WO2017006455A1 - 冷却水ラインの汚れ評価方法 - Google Patents

冷却水ラインの汚れ評価方法 Download PDF

Info

Publication number
WO2017006455A1
WO2017006455A1 PCT/JP2015/069622 JP2015069622W WO2017006455A1 WO 2017006455 A1 WO2017006455 A1 WO 2017006455A1 JP 2015069622 W JP2015069622 W JP 2015069622W WO 2017006455 A1 WO2017006455 A1 WO 2017006455A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
contamination
water line
condenser
evaluating
Prior art date
Application number
PCT/JP2015/069622
Other languages
English (en)
French (fr)
Inventor
義尚 岸根
元揮 谷垣
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to PCT/JP2015/069622 priority Critical patent/WO2017006455A1/ja
Publication of WO2017006455A1 publication Critical patent/WO2017006455A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00

Definitions

  • the present invention relates to a method for evaluating the fouling of a refrigeration system equipped with a compression refrigerator or an absorption refrigerator.
  • the present invention relates to a method for evaluating contamination of a cooling water line when circulating cooling water through a condenser of the refrigerator.
  • water systems including various heat exchangers such as refrigerators are provided, and cooling water and the object to be cooled are brought into contact with each other through the heat exchanger to cool the object to be cooled (in some cases, latent heat is used). Including those that only take away).
  • a refrigerant such as chlorofluorocarbon or water is used as an object to be cooled.
  • various heat exchangers are used, and air, an oily substance, and various organic substances are used as a body to be cooled.
  • condensers those that are accompanied by condensation of the cooled object are referred to as condensers, and those that are not accompanied by condensation of the cooled object are referred to as coolers.
  • a compression type refrigerator with condensation will be mainly described as an example.
  • the present invention is not limited to the compression type refrigerator, and can be applied to general heat exchangers.
  • the cooling water in order to save water, the cooling water is operated with higher concentration and lower flow rate. Under such operating conditions, the ionic component accompanying the evaporation of the cooling water may concentrate, and the scale may precipitate and adhere to the refrigerator. Microorganisms propagate in the cooling water, and slime may adhere to the refrigerator.
  • Heat transfer from the object to be cooled to the cooling water is hindered by the adhesion of dirt such as scale and slime.
  • the amount of the object to be cooled decreases; the pressure increases; the temperature of the object to be cooled increases, the load on the compressor increases, and the high pressure cut (the compressor stops at a certain level or more). ) May occur. Due to adhesion of dirt such as scale and slime, the refrigerating capacity is reduced and the power consumption is increased, so that the energy efficiency is lowered.
  • LTD temperature after cooling of the cooled object ⁇ cooling water outlet temperature
  • ATD temperature after cooling of the cooled object ⁇ cooling water inlet temperature The temperature after cooling of the cooled object is defined as the heat exchanger outlet temperature of the cooled object. Can be measured.
  • Patent Document 2 discloses that the LTD and ATD are corrected, and the corrected LTD value or corrected ATD value is compared with a reference value to obtain a heat exchanger. It is described that the dirt is evaluated.
  • the absolute value is affected by the thermometer mounting position, cooling machine specifications and model, etc.
  • it is necessary to collect and accumulate LTD, ATD, correction LTD, and correction ATD over the long term, and to grasp the dirt index due to the increasing tendency. Therefore, in order to grasp the increasing tendency of dirt, a period of at least about two weeks is required, and the period has been required to be shortened.
  • An object of the present invention is to provide a dirt evaluation method capable of obtaining dirt on a cooling water line of a refrigeration system with high accuracy.
  • the method for evaluating contamination of a cooling water line is a method for evaluating contamination in a refrigeration system including a condenser and an evaporator, wherein the contamination of the cooling water line in which cooling water is circulated through the condenser is evaluated.
  • the LTD of the condenser is measured, and the cooling water is based on the measurement result of the LTD when the load of the evaporator or the condenser is a predetermined value or more, or when the refrigerator is in steady operation. Evaluate line contamination.
  • the refrigeration system compresses the medium from the evaporator by the compressor and directs it to the condenser to condense, and introduces the condensed liquid into the evaporator through an expansion valve for evaporation. It is configured.
  • the load of the evaporator or the condenser is a temperature difference between a brine inlet temperature and a brine outlet temperature and a rated brine (sometimes cold water or cooling water) temperature. It is the ratio to the difference.
  • the brine outlet temperature T 2 extracts the LTD in the case where the predetermined temperature or less, to evaluate the contamination of the cooling water line based on the extracted LTD.
  • the LTD when the brine outlet temperature T 2 is equal to or lower than the predetermined temperature and (T 1 ⁇ T 2 ) / (rated brine temperature difference) is equal to or higher than the predetermined value is extracted and extracted.
  • the contamination of the cooling water line is evaluated based on the LTD.
  • the LTD when the difference T 4 -T 3 between the cooling water inlet temperature T 3 and the outlet temperature T 4 of the condenser is equal to or greater than a certain value is extracted, and based on the extracted LTD Evaluate dirt on the cooling water line.
  • an LTD is extracted when the current value or power value of the compressor is equal to or greater than a predetermined ratio of the rated current value or the rated power value, and the cooling water line is cleaned based on the extracted LTD. evaluate.
  • the pressure of the temperature T 6 or medium medium flowing into the condenser extracts LTD when a predetermined value or more, to evaluate the contamination of the cooling water line based on the extracted LTD .
  • an LTD-time graph is created by continuing plots so that the extracted LTD is continuous in the LTD-time graph, and the contamination of the cooling water line is evaluated from this graph.
  • Cooling water is passed through the cooling water line of the condenser, and this cooling water is cooled by a cooling tower or the like provided in the line. If the contamination of the cooling water line increases, the LTD of the condenser (T 5 -T 4 described later) increases, so that the LTD becomes an index value of the contamination.
  • the refrigerator starts and stops (start / stop)
  • the relation between the LTD and the contamination of the cooling water line is small when the refrigerator is in an unsteady state immediately after the start.
  • the load on the refrigerator is small, the heat exchange is not stable, so the correlation between the LTD and the contamination of the cooling water line is low. Therefore, in the present invention, the contamination state of the cooling water line is evaluated based on data when the load on the evaporator or the condenser is a predetermined value or more, or when the refrigerator is in steady operation.
  • the following effects can be obtained. 1) Based on the LTD at the time when the refrigerator is operated and heat exchange is performed stably, the heat exchange efficiency of the refrigerator can be accurately evaluated. 2) Adaptable to different driving loads depending on the season. 3) The trend of LTD can be easily understood. 4) It can be determined whether the change in LTD is due to a change in load or a change in efficiency. 5) When the refrigerant temperature rises, the LTD rises, but the rise in LTD is due to fouling, so the rate of rise is very slow. When the increase in LTD is rapid, it can be determined that only the refrigerant temperature is rising rapidly due to mechanical trouble.
  • FIG. 1 is a flowchart showing an example of a turbo compression refrigeration system.
  • the refrigerator 1 compresses a medium (for example, an HFC (hydrofluorocarbon) system, an HCFC (hydrochlorofluorocarbon) system, or a CFC (chlorofluorocarbon) system) with a turbo compressor 2, and guides it to a condenser 3 for condensation.
  • the cooling water cooled by the cooling tower 6 is circulated through the heat transfer tube (cooling coil) 3 a of the condenser 3 through the pump 7.
  • the difference T 5 -T 4 of the medium outlet temperature T 5 of the condenser 3 and the cooling water outlet temperature T 4 is LTD.
  • the temperatures T 1 to T 6 are measured by a temperature sensor.
  • the condensed liquid is introduced into the evaporator 5 through the expansion valve 4, evaporates and adiabatically expands, and cools the refrigerant (brine in this embodiment) flowing in the heat transfer coil 5a.
  • the steam is sent to the compressor 2 and compressed again.
  • the brine that has been heated by the heat exchanger in the load body 9 and passed through the heat transfer coil 5 a is passed through the pump 8, and the cooled cold brine is circulated through the load body 9.
  • a cooling water line is configured by the heat transfer tube 3a, the cooling tower 6, the pump 7, and the pipes 6A and 6B.
  • This cooling tower 6 has a casing (tower) 6a, an air inlet 6b provided on the side surface of the casing 6a, and a cooling water tank (pit) 6c provided at the bottom.
  • a filler 6d is accommodated in the casing 6a, and a cooling water sprinkling nozzle 6e is disposed above the filler 6d.
  • An opening 6g is provided at the top of the casing 6a, and a blower 6f is provided in the opening 6g.
  • the suction port of the pump 7 is connected to the vicinity of the bottom of the water tank 6c, and the discharge port of the pump 7 is connected to one end of the heat transfer tube (cooling coil) 3a via the cooling water forward piping 6A.
  • the other end of the heat transfer tube 3a is connected to a watering nozzle 6e of the cooling tower 6 via a cooling water return pipe 6B.
  • the water tank 6c is provided with a ball tap as a water level control means to which a water supply pipe for makeup water (ground water, tap water, industrial water, etc.) is connected, and the water level in the water tank 6c is set within a set range. It comes to hold.
  • a water supply pipe for makeup water ground water, tap water, industrial water, etc.
  • Ratio (T 1 -T 2 ) / (rated brine temperature difference) between the difference (T 1 -T 2 ) between the brine inlet temperature T 1 and the brine outlet temperature T 2 of the evaporator 5 and the rated brine temperature difference of the evaporator 5 ) Is the brine load.
  • FIG. 3 shows an example of the LTD of this system.
  • the LTD greatly varies depending on the start / stop of the refrigerator and the load fluctuation. Therefore, in this embodiment, the brine outlet temperature T 2 is below a predetermined temperature, and brine load to extract LTD where is above a predetermined value.
  • This predetermined value is preferably a value selected from 0.5 to 0.7.
  • extraction (filtering) of LTD data may be performed by any of the following methods i) to iv).
  • the difference T 4 -T 3 between the cooling water inlet temperature T 3 and the outlet temperature T 4 of the condenser 3 is a certain value or more, preferably T 4 -T 3 is the difference between the rated cooling water inlet temperature and the outlet temperature.
  • LTD is extracted when it is N% or more (N% is preferably 60% or more, more preferably 80% or more).
  • T 4 -T 3 is an index value for judging the stability of heat exchange. Generally, the higher the load, the more stable the heat exchange.
  • the brine outlet temperature T 2 is extracted LTD when more than a predetermined value.
  • the brine outlet temperature is an index value for the start / stop of the refrigerator. When the refrigerator is in steady operation, the brine outlet temperature is generally low. iii) Extract the LTD when the current value or power value of the compressor 2 is C% or more of the rated current value or rated power value (C% is preferably 60% or more, more preferably 80% or more). This current value or power value is an index value of the start / stop of the refrigerator, and becomes a predetermined value or more during steady operation. iv) Extract the LTD when the temperature T 6 (or the pressure of the medium) of the medium flowing into the condenser 3 is equal to or higher than a predetermined value. This temperature or pressure is an index value for start / stop, and becomes a predetermined value or more during steady operation.
  • the above description relates to a compression refrigerator, but the present invention can also be applied to an absorption refrigeration system having a regenerator using gas, fuel oil, steam or the like as a heat source.
  • the temperature data of T 1 to T 6 measured by the temperature measuring means 11 is accumulated in the temperature data accumulating means 12, and any of the above extraction methods is used, and the predetermined value is set to any value.
  • the filtering rule is input from the filtering (extraction) rule input unit 16 to the filtering rule storage unit 17. From the accumulated temperature data, the one that meets the extraction condition is extracted by the filtering unit 13, the LTD is calculated by the calculating unit 14, and presented by the presenting unit 15.
  • a commercially available data logger device may be applied, but a method in which collected data is stored in a server via the Internet and data can be confirmed via the Internet may be adopted. By using this method, it is possible to check the situation at the site even at a location away from the site.
  • FIG. 5 shows an LTD-time graph in which plots are continued by cutting data at the time of non-extraction so that the extracted LTD values are continuous. According to FIG. 5, it is possible to clearly know the fluctuation of the LTD value from which the data disturbance due to start / stop is removed.
  • the average value of LTD is 0.6 ° C. in the case of FIG. 3 including data in a stop or control transition period (for example, immediately after startup).
  • the average value of LTD is 2.9 ° C., and it can be seen that FIG. 5 is more suitable for the actual situation.
  • Fig. 6 shows a graph in which data taken at different times in this actual machine was extracted in the same manner and added with brine load data. As shown in FIG. 6, it is clear that LTD changes according to load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

冷凍システムの冷却水ラインの汚れを精度よく求めることができる冷凍システムにおける冷却水ラインの汚れ評価方法を提供する。圧縮機(2)、凝縮器(3)及び蒸発器(5)を備えた圧縮式冷凍機を有した吸収式冷凍機を有する冷凍システムにおいて、凝縮器(3)に冷却水を循環流通させる冷却水ラインの汚れを評価する。凝縮器(3)のLTDを計測し、蒸発器(5)又は凝縮器(3)の負荷が所定値以上の場合であるか、又は冷凍機が定常稼動している場合のLTDの計測結果に基づいて冷却水ラインの汚れを評価する。

Description

冷却水ラインの汚れ評価方法
 本発明は、圧縮式冷凍機又は吸収式冷凍機を備えた冷凍システムの汚れを評価する方法に関するものである。本発明は、該冷凍機の凝縮器に冷却水を循環流通させるときの冷却水ラインの汚れを評価する方法に関するものである。
 各種工場、ビル等では、冷凍機等の各種の熱交換器を含む水系が設けられ、冷却水と被冷却体とを熱交換器を介して接触させて、被冷却体を冷却(場合により潜熱を奪うのみのものも含む)している。ビル等に設けられた冷凍機では被冷却体としてフロンや水等の冷媒が用いられている。コンビナート等では各種熱交換器が使用され、被冷却体として、空気、油性物質、各種有機物が用いられている。
 冷凍機等の熱交換器を含む系のうち、これら被冷却体の凝縮を伴うものは凝縮器と称され、被冷却体の凝縮を伴わないものは冷却器と称される。
 以下においては、主に凝縮を伴う圧縮式冷凍機を例示して説明を行うが、本発明は圧縮式冷凍機に限らず、熱交換器全般に適用可能である。
 冷却水系においては、節水を図るために、冷却水がより高濃縮、低流速で運転されるようになってきている。このような運転条件下では、冷却水の蒸発に伴うイオン成分が濃縮し、スケールが析出して冷凍機内に付着することがある。微生物が冷却水中で繁殖し、スライムが冷凍機内に付着することもある。
 スケールやスライム等の汚れの付着により、被冷却体から冷却水への伝熱が阻害される。これにより、凝縮器においては、被冷却体凝縮量が減少する;圧力が上昇する;被冷却体温度が上昇し、圧縮機の負荷が上昇し、高圧カット(一定以上で圧縮機が停止する。)に到る;等の事態が生じることがある。スケールやスライム等の汚れの付着により、冷凍能力が低下し、消費電力量が増加するため、エネルギー効率が低下する。
 このため、冷凍機においては、汚れの付着状況を正確に推定し、その状況に応じて、冷却水にスケール洗浄剤やスライム洗浄剤を適切に添加して、洗浄を行なう必要がある。
 特許文献1の通り、冷凍機の熱交換効率を知る指標として、U値(総括伝熱係数)や汚れ係数があるが、計算が煩雑である。U値(総括伝熱係数)や汚れ係数の単位は[℃]ではないため、これらの値のみから、直ちに高圧カットに到るか否かを判断することは難しい。この判断を行うためには、汚れが付着していない正常な状態での計測値が必要となる。
 このため、特許文献2に記載の通り、実際には、下記式で求められるLTD(Leaving Temperature Difference)やATD(Approach Temperature Difference)が用いられている。
  LTD=被冷却体の冷却後の温度-冷却水出口温度
  ATD=被冷却体の冷却後の温度-冷却水入口温度
 被冷却体の冷却後の温度は、被冷却体の熱交換器出口温度として測定することができる。
 圧縮式冷凍機では、熱交換が不十分になると被冷却体の冷却後の温度(この場合凝縮温度)が上昇し、一定レベルを超えると高圧カットを引き起こし、稼働不能となるため、LTD,ATDで状況を判断することが可能である。上記2式から、ATD=LTD+(冷却水出口温度-冷却水入口温度)の関係式が得られ、これから求められるATD(又はLTD)は温度を単位とするため、この温度と既知の被冷却体凝縮温度とを比較することにより、高圧カットが生じるか否かを直ちに判断することができる。
 ATD,LTDは、汚れの他に負荷変動の影響を強く受けることから、特許文献2には、LTD,ATDを補正し、補正LTD値又は補正ATD値と基準値とを比較して熱交換器の汚れを評価することが記載されている。
特開2003-322494 特開平7-218188
 熱交換器の汚れ状態を推定する指標値としてLTD,ATDおよび補正LTD、補正ATDを用いる方法では、温度計の取り付け位置や冷却機械の仕様・型式等で絶対数値が影響を受けるため、汚れを評価するには、長期的にLTD,ATDおよび補正LTD、補正ATDを収集・蓄積し、その増加傾向による、汚れ指標を把握する必要がある。そのため、汚れの増加傾向を把握するためには少なくとも2週間程度の期間が必要で、その期間短縮が求められていた。
 従来は、冷凍機の発停や負荷変動を考慮することなく汚れ状態を推定していたため、冷凍機の発停や負荷変動に起因したLTD、ATD等の変動と汚れによるLTD、ATD等の変動とがデータに混在することになり、汚れ判断の誤差が大きくなっていた。
 本発明は、冷凍システムの冷却水ラインの汚れを高精度に求めることができる汚れ評価方法を提供することを目的とする。
 本発明の冷却水ラインの汚れ評価方法は、凝縮器及び蒸発器を備えた冷凍システムにおける汚れ評価方法であって、該凝縮器に冷却水を循環流通させる冷却水ラインの汚れを評価する方法において、該凝縮器のLTDを計測し、該蒸発器又は凝縮器の負荷が所定値以上の場合であるか、又は該冷凍機が定常稼動している場合のLTDの計測結果に基づいて前記冷却水ラインの汚れを評価する。
 本発明の一態様では、冷凍システムは、蒸発器からの媒体を圧縮機によって圧縮して凝縮器に導き、凝縮させ、凝縮した液を膨張弁を介して該蒸発器に導入し、蒸発させるよう構成されている。
 本発明の冷却水ラインの汚れ評価方法の一態様では、前記蒸発器又は凝縮器の負荷は、ブライン入口温度とブライン出口温度との温度差と定格ブライン(冷水や冷却水のときもある)温度差との比である。
 本発明の一態様では、ブライン出口温度Tが所定温度以下である場合のLTDを抽出し、抽出されたLTDに基づいて前記冷却水ラインの汚れを評価する。
 本発明の一態様では、ブライン出口温度Tが所定温度以下であり、かつ(T-T)/(定格ブライン温度差)が所定値以上である場合のLTDを抽出し、抽出されたLTDに基づいて前記冷却水ラインの汚れを評価する。
 本発明の一態様では、凝縮器の冷却水入口温度Tと出口温度Tとの差T-Tが一定値以上であるときのLTDを抽出し、抽出されたLTDに基づいて前記冷却水ラインの汚れを評価する。
 本発明の一態様では、圧縮機の電流値又は電力値が定格電流値又は定格電力値の所定割合以上であるときのLTDを抽出し、抽出されたLTDに基づいて前記冷却水ラインの汚れを評価する。
 本発明の一態様では、凝縮器に流入する媒体の温度T又は媒体の圧力が所定値以上であるときのLTDを抽出し、抽出されたLTDに基づいて前記冷却水ラインの汚れを評価する。
 本発明の一態様では、抽出したLTDがLTD-時間グラフにおいて連続するようにプロットを連続させてLTD-時間グラフを作成し、このグラフから前記冷却水ラインの汚れを評価する。
 凝縮器の冷却水ラインには冷却水が通水されており、この冷却水は該ラインに設けられた冷却塔などによって冷却される。冷却水ラインの汚れが増加してくると、凝縮器のLTD(後述のT-T)が増大するのでLTDは汚れの指標値となる。
 ところが、冷凍機は発停(スタート・ストップ)するので、スタート直後の非定常状態にあるときには、LTDと冷却水ラインの汚れとの関連が小さくなっている。冷凍機の負荷が小さいときには、熱交換が安定しないので、LTDと冷却水ラインの汚れとの相関性が低くなっている。そこで、本発明では、蒸発器又は凝縮器の負荷が所定値以上の場合であるか、又は冷凍機が定常稼動している場合のデータに基づいて冷却水ラインの汚れ状態を評価する。
 本発明によれば、次の作用効果が奏される。
 1) 冷凍機が運転され、かつ、熱交換が安定して行われている時点でのLTDに基づくことにより、冷凍機の熱交換効率の正確な評価が行える。
 2) 季節によって異なる運転負荷に対応できる。
 3) LTDのトレンドが理解しやすくできる。
 4) LTDの変化が負荷の変化によるものか、効率の変化によるものか判断できる。
 5) 冷媒温度が上昇するとLTDが上昇するが、LTDの上昇はファウリングに起因するので上昇速度は極めて低速である。LTDの上昇が急速な場合は機械のトラブルにより冷媒温度のみが急速に上昇していると判断できる。
圧縮式冷凍システムのフロー図である。 データ処理のためのブロック図である。 LTDを示すグラフである。 実施例の結果を示すLTDの経時変化グラフである。 実施例の結果を示すLTDの経時変化グラフである。 実施例の結果を示すLTDの経時変化グラフである。
 以下、本発明についてさらに詳細に説明する。
 図1はターボ圧縮式冷凍システムの一例を示すフロー図である。冷凍機1は、ターボ式圧縮機2によって媒体(例えばHFC(ハイドロフルオロカーボン)系、HCFC(ハイドロクロロフルオロカーボン)系、CFC(クロロフルオロカーボン)系)を圧縮し、凝縮器3に導き、凝縮させる。凝縮器3の伝熱管(冷却コイル)3aには、冷却塔6で冷却された冷却水がポンプ7を介して循環通水される。凝縮器3の媒体出口温度Tと冷却水出口温度Tとの差T-TがLTDである。温度T1~Tは温度センサによって計測される。
 凝縮した液は、膨張弁4を介して蒸発器5に導入され、蒸発して断熱膨張し、伝熱コイル5a内を流れる冷媒(この実施の形態ではブライン)を冷却する。蒸気は圧縮機2に送られ、再び圧縮される。伝熱コイル5aには、負荷体9で熱交換器して昇温したブラインがポンプ8を介して通液され、冷却された冷ブラインが負荷体9に循環通液される。伝熱管3a、冷却塔6、ポンプ7、及び配管6A,6Bによって冷却水ラインが構成されている。
 この冷却塔6は、ケーシング(塔体)6aと、ケーシング6aの側面に設けられた空気流入口6bと、底部に設けられた冷却水の水槽(ピット)6cを有する。ケーシング6a内に充填材6dが収容され、充填材6dの上方に、冷却水の散水ノズル6eが配設されている。ケーシング6aの頂部に開口6gが設けられ、この開口6gに送風機6fが設けられている。水槽6cの底部近傍にポンプ7の吸引口が接続され、ポンプ7の吐出口は、冷却水の往配管6Aを介して伝熱管(冷却コイル)3aの一端に連結されている。伝熱管3aの他端は冷却水の戻り配管6Bを介して冷却塔6の散水ノズル6eに連結されている。
 図示は省略するが、水槽6cには、補給水(地下水、水道水、工業用水など)の給水配管が接続された、水位制御手段であるボールタップが設けられ、水槽6c内の水位を設定範囲に保持するようになっている。
 蒸発器5のブライン入口温度Tとブライン出口温度Tとの差(T-T)と蒸発器5の定格ブライン温度差との比(T-T)/(定格ブライン温度差)がブライン負荷である。
 図3に、このシステムのLTDの一例を示す。図3の通り、冷凍機の発停や負荷変動によってLTDが大きくばらつく。そこで、この実施の形態では、ブライン出口温度Tが所定温度以下であり、かつブライン負荷が所定値以上である場合のLTDを抽出する。この所定値は、0.5~0.7の間から選定された値であることが好ましい。このようにデータを抽出することにより、システムの発停や負荷変動によるLTDが乱れたときのデータを取り除き、LTDによる冷却水ラインの汚れ評価精度を高めることができる。
 本発明では、LTDデータの抽出(フィルタリング)を次のi)~iv)のいずれかの方式によって行ってもよい。
i) 凝縮器3の冷却水入口温度Tと出口温度Tとの差T-Tが一定値以上、望ましくはT-Tが定格の冷却水入口温度と出口温度との差のN%以上(N%は好ましくは60%以上より好ましくは80%以上)であるときのLTDを抽出する。なお、T-Tは熱交換の安定性の判断の指標値となる。一般に、負荷が高いほど熱交換は安定する。
ii) ブライン出口温度Tが所定値以下のときのLTDを抽出する。ブライン出口温度は、冷凍機のスタート・ストップの指標値となる。冷凍機が定常運転されているときには、ブライン出口温度は一般に低くなる。
iii) 上記圧縮機2の電流値又は電力値が定格電流値又は定格電力値のC%以上(C%は好ましくは60%以上より好ましくは80%以上)であるときのLTDを抽出する。この電流値又は電力値は、冷凍機のスタート・ストップの指標値であり、定常運転中には、所定値以上となる。
iv) 凝縮器3に流入する媒体の温度T(又は媒体の圧力)が所定値以上であるときのLTDを抽出する。この温度又は圧力はスタート・ストップの指標値であり、定常運転中には所定値以上となる。
 上記説明は圧縮式冷凍機に関するものであるが、ガス、燃料油や蒸気などを熱源とした再生器を有する吸収式冷凍システムの場合にも本発明を適用できる。
 上記のうちのいずれの抽出方式を採用するか、また上記の所定値をどのような値とするかは、オペレータの経験及び試行によって定めるのが好ましい。
 これまでに述べた手順を行う具体的方法として、図2に示すシステムで行うことが好ましい。
 図2の通り、温度計測手段11で計測したT~Tの温度データを温度データ蓄積手段12に蓄積すると共に、上記のいずれの抽出方式とするか、また所定値をどのような値にするかについてフィルタリング(抽出)規則入力手段16からフィルタリング規則記憶手段17に入力する。蓄積した温度データから、抽出条件に適うものをフィルタリング手段13で抽出し、LTDを算出手段14で算出し、提示手段15で提示する。
 データ蓄積方法としては、市販のデータロガー装置を適用してもよいが、収集したデータをインターネット経由でサーバーに蓄積し、インターネット経由でデータ確認できる方式を採用してもよい。この方式を用いることにより、現場から離れている場所にいても現場の状況を確認することが可能である。
 図1に示す圧縮式冷凍機の実機を夏季(7月13日~9月11日)の間運転し、LTDを測定した。結果を図3に示す。図3の通り冷凍機の発停及び負荷変動により、LTDが-7~+3℃の範囲にばらついている。そこで、ブライン温度11.5℃以下、ブライン負荷0.6以上のときのLTDのみを抽出して図4に示した。抽出したLTD値が、連続するように非抽出時のデータをカットしてプロットを連続させたLTD-時間グラフを図5に示す。図5によれば、発停によるデータ乱れを除去したLTD値の変動を明確に知ることができる。
 図3,図5を対比すると、停止時や制御過渡期(例えば起動直後)にあるデータを含む図3の場合、LTDの平均値は0.6℃となる。一方、稼働時かつ熱交換効率が安定しているときのデータを抽出した図5ではLTDの平均値が2.9℃となっており、図5の方が実態に合っていることが分かる。
 この実機における別の時期に採ったデータを同様に抽出処理し、ブライン負荷データを加えて表示したグラフを図6に示す。図6の通り、LTDが負荷に応じて変化することが明らかである。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年3月6日付で出願された日本特許出願2014-044131に基づいており、その全体が引用により援用される。
 1 冷凍機
 2 圧縮機
 3 凝縮器
 4 膨張弁
 5 蒸発器

Claims (9)

  1.  凝縮器及び蒸発器を備えた冷凍システムにおける汚れ評価方法であって、
     該凝縮器に冷却水を循環流通させる冷却水ラインの汚れを評価する方法において、
     該凝縮器のLTDを計測し、
     該蒸発器又は凝縮器の負荷が所定値以上の場合であるか、又は該冷凍機が定常稼動している場合のLTDの計測結果に基づいて前記冷却水ラインの汚れを評価することを特徴とする冷却水ラインの汚れ評価方法。
  2.  請求項1において、前記蒸発器又は凝縮器の負荷は、ブライン入口温度Tとブライン出口温度Tとの温度差(T-T)と定格ブライン温度差との比(T-T)/(定格ブライン温度差)であることを特徴とする冷却水ラインの汚れ評価方法。
  3.  請求項1において、ブライン出口温度Tが所定温度以下であり、かつ(T-T)/(定格ブライン温度差)が所定値以上である場合のLTDを抽出し、抽出されたLTDに基づいて前記冷却水ラインの汚れを評価することを特徴とする冷却水ラインの汚れ評価方法。
  4.  請求項1において、凝縮器の冷却水入口温度Tと出口温度Tとの差T-Tが一定値以上であるときのLTDを抽出し、抽出されたLTDに基づいて前記冷却水ラインの汚れを評価することを特徴とする冷却水ラインの汚れ評価方法。
  5.  請求項1において、ブライン出口温度Tが所定温度以下である場合のLTDを抽出し、抽出されたLTDに基づいて前記冷却水ラインの汚れを評価することを特徴とする冷却水ラインの汚れ評価方法。
  6.  請求項1において、前記冷凍システムは、蒸発器からの媒体を圧縮機によって圧縮して凝縮器に導き、凝縮させ、凝縮した液を膨張弁を介して該蒸発器に導入し、蒸発させるよう構成されていることを特徴とする冷却水ラインの汚れ評価方法。
  7.  請求項6において、前記圧縮機の電流値又は電力値が定格電流値又は定格電力値の所定割合以上であるときのLTDを抽出し、抽出されたLTDに基づいて前記冷却水ラインの汚れを評価することを特徴とする冷却水ラインの汚れ評価方法。
  8.  請求項1において、前記凝縮器に流入する媒体の温度T又は媒体の圧力が所定値以上であるときのLTDを抽出し、抽出されたLTDに基づいて前記冷却水ラインの汚れを評価することを特徴とする冷却水ラインの汚れ評価方法。
  9.  請求項3ないし8のいずれか1項において、抽出したLTDがLTD-時間グラフにおいて連続するようにプロットを連続させてLTD-時間グラフを作成し、このグラフから前記冷却水ラインの汚れを評価することを特徴とする冷却水ラインの汚れ評価方法。
PCT/JP2015/069622 2015-07-08 2015-07-08 冷却水ラインの汚れ評価方法 WO2017006455A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069622 WO2017006455A1 (ja) 2015-07-08 2015-07-08 冷却水ラインの汚れ評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069622 WO2017006455A1 (ja) 2015-07-08 2015-07-08 冷却水ラインの汚れ評価方法

Publications (1)

Publication Number Publication Date
WO2017006455A1 true WO2017006455A1 (ja) 2017-01-12

Family

ID=57685149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069622 WO2017006455A1 (ja) 2015-07-08 2015-07-08 冷却水ラインの汚れ評価方法

Country Status (1)

Country Link
WO (1) WO2017006455A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642857A (zh) * 2017-01-09 2017-05-10 中国工程物理研究院材料研究所 一种采用制冷剂的热力性质控制冷却塔风机的***及方法
CN109253555A (zh) * 2017-07-12 2019-01-22 荏原冷热***株式会社 压缩式制冷机
CN113390161A (zh) * 2020-03-12 2021-09-14 青岛海尔空调电子有限公司 风冷热泵热水空调机组及其控制方法
CN115235052A (zh) * 2022-07-27 2022-10-25 广州市铭汉科技股份有限公司 一种冷水机自动调节控制***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218188A (ja) * 1994-02-04 1995-08-18 Kurita Water Ind Ltd 熱交換器の汚れ状態の推定方法及び洗浄方法
JP2501656Y2 (ja) * 1988-12-06 1996-06-19 石川島播磨重工業株式会社 熱交換器の監視装置
JPH0926804A (ja) * 1995-07-11 1997-01-28 Daidan Kk 熱源運転管理装置
JP2009030936A (ja) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd 冷却水系の薬注制御方法及び装置
JP2012052733A (ja) * 2010-09-01 2012-03-15 Mitsubishi Heavy Ind Ltd ターボ冷凍機の性能評価装置
JP2012207832A (ja) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd 冷凍システムにおける冷却水ラインの汚れ評価方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501656Y2 (ja) * 1988-12-06 1996-06-19 石川島播磨重工業株式会社 熱交換器の監視装置
JPH07218188A (ja) * 1994-02-04 1995-08-18 Kurita Water Ind Ltd 熱交換器の汚れ状態の推定方法及び洗浄方法
JPH0926804A (ja) * 1995-07-11 1997-01-28 Daidan Kk 熱源運転管理装置
JP2009030936A (ja) * 2007-07-30 2009-02-12 Kurita Water Ind Ltd 冷却水系の薬注制御方法及び装置
JP2012052733A (ja) * 2010-09-01 2012-03-15 Mitsubishi Heavy Ind Ltd ターボ冷凍機の性能評価装置
JP2012207832A (ja) * 2011-03-29 2012-10-25 Kurita Water Ind Ltd 冷凍システムにおける冷却水ラインの汚れ評価方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642857A (zh) * 2017-01-09 2017-05-10 中国工程物理研究院材料研究所 一种采用制冷剂的热力性质控制冷却塔风机的***及方法
CN109253555A (zh) * 2017-07-12 2019-01-22 荏原冷热***株式会社 压缩式制冷机
CN113390161A (zh) * 2020-03-12 2021-09-14 青岛海尔空调电子有限公司 风冷热泵热水空调机组及其控制方法
CN115235052A (zh) * 2022-07-27 2022-10-25 广州市铭汉科技股份有限公司 一种冷水机自动调节控制***

Similar Documents

Publication Publication Date Title
WO2017006455A1 (ja) 冷却水ラインの汚れ評価方法
JP5699675B2 (ja) 冷凍システムにおける冷却水ラインの汚れ評価方法
JP4749369B2 (ja) 冷凍サイクル装置の故障診断装置及びそれを搭載した冷凍サイクル装置
CN105102909B (zh) 用于制冷剂充填验证的***
JP6682301B2 (ja) 蒸気圧縮式冷凍機及びその制御方法
US10598417B2 (en) Refrigeration cycle apparatus and refrigeration cycle apparatus abnormality detecting system
JP5905278B2 (ja) 冷凍装置の監視システムおよび監視方法
WO2004053404A3 (en) Method and apparatus for optimizing refrigeration systems
US10563892B2 (en) Method and system for estimating loss of refrigerant charge in a refrigerant vapor compression system
EP2338013B1 (en) Sensing and estimating non-condensable gas in a subambient cooling system
WO2016047305A1 (ja) 抽気装置の制御装置及び制御方法
EP2959239A1 (en) Oil management for heating ventilation and air conditioning system
JP5884283B2 (ja) 冷凍システムにおける冷却水ラインの汚れ評価方法
JP5900524B2 (ja) 冷却水ラインの汚れ評価方法
JP2677187B2 (ja) 熱交換器の汚れ状態の推定方法及び洗浄方法
JP5366764B2 (ja) 冷却装置及び冷凍サイクル装置
CN102520010A (zh) 一种用于蒸气压缩循环冷水机组的冷凝器污垢检测方法
JP5757131B2 (ja) 冷凍システムにおける冷却水ラインの汚れ監視方法
JP4049610B2 (ja) ヒートポンプ熱交換器の異常検出装置
JP4231024B2 (ja) 吸収式冷凍機の異常診断方法及びその装置
Zheng et al. Flooded boiling of ammonia with miscible oil outside a horizontal plain tube
JP2018044701A (ja) 吸収式冷凍機の能力診断システム及び能力診断方法
JP7187960B2 (ja) 冷凍機システムのエネルギーロス判定方法
JP5929003B2 (ja) 冷凍システムにおける冷却水ラインの洗浄効果推定方法
TWI575208B (zh) 用於冷凍劑系統之壓力控制技術

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP