WO2017012167A1 - 适用于内燃机高温排气余热回收的有机朗肯循环混合工质 - Google Patents

适用于内燃机高温排气余热回收的有机朗肯循环混合工质 Download PDF

Info

Publication number
WO2017012167A1
WO2017012167A1 PCT/CN2015/087985 CN2015087985W WO2017012167A1 WO 2017012167 A1 WO2017012167 A1 WO 2017012167A1 CN 2015087985 W CN2015087985 W CN 2015087985W WO 2017012167 A1 WO2017012167 A1 WO 2017012167A1
Authority
WO
WIPO (PCT)
Prior art keywords
working medium
mixed working
mixed
organic rankine
rankine cycle
Prior art date
Application number
PCT/CN2015/087985
Other languages
English (en)
French (fr)
Inventor
李家俊
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2017012167A1 publication Critical patent/WO2017012167A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa

Definitions

  • the invention belongs to an organic working fluid in a thermodynamic cycle, and particularly relates to a group of organic Rankine cycle working substances containing alkanes and CO 2 .
  • CO 2 is added to the alkane working fluid, the nature of the mixed working fluid can be adjusted with the difference of the component ratio, and the above flammability can be sufficiently suppressed or improved. Its cycle performance and so on.
  • CO 2 is used as the circulating working medium because its critical temperature is very low, and the requirements for condensation conditions are very strict, and the conditions for its use are also limited.
  • the mixed working fluid formed by the alkane and CO 2 proposed by the invention can make up for the defects well, and the alkane and the CO 2 are all natural working materials, the ODP value is zero, the GWP value is also small, and the heat is applied to the high temperature waste heat.
  • the use of recycling technology has a good development prospect.
  • the object of the present invention is to provide a group of organic Rankine cycle mixed working fluids for high temperature exhaust gas heat recovery of internal combustion engine which is environmentally friendly, safe and performance, and can be applied to a high temperature exhaust heat recovery system of 200 to 600 °C.
  • An organic Rankine cycle mixed working fluid suitable for high temperature exhaust heat recovery of an internal combustion engine proposed for the purpose of the present invention consists of an alkane and CO 2 . Specifically, it consists of n-butane (R600), or isobutane (R600a), or n-pentane and CO 2 , respectively.
  • the mixed working medium consisting of n-butane/CO 2 has a mass percentage of 20-32/68-80; in a mixed working medium composed of isobutane/CO 2 , the mass percentage is: 20- 32/68-80; the mixed working medium consisting of n-pentane/CO 2 has a mass percentage of 15-27/73-85, and the sum of the mass percentages of the above two groups is 100%.
  • the combustion heat of the above mixed working medium is less than 19,000 kJ/kg, and the lower limit of flammability is greater than 0.1 kg/m 3 in terms of mass percentage, and the lower limit of flammability is greater than 5.0% by volume percent, meeting the ISO/FDIS 817:2012 standard and the United States.
  • the A2 safety working fluid standard in the ANSI/ASHRAE 34-2010 standard has high safety.
  • Each component in the above mixed working fluid is a natural working medium, the ODP value is 0, the GWP value is small, and the environmental protection performance is good.
  • the thermal efficiency is higher than 14%, and the thermal performance is excellent.
  • each component in the mixed working fluid is a natural working medium, the ODP value is zero, and the GWP is very low.
  • the binary mixture of the composition is very good in environmental characteristics, which is in line with the protection of the ozone layer and the reduction of the greenhouse. The requirements of the effect.
  • thermal efficiency is higher than 14%.
  • the invention is a binary non-azeotropic mixed working medium, and there is temperature slip when heat exchange with the cold heat source, which can reduce the temperature difference of the heat transfer process, thereby reducing the irreversible heat transfer loss. .
  • the component components of the mixed working fluid in the following examples all refer to the mass percentage.
  • Example A1 Systematic filling was carried out by physically mixing n-butane/CO 2 at 32:68 at room temperature.
  • Example A2 Systematic filling was carried out by physically mixing n-butane/CO 2 at 28:72 at room temperature.
  • Example A3 Systematic filling was carried out by physically mixing n-butane/CO 2 at 24:76 at room temperature.
  • Example A4 Systematic filling was carried out by physically mixing n-butane/CO 2 at 20:80 at room temperature.
  • Example B1 Isobutane/CO 2 was physically mixed at a normal temperature of 32:68 and then subjected to system filling.
  • Example B2 Isobutane/CO 2 was physically mixed at 28:72 at room temperature and then subjected to system filling.
  • Example B3 Isobutane/CO 2 was physically mixed at a normal temperature of 24:76 and then subjected to system filling.
  • Example B4 Isobutane/CO 2 was physically mixed at a normal temperature of 20:80 and then subjected to system filling.
  • Example C1 Systematic filling was carried out by physically mixing n-pentane/CO 2 at 27:73 at room temperature.
  • Example C2 Systematic charging was carried out by physically mixing n-pentane/CO 2 at 23:77 at room temperature.
  • Example C3 Systematic charging was carried out by physically mixing n-pentane/CO 2 at 19:81 at room temperature.
  • Example C4 Systematic filling was carried out by physically mixing n-pentane/CO 2 at a normal temperature of 15:85.
  • the critical parameters of the mixed working fluid in each of the examples are shown in Table 1.
  • the mixed working fluid has an appropriate critical temperature and critical pressure, and has a wide range of use.
  • the design conditions of the engine waste heat utilization system are as follows: turbine inlet pressure is 10 MPa, turbine inlet temperature is 550 K, condensation dew point temperature is 300 K, expander adiabatic efficiency is 0.7, booster pump efficiency is 0.8, evaporator, regenerator and The narrow point temperature differences in the condenser are 30k, 15K and 5K, respectively. According to the cycle analysis, the cycle performance indexes of some of the examples are shown in Table 2.
  • the present invention utilizes a mixture of alkane and CO 2 , and the obtained mixed working medium can obtain better environmental performance and safety performance, and can also obtain better thermal performance and excellent comprehensive performance.
  • the mixed working fluid of the invention has appropriate critical pressure and critical temperature, and has wider application range and greatly improved thermal performance than pure working fluid CO 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

本发明公开了一组适用于内燃机高温排气余热回收的有机朗肯循环混合工质,包括正丁烷/CO2,异丁烷/CO2,正戊烷/CO2。各组元的质量百分比为:正丁烷/CO2:20-32/68-80;异丁烷/CO2:20~32/68-80:正戊烷/CO2:15-27/73-85。将所述混合工质在常温下进行物理混合后进行***充灌。混合工质均属于自然工质,ODP值等于零,GWP值很小,具有很好的环保性能。同时也满足ISO817-2010标准和美国ASHRAE34-2010标准中的A2类安全工质标准,具有较高的安全性。混合工质的临界压力和临界温度适当,在有机朗肯循环设计工况下的热效率高于14%,热力性能优良。

Description

适用于内燃机高温排气余热回收的有机朗肯循环混合工质 技术领域
本发明属于热力循环中的有机工质,具体涉及一组含有烷烃和CO2的有机朗肯循环工质。
背景技术
目前采用有机朗肯循环进行余热回收的内燃机日益受到广泛重视。发动机排气温度高、温差大,因此工质的选择对内燃机余热的回收效果是非常关键的。常见的制冷工质分解温度较低,如果热力循环温度超过其分解温度,会导致工质的热物性发生改变,进而影响整个循环***的性能。因此这类工质大多适用于低温型有机朗肯循环(ORC),如地热、太阳能等领域。适合内燃机余热回收的(高温型)纯质性能较好的主要集中在烷烃类、苯类和硅氧烷类等。但是它们属于易燃易爆的危险物质,一旦发生泄漏,后果不堪设想,因此限制了该类工质的推广和实际应用。如果在烷烃类工质中加入安全环保的阻燃剂CO2,那么这种混合工质的性质就可随着组元配比的不同得到调和,既可以充分抑制前述的可燃性,也可以改善其循环性能等。此外单采用CO2作为循环工质因其临界温度很低,对冷凝条件的要求十分苛刻,也限制了其使用条件。为此本发明提出的烷烃与CO2形成的混合工质可以很好的弥补所述缺陷,而且烷烃和CO2都属于自然工质,ODP值为零,GWP值也很小,应用于高温余热利用回收技术领域具有较好的发展前景。
发明内容
本发明的目的是,提供一组兼顾环保、安全与性能的用于内燃机高温排气余热回收的有机朗肯循环混合工质,可适用于为200~600℃高温排气余热***。
为实现本发明的目的而提出的适用于内燃机高温排气余热回收的有机朗肯循环混合工质,由烷烃和CO2组成。具体由正丁烷(R600)、或异丁烷(R600a)、或正戊烷与CO2所分别组成。
其中:由正丁烷/CO2组成的混合工质中,其质量百分比为:20-32/68-80;由异丁烷/CO2组成的混合工质中,其质量百分比为:20-32/68-80;由正戊烷/CO2组成的混合工质中,其质量百分比为:15-27/73-85,上述各两组元质量百分数之和均为100%。
以上混合工质的燃烧热均小于19000kJ/kg,按质量百分比计,其可燃下限大于0.1kg/m3,按体积百分数计,其可燃下限大于5.0%,满足ISO/FDIS 817:2012标准和美国ANSI/ASHRAE 34-2010标准中的A2类安全工质标准,具有较高的安全性。
上述混合工质中各组分均是自然工质,ODP值为0,GWP值都很小,环保性能好。对于有机朗肯循环设计工况,热效率高于14%,热力性能优良。
本发明的特点以及有益效果:
(1)环境性能优良:混合工质中各组分都是自然工质,ODP值都为零,GWP都很低,则其组成的二元混合物环境特性十分优良,符合保护臭氧层、减小温室效应的要求。
(2)安全性能较好:在(温度为298K,压力为1atm)环境条件下,安全性能较高。
(3)热工参数适宜:对于中高温有机朗肯循环设计工况,热效率高于14%。
(4)循环热利用率高:本发明均为二元非共沸混合工质,与冷热源换热时存在温度滑移,可以减小传热过程的温差,进而减小不可逆换热损失。
具体实施方式
以下实施例中混合工质的各组元组分均指质量百分数。
实施例A1:将正丁烷/CO2按32:68在常温下进行物理混合后进行***充灌。
实施例A2:将正丁烷/CO2按28:72在常温下进行物理混合后进行***充灌。
实施例A3:将正丁烷/CO2按24:76在常温下进行物理混合后进行***充灌。
实施例A4:将正丁烷/CO2按20:80在常温下进行物理混合后进行***充灌。
实施例B1:将异丁烷/CO2按32:68在常温下进行物理混合后进行***充灌。
实施例B2:将异丁烷/CO2按28:72在常温下进行物理混合后进行***充灌。
实施例B3:将异丁烷/CO2按24:76在常温下进行物理混合后进行***充灌。
实施例B4:将异丁烷/CO2按20:80在常温下进行物理混合后进行***充灌。
实施例C1:将正戊烷/CO2按27:73在常温下进行物理混合后进行***充灌。
实施例C2:将正戊烷/CO2按23:77在常温下进行物理混合后进行***充灌。
实施例C3:将正戊烷/CO2按19:81在常温下进行物理混合后进行***充灌。
实施例C4:将正戊烷/CO2按15:85在常温下进行物理混合后进行***充灌。
各实施例中混合工质的临界参数如表1所示,混合工质具有适当的临界温度和临界压力,并且具有较宽的使用范围。
表1 工质物性基本参数
Figure PCTCN2015087985-appb-000001
Pc:临界压力,Tc:临界温度,Tmax:分解温度
发动机余热利用***的设计工况取为:涡轮进口压力为10MPa,涡轮进口温度为550K,冷凝露点温度为300K,膨胀机绝热效率为0.7,增压泵效率为0.8,蒸发器、回热器和冷凝器中的窄点温差分别为30k、15K和5K。根据循环分析,得到部分实施例循环性能指标如表2所示。
表2 本发明部分实施例性能
Figure PCTCN2015087985-appb-000002
通过上述实施例及其循环数据可知,本发明利用烷烃与CO2混合,所得混合工质既可以获得较好的环境性能和安全性能,同时也可以得到较佳的热力性能,综合性能优良。本发明涉及的混合工质具有适当的临界压力和临界温度,相比纯工质CO2而言,使用范围更广,热力性能有很大提高。

Claims (1)

  1. 适用于内燃机高温排气余热回收的有机朗肯循环混合工质,其特征是:由正丁烷(R600)、或异丁烷(R600a)、或正戊烷(C5H12)与CO2所分别组成的混合工质,其中:由正丁烷/CO2组成的混合工质中,其质量百分比为:20-32/68-80,两组元质量百分数之和为100%;由异丁烷/CO2组成的混合工质中,其质量百分比为:20~32/68-80,两组元质量百分数之和为100%;由正戊烷/CO2组成的混合工质中,其质量百分比为:15-27/73-85,其两组元质量百分数之和为100%。
PCT/CN2015/087985 2015-07-17 2015-08-25 适用于内燃机高温排气余热回收的有机朗肯循环混合工质 WO2017012167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510422689.1 2015-07-17
CN201510422689.1A CN105062426A (zh) 2015-07-17 2015-07-17 适用于内燃机高温排气余热回收的有机朗肯循环混合工质

Publications (1)

Publication Number Publication Date
WO2017012167A1 true WO2017012167A1 (zh) 2017-01-26

Family

ID=54491957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087985 WO2017012167A1 (zh) 2015-07-17 2015-08-25 适用于内燃机高温排气余热回收的有机朗肯循环混合工质

Country Status (2)

Country Link
CN (1) CN105062426A (zh)
WO (1) WO2017012167A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114106777A (zh) * 2021-11-18 2022-03-01 湖北瑞能华辉能源管理有限公司 一种高温节能环保型热泵工质及其应用
US11299660B2 (en) * 2018-12-30 2022-04-12 Tianjin University Three-component mixed working fluid for internal combustion engine waste heat recovery power cycle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816264B (zh) * 2020-07-21 2024-01-12 中南大学 一种基于机器学习的有机朗肯循环工质设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235072A (ja) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd 混合作動流体とそれを用いた冷凍サイクル装置
EP1491608A1 (en) * 2003-06-26 2004-12-29 Matsushita Electric Industrial Co., Ltd. Refrigerant mixture and refrigeration cycle apparatus using the same
CN1789367A (zh) * 2005-12-09 2006-06-21 西安交通大学 适用于单机蒸气压缩式制冷装置制取双温的多元混和工质
CN103937459A (zh) * 2014-01-29 2014-07-23 中国科学院力学研究所 以co2为主要组元新型动力循环混合工质及其***和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004198063A (ja) * 2002-12-20 2004-07-15 Sanyo Electric Co Ltd 非共沸混合冷媒および冷凍サイクル、並びに冷凍装置
CN101173163A (zh) * 2007-10-31 2008-05-07 湖南大学 基于二氧化碳的非氟系制冷剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002235072A (ja) * 2001-02-09 2002-08-23 Matsushita Electric Ind Co Ltd 混合作動流体とそれを用いた冷凍サイクル装置
EP1491608A1 (en) * 2003-06-26 2004-12-29 Matsushita Electric Industrial Co., Ltd. Refrigerant mixture and refrigeration cycle apparatus using the same
CN1789367A (zh) * 2005-12-09 2006-06-21 西安交通大学 适用于单机蒸气压缩式制冷装置制取双温的多元混和工质
CN103937459A (zh) * 2014-01-29 2014-07-23 中国科学院力学研究所 以co2为主要组元新型动力循环混合工质及其***和方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11299660B2 (en) * 2018-12-30 2022-04-12 Tianjin University Three-component mixed working fluid for internal combustion engine waste heat recovery power cycle
CN114106777A (zh) * 2021-11-18 2022-03-01 湖北瑞能华辉能源管理有限公司 一种高温节能环保型热泵工质及其应用
CN114106777B (zh) * 2021-11-18 2024-01-16 湖北瑞能华辉能源管理有限公司 一种高温节能环保型热泵工质及其应用

Also Published As

Publication number Publication date
CN105062426A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
Kang et al. Parametric optimization and performance analysis of zeotropic mixtures for an organic Rankine cycle driven by low-medium temperature geothermal fluids
Dai et al. Thermodynamic analysis of carbon dioxide blends with low GWP (global warming potential) working fluids-based transcritical Rankine cycles for low-grade heat energy recovery
Molés et al. Low GWP alternatives to HFC-245fa in Organic Rankine Cycles for low temperature heat recovery: HCFO-1233zd-E and HFO-1336mzz-Z
WO2017012167A1 (zh) 适用于内燃机高温排气余热回收的有机朗肯循环混合工质
CN102127397A (zh) 用于螺杆膨胀机的有机工质朗肯循环***的混合工质
CN103937458A (zh) 有机朗肯循环混合工质
Xi et al. Characteristics of organic Rankine cycles with zeotropic mixture for heat recovery of exhaust gas of boiler
CN102816555B (zh) 含HFC-227ea的低温有机朗肯循环***混合工质
Haroon et al. Exergetic performance and comparative assessment of bottoming power cycles operating with carbon dioxide–based binary mixture as working fluid
CN109609103B (zh) 一种适用于内燃机余热回收动力循环的三组元混合工质
CN105713576A (zh) 柴油机余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和五氟乙烷及余热回收方法
CN103937459A (zh) 以co2为主要组元新型动力循环混合工质及其***和方法
CN104031611B (zh) 一种含HFC-227ea的有机朗肯循环***混合工质
Jumel et al. Working fluid selection and performance comparison of subcritical and supercritical organic Rankine cycle (ORC) for low-temperature waste heat recovery
CN103013450B (zh) 含有甲苯的有机朗肯循环混合工质
Li et al. Thermodynamic optimization of a neoteric geothermal poly‐generation system in an oilfield
CN103045174A (zh) 一种含有二甲醚和三氟碘甲烷的环保型中高温热泵工质
Liao et al. Thermodynamic analysis of low-temperature power generation transcritical rankine cycle with R41 And CO2
CN105694818A (zh) 柴油机余热回收朗肯循环混合工质六氟丙烷和五氟乙烷及余热回收方法
CN105670566A (zh) 余热回收朗肯循环混合工质1,1,1,3,3-五氟丙烷和1,1,1-三氟乙烷及余热回收方法
CN101302423B (zh) 适用于热虹吸管式能量回收装置的工质
CN113789154B (zh) 一种含有二氧化碳及氟乙烷的三元混合工质
WO2014059729A1 (zh) 含有硅氧烷并用于朗肯循环***的混合工质
CN114196382B (zh) 含1,1,1,3,3,3-六氟异丙基甲基醚的组合物及其应用
CN101235273A (zh) 用于太阳能低温朗肯循环***的二元混合工质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898723

Country of ref document: EP

Kind code of ref document: A1