WO2017006984A1 - 圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法 - Google Patents

圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法 Download PDF

Info

Publication number
WO2017006984A1
WO2017006984A1 PCT/JP2016/070107 JP2016070107W WO2017006984A1 WO 2017006984 A1 WO2017006984 A1 WO 2017006984A1 JP 2016070107 W JP2016070107 W JP 2016070107W WO 2017006984 A1 WO2017006984 A1 WO 2017006984A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
mol part
electronic component
metal element
piezoelectric
Prior art date
Application number
PCT/JP2016/070107
Other languages
English (en)
French (fr)
Inventor
石井 秀樹
裕之 林
慎一郎 川田
小川 弘純
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017527489A priority Critical patent/JP6489333B2/ja
Publication of WO2017006984A1 publication Critical patent/WO2017006984A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/05Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes
    • H10N30/053Manufacture of multilayered piezoelectric or electrostrictive devices, or parts thereof, e.g. by stacking piezoelectric bodies and electrodes by integrally sintering piezoelectric or electrostrictive bodies and electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions

Definitions

  • the present invention relates to a piezoelectric ceramic electronic component and a method for manufacturing the piezoelectric ceramic electronic component, and more particularly to a piezoelectric ceramic electronic component such as a laminated piezoelectric actuator using a lead-free piezoelectric ceramic composition and a method for manufacturing the same.
  • This type of piezoelectric ceramic electronic component is generally manufactured by alternately laminating ceramic green sheets serving as piezoelectric ceramic layers and conductive films serving as internal electrodes and co-firing.
  • Ag-based materials such as Ag and Ag—Pd alloy have been widely used conventionally.
  • Ag-based materials are prone to migration, so that the occurrence of migration can be effectively suppressed.
  • Ni is also desirable to use Ni that is readily available at a relatively low price.
  • the main component is represented by the general formula ⁇ (1-x) (K 1-ab Na a Li b ) (Nb 1-c Ta c ) O 3 -xM2M4O 3 ⁇ (where M2 is Ca , Ba, and Sr, M4 is at least one of Zr, Sn, and Hf, and x, a, b, and c are 0.005 ⁇ x ⁇ 0.1, respectively. 0 ⁇ a ⁇ 0.9, 0 ⁇ b ⁇ 0.1, 0 ⁇ a + b ⁇ 0.9, and 0 ⁇ c ⁇ 0.3), and Mn is 100 mol of the main component.
  • Piezoelectric ceramic compositions containing 2 to 15 mol and M4 in the range of 0.1 to 5.0 mol with respect to 100 mol of the main component have been proposed.
  • Patent Document 1 a predetermined amount of Mn is contained in the piezoelectric ceramic composition, and Zr is contained in excess of the stoichiometric composition, thereby enabling firing in a reducing atmosphere in which Ni is not oxidized. .
  • Example 1 when Yb as a rare earth element was further contained, the content of Li and Ca relative to 1 mol part of Nb was set to 0.02 mol part and 0.04 mol part, respectively. Piezoelectric characteristics with a point Tc of 150 to 290 ° C., a piezoelectric constant d 33 of 85 to 143 pC / N, and an electromechanical coupling coefficient kp of 16.8 to 30.5% are obtained.
  • Example 1 of Patent Document 1 described above the piezoelectric constant d 33 is not 143pC / N obtained only at most, further improvement in piezoelectric characteristics has been demanded.
  • the present invention has been made in view of such circumstances, and by adjusting the blending ratio of the piezoelectric ceramic composition, lead-free lead can be further improved in piezoelectric characteristics compared to the conventional case even when co-fired with Ni. It is an object of the present invention to provide a piezoelectric ceramic electronic component and a method for manufacturing the piezoelectric ceramic electronic component.
  • a piezoelectric ceramic electronic component is a piezoelectric ceramic electronic component comprising a piezoelectric ceramic body and an internal electrode embedded in the piezoelectric ceramic body,
  • the ceramic body contains a lead-free perovskite compound containing at least Li and Nb, a composite oxide containing Zr, and a divalent metal element, and the molar content of Li is based on 1 mol part of Nb.
  • the content molar amount of the divalent metal element is 0.045 mol part or more and 0.086 mol part or less with respect to the Nb1 mol part
  • the total content of the Li and the divalent metal element is 0.076 mol part or more and 0.166 mol part or less relative to the Nb1 mol part
  • the internal electrode contains Ni. It is characterized in that.
  • the piezoelectric ceramic electronic component according to the present invention is a piezoelectric ceramic electronic component comprising a piezoelectric ceramic body and an external electrode formed on the surface of the piezoelectric ceramic body, wherein the piezoelectric ceramic body is The lead-containing perovskite compound containing at least Li and Nb, Zr, and a complex oxide containing a divalent metal element are contained, and the molar content of Li is 0.025 mole part relative to 1 mole part of Nb.
  • the content molar amount of the divalent metal element is 0.045 mol part or more and 0.086 mol part or less with respect to the Nb1 mol part, and the Li and the 2
  • the total content of valent metal elements is 0.076 mol part or more and 0.166 mol part or less with respect to 1 mol part of Nb, and the external electrode contains Ni. It is.
  • the molar content of Zr is equal to or greater than the molar content of the divalent metal element.
  • Zr contributes to the improvement of piezoelectric characteristics, even better piezoelectric characteristics can be obtained by setting the molar content of Zr to be equal to or greater than the molar content of the divalent metal element.
  • the perovskite compound contains at least one element of K and Na.
  • the divalent metal element is preferably Ba, and in this case, the piezoelectric ceramic body preferably contains Mn.
  • the method for manufacturing a piezoelectric ceramic electronic component according to the present invention is a method for manufacturing a piezoelectric ceramic electronic component that forms a piezoelectric ceramic body containing at least Nb, Li, Zr, and a divalent metal element, At least the Nb compound and the Li compound are mixed and calcined so that the Li content is 0.025 mol part or more and 0.080 mol part or less with respect to 1 mol part of the Nb, and the first calcined powder is obtained.
  • the method for manufacturing a piezoelectric ceramic electronic component according to the present invention includes a step of integrally forming the second calcined powder and an electrode material containing Ni to produce a formed body, and the forming body in a reducing atmosphere. And a step of baking below.
  • a piezoelectric ceramic electronic component having good piezoelectric characteristics can be obtained with high efficiency even if it is co-sintered with Ni.
  • a piezoelectric ceramic electronic component of the present invention after preliminarily synthesizing a perovskite compound having a predetermined composition, a predetermined amount of a metal element compound and a Zr compound are added and calcined again.
  • a piezoelectric ceramic electronic component having high piezoelectric characteristics can be efficiently produced.
  • FIG. 1 is a cross-sectional view showing an embodiment of a piezoelectric ceramic electronic component according to the present invention. It is a perspective view of the ceramic green sheet obtained in the manufacture process of the said multilayer piezoelectric actuator. It is a perspective view of the laminated piezoelectric actuator. It is sectional drawing which shows other embodiment of the piezoelectric ceramic electronic component which concerns on this invention. It is a figure which shows the mapping analysis of Ba element in the sample number 41. FIG. It is a figure which shows the mapping analysis of Ba element in sample number 41 '.
  • FIG. 1 is a cross-sectional view showing an embodiment of a laminated piezoelectric actuator as a piezoelectric ceramic electronic component according to the present invention.
  • the laminated piezoelectric actuator has a conductive material such as Ag at both ends of a piezoelectric ceramic body 1.
  • the external electrode 2 (2a, 2b) is formed, and the piezoelectric ceramic body 1 is embedded with internal electrodes 3 (3a to 3g).
  • one end of the internal electrodes 3a, 3c, 3e, and 3g is electrically connected to one external electrode 2a, and one end of the internal electrodes 3b, 3d, and 3f is electrically connected to the other external electrode 2b.
  • the laminated piezoelectric actuator when a voltage is applied between the external electrode 2a and the external electrode 2b, the laminated piezoelectric actuator is displaced in the laminating direction indicated by the arrow X by the piezoelectric longitudinal effect.
  • the internal electrode 2 is formed of a conductive material containing Ni as a main component (for example, 30 wt% or more).
  • the piezoelectric ceramic body 1 is formed of a piezoelectric ceramic composition, and the piezoelectric ceramic composition includes an alkali niobate-based complex oxide whose main component is a lead-free perovskite compound, Zr, and divalent It is formed of a complex oxide containing the metal element.
  • M is a divalent metal element such as Ca, Ba, or Sr.
  • this piezoelectric ceramic composition contains x mol part of Li, y mol part of divalent metal element M, and z mol part of Zr with respect to 1 mol part of Nb.
  • the main component is an alkali niobate-based composite oxide represented by the general formula (A), a solid solution of a composite oxide containing Zr, and a divalent metal element has an abundance ratio of 80% or more. It means having.
  • the abundance ratio of the main component can be examined by a powder X-ray diffraction method (hereinafter referred to as “powder XRD method”).
  • powder X-ray diffraction method hereinafter referred to as “powder XRD method”.
  • a known amount of a compound different from the solid solution is mixed with the solid solution in advance, and the peak intensity of this mixture is measured. If the relationship between the amount of the compound different from the solid solution and the peak intensity is obtained as a calibration curve, the abundance ratio can be detected from the peak intensity of X-ray diffraction.
  • the solid solution means a state in which at least divalent metal elements M and Zr exist in the crystal or crystal grains of the alkali niobate complex oxide.
  • the component composition of this solid solution was determined by analyzing the crystals or crystal grains of the fired alkali niobate complex oxide with a transmission electron microscope (TEM), and using an energy dispersive X-ray analyzer (EDS). It can be identified by analyzing the ratio.
  • TEM transmission electron microscope
  • EDS energy dispersive X-ray analyzer
  • x and y satisfy the formulas (1) to (3).
  • (yMO + zZrO 2 ) is usually a complex oxide form of MZrO 3 , which is a composite of MO and ZrO 2, and is an alkali niobate complex oxide ⁇ (K a Na b ) It is dissolved in 1-x Li x ⁇ NbO 3 .
  • the piezoelectric ceramic composition represented by the general formula (A) satisfies only the formulas (1) to (3), and only the mixing ratio of the main component is adjusted without adding other additives.
  • the piezoelectric ceramic composition represented by the general formula (A) satisfies only the formulas (1) to (3), and only the mixing ratio of the main component is adjusted without adding other additives.
  • the inventors of the present invention have increased the Li content molar amount relative to Nb1 mol part from 0.016 mol part, while the Curie point Tc is increased while the second phase transition point T 2nd is decreased. It was found that the piezoelectric constant d 33 tends to be high.
  • the molar part x of Li with respect to Nb1 mol part is set to 0.025 mol part or more and 0.080 mol part or less.
  • the molar content of the divalent metal element M with respect Nb1 molar parts can be improved piezoelectric constant d 33 by 0.04 mol or more parts.
  • the main component composition for example, in order to obtain good piezoelectric characteristics with a piezoelectric constant d 33 of 170 pC / N or more and an Smax / Emax value of 120 pm / V or more, the divalent metal element M Even if the content molar amount of Li satisfies Formula (1), the content molar amount needs to be 0.045 mol part or more with respect to 1 mol part of Nb.
  • the content of the divalent metal element M exceeds 0.086 mol part with respect to 1 mol part of Nb, the content of the divalent metal element M becomes excessive, and the Curie point Tc is significantly lowered. It is not preferable.
  • the molar part y of the divalent metal element M relative to 1 part by mole of Nb is set to 0.045 mole part or more and 0.086 mole part or less.
  • the total (x + y) of the molar part of Li and the divalent metal element M with respect to 1 mol part of Nb is set to 0.076 mol part or more and 0.166 mol part or less.
  • the blending ratio of the piezoelectric ceramic composition is adjusted so that the general formula (A) satisfies the mathematical formulas (1) to (3), the reducing property is such that Ni is not oxidized. Even when fired in an atmosphere, a piezoelectric ceramic electronic component having even better piezoelectric characteristics than before can be obtained. In other words, even if Ni is used as the internal electrode material, it is possible to perform co-firing, thereby obtaining a lead-free multilayer piezoelectric actuator having even better piezoelectric characteristics than conventional ones at a stable and low cost. be able to.
  • an alkali niobate composite oxide is calcined and then an oxide containing a divalent metal element M and Zr is added.
  • the divalent metal elements M and Li can be successfully solid-solved in the crystal grains, thereby efficiently obtaining the piezoelectric ceramic electronic component having a desired solid solution as a main component. be able to.
  • the molar content of Zr is not particularly limited, but Zr is present in the form of MZrO 3 in combination with the divalent metal element M in the piezoelectric ceramic composition, and Zr is piezoelectric. Since it contributes to the improvement of the characteristics, it is possible to further improve the piezoelectric characteristics such as the piezoelectric constant d 33 by containing the same or more than the stoichiometric composition represented by MZrO 3 . That is, it is preferable that the molar part z with respect to the Nb1 molar part of Zr is equal to or more than the molar part y of the divalent metal element M with respect to the Nb1 molar part, and specifically satisfies the formula (4). preferable.
  • the content molar amount of K and Na after firing in the general formula (A) is not particularly limited, and is arbitrary in the range of 0.02 ⁇ a ⁇ 1.00 and 0 ⁇ b ⁇ 0.98, for example. Value can be set.
  • the main component only needs to satisfy the general formula (A), and it is also preferable to add various additives as necessary.
  • various additives for example, it is also preferable to contain Mn as a subcomponent with respect to the main component, which can improve piezoelectric characteristics such as an electromechanical coupling coefficient and a piezoelectric constant.
  • the divalent metal element M is formed of Ba
  • Ba may be segregated in the piezoelectric ceramic composition if Mn is not contained in the piezoelectric ceramic composition. If Ba segregates in the piezoelectric ceramic composition in this way, such segregated portions may hinder the expression of characteristics, and the piezoelectric characteristics may not be sufficiently improved.
  • the piezoelectric ceramic composition can be represented by the general formula (B).
  • Mn is contained as a subcomponent
  • Mn is solid-solved as an acceptor at the Nb site, and it is possible to compensate to some extent the charge of oxygen vacancies formed during firing in a reducing atmosphere.
  • Zr is added in excess of the stoichiometric composition (y ⁇ z), as with Mn, it becomes a solid solution at the Nb site as an acceptor, and the charge of oxygen vacancies formed during firing in a reducing atmosphere is effective. Therefore, it is possible to stably obtain a laminated piezoelectric actuator capable of further improving the piezoelectric characteristics, and to improve the reliability.
  • this invention is also preferable to contain additives, such as Ni, like Example 3 of patent document 1, and this demonstrates the synergistic effect with optimization of the compounding ratio of a main component composition, and is better Realization of a laminated piezoelectric actuator having excellent piezoelectric characteristics is expected.
  • Li-containing Li compound and Nb-containing Nb compound are prepared as ceramic raw materials, and K-containing K compound and Na-containing Na compound are prepared as necessary.
  • the form of the ceramic raw material compound may be any of oxide, carbonate, hydroxide, fluoride, and chloride.
  • the ceramic raw material is adjusted so that the content of Li in the fired piezoelectric ceramic composition (piezoelectric ceramic body) is 0.032 mole part or more and 0.075 mole part or less with respect to 1 mole part of Nb. Then, these weighed materials are put into a ball mill containing a grinding medium such as partially stabilized zirconia (hereinafter referred to as “PSZ”) balls, and sufficiently wet-ground in a solvent such as ethanol to obtain a mixture. obtain.
  • a grinding medium such as partially stabilized zirconia (hereinafter referred to as “PSZ”) balls
  • the mixture is calcined at a predetermined temperature (for example, 850 to 1000 ° C.) for a predetermined time to synthesize, pulverize, and thereby the first calcined composed of the alkali niobate complex oxide.
  • a predetermined temperature for example, 850 to 1000 ° C.
  • a powder is obtained (first calcination treatment).
  • an M compound containing a divalent metal element M and a Zr compound containing Zr are prepared.
  • the form of the M compound and the Zr compound may be any of oxide, carbonate, hydroxide, and chloride.
  • the content molar amount of the divalent metal element M in the fired piezoelectric ceramic composition is 0.045 mol part or more and 0.086 mol part or less with respect to 1 mol part of Nb, and the divalent metal element M is And the total content of Li is 0.075 mol part or more and 0.166 mol part or less with respect to 1 mol part of Nb, and the Zr content mol amount is preferably equal to the divalent metal element M content mol amount.
  • the first calcined powder, the M compound, and the Zr compound are weighed, and these weighed products are put into a ball mill containing a grinding medium such as a PSZ ball, and sufficiently in a solvent such as ethanol. To obtain a mixture.
  • the mixture is dried and then calcined at a predetermined temperature (for example, 850 to 1000 ° C.) for a predetermined time to synthesize and pulverize to obtain a second calcined powder as a main component powder (second Calcination treatment).
  • a predetermined temperature for example, 850 to 1000 ° C.
  • the piezoelectric ceramic composition in which both Li and the divalent metal element M are solid-solved in the crystal grains can be obtained.
  • a solid solution capable of exhibiting the effects of the present invention is formed even when a divalent metal element compound and a Zr compound are added and fired. I can't. This is because once the alkali niobate complex oxide is synthesized, the divalent metal element compound or Zr compound cannot be dissolved in the alkali niobate complex oxide.
  • a desired piezoelectric ceramic composition mainly composed of a solid solution of 3 and MZrO 3 can be obtained. That is, a part of alkali metal such as Li is volatilized in the first calcining treatment, but the alkali metal that has not volatilized is coordinated to the crystal lattice of the perovskite structure and is solidly dissolved in the crystal grains. Thus, a first calcined powder made of an alkali niobate-based composite oxide having a desired composition can be produced.
  • the first calcined powder maintains its composition and the M compound and Zr. It is considered that a piezoelectric ceramic composition in which a desired solid solution is formed by solid solution with a complex oxide containing a compound can be obtained.
  • various additives such as MnCO 3 are added to the second calcined powder thus obtained, if necessary, and then an organic binder and a dispersant are added. Wet mix in to obtain a ceramic slurry. And after that, a ceramic green sheet is produced by carrying out a shaping
  • a conductive paste for internal electrodes containing Ni as a main component is used, and a conductive layer 5 (5a-5g) having a predetermined shape is formed on the ceramic green sheets 4 (4a-4g) by screen printing as shown in FIG. Form.
  • the ceramic green sheets 4a to 4g on which the conductive layers 5a to 5g are formed are stacked, and then sandwiched between the ceramic green sheets 6a and 6b on which the conductive layers 5a to 5g are not formed, followed by pressure bonding. Thereby, a ceramic laminate in which the conductive layers 5a to 5g and the ceramic green sheets 4a to 4g are alternately laminated is manufactured.
  • the ceramic laminate is cut into a predetermined size and accommodated in an alumina pod (sheath), subjected to a binder removal treatment at a predetermined temperature (for example, 250 to 500 ° C.), and then a predetermined temperature (
  • a predetermined temperature for example, 250 to 500 ° C.
  • a predetermined temperature for example, 250 to 500 ° C.
  • the piezoelectric ceramic body 1 in which the internal electrodes 3a to 3g are embedded is formed by firing at 1000 to 1160 ° C.).
  • an external electrode conductive paste made of Ag or the like is applied to both ends of the piezoelectric ceramic body 1 and subjected to a baking process at a predetermined temperature (for example, 750 ° C. to 850 ° C.), as shown in FIG. 2a and 2b are formed. Thereafter, a predetermined polarization process is performed, whereby a laminated piezoelectric actuator is manufactured.
  • the external electrodes 2a and 2b may be formed by a thin film forming method such as a sputtering method or a vacuum vapor deposition method as long as the adhesion is good.
  • a first calcined powder having a desired composition made of an alkali niobate-based composite oxide is produced, and then the metal element compound and the Zr compound are mixed with the first calcined powder and again. Since the second calcined powder is calcined, the volatilization of alkali metal such as Li is suppressed in the second calcining process and the divalent metal elements M and Zr are easily contained in the crystal grains. Thus, it is possible to obtain a laminated piezoelectric actuator having a good piezoelectric characteristic composed mainly of a solid solution having a desired composition.
  • the ceramic green sheet 4 is formed of the piezoelectric ceramic composition, and the internal electrode is mainly composed of Ni, not a noble metal material such as Ag. Therefore, the multilayer piezoelectric actuator has good piezoelectric characteristics at low cost. Thus, it is possible to obtain a piezoelectric ceramic electronic component with excellent practicality that is effective in suppressing the occurrence of migration.
  • FIG. 4 is a sectional view showing another embodiment of a single plate type piezoelectric actuator as another embodiment of the piezoelectric ceramic electronic component according to the present invention.
  • a conductive paste for external electrodes mainly composed of Ni is applied to both surfaces of the molded body.
  • the present invention is not limited to the above embodiment.
  • the multilayer piezoelectric actuator and the single plate type piezoelectric actuator are exemplified as the piezoelectric ceramic electronic component, but it goes without saying that the piezoelectric ceramic electronic component can be applied to various piezoelectric components.
  • divalent metal element M examples include Ca, Sr, and Ba, but other divalent metal elements such as Mg may be included.
  • Mg may be dissolved in Ca, Sr, or Ba and exist in the crystal grains, but does not affect the characteristics.
  • Table 1 shows the composition components at the time of preparation of the samples of sample numbers 1 to 24.
  • K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 , and Nb 2 O 5 were prepared as ceramic raw materials. Then, in the general formula: [ ⁇ (K a Na b ) 1-x Li x ⁇ NbO 3 ], the ceramic raw materials were weighed so that the charged amounts of a, b, and x were as shown in Table 1. Next, these weighed materials were put into a ball mill containing PSZ balls having a diameter of 2 mm, and thoroughly wet mixed using ethanol as a solvent. And after drying the obtained mixture, it calcined for 2 hours in air
  • Non-Patent Document 1 describes powder X-ray diffraction data of (Na 0.35 K 0.65 ) NbO 3 .
  • the XRD data of the second calcined powder and the XRD data described in Non-Patent Document 1 are compared, and the intensity ratio of each peak and the peak position with respect to the surface interval d are similar.
  • it can be determined as a perovskite type compound containing an alkali metal and niobium.
  • this second calcined powder and MnCO 3 were prepared.
  • the amount of w charged was as shown in Table 1. Weigh it so that it becomes, put it into a ball mill containing PSZ balls together with an organic binder, dispersant, and pure water, mix thoroughly by wet, and then perform molding using the doctor blade method, thickness A ceramic green sheet having a thickness of 120 ⁇ m was obtained.
  • this ceramic green sheet is punched out into a circular shape with a diameter of 10 mm after firing, and thereafter, 11 ceramic green sheets punched into this circular shape are stacked and applied at a pressure of about 2.45 ⁇ 10 7 Pa. To obtain a ceramic molded body.
  • the ceramic molded body is fired at a temperature of about 1100 ° C. for 2 hours in a reducing atmosphere adjusted so that the metal Ni and NiO are on the reduction side 0.5 digit from the equilibrium oxygen partial pressure at which the metal Ni and NiO are in an equilibrium state.
  • a piezoelectric ceramic body was obtained.
  • sputtering is performed on both main surfaces of this piezoelectric ceramic body to form an external electrode made of Ag, and then an electric field of 3 kV / mm is applied in silicone oil at 80 ° C. for 30 minutes. ⁇ 24 samples were obtained.
  • the piezoelectric constant d 33 the Smax / Emax value, the Curie point Tc, the second phase transition point T 2nd , and the electromechanical coupling coefficient kp of the radial resonance vibration were measured for each of the sample numbers 1 to 24.
  • the piezoelectric constant d 33 was obtained from the amount of generated charges at the measurement frequency of 110 Hz with a force of 0.25 N rms loaded using a d 33 meter.
  • the strain S was determined, and then the strain S was divided by the electric field E to calculate the displacement characteristic value S / E.
  • the maximum value of the displacement characteristic value S / E was defined as the Smax / Emax value.
  • Curie point Tc was measured by measuring the temperature characteristic of relative permittivity ⁇ r at a measurement frequency of 1 kHz with an impedance analyzer, and calculating the maximum temperature of relative permittivity ⁇ r, which was taken as Curie point Tc.
  • the second phase transition point T 2nd than the Curie point Tc to calculate the maximum temperature of the relative dielectric constant of the low temperature side, which was used as a second phase transition point T 2nd.
  • the powder XRD method was used, the temperature was changed, and the crystal system of the main component with respect to the temperature was analyzed.
  • the crystal system changes at the Curie point Tc and the second phase transition point T 2nd . Therefore, from the analysis of such a crystal system, it is found that the temperature at the boundary between the tetragonal crystal and the cubic crystal is the Curie point Tc, and the temperature at the boundary between the orthorhombic or rhombohedral crystal and the tetragonal crystal is the second phase transition point T 2nd. confirmed.
  • the electromechanical coupling coefficient kp was obtained by a resonance-antiresonance method using an impedance analyzer. That is, Formula (1) is established between the electromechanical coupling coefficient kp, the resonance frequency Fr, and the antiresonance frequency Fa.
  • Non-Patent Document 2 Published by Japan Electronics and Information Technology Industries Association, "JEITA EM-4501 Electrical Testing Method for Piezoelectric Ceramic Vibrators", September 2010
  • each of the samples Nos. 1 to 24 was subjected to composition analysis using inductively coupled plasma-emission spectroscopy (Inductively-Coupled-Plasma-Atomic-Emission-Spectroscopy; hereinafter referred to as "ICP-AES”), and Nb1 mol.
  • ICP-AES Inductively-Coupled-Plasma-Atomic-Emission-Spectroscopy
  • Nb1 mol Nb1 mol.
  • Table 2 shows the measurement results of the component compositions after firing of sample numbers 1 to 24, the piezoelectric constant d 33 , the Smax / Emax value, the Curie point Tc, the second phase transition point T 2nd , and the electromechanical coupling coefficient kp. .
  • the piezoelectric constant d 33 is 170 pC / N or more, the Smax / Emax value is 120 pm / V or more, the Curie point Tc is 160 ° C. or more, the second phase transition point T 2nd is 100 ° C. or less, and the electromechanical coupling coefficient kp is 31%. The above was judged as a good product.
  • Sample No. 1 does not contain Li in the piezoelectric ceramic composition, so that the piezoelectric constant d 33 is 133 pC / N and the Smax / Emax value is low at 86 pm / V, indicating that the piezoelectric characteristics are inferior. It was.
  • the total (x + y) of the mole parts of Li and Ba relative to 1 mole part of Nb is 0.051 to 0.074 mole part, and is less than 0.076 mole part. Therefore, the piezoelectric constant d 33 was 146 to 165 pC / N, and Smax / Emax values were low, 109 to 118 pm / V, indicating that the piezoelectric properties were inferior.
  • Sample No. 15 has a small molar portion y is 0.034 mole of Ba with respect Nb1 molar parts, although the piezoelectric constant d 33 of the order 190pC / N was obtained, Smax / Emax values as low as 115pm / V It was.
  • Sample Nos. 7, 9 to 13, 16 to 18, 21, and 22 have a molar part x of Li and a molar part y of Ba of 0.025 to 0.080 mole part, and Nb1 mole part, respectively. Since the total amount (x + y) of the molar parts of Li and Ba is 0.076 to 0.166 mole part within the range of the present invention, the piezoelectric constant d 33 is 170.
  • Smax / Emax values are as large as 122 to 187 pm / V
  • Curie point Tc is as high as 160 to 310 ° C.
  • second phase transition point T 2nd is as low as 30 to 100 ° C.
  • Curie point Tc is It was found that the difference from the phase transition point T 2nd was sufficient, and the electromechanical coupling coefficient kp was 31.2 to 38.3%, and good piezoelectric characteristics were obtained.
  • this calcined powder is put into a ball mill containing PSZ balls together with an organic binder, a dispersant, and pure water and mixed sufficiently wet, and then subjected to a molding process using a doctor blade method, A ceramic green sheet having a thickness of 120 ⁇ m was obtained.
  • K 2 CO 3 , Na 2 CO 3 , Li 2 CO 3 , Nb 2 O 5 , and ZrO 2 were prepared.
  • the preparation amounts of a, b, x, y, and z are the compositions shown in the production process (4) in Table 3. Weighed so that
  • this second calcined powder and MnCO 3 are prepared.
  • the amount of w charged is as shown in Table 3.
  • the composition was weighed so as to have the composition shown in the production process (4).
  • Table 3 shows the composition of the components of Sample No. 12 and Sample Nos. 31 to 35 when charged.
  • composition analysis was performed using ICP-AES in the same manner and procedure as in Example 1, and K, Na, Li, Ba, Each molar part of (Li + Ba), Zr, and Mn was determined, and the piezoelectric constant d 33 and Smax / Emax value were measured.
  • Table 4 shows the composition components after firing of the sample numbers 31 to 35, the piezoelectric constant d 33 and the Smax / Emax values. In Table 4, the measurement result of sample number 12 is shown again.
  • each ceramic raw material contributing to the formation of the main component is weighed and calcined at the same time. Therefore, the piezoelectric constant d 33 is 105 to 143 pC / N, and the Smax / Emax value is 75 to 111 pm / V, which is lower than that of Sample No. 12.
  • sample No. 12 was calcined and synthesized after the alkali niobate-based composite oxide was calcined, and BaCO 3 , ZrO 2 , and MnCO 3 were added and calcined again. Therefore, the piezoelectric constant d 33 was 230 pC / The N and Smax / Emax values were 179 pm / V, and good results were obtained.
  • samples Nos. 41 and 42 were prepared by the same method and procedure as in Example 1.
  • composition analysis was performed using ICP-AES in the same manner and procedure as in Example 1, and K, Na, Li, Ba, (Li + Ba), The molar parts of Zr and Mn were determined, and the piezoelectric constant d 33 and Smax / Emax values were measured.
  • Table 5 shows the component composition at the time of preparation of sample numbers 41 and 42
  • Table 6 shows the component composition after firing, the piezoelectric constant d 33 and the Smax / Emax value.
  • sample number 12 is shown again for comparison.
  • a sample No. 41 ′ having the same composition as Sample No. 41 was prepared except that Mn was not added.
  • FIG. 5 is a diagram showing a mapping analysis of sample number 41
  • FIG. 6 is a diagram showing a mapping analysis of sample number 41 ′.
  • Sample No. 41 ′ not containing Mn shows that Ba is segregated in the piezoelectric ceramic composition as shown in FIG. 6 (indicated by S in the figure).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

圧電セラミック電子部品は、圧電セラミック素体1に内部電極3が埋設されている。圧電セラミック素体1は、少なくともLi及びNbを含む非鉛系のペロブスカイト化合物、Zr、及び2価の金属元素を含む複合酸化物を含有している。Li、2価の金属元素、及びこれらの総計の含有モル量は、それぞれNb1モル部に対し0.025~0.080モル部、0.045~0.086モル部、0.076~0.166モル部である。内部電極3はNiを含有している。ペロブスカイト化合物を仮焼合成した後、これに金属元素化合物及びZr化合物を添加して再度仮焼合成し、その後焼成して圧電セラミック素体1を得る。非鉛系圧電磁器組成物の配合比率を調整することで、Niと共焼成しても従来に比べ更なる圧電特性の向上が可能な非鉛系の圧電セラミック電子部品とその製造方法を実現する。

Description

圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法
 本発明は圧電セラミック電子部品及び圧電セラミック電子部品の製造方法に関し、より詳しくは、非鉛系の圧電磁器組成物を用いた積層圧電アクチュエータ等の圧電セラミック電子部品とその製造方法に関する。
 近年、小さい電圧でも大きな変位量の取得が可能な積層圧電アクチュエータ等の積層型圧電セラミック電子部品の需要が増加している。
 この種の圧電セラミック電子部品では、圧電セラミック層となるセラミックグリーンシートと内部電極となる導電膜とを交互に積層し、共焼成して製造するのが一般的である。
 内部電極材料としては、従来より、AgやAg-Pd合金等のAg系材料が広く使用されているが、Ag系材料はマイグレーションが発生し易く、このためマイグレーションの発生を効果的に抑制でき、かつ比較的低価格で容易に入手できるNiを使用するのが望ましい。
 このNiは、大気雰囲気中で焼成すると容易に酸化されることから、還元雰囲気で焼成する必要があり、還元雰囲気での共焼成が可能な圧電材料が必要となる。
 しかしながら、Pbを含有したチタン酸ジルコン酸系材料やチタン酸鉛系材料では、環境負荷が大きい上に、還元雰囲気で焼成しようとするとPbが還元されてしまい、所望の安定した圧電特性を得ることができない。
 そこで、近年、ニオブ酸アルカリ系材料を主成分とした非鉛系の圧電磁器組成物が各種開発されている。
例えば、特許文献1には、主成分が、一般式{(1-x)(K1-a-bNaLi)(Nb1-cTa)O-xM2M4O}(ただし、M2はCa、Ba、及びSrのうちの少なくともいずれか1種、M4はZr、Sn、及びHfのうちの少なくともいずれか1種、x、a、b、cは、それぞれ0.005≦x≦0.1、0≦a≦0.9、0≦b≦0.1、0≦a+b≦0.9、0≦c≦0.3である。)で表わされ、Mnが前記主成分100モルに対し2~15モルの範囲で含有され、かつ前記M4が前記主成分100モルに対し0.1~5.0モルの範囲で含有された圧電磁器組成物が提案されている。
 この特許文献1では、圧電磁器組成物中に所定量のMnを含有させると共に、Zrを化学量論組成よりも過剰に含有させることにより、Niが酸化しないような還元性雰囲気で焼成可能としている。そして、その実施例1では、希土類元素としてのYbを更に含有させることにより、Nb1モル部に対するLi及びCaの含有モル量をそれぞれ0.02モル部及び0.04モル部とした場合に、キュリー点Tcが150~290℃、圧電定数d33が85~143pC/N、電気機械結合係数kpが16.8~30.5%の圧電特性を得ている。
国際公開2008/152851号(請求項1、表1~6)
 しかしながら、上述した特許文献1の実施例1では、圧電定数d33は最大でも143pC/Nしか得られておらず、更なる圧電特性の向上が求められている。
 本発明はこのような事情に鑑みなされたものであって、圧電磁器組成物の配合比率を調整することで、Niと共焼成しても従来に比べ更なる圧電特性の向上が可能な非鉛系の圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法を提供することを目的とする。
 上記目的を達成するために本発明に係る圧電セラミック電子部品は、圧電セラミック素体と、該圧電セラミック素体の内部に埋設された内部電極とを備えた圧電セラミック電子部品であって、前記圧電セラミック素体が、少なくともLi及びNbを含む非鉛系のペロブスカイト化合物、Zr、及び2価の金属元素を含む複合酸化物を含有すると共に、前記Liの含有モル量は、前記Nb1モル部に対し0.025モル部以上0.080モル部以下であり、前記2価の金属元素の含有モル量が、前記Nb1モル部に対し0.045モル部以上0.086モル部以下であり、かつ、前記Li及び前記2価の金属元素の含有モル量の総計が、前記Nb1モル部に対し0.076モル部以上0.166モル部以下であり、前記内部電極がNiを含有していることを特徴としている。
 また、本発明に係る圧電セラミック電子部品は、圧電セラミック素体と、該圧電セラミック素体の表面に形成された外部電極とを備えた圧電セラミック電子部品であって、前記圧電セラミック素体が、少なくともLi及びNbを含む非鉛系のペロブスカイト化合物、Zr、及び2価の金属元素を含む複合酸化物を含有すると共に、前記Liの含有モル量は、前記Nb1モル部に対し0.025モル部以上0.080モル部以下であり、前記2価の金属元素の含有モル量が、前記Nb1モル部に対し0.045モル部以上0.086モル部以下であり、かつ、前記Li及び前記2価の金属元素の含有モル量の総計が、前記Nb1モル部に対し0.076モル部以上0.166モル部以下であり、前記外部電極がNiを含有していることを特徴としている。
 また、本発明の圧電セラミック電子部品は、前記Zrの含有モル量が、前記2価の金属元素の含有モル量に対し同等以上であるのが好ましい。
 Zrは圧電特性の向上に寄与することから、Zrの含有モル量を2価の金属元素の含有モル量に対し同等以上とすることにより、より一層の良好な圧電特性を得ることができる。
 また、本発明の圧電セラミック電子部品は、前記ペロブスカイト化合物が、K及びNaのうちの少なくともいずれか1種の元素を含有しているのが好ましい。
 また、本発明の圧電セラミック電子部品は、前記2価の金属元素が、Baであるのが好ましく、この場合、前記圧電セラミック素体は、Mnを含有しているのが好ましい。
 また、本発明者らは、上記圧電セラミック電子部品の作製に適した製造方法についても鋭意研究を重ねたところ、最初に、ペロブスカイト化合物を仮焼合成し、その後、この仮焼粉末に金属元素化合物及びZr化合物を添加して再度仮焼合成し、このようにして作製された圧電磁器組成物を使用することにより、上述した所望の圧電セラミック電子部品を得ることができることが分かった。
 すなわち、本発明に係る圧電セラミック電子部品の製造方法は、少なくともNb、Li、Zr、及び2価の金属元素を含有した圧電セラミック素体を形成する圧電セラミック電子部品の製造方法であって、前記Liの含有量が、前記Nb1モル部に対し0.025モル部以上0.080モル部以下となるように、少なくともNb化合物及びLi化合物を混合して仮焼し、第1の仮焼粉末を作製する工程と、前記2価の金属元素の含有モル量が、前記Nb1モル部に対し0.045モル部以上0.086モル部以下であって前記2価の金属元素及び前記Liの含有モル量の総計が前記Nb1モル部に対し0.076モル部以上0.166モル部以下となるように、金属元素化合物、Zr化合物、及び前記第1の仮焼粉末を混合して仮焼し、第2の仮焼粉末を作製する工程とを含むことを特徴としている。
 また、本発明の圧電セラミック電子部品の製造方法は、前記第2の仮焼粉末とNiを含む電極材料とを一体的に成形し、成形体を作製する工程と、前記成形体を還元性雰囲気下で焼成する工程とを含むのが好ましい。
 これによりNiと共焼結しても良好な圧電特性を有する圧電セラミック電子部品を高効率に得ることができる。
 さらに、本発明の圧電セラミック電子部品の製造方法は、前記金属元素化合物が、Ba化合物であるのが好ましい。
 本発明の圧電セラミック電子部品によれば、圧電セラミック素体が、少なくともLi及びNbを含む非鉛系のペロブスカイト化合物、Zr、及び2価の金属元素を含む複合酸化物を含有すると共に、Nb、Li、及び2価の金属元素の各含有モル量が上述した範囲とされているので、他の添加物を添加することなく、圧電セラミック素体を形成するセラミック材料の配合比率を調整するのみで、従来に比べより一層の良好な圧電特性を有する非鉛系の圧電セラミック電子部品を得ることが可能となる。
 また、本発明の圧電セラミック電子部品の製造方法によれば、所定組成のペロブスカイト化合物を仮焼合成した後、所定量の金属元素化合物及びZr化合物を添加して再度仮焼しているので、上述した高圧電特性を有する圧電セラミック電子部品を効率よく作製することができる。
本発明に係る圧電セラミック電子部品の一実施の形態を示す断面図である。 上記積層圧電アクチュエータの製造過程で得られるセラミックグリーンシートの斜視図である。 上記積層圧電アクチュエータの斜視図である。 本発明に係る圧電セラミック電子部品の他の実施の形態を示す断面図である。 試料番号41におけるBa元素のマッピング分析を示す図である。 試料番号41′におけるBa元素のマッピング分析を示す図である。
 次に、本発明の実施の形態を詳説する。
 図1は本発明に係る圧電セラミック電子部品としての積層圧電アクチュエータの一実施の形態を示す断面図であって、該積層圧電アクチュエータは、圧電セラミック素体1の両端部にAg等の導電性材料からなる外部電極2(2a、2b)が形成されると共に、前記圧電セラミック素体1には内部電極3(3a~3g)が埋設されている。
 該積層圧電アクチュエータは、内部電極3a、3c、3e、3gの一端が一方の外部電極2aと電気的に接続され、内部電極3b、3d、3fの一端は他方の外部電極2bと電気的に接続されている。そして、該積層圧電アクチュエータでは、外部電極2aと外部電極2bとの間に電圧が印加されると、圧電縦効果により矢印Xで示す積層方向に変位する。
 内部電極2は、Niを主成分(例えば、30wt%以上)とした導電性材料で形成されている。
 そして、上記圧電セラミック素体1は圧電磁器組成物で形成されると共に、該圧電磁器組成物は、主成分が非鉛系のペロブスカイト化合物であるニオブ酸アルカリ系複合酸化物、Zr、及び2価の金属元素を含む複合酸化物で形成されている。
 具体的には、圧電磁器組成物は、主成分を一般式(A)で表すことができる。
{(KaNa1-xLi}NbO+yMO+zZrO …(A)
 ここで、MはCa、Ba、Sr等の2価の金属元素である。
 すなわち、本圧電磁器組成物は、Nb1モル部に対しxモル部のLi、yモル部の2価の金属元素M、zモル部のZrを含有している。
 また、本発明で、主成分とは、一般式(A)で示すニオブ酸アルカリ系複合酸化物、Zr、及び2価の金属元素を含む複合酸化物の固溶体が、80%以上の存在比率を有することをいう。この場合、主成分の存在比率は粉末X線回折法(以下、「粉末XRD法」という。)により調べることができる。粉末XRD法で分析した場合、上述した固溶体とは異なる化合物が存在すると、X線の回折ピークは前記固溶体と異なる位置に検出される。したがって、予め既知の量の前記固溶体とは異なる化合物を前記固溶体と混合し、この混合物のピーク強度を測定しておく。そして、固溶体とは異なる化合物の量とピーク強度の関係を検量線として取得しておけば、X線回折のピーク強度から存在比率を検出することができる。 
 また、固溶体とは、ニオブ酸アルカリ系複合酸化物の結晶又は結晶粒内に少なくとも2価の金属元素M及びZrが存在した状態をいう。この固溶体の成分組成は、透過型電子顕微鏡(TEM)で、焼成後のニオブ酸アルカリ系複合酸化物の結晶又は結晶粒内を分析し、エネルギー分散型X線分析装置(EDS)により元素の存在比率を分析することにより同定することができる。
 ここで、x、yは、数式(1)~(3)を満足している。
 0.025≦x≦0.080   …(1)
 0.045≦y≦0.086   …(2)
 0.076≦x+y≦0.166 …(3)
 尚、一般式(A)中、(yMO+zZrO)は、通常、MOとZrOとの合成物であるMZrOの複合酸化物形態で、ニオブ酸アルカリ系複合酸化物である{(KaNa1-xLi}NbOに固溶されている。
 そして、一般式(A)で表される圧電磁器組成物が、数式(1)~(3)を満足することにより、他の添加物を添加することなく主成分の配合比率を調整するのみで、従来に比べより一層の良好な圧電特性を有する非鉛系の積層圧電アクチュエータを得ることができる。
 本発明者らは、Nb1モル部に対するLiの含有モル量を0.016モル部から増量させたところ、キュリー点Tcが上昇する一方で、第2相転移点T2ndは低下し、この場合も圧電定数d33は高くなる傾向にあることが分かった。
 そして、2価の金属元素M及びLiの双方をNb1モル部に対しそれぞれ0.04モル部及び0.016モル部から増量させたところ、キュリー点Tcや第2相転移点T2ndを大きく変動させることなく、主成分組成を調整するのみで圧電特性をより一層向上させることができることが分かった。
 すなわち、一般式(A)で表される圧電磁器組成物において、Li及び2価の金属元素Mの配合比率を調整し、最適化することにより、より一層良好な圧電特性を有する非鉛系の圧電磁器組成物を得ることが可能となる。
 次に、x、yを数式(1)~(3)のように限定した理由を述べる。
(1)Nb1モル部に対するLiのモル部x
 圧電磁器組成物中でNb1モル部に対するLiのモル部xを0.016モル部以上とすることにより圧電定数d33を向上させることができる。しかしながら、主成分組成の調整のみで、例えば、圧電定数d33が170pC/N以上でかつ変位特性値Smax/Emax値(以下、「Smax/Emax値」という。)が120pm/V以上の良好な圧電特性を得るためには、Liの含有モル量は、2価の金属元素Mの含有モル量が数式(2)を満たす場合であっても、Nb1モル部に対し0.025モル部以上とする必要がある。一方、Liの含有モル量が、Nb1モル部に対し0.080モル部を超えると、絶縁性が低下し、所望の圧電性を得ることができなくなるおそれがある。 
 そこで、本実施の形態では、Nb1モル部に対するLiのモル部xを0.025モル部以上0.080モル部以下としている。
(2)Nb1モル部に対する2価の金属元素Mのモル部y
 Nb1モル部に対する2価の金属元素Mの含有モル量を0.04モル部以上とすることにより圧電定数d33を向上させることができる。しかしながら、主成分組成の調整のみで、例えば、圧電定数d33が170pC/N以上でかつSmax/Emax値が120pm/V以上の良好な圧電特性を得るためには、2価の金属元素Mの含有モル量は、Liの含有モル量が数式(1)を満たす場合であっても、Nb1モル部に対し0.045モル部以上とする必要がある。一方、2価の金属元素Mの含有量が、Nb1モル部に対し0.086モル部を超えると、2価の金属元素Mの含有モル量が過剰となってキュリー点Tcの低下が顕著となり、好ましくない。
 そこで、本実施の形態では、Nb1モル部に対する2価の金属元素Mのモル部yを0.045モル部以上0.086モル部以下としている。
(3)Nb1モル部に対する2価の金属元素MとLiのモル部の総計(x+y)
 Nb1モル部に対するLiのモル部x及び2価の金属元素Mのモル部yが数式(1)、(2)を満足する場合であっても、Nb1モル部に対するLiと2価の金属元素Mの各モル部の総計(x+y)が、0.076モル部以下になるとSmax/Emax値が120pm/V未満となり、所望の圧電特性を得ることができなくなるおそれがある。一方、Nb1モル部に対するLiと2価の金属元素Mの各モル部の総計(x+y)が、0.166モル部を超えると、電気機械結合係数kpの低下や、キュリー点Tc及びSmax/Emax値の低下等、各種特性の劣化を招くおそれがある。
 そこで、本実施の形態では、Nb1モル部に対するLiと2価の金属元素Mのモル部の総計(x+y)を、0.076モル部以上0.166モル部以下としている。
 このように本実施の形態では、一般式(A)が数式(1)~(3)を満足するように圧電磁器組成物の配合比率を調整しているので、Niが酸化しないような還元性雰囲気で焼成しても、従来に比べより一層良好な圧電特性を有する圧電セラミック電子部品を得ることができる。換言すると、内部電極材料にNiを使用しても、共焼成することが可能となり、これにより従来に比べより一層良好な圧電特性を有する非鉛系の積層圧電アクチュエータを安定的かつ低コストで得ることができる。
 尚、圧電セラミック電子部品の製造方法としては、後述するように最初にニオブ酸アルカリ系複合酸化物を仮焼合成し、その後、2価の金属元素M及びZrを含有した酸化物を添加して再度仮焼合成することにより、2価の金属元素MとLiとを首尾よく結晶粒内に固溶させることができ、これにより所望の固溶体を主成分とした上記圧電セラミック電子部品を効率良く得ることができる。
 また、Zrの含有モル量は、特に限定されるものではないが、Zrは、圧電磁器組成物中で2価の金属元素Mと結合してMZrOの形態で存在し、しかも、Zrは圧電特性の向上に寄与することから、MZrOで表される化学量論組成よりも同等乃至過剰に含有させることにより、圧電定数d33等の圧電特性の更なる向上が可能である。すなわち、ZrのNb1モル部に対するモル部zは、Nb1モル部に対する2価の金属元素Mのモル部yと同等以上であるのが好ましく、具体的には、数式(4)を満足するのが好ましい。
 y≦z …(4)
 尚、一般式(A)中の焼成後のK、Naの含有モル量は特に限定されるものではなく、例えば 0.02≦a≦1.00、0≦b≦0.98の範囲で任意の値に設定することができる。
 また、本発明は、主成分が一般式(A)を満足すればよく、必要に応じて各種添加物を含有させるのも好ましい。例えば、上記主成分に対し、副成分としてMnを含有させるのも好ましく、これにより電気機械結合係数や圧電定数等の圧電特性の向上を図ることができる。
 例えば、2価の金属元素MがBaで形成するときに圧電磁器組成物中にMnを含有させない場合は、Baは圧電磁器組成物中に偏析するおそれがある。そして、このようにBaが圧電磁器組成物中に偏析すると、斯かる偏析部分が特性発現を阻害し、圧電特性を十分に向上させることができなくなるおそれがある。
 これに対し2価の金属元素MがBaで形成するときに圧電磁器組成物中にMnを含有させた場合は、Baは圧電磁器組成物中で偏析するのが抑制されて均一乃至略均一に分布する。そして、このようにBaが圧電磁器組成物中に均一乃至略均一に分布させることにより、電気機械結合係数や圧電定数等の圧電特性の向上を図ることができる。
 この場合、圧電磁器組成物は、一般式(B)で表すことができる。
{(KNa1-xLi}NbO+yBaO+zZrO+wMnO …(B)
 また、上述のように圧電磁器組成物中にMnを含有させると以下のような作用効果を奏することもできる。
 すなわち、主成分がニオブ酸アルカリ系複合酸化物を含有した圧電材料を還元性雰囲気で焼成すると、酸素空孔が形成され易く、このため全体の電荷が中性を保持するように、蒸発しやすいアルカリ金属元素(K、Na、Li)が結晶格子から離脱し易くなる。
 しかしながら、副成分としてMnを含有させると、MnはアクセプタとしてNbサイトに固溶し、還元雰囲気下の焼成時に形成される酸素空孔の電荷を或る程度補償することが可能となる。しかも、Zrを化学量論組成よりも過剰に示加すると(y<z)、Mnと同様、アクセプタとしてNbサイトに固溶し、還元雰囲気下の焼成時に形成される酸素空孔の電荷を効果的に補償することが可能となり、更なる圧電特性の向上が可能な積層圧電アクチュエータを安定的に得ることが可能となり、信頼性向上を図ることができる。
 そして、本発明は、特許文献1の実施例3のようにNi等の添加物を含有させるのも好ましく、これにより主成分組成の配合比率の最適化との相乗作用を発揮して、より良好な圧電特性を有する積層圧電アクチュエータの実現が期待される。
 次に、上記積層圧電アクチュエータの製造方法を詳述する。
 まず、セラミック素原料として、Liを含有したLi化合物、Nbを含有したNb化合物を用意し、必要に応じてKを含有したK化合物、Naを含有したNa化合物を用意する。尚、セラミック素原料の化合物の形態は、酸化物、炭酸塩、水酸化物、フッ化物、塩化物いずれであってもよい。
 次に、焼成後の圧電磁器組成物(圧電セラミック素体)中のLiの含有量が、Nb1モル部に対し0.032モル部以上0.075モル部以下となるように、前記セラミック素原料を秤量した後、これら秤量物を部分安定化ジルコニア(以下、「PSZ」という。)ボール等の粉砕媒体が内有されたボールミルに投入し、エタノール等の溶媒下、十分に湿式粉砕し混合物を得る。
 そして、この混合物を乾燥させた後、所定温度(例えば、850~1000℃)で所定時間仮焼して合成し、解砕し、これによりニオブ酸アルカリ系複合酸化物からなる第1の仮焼粉末を得る(第1の仮焼処理)。
 次に、2価の金属元素Mを含有したM化合物、及びZrを含有したZr化合物を用意する。尚、M化合物及びZr化合物の形態についても、酸化物、炭酸塩、水酸化物、塩化物いずれであってもよい。
 次いで、焼成後の圧電磁器組成物中の2価の金属元素Mの含有モル量が、Nb1モル部に対し0.045モル部以上0.086モル部以下であって前記2価の金属元素M及び前記Liの含有モル量の総計がNb1モル部に対し0.075モル部以上0.166モル部以下であり、Zrの含有モル量が好ましくは2価の金属元素Mの含有モル量と同等以上となるように、第1の仮焼粉末、M化合物、及びZr化合物を秤量し、これら秤量物をPSZボール等の粉砕媒体が内有されたボールミルに投入し、エタノール等の溶媒下、十分に湿式粉砕し混合物を得る。
 そして、この混合物を乾燥させた後、所定温度(例えば、850~1000℃)で所定時間仮焼して合成し、解砕し、主成分粉末である第2の仮焼粉末を得る(第2の仮焼処理)。
 これによりLi及び2価の金属元素Mの双方が結晶粒内に固溶した上記圧電磁器組成物を得ることができる。
 すなわち、例えば、主成分の形成に寄与するセラミック素原料の全てを同時に一括して秤量し、1回の仮焼処理で合成してもLi及び2価の金属元素Mの双方を結晶粒子内に固溶させるのが困難であり、本発明の効果を発現できるような固溶体を形成することができない。1回の仮焼処理で合成した場合、添加元素によっては合成反応や合成速度が異なるため、ペロブスカイト構造でない異相が生成され、主成分の合成が一部阻害されるおそれがある。
 また、ニオブ酸アルカリ系複合酸化物を仮焼合成した後、2価金属元素化合物及びZr化合物を添加し、焼成しても、上述と同様、本発明の効果を発現できるような固溶体を形成することができない。これは一旦ニオブ酸アルカリ系複合酸化物が合成されると、2価金属元素化合物やZr化合物をニオブ酸アルカリ系複合酸化物に固溶できないためである。
 さらに、金属元素化合物とZr化合物との合成物を作製した後、これらをアルカリ金属化合物と混合させて主成分を仮焼合成しても、1回の仮焼処理で合成した場合と同様、添加元素によって合成反応や合成の速度が異なるため、特性に影響を及ぼす不純物が合成されるおそれがある。
 これに対し、上述したように仮焼処理を第1の仮焼処理と第2の仮焼処理の2回に分けて行った場合は、{(KNa1-xLi}NbOとMZrOの固溶体を主成分とした所望の圧電磁器組成物を得ることができる。すなわち、第1の仮焼処理でLi等のアルカリ金属の一部は揮散するものの、揮散しなかったアルカリ金属はペロブスカイト構造の結晶格子に配位されて結晶粒内に堅固に固溶し、これにより所望組成のニオブ酸アルカリ系複合酸化物からなる第1の仮焼粉末を作製することができる。そして、続く第2の仮焼処理で第1の仮焼粉末、M化合物、及びZr化合物の混合物を仮焼することにより、第1の仮焼粉末はその組成を維持した状態でM化合物及びZr化合物を含む複合酸化物と固溶し、これにより所望の固溶体を形成した圧電磁器組成物を得ることができると考えられる。
 次に、このようにして得られた第2の仮焼粉末に対し、必要に応じMnCO等の各種添加物を添加し、その後、有機バインダ、分散剤を加え、純水等を溶媒としてボールミル中で湿式混合し、セラミックスラリーを得る。そしてその後、ドクターブレード法等を使用して成形加工をすることによって、セラミックグリーンシートを作製する。
 次いで、Niを主成分とした内部電極用導電性ペーストを使用し、図2に示すように上記セラミックグリーンシート4(4a~4g)上にスクリーン印刷によって所定形状の導電層5(5a~5g)を形成する。
 次に、これら導電層5a~5gが形成されたセラミックグリーンシート4a~4gを積層した後、導電層5a~5gが形成されていないセラミックグリーンシート6a、6bで挟持し、圧着する。そしてこれにより導電層5a~5gとセラミックグリーンシート4a~4gが交互に積層されたセラミック積層体を作製する。次いで、このセラミック積層体を所定寸法に切断してアルミナ製の匣(さや)に収容し、所定温度(例えば、250~500℃)で脱バインダ処理を行った後、還元雰囲気下、所定温度(例えば、1000~1160℃)で焼成し、内部電極3a~3gが埋設された圧電セラミック素体1を形成する。
 次いで、圧電セラミック素体1の両端部にAg等からなる外部電極用導電性ペーストを塗布し、所定温度(例えば、750℃~850℃)で焼付け処理を行って図3に示すように外部電極2a、2bを形成する。そしてこの後、所定の分極処理を行ない、これにより積層圧電アクチュエータが製造される。尚、外部電極2a、2bは、密着性が良好であればよく、例えばスパッタリング法や真空蒸着法等の薄膜形成方法で形成してもよい。
 このように本実施の形態では、ニオブ酸アルカリ系複合酸化物からなる所望組成の第1の仮焼粉末を作製し、その後金属元素化合物及びZr化合物を第1の仮焼粉末と混合させて再度仮焼し、第2の仮焼粉末を作製しているので、再度の仮焼過程ではLi等のアルカリ金属の揮散が抑制されると共に、2価の金属元素MやZrを結晶粒内に容易に固溶させることができ、これにより所望組成の固溶体を主成分とした良好な圧電特性を有する積層圧電アクチュエータを得ることができる。
 そして、上記積層圧電アクチュエータは、セラミックグリーンシート4が上記圧電磁器組成物で形成され、かつ内部電極がAg等の貴金属材料ではなくNiを主成分としているので、低コストで良好な圧電特性を有し、マイグレーションの発生抑制に効果的な実用性の優れた圧電セラミック電子部品を得ることができる。
 図4は本発明に係る圧電セラミック電子部品の他の実施の形態としての単板型の圧電アクチュエータの他の実施の形態を示す断面図である。
 すなわち、この圧電アクチュエータは、圧電セラミック素体11の表面にNi等の導電性材料からなる外部電極12a、12bが形成されている。そして、該圧電アクチュエータでは、外部電極12aと外部電極12bとの間に電圧が印加されると、圧電縦効果により矢印Y方向に変位する。
 この圧電アクチュエータは、上述した成分組成を有する成形体をシート工法やプレス加工を使用して作製した後、Niを主成分とした外部電極用導電性ペーストを成形体の両表面に塗布し、これを還元雰囲気下、共焼成することにより、容易に作製することができる。
 尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、圧電セラミック電子部品として積層圧電アクチュエータや単板型の圧電アクチュエータを例示したが、各種の圧電部品に適用可能なのはいうまでもない。
 また、2価の金属元素Mの代表例としては、Ca、Sr、及びBaが挙げられるが、その他の2価の金属元素、例えばMgを含んでいてもよい。Mgは、Ca、Sr、又はBaに固溶して結晶粒内に存在する可能性があるが、特性に影響を与えるものではない。
 次に、本発明の実施例を具体的に説明する。
 表1は、試料番号1~24の各試料の仕込み時の組成成分を示している。
Figure JPOXMLDOC01-appb-T000001
 すなわち、まず、セラミック素原料として、KCO、NaCO、LiCO、Nbを用意した。そして、一般式:[{(KNa1-xLi}NbO]において、a、b、xの仕込み量が表1となるように、前記セラミック素原料を秤量した。次いで、これら秤量物を、直径2mmのPSZボールが内有されたボールミルに投入し、エタノールを溶媒にして十分に湿式で混合した。そして、得られた混合物を乾燥した後、850℃の温度で、大気中2時間仮焼して解砕し、これにより第1の仮焼粉末を得た。
 次いで、この第1の仮焼粉末に加え、BaCO、ZrOを用意し、一般式:[{(KNa1-xLi}NbO+yBaO+zZrO]において、y、zの仕込み量が表1となるように、前記第1の仮焼粉末、BaCO、及びZrOを秤量した。次いで、これら秤量物を上述と同様、PSZボールが内有されたボールミルに投入し、エタノールを溶媒にして十分に湿式で混合した。そして、得られた混合物を乾燥した後、850℃の温度で、大気中2時間仮焼し、これにより第2の仮焼粉末を得た。
 この粉末を、粉末XRD法を用いてペロブスカイト構造を有するか否かを確認した。ペロブスカイト構造の存在は、X線回折法によられたX線回折パターンの特定の位置にX線回折ピークが現れるか否かにより確認することができる。例えば、非特許文献1には(Na0.350.65)NbOの粉末X線回折データが記載されている。
Acta Crystallogr.,Sec.A, 34 309(1978) したがって、第2の仮焼粉末のXRDデータと非特許文献1に記載のXRDデータとを比較し、各ピークの強度比、面間隔dに対するピーク位置が類似していれば、アルカリ金属とニオブを含むペロブスカイト型化合物と判断することができる。
 次に、この第2の仮焼粉末、及びMnCOを用意し、一般式:[{(KNa1-xLi}NbO+yBaO+zZrO+wMnO]において、wの仕込み量が表1となるように秤量し、有機バインダ、分散剤、及び純水と共にPSZボールが内有されたボールミルに投入して十分に湿式で混合し、その後ドクターブレード法を使用して成形加工を施し、厚みが120μmのセラミックグリーンシートを得た。
 次いで、このセラミックグリーンシートを焼成後直径10mmの円形状となるように打ち抜き、その後、この円形状に打ち抜かれたセラミックグリーンシートを11枚積層し、約2.45×10Paの圧力で加圧し、セラミック成形体を得た。
 次に、金属NiとNiOが平衡状態となる平衡酸素分圧よりも0.5桁還元側となるように調整された還元性雰囲気下、上記セラミック成形体を約1100℃の温度で2時間焼成し、圧電セラミック素体を得た。そして、この圧電セラミック素体の両主面にスパッタリング処理を行い、Agからなる外部電極を形成した後、80℃のシリコーンオイル中で3kV/mmの電界を30分間印加し、これにより試料番号1~24の試料を得た。
 次に、試料番号1~24の各試料について、圧電定数d33、Smax/Emax値、キュリー点Tc、第2相転移点T2nd、径方向共振振動の電気機械結合係数kpを測定した。
 圧電定数d33は、d33メータを使用し、測定周波数110Hzで0.25Nrmsの力を負荷し、そのときの発生電荷量から求めた。
 また、Smax/Emax値は、以下のようにして求めた。
 すなわち、測定周波数1kHzで0.5~11kV/mmの電界Eを印加し、各試料の径方向の変位量をレーザードップラー振動計で測定し、この測定値を直径(=10mm)で除算して歪みSを求め、次いでこの歪みSを電界Eで除算して変位特性値S/Eを算出し、この変位特性値S/Eの最大値をSmax/Emax値とした。
 キュリー点Tcは、インピーダンスアナライザで測定周波数1kHzにおける比誘電率εrの温度特性を測定し、比誘電率εrの極大温度を算出し、これをキュリー点Tcとした。
 第2相転移点T2ndも同様に、キュリー点Tcよりも低温側の比誘電率の極大温度を算出し、これを第2相転移点T2ndとした。 
 また、試料番号1~24の各圧電セラミック素体について、粉末XRD法を使用し、温度を変化させ、温度に対する主成分の結晶系を分析した。一般にキュリー点Tc及び第2相転移点T2ndで結晶系が変化することが知られている。したがって、斯かる結晶系の分析から、正方晶と立方晶の境界の温度をキュリー点Tc、斜方晶又は菱面体晶と正方晶の境界の温度を第2相転移点T2ndであることを確認した。
 電気機械結合係数kpは、インピーダンスアナライザを使用し、共振-***振法により求めた。すなわち、電気機械結合係数kp、共振周波数Fr、及び***振周波数Faとの間には数式(1)が成立する。
Figure JPOXMLDOC01-appb-M000002
 そして、上記インピーダンスアナライザを使用し、円板の広がり振動の共振周波数Fr及び***振周波数Faを測定し、斯かる測定結果を数式(1)に代入し、電気機械結合係数kpを算出した。
 尚、この電気機械結合係数kpの算出方法は、非特許文献2に準拠している。
一般社団法人電子情報技術産業協会発行、「JEITA EM-4501圧電セラミック振動子の電気的試験方法」,2010年9月
 さらに、上記試料番号1~24の各試料について、誘導結合プラズマ-発光分光分析法(Inductively Coupled Plasma Atomic Emission Spectroscopy;以下、「ICP-AES」という。)を使用して組成分析を行い、Nb1モル部に対する焼成後のK、Na、Li、Ba、(Li+Ba)、Zr、及びMnの各モル部を求めた。
 表2は試料番号1~24の焼成後の成分組成、圧電定数d33、Smax/Emax値、キュリー点Tc、第2相転移点T2nd、電気機械結合係数kpの各測定結果を示している。
 尚、圧電定数d33が170pC/N以上、Smax/Emax値は120pm/V以上、キュリー点Tcが160℃以上、第2相転移点T2ndが100℃以下、電気機械結合係数kpが31%以上を良品と判断した。
Figure JPOXMLDOC01-appb-T000003
 試料番号1は、圧電磁器組成物中にLiが含有されておらず、このため圧電定数d33は133pC/N、Smax/Emax値は86pm/Vといずれも低く、圧電特性に劣ることが分かった。
 試料番号2~6は、Nb1モル部に対するLi及びBaのモル部の総計(x+y)が0.051~0.074モル部であり、0.076モル部未満と少なく、このため圧電定数d33は146~165pC/N、Smax/Emax値は109~118pm/Vといずれも低く、圧電特性に劣ることが分かった。
 試料番号8、20は、Nb1モル部に対するBaのモル部yが0.035モル部と少なく、このため圧電定数d33は167~168pC/N、Smax/Emax値は114~118pm/Vと低く、圧電特性を十分に向上させることができなかった。
 試料番号15は、Nb1モル部に対するBaのモル部yが0.034モル部と少なく、このため190pC/Nの圧電定数d33が得られたものの、Smax/Emax値は115pm/Vと低くなった。
 いずれにしてもNb1モル部に対するBaのモル部yが0.045未満になると、圧電定数d33とSmax/Emax値を両立させるのが困難であることが試料番号8、15、20より分かった。
 試料番号14、19、23は、Nb1モル部に対するBaのモル部yが0.100~0.101モル部と過剰であるため、キュリー点Tcが100~120℃と低くなった。特に、試料番号23は、Nb1モル部に対するLi及びBaのモル部の総計(x+y)も0.172モル部と過剰であることから、圧電定数d33やSmax/Emax値も低下し、圧電特性の劣化を招くことも分かった。
 試料番号24は、Nb1モル部に対するLiのモル部xが0.081モル部と過剰であるため、絶縁性が低下して分極処理を行うことができず、圧電特性を測定することができなかった。
 これに対し試料番号7、9~13、16~18、21、及び22は、Nb1モル部に対するLiのモル部x及びBaのモル部yが、それぞれ0.025~0.080モル部、及び0.045~0.086モル部であり、LiとBaのモル部の総計(x+y)が0.076~0.166モル部といずれも本発明範囲内であるので、圧電定数d33は170~246pC/N、Smax/Emax値は122~187pm/Vと大きく、キュリー点Tcは160~310℃と高く、第2相転移点T2ndは30~100℃と低く、キュリー点Tcと第2相転移点T2ndとの差は十分であり、かつ電気機械結合係数kpは31.2~38.3%と良好な圧電特性が得られることが分かった。
 この実施例2では、異なる製造方法で試料を作製し、特性を評価した。
〔作製プロセス(1)〕
 上記実施例1で作製された試料番号12を用意し、これを作製プロセス(1)の試料とした。
〔作製プロセス(2)〕
 セラミック素原料として、KCO、NaCO、LiCO、Nb、BaCO、ZrO、及びMnCOを用意した。そして、一般式:[{(KNa1-xLi}NbO+yBaO+zZrO+wMnO]において、a、b、x、y、z、及びwの仕込み量が表3の作製プロセス(2)に示す組成となるように秤量した。
 次いで、これら秤量物を、直径2mmのPSZボールが内有されたボールミルに投入し、エタノールを溶媒にして十分に湿式で混合した。そして、得られた混合物を乾燥した後、850℃の温度で、大気中2時間仮焼して解砕し、これにより仮焼粉末を得た。
 次に、この仮焼粉末を有機バインダ、分散剤、及び純水と共にPSZボールが内有されたボールミルに投入して十分に湿式で混合し、その後ドクターブレード法を使用して成形加工を施し、厚みが120μmのセラミックグリーンシートを得た。
 その後は実施例1と同様の方法・手順で成形処理及び焼成処理等を行い、試料番号31~33の試料を作製した。
〔作製プロセス(3)〕
 セラミック素原料として、KCO、NaCO、LiCO、Nbを用意した。そして、一般式:[{(KNa1-xLi}NbO]において、a、b、xの仕込み量が表3の作製プロセス(3)に示す組成となるように、前記セラミック素原料を秤量した。次いで、これら秤量物を、直径2mmのPSZボールが内有されたボールミルに投入し、エタノールを溶媒にして十分に湿式で混合した。そして、得られた混合物を乾燥した後、850℃の温度で、大気中2時間仮焼し、これにより仮焼粉末を得た。
 次いで、この仮焼粉末に加え、BaCO、ZrO、及びMnCOを用意し、一般式:[{(KNa1-xLi}NbO+yBaO+zZrO+wMnO]において、y、z、wの仕込み量が表3の作製プロセス(3)に示す組成となるように、前記仮焼粉末、BaCO、ZrO、及びMnCOを秤量した。次いで、これら秤量物を有機バインダ、分散剤、及び純水と共にPSZボールが内有されたボールミルに投入して十分に湿式で混合し、その後ドクターブレード法を使用して成形加工を施し、厚みが120μmのセラミックグリーンシートを得た。
 その後は実施例1と同様の方法・手順で成形処理及び焼成処理等を行い、試料番号34の試料を作製した。
〔作製プロセス(4)〕
 BaCO及びZrOを用意し、BaZrOを形成するようにBaCO及びZrOを秤量した。次いで、これらの秤量物を、直径2mmのPSZボールが内有されたボールミルに投入し、エタノールを溶媒にして十分に湿式で混合した。そして、得られた混合物を乾燥した後、1000℃の温度で、大気中2時間仮焼し、これにより第1の仮焼粉末を得た。
 次に、この第1の仮焼粉末に加え、KCO、NaCO、LiCO、Nb、ZrOを用意した。そして、一般式[{(KNa1-xLi}NbO+yBaO+zZrO]において、a、b、x、y、及びzの仕込み量が表3の作製プロセス(4)に示す組成となるように秤量した。
 次いで、これら秤量物を、直径2mmのPSZボールが内有されたボールミルに投入し、エタノールを溶媒にして十分に湿式で混合した。そして、得られた混合物を乾燥した後、850℃の温度で、大気中2時間仮焼し、これにより第2の仮焼粉末を得た。
 次に、この第2の仮焼粉末及びMnCOを用意し、一般式:[{(KNa1-xLi}NbO+yBaO+zZrO+wMnO]において、wの仕込み量が表3の作製プロセス(4)に示す組成となるように秤量した。
 次いで、これらの秤量物を有機バインダ、分散剤、及び純水と共にPSZボールが内有されたボールミルに投入して十分に湿式で混合し、その後ドクターブレード法を使用して成形加工を施し、厚みが120μmのセラミックグリーンシートを得た。
 その後は実施例1と同様の方法・手順で成形処理及び焼成処理等を行い、試料番号35の試料を作製した。
 表3は、試料番号12及び試料番号31~35の仕込み時の成分組成を示している。
Figure JPOXMLDOC01-appb-T000004
 次に、試料番号31~35の各試料について、実施例1と同様の方法・手順でICP-AESを使用して組成分析を行い、焼成後のNb1モル部に対するK、Na、Li、Ba、(Li+Ba)、Zr、及びMnの各モル部を求め、さらに圧電定数d33及びSmax/Emax値を測定した。
 表4は試料番号31~35の焼成後の組成成分、圧電定数d33及びSmax/Emax値を示している。尚、この表4には試料番号12の測定結果を再掲している。
Figure JPOXMLDOC01-appb-T000005
 試料番号31~33は、主成分の形成に寄与する各セラミック素原料を同時に秤量して仮焼しているので、圧電定数d33は105~143pC/N、Smax/Emax値は75~111pm/Vとなり、試料番号12に比べて低くなった。 
 尚、試料番号31は、Nb1モル部に対するLi及びBaのモル部x、yが本発明範囲外であり、試料番号32は、Nb1モル部に対するBaのモル部yが本発明範囲外であるが、いずれにしてもセラミック素原料を同時に秤量して仮焼したのでは、本発明の要求を満たす結晶構造の固溶体を得るのは困難と考えられる。
 試料番号34は、ニオブ酸アルカリ系複合酸化物のみを仮焼合成し、その後他の成分(BaCO、ZrO、及びMnCO)を添加して焼成しているので、圧電定数d33は141pC/N、Smax/Emax値は102pm/Vとなり、この場合も試料番号12に比べて低くなった。
 試料番号35は、BaZrOを仮焼合成した後、各アルカリ金属化合物及びZrOを前記BaZrOと混合して仮焼しているので、圧電定数d33は94pC/N、Smax/Emax値は56pm/Vとなり、この場合も試料番号12に比べて低くなった。
 これに対し試料番号12は、ニオブ酸アルカリ系複合酸化物を仮焼合成した後、BaCO、ZrO、及びMnCOを添加して再度仮焼しているので、圧電定数d33は230pC/N、Smax/Emax値は179pm/Vと良好な結果が得られた。
 このように作製プロセスの相違により異なる圧電特性が得られることが分かった。圧電性の低下した各試料を粉末XRD法により分析した結果、主成分であるペロブスカイト構造ではない異相が多く検出され、主成分の合成が一部阻害されていた。そして、作製プロセス(1)のように、ニオブ酸アルカリ系複合酸化物を仮焼合成して第1の仮焼粉末を作製した後、この第1の仮焼粉末にBaCO、ZrO、及びMnCOを添加して再度仮焼し、その後焼成することにより、所望の圧電特性を有する圧電磁器組成物が得られることが分かった。
 まず、セラミック素原料として、KCO、NaCO、LiCO、Nbを用意した。そして、一般式:[{(KNa1-xLi}NbO]において、a、b、xの仕込み量が表5となるように、前記セラミック素原料を秤量した。次いで、これら秤量物を、直径2mmのPSZボールが内有されたボールミルに投入し、エタノールを溶媒にして十分に湿式で混合した。そして、得られた混合物を乾燥した後、850℃の温度で、大気中2時間仮焼して解砕し、これにより第1の仮焼粉末を得た。
 その後は実施例1と同様の方法・手順で試料番号41、42の試料を作製した。
 そして、試料番号41、42の各試料について、実施例1と同様の方法・手順でICP-AESを使用して組成分析を行い、Nb1モル部に対するK、Na、Li、Ba、(Li+Ba)、Zr、及びMnの各モル部を求め、圧電定数d33及びSmax/Emax値を測定した。
 表5は、試料番号41、42の仕込み時の成分組成を示し、表6は焼成後の成分組成、圧電定数d33及びSmax/Emax値を示している。尚、表5、6には、比較のため試料番号12を再掲している。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 この表5、6から明らかなように、Nb1モル部に対するLi及びBaの各モル部x、y、及びこれらモル部の総計(x+y)が本発明範囲内であれば、K及びNaの含有モル量が変動しても所望の良好な圧電特性を有する圧電磁器組成物が得られることが分かった。
 Mnを添加しなかった以外は試料番号41と同一組成の試料番号41′の試料を作製した。
 そして、試料番号41及び41′の各試料について、WDX(波長分散型X線分光装置)を使用し、Ba元素のマッピング分析を行った。
 図5は試料番号41のマッピング分析を示す図であり、図6は試料番号41′のマッピング分析を示す図である。
 Mnを含有していない試料番号41′は、図6に示すように、Baが圧電磁器組成物中に偏析しているのが分かる(図中、Sで示す。)
 一方、Mnを含有していない試料番号41は、図5に示すように、Baの圧電磁器組成物中での偏析が抑制されて均一乃至略均一に分布していることが確認された。
 そして、このようにBaが圧電磁器組成物中で均一乃至略均一に分布することにより、電気機械結合係数や圧電定数等の圧電特性の向上を図ることができると考えられる。
 圧電磁器組成物の配合比率を調整することで、Niと共焼成しても従来に比べ更なる圧電特性の向上が可能な非鉛系の圧電セラミック電子部品を実現する。
1 圧電セラミック素体
2a、2b 外部電極
3a~3g 内部電極
11 圧電セラミック素体
12a、12b 外部電極

Claims (9)

  1.  圧電セラミック素体と、該圧電セラミック素体の内部に埋設された内部電極とを備えた圧電セラミック電子部品であって、
     前記圧電セラミック素体が、少なくともLi及びNbを含む非鉛系のペロブスカイト化合物、Zr、及び2価の金属元素を含む複合酸化物を含有すると共に、前記Liの含有モル量は、前記Nb1モル部に対し0.025モル部以上0.080モル部以下であり、前記2価の金属元素の含有モル量が、前記Nb1モル部に対し0.045モル部以上0.086モル部以下であり、かつ、前記Li及び前記2価の金属元素の含有モル量の総計が、前記Nb1モル部に対し0.076モル部以上0.166モル部以下であり、
     前記内部電極がNiを含有していることを特徴とする圧電セラミック電子部品。
  2.  圧電セラミック素体と、該圧電セラミック素体の表面に形成された外部電極とを備えた圧電セラミック電子部品であって、
     前記圧電セラミック素体が、少なくともLi及びNbを含む非鉛系のペロブスカイト化合物、Zr、及び2価の金属元素を含む複合酸化物を含有すると共に、前記Liの含有モル量は、前記Nb1モル部に対し0.025モル部以上0.080モル部以下であり、前記2価の金属元素の含有モル量が、前記Nb1モル部に対し0.045モル部以上0.086モル部以下であり、かつ、前記Li及び前記2価の金属元素の含有モル量の総計が、前記Nb1モル部に対し0.076モル部以上0.166モル部以下であり、
     前記外部電極がNiを含有していることを特徴とする圧電セラミック電子部品。
  3.  前記Zrの含有モル量は、前記2価の金属元素の含有モル量に対し同等以上であることを特徴とする請求項1又は請求項2記載の圧電セラミック電子部品。
  4.  前記ペロブスカイト化合物は、K及びNaのうちの少なくともいずれか1種の元素を含有していることを特徴とする請求項1乃至請求項3のいずれかに記載の圧電セラミック電子部品。
  5.  前記2価の金属元素は、Baであることを特徴とする請求項1乃至請求項4のいずれかに記載の圧電セラミック電子部品。
  6.  前記圧電セラミック素体は、Mnを含有していることを特徴とする請求項5に記載の圧電セラミック電子部品。
  7.  少なくともNb、Li、Zr、及び2価の金属元素を含有した圧電セラミック素体を形成する圧電セラミック電子部品の製造方法であって、
     前記Liの含有量が、前記Nb1モル部に対し0.025モル部以上0.080モル部以下となるように、少なくともNb化合物及びLi化合物を混合して仮焼し、第1の仮焼粉末を作製する工程と、
     前記2価の金属元素の含有モル量が、前記Nb1モル部に対し0.045モル部以上0.086モル部以下であって前記2価の金属元素及び前記Liの含有モル量の総計が前記Nb1モル部に対し0.076モル部以上0.166モル部以下となるように、金属元素化合物、Zr化合物、及び前記第1の仮焼粉末を混合して仮焼し、第2の仮焼粉末を作製する工程とを含むことを特徴とする圧電セラミック電子部品の製造方法。
  8.  前記第2の仮焼粉末とNiを含む電極材料とを一体的に成形し、成形体を作製する工程と、前記成形体を還元性雰囲気下で焼成する工程とを含むことを特徴とする請求項7記載の圧電セラミック電子部品の製造方法。
  9.  前記金属元素化合物は、Ba化合物であることを特徴とする請求項7又は請求項8記載の圧電セラミック電子部品の製造方法。
PCT/JP2016/070107 2015-07-09 2016-07-07 圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法 WO2017006984A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017527489A JP6489333B2 (ja) 2015-07-09 2016-07-07 圧電セラミック電子部品の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015137664 2015-07-09
JP2015-137664 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017006984A1 true WO2017006984A1 (ja) 2017-01-12

Family

ID=57685027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070107 WO2017006984A1 (ja) 2015-07-09 2016-07-07 圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法

Country Status (2)

Country Link
JP (1) JP6489333B2 (ja)
WO (1) WO2017006984A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005627A (ja) * 2019-06-26 2021-01-14 株式会社村田製作所 圧電磁器組成物、圧電磁器組成物の製造方法及び圧電セラミック電子部品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023066639A (ja) 2021-10-29 2023-05-16 日本特殊陶業株式会社 圧電素子、および圧電素子の製造方法
WO2024122087A1 (ja) * 2022-12-08 2024-06-13 株式会社村田製作所 圧電素子、圧電磁器組成物、圧電素子の製造方法及び圧電磁器組成物の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100807A1 (ja) * 2005-03-24 2006-09-28 Murata Manufacturing Co., Ltd 圧電素子、及び圧電素子の製造方法
JP2007258280A (ja) * 2006-03-20 2007-10-04 Tdk Corp 積層型圧電素子
JP2009242166A (ja) * 2008-03-31 2009-10-22 Tdk Corp 圧電磁器及びその製造方法、並びに当該圧電磁器を用いた圧電素子
JP2010269983A (ja) * 2009-05-22 2010-12-02 Tdk Corp 圧電磁器組成物及び圧電素子
JP2013014470A (ja) * 2011-07-04 2013-01-24 Taiyo Yuden Co Ltd 圧電セラミッックス及び積層圧電セラミックス部品
JP2014177355A (ja) * 2013-03-13 2014-09-25 Taiyo Yuden Co Ltd 圧電セラミックス、圧電素子、及び圧電セラミックスの製造方法
JP5710077B2 (ja) * 2012-11-27 2015-04-30 富山県 圧電セラミックスの製造方法、圧電セラミックス、および圧電素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006100807A1 (ja) * 2005-03-24 2006-09-28 Murata Manufacturing Co., Ltd 圧電素子、及び圧電素子の製造方法
JP2007258280A (ja) * 2006-03-20 2007-10-04 Tdk Corp 積層型圧電素子
JP2009242166A (ja) * 2008-03-31 2009-10-22 Tdk Corp 圧電磁器及びその製造方法、並びに当該圧電磁器を用いた圧電素子
JP2010269983A (ja) * 2009-05-22 2010-12-02 Tdk Corp 圧電磁器組成物及び圧電素子
JP2013014470A (ja) * 2011-07-04 2013-01-24 Taiyo Yuden Co Ltd 圧電セラミッックス及び積層圧電セラミックス部品
JP5710077B2 (ja) * 2012-11-27 2015-04-30 富山県 圧電セラミックスの製造方法、圧電セラミックス、および圧電素子
JP2014177355A (ja) * 2013-03-13 2014-09-25 Taiyo Yuden Co Ltd 圧電セラミックス、圧電素子、及び圧電セラミックスの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005627A (ja) * 2019-06-26 2021-01-14 株式会社村田製作所 圧電磁器組成物、圧電磁器組成物の製造方法及び圧電セラミック電子部品
JP7352140B2 (ja) 2019-06-26 2023-09-28 株式会社村田製作所 圧電磁器組成物の製造方法及び圧電セラミック電子部品

Also Published As

Publication number Publication date
JPWO2017006984A1 (ja) 2018-02-22
JP6489333B2 (ja) 2019-03-27

Similar Documents

Publication Publication Date Title
JP4400754B2 (ja) 圧電体磁器組成物、及び圧電セラミック電子部品
JP3945536B2 (ja) 圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電セラミック電子部品
CN102863214B (zh) 压电陶瓷及层叠压电陶瓷部件
JP5561483B2 (ja) 圧電セラミック電子部品
KR101191246B1 (ko) 압전 세라믹스 및 그 제조 방법 및 압전 디바이스
JP2014139132A (ja) 圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法
JPWO2007094115A1 (ja) 圧電磁器組成物
JP2010052999A (ja) 圧電セラミックス及びその製造方法並びに圧電デバイス
JP5337513B2 (ja) 圧電/電歪磁器組成物
US20130162108A1 (en) Piezoelectric ceramic and piezoelectric device
JP7426875B2 (ja) 圧電素子及びその製造方法
JP6489333B2 (ja) 圧電セラミック電子部品の製造方法
JP4432969B2 (ja) 圧電磁器組成物、及び圧電素子
JP5937774B1 (ja) 圧電磁器およびその製法、ならびに電子部品
KR100843067B1 (ko) 압전 자기 조성물 및 압전 액츄에이터
JP5597368B2 (ja) 積層型電子部品およびその製法
JP5999397B2 (ja) 圧電セラミック、圧電セラミックの製造方法及び圧電セラミック電子部品
JP2009102221A (ja) 圧電/電歪磁器組成物及び圧電/電歪素子
JP6094682B2 (ja) 積層型圧電セラミック電子部品、及び積層型圧電セラミック電子部品の製造方法
JP5190894B2 (ja) 圧電体又は誘電体磁器組成物並びに圧電体デバイス及び誘電体デバイス
JP7261047B2 (ja) 積層型圧電セラミックス及びその製造方法、積層型圧電素子並びに圧電振動装置
JP5894222B2 (ja) 積層型電子部品およびその製法
WO2024122087A1 (ja) 圧電素子、圧電磁器組成物、圧電素子の製造方法及び圧電磁器組成物の製造方法
WO2024070625A1 (ja) 無鉛圧電組成物、及び圧電素子
WO2024070849A1 (ja) 無鉛圧電組成物、及び圧電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017527489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821452

Country of ref document: EP

Kind code of ref document: A1