除して求めた。
 安息角は、紛体特性測定装置(筒井理化学器械(株)製 ABD-72形)を使用して測定した。
 また、比表面積は、比表面積測定装置((株)マウンテック製 Macsorb HM model-1201)を使用して測定した。
 樹脂組成物混練後の樹脂の粘度は次のようにして測定した。まず立体造形で用いるアクリル系の光硬化性樹脂を準備し、この樹脂に対して粉砕物を30体積%となるように添加した。この混合液を、遊星撹拌脱泡装置を用いて脱泡撹拌し、樹脂粘度測定用の試料とした。樹脂粘度の測定は、B型粘度計(ブルックフィールド製 DV3)を使用し、液温25℃、ずり速度8(1/秒)での値とした。
 樹脂成形物の透明性は次のようにして評価した。まず樹脂粘度の測定で用いたものと同じ混合液を準備した。これを硬化後の厚みが3mmとなるようにテフロン(登録商標)型に充填し、上面から紫外線を照射して硬化させたものを透明性確認用の試料とした。その後、文字が印字された定盤上に試料を載置し、上方から目視で観察することにより行った。
 本発明のガラス充填材は、フィルム状、ブロック状等の形状に成形される樹脂組成物の充填材、或いは3Dプリンタによる立体造形法を利用した樹脂組成物の充填材として好適である。

Claims (6)

  1.  ガラス繊維粉砕物粒子の集合体からなり、粒子の長径/繊維径で求められるアスペクト比が0.7~1.3である粒子の割合が、粒子全体の70体積%以上を占めることを特徴とするガラス充填材。
  2.  ガラス繊維粉砕物粒子が、表面の一部に火造り面を有することを特徴とする請求項1に記載のガラス充填材。
  3.  安息角が50°以下であることを特徴とする請求項1又は2に記載のガラス充填材。
  4.  比表面積が2.0m/g以下であることを特徴とする請求項1~3の何れかの記載のガラス充填材。
  5.  請求項1~4の何れかに記載のガラス充填材と、硬化性樹脂とを含有することを特徴とする立体造形用樹脂組成物。
  6.  樹脂組成物からなる液状層に選択的に活性エネルギー線を照射して所定のパターンを有する硬化層を形成し、前記硬化層上に新たな液状層を形成した後に活性エネルギー線を照射して前記硬化層と連続した所定パターンを有する新たな硬化層を形成し、所定の立体造形物が得られるまで前記硬化層の積層を繰り返す立体造形物の製造方法であって、樹脂組成物として、請求項5に記載の立体造形用樹脂組成物を使用することを特徴とする立体造形物の製造方法。
PCT/JP2016/070252 2015-07-23 2016-07-08 ガラス充填材及びそれを用いた立体造形用樹脂組成物 WO2017014067A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017529546A JPWO2017014067A1 (ja) 2015-07-23 2016-07-08 ガラス充填材及びそれを用いた立体造形用樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-145378 2015-07-23
JP2015145378 2015-07-23

Publications (1)

Publication Number Publication Date
WO2017014067A1 true WO2017014067A1 (ja) 2017-01-26

Family

ID=57833918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070252 WO2017014067A1 (ja) 2015-07-23 2016-07-08 ガラス充填材及びそれを用いた立体造形用樹脂組成物

Country Status (2)

Country Link
JP (1) JPWO2017014067A1 (ja)
WO (1) WO2017014067A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112512A (ja) * 2017-12-22 2019-07-11 日本電気硝子株式会社 立体造形用樹脂組成物
JP2020152858A (ja) * 2019-03-22 2020-09-24 三井化学株式会社 ポリアミド樹脂組成物および成形品
JP6877657B1 (ja) * 2020-05-15 2021-05-26 三菱電機株式会社 かご形回転子の製造方法およびかご形回転子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338133A (ja) * 1991-05-08 1992-11-25 Nitto Boseki Co Ltd グラスパウダーの製造方法
JPH0726060A (ja) * 1993-07-15 1995-01-27 Teijin Seiki Co Ltd 光学的立体造形用樹脂組成物
JP2010260781A (ja) * 2009-04-07 2010-11-18 Nippon Electric Glass Co Ltd 無機充填材及びその製造方法
JP2012116695A (ja) * 2010-11-30 2012-06-21 Asahi Kasei E-Materials Corp 球状ガラスフィラー及びそれを用いた透明基板
JP2015127288A (ja) * 2013-05-23 2015-07-09 日本電気硝子株式会社 フィラー粉末および樹脂組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4941629B2 (ja) * 2005-08-17 2012-05-30 日東紡績株式会社 球状化無機物粉末の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338133A (ja) * 1991-05-08 1992-11-25 Nitto Boseki Co Ltd グラスパウダーの製造方法
JPH0726060A (ja) * 1993-07-15 1995-01-27 Teijin Seiki Co Ltd 光学的立体造形用樹脂組成物
JP2010260781A (ja) * 2009-04-07 2010-11-18 Nippon Electric Glass Co Ltd 無機充填材及びその製造方法
JP2012116695A (ja) * 2010-11-30 2012-06-21 Asahi Kasei E-Materials Corp 球状ガラスフィラー及びそれを用いた透明基板
JP2015127288A (ja) * 2013-05-23 2015-07-09 日本電気硝子株式会社 フィラー粉末および樹脂組成物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112512A (ja) * 2017-12-22 2019-07-11 日本電気硝子株式会社 立体造形用樹脂組成物
JP7101937B2 (ja) 2017-12-22 2022-07-19 日本電気硝子株式会社 立体造形用樹脂組成物
JP2020152858A (ja) * 2019-03-22 2020-09-24 三井化学株式会社 ポリアミド樹脂組成物および成形品
JP7267794B2 (ja) 2019-03-22 2023-05-02 三井化学株式会社 ポリアミド樹脂組成物および成形品
JP6877657B1 (ja) * 2020-05-15 2021-05-26 三菱電機株式会社 かご形回転子の製造方法およびかご形回転子
WO2021229807A1 (ja) * 2020-05-15 2021-11-18 三菱電機株式会社 かご形回転子の製造方法およびかご形回転子
CN115516744A (zh) * 2020-05-15 2022-12-23 三菱电机株式会社 笼式转子的制造方法及笼式转子
CN115516744B (zh) * 2020-05-15 2023-07-21 三菱电机株式会社 笼式转子的制造方法及笼式转子

Also Published As

Publication number Publication date
JPWO2017014067A1 (ja) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6993623B2 (ja) 立体造形用樹脂組成物、立体造形物の製造方法及び無機充填材粒子
WO2017014067A1 (ja) ガラス充填材及びそれを用いた立体造形用樹脂組成物
Palucci Rosa et al. Nanomaterials for 3D printing of polymers via stereolithography: Concept, technologies, and applications
CN110650986A (zh) 辐射固化性树脂的组成及取得方式
WO2018119067A1 (en) Photopolymer ceramic dispersion
CN109517340B (zh) 一种耐温透明3d打印用光敏树脂
Yang et al. UV-curable, low-viscosity resin with a high silica filler content for preparing ultrastiff, 3D-printed molds
JP2022022290A (ja) 樹脂組成物
CN109438632B (zh) 超低体积收缩率的3d打印光敏树脂及其制备方法
JP2019112283A (ja) ガラスフィラーの製造方法
JP6686909B2 (ja) 立体造形用樹脂組成物
WO2021049371A1 (ja) 立体造形用樹脂組成物
JP4307636B2 (ja) 光学的立体造形用の光硬化性樹脂組成物
WO2017221599A1 (ja) ガラス充填材及びその製造方法
CN112848304B (zh) 一种电场辅助连续面曝光3d打印有序复合材料的制备方法
JP7356634B2 (ja) 樹脂組成物、立体造形物及び立体造形物の製造方法
JP7101937B2 (ja) 立体造形用樹脂組成物
JP4614343B2 (ja) 低屈折材料の作製方法
JP6670478B2 (ja) 立体造形用樹脂組成物
CN110655381A (zh) 3d打印文物修复用环保材料及其制备方法
CN112745463A (zh) 一种光固化树脂及其制备方法
JP2019202902A (ja) ガラス、ガラスフィラー、及び樹脂混合体
CN108117622A (zh) 一种高精度的光固化3d打印材料及制备方法
Charoeythornkhajhornchai et al. Cure Behavior, Morphology and Dielectric Constant of Flexible Epoxy Composite with Cu Particle, SWCNT and MWCNT Nanoparticle by UV-Cure Technique
JP2005139369A (ja) 光学材料用樹脂組成物およびこれを用いた光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529546

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827629

Country of ref document: EP

Kind code of ref document: A1