WO2017010375A1 - 組織試料分析装置及び組織試料分析システム - Google Patents

組織試料分析装置及び組織試料分析システム Download PDF

Info

Publication number
WO2017010375A1
WO2017010375A1 PCT/JP2016/070019 JP2016070019W WO2017010375A1 WO 2017010375 A1 WO2017010375 A1 WO 2017010375A1 JP 2016070019 W JP2016070019 W JP 2016070019W WO 2017010375 A1 WO2017010375 A1 WO 2017010375A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue sample
light
light source
unit
image
Prior art date
Application number
PCT/JP2016/070019
Other languages
English (en)
French (fr)
Inventor
伝悦 須藤
信太郎 植田
佳代 秋山
Original Assignee
ヤマト科学株式会社
伝悦 須藤
信太郎 植田
佳代 秋山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマト科学株式会社, 伝悦 須藤, 信太郎 植田, 佳代 秋山 filed Critical ヤマト科学株式会社
Priority to US15/743,085 priority Critical patent/US10444152B2/en
Publication of WO2017010375A1 publication Critical patent/WO2017010375A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro

Definitions

  • the present invention provides, for example, a tissue sample analyzer that quantifies and images a tissue sample such as a living body brain neurotransmitter and brain neuromodulator at the cellular level, and a tissue sample analyzer including the tissue sample analyzer. About the system.
  • the human brain which is a living body, has tens of millions of nerve cells distributed, and as a result of chemical reactions occurring in each cell, all emotions and behaviors, including emotions and emotions. Dominated. Examining at the cellular level what kind of chemical reaction occurs in which area of the brain is a central theme of brain research.
  • a test reagent is dropped and reacted with a tissue sample, for example, a sliced brain cell of an animal or the like, and the state of the reaction part is observed. .
  • the sliced brain cells are placed on the stage, and the brain cell region is moved by 1 point, 1 point while moving the stage without using the test reagent on the brain cells.
  • the stage is returned to the original position.
  • the same part of the reaction region of the brain cell measured at the first time is measured one point at a time while moving the stage again to the brain cell using a test reagent.
  • the measured value of the location of the brain cell region without using the test reagent is compared with the measured value of the location of the brain cell region using the test reagent.
  • Patent Document 1 discloses a tissue sample analyzer that performs such measurement.
  • a photomultiplier is attached to a camera mount of a large microscope, and fluorescence emitted from a minute point (for example, a diameter of several tens ⁇ m) of a tissue sample is pinholed. Measure with a large microscope camera and photomultiplier.
  • the tissue sample analyzer collects the photometric values of all regions of the tissue sample while moving the stage, and constructs the obtained photometric value data on the coordinates.
  • the stage is returned to the origin when the first measurement is completed and the second measurement is started.
  • the position display control unit of the tissue sample analyzer compares the position information of the setting position of the first stage with the position information of the setting position of the second stage, and the position information of the setting position of the first stage and 2 When it is determined that there is no difference in the position information of the setting position of the first stage, the setting position information of the second stage is regarded as the setting position information of the first stage, and the position information of the setting position of the first stage is Keep it as it is.
  • the position display control unit of the tissue sample analyzer determines that there is a difference between the position information of the setting position of the first stage and the position information of the setting position of the second stage, the setting position of the first stage Display information on the screen.
  • the tissue sample analyzer described in Patent Document 1 it is excellent in analysis sensitivity, quantitativeness, and reproducibility, and quickly starts measurement work regardless of the positional accuracy when set on the stage. be able to. For this reason, the tissue sample analyzer described in Patent Document 1 is excellent in that the test reagent localized in the tissue sample can be quantified in a minute range of the tissue sample while maintaining the tissue structure of the macro sample of the tissue sample. ing.
  • the tissue sample analyzer described in Patent Document 1 is a large-scale system and is expensive, the analysis operation by the operator is complicated and poor in operability, the analysis time of the tissue sample is long, and the resolution is not sufficient. There are problems such as. If the analysis time of the tissue sample is long, the tissue sample may be deteriorated. Therefore, it is not desirable that the analysis time is long. In addition, with the rapid advancement of learning, when analyzing a tissue sample, it is required to perform a finer analysis result and a higher-speed analysis operation.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to reduce the cost and size of the tissue sample analyzer capable of speeding up the analysis of the tissue sample, and An object of the present invention is to provide a tissue sample analysis system including the tissue sample analyzer.
  • a tissue sample analyzer is a tissue sample analyzer that quantitatively analyzes photometric information obtained by irradiating a biological tissue sample with light.
  • a light source unit that irradiates the sample with light, and is disposed opposite to the light source unit, and the tissue sample is disposed between the light source unit and light transmitted through the tissue sample or emitted from the tissue sample.
  • a flat plate-shaped light receiving portion for receiving the light.
  • the tissue sample analyzer of the first aspect of the present invention since the tissue sample is disposed between the light source unit and the light receiving unit, the distribution of the entire chemical substance of the tissue sample can be shortened as photometric information at a time. Can be obtained in time. In addition, since photometric information can be acquired at once in such a short time, it is possible to prevent deterioration of tissue samples due to changes over time, and there is no variation in the technique of the operator of the experiment. Further, when the tissue sample is placed in close contact between the light source unit and the light receiving unit, even when the flatness of the tissue sample is poor, the tissue sample can be flattened for photometry.
  • the tissue sample analyzer of the first aspect of the present invention can be reduced in price and size, and the analysis work of the tissue sample can be speeded up. In addition, it is possible to quantify and image chemical substances that are unevenly distributed in the tissue sample.
  • the tissue sample analyzer according to the second aspect of the present invention is characterized in that the light emitted from the light source unit to the tissue sample is parallel light.
  • tissue sample analyzer According to the tissue sample analyzer according to the second aspect of the present invention, it is easy to obtain a two-dimensional quantitative image with high quantitativeness.
  • the tissue sample analyzer according to the third aspect of the present invention is characterized in that the light source section is flat.
  • the light source section is flat, and thus the irradiated light is likely to be parallel light or light having parallelism similar to this parallel light. Therefore, it is easy to obtain a two-dimensional quantitative image with high quantitativeness. Further, when the tissue sample is placed in close contact between the light source unit and the light receiving unit, it can be expected that the light source unit is in a flat plate shape so that the tissue sample is more closely attached.
  • the tissue sample analyzer according to the fourth aspect of the present invention is characterized in that the tissue sample is a tissue sample to which a test reagent is added.
  • the tissue sample analyzer of the fourth aspect of the present invention when the chemical substance contained in the tissue sample is changed to photometric information by the addition of a test reagent, the chemical substance in the entire tissue sample Can be obtained.
  • the test reagent is a fluorescent material, and excitation light that excites the fluorescent material added to the tissue sample between the light source unit and the tissue sample.
  • a band pass filter that transmits light is disposed, and an absorption filter that transmits fluorescence emitted by the fluorescent material added to the tissue sample is disposed between the tissue sample and the light receiving unit.
  • the bandpass filter can give only the light of the wavelength that fluoresces the fluorescent substance as the reagent added to the tissue sample to the tissue sample. Fluorescence emitted from the fluorescent material of the tissue sample passes through the absorption filter, and other leakage light of excitation light is blocked or removed by the absorption filter, so that only the fluorescence or substantially only the fluorescence is reliably received by the light receiving unit. Light can be received. For this reason, it becomes possible to quantify and image the chemical substance unevenly distributed in the tissue sample.
  • the tissue sample analyzer according to the sixth aspect of the present invention is characterized in that the test reagent is a stain.
  • tissue sample analyzer for example, a tissue sample unsuitable for immunohistochemical staining such as lipids is stained with a general histochemical stain or the like.
  • concentration distribution of the target substance in the tissue sample can be photometrically measured as the transmittance distribution.
  • a band that transmits only a light component in a wavelength region where absorption of a stain added to the tissue sample is large is interposed between the light source unit and the tissue sample.
  • a path filter is arranged.
  • the absorbance of the stained portion stained with the histochemical stain is more accurately determined. Can be measured.
  • tissue sample analyzer In the tissue sample analyzer according to the eighth aspect of the present invention, only the light component in the wavelength region where the absorption of the stain added to the tissue sample is large is transmitted between the tissue sample and the light receiving unit.
  • An absorption filter is arranged.
  • the absorbance of the stained portion stained with the histochemical stain is more accurately determined. Can be measured.
  • the tissue sample analyzer according to the ninth aspect of the present invention is characterized in that the light receiving unit is configured by two-dimensionally arranging solid-state imaging devices.
  • tissue sample analyzer of the ninth aspect of the present invention it is not necessary to use a large microscope or a photomultiplier because the solid-state imaging device only needs to be two-dimensionally arranged as the light receiving unit.
  • the tissue sample analyzer can be greatly reduced in size and price.
  • the tissue sample analyzer is characterized in that the light source unit is configured by two-dimensionally arranging a plurality of light emitting diodes.
  • tissue sample analyzer of the tenth aspect of the present invention it is only necessary to two-dimensionally arrange a plurality of light-emitting diodes as the light source unit, and therefore it is not necessary to use a large microscope or photomultiplier.
  • the tissue sample analyzer can be greatly reduced in size and price.
  • the light source unit is configured by electroluminescence in a flat plate shape
  • the light receiving unit is configured by two-dimensionally arranging solid-state imaging elements. It is characterized by.
  • the light source unit is configured by electroluminescence in a flat plate shape, and the light receiving unit only needs to be two-dimensionally arranged as a solid-state imaging device. Since there is no need to use a large microscope or photomultiplier, the tissue sample analyzer can be significantly reduced in size and price.
  • a tissue sample analyzer includes a protection mechanism for preventing damage due to contact between the light source unit or the light receiving unit and the tissue sample or a preparation including the tissue sample. .
  • tissue sample analyzer of the twelfth aspect of the present invention direct contact and breakage between the light source unit 30 or the light receiving unit 31 and the tissue sample M or the preparation containing the tissue sample M can be prevented. .
  • a tissue sample analysis system includes a tissue sample analyzer, a high-definition image acquisition device that acquires a high-definition image of the tissue sample, and a quantitative image created by the tissue sample analyzer. And an integrated control unit for associating the high-definition image acquired by the high-definition image acquisition device.
  • the quantitative image created by the tissue sample analyzer is associated with the high-definition image acquired by the high-definition image acquisition device. It is possible to analyze a chemical substance in a sample by a two-dimensional image complex in which a quantitative image excellent in quantification and a high-definition image with high resolution are linked and associated by coordinates. Furthermore, a three-dimensional image composite in which a two-dimensional image composite of a plurality of continuous tissue sections is three-dimensionally constructed can be formed. For example, it is possible to reconstruct and prepare the thickness when cutting continuous tissue sections in consideration of the coordinate information.
  • a tissue sample analysis system includes the tissue sample analyzer, a high-definition image reading unit that reads a high-definition image of the tissue sample, and a quantitative image created by the tissue sample analyzer.
  • An integrated control unit for associating the high-definition image read by the high-definition image reading unit.
  • the quantitative image created by the tissue sample analyzer is associated with the high-definition image read by the high-definition image reading unit. It is possible to analyze a chemical substance in a sample by a two-dimensional image complex in which a quantitative image excellent in quantification and a high-definition image with high resolution are linked and associated by coordinates. Furthermore, a three-dimensional image composite in which a two-dimensional image composite of a plurality of continuous tissue sections is three-dimensionally constructed can be formed. For example, it is possible to reconstruct and prepare the thickness when cutting continuous tissue sections in consideration of the coordinate information.
  • tissue sample analyzer it is possible to reduce the price and size, and to increase the speed of the analysis work of the tissue sample.
  • tissue sample analysis system according to the present invention in addition to the effects of the tissue sample analysis apparatus according to the present invention, a quantitative image excellent in quantification and a high-resolution image with high resolution can be linked to the chemical substance in the tissue sample by coordinates. It is possible to analyze with 2D and 3D image composites attached and associated.
  • FIG. 1 is an overall view showing a tissue sample analyzer according to a first embodiment of the present invention. It is a block diagram which shows the structural example of the tissue sample analyzer shown in FIG. It is a perspective view which shows a light source part, a light-receiving part, a tissue sample M, etc. It is a front view which shows a light source part, a light-receiving part, the tissue sample M, etc. It is a figure which shows the space
  • 2 is a diagram illustrating an example of a tissue sample M.
  • FIG. It is a figure which shows an example of the two-dimensional quantitative image obtained by adding a fluorescent substance to the tissue sample M shown in FIG.
  • FIG. 1 It is a perspective view which shows the tissue sample analyzer which concerns on 2nd Embodiment of this invention. It is a front view which shows the tissue sample analyzer which concerns on 2nd Embodiment of this invention. It is a block diagram which shows the structural example of the tissue sample analysis system which concerns on 3rd Embodiment of this invention. It is a figure which shows an example of a structure of the two-dimensional image complex which consists of a two-dimensional fixed_quantity
  • FIG. 1 It is a figure which shows an example of a structure of the two-dimensional image complex which consists of a two-dimensional fixed_quantity
  • FIG. 1 is an overall view showing a tissue sample analyzer according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a configuration example of the tissue sample analyzer shown in FIG.
  • the tissue sample analyzer 1 shown in FIGS. 1 and 2 can measure photometric information of a single tissue sample in, for example, several minutes, regardless of the size of the biological tissue sample M. Has the ability to analyze.
  • the tissue sample analyzer 1 can also be called a tissue sample analyzer or a quantitative lensless imaging analyzer.
  • the tissue sample analyzer 1 is necessary for the following purposes.
  • This device immunohistochemically stains a tissue sample on a slide glass and finely measures the intensity of fluorescence and absorption emitted from the target substance under a microscope.
  • the above apparatus makes it possible to quantitatively image chemical reactions when various biological phenomena are manifested by this technique.
  • the above-described apparatus has elucidated the onset mechanism using several disease model animals and human pathological tissue samples.
  • mapping analyzer device is used in research sites as an advanced measurement and analysis instrument for elucidating the basic mechanism of life phenomena, elucidating the onset mechanism of diseases, and developing new therapeutic drugs.
  • the mapping analyzer device has been highly evaluated both in Japan and overseas, and plays a leading role in the development of microscopic imaging devices.
  • a microscopic imaging apparatus using a later laser confocal microscope or a CCD (charge imaging device) camera provides a clear and fine tissue image, but has a problem in quantitativeness. Imaging mass spectrometers cannot easily identify the distribution of biological material with the same mass.
  • mapping analyzer device is a large-scale device and has problems such as a complicated analysis operation and a long analysis time. For this reason, with the rapid progress of academics in this field, finer analysis and faster analysis are required.
  • the tissue sample analyzer 1 solves such problems, can be reduced in price and size, and can analyze photometric information in a finer region of the tissue sample M. Thus, the analysis work of the tissue sample M can be speeded up.
  • the tissue sample analyzer 1 is a tissue sample analyzer that quantitatively analyzes photometric information obtained by irradiating a biological tissue sample with light.
  • the tissue sample analyzer 1 is disposed opposite to the light source unit 30 for irradiating the tissue sample with light, and transmits the tissue sample with the tissue sample disposed between the light source unit 30 and the light source unit 30.
  • a plate-shaped light receiving unit 31 that receives the light emitted from the tissue sample.
  • the tissue sample analyzer 1 is a device that obtains two-dimensional distribution information (hereinafter also referred to as “distribution information OD”) of the photometric information AS of the tissue sample M, and performs quantification and two-dimensional imaging of the tissue sample M. is there.
  • the tissue sample analyzer 1 includes a control device 10 and a tissue sample analyzer 20.
  • the tissue sample analyzer 20 has a function of acquiring photometric information AS from the tissue sample M.
  • the control device 10 has a function of creating various information based on the photometric information AS acquired by the tissue sample analyzer 20, controlling the tissue sample analyzer 20, and performing various calculations.
  • a general-purpose small computer PC
  • the tissue sample analyzer 1 can be reduced in price and size.
  • the photometry information AS the two-dimensional distribution information (distribution information OD) of the photometry information AS, the quantification and two-dimensional imaging of the tissue sample M will be described.
  • the photometric information AS of the tissue sample M is information composed of a numerical sequence in which coordinate information in the light receiving unit 31 is added to the photometric value RS.
  • the photometric value RS refers to the light that is transmitted from the tissue sample M by the illumination light emitted from the light source unit 30 or the light emitted from the tissue sample M, respectively, for each of a number of photoelectric conversion elements that constitute the light receiving unit 31. Is information obtained by converting into an electrical signal.
  • the photoelectric conversion element as described later, for example, a light receiving element of a CMOS (complementary metal oxide semiconductor) image sensor (solid-state imaging element) is used.
  • CMOS complementary metal oxide semiconductor
  • the photometric value RS is expressed as, for example, a gradation value of light detected by one pixel composed of a CMOS image sensor element constituting the light receiving unit 31.
  • the photometric value RS is information corresponding to a quantitative analysis value of a chemical substance unevenly distributed in the tissue sample M, for example.
  • the photometric information AS of the tissue sample M is, for example, the gradation of light detected by one pixel of the light receiving unit 31. This is information obtained by adding coordinate information in the light receiving unit 31 of one pixel to the value.
  • the photometric value RS indicates that the spectrum of the transmitted light of the tissue sample M changes depending on the state of the inspection reagent such as a fluorescent substance or a chemical substance present in the tissue sample M, or light of a specific wavelength is used to inspect the tissue sample M. It may be absorbed by a reagent or chemical substance, or the intensity of a specific wavelength of the transmitted light of the tissue sample M may change. Due to such a property, according to the photometric value RS, the property of the chemical substance and the amount of the chemical substance in the tissue sample M can be measured. Further, according to the photometric value RS, it is possible to measure a chemical substance such as a dye originally contained in the tissue sample M even in a state where a test reagent such as a fluorescent substance is not present in the tissue sample M. is there.
  • the two-dimensional distribution information (distribution information OD) of the photometric information AS of the tissue sample M is a plurality of photometric values RS included in the multiple photometric information AS, and coordinate information where each photometric value RS exists in the light receiving unit 31.
  • the information is arranged two-dimensionally so as to correspond to.
  • the distribution information OD is information including a numerical matrix in which the photometric values RS are arranged based on the coordinate information in the light receiving unit 31 added to the photometric information AS.
  • the distribution information OD includes the gradation values of a large number of lights detected by a large number of pixels.
  • the information is composed of a numerical matrix of light gradation values arranged two-dimensionally based on the coordinate information of each pixel.
  • the distribution information OD is information from which the two-dimensional imaging data GD that is information for displaying a two-dimensional image on the display unit 11 is generated.
  • a two-dimensional image can be constructed by computing distribution information OD.
  • the light receiving unit 31 has a rectangular shape in which a large number of quadrangular pixels having sides parallel in the vertical and horizontal directions are two-dimensionally arranged, and the corner portion of the tissue sample M in which the light receiving unit 31 is directed in the vertical and horizontal directions.
  • the distribution information OD of the tissue sample M will be considered using an example of a rhombus shape having.
  • the size of the pixel of the light receiving unit 31 is not small enough to reproduce the shape of the corner and the hypotenuse of the tissue sample M as they are.
  • the quantification of the tissue sample M means associating a quantitative analysis value of the amount of chemical substance unevenly distributed in the tissue sample M for each part corresponding to each photoelectric conversion element constituting the light receiving unit 31.
  • the quantification of the tissue sample M is achieved by creating the distribution information OD of the tissue sample M.
  • the distribution information OD of the tissue sample M includes a light measurement value RS such as a light gradation value, which is two-dimensionally arranged based on the coordinate information of each photoelectric conversion element in the light receiving unit 31.
  • the information consists of a numerical matrix of gradation values.
  • the two-dimensional imaging of the tissue sample M means creating two-dimensional imaging data GD that is image data constituting the two-dimensional image from the distribution information OD.
  • Control device 10 The control device 10 will be described.
  • the control device 10 includes a display unit 11 and a control main body unit 12.
  • the control main body unit 12 includes a control unit 100, an image configuration unit 13, a data calculation unit 14, a storage unit 15, and a keyboard 16.
  • the display unit 11 is electrically connected to the control unit 100 of the control main body unit 12, and based on a control signal from the control unit 100, a two-dimensional image of the tissue sample M or a micrograph acquired from outside the tissue sample analyzer 1. High-definition images such as can be displayed.
  • the two-dimensional image of the tissue sample M for example, a two-dimensional image in which a chemical substance contained in the tissue sample M is quantified and displayed is used.
  • control signal from the control unit 100 examples include two-dimensional imaging data GD described later.
  • the two-dimensional imaging data GD is variously processed by the control device 10 based on the photometric information AS acquired from the tissue sample M by the tissue sample analysis unit 20 and finally image data created by the image construction unit 13. It is.
  • a color liquid crystal display device can be used as the display unit 11.
  • the display unit 11 can display in color the analysis example EX of the effect of music on the brain function, for example, as shown in FIG. 1, according to the control signal from the control unit 100.
  • the concentration of a neurotransmitter (dopamine) that gives a pleasant sensation when music is listened to by a rat (right) than when the music is not listened to by a rat (left). has increased significantly.
  • the analysis example EX is an example in which a change in emotion is molecularly converted into a two-dimensional image.
  • control unit 100 of the control main body unit 12 is electrically connected to an image configuration unit 13, a data calculation unit 14, a storage unit 15, and a keyboard 16 as an information input unit. Accordingly, the control unit 100 can exchange information with the image configuration unit 13, the data calculation unit 14, the storage unit 15, and the keyboard 16.
  • the data calculating unit 14 has a function of calculating based on photometric information AS obtained by analyzing the tissue sample M obtained from the tissue sample analyzing unit 20 and creating two-dimensional distribution information (distribution information OD) of the photometric information AS. Have.
  • the distribution information OD is information used to create the two-dimensional imaging data GD that is image data for displaying the two-dimensional image on the display unit 11.
  • the distribution information OD is arithmetically processed by the image construction unit 13 described below, two-dimensional imaging data GD that is image data for displaying a two-dimensional image on the display unit 11 is constructed.
  • the image construction unit 13 has a function of constructing the two-dimensional imaging data GD from the distribution information OD.
  • the two-dimensional imaging data GD is image data for displaying a two-dimensional image on the display unit 11.
  • the storage unit 15 stores information such as distribution information OD and two-dimensional imaging data GD.
  • a user of the tissue sample analyzer 1 can use the keyboard 16 to input necessary data and information to the control unit 100 and input commands to the control unit 100.
  • tissue sample analysis unit Next, the tissue sample analyzer 20 will be described.
  • the tissue sample analyzer 20 has a box-shaped housing 21, and an opening 22 for introducing the tissue sample M is provided on the front side of the housing 21. ing.
  • the tissue sample analysis unit 20 adds a test reagent such as a fluorescent substance to the tissue sample M, and the light receiving unit 31 receives and photoelectrically converts light such as fluorescence emitted from the test reagent based on the light emitted from the light source unit 30.
  • a test reagent such as a fluorescent substance
  • the light receiving unit 31 receives and photoelectrically converts light such as fluorescence emitted from the test reagent based on the light emitted from the light source unit 30.
  • it has a function of analyzing a chemical substance localized in the tissue sample M and quantifying it in a minute range of the tissue sample M.
  • a fluorescent substance is used as a test reagent, a fluorescent substance is added to the tissue sample M, and the fluorescence emitted by the fluorescent substance is received, thereby analyzing a chemical substance localized in the tissue sample M and analyzing the tissue sample M.
  • the operation of quantifying in a minute range is called a fluorescence mode.
  • a light source unit 30, a light receiving unit 31, a light source driving unit 32, a received light signal amplifying unit 33, and a stage driving unit 34 are accommodated in the housing 21.
  • the light source unit 30 is configured by, for example, arranging a plurality of light emitting diodes two-dimensionally.
  • the light source unit 30 may be configured in a flat plate shape by electroluminescence, for example.
  • the tissue sample M can be held between the light receiving unit 31 and the measurement surface of the tissue sample M can be flattened as described later.
  • the light source part 30 can also be set as the structure which is not flat form.
  • the light receiving unit 31 is configured by two-dimensionally arranging solid-state imaging elements.
  • the light receiving unit 31 may be configured by, for example, two-dimensionally arranging solid-state imaging elements.
  • the light source unit 30 and the light receiving unit 31 can hold the tissue sample M between them so that the tissue sample M can be disposed between them, and preferably between them. They are arranged in parallel so as to face each other.
  • the light source unit 30 and the light receiving unit 31 have substantially the same size, and are both rectangular or square.
  • the shape of the light source part 30 or the light-receiving part 31 is a shape which can hold
  • the light source unit 30 is arranged on the lower side in the drawing, and the light receiving unit 31 is arranged on the upper side in the drawing.
  • the light source unit 30 shown in FIG. 2 is a plate-like light emitter that is disposed along the X direction and the Y direction orthogonal to the X direction.
  • a light source unit 30 for example, a self-luminous panel type light source unit 30 in which a plurality of LEDs (light emitting diodes) are two-dimensionally arranged along the X direction and the Y direction is used.
  • the light source unit 30 is electrically connected to the light source driving unit 32.
  • the light source driving unit 32 is electrically connected to the control unit 100.
  • the light source driving unit 32 drives the light source unit 30 so that the light source units 30 emit light all at once. It has become. .
  • the light receiving unit 31 has a flat plate shape, is disposed to face the light source unit 30, and is in a state in which the tissue sample M is disposed between the light source unit 30, preferably the tissue sample M is sandwiched between the light source unit 30. In this state, light transmitted through the tissue sample M or light emitted from the tissue sample M is received.
  • the light receiving unit 31 has a photoelectric conversion element, and receives light such as fluorescence emitted from the test reagent in the tissue sample M based on the light emitted from the light source unit 30 and photoelectrically converts it to create photometric information AS.
  • the light receiving unit 31 is configured, for example, such that a plurality of light receiving elements of a CMOS (complementary metal oxide semiconductor) image sensor (solid-state imaging element) as a photoelectric conversion element are arranged on a plane.
  • CMOS complementary metal oxide semiconductor
  • solid-state imaging element solid-state imaging elements
  • light receiving elements of a plurality of CMOS image sensors may be two-dimensionally arranged along the X direction and the Y direction.
  • the CMOS image sensor elements used for the light receiving unit 31 are arranged one by one in a section partitioned in a grid pattern vertically and horizontally at a pitch of several microns, for example.
  • One section of the CMOS image sensor element corresponds to one pixel.
  • the light receiving signal amplifying unit 33 is electrically connected to the light receiving unit 31.
  • the received light signal amplifier 33 has a function of amplifying the photometric value RS included in the photometric information AS acquired from the light receiver 31.
  • the received light signal amplifier 33 is electrically connected to the controller 100 of the control main body 12. As a result, the light reception signal amplifying unit 33 can send the photometric information AS having the amplified photometric value RS to the control unit 100.
  • FIGS. 3 is a perspective view showing the light source unit 30, the light receiving unit 31, the tissue sample M and the like
  • FIG. 4 is a front view showing the light source unit 30, the light receiving unit 31, the tissue sample M and the like.
  • FIG. 5 is a diagram illustrating the distance d between the upper surface of the tissue sample M and the lower surface of the absorption filter 41.
  • a band pass filter 40 and an absorption filter 41 are disposed between the light source unit 30 and the light receiving unit 31.
  • the band-pass filter 40 is a filter having a property of transmitting primary light such as excitation light emitted from the light source unit 30 that excites the fluorescent substance added to the tissue sample, but not transmitting light other than the primary light. is there.
  • the absorption filter 41 does not transmit or remove the primary light, while receiving the primary light, and transmits the fluorescence emitted by the fluorescent material added to the tissue sample to transmit the lower surface of the light receiving unit 31 (light receiving surface).
  • a filter having the property of leading to the 31A side is a filter having a property of transmitting primary light such as excitation light emitted from the light source unit 30 that excites the fluorescent substance added to the tissue sample, but not transmitting light other than the primary light. is there.
  • the absorption filter 41 does not transmit or remove the primary light, while receiving the primary light, and transmits the fluorescence emitted by the fluorescent material added to the tissue sample
  • the bandpass filter 40 and the absorption filter 41 are formed in a shape similar to that of the light source unit 30 and the light receiving unit 31 and slightly the same as or slightly smaller than the light source unit 30 and the light receiving unit 31.
  • the light source unit 30 and the light receiving unit 31 are rectangular or square plate-shaped members, respectively.
  • the sizes of the bandpass filter 40 and the absorption filter 41 are formed to be slightly smaller than the sizes of the light source unit 30 and the light receiving unit 31.
  • the relationship among the sizes of the light source unit 30, the light receiving unit 31, the band pass filter 40, and the absorption filter 41 is not particularly limited.
  • the sizes of the bandpass filter 40 and the absorption filter 41 may be formed larger than the sizes of the light source unit 30 and the light receiving unit 31.
  • the size of the bandpass filter 40 and the absorption filter 41 is greater than or equal to the size of the light source unit 30 and the light receiving unit 31, and the size of the light source unit 30 and the light receiving unit 31 is larger than that of the tissue sample M. Can be.
  • the biological tissue sample M shown in FIG. 4 and FIG. 5 is a sample that can analyze a chemical substance localized in the tissue sample M and quantify it in a minute range of the tissue sample M.
  • the tissue sample M is a sample composed of a tissue sample labeled with a test reagent such as a fluorescent substance, or a tissue sample itself not labeled with a test reagent or the like. That is, the tissue sample M may be a tissue sample to which a test reagent is added, or may be a tissue sample to which no test reagent is added.
  • a test reagent added to the tissue sample M a fluorescent substance or a staining agent can be used.
  • the fluorescent substance a commercially available fluorescent labeling reagent, for example, a dye such as a rhodamine derivative can be used.
  • the tissue sample analyzer 1 is an apparatus used when a fluorescent substance is added to the tissue sample M, and has a configuration suitable for adding the fluorescent substance to the tissue sample M. That is, in the tissue sample analyzer 1, the tissue sample M is disposed between the bandpass filter 40 and the absorption filter 41 as shown in FIGS. The size of the tissue sample M is slightly smaller than the sizes of the bandpass filter 40 and the absorption filter 41.
  • the sizes of the bandpass filter 40 and the absorption filter 41 are preferably set slightly smaller than the sizes of the light source unit 30 and the light receiving unit 31. Further, the size of the tissue sample M is set to be slightly smaller than the sizes of the bandpass filter 40 and the absorption filter 41.
  • the distance between the light emitting surface 30 ⁇ / b> A of the light source unit 30 and the lower surface of the bandpass filter 40 is indicated by a symbol f
  • the interval between the upper surface of the bandpass filter 40 and the lower surface of the tissue sample M is indicated by a symbol.
  • e the interval between the upper surface of the tissue sample M and the lower surface of the absorption filter 41
  • d a distance between the upper surface of the absorption filter 41 and the light receiving surface 31A of the light receiving unit 31
  • the interval f, the interval e, and the interval c are 0 ⁇ m.
  • the light emitting surface 30A of the light source unit 30 and the lower surface of the bandpass filter 40 are in close contact, and the upper surface of the bandpass filter 40 and the lower surface of the tissue sample M are also in close contact.
  • the upper surface of the absorption filter 41 and the light receiving surface 31A of the light receiving unit 31 are also in close contact with each other.
  • the light emitting surface 30A of the light source unit 30 and the lower surface of the bandpass filter 40 are in close contact, the light emitted from the light emitting surface 30A of the light source unit 30 enters the bandpass filter 40 without spreading.
  • the light source unit 30 When the light source unit 30 emits parallel light, the light emitted from the light emitting surface 30A is spread even if the light emitting surface 30A of the light source unit 30 and the lower surface of the bandpass filter 40 are separated from each other. Without being incident on the bandpass filter 40. For this reason, when the light source part 30 irradiates parallel light, the space
  • the distance d between the upper surface of the tissue sample M and the lower surface of the absorption filter 41 shown in FIGS. 4 and 5 is not particularly limited, but is usually in the range of 0 to 600 ⁇ m, preferably 0 to It is in the range of 50 ⁇ m, more preferably in the range of 0 to 20 ⁇ m. That is, the upper surface of the tissue sample M and the lower surface of the absorption filter 41 are in close contact with each other or are arranged so as to be separated by a predetermined distance d. When the upper surface of the tissue sample M and the lower surface of the absorption filter 41 are in close contact, the tissue sample M is sandwiched between the light source unit 30 and the light receiving unit 31, and the resolution of the obtained two-dimensional image is increased.
  • the distance d between the upper surface of the tissue sample M and the lower surface of the absorption filter 41 can be separated within a range of, for example, 600 ⁇ m or less as described above. Generally, the resolution of the two-dimensional image obtained becomes higher as the distance d is closer to 0 ⁇ m.
  • the light receiving unit 31 can move up and down in the Z direction.
  • the vertical movement of the light receiving unit 31 is performed by operating the positioning unit 50 of the light receiving unit in response to a command from the control unit 100.
  • the light source unit 30 is fixed to a fixed stage (not shown), and the light receiving unit 31 is fixed to a moving stage (not shown).
  • the tissue sample M is placed on the upper surface of the band-pass filter 40 as shown in FIG.
  • the distance d between the upper surface of the tissue sample M and the lower surface of the absorption filter 41 can be adjusted.
  • the numerical value of the interval d is confirmed by laser distance measurement or the like.
  • the light receiving unit 31 side can be moved up and down in the Z direction using the positioning unit 50 of the light receiving unit.
  • the light source unit 30 side can be moved up and down in the Z direction by the operation of the light source unit positioning unit (not shown) in response to a command from the control unit 100. May be.
  • the tissue sample analyzer 1 first, as shown in FIG. 1, the user places the tissue sample M on a pedestal (scanning stage) 55, and then places the pedestal 55 from the opening 22 of the casing 21 into the casing 21. Put in. Next, the stage drive unit 34 moves the pedestal 55 between the light source unit 30 and the light receiving unit 31 and moves the tissue sample M from the pedestal 55 to the upper surface of the bandpass filter 40 in accordance with an instruction from the control unit 100. Be able to.
  • the tissue sample M is usually held in a preparation or the like made of glass or the like.
  • a preparation or the like made of glass or the like For example, in fluorescent tissue immunostaining, if an encapsulant that is not completely solidified is used as a mounting agent when fixing a tissue sample to a preparation, it is not preferable to place the preparation upside down because the cover glass is temporarily fixed.
  • the measurement is performed in a state where the tissue sample M is not completely fixed. Is disposed, and the light receiving unit 31 is disposed on the upper side.
  • FIGS. 2 to 5 show the tissue sample analyzer 1 in a state where the light source unit 30 is disposed on the lower side and the light receiving unit 31 is disposed on the upper side.
  • the light source unit 30 and the light receiving unit 31 are arranged so that the state where the light source unit 30 is arranged on the lower side and the light receiving unit 31 is arranged upside down. You may make it a movable structure. For example, if the preparation using the tissue sample M is configured so that it can be turned upside down, the light source unit 30 and the light receiving unit 31 are rotated while holding the tissue sample M, so that the light source unit 30 is located on the lower side and the light receiving unit 31. The light source unit 30 may be placed on the upper side and the light receiving unit 31 may be placed on the lower side. Examples of the preparation that can be turned upside down include a preparation that does not cause the cover glass or the tissue sample M to fall off when the encapsulant is completely solidified.
  • the tissue sample analyzer is used in a state where the light source unit 30 and the light receiving unit 31 are not reversed upside down.
  • the tissue sample analyzer in which the light source unit 30 and the light receiving unit 31 are not reversed upside down for example, the tissue sample analyzing device 1 shown in FIGS. 2 to 5 and the light source unit 30 and the light receiving unit 31 can be turned upside down.
  • preparations that cannot be turned upside down include preparations that are temporarily fixed with an encapsulant because the encapsulant does not solidify, and that there is a risk that the cover glass may fall off or the tissue sample M may fall off. Is mentioned.
  • the preparation in the case where fluorescent tissue immunostaining or the like is performed on the tissue sample M is a preparation that cannot be turned upside down.
  • the light source unit 30 when the encapsulant is an object to be measured such as a cover glass or a tissue sample that does not move or drop out, such as completely solidified, the light source unit 30 is on the upper side and the light receiving unit 31 is on the lower side. Therefore, as another embodiment (not shown), a tissue sample analyzer in which the light source unit 30 is disposed on the upper side and the light receiving unit 31 is disposed on the lower side can be used. As a tissue sample analyzer in which the light source unit 30 is disposed on the upper side and the light receiving unit 31 is disposed on the lower side, for example, the state in which the light source unit 30 is disposed on the upper side and the light receiving unit 31 is disposed on the lower side is fixed. A tissue sample analyzer can be used.
  • tissue sample analyzer in which the light source unit 30 is disposed on the upper side and the light receiving unit 31 is disposed on the lower side, for example, the light source unit 30 and the light receiving unit 31 are rotated while holding the tissue sample M.
  • tissue sample analyzer that can change the state in which the light source unit 30 is disposed on the upper side and the light receiving unit 31 is disposed on the lower side to the state in which the light source unit 30 is disposed on the lower side and the light receiving unit 31 is disposed on the upper side. it can.
  • tissue sample analyzer 1 when the above-described tissue sample analyzer 1 is used, a fluorescent substance is used as a test reagent, the two-dimensional distribution of the photometric information AS of the tissue sample M is obtained, and the tissue sample M is quantified and two-dimensionally imaged. An example of the operation will be described.
  • photometric information AS (AS B ) is acquired for a tissue sample M in a blank state to which no fluorescent substance is added.
  • the photometric information AS of the blank tissue sample M to which no fluorescent substance is added is particularly referred to as AS B.
  • the photometric information AS B is information consisting of a numerical sequence in which coordinate information in the light receiving unit 31 is added to a photometric value RS (RS B ) of a blank tissue sample M to which no fluorescent substance is added.
  • the photometric information AS is acquired in the same manner as the procedure of “Measurement using the tissue sample M to which a fluorescent substance is added” described later, except that no fluorescent substance is added to the tissue sample M.
  • the photometric information AS of the blank tissue sample M to which no fluorescent substance is added includes a band-pass filter 40 disposed on the surface of the light emitting surface 30 ⁇ / b> A of the light source unit 30, and the light receiving unit 31. In a state where the absorption filter 41 is disposed on the surface of 31A, the tissue sample M is sandwiched between the bandpass filter 40 and the absorption filter 41 and acquired in advance.
  • the photometric information AS B of the blank tissue sample M to which no fluorescent substance is added is processed by the data calculation unit 14 to create two-dimensional distribution information (distribution information OD B ) of the photometric information AS B.
  • the distribution information OD B is information including a numerical matrix in which the photometric values RS B are arranged based on the coordinate information in the light receiving unit 31 added to the photometric information AS B.
  • the obtained distribution information OD B as shown in FIG. 2, previously stored in a storage unit 15 and an image construction unit 13.
  • tissue sample M is, for example, immunohistochemically stained with a fluorescent material.
  • the user places the tissue sample M to which the fluorescent material has been added on the pedestal 55, and then places the pedestal 55 in the casing 21 from the opening 22 of the casing 21 as shown in FIG. Put in.
  • the stage drive unit 34 moves the pedestal 55 to the light source unit 30 side according to a command from the control unit 100, and moves the tissue sample M from the pedestal 55 to the upper surface of the bandpass filter 40.
  • the tissue sample M to which the fluorescent material has been added is interposed between the light emitting surface 30A on which the LED of the light source unit 30 is disposed and the light receiving surface 31A of the light receiving unit 31 via the bandpass filter 40 and the absorption filter 41.
  • the tissue sample M and the absorption filter 41 may be separated from each other.
  • the wavelength of light generated by each LED of the light source unit 30 is in the region from ultraviolet to visible light.
  • Fluorescence excitation light among the light of each LED of the light source unit 30 passes through the bandpass filter 40 and reaches the tissue sample M to which the fluorescent material is added.
  • the fluorescent substance in the tissue sample M is excited by the fluorescence excitation light of each LED of the light source unit 30 and emits fluorescence.
  • Fluorescence emitted from the fluorescent material in the entire region of the tissue sample M passes through the absorption filter 41 and reaches the light receiving surface 31A where a large number of CMOS image sensor elements as photoelectric conversion elements of the light receiving unit 31 are arranged. Other leakage light of the excitation light is blocked by the absorption filter 41.
  • the light receiving unit 31 measures the intensity of the fluorescence emitted from the fluorescent material for each of a large number of CMOS image sensor elements constituting the light receiving surface 31A and the entire CMOS image sensor elements existing on the light receiving surface 31A. Is obtained.
  • the photometric value RS is obtained by the number of CMOS image sensor elements. Since the light receiving surface 31A of the light receiving unit 31 includes the tissue sample M and is larger than the tissue sample M, the photometric value RS is obtained for the entire light receiving unit 31 including the entire region of the tissue sample M.
  • the photometric value RS is added with the coordinate information of the CMOS image sensor element on the light receiving surface 31A of the light receiving unit 31 and becomes photometric information AS.
  • the photometric information AS is sent to the control unit 100 after the photometric value RS included therein is amplified by the received light signal amplifying unit 33.
  • the CMOS image sensor elements constituting the light receiving unit 31 are arranged in a state of being divided into a grid pattern vertically and horizontally at a pitch of several microns, for example.
  • One square of the CMOS image sensor element corresponds to one pixel.
  • the fluorescence intensity (photometric value RS) of the fluorescent substance distributed in the entire region of the tissue sample M has a resolution of several microns.
  • the photometric information AS obtained by adding the coordinate information of the CMOS image sensor element of the light receiving surface 31A of the light receiving unit 31 to the photometric value RS is formed for the entire CMOS image sensor element of the light receiving surface 31A of the light receiving unit 31.
  • the fluorescence intensity (photometric value RS) of the fluorescent substance distributed in the entire region of the tissue sample M can be obtained in a short time over the entire region of the tissue sample M with a resolution of several microns. For example, it can be measured simultaneously in several minutes.
  • the data calculation unit 14 calculates and creates distribution information OD of the photometric information AS for two-dimensional image configuration from the photometric information AS formed by the tissue sample analysis unit 20. For example, the data calculation unit 14 adjusts the intensity of the color and displays the color information of the distribution information OD of the photometric information AS for two-dimensional image configuration so that the data calculation unit 14 can be displayed on the display unit 11 for easy viewing. The type of color can be selected.
  • the control unit 100 sends the adjusted distribution information OD of the photometric information AS for image configuration to the image configuration unit 13.
  • Image constructing unit 13 for example, with respect to the distribution information OD B tissue samples M of blank without the addition of a fluorescent substance, by superimposing the distribution information OD tissue samples M was added fluorescent substance, the tissue sample M Colored two-dimensional imaging data GD is constructed.
  • the two-dimensional imaging data GD means general-purpose image data created based on a certain rule for storing the distribution information OD.
  • a two-dimensional image obtained by color-coding the distribution information OD based on a certain rule is used for data visualization.
  • This color classification is performed, for example, by classifying the intensity value of the photometric value RS included in the photometric information AS by a histogram or the like, and the class to which the intensity value of the photometric value RS belongs to the pixel corresponding to the coordinates of the coordinate information included in the photometric information AS. It is realized by coloring according to. In this color coding, colors may be colored with different hues.
  • a 16-bit numerical matrix composed of the photometric value RS based on the coordinates of the photometric information AS is converted into an image format of a 16-bit monochrome image format. You may express using.
  • the image format at this time may be an existing general-purpose format or a unique original format.
  • This two-dimensional imaging data GD is sent from the image construction unit 13 to the control unit 100.
  • the control unit 100 displays a two-dimensional quantitative image on the display unit 11 based on the two-dimensional imaging data GD of the tissue sample M. Specific examples of the two-dimensional quantitative image are shown in FIGS.
  • the image of the colorized analysis example EX shown in FIG. 1 is displayed in a state where, for example, the distribution of the fluorescence intensity (photometric value RS) of the fluorescent substance distributed in the entire region of the tissue sample M is easy to see (shading distribution). Can be made.
  • FIG. 7 is an example of a two-dimensional quantitative image obtained by adding a fluorescent substance to the tissue sample M shown in FIG.
  • the two-dimensional quantitative image 300 shown in FIG. 7 is a rectangular two-dimensional quantitative image region 350 in which a mosaic two-dimensional quantitative image main body 310 made up of a collection of square pixels of a CMOS image sensor element is displayed. It has become.
  • the two-dimensional quantitative image main body 310 has a shape similar to the rhombus-shaped tissue sample M shown in FIG. 6, and displays the photometric values RS in the respective parts of the tissue sample M according to the intensity values. .
  • a diamond-shaped peripheral portion similar to the outer shape of the tissue sample M is a portion 311 having a low photometric value RS, and a central portion is a portion 312 having a high photometric value RS.
  • the level of the photometric value RS corresponds to the amount of fluorescent substance in the tissue sample M, according to the two-dimensional quantitative image main body 310 shown in FIG. You can see that there are more parts.
  • the state of the density distribution of the fluorescent material distributed in the tissue sample M can be obtained with a resolution of several microns. Can be measured in a short time.
  • the tissue sample analyzer 1 according to the first embodiment of the present invention is not a large-scale system as in the prior art, can be downsized, and is inexpensive.
  • the tissue sample analyzer 1 since the tissue sample M can be measured simply by placing it between the light source unit 30 and the light receiving unit 31, the analysis operation by the operator is easy and the operability is good. Analysis time is short and resolution is sufficient. Further, according to the tissue sample analyzer 1 having such a configuration, the tissue sample M is disposed between the light source unit 30 and the light receiving unit 31, and the density of the fluorescent material distributed in the entire region of the tissue sample M at one time. Can be acquired as photometric information AS, and a two-dimensional image can be formed based on the photometric information AS. For this reason, according to the tissue sample analyzer 1 having such a configuration, the analysis time for performing the quantification and two-dimensional imaging of the tissue sample M is short.
  • tissue sample analyzer 1 since the analysis time is short as described above, a chemical substance localized in the tissue sample M is analyzed and quantified in a minute range of the tissue sample M before the biological tissue sample M deteriorates. Can complete the operation. For this reason, according to the tissue sample analyzer 1, a quantitative analysis result can be obtained earlier in a smaller range of the tissue sample M.
  • the size of the light source unit 30 and the light receiving unit 31 is appropriately selected, so that the tissue sample M can vary from a small animal to a human large tissue sample M regardless of the size of the tissue sample M. It is possible to acquire a state of distribution of the fluorescent substance distributed in the region, to form a two-dimensional image, and to analyze in a short time.
  • tissue sample analyzer 1 a plurality of distributions in the same tissue sample (tissue sample) M are made by selecting and combining the emission wavelength of each LED of the light source unit 30 and the fluorescent substance used for immunohistochemical staining. Different types of biological materials can be analyzed simultaneously and quantitatively.
  • the tissue sample analyzer 1 since the tissue sample M can be measured simply by placing it between the light source unit 30 and the light receiving unit 31, the entire fluorescent substance distribution of the tissue sample M is used as photometric information AS at a time. It can be acquired in a short time. As described above, since the photometric information AS can be acquired in a short time at once, the tissue sample analyzer 1 can prevent the tissue sample M from being deteriorated due to a change with time, and can be used by the operator of the experiment. Difficult to occur.
  • the tissue sample analyzer 1 when the tissue sample M is sandwiched between the light source unit 30 and the light receiving unit 31, even if the flatness of the tissue sample M is poor, the tissue sample M is flattened and the photometry is performed. be able to. For this reason, according to the tissue sample analyzer 1 having such a configuration, the reproducibility of the quantitative analysis (quantitative value) of the tissue sample M can be enhanced.
  • the tissue sample analyzer 1 when the tissue sample analyzer 1 is used to sandwich the tissue sample M between the light source unit 30 and the light receiving unit 31, the distance between the light source unit 30 and the light receiving unit 31 can be made constant. For this reason, according to the tissue sample analyzer 1 having such a configuration, the tissue sample M increases the accuracy of quantitative analysis (quantitative value) of the tissue sample M even when the thickness of the tissue sample M is large. be able to.
  • the light source unit 30 is fixed to a fixed stage. For this reason, according to the tissue sample analyzer 1, the measurement operation is simple, and variations in measurement values by the operator can be suppressed.
  • the light source unit 30 and the light receiving unit 31 when the size of the light source unit 30 and the light receiving unit 31 is larger than the size of the tissue sample M, the light source unit 30 and the light receiving unit 31 can cover the entire region of the tissue sample M.
  • the size of the light source unit 30 and the light receiving unit 31 of the tissue sample analyzer 1 is larger than the size of the tissue sample M, the size of the entire area of the tissue sample M is not limited to two.
  • Photometric information AS necessary for constructing a three-dimensional image can be acquired at a time. Therefore, according to the tissue sample analyzer 1 having such a configuration, it is not necessary to perform a scanning operation, photometry can be performed in a short time, and the reproducibility of quantitative analysis is improved.
  • photometric information AS necessary for constructing a two-dimensional image of the entire region of the tissue sample M before the tissue sample M deteriorates can be acquired at one time. It is possible to easily photograph a tissue sample M having a large size. For this reason, a three-dimensional image (3D image) can be constructed.
  • the tissue sample M is sandwiched between the light source unit 30 and the light receiving unit 31, even if the tissue sample M is wavy and the flatness of the tissue sample M is poor, the light source unit 30 and the light receiving unit 31 It can be fixed in between. Therefore, according to the tissue sample analyzer 1 having such a configuration, the tissue sample M is fixed using the light source unit 30 and the light receiving unit 31. Therefore, according to the tissue sample analyzer 1 having such a configuration, the amount of fluorescence is not affected by the poor flatness of the tissue sample M over the entire region of the tissue sample M without using a lens system. Can be obtained to obtain a distribution of fluorescence intensity, and the tissue sample M can be quantitatively analyzed.
  • the tissue sample analyzer 1 when the tissue sample M is sandwiched between the light source unit 30 and the light receiving unit 31, the thickness of the tissue sample M (the chemical substance is localized) is not affected. For this reason, according to the tissue sample analyzer 1 having such a configuration, it is possible to quantitatively analyze the tissue sample M without including an error. Further, according to the tissue sample analyzer 1 having such a configuration, the light source unit 30 and the light receiving unit 31 are used to integrate the light amount without using a lens, and to quantify the tissue sample M without including an error. Can be analyzed.
  • the tissue sample analyzer 1 since the lens causing the aberration is not used using the light source unit 30 and the light receiving unit 31, the tissue sample M can be accurately quantitatively analyzed.
  • FIGS. 8 and 9 the same components as those in the first embodiment shown in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • the second embodiment of the present invention shown in FIG. 8 and FIG. 9 differs from the first embodiment of the present invention in the following points, but is otherwise the same.
  • the photometric system constituting the first embodiment of the present invention shown in FIGS. 4 and 5 is a photometric system for measuring the tissue sample M in a so-called fluorescence mode using the tissue sample M to which a fluorescent material is added.
  • the photometric system constituting the second embodiment of the present invention shown in FIGS. 8 and 9 uses a tissue sample M to which no fluorescent substance is added and measures the light by transmitting light through the tissue sample M.
  • This is a photometric system for measuring a tissue sample M in the transmission mode.
  • a general histochemical staining agent or the like is used as a test reagent.
  • the transmission mode photometry system constituting the second embodiment shown in FIGS. 8 and 9 is different from the fluorescence mode photometry system constituting the first embodiment shown in FIGS. 4 and 5 from the bandpass filter 40 and the absorption filter 41. It is what removed.
  • the transmission mode photometry system shown in FIG. 8 and FIG. 9 does not have the bandpass filter 40 and the absorption filter 41, so that a lesion or the like is determined using a bright field observation image such as general histochemical staining. It is preferable because the cost can be reduced by reducing the number of parts.
  • the transmission-mode photometric system may be configured to include at least one of the band-pass filter 40 and the absorption filter 41, unlike the configurations illustrated in FIGS.
  • the band pass filter 40 can be disposed between the light source unit 30 and the tissue sample M in the same manner as the fluorescence mode photometry system constituting the first embodiment shown in FIGS. 4 and 5.
  • the bandpass filter 40 only the light component in the wavelength region corresponding to the absorption wavelength of the stained portion of the tissue sample M stained with the histochemical stain is transmitted through the illumination light emitted from the light source unit 30.
  • the tissue sample M can be irradiated.
  • the bandpass filter 40 when the bandpass filter 40 is arranged as described above in the transmission mode photometry system and the tissue sample M stained with the histochemical stain is measured, the absorbance of the stained portion stained with the histochemical stain is accurately measured. It can be measured well. Further, the band pass filter 40 transmits only the light component in the wavelength region where the absorption of the stain such as the histochemical stain added to the tissue sample M is large among the illumination light emitted from the light source unit 30. If there is, when the tissue sample M stained with the histochemical stain is measured, the absorbance of the stained portion stained with the histochemical stain can be measured with higher accuracy.
  • the absorption filter 41 can be disposed between the light receiving unit 31 and the tissue sample M, similarly to the fluorescence mode photometry system constituting the first embodiment shown in FIGS. 4 and 5.
  • the absorption filter 41 the light component in the wavelength region corresponding to the absorption wavelength of the stained portion of the tissue sample M stained with the histochemical stain among the light emitted from the tissue sample M stained with the histochemical stain It is possible to irradiate the light receiving unit 31 with only the light transmitted therethrough. Therefore, when the absorption filter 41 is arranged as described above in the transmission mode photometry system and the tissue sample M stained with the histochemical stain is measured, the absorbance of the stained portion stained with the histochemical stain is accurately measured. Can be measured.
  • the absorption filter 41 has only a light component in the wavelength region where the absorption of the stain such as the histochemical stain added to the tissue sample M is large.
  • the absorbance of the stained portion stained with the histochemical stain can be measured with higher accuracy.
  • the absorption filter 41 can be disposed between the light receiving unit 31 and the tissue sample M, similarly to the fluorescence mode photometry system constituting the first embodiment shown in FIGS. 4 and 5.
  • the absorption filter 41 it is possible to transmit only the light component in the wavelength region corresponding to the absorption wavelength of the stained portion of the tissue sample M stained with the histochemical stain to irradiate the light receiving unit 31. Therefore, when the absorption filter 41 is arranged as described above in the transmission mode photometry system and the tissue sample M stained with the histochemical stain is measured, the absorbance of the stained portion stained with the histochemical stain is accurately measured. Can be measured.
  • the distance between the light emitting surface 30 ⁇ / b> A of the light source unit 30 and the lower surface of the tissue sample M is indicated by a symbol b. Is denoted by a.
  • the interval b is 0 ⁇ m, and the tissue sample M is in close contact with the upper surface 30 ⁇ / b> A of the light source unit 30.
  • the distance a is, for example, in the range of 0 to 50 ⁇ m, more preferably 0 to 20 ⁇ m. That is, the upper surface of the tissue sample M and the light receiving surface 31A of the light receiving unit 31 are in close contact with each other, or are arranged so as to be separated by a predetermined interval a.
  • the tissue sample M is sandwiched between the upper surface 30 ⁇ / b> A of the light source unit 30 and the light receiving surface 31 ⁇ / b> A of the light receiving unit 31. Arranged to be.
  • the wavelength of light generated by each LED of the light source unit 30 is in the region from ultraviolet to visible light.
  • the operation of the second embodiment is different from the operation of the tissue sample analyzer 1 according to the first embodiment in that the photometry system is a photometry system for transmission mode, and the other operations are the same.
  • description is abbreviate
  • the light of each LED of the light source unit 30 reaches the tissue sample M as it is.
  • the light reaching the tissue sample M is measured by the light receiving unit 31 as the transmittance value (photometric value RS) of the concentration of the target material in the stained tissue sample M.
  • the coordinate information in the light receiving unit 31 is added to the photometric value RS to create photometric information AS.
  • the light receiving unit 31 can measure the entire tissue sample M in a short time with a resolution of several microns.
  • the second embodiment it is also possible to simultaneously analyze a plurality of biological substances in the same tissue sample M by combining the wavelength of each LED of the light source unit 30 and the type of stain. For example, when a plurality of types of wavelengths of the LED of the light source unit 30 are prepared and a plurality of types of stains corresponding to any of the plurality of types of wavelengths are used, a plurality of biological materials in the same tissue sample M are analyzed simultaneously. Is possible.
  • FIG. 10 is a block diagram showing a configuration example of a tissue sample analysis system according to the third embodiment of the present invention.
  • the tissue sample analysis system 200 includes the tissue sample analysis apparatus 1 according to the first embodiment, a high-definition image acquisition apparatus 2, and an integrated control unit 5.
  • the integrated control unit 5 is electrically connected to the control unit 100 of the tissue sample analyzer 1 and the high-definition image acquisition device 2.
  • the tissue sample analysis system 200 includes a sample moving unit 3 that is electrically connected to the integrated control unit 5.
  • the high-definition image acquisition device 2 is a device that acquires a high-definition image of a tissue sample.
  • a microscope is used as the high-definition image acquisition device 2.
  • a microscope usually has a lens and an image sensor. For this reason, the high-definition image acquired with the high-definition image acquisition apparatus 2 becomes an image normally obtained with the microscope which has a lens and an image pick-up element.
  • the high-definition image means an image having a resolution equal to or higher than that of a photoelectric conversion element such as a CMOS image sensor element constituting the light receiving unit 31 of the tissue sample analyzer 1.
  • the tissue sample analyzer 1 does not have a lens for enlargement.
  • the two-dimensional quantitative image created by the tissue sample analyzer 1 is a photometric value obtained only through a photoelectric conversion element such as an image sensor of the light receiving unit 31 without using an optical enlarging means such as a lens.
  • the image is created based on the RS.
  • the resolution of the two-dimensional quantitative image created by the tissue sample analyzer 1 is lower than that of the high-definition image. That is, the high-definition image acquired by the high-definition image acquisition device 2 is a higher-definition image than the two-dimensional quantitative image created by the tissue sample analyzer 1.
  • the two-dimensional quantitative image and the high-definition image will be described in detail later.
  • the two-dimensional quantitative image has an advantage of excellent quantitativeness
  • the high-definition image has an advantage of high resolution.
  • the tissue sample analysis system 200 is used, for example, to exhibit the merit excellent in the quantitative property of the two-dimensional quantitative image and to compensate for the low resolution of the two-dimensional quantitative image by exhibiting the merit of the high-definition image.
  • the integrated control unit 5 has a function of associating the two-dimensional quantitative image created by the tissue sample analyzer 1 with the high-definition image acquired by the high-definition image acquisition device.
  • the integrated control unit 5 acquires a two-dimensional quantitative image from the control unit 100 of the tissue sample analyzer 1, acquires a high-definition image from the high-definition image acquisition device 2, and combines the two-dimensional quantitative image and the high-definition image. Associate.
  • the two-dimensional quantitative image and the high-definition image are associated with each other, for example, a two-dimensional image complex is formed.
  • the two-dimensional image complex means an image complex in which a two-dimensional quantitative image and a high-definition image are associated with each other.
  • the sample moving unit 3 has a function of performing control to move the tissue sample M so that the tissue sample M can be analyzed by the tissue sample analyzer 1 and an image can be acquired by the high-definition image acquiring device 2. Specifically, the sample moving unit 3 performs control so that the tissue sample M is moved onto the pedestal 55 of the tissue sample analyzer 1 and the imaging pedestal (not shown) of the high-definition image acquisition device 2.
  • FIG. 11 and 12 are diagrams showing an example of the configuration of a two-dimensional image complex 500 including a two-dimensional quantitative image 300 and a high-definition image 400 obtained by adding a fluorescent substance to the tissue sample M shown in FIG. is there.
  • the two-dimensional image composite 500 shown in FIGS. 11 and 12 displays only the image in front of FIGS. 11 and 12 on the actual screen of the display unit 11. That is, in the two-dimensional image complex 500 shown in FIG.
  • the two-dimensional quantitative image 300 is the same as the two-dimensional quantitative image 300 shown in FIG. That is, the two-dimensional quantitative image 300 is a rectangular two-dimensional quantitative image region 350 in which a mosaic two-dimensional quantitative image main body 310 made up of a collection of square pixels of a CMOS image sensor element is displayed. Yes.
  • the two-dimensional quantitative image main body 310 has a shape similar to the rhombus-shaped tissue sample M shown in FIG. 6, and displays the photometric values RS in the respective parts of the tissue sample M according to the intensity values. .
  • a diamond-shaped peripheral portion similar to the outer shape of the tissue sample M is a portion 311 having a low photometric value RS, and a central portion is a portion 312 having a high photometric value RS.
  • the level of the photometric value RS corresponds to the amount of the fluorescent substance in the tissue sample M. Therefore, according to the two-dimensional quantitative image main body 310 shown in FIGS. 11 and 12, the amount of the fluorescent substance in the tissue sample M is It can be seen that there are more central parts than parts.
  • the high-definition image 400 is obtained by displaying a rhombus-shaped high-definition image main body 410 in a rectangular high-definition image region 450.
  • the high-definition image main body 410 is a high-definition image corresponding to the two-dimensional quantitative image main body 310 of the two-dimensional quantitative image 300.
  • a portion 411 in the high-definition image main body 410 is a portion corresponding to the portion 311 having a low photometric value RS of the two-dimensional quantitative image 300.
  • a portion 412 in the high-definition image main body 410 is a portion corresponding to the portion 312 having a high photometric value RS of the two-dimensional quantitative image 300. Since the high-definition image 400 has higher resolution than the two-dimensional quantitative image 300, the accuracy of the contour is improved.
  • the two-dimensional quantitative image 300 is an image formed by processing information such as the photometric value RS, and has no aberration because no magnifying means such as a lens is used. For this reason, the two-dimensional quantitative image 300 has an advantage of superior quantitative performance as compared with a high-definition image 400 described later.
  • the two-dimensional quantitative image 300 has a demerit that the resolution is lower than that of the high-definition image 400 described later because the limit of resolution depends on the size of a photoelectric conversion element such as an imaging element.
  • the high-definition image 400 has an advantage that the resolution is higher than that of the two-dimensional quantitative image 300 because an enlargement means such as a lens is used.
  • the high-definition image 400 is not an image formed by processing information such as the photometric value RS, and aberrations occur because of the enlargement means such as a lens. For this reason, the high-definition image 400 has a demerit that the quantitative property is lower than that of the two-dimensional quantitative image 300.
  • the two-dimensional quantitative image 300 and the high-definition image 400 each have advantages and disadvantages.
  • the two-dimensional image composite 500 shown in FIG. 11 and FIG. 12 easily exhibits the merits of the two-dimensional quantitative image 300 and the high-definition image 400 by associating the two-dimensional quantitative image 300 and the high-definition image 400. It is something that can be done.
  • the two-dimensional image composite 500 in the state shown in FIG. 11 is designed to easily exhibit the merit of the two-dimensional quantitative image 300.
  • the two-dimensional image composite 500 in the state shown in FIG. 11 is designed to easily exhibit the merit of the two-dimensional quantitative image 300.
  • the two-dimensional image composite 500 in the state shown in FIG. 12 can easily exhibit the merit of the high-definition image 400.
  • the advantage of high resolution is exhibited.
  • the two-dimensional quantitative image 300 and the high-definition image 400 are associated with each other, and at least one of the two-dimensional quantitative image 300 and the high-definition image 400 is displayed on the screen of the display unit 11.
  • the display between the quantitative image 300 and the high-definition image 400 can be switched. For example, if the currently displayed two-dimensional quantitative image 300 or the high-definition image 400 is clicked, the remaining image that is not currently displayed can be displayed.
  • the setting method is not particularly limited.
  • tissue sample analysis system 200 The operation of the tissue sample analysis system 200 is the same as that of the above-described tissue sample analysis apparatus 1 and the operation of the known high-definition image acquisition apparatus 2 by using the same tissue sample M by the sample moving unit 3.
  • the analysis of the image and the image acquisition by the high-definition image acquisition device 2 the operation of associating the two-dimensional quantitative image 300 created by the tissue sample analysis device 1 with the high-definition image 400 acquired by the high-definition image acquisition device And an action based on this association.
  • the integrated control unit 5 associates the two-dimensional quantitative image 300 created by the tissue sample analyzer 1 and the high-definition image 400 acquired by the high-definition image acquisition device 2.
  • the association method is not particularly limited.
  • the respective merits of the two-dimensional quantitative image 300 and the high-definition image 400 can be easily exhibited as described above.
  • the tissue sample analyzer according to the second embodiment may be used instead of the tissue sample analyzer 1 according to the first embodiment.
  • FIG. 13 is a block diagram showing a configuration example of a tissue sample analysis system according to the fourth embodiment of the present invention.
  • the tissue sample analysis system 200 ⁇ / b> A includes the tissue sample analysis apparatus 1 according to the first embodiment, a high-definition image reading unit 6, and an integrated control unit 5.
  • the integrated control unit 5 is electrically connected to the control unit 100 and the high-definition image reading unit 6 of the tissue sample analyzer 1.
  • the tissue sample analysis system 200 ⁇ / b> A according to the fourth embodiment shown in FIG. 13 reads a high-definition image instead of the high-definition image acquisition device 2. It is the same except that the part 6 is provided and the sample moving part 3 is not provided. For this reason, in the tissue sample analysis system 200A according to the fourth embodiment and the tissue sample analysis system 200 according to the third embodiment, the same reference numerals are given to the same components, and descriptions of the configurations and operations are omitted or simplified. .
  • the high-definition image reading unit 6 has a function of reading a high-definition image of a tissue sample acquired by a high-definition image acquisition device (not shown) or the like.
  • a known image reading device can be used as the high-definition image reading unit 6, a known image reading device can be used.
  • a high-definition image of a tissue sample acquired by a high-definition image acquisition device or the like is a high-definition acquired from the same tissue sample M as the tissue sample M analyzed by the tissue sample analysis device 1 according to the first embodiment. An image.
  • the tissue sample analysis system 200A functions to read a high-definition image from another high-definition image acquisition device or the like instead of acquiring a high-definition image by the high-definition image acquisition device 2, while the sample moving unit 3
  • the operation of the tissue sample analysis system 200 is the same as that of the tissue sample analysis system 200 except that there is no operation of moving the tissue sample M. For this reason, the description of the operation of the tissue sample analysis system 200A is omitted.
  • the tissue sample analyzer according to the second embodiment may be used instead of the tissue sample analyzer 1 according to the first embodiment.
  • the tissue sample analyzer 1 can quantify the tissue sample M at the cell level and form an image, thereby reducing the size and price of the device, simplifying the analysis work, and analyzing it.
  • the work speed can be increased and the resolution of the entire region of the tissue sample M can be increased.
  • the tissue sample analyzer 1 can instantly acquire distribution information of unevenly distributed chemical substances contained in the tissue sample M, which is a biological specimen, for example, in the manner of capturing the contents of a document with a scanner on a desk.
  • tissue sample analyzer 1 Since the time required for analysis is short for the tissue sample analyzer 1, not only can a large tissue sample M be easily analyzed, but also a large amount of continuous tissue samples can be analyzed to construct a three-dimensional image. Can do.
  • the analysis of the mouse brain takes about 30 minutes and the analysis of the human brain takes about 20 hours, but in the embodiment of the present invention, regardless of the size of the tissue sample M, One piece can be analyzed in a few minutes.
  • the resolution of one measurement area (pixel in image data) can be increased from several tens of microns to several microns, and quantitative image data with fine grain can be obtained.
  • region of the tissue sample M can be extracted easily, and a statistical process can be performed.
  • the tissue sample analyzer 1 is a tissue sample analyzer for analyzing photometric information of a biological tissue sample M, and is a light source for irradiating the tissue sample M with light.
  • the tissue 30 is disposed in opposition to the light source 30 and the tissue sample M is sandwiched between the light source 30 or the tissue sample is not sandwiched between the light source 30 and the tissue.
  • a plate-shaped light receiving unit 31 that receives light from the sample M.
  • the tissue sample M is in a state of being sandwiched between the light source unit and the light receiving unit or in a state of being disposed without sandwiching the tissue sample between the light source unit. Can be acquired in a short time. As described above, the tissue sample can be prevented from being deteriorated due to a change with time, and there is no variation in the technique of the operator of the experiment. In addition, since the tissue sample is disposed between the light source unit and the light receiving unit, even when the flatness of the tissue sample is poor, the tissue sample can be flattened for photometry.
  • a fluorescent material is added to the tissue sample, and a bandpass filter that transmits light having a wavelength that shines the fluorescent material is disposed between the light source unit and the tissue sample, and between the tissue sample and the light receiving unit. Is provided with an absorption filter that transmits fluorescence from the fluorescent material of the tissue sample.
  • the bandpass filter gives only the light of the wavelength that fluoresces the fluorescent material added to the tissue sample to the tissue sample, and the fluorescence emitted from the fluorescent material of the tissue sample passes through the absorption filter and is excited by other excitation. Light leakage light or the like is blocked by the absorption filter, so that only the fluorescence can be reliably received by the light receiving unit. For this reason, it becomes possible to quantify and image the chemical substance unevenly distributed in the tissue sample.
  • the tissue sample analyzer 1 As a reagent, the tissue sample analyzer 1 according to the second embodiment having a transmission mode photometric system is used by adding a stain as a reagent to the tissue sample M. Accordingly, for example, a tissue sample M that is unsuitable for immunohistochemical staining such as lipid is stained with a general histochemical stain or the like, so that the light receiving unit 31 distributes the concentration distribution of the target substance in the tissue sample M. , Photometry can be performed as a transmittance distribution.
  • the light source unit 30 is configured by two-dimensionally arranging a plurality of light emitting diodes
  • the light receiving unit 31 is configured by two-dimensionally arranging solid-state imaging elements.
  • a plurality of light emitting diodes are arranged two-dimensionally as a light source part, and a solid-state imaging device only needs to be arranged two-dimensionally as a light receiving part, so there is no need to use a large microscope or photomultiplier.
  • the tissue sample analyzer can be greatly reduced in size and price.
  • the light source unit 30 uses a plurality of LEDs (light emitting diodes), the present invention is not limited to this, and another example of the light source unit 30 is to configure EL (electroluminescence) in a flat plate shape. Also good. Even in this case, it is only necessary to configure the EL as a light source unit in a flat plate shape and to arrange a solid-state image pickup device two-dimensionally as the light receiving unit, and there is no need to use a large microscope or photomultiplier. Therefore, the tissue sample analyzer can be greatly reduced in size and price.
  • EL electroluminescence
  • a polarizing filter may be disposed between the upper surface 30 ⁇ / b> A of the light emitting unit 30 and the lower surface of the bandpass filter 40.
  • a scanning stage capable of moving these in the vertical and horizontal directions may be attached to one or more of the light source unit 30, the light receiving unit 31, and the pedestal 55. When such a scanning stage is attached, the measurement range can be widened.
  • the tissue sample analyzer 1 if the light source unit 30 and the light receiving unit 31 are large, the tissue sample analyzer 20 may become large or the cost may increase. In this case, the observation range may be secured or enlarged by reducing the area of one or more of the light source unit 30 and the light receiving unit 31 and fixing it to the moving stage.
  • the tissue sample analyzer 1 may be provided with a protection mechanism for preventing damage due to contact between the light source unit 30 or the light receiving unit 31 and the tissue sample M or a preparation containing the tissue sample M.
  • a spacer for example, a spacer, a restraint tool or the like is used.
  • the spacer is sandwiched between the light source unit 30 or the light receiving unit 31 and the tissue sample M or a preparation containing the tissue sample M, thereby preventing direct contact and breakage thereof.
  • a restraint tool is a means which restrict
  • the distance between the light source unit 30, the light receiving unit 31, the bandpass filter 40, the absorption filter 41, the tissue sample M, and one or more members of the preparation including the tissue sample M For example, the interval c, the interval d, the interval e, the interval f, and the like can be arbitrarily set instead of the numerical range.
  • tissue sample analysis system in addition to the effects of the tissue sample analysis apparatus according to the present invention, a quantitative image excellent in quantification and a high-resolution image with high resolution can be linked to the chemical substance in the tissue sample by coordinates. It is possible to analyze with a two-dimensional image complex attached and associated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

組織試料分析装置1は、生体の組織試料Mに光を照射して得られる測光情報を定量分析する組織試料分析装置であって、組織試料Mに光を照射する光源部30と、光源部30との間に組織試料Mを配置した状態で、組織試料Mを透過した光又は組織試料Mから放射された光を受光する平板状の受光部31と、を備える。

Description

組織試料分析装置及び組織試料分析システム
 本発明は、例えば、生体の脳内神経伝達物質や脳内神経調節物質等の組織試料を、細胞レベルで定量化して画像化する組織試料分析装置、及びこの組織試料分析装置を含む組織試料分析システムに関する。
 例えば、生体である人間の脳には、数千万以上の神経細胞が分布しており、それぞれの細胞内で起こっている化学反応の結果として、喜怒哀楽をはじめとするあらゆる感情や行動が支配されている。脳のどの領域でどのような化学反応が起こっているかを、細胞レベルで調べることは、脳研究の中心的なテーマである。
 脳細胞の化学反応を調べるには、組織試料、例えば動物等のスライスした脳細胞に、化学反応を見るために、検査試薬を落として反応させて、その反応部の状態を見ることで行われる。
 この反応部の測定作業での1回目の測定では、スライスした脳細胞をステージに載せて、脳細胞に検査試薬を用いない状態でこのステージを移動させながら脳細胞の領域を1点、1点測定して、測定が完了すると、このステージを元の位置に復帰させる。
 次に、2回目の測定では、脳細胞に検査試薬を用いて再びステージを移動させながら1回目に測定した脳細胞の反応領域の同一箇所を、1点、1点測定する。これにより、検査試薬を用いない状態での脳細胞の領域の箇所の測定値と、検査試薬を用いた状態での脳細胞の領域の箇所の測定値が、比較検討される。
 特許文献1には、このような測定を行う組織試料分析装置が開示されている。
 特許文献1の組織試料分析装置では、大型顕微鏡のカメラマウントにフォトマルチプライヤを装着して、組織試料の微小な1点(例えば、直径が数十μm)の領域から発せられる蛍光を、ピンホールで絞って大型顕微鏡のカメラとフォトマルチプライヤを用いて測光する。
 次に、ステージを移動させながら組織試料の全ての領域の測光値を収集して、得られた測光値データを座標上に構築することで、組織試料分析装置は、定量的な物質の分布図を作成する。
 この組織試料分析装置では、1回目の測定が終わって、2回目の測定に入る時には、ステージを原点復帰させる。組織試料分析装置の位置表示制御部が、1回目のステージの設定位置の位置情報と、2回目のステージの設定位置の位置情報を比較して、1回目のステージの設定位置の位置情報と2回目のステージの設定位置の位置情報に差がないと判定した時には、2回目のステージの設定位置情報を1回目のステージの設定位置情報とみなして、1回目のステージの設定位置の位置情報をそのまま保持する。
 一方、組織試料分析装置の位置表示制御部が、1回目のステージの設定位置の位置情報と2回目のステージの設定位置の位置情報に差があると判定した時には、1回目のステージの設定位置情報を画面表示させる。
特許第4405837号公報
 特許文献1に記載された組織試料分析装置によれば、分析感度や定量性及び再現性に優れ、また、ステージにセットする際の位置精度に左右されることなく、迅速に測定作業に着手することができる。このため、特許文献1に記載された組織試料分析装置は、組織試料のマクロ標本の組織構造を維持しながら、組織試料に局在する検査試薬を組織試料の微小範囲において定量化できる点で優れている。
 しかし、特許文献1に記載された組織試料分析装置は、大掛かりなシステムでかつ高価であり、作業者による分析操作が煩雑で操作性が悪く、組織試料の分析時間が長く、解像度も十分ではない等の問題がある。組織試料の分析時間が長いと、組織試料が劣化するおそれがあることから、分析時間が長いことは望ましくない。しかも、学問の急速な進歩に伴って、組織試料を分析する際には、より微細な分析結果と、より高速な分析作業を行えることが求められている。
 本発明は、上記事情に鑑みてなされたもので、その目的とするところは、低価格化と小型化を図ることができ、組織試料の分析作業の高速化が可能な組織試料分析装置、及びこの組織試料分析装置を含む組織試料分析システムを提供することにある。
 上記課題を達成するため、本発明の第1の態様に係る組織試料分析装置は、生体の組織試料に光を照射して得られる測光情報を定量分析する組織試料分析装置であって、前記組織試料に光を照射する光源部と、前記光源部と対向して配置され、前記光源部との間に前記組織試料を配置した状態で、前記組織試料を透過した光又は前記組織試料から放射された光を受光する平板状の受光部と、を備えることを特徴とする。
 本発明の第1の態様に係る組織試料分析装置によれば、組織試料が光源部と受光部の間に配置されるため、組織試料の全体の化学物質の分布を、測光情報として一度に短時間で取得することができる。また、このように短時間で測光情報を一度に取得できるため、組織試料の経時変化による劣化を防ぐことができ、実験の作業者の手技のバラツキがでない。また、組織試料を、光源部と受光部の間に挟んで密着させる場合は、組織試料の平坦度が悪くても、組織試料を平坦にして測光することができる。これらのことから、本発明の第1の態様に係る組織試料分析装置によれば、組織試料分析装置の低価格化と小型化を図ることができ、組織試料の分析作業の高速化が可能であり、しかも組織試料に偏在する化学物質を定量化して画像化することが可能になる。
 本発明の第2の態様に係る組織試料分析装置は、前記光源部が組織試料に照射する光は、平行光であることを特徴とする。
 本発明の第2の態様に係る組織試料分析装置によれば、定量性の高い二次元定量画像が得られやすい。
 本発明の第3の態様に係る組織試料分析装置は、前記光源部が平板状であることを特徴とする。
 本発明の第3の態様に係る組織試料分析装置によれば、光源部が平板状であることにより、照射される光が平行光又はこの平行光に類似する平行性を有する光になりやすいことから、定量性の高い二次元定量画像が得られやすい。また、組織試料を、光源部と受光部の間に挟んで密着させる場合は、光源部が平板状であることで、より密着させることが期待できる。
 本発明の第4の態様に係る組織試料分析装置は、前記組織試料は、検査試薬が添加された組織試料であることを特徴とする。
 本発明の第4の態様に係る組織試料分析装置によれば、組織試料中に含まれる化学物質が、検査試薬の添加により測光情報に変化するものである場合に、組織試料の全体における化学物質の分布を取得することができる。
 本発明の第5の態様に係る組織試料分析装置は、前記検査試薬は蛍光物質であり、前記光源部と前記組織試料の間には、前記組織試料に添加された蛍光物質を励起する励起光を透過させるバンドパスフィルタが配置され、前記組織試料と前記受光部の間には、前記組織試料に添加された前記蛍光物質が放射する蛍光を透過させる吸収フィルタが配置されていることを特徴とする。
 本発明の第5の態様に係る組織試料分析装置によれば、バンドパスフィルタは、組織試料に添加された試薬としての蛍光物質を蛍光させる波長の光だけを組織試料に与えることができる。組織試料の蛍光物質が発する蛍光は、吸収フィルタを透過し、その他の励起光の漏れ光等は、吸収フィルタにより遮断又は除去されるため、蛍光のみ又は実質的に蛍光のみを受光部に確実に受光させることができる。このため、組織試料に偏在する化学物質を定量化して画像化することが可能になる。
 本発明の第6の態様に係る組織試料分析装置は、前記検査試薬は染色剤であることを特徴とする。
 本発明の第6の態様に係る組織試料分析装置によれば、例えば脂質等の免疫組織化学染色に不向きな組織試料については、一般的な組織化学染色剤等で染色するため、受光部は、組織試料内のターゲット物質の濃度の分布を、透過率の分布として測光することができる。
 本発明の第7の態様に係る組織試料分析装置は、前記光源部と前記組織試料の間には、前記組織試料に添加された染色剤の吸収の大きい波長領域の光成分のみを透過させるバンドパスフィルタが配置されることを特徴とする。
 本発明の第7の態様に係る組織試料分析装置によれば、組織化学染色剤で染色された組織試料Mを測光した場合に、組織化学染色剤で染色された染色部分の吸光度をより精度よく測定することができる。
 本発明の第8の態様に係る組織試料分析装置は、前記組織試料と前記受光部の間には、前記組織試料に添加された前記染色剤の吸収の大きい波長領域の光成分のみを透過させる吸収フィルタが配置されていることを特徴とする。
 本発明の第8の態様に係る組織試料分析装置によれば、組織化学染色剤で染色された組織試料Mを測光した場合に、組織化学染色剤で染色された染色部分の吸光度をより精度よく測定することができる。
 本発明の第9の態様に係る組織試料分析装置は、前記受光部は、固体撮像素子を二次元的に配列させることで構成されることを特徴とする。
 本発明の第9の態様に係る組織試料分析装置によれば、受光部としては固体撮像素子を二次元的に配列させるだけで済むことから、大型の顕微鏡やフォトマルチプライヤを用いる必要がないため、組織試料分析装置の大幅な小型化と低価格化を図ることができる。
 本発明の第10の態様に係る組織試料分析装置は、前記光源部は、複数の発光ダイオードを二次元に配列させることで構成されることを特徴とする。
 本発明の第10の態様に係る組織試料分析装置によれば、光源部としては複数の発光ダイオードを二次元に配列させるだけで済むことから、大型の顕微鏡やフォトマルチプライヤを用いる必要がないため、組織試料分析装置の大幅な小型化と低価格化を図ることができる。
 本発明の第11の態様に係る組織試料分析装置は、前記光源部は、エレクトロルミネッセンスで平板状に構成され、前記受光部は、固体撮像素子を二次元的に配列させることで構成されることを特徴とする。
 本発明の第11の態様に係る組織試料分析装置によれば、光源部としてはエレクトロルミネッセンスで平板状に構成され、受光部としては固体撮像素子を二次元的に配列させるだけで済むことから、大型の顕微鏡やフォトマルチプライヤを用いる必要がないため、組織試料分析装置の大幅な小型化と低価格化が図れる。
 本発明の第12の態様に係る組織試料分析装置は、前記光源部又は受光部と、組織試料又はこの組織試料を含むプレパラートと、の接触による損傷を防止する保護機構を備えることを特徴とする。
 本発明の第12の態様に係る組織試料分析装置によれば、光源部30又は受光部31と、組織試料M又はこの組織試料Mを含むプレパラートと、の直接接触及び破損を防止することができる。
 本発明の第13の態様に係る組織試料分析システムは、前記組織試料分析装置と、前記組織試料の高精細画像を取得する高精細画像取得装置と、前記組織試料分析装置で作成された定量画像と、前記高精細画像取得装置で取得された高精細画像とを関連付ける統合制御部と、を備えることを特徴とする。
 本発明の第13の態様に係る組織試料分析システムによれば、前記組織試料分析装置で作成された定量画像と、前記高精細画像取得装置で取得された高精細画像とが関連付けられるため、組織試料中の化学物質について定量性に優れた定量画像と分解能の高い高精細画像を座標により紐付けし関連付けた二次元画像複合体による分析をすることが可能である。さらには複数の連続した組織切片の二次元画像複合体を三次元的に構成した三次元画像複合体を作ることもできる。たとえば連続した組織切片を切断する際の厚みを座標情報に加味して再構成し作成することが可能である。
 本発明の第14の態様に係る組織試料分析システムは、前記組織試料分析装置と、前記組織試料の高精細画像を読み込む高精細画像読込部と、前記組織試料分析装置で作成された定量画像と、前記高精細画像読込部で読み込まれた高精細画像とを関連付ける統合制御部と、を備えることを特徴とする。
 本発明の第14の態様に係る組織試料分析システムによれば、前記組織試料分析装置で作成された定量画像と、前記高精細画像読込部で読み込まれた高精細画像とが関連付けられるため、組織試料中の化学物質について定量性に優れた定量画像と分解能の高い高精細画像を座標により紐付けし関連付けた二次元画像複合体による分析をすることが可能である。さらには複数の連続した組織切片の二次元画像複合体を三次元的に構成した三次元画像複合体を作ることもできる。たとえば連続した組織切片を切断する際の厚みを座標情報に加味して再構成し作成することが可能である。
 本発明に係る組織試料分析装置によれば、低価格化と小型化を図ることができ、組織試料の分析作業の高速化が可能である。本発明に係る組織試料分析システムによれば、本発明に係る組織試料分析装置の効果に加え、組織試料中の化学物質について定量性に優れた定量画像と分解能の高い高精細画像を座標により紐付けし関連付けた二次元及び三次元画像複合体による分析をすることが可能である。
本発明の第1実施形態に係る組織試料分析装置を示す全体図である。 図1に示す組織試料分析装置の構成例を示すブロック図である。 光源部と受光部と組織試料M等を示す斜視図である。 光源部と受光部と組織試料M等を示す正面図である。 組織試料Mの上面と吸収フィルタの下面の間の間隔dを示す図である。 組織試料Mの一例を示す図である。 図6に示す組織試料Mに蛍光物質を添加して得られる二次元定量画像の一例を示す図である。 本発明の第2実施形態に係る組織試料分析装置を示す斜視図である。 本発明の第2実施形態に係る組織試料分析装置を示す正面図である。 本発明の第3実施形態に係る組織試料分析システムの構成例を示すブロック図である。 図6に示す組織試料Mに蛍光物質を添加して得られる、二次元定量画像及び高精細画像からなる二次元画像複合体の構成の一例を示す図である。 図6に示す組織試料Mに蛍光物質を添加して得られる、二次元定量画像及び高精細画像からなる二次元画像複合体の構成の一例を示す図である。 本発明の第4実施形態に係る組織試料分析システムの構成例を示すブロック図である。
 はじめに、図面を参照して、組織試料分析装置を説明する。
 [組織試料分析装置]
 (第1実施形態)
 図1は、本発明の第1実施形態に係る組織試料分析装置を示す全体図である。図2は、図1に示す組織試料分析装置の構成例を示すブロック図である。
 図1及び図2に示す組織試料分析装置1は、生体の組織試料Mの大きさに関係なく、大型の組織試料であっても、1枚の組織試料の測光情報を、例えば数分間位で分析することができる能力を有する。この組織試料分析装置1は、組織試料解析装置、又は定量的レンズレスのイメージング解析装置とも呼ぶことができる。組織試料分析装置1は、次のような目的のために必要である。
 あらゆる生命現象は、各組織に分布する細胞内の化学物質によって支配されており、生命の営みを解明するためには、機能分担を受け持つ領域の細胞内の化学物質を定量することが重要である。また、局所領域での化学反応の異常な変化が、重篤な疾病を発症する場合があり、それらの発症機序を解明するには、微小領域での細胞内の化学物質の変化を定量することが重要である。
 従来、細胞内の化学物質の変化を定量化(定量分析)するために、長年にわたり様々な方法で生体物質の分析が行われてきた。本発明者らは、組織試料の組織構造を維持しながら局在する化学物質を定量分析する装置として、1985年に組織試料に分布する化学物質を顕微鏡レベルで定量して画像化するマッピングアナライザ装置を開発し、商品化してきた。
 この装置は、組織試料をスライドガラス上で免疫組織化学染色して、ターゲット物質から発せられる蛍光や吸収の強度を顕微鏡下で微細に測光するものである。上記装置は、この手法により、様々な生命現象発現時の化学反応を定量的に画像化することを可能にしている。また、上記装置は、幾つかの疾病のモデル動物やヒトの病理組織試料を用いて発症機序を解明している。
 このようなマッピングアナライザ装置は、生命現象の基礎的なメカニズムの解明と、疾病の発症機序の解明、そして新たに治療薬開発のための先端計測分析機器として、研究現場で使用されている。マッピングアナライザ装置は、国内外で高い評価を受け、顕微イメージング装置の開発の牽引役を果たしている。
 これに対し、後発のレーザーコンフォーカル顕微鏡や、CCD(電荷結像素子)カメラを用いた顕微撮影装置は、鮮明で微細な組織像を提供するが、定量性に問題がある。イメージング質量分析計は、同一の質量を持つ生体物質の分布を容易に識別することができない。
 このように、マクロ標本の組織構造を維持しながら、組織試料に局在する化学物質を組織試料の微小範囲において定量することに優れる装置は、マッピングアナライザ装置の他に例がない。しかし、マッピングアナライザ装置は、大掛かりな装置で、分析操作が煩雑であり、分析時間が長い等の問題がある。このため、この分野の学問の急激な進歩に伴い、より微細な分析と、より高速な分析が求められている。
 本発明の第1実施形態に係る組織試料分析装置1は、このような問題を解消して、低価格化と小型化が可能で、組織試料Mのより微細な領域における測光情報の分析ができ、組織試料Mの分析作業の高速化を図ることができるようにしたものである。
 次に、組織試料分析装置1の構造例を、図1及び図2を参照して説明する。
 図1及び図2に示すように、組織試料分析装置1は、生体の組織試料に光を照射して得られる測光情報を定量分析する組織試料分析装置である。組織試料分析装置1は、前記組織試料に光を照射する光源部30と、光源部30と対向して配置され、光源部30との間に組織試料を配置した状態で、前記組織試料を透過した光又は前記組織試料から放射された光を受光する平板状の受光部31と、を備える。
 組織試料分析装置1は、組織試料Mの測光情報ASの二次元分布情報(以下、「分布情報OD」ともいう)を求めて、組織試料Mの定量化と二次元画像化とを行う装置である。組織試料分析装置1は、制御装置10と、組織試料分析部20を有する。
 組織試料分析部20は、組織試料Mから測光情報ASを取得する機能を有する。制御装置10は、組織試料分析部20が取得した測光情報ASに基づいて種々の情報を作成したり、組織試料分析部20の制御を行ったり、種々の演算を行ったりする機能を有する。制御装置10としては、例えば、汎用の小型のコンピュータ(PC)を用いることができる。このように汎用の小型のコンピュータを用いることにより、組織試料分析装置1の低価格化と小型化を図ることができる。
 ここで、上記の測光情報AS、測光情報ASの二次元分布情報(分布情報OD)、組織試料Mの定量化及び二次元画像化について説明する。
  <測光情報AS、測光値RS>
 組織試料Mの測光情報ASとは、測光値RSに、受光部31における座標情報が付加された、数値列からなる情報である。ここで、測光値RSとは、光源部30から照射された照明光が組織試料Mを透過した光又は組織試料Mから放射された光を、受光部31を構成する多数の光電変換素子のそれぞれが電気信号に変換して得られた情報である。光電変換素子としては、後述のように、例えば、CMOS(相補性金属酸化膜半導体)イメージセンサ(固体撮像素子)の受光素子が用いられる。測光値RSは、例えば、受光部31を構成するCMOSイメージセンサ素子からなる1画素が検知した光の階調値として表される。測光値RSは、例えば、組織試料M中に偏在する化学物質の定量分析値に相当する情報となる。
 組織試料Mの測光値RSが上記のような1画素が検知した光の階調値である場合、組織試料Mの測光情報ASは、例えば、受光部31の1画素が検知した光の階調値に、この1画素の受光部31における座標情報が付加された情報となる。
 なお、測光値RSは、組織試料M中に存在する蛍光物質等の検査試薬や化学物質の状態により、組織試料Mの透過光のスペクトルが変化したり、特定波長の光が組織試料Mの検査試薬や化学物質に吸収されたり、組織試料Mの透過光の特定の波長の強度が変化したりすることがある。このような性質のため、測光値RSによれば、組織試料M中の化学物質の性質や化学物質の量を測定することができる。また、測光値RSによれば、組織試料M中に蛍光物質等の検査試薬が存在してない状態でも、組織試料Mに元から内在していた色素等の化学物質を測定することが可能である。
  <測光情報ASの二次元分布情報(分布情報OD)>
 組織試料Mの測光情報ASの二次元分布情報(分布情報OD)とは、多数個の測光情報ASに含まれる多数個の測光値RSを、受光部31において各測光値RSが存在する座標情報に対応するように、二次元的に並べた情報である。分布情報ODは、具体的には、測光値RSを、測光情報ASに付加された受光部31における座標情報に基づいて並べた、数値行列からなる情報である。
 例えば、組織試料Mの測光値RSが画素1個が検知した光の階調値である場合、分布情報ODは、多数個の画素が検知した多数個の光の階調値が、受光部31における各画素の座標情報に基づいて二次元的に配列された、光の階調値の数値行列からなる情報となる。なお、分布情報ODは、表示部11に二次元画像を表示させるための情報である二次元画像化データGDを作成する元になる情報である。二次元画像は、分布情報ODを演算処理することにより構成することができる。
 ここで、受光部31が、上下左右方向に平行な辺を有する四角形の画素が二次元的に多数個配列された長方形状であり、組織試料Mが受光部31の上下左右方向に向かう角部を有するひし形状である例を用いて、組織試料Mの分布情報ODを考える。通常、受光部31の画素の大きさは、組織試料Mの角部や斜辺の形状をそのまま再現できるほど小さくない。
 このため、一般的に、組織試料Mの分布情報ODを構成する多数個の測光値RSは、顕微鏡写真等で撮影される高精細画像に比較して、組織試料Mの形状に対する追従性が低くなる。
  <組織試料Mの定量化>
 組織試料Mの定量化とは、受光部31を構成する各光電変換素子に対応する部位ごとに、組織試料M中に偏在する化学物質量の定量分析値を関連付けすることを意味する。本実施形態では、組織試料Mの定量化は、組織試料Mの分布情報ODを作成することにより達成される。上述のように、組織試料Mの分布情報ODは、光の階調値等の測光値RSが、受光部31における各光電変換素子の座標情報に基づいて二次元的に配列された、光の階調値の数値行列からなる情報となっている。測光値RSが化学物質量の定量分析値に相当するように設定されている場合、組織試料Mの分布情報ODの作成により組織試料Mの定量化が達成される。
  <組織試料Mの二次元画像化>
 組織試料Mの二次元画像化とは、分布情報ODから、二次元画像を構成する画像データである二次元画像化データGDを作成することを意味する。
  <制御装置>
 制御装置10について説明する。
 図1及び図2に示すように、制御装置10は、表示部11と、制御本体部12とを有する。制御本体部12は、制御部100と、画像構成部13と、データ演算部14と、記憶部15と、キーボード16を有する。表示部11は、制御本体部12の制御部100に電気的に接続され、制御部100からの制御信号に基づき、組織試料Mの二次元画像や、組織試料分析装置1外から取得した顕微鏡写真等の高精細画像を表示可能になっている。組織試料Mの二次元画像としては、例えば、組織試料M中に含まれる化学物質を定量化して表示した二次元画像が用いられる。制御部100からの制御信号としては、例えば、後述の二次元画像化データGD等が挙げられる。二次元画像化データGDは、組織試料分析部20が組織試料Mから取得した測光情報ASを基にして、制御装置10で種々演算処理され、最終的に画像構成部13で作成された画像データである。表示部11としては、例えばカラー液晶表示装置を用いることができる。
 表示部11は、制御部100からの制御信号により、例えば、図1に示すように脳機能に対する音楽の効果の分析例EXをカラー表示することができる。図1に示す分析例EXは、音楽をラットに聴かせた場合(右図)では、音楽をラットに聴かせなかった場合(左図)よりも、快感を得る神経伝達物質(ドーパミン)の濃度が有意に増加している。分析例EXは、感情の変化を分子的に二次元画像化している例である。
 図2に示すように、制御本体部12の制御部100は、画像構成部13と、データ演算部14と、記憶部15と、情報入力部としてのキーボード16とに電気的に接続される。これにより、制御部100は、画像構成部13、データ演算部14、記憶部15、及びキーボード16との間で情報の授受が可能になっている。
 データ演算部14は、組織試料分析部20から得られる組織試料Mを分析して得た測光情報ASに基づき演算して、測光情報ASの二次元分布情報(分布情報OD)を作成する機能を有する。分布情報ODは、上記のように、表示部11に二次元画像を表示させる画像データである二次元画像化データGDを作成するための元となる情報である。分布情報ODが下記の画像構成部13で演算処理されると、表示部11に二次元画像を表示させるための画像データである二次元画像化データGDが構成される。
 画像構成部13は、分布情報ODから、二次元画像化データGDを構成する機能を有する。ここで、二次元画像化データGDとは、表示部11に二次元画像を表示させるための画像データである。記憶部15は、分布情報ODや、二次元画像化データGD等の情報を記憶する。組織試料分析装置1の使用者は、キーボード16を用いて、制御部100に対して必要なデータや情報を入力したり、制御部100に対する指令を入力したりすることができる。
  <組織試料分析部>
 次に、組織試料分析部20について説明する。
 図1及び図2に示すように、組織試料分析部20は、箱状の筐体21を有し、この筐体21の前面側には、組織試料Mの投入用の開口部22が設けられている。組織試料分析部20は、組織試料Mに蛍光物質等の検査試薬を添加し、光源部30から照射された光に基づいて検査試薬が発する蛍光等の光を受光部31が受光し光電変換することにより、組織試料M中に局在する化学物質を分析して組織試料Mの微小範囲において定量する機能を有する。
 なお、検査試薬として蛍光物質を用い、組織試料Mに蛍光物質を添加し、この蛍光物質が発する蛍光を受光することで、組織試料M中に局在する化学物質を分析して組織試料Mの微小範囲において定量する操作を、蛍光モードと呼ぶ。
 図2に示すように、筐体21の内部には、光源部30と、受光部31と、光源駆動部32と、受光信号増幅部33と、ステージ駆動部34とが収容されている。
 光源部30は、例えば、複数の発光ダイオードを二次元に配列させることで構成される。なお、後述するように、光源部30は、例えば、エレクトロルミネッセンスで平板状に構成されるようにしてもよい。光源部30が平板状であると、後述のように受光部31との間で組織試料Mを挟んで保持すること、及び組織試料Mの測定表面を平坦にすることができる。なお、測定表面が平坦な組織試料Mを用いる場合は、光源部30と受光部31とで挟み込んで組織試料Mの測定表面を平坦にする必要性がなくなる。このため、光源部30は、平板状でない構成とすることも可能である。受光部31は、例えば、固体撮像素子を二次元的に配列させることで構成される。なお、後述するように、受光部31は、例えば、固体撮像素子を二次元的に配列させることで構成されるようにしてもよい。
 図2に示すように、光源部30と受光部31とは、これらの間に組織試料Mを配置することができるように、また好ましくはこれらの間に組織試料Mを挟んで保持することができるように、対面して、平行に配置されている。光源部30と受光部31とは、ほぼ同じ大きさを有しており、共に長方形又は正方形になっている。なお、光源部30や受光部31の形状は、組織試料Mを挟んで保持できる形状である限り、長方形又は正方形に限られない。光源部30は図中下側に配置され、受光部31は図中上側に配置される。
 図2に示す光源部30は、X方向と、X方向と直交するY方向に沿って配置されている板状の発光体になっている。このような光源部30としては、例えば、複数のLED(発光ダイオード)が、X方向とY方向に沿って、二次元的に配列された、自発光パネル型の光源部30が用いられる。
 光源部30は、光源駆動部32と電気的に接続される。光源駆動部32は、制御部100と電気的に接続されており、制御部100から光源制御信号CSを取得すると、光源部30を駆動して、光源部30を全面的に一斉に発光させるようになっている。。
 受光部31は、平板状であり、光源部30と対向して配置され、光源部30との間に組織試料Mを配置した状態、好ましくは光源部30との間で組織試料Mを挟んだ状態で、組織試料Mを透過した光又は組織試料Mから放射された光を受光するものである。受光部31は、光電変換素子を有し、光源部30から照射された光に基づいて組織試料M中の検査試薬が発する蛍光等の光を受光し光電変換して測光情報ASを作成する機能を有する。受光部31は、例えば、光電変換素子としてのCMOS(相補性金属酸化膜半導体)イメージセンサ(固体撮像素子)の受光素子が複数個平面上に配置されるように構成される。受光部31の一例としては、複数個のCMOSイメージセンサ(固体撮像素子)の受光素子が、X方向とY方向に沿って、二次元的に配列されたものとすることができる。受光部31に用いられるCMOSイメージセンサ素子は、例えば数ミクロンピッチで縦横に碁盤目状に区切られた区画内に1個ずつ配置される。このCMOSイメージセンサ素子の1区画は、1画素に相当する。
 受光信号増幅部33は、受光部31と電気的に接続される。受光信号増幅部33は、受光部31から取得した測光情報AS中に含まれる測光値RSを増幅する機能を有する。また、受光信号増幅部33は、制御本体部12の制御部100と電気的に接続される。これにより、受光信号増幅部33は、増幅された測光値RSを有する測光情報ASを制御部100に送ることができるようになっている。
 光源部30及び受光部31について、図3及び図4を参照して説明する。図3は、光源部30と受光部31と組織試料M等を示す斜視図であり、図4は、光源部30と受光部31と組織試料M等を示す正面図である。図5は、組織試料Mの上面と吸収フィルタ41の下面の間の間隔dを示す図である。
 図3及び図4に示すように、光源部30と受光部31の間には、バンドパスフィルタ40と、吸収フィルタ41とが配置されている。バンドパスフィルタ40は、組織試料に添加された蛍光物質を励起する光源部30から照射された励起光等の一次光を透過させる一方で、この一次光以外の光を透過させない性質を有するフィルタである。また、吸収フィルタ41は、上記一次光を透過させない又は除去する一方で、一次光を受光し、前記組織試料に添加された蛍光物質が放射する蛍光を透過させて受光部31の下面(受光面)31A側に導く性質を有するフィルタである。
 図3及び図4は、バンドパスフィルタ40と吸収フィルタ41は、光源部30及び受光部31と類似する形状でかつ光源部30及び受光部31と同じかやや小さく形成される例を示す。具体的には、光源部30及び受光部31はそれぞれ長方形または正方形の板状の部材となっている。また、バンドパスフィルタ40及び吸収フィルタ41の大きさは、光源部30と受光部31の大きさに比べてやや小さく形成されている。
 なお、本発明では、光源部30、受光部31、バンドパスフィルタ40及び吸収フィルタ41の大きさの関係は特に限定されない。例えば、バンドパスフィルタ40及び吸収フィルタ41のそれぞれの大きさが、光源部30及び受光部31の大きさに比べて、大きく形成されていてもよい。例えば、バンドパスフィルタ40及び吸収フィルタ41の大きさが、光源部30及び受光部31の大きさ以上であり、かつ、光源部30及び受光部31の大きさが組織試料Mよりも大きくなるようにすることができる。
 図4及び図5に示す生体の組織試料Mは、組織試料M中に局在する化学物質を分析して組織試料Mの微小範囲において定量することができるようにされたサンプルである。組織試料Mは、蛍光物質等の検査試薬によりラベルされた組織試料、又は、検査試薬等でラベルされていない組織試料そのもの、からなるサンプルである。すなわち、組織試料Mは、検査試薬が添加された組織試料であってもよいし、検査試薬が添加されない組織試料であってもよい。組織試料Mに添加される検査試薬としては、蛍光物質や染色剤を用いることができる。蛍光物質としては、市販されている蛍光標識試薬、例えばローダミン誘導体等の色素を用いることができる。
 組織試料分析装置1は、組織試料Mに蛍光物質を添加する場合等に用いられる装置であり、組織試料Mへの蛍光物質の添加に適する構成になっている。すなわち、組織試料分析装置1において、組織試料Mは、図2から図4に示すように、バンドパスフィルタ40と吸収フィルタ41の間に配置される。組織試料Mの大きさは、バンドパスフィルタ40と吸収フィルタ41の大きさに比べて、やや小さくなっている。
 図3及び図4に示す例では、バンドパスフィルタ40と吸収フィルタ41の大きさは、好ましくは光源部30と受光部31の大きさに比べてやや小さく設定される。また、組織試料Mの大きさは、バンドパスフィルタ40と吸収フィルタ41の大きさに比べて、やや小さく設定される。バンドパスフィルタ40、吸収フィルタ41、光源部30、受光部31及び組織試料Mの大きさがこのような関係を満たすと、組織試料Mの全領域に局在する化学物質の分析を、組織試料Mの微小範囲において確実に定量することができる。
 ここで、図4に示す各要素の間隔の値の例を説明する。
 図4に示すように、光源部30の光出射面30Aとバンドパスフィルタ40の下面との間の間隔を符号fで示し、バンドパスフィルタ40の上面と組織試料Mの下面との間隔を符号eで示す。また、組織試料Mの上面と吸収フィルタ41の下面との間隔を符号dで示し、吸収フィルタ41の上面と受光部31の受光面31Aとの間隔を符号cで示す。間隔fと間隔eと間隔cは、0μmである。すなわち、光源部30の光出射面30Aとバンドパスフィルタ40の下面は密着され、バンドパスフィルタ40の上面と組織試料Mの下面も密着される。吸収フィルタ41の上面と受光部31の受光面31Aも密着される。
 光源部30の光出射面30Aとバンドパスフィルタ40の下面とが密着されると、光源部30の光出射面30Aから出射された光が広がらずにバンドパスフィルタ40に入射する。この光源部30の光出射面30Aとバンドパスフィルタ40の下面とが密着される構成は、特に後述する透過モードでは、クロストークなど隣接する画素への信号の回り込みが減少することから、定量性の高い二次元定量画像を得られやすいため、好ましい。なお、光源部30が平行光を照射するものである場合は、光源部30の光出射面30Aとバンドパスフィルタ40の下面とが離間していても光出射面30Aから出射された光が広がらずにバンドパスフィルタ40に入射する。このため、光源部30が平行光を照射するものである場合、上記符号fで示される間隔は、0μm以上の値をとることができる。
 これに対して、図4及び図5に示す、組織試料Mの上面と吸収フィルタ41の下面との間隔dは、特に限定されないが、通常、0~600μmの範囲内にあり、好ましくは0~50μmの範囲内にあり、より好ましくは0~20μmの範囲内にある。すなわち、組織試料Mの上面と吸収フィルタ41の下面とは、密着されるか、又は所定の間隔dで離間するように配置される。組織試料Mの上面と吸収フィルタ41の下面が密着する場合は、光源部30と受光部31との間で組織試料Mを挟んだ状態になり、得られる二次元画像の分解能が高くなる。なお、二次元画像の高い分解能が要求されない場合は、組織試料Mの上面と吸収フィルタ41の下面との間隔dを、上記のように例えば600μm以下の範囲内で離間させることができる。一般的に、間隔dが0μmに近い数値であるほど得られる二次元画像の分解能が高くなる。
 組織試料Mをバンドパスフィルタ40の上面と吸収フィルタ41の下面に配置するために、受光部31はZ方向に上下動することができるようになっている。受光部31の上下動は、制御部100からの指令で受光部の位置決め部50が動作することにより行われる。光源部30は、図示しない固定ステージに固定され、受光部31は、図示しない移動ステージに固定される。
 このように制御部100からの指令で受光部の位置決め部50が動作して受光部31が上下動することにより、図5に示すように、組織試料Mをバンドパスフィルタ40の上面に載せた状態で、組織試料Mの上面と吸収フィルタ41の下面との間隔dを調節することができる。なお、間隔dの数値の確認は、レーザ測距等を行いる。
 第1の実施形態では、受光部の位置決め部50を用いて受光部31側をZ方向に上下動することができる構成にしている。しかし、これに代えて、又はこれに加えて、光源部30側を、制御部100からの指令で図示しない光源部の位置決め部が動作することにより、Z方向に上下動することができるようにしてもよい。
 組織試料分析装置1では、はじめに、使用者は、図1に示すように、組織試料Mを台座(スキャニングステージ)55に載せた後、この台座55を筐体21の開口部22から筐体21内に入れる。次に、ステージ駆動部34は、制御部100の指令により、台座55を光源部30と受光部31との間に移動させ、組織試料Mを台座55上からバンドパスフィルタ40の上面に移動させることができるようになっている。
 なお、組織試料分析装置1で組織試料Mを測定する際は、通常、組織試料Mをガラス等で構成したプレパラート等に保持する。たとえば蛍光組織免疫染色において、プレパラートに組織試料を固定する際の封入剤として完全固化しないものを用いると、カバーグラスが仮止めの状態となり、プレパラートを上下逆に置くことが好ましくない。このように、組織試料Mをガラス等で構成したプレパラート等に保持する場合、組織試料Mが完全に固定されない状態で測定することになるため、プレパラートのスライドグラス側である下側に光源部30が配置され、上側に受光部31が配置される。このため、図2~5には、光源部30が下側、受光部31が上側に配置された状態にある組織試料分析装置1を示した。
 しかし、第1の実施形態に係る組織試料分析装置1では、光源部30が下側、受光部31が上側に配置された状態が、上下逆になるように、光源部30や受光部31を可動な構成にしてもよい。例えば、組織試料Mを用いたプレパラートが上下逆転が可能な構成であれば、光源部30及び受光部31を組織試料Mを保持したまま回転させることにより、光源部30が下側、受光部31が上側に配置された状態を、光源部30が上側、受光部31が下側に配置された状態にするようにしてもよい。上下逆転が可能な構成のプレパラートとしては、例えば、封入剤が完全固化することによりカバーグラスや組織試料Mの脱落等のおそれがないプレパラートが挙げられる。
 なお、組織試料Mを用いたプレパラートが上下逆転が不可能な構成である場合は、光源部30や受光部31が上下逆転しない状態で組織試料分析装置を用いる。このような光源部30や受光部31が上下逆転しない状態の組織試料分析装置としては、例えば、図2~5に示す組織試料分析装置1や、光源部30や受光部31の上下逆転が可能な構成の組織試料分析装置であるが光源部30や受光部31を固定した状態としたもの、が用いられる。上下逆転が不可能な構成のプレパラートとしては、例えば、封入剤が固化しないことにより封入剤で仮止めとなっている、カバーグラスの脱落やこれに伴う組織試料Mの脱落等のおそれがあるプレパラートが挙げられる。例えば、組織試料Mに蛍光組織免疫染色等を行う場合のプレパラートは、上下逆転が不可能な構成のプレパラートとなる。
 また、本発明では、封入剤が完全固化する等のようにカバーグラスさらには組織試料の移動や脱落等の可能性がない測定対象である場合は、光源部30が上側、受光部31が下側に配置されていてもよいため、図示しない他の実施形態として、光源部30が上側、受光部31が下側に配置された状態にある組織試料分析装置を用いることができる。この光源部30が上側、受光部31が下側に配置された状態にある組織試料分析装置としては、例えば、光源部30が上側、受光部31が下側に配置された状態が、固定された組織試料分析装置を用いることができる。また、この光源部30が上側、受光部31が下側に配置された状態にある組織試料分析装置としては、例えば、光源部30及び受光部31を組織試料Mを保持したまま回転させることにより、光源部30が上側、受光部31が下側に配置された状態を、光源部30が下側、受光部31が上側に配置された状態にすることができる組織試料分析装置を用いることができる。
  <作用>
 次に、上述の組織試料分析装置1を用い、検査試薬として蛍光物質を用い、組織試料Mの測光情報ASの二次元分布を求めて、組織試料Mの定量化と二次元画像化を行う場合の作用の一例を説明する。
   [蛍光物質を添加しないブランク状態の組織試料Mを用いた測定]
 はじめに、蛍光物質を添加しないブランク状態の組織試料Mについて測光情報AS(AS)を取得しておく。測光情報ASのうち、蛍光物質を添加しないブランク状態の組織試料Mの測光情報ASを、特にASともいう。測光情報ASは、蛍光物質を添加しないブランク状態の組織試料Mの測光値RS(RS)に、受光部31における座標情報が付加された、数値列からなる情報である。
 測光情報ASは、組織試料Mに蛍光物質を添加しないこと以外は、後述の「蛍光物質を添加した組織試料Mを用いた測定」の手順と同様にして取得する。例えば、蛍光物質を添加しないブランク状態の組織試料Mの測光情報ASは、図2に示すように、光源部30の光出射面30Aの表面にバンドパスフィルタ40が配置され、受光部31受光面31Aの表面に吸収フィルタ41が配置された状態で、バンドパスフィルタ40と吸収フィルタ41との間に組織試料Mを挟み込んで予め取得しておく。
 また、蛍光物質を添加しないブランク状態の組織試料Mの測光情報ASは、データ演算部14で加工することにより、測光情報ASの二次元分布情報(分布情報OD)を作成しておく。この分布情報ODは、具体的には、測光値RSを、測光情報ASに付加された受光部31における座標情報に基づいて並べた、数値行列からなる情報である。得られた分布情報ODは、図2に示すように、予め記憶部15と画像構成部13とに記憶させておく。
   [蛍光物質を添加した組織試料Mを用いた測定]
 次に、組織試料分析装置1の使用者は、蛍光物質を添加した組織試料Mを用意する。組織試料Mは、蛍光物質により例えば免疫組織化学染色されたものになっている。
 図1に示すように、使用者は、蛍光物質を添加した組織試料Mを台座55に載せた後、図2に示すように、この台座55を筐体21の開口部22から筐体21内に入れる。ステージ駆動部34は、制御部100の指令により、この台座55を光源部30側に移動して、組織試料Mを台座55上からバンドパスフィルタ40の上面に移す。
 そして、蛍光物質を添加した組織試料Mは、光源部30のLEDが配置された光出射面30Aと受光部31の受光面31Aとの間で、バンドパスフィルタ40と吸収フィルタ41を介して、例えば、密着させる。なお、必要により、組織試料Mと吸収フィルタ41との間を離間させてもよい。光源部30の各LEDが発生する光の波長は、紫外線から可視光の領域である。
 光源部30の各LEDの光の内の蛍光励起用の光は、バンドパスフィルタ40を透過し、蛍光物質を添加した組織試料Mに達する。組織試料M中の蛍光物質は、光源部30の各LEDの蛍光励起用の光により励起されて蛍光を発する。組織試料Mの全領域における蛍光物質から発せられる蛍光は、吸収フィルタ41を透過して、受光部31の多数の光電変換素子としてのCMOSイメージセンサ素子が配置された受光面31Aに達する。その他の励起光の漏れ光等は、吸収フィルタ41により遮断される。
 受光部31は、この蛍光物質が発する蛍光の強度を、受光面31Aを構成する多数のCMOSイメージセンサ素子毎にかつ受光面31Aに存在するCMOSイメージセンサ素子全体で測光し、これにより測光値RSが得られる。測光値RSは、CMOSイメージセンサ素子の数だけ得られる。なお、受光部31の受光面31Aは、組織試料Mを含みかつ組織試料Mよりも大きく形成されているため、測光値RSは、組織試料Mの全領域を含む受光部31全体について得られる。また、測光値RSは、受光部31の受光面31AのCMOSイメージセンサ素子の座標情報が付加されて、測光情報ASとなる。
 測光情報ASは、これに含まれる測光値RSが受光信号増幅部33で増幅された後、制御部100に送られる。
 受光部31を構成するCMOSイメージセンサ素子は、例えば数ミクロンピッチで縦横に碁盤目状に区切られた状態で配置される。このCMOSイメージセンサ素子の1マスは、1画素に対応する。このため、組織試料Mの全領域に分布する蛍光物質の蛍光の強度(測光値RS)は、数ミクロンの解像度となる。また、測光値RSに、受光部31の受光面31AのCMOSイメージセンサ素子の座標情報が付加されて得られる測光情報ASは、受光部31の受光面31AのCMOSイメージセンサ素子の全体について形成されるため、受光面31Aより面積の小さい組織試料Mの全領域を網羅するように形成される。このため、組織試料分析装置1によれば、組織試料Mの全領域に分布する蛍光物質の蛍光の強度(測光値RS)は、数ミクロンの解像度で組織試料Mの全領域にわたり、短時間で、例えば数分間で、同時に測定することができる。
 また、データ演算部14は、組織試料分析部20で形成された測光情報ASから、二次元画像構成用の測光情報ASの分布情報ODを演算して作成する。データ演算部14は、例えば表示部11において表示して見やすいようにするために、二次元画像構成用の測光情報ASの分布情報ODのカラー表示につき、その色の強度の大小の調整や、表示色の種類の選定等をすることができる。
 制御部100は、調整された画像構成用の測光情報ASの分布情報ODを画像構成部13に送る。画像構成部13は、例えば、蛍光物質を添加しないブランク状態の組織試料Mの分布情報ODに対して、蛍光物質を添加した組織試料Mの分布情報ODを重ね合せることにより、組織試料Mのカラー化した二次元画像化データGDを構成する。
 ここで、二次元画像化データGDとは、分布情報ODを格納するために一定のルールに基づき作成した汎用の画像データを意味する。二次元画像化データGDとしては、例えば、データの可視化のために、分布情報ODを一定のルールに基づき色分けした二次元画像が用いられる。この色分けは、例えば、測光情報ASに含まれる測光値RSの強度値をヒストグラム等でクラス分けし、測光情報ASが有する座標情報の座標に対応する画素に、測光値RSの強度値が属するクラスに応じて、色付けすることにより実現される。なお、この色分けは、色相が異なるカラーで色付けしてもよい。また、分布情報OD中の測光値RSの階調値をそのまま数値として記録するために、測光値RSを測光情報ASの座標に基づき構成した16ビット数値行列を、16ビット白黒画像フォーマットの画像フォーマットを用いて表現してもよい。この時の画像フォーマットは既成の汎用フォーマットでも、固有の独自のフォーマットであってもよい。この二次元画像化データGDは、画像構成部13から、制御部100に送られる。
 制御部100は、組織試料Mの二次元画像化データGDに基づいて、表示部11において、二次元定量画像を表示する。二次元定量画像の具体例を図1及び図7に示す。図1に示すカラー化した分析例EXの画像は、例えば、組織試料Mの全領域に分布する蛍光物質の蛍光の強度(測光値RS)の分布(濃淡の分布)を見やすくした状態で、表示させることができる。
 また、図7は、図6に示す組織試料Mに蛍光物質を添加して得られる二次元定量画像の一例である。図7に示す二次元定量画像300は、矩形の二次元定量画像領域350中に、CMOSイメージセンサ素子の四角の画素の集合体からなるモザイク状の二次元定量画像本体310が表示されたものになっている。二次元定量画像本体310は、図6に示す菱形状の組織試料Mに類似した形状を有し、かつ組織試料Mの各部位における測光値RSを強度値に応じて表示するようになっている。具体的には、二次元定量画像本体310では、組織試料Mの外形に類似した菱形状の周辺部分が測光値RSの低い部分311であり、中心部分が測光値RSの高い部分312になっている。測光値RSの高低は、組織試料M中の蛍光物質量の多少に対応するため、図7に示す二次元定量画像本体310によれば、組織試料M中の蛍光物質量は、周辺部分より中心部分のほうが多いことが分かる。
 このように、組織試料分析装置1によれば、光源部30と受光部31を用いることにより、組織試料Mに分布する蛍光物質の濃淡の分布の様子を、数ミクロンの解像度で、組織試料Mの全体にわたり、短時間で測定することができる。
  <効果>
 本発明の第1実施形態に係る組織試料分析装置1は、従来のような大掛かりなシステムではなく、小型化が図れ、しかも低価格である。
 組織試料分析装置1によれば、組織試料Mを、光源部30と受光部31との間に配置するだけで測定することができるため、作業者による分析操作が容易であり、操作性がよく、分析時間が短く、解像度も十分である。また、このような構成の組織試料分析装置1によれば、組織試料Mを、光源部30と受光部31の間に配置し、一度に組織試料Mの全領域に分布する蛍光物質の濃淡等の分布の様子を測光情報ASとして取得することができ、この測光情報ASに基づき二次元画像化することができる。このため、このような構成の組織試料分析装置1によれば、組織試料Mの定量化と二次元画像化を行う分析時間が短い。
 組織試料分析装置1によれば、このように分析時間が短いため、生体の組織試料Mが劣化する前に、組織試料Mに局在する化学物質を分析して組織試料Mの微小範囲において定量する操作を完了することができる。このため、組織試料分析装置1によれば、組織試料Mのより微小範囲において定量分析結果を、より早く得ることができる。
 組織試料分析装置1によれば、光源部30と受光部31のサイズを適宜選択することにより、小動物からヒトの大型の組織試料Mまで、組織試料Mの大きさにかかわらずに、組織試料Mに分布する蛍光物質の濃淡等の分布の様子を取得して、二次元画像化することができ、短時間で分析することができる。
 また、組織試料分析装置1によれば、光源部30の各LEDの発光波長と、免疫組織化学染色に使用する蛍光物質の選択と組み合わせによって、同一の組織試料(組織試料)Mに分布する複数種類の生体物質を、同時に定量的に分析することができる。
 組織試料分析装置1では、組織試料Mを光源部30と受光部31との間に配置するだけで測定することができるため、組織試料Mの全体の蛍光物質の分布を測光情報ASとして一度に短時間で取得することができる。このように、測光情報ASとして一度に短時間で取得することができるため、組織試料分析装置1によれば、組織試料Mの経時変化による劣化を防ぐことができ、実験の作業者の手技のバラツキが生じにくい。
 また、組織試料分析装置1によれば、組織試料Mを光源部30と受光部31との間に挟み込む場合は、組織試料Mの平坦度が悪くても、組織試料Mを平坦にして測光することができる。このため、このような構成の組織試料分析装置1によれば、組織試料Mの定量分析(定量値)の再現性を高めることができる。
 なお、組織試料Mの厚みが大きい場合には、組織試料M内の化学物質が局在していることが多い。このため、組織試料Mの厚みが大きい場合において、従来の顕微鏡式の装置を用いるときは、顕微鏡の焦点が合わずに、組織試料Mの正確な数値を測定できないことが多い。
 これに対して、組織試料分析装置1を用い、組織試料Mを光源部30と受光部31との間に挟み込む場合は、光源部30と受光部31の距離を一定にすることができる。このため、このような構成の組織試料分析装置1によれば、組織試料Mの厚みが大きい場合であっても、組織試料Mは、組織試料Mの定量分析(定量値)の正確さを高めることができる。
 組織試料分析装置1は光源部30が固定ステージに固定されている。このため、組織試料分析装置1によれば、測定作業が簡単であり、作業者による測定値のバラツキを抑制することができる。
 組織試料分析装置1において、光源部30と受光部31のサイズが組織試料Mのサイズよりも大きい場合は、光源部30と受光部31は組織試料Mの全領域をカバーすることができる。
 このため、組織試料分析装置1の光源部30と受光部31のサイズが組織試料Mのサイズよりも大きい場合は、組織試料Mの面積の大きさに関係なく、組織試料Mの全エリアの二次元画像を構成するために必要な測光情報ASを一度に取得することができる。このため、このような構成の組織試料分析装置1によれば、スキャン操作をする必要がなく、短時間での測光が可能であり、定量分析の再現性が向上する。しかも、このような構成の組織試料分析装置1によれば、組織試料Mが劣化する前に組織試料Mの全領域の二次元画像を構成するために必要な測光情報ASを一度に取得でき、大きなサイズの組織試料Mの撮影が容易にできる。このため、三次元画像(3D画像)の構築も可能となる。
 また、組織試料Mを光源部30と受光部31との間に挟み込む場合は、組織試料Mが波状になっていて、組織試料Mの平坦度が悪い場合でも、光源部30と受光部31の間に挟んで固定することができる。このため、このような構成の組織試料分析装置1によれば、組織試料Mは光源部30と受光部31を用いて固定される。したがって、このような構成の組織試料分析装置1によれば、レンズ系を用いずに、組織試料Mの全領域に渡って、組織試料Mの悪い平坦度に影響を受けずに、蛍光の光量を積算して蛍光の濃淡の分布を得て、組織試料Mの定量分析することができる。
 また、組織試料Mを光源部30と受光部31との間に挟み込む場合は、組織試料Mの厚み(化学物質が局在する)に影響を受けない。このため、このような構成の組織試料分析装置1によれば、誤差を含まないで、組織試料Mの定量分析することができる。また、このような構成の組織試料分析装置1によれば、光源部30と受光部31を用いて、レンズを用いずに、光量を積算して、誤差を含まないで、組織試料Mの定量分析することができる。
 さらに、組織試料分析装置1によれば、光源部30と受光部31を用いて、収差の原因となるレンズを用いないため、組織試料Mを正確に定量分析することができる。
 (第2実施形態)
 図8及び図9を参照して、本発明の第2実施形態を説明する。
 図8及び図9に示す本発明の第2実施形態では、図1及び図2に示す第1実施形態と同じ構成に同じ符号を記して、その説明を省略する。図8及び図9に示す本発明の第2実施形態は、本発明の第1実施形態に比べて、次の点が異なるが、その他については同様である。
 図4及び図5に示す本発明の第1実施形態を構成する測光系は、蛍光物質を添加した組織試料Mを用いて、いわゆる蛍光モードで組織試料Mを測光するための測光系である。
 これに対し、図8及び図9に示す本発明の第2実施形態を構成する測光系は、蛍光物質を添加しない組織試料Mを用い、この組織試料Mに光を透過させて測光する、いわゆる透過モードで組織試料Mを測光するための測光系である。脂質等の免疫組織化学染色に不向きな組織試料Mを測光する場合、検査試薬として、一般的な組織化学染色剤等が用いられる。
 図8及び図9に示す第2実施形態を構成する透過モードの測光系は、図4及び図5に示す第1実施形態を構成する蛍光モードの測光系から、バンドパスフィルタ40及び吸収フィルタ41を除いたものになっている。図8及び図9に示す透過モードの測光系は、バンドパスフィルタ40及び吸収フィルタ41を有さないことにより、一般的な組織化学染色等、明視野観察像を用いて病変等を判断する用途に用いる場合部品点数を削減できるなどコストダウンを行うことができるため好ましい。
 なお、透過モードの測光系は、図8及び図9に示す構成と異なり、バンドパスフィルタ40及び吸収フィルタ41の少なくとも一方を有する構成とすることもできる。例えば、図4及び図5に示す第1実施形態を構成する蛍光モードの測光系と同様に、光源部30と組織試料Mとの間にバンドパスフィルタ40を配置することができる。バンドパスフィルタ40を用いると、光源部30から照射された照明光のうち、組織化学染色剤で染色された組織試料Mの染色部分の吸収波長に対応した波長領域の光成分のみを透過させて組織試料Mに照射することが可能になる。このため、透過モードの測光系において上記のようにバンドパスフィルタ40を配置し、組織化学染色剤で染色された組織試料Mを測光すると、組織化学染色剤で染色された染色部分の吸光度を精度よく測定することができる。また、バンドパスフィルタ40が、光源部30から照射された照明光のうち、組織試料Mに添加された組織化学染色剤等の染色剤の吸収の大きい波長領域の光成分のみを透過させるものであると、組織化学染色剤で染色された組織試料Mを測光した場合に、組織化学染色剤で染色された染色部分の吸光度をより精度よく測定することができる。
 また、例えば、図4及び図5に示す第1実施形態を構成する蛍光モードの測光系と同様に、受光部31と組織試料Mとの間に吸収フィルタ41を配置することができる。吸収フィルタ41を用いると、組織化学染色剤で染色された組織試料Mが放射する光のうち、組織化学染色剤で染色された組織試料Mの染色部分の吸収波長に対応した波長領域の光成分のみを透過させて受光部31に照射することが可能になる。このため、透過モードの測光系において上記のように吸収フィルタ41を配置し、組織化学染色剤で染色された組織試料Mを測光すると、組織化学染色剤で染色された染色部分の吸光度を精度よく測定することができる。また、吸収フィルタ41が、組織化学染色剤で染色された組織試料Mが放射する光のうち、組織試料Mに添加された組織化学染色剤等の染色剤の吸収の大きい波長領域の光成分のみを透過させるものであると、組織化学染色剤で染色された組織試料Mを測光した場合に、組織化学染色剤で染色された染色部分の吸光度をより精度よく測定することができる。
 また、例えば、図4及び図5に示す第1実施形態を構成する蛍光モードの測光系と同様に、受光部31と組織試料Mとの間に吸収フィルタ41を配置することができる。吸収フィルタ41を用いると、組織化学染色剤で染色された組織試料Mの染色部分の吸収波長に対応した波長領域の光成分のみを透過させて受光部31に照射することが可能になる。このため、透過モードの測光系において上記のように吸収フィルタ41を配置し、組織化学染色剤で染色された組織試料Mを測光すると、組織化学染色剤で染色された染色部分の吸光度を精度よく測定することができる。
 図9に示す透過モードの測光系では、光源部30の光出射面30Aと組織試料Mの下面との間の間隔を符号bで示し、組織試料Mの上面と受光部31の受光面31Aとの間隔を符号aで示す。間隔bは0μmであり、光源部30の上面30Aには組織試料Mが密着される。これに対して、間隔aは、例えば0~50μmの範囲であり、より好ましくは0~20μmである。すなわち、組織試料Mの上面と受光部31の受光面31Aは密着されるか、又は所定の間隔aで離間するように配置される。
 このように第2実施形態を構成する透過モードの測光系では、図9に示すように、組織試料Mが、光源部30の上面30Aと受光部31の受光面31Aの間に密着して挟まれるように配置される。光源部30の各LEDが発生する光の波長は、紫外線から可視光の領域内にある。
  <作用>
 第2実施形態の作用は、第1実施形態に係る組織試料分析装置1の作用に比較して、測光系が透過モード用の測光系である点で相違し、その他の作用は同様である。このため、第2実施形態の作用のうち、第1実施形態に係る組織試料分析装置1と同じ作用については説明を省略する。
 第2実施形態では、光源部30と組織試料Mとの間に第1実施形態のようなバンドパスフィルタ40がないため、光源部30の各LEDの光は、そのまま組織試料Mに達する。組織試料Mに達した光は、染色済みの組織試料M内のターゲット物質の濃度が、透過率値(測光値RS)として受光部31により測光される。また、受光部31では、第1実施形態と同様に、測光値RSに、受光部31における座標情報が付加されて、測光情報ASが作成される。受光部31は、数ミクロンの解像度で、組織試料Mの全体を短時間で測定することができる。
 また、第2実施形態では、光源部30の各LEDの波長と、染色剤の種類の組み合わせによって、同一の組織試料M内の複数の生体物質を同時に分析することも可能である。例えば、光源部30のLEDの波長を複数種類用意し、これら複数種類の波長のいずれかに対応する染色剤を複数種類用いると、同一の組織試料M内の複数の生体物質を同時に分析することが可能になる。
 次に、図面を用いて、組織試料分析システムを説明する。
 [組織試料分析システム]
 (第3実施形態)
 図10は、本発明の第3実施形態に係る組織試料分析システムの構成例を示すブロック図である。
 図10に示すように、組織試料分析システム200は、第1実施形態に係る組織試料分析装置1と、高精細画像取得装置2と、統合制御部5と、を備える。統合制御部5は、組織試料分析装置1の制御部100及び高精細画像取得装置2と電気的に接続される。また、組織試料分析システム200は、統合制御部5と電気的に接続される試料移動部3を備える。
 高精細画像取得装置2は、組織試料の高精細画像を取得する装置である。高精細画像取得装置2としては、例えば、顕微鏡が用いられる。顕微鏡は、通常、レンズ及び撮像素子を有する。このため、高精細画像取得装置2で取得される高精細画像は、通常、レンズと撮像素子とを有する顕微鏡で得られる画像となる。
 ここで、組織試料としては、組織試料分析装置1で用いられる組織試料と同一の、生体の組織試料が用いられる。また、高精細画像とは、組織試料分析装置1の受光部31を構成するCMOSイメージセンサ素子等の光電変換素子の分解能以上の分解能を有する画像を意味する。
 なお、組織試料分析装置1は拡大のためのレンズを有さない。このため、組織試料分析装置1で作成される二次元定量画像は、レンズ等の光学的な拡大手段を介さず、受光部31の撮像素子等の光電変換素子のみを介して取得された測光値RSに基づき作成された画像となる。このため、組織試料分析装置1で作成される二次元定量画像は、高精細画像よりも解像度が低くなる。すなわち、高精細画像取得装置2で取得される高精細画像は、組織試料分析装置1で作成される二次元定量画像よりも高精細な画像となる。二次元定量画像及び高精細画像については後に詳しく説明するが、一般的に、二次元定量画像には定量性に優れるというメリットがあり、高精細画像には分解能が高いというメリットがある。組織試料分析システム200は、例えば、二次元定量画像の定量性に優れるメリットを発揮するとともに、高精細画像のメリットを発揮して二次元定量画像の分解能の低さを補うように使用される。
 統合制御部5は、組織試料分析装置1で作成された二次元定量画像と、高精細画像取得装置で取得された高精細画像とを関連付ける機能を有する。統合制御部5は、組織試料分析装置1の制御部100から二次元定量画像を取得するとともに、高精細画像取得装置2から高精細画像とを取得し、二次元定量画像と高精細画像とを関連付ける。二次元定量画像と高精細画像とが関連付けられると、例えば、二次元画像複合体が形成される。ここで、二次元画像複合体とは、二次元定量画像と高精細画像とが関連付けられて併存する画像複合体を意味する。
 試料移動部3は、組織試料Mを用いて組織試料分析装置1で分析し、高精細画像取得装置2で画像取得することができるように、組織試料Mを移動させる制御を行う機能を有する。具体的には、試料移動部3は、組織試料Mを、組織試料分析装置1の台座55上、及び高精細画像取得装置2の図示しない撮影台座上に移動させるように制御を行う。
 組織試料分析装置1で作成される二次元定量画像、高精細画像取得装置2で取得される高精細画像、及び二次元定量画像と高精細画像とが関連付けられてなる二次元画像複合体について図面を参照して説明する。図11及び図12は、図6に示す組織試料Mに蛍光物質を添加して得られる、二次元定量画像300及び高精細画像400からなる二次元画像複合体500の構成の一例を示す図である。図11及び図12に示す二次元画像複合体500は、表示部11の実際の画面上では、図11及び図12中の手前にある画像のみが表示されているようになっている。すなわち、図11に示す二次元画像複合体500では、表示部11の実際の画面上に二次元定量画像300のみが表示され、高精細画像400は表示されないようになっている。また、図12に示す二次元画像複合体500では、表示部11の実際の画面上に高精細画像400のみが表示され、二次元定量画像300は表示されないようになっている。
 二次元定量画像300は、図7に示す二次元定量画像300と同一である。すなわち、二次元定量画像300は、矩形の二次元定量画像領域350中に、CMOSイメージセンサ素子の四角の画素の集合体からなるモザイク状の二次元定量画像本体310が表示されたものになっている。二次元定量画像本体310は、図6に示す菱形状の組織試料Mに類似した形状を有し、かつ組織試料Mの各部位における測光値RSを強度値に応じて表示するようになっている。具体的には、二次元定量画像本体310では、組織試料Mの外形に類似した菱形状の周辺部分が測光値RSの低い部分311であり、中心部分が測光値RSの高い部分312になっている。測光値RSの高低は、組織試料M中の蛍光物質量の多少に対応するため、図11及び図12に示す二次元定量画像本体310によれば、組織試料M中の蛍光物質量は、周辺部分より中心部分のほうが多いことが分かる。
 高精細画像400は、矩形の高精細画像領域450中に、菱形状の高精細画像本体410が表示されたものになっている。高精細画像本体410は、二次元定量画像300の二次元定量画像本体310に対応する高精細画像である。高精細画像本体410中の部分411は、二次元定量画像300の測光値RSの低い部分311に対応する部分である。高精細画像本体410中の部分412は、二次元定量画像300の測光値RSの高い部分312に対応する部分である。高精細画像400は、二次元定量画像300に比較して分解能が高いため、輪郭の精度がよくなっている。
 ここで、二次元定量画像300及び高精細画像400のメリット、デメリットについて説明する。二次元定量画像300は、測光値RS等の情報を加工して形成された画像であるとともに、レンズ等の拡大手段を用いないため収差がない。このため、二次元定量画像300には、後述の高精細画像400に比較して、定量性に優れるメリットがある。一方、二次元定量画像300には、分解能の限界が撮像素子等の光電変換素子の大きさによるため、後述の高精細画像400に比較して、分解能が低いというデメリットがある。
 これに対し、高精細画像400には、レンズ等の拡大手段を用いるため、二次元定量画像300に比較して、分解能が高いというメリットがある。一方、高精細画像400には、測光値RS等の情報を加工して形成された画像でなく、また、レンズ等の拡大手段を介するため収差が発生する。このため、高精細画像400には、二次元定量画像300に比較して、定量性が低いというデメリットがある。
 このように、二次元定量画像300と高精細画像400とは、それぞれが、メリットとデメリットを有している。図11及び図12に示す二次元画像複合体500は、二次元定量画像300と高精細画像400とを関連付けることにより、二次元定量画像300及び高精細画像400のそれぞれのメリットを容易に発揮することができるようにしたものである。
 図11に示す状態の二次元画像複合体500は、二次元定量画像300のメリットを容易に発揮することができるようにしたものである。例えば、図11に示す状態の二次元画像複合体500によれば、定量性に優れるというメリットが発揮される。
 これに対し、図12に示す状態の二次元画像複合体500は、高精細画像400のメリットを容易に発揮することができるようにしたものである。例えば、図12に示す状態の二次元画像複合体500によれば、分解能が高いというメリットが発揮される。
 二次元画像複合体500は、二次元定量画像300と高精細画像400とが関連付けられており、表示部11の画面上に、二次元定量画像300及び高精細画像400の少なくとも一方を表示したり、定量画像300と高精細画像400との表示の切り替えを行ったりすることができるようになっている。例えば、現在表示されている二次元定量画像300又は高精細画像400をクリックすれば、現在表示されていない残りの画像を表示することができるように設定される。なお、設定の仕方は特に限定されない。
  <作用>
 組織試料分析システム200の作用は、上記の組織試料分析装置1の作用、及び公知の高精細画像取得装置2の作用に、試料移動部3により同一の組織試料Mを用いて組織試料分析装置1で分析し、高精細画像取得装置2で画像取得する作用、組織試料分析装置1で作成された二次元定量画像300と、高精細画像取得装置2で取得された高精細画像400とを関連付ける作用、及びこの関連付けに基づく作用を加えたものになる。
 組織試料分析装置1で作成された二次元定量画像300と、高精細画像取得装置2で取得された高精細画像400とは、統合制御部5によりを関連付けられる。関連付けの方法は、特に限定されない。
 二次元定量画像300と高精細画像400とが関連付けられると、上記のように、二次元定量画像300及び高精細画像400のそれぞれのメリットを容易に発揮されるようになる。
 なお、組織試料分析システム200では、第1実施形態に係る組織試料分析装置1に代えて、第2実施形態に係る組織試料分析装置を用いてもよい。
 (第4実施形態)
 図13は、本発明の第4実施形態に係る組織試料分析システムの構成例を示すブロック図である。
 図13に示すように、組織試料分析システム200Aは、第1実施形態に係る組織試料分析装置1と、高精細画像読込部6と、統合制御部5と、を備える。統合制御部5は、組織試料分析装置1の制御部100及び高精細画像読込部6と電気的に接続される。
 図13に示す第4実施形態に係る組織試料分析システム200Aは、図11に示す第3実施形態に係る組織試料分析システム200に比較して、高精細画像取得装置2に代えて高精細画像読込部6を設けるとともに、試料移動部3を備えない以外は同一である。このため、第4実施形態に係る組織試料分析システム200Aと、第3実施形態に係る組織試料分析システム200とで、同じ構成に同一符号を付し、構成及び作用の説明を省略又は簡略化する。
 高精細画像読込部6は、図示しない高精細画像取得装置等で取得された、組織試料の高精細画像を読み込む機能を有する。高精細画像読込部6としては、公知の画像読込装置を用いることができる。なお、高精細画像取得装置等で取得される、組織試料の高精細画像は、第1実施形態に係る組織試料分析装置1で分析される組織試料Mと同一の組織試料Mから取得した高精細画像とする。
  <作用>
 組織試料分析システム200Aの作用は、高精細画像取得装置2で高精細画像を取得することに代えて他の高精細画像取得装置等から高精細画像を読み込む作用がある一方で、試料移動部3により組織試料Mを移動させる作用がないこと以外は、組織試料分析システム200の作用と同じである。このため、組織試料分析システム200Aの作用の説明を省略する。
 なお、組織試料分析システム200Aでは、第1実施形態に係る組織試料分析装置1に代えて、第2実施形態に係る組織試料分析装置を用いてもよい。
 (組織試料分析装置の効果)
 上述の本発明の各実施形態に係る組織試料分析装置1は、組織試料Mを細胞レベルで定量化して画像化することができ、装置の小型化と低価格化、分析作業の簡便化、分析作業の高速化、組織試料Mの全領域の画像の高解像度化を図ることができる。
 組織試料分析装置1は、例えば机上で書類の内容をスキャナーで取り込む要領で、生体標本である組織試料Mに含まれる偏在する化学物質の分布情報等を瞬時に取得することができる。
 組織試料分析装置1は、分析にかかる時間が短いため、大型の組織試料Mの解析が容易に行えるだけではなく、大量の連続した組織試料の解析も可能となり、三次元の画像を構築することができる。
 従来の装置では、例えばマウスの脳の分析には約30分間、ヒトの脳の分析には、約20時間掛かっているが、本発明の実施形態では、組織試料Mの大きさに関係なく、1枚を数分間位で分析できる。1点の計測領域(画像データでは画素)の解像度を、数十ミクロンから数ミクロンレベルまで高め、木目の細かい定量的な画像データを得ることができる。そして、研究の目的に応じて、組織試料Mの各計測領域の測定値を簡単に抽出して統計処理ができる。
 以上説明したように、本発明の実施形態に係る組織試料分析装置1は、生体の組織試料Mの測光情報を分析するための組織試料分析装置であって、組織試料Mに光を照射する光源部30と、光源部30と対向して配置されて、光源部30との間で組織試料Mを挟んだ状態又は前記光源部との間に前記組織試料を挟まずに配置した状態で、組織試料Mからの光を受ける平板状の受光部31と、を備える。
 これにより、組織試料Mは、光源部と受光部の間に挟んだ状態又は前記光源部との間に前記組織試料を挟まずに配置した状態になるため、組織試料の全体の蛍光物質の分布を一度に短時間で取得できる。このように、組織試料の経時変化による劣化を防ぐことができ、実験の作業者の手技のバラツキがでない。また、組織試料は、光源部と受光部の間に挟んで配置するため、組織試料の平坦度が悪くても、組織試料を平坦にして測光することができる。
 これらのことから、組織試料分析装置の小型化を図ることができ、組織試料の分析作業の高速化を図ることができ、しかも組織試料に偏在する化学物質を定量化して画像化することが可能になる。
 組織試料分析装置1では、組織試料には蛍光物質が添加され、光源部と組織試料の間には、蛍光物質を光らせる波長の光を通すバンドパスフィルタが配置され、組織試料と受光部の間には、組織試料の蛍光物質からの蛍光を透過させる吸収フィルタが配置されている。
 これにより、バンドパスフィルタは、組織試料に添加された蛍光物質を蛍光させる波長の光だけを組織試料に与えて、組織試料の蛍光物質が発する蛍光は、吸収フィルタを透過して、その他の励起光の漏れ光等は、吸収フィルタにより遮断されるため、蛍光のみを受光部に確実に受光させることができる。このため、組織試料に偏在する化学物質を定量化して画像化することが可能になる。
 組織試料分析装置1のうち、透過モードの測光系を有する第2実施形態に係る組織試料分析装置1は、組織試料Mには、試薬としての染色剤が添加されて使用される。これにより、例えば脂質等の免疫組織化学染色に不向きな組織試料Mについては、一般的な組織化学染色剤等で染色するため、受光部31は、組織試料M内のターゲット物質の濃度の分布を、透過率の分布として測光することができる。
 組織試料分析装置1では、光源部30は、複数の発光ダイオードを二次元に配列させることで構成され、受光部31は、固体撮像素子を二次元的に配列させることで構成されている。これにより、光源部としては複数の発光ダイオードを二次元に配列させ、受光部としては固体撮像素子を二次元的に配列させるだけで済み、大型の顕微鏡やフォトマルチプライヤを用いる必要がないため、組織試料分析装置の大幅な小型化と低価格化を図れる。
 以上、実施形態を挙げて本発明を説明したが、各実施形態は一例であり、特許請求の範囲に記載される発明の範囲は、発明の要旨を逸脱しない範囲内で種々変更できるものである。
 例えば、光源部30は、複数のLED(発光ダイオード)を使用しているが、これに限らず、光源部30の別の例としては、EL(エレクトロルミネッセンス)を平板状に構成するようにしてもよい。この場合であっても、光源部としてはELを平板状に構成して、受光部としては固体撮像素子を二次元的に配列させるだけで済み、大型の顕微鏡やフォトマルチプライヤを用いる必要がないため、組織試料分析装置の大幅な小型化と低価格化が図れる。
 図4において、発光部30の上面30Aとバンドパスフィルタ40の下面との間に、偏光フィルタを配置してもよい。
 なお、組織試料分析装置1では、光源部30、受光部31及び台座55の1種以上に、これらを上下左右等に移動可能なスキャニングステージを取り付けてもよい。このようなスキャニングステージを取り付けると、測定範囲を広くすることができる。
 また、組織試料分析装置1では、光源部30及び受光部31が大きいと、組織試料分析部20が大きくなったり、費用が増大したりするおそれがある。この場合は、光源部30及び受光部31のいずれか一方以上につき、面積を小さくするとともに、移動ステージに固定することにより、観察範囲を確保又は拡大するようにしてもよい。
 さらに、組織試料分析装置1では、光源部30又は受光部31と、組織試料M又はこの組織試料Mを含むプレパラートと、の接触による損傷を防止する保護機構を備えていてもよい。
 保護具としては、例えば、スペーサ、拘束具等が用いられる。ここで、スペーサとは、光源部30又は受光部31と、組織試料M又はこの組織試料Mを含むプレパラートと、の間に挟み込まれることにより、これらの直接接触及び破損を防止するものである。また、拘束具とは、光源部30、受光部31、組織試料M、及びこの組織試料Mを含むプレパラートの1種以上の部材の移動を制限する手段である。本発明では、上記保護具を用いると、光源部30、受光部31、バンドパスフィルタ40、吸収フィルタ41、組織試料M、及びこの組織試料Mを含むプレパラートの1種以上の部材間の距離、例えば、間隔c、間隔d、間隔e、間隔f等を上記数値範囲に代えて、任意に設定することができる。
 (組織試料分析システムの効果)
 本発明に係る組織試料分析システムによれば、本発明に係る組織試料分析装置の効果に加え、組織試料中の化学物質について定量性に優れた定量画像と分解能の高い高精細画像を座標により紐付けし関連付けた二次元画像複合体による分析をすることが可能である。
 特願2015-138702号(出願日:2015年7月10日)の全内容は、ここに援用される。
1   組織試料分析装置
2   高精細画像取得装置
3   試料移動部
5   統合制御部
6   高精細画像読込部
10  制御装置
11  表示部
12  制御本体部
13  画像構成部
14  データ演算部
15  記憶部
20  組織試料分析部
21  筐体
30  光源部
31  受光部
40  バンドパスフィルタ
41  吸収フィルタ
M   組織試料
100  制御部
200  組織試料分析システム
300  二次元定量画像
310  二次元定量画像本体
311  測光値RSの低い部分
312  測光値RSの高い部分
350  二次元定量画像領域
400  高精細画像
410  高精細画像本体
411  蛍光量の少ない部分
412  蛍光量の多い部分
500  二次元画像複合体

Claims (14)

  1.  生体の組織試料に光を照射して得られる測光情報を定量分析する組織試料分析装置であって、
     前記組織試料に光を照射する光源部と、
     前記光源部と対向して配置され、前記光源部との間に前記組織試料を配置した状態で、前記組織試料を透過した光又は前記組織試料から放射された光を受光する平板状の受光部と、
     を備えることを特徴とする組織試料分析装置。
  2.  前記光源部が組織試料に照射する光は、平行光であることを特徴とする請求項1に記載の組織試料分析装置。
  3.  前記光源部が平板状であることを特徴とする請求項1又は2に記載の組織試料分析装置。
  4.  前記組織試料は、検査試薬が添加された組織試料であることを特徴とする請求項1又は2に記載の組織試料分析装置。
  5.  前記検査試薬は蛍光物質であり、
     前記光源部と前記組織試料の間には、前記組織試料に添加された蛍光物質を励起する励起光を透過させるバンドパスフィルタが配置され、
     前記組織試料と前記受光部の間には、前記組織試料に添加された前記蛍光物質が放射する蛍光を透過させる吸収フィルタが配置されていることを特徴とする請求項4に記載の組織試料分析装置。
  6.  前記検査試薬は染色剤であることを特徴とする請求項4に記載の組織試料分析装置。
  7.  前記光源部と前記組織試料の間には、前記組織試料に添加された染色剤の吸収の大きい波長領域の光成分のみを透過させるバンドパスフィルタが配置されることを特徴とする請求項6に記載の組織試料分析装置。
  8.  前記組織試料と前記受光部の間には、前記組織試料に添加された前記染色剤の吸収の大きい波長領域の光成分のみを透過させる吸収フィルタが配置されていることを特徴とする請求項6又は7に記載の組織試料分析装置。
  9.  前記受光部は、固体撮像素子を二次元的に配列させることで構成されることを特徴とする請求項1ないし8のいずれか1項に記載の組織試料分析装置。
  10.  前記光源部は、複数の発光ダイオードを二次元に配列させることで構成されることを特徴とする請求項1ないし8のいずれか1項に記載の組織試料分析装置。
  11.  前記光源部は、エレクトロルミネッセンスで平板状に構成され、
     前記受光部は、固体撮像素子を二次元的に配列させることで構成されることを特徴とする請求項1ないし8のいずれか1項に記載の組織試料分析装置。
  12. 前記光源部又は受光部と、組織試料又はこの組織試料を含むプレパラートと、の接触による損傷を防止する保護機構を備えることを特徴とする請求項1ないし11のいずれか1項に記載の組織試料分析装置。
  13.  請求項1ないし12のいずれか1項に記載の組織試料分析装置と、
     前記組織試料の高精細画像を取得する高精細画像取得装置と、
     前記組織試料分析装置で作成された定量画像と、前記高精細画像取得装置で取得された高精細画像とを関連付ける統合制御部と、
     を備えることを特徴とする組織試料分析システム。
  14.  請求項1ないし12のいずれか1項に記載の組織試料分析装置と、
     前記組織試料の高精細画像を読み込む高精細画像読込部と、
     前記組織試料分析装置で作成された定量画像と、前記高精細画像読込部で読み込まれた高精細画像とを関連付ける統合制御部と、
     を備えることを特徴とする組織試料分析システム。
PCT/JP2016/070019 2015-07-10 2016-07-06 組織試料分析装置及び組織試料分析システム WO2017010375A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/743,085 US10444152B2 (en) 2015-07-10 2016-07-06 Tissue sample analysis device and tissue sample analysis system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015138702 2015-07-10
JP2015-138702 2015-07-10

Publications (1)

Publication Number Publication Date
WO2017010375A1 true WO2017010375A1 (ja) 2017-01-19

Family

ID=57758164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070019 WO2017010375A1 (ja) 2015-07-10 2016-07-06 組織試料分析装置及び組織試料分析システム

Country Status (3)

Country Link
US (1) US10444152B2 (ja)
JP (1) JP6457979B2 (ja)
WO (1) WO2017010375A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129730B2 (ja) * 2018-05-31 2022-09-02 ソル・インコーポレイテッド 映像基盤の大面積試料分析装置、媒質の特性差を用いた映像基盤の試料分析装置及びこれを用いて試料を測定して分析する方法
JP2020041928A (ja) * 2018-09-11 2020-03-19 株式会社東芝 セルフチェックシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316478A (ja) * 1991-04-12 1992-11-06 Nec Corp 生物試料観察装置、システムおよび方法
JP2002525587A (ja) * 1998-08-28 2002-08-13 フェビット フェラリウス バイオテクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 試料中の分析物を測定するための方法および装置
JP2005227155A (ja) * 2004-02-13 2005-08-25 Nara Institute Of Science & Technology 生体組織測定用イメージセンサ及び該センサを用いた生体組織測定方法
JP2010276866A (ja) * 2009-05-28 2010-12-09 Nikon Corp 画像取得装置と、これを有する顕微鏡装置
JP2015084059A (ja) * 2013-10-25 2015-04-30 株式会社キーエンス 顕微鏡装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50015858D1 (de) 1999-02-19 2010-03-18 Febit Holding Gmbh Verfahren zur Herstellung von Polymeren
JP2001013135A (ja) * 1999-06-30 2001-01-19 Aloka Co Ltd 蛍光観測法及び蛍光観測装置
JP2002228654A (ja) * 2001-01-30 2002-08-14 Yamato Scient Co Ltd 組織マッピング方法及び組織マップ分析装置
JP4405837B2 (ja) * 2004-03-19 2010-01-27 ヤマト科学株式会社 組織試料分析装置
DE102009029831A1 (de) * 2009-06-17 2011-01-13 W.O.M. World Of Medicine Ag Vorrichtung und Verfahren für die Mehr-Photonen-Fluoreszenzmikroskopie zur Gewinnung von Informationen aus biologischem Gewebe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04316478A (ja) * 1991-04-12 1992-11-06 Nec Corp 生物試料観察装置、システムおよび方法
JP2002525587A (ja) * 1998-08-28 2002-08-13 フェビット フェラリウス バイオテクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 試料中の分析物を測定するための方法および装置
JP2005227155A (ja) * 2004-02-13 2005-08-25 Nara Institute Of Science & Technology 生体組織測定用イメージセンサ及び該センサを用いた生体組織測定方法
JP2010276866A (ja) * 2009-05-28 2010-12-09 Nikon Corp 画像取得装置と、これを有する顕微鏡装置
JP2015084059A (ja) * 2013-10-25 2015-04-30 株式会社キーエンス 顕微鏡装置

Also Published As

Publication number Publication date
JP6457979B2 (ja) 2019-01-23
JP2017021020A (ja) 2017-01-26
US20190079012A1 (en) 2019-03-14
US10444152B2 (en) 2019-10-15

Similar Documents

Publication Publication Date Title
US7408176B2 (en) System and method employing photokinetic techniques in cell biology imaging applications
CN109716199A (zh) 具有选择性平面照明的光场显微镜
CN102023148A (zh) 荧光纳米显微方法
JP5746161B2 (ja) 顕微鏡画像における蛍光の評価方法
US20210382286A1 (en) Sample observation device and sample observation method
US20230314782A1 (en) Sample observation device and sample observation method
Marchetti et al. Custom multiphoton/raman microscopy setup for imaging and characterization of biological samples
JP6457979B2 (ja) 組織試料分析装置及び組織試料分析システム
JP2006275964A (ja) 走査型蛍光顕微鏡のシェーディング補正方法
Huffman et al. A wavelength-dispersive instrument for characterizing fluorescence and scattering spectra of individual aerosol particles on a substrate
JP6888779B2 (ja) 多面画像取得システム、観察装置、観察方法、スクリーニング方法、および被写体の立体再構成方法
Gong et al. A fully water coupled oblique light-sheet microscope
JP2019136023A (ja) 細菌検出装置及び細菌検出方法
US20220228968A1 (en) Hyperspectral quantitative imaging cytometry system
JP2017021020A5 (ja)
CN108627511A (zh) 一种显微光学成像检测方法和装置
WO2012147492A1 (ja) 画像処理装置、画像処理方法、画像処理プログラムおよびバーチャル顕微鏡システム
JP2020112378A (ja) 評価システム及び評価方法
EP4137864A1 (en) Sample observation device and sample observation method
WO2022249583A1 (ja) 情報処理装置、生体試料観察システム及び画像生成方法
US20230222753A1 (en) Sample observation device and sample observation method
US20240184090A1 (en) Sample observation device and sample observation method
WO2023164780A1 (en) System and method for imaging histopathology-stained slides using coherent anti-stokes raman spectral imaging
Matheson et al. Fluorescence lifetime imaging with distance and ranging using a miniaturised SPAD system
Daly et al. Confocal fluorometer for diffusion tracking in 3D engineered tissue constructs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824355

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824355

Country of ref document: EP

Kind code of ref document: A1