WO2017005217A1 - 一种粒子钻井方法 - Google Patents

一种粒子钻井方法 Download PDF

Info

Publication number
WO2017005217A1
WO2017005217A1 PCT/CN2016/089442 CN2016089442W WO2017005217A1 WO 2017005217 A1 WO2017005217 A1 WO 2017005217A1 CN 2016089442 W CN2016089442 W CN 2016089442W WO 2017005217 A1 WO2017005217 A1 WO 2017005217A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
particles
injection
hydraulic cylinder
mud
Prior art date
Application number
PCT/CN2016/089442
Other languages
English (en)
French (fr)
Inventor
李伟成
姚建林
陈晓彬
陈立
刘彬
何超
胡畔
Original Assignee
四川川庆石油钻采科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川川庆石油钻采科技有限公司 filed Critical 四川川庆石油钻采科技有限公司
Priority to US15/562,829 priority Critical patent/US20180106112A1/en
Publication of WO2017005217A1 publication Critical patent/WO2017005217A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/16Applying separate balls or pellets by the pressure of the drill, so-called shot-drilling

Definitions

  • the invention relates to the technical field of oil and gas drilling engineering, in particular to a particle drilling method.
  • the conventional drilling method is to use the drilling pressure and rotation of the bottom hole to realize the mechanical rock breaking to achieve the purpose of drilling.
  • the method In the way of encountering the deep hard formation and the strong grinding formation, the method only relies on the mechanical action of the drill bit to break the rock.
  • the role of the mud is only to carry the cuttings, and it is impossible to achieve the joint rock breaking effect of the hydraulic plus machinery.
  • particle impact drilling technology has been widely used as a revolutionary speed-up technology.
  • Particle impact drilling is a method of assisting the crushing of deep hard formations by injecting spherical steel particles with a diameter of 1-3 mm into the bottom of the well. Drilling technology for strong grinding formations.
  • the prior art particle injection device usually adopts a single high pressure tank injection structure, which cannot achieve continuous particle injection; and the high pressure tank has a large weight and volume, and is transported. Inconvenient, the high-pressure area has a wide coverage and high safety risks. In addition, there is a problem that the ground unit area is large in pressure and needs to be solidified by cement to strengthen the foundation, which takes a long time and a high cost. Therefore, it is urgent to develop an injection device that can realize continuous particle injection and is convenient to transport and has high safety to meet the needs of the site.
  • the particle vertical injection device disclosed in the patent document can uniformly drop particles and prevent particles from accumulating at the bottom of the high-pressure vessel.
  • injection of a single high-pressure vessel can only intermittently inject particles, and continuous injection of particles cannot be achieved;
  • the weight and volume are large, which causes the ground unit area to have a large pressure.
  • the cement needs to be solidified to strengthen the foundation, which takes a long time, high cost and inconvenient transportation, and the high pressure area of the device has large coverage and high safety risk.
  • the Chinese patent document published as CN 103195363A, published on July 10, 2013, discloses a negative pressure jet type particle impact drilling injection device, including a high pressure particle injection tank.
  • the inlet of the high-pressure particle injection tank is provided with a feed port, and the bottom is provided with a discharge port, wherein a balance pressure jet pipe is installed on one side of the feed port, a jet anti-blocking nozzle is arranged at one end of the balance pressure jet pipe, and the other end is placed on the top of the main steam sink.
  • the jet anti-blocking nozzle is located at the bottom of the high-pressure particle injection tank, a negative pressure particle injection pipe is arranged at the bottom of the discharge port, a nozzle is arranged at one end of the negative pressure particle injection pipe, the nozzle is connected to the main steam, the regulating pipe is arranged at the bottom of the main pipe, and the negative pressure particle is connected at the end of the regulating pipe. Inject the tube outlet and set the regulating valve inside the adjusting tube.
  • the negative pressure jet type particle impact drilling injection device disclosed in the patent document adopts a self-rotating jet anti-blocking nozzle to realize omnidirectional and multi-angle agitation of the high-pressure particle injection tank discharge port, which can solve the problem of blockage at the bottom of the high-pressure particle injection tank; However, it can only be injected intermittently with a single high-pressure vessel, and continuous injection of particles cannot be realized.
  • the weight and volume of the high-pressure vessel used are large, resulting in a large pressure per unit area of the ground. It is necessary to solidify the foundation through cement curing, which takes a long time and costs. High and inconvenient transportation, and the high-pressure area of the device has a large coverage area and high safety risks.
  • the (or manual) feeding valve storage tank pressure relief line, storage tank pressure relief control valve, steel grain, screw propeller, steel particle injection control valve and current limiting device, characterized in that the current limiting device is arranged in the diversion After the pipeline, the split line control valve is disposed between the ground high pressure main line and the steel grain storage tank, the storage tank pressure relief control valve is between the steel grain storage tank and the drilling fluid pool, and the screw propeller is located in the steel grain storage tank Next, the steel injection control valve is located between the screw propeller and the ground high pressure main line.
  • the particle impact drilling injection device disclosed in the patent document adopts two left and right identical sets of independent injection devices, which are repeatedly used repeatedly, although continuous injection of particles is also realized, but in actual use, the spiral in the injection device
  • the particles in the propeller are easy to agglomerate and block the screw propeller, which makes it impossible to achieve normal injection of particles.
  • the weight and volume of the steel grain storage tank used are large, resulting in a large bearing area per unit area, which needs to be solidified by cement to strengthen the foundation. It takes a long time, high cost and inconvenient transportation, and the high-pressure area of the device has a large coverage and high safety risk.
  • the particle drilling method mainly involves an injection device and a recovery device.
  • the recovery device mainly includes a well group vibrating screen, a jet mixer, a magnetic separator, a vibrating screen, and a rock.
  • the whole drilling process is: injecting the particle and mud mixture into the well through the injection device for drilling, and the particles, cuttings and mud mixture returned from the well pass through the well vibrating screen, the jet mixer and the magnetic separator, and magnetic separation.
  • the machine separates the particles from the cuttings and mud mixture and pumps them to a stationary tank for later use. After the remaining cuttings and mud mixture are screened through a vibrating screen, the cuttings fall into the cuttings storage funnel and the mud falls into the machine.
  • the mud tank was backed up and a drilling cycle was completed.
  • the Chinese Patent Publication No. CN 102022078A discloses a new type of drilling method, which is characterized in that a set of particle injection system is connected to the pumping line of the drilling pump to be injected.
  • the high-pressure mud in the well is continuously mixed with hard particles with a particle size of 2-8mm, which descends along the drill string until the drill bit, accelerates at the water eye, and impacts the rock at a very high speed to achieve mechanical and particle impact joint.
  • the effect of rock breaking is to increase the drilling speed in the hard formation, and a set of particle separation system is connected in the wellhead mud return pipeline to separate the metal particles from the mixed liquid returned from the bottom of the well and repeat the recycling.
  • the present invention provides a particle drilling method.
  • the present invention directs the particles, cuttings and mud mixture returned from the well to the magnetic separator through the outlet device of the wellhead through the fluid energy. Separating and storing effectively solves the problem of mud leakage caused by cuttings and mud directly pumped to the well team vibrating screen in the prior art, and greatly reduces the risk of environmental pollution.
  • a particle drilling method includes a particle injection step and a particle recovery step, wherein:
  • the particle injection step refers to injecting mud and particles into the well by using an injection device
  • the particle recovery step means that the particles, cuttings and mud mixture returned from the well are directly drained to the recovery device through the pipeline through the outlet device of the wellhead through the fluid energy, and then separated by the magnetic separator in the recovery device.
  • the particles are sent to the storage tank, and the cuttings and mud mixture are sent to the mud tank;
  • the particles in the storage tank are transported to the injection device, and injected into the well through the injection device to be drilled again to form a particle impact drilling cycle.
  • the particle injection speed in the particle injection step is 0.5 to 10 kg/s.
  • the particle injection pressure in the particle injection step is 5 to 55 MPa.
  • the storage tank is a rotating storage tank, comprising a tank body, a blade located in the tank body, a support frame, a sieve drum and a motor for driving the rotation of the tank body, and the blade and the support frame are fixedly connected on the inner wall of the tank body, and the sieve barrel is connected
  • the support frame is connected to the blade.
  • the injection device is a double injection pump continuous injection device, and comprises a particle mixing hopper connected to the drilling riser through a high-pressure pipeline.
  • the particle mixing hopper is provided with a reversing pipe, and the reversing pipe is connected with a swing of driving the reversing pipe to swing left and right.
  • the hydraulic cylinder and the particle mixing hopper are connected with a first conveying cylinder and a second conveying cylinder, one end of the reversing pipe is connected with the high pressure pipeline, and the other end is connected with the first conveying cylinder or the second conveying cylinder, and when the particle is injected, the first is started first.
  • the first hydraulic cylinder enters a filling stroke
  • the swing hydraulic cylinder swings the commutating pipe to the second conveying cylinder and communicates
  • the particles and the mud enter the first conveying cylinder
  • the second hydraulic cylinder enters the compression stroke, and the particles and mud in the second conveying cylinder are injected into the high-pressure pipeline through the reversing pipe to enter the well circulation.
  • the compression stroke is entered, and the second hydraulic cylinder enters the filling stroke. Continuously run continuous injection.
  • the swing hydraulic cylinder comprises a cylinder body, a piston, a piston rod, a swing rod and a spline connected to the swing rod.
  • the piston is connected to the swing rod through a piston rod, and the commutating tube is connected to the spline.
  • An arrow type check valve is connected to the high pressure line.
  • the mud tank is composed of a cylindrical tank body and a conical tank body.
  • the conical tank body is located below the cylindrical tank body, and the conical tank body and the cylindrical tank body are integrally formed structures.
  • the outlet device includes a rotary blowout preventer and a rotary control head coupled to the rotary blowout preventer.
  • the particles separated and stored in the particle drilling recovery device are first injected into the particle mixing hopper through a screw conveyor, and the screw filling speed of the screw conveyor is adjusted to control the filling rate of the particles and pass through the slag.
  • the slurry pump pumps the slurry into the particle mixing hopper, and maintains the particle and mud mixture in the particle mixing hopper between 1/2 and 2/3 of the volume of the particle mixing hopper; when the particle and mud mixture in the particle mixing hopper reaches its volume 1/2 hour, the first hydraulic cylinder and the second hydraulic cylinder are started, the first hydraulic cylinder enters the filling stroke, and the swing hydraulic cylinder is started, and the reversing tube is swung to the second conveying cylinder, so that the reversing tube is quickly and secondly
  • the conveying cylinder is connected, and the particles and the mud mixture in the particle mixing hopper are injected into the first conveying cylinder; at the same time, the second hydraulic cylinder enters the compression stroke, and the particles from the particle mixing
  • the mud mixture, the particles, the mud mixture is injected into the high pressure pipeline through the reversing pipe, and finally enters the well circulation; when the second piston moves to the extreme position, the pressure At the end of the contraction stroke, the second hydraulic cylinder enters the filling stroke, and the swing hydraulic cylinder swings the reversing tube to the first conveying cylinder and communicates with the first conveying cylinder, and the first hydraulic cylinder is switched from the filling stroke to the compression stroke.
  • the particles and the mud mixture in the first conveying cylinder are injected into the high-pressure pipeline through the reversing pipe, and finally enter the well circulation, thereby realizing the alternate operation of the first conveying cylinder and the second conveying cylinder, so that the particles can be continuously injected into the well;
  • the returned mud, cuttings and particle mixture are directly diverted into the magnetic separator through the rotary control head and pipeline.
  • the magnetic separator screens the particles in the mud, cuttings and particle mixture and transports the particles to the horizontal conveyor.
  • the cuttings and mud fall into the mud tank below the magnetic separator, and the cuttings and mud mixture in the mud tank are directly pumped to the well vibrating screen through the mortar pump and the pipeline, thereby realizing the particles.
  • Separation and recovery the separated particles are stored in a rotating storage tank, and then directly pumped into the particle mixing hopper through a screw conveyor, thereby realizing the recycling of the particles throughout the drilling process.
  • the particle injection step refers to the injection of mud and particles into the well by the injection device
  • the particle recovery step refers to the return of the particles, cuttings and mud mixture returned from the well by the fluid energy through the outlet device of the wellhead through the pipeline.
  • the particle injection step directly drained to the recovery device, and the separated particles are sent to the storage tank by the magnetic separator in the recovery device, and the cuttings and mud mixture are sent into the mud tank; the particles in the storage tank are transported to the injection device through the injection
  • the device is injected into the well and drilled again to form a particle impact drilling cycle.
  • the particle recovery step directly diverts the particles, cuttings and mud mixture returned from the well to the magnetic separator in the recovery device for particle separation, which simplifies particle screening.
  • the magnetic separator can easily separate the particles, and has the characteristics of high separation efficiency and good separation effect.
  • the magnetic separator separates the particles and directly transports them to the storage tank for circulation. Use, compared to the prior art, simplifies the particle recycling process without changing the conventional drilling process.
  • the problem that the cuttings and mud mixture are first pumped to the well vibrating screen and then sent to the recovery device has a large number of mud leakage points, which greatly reduces the risk of environmental pollution.
  • the particle injection speed in the particle injection step is 0.5-10 kg/s, and the specific injection speed can not only ensure the performance of the drilling fluid during the drilling process, but also the particle impact rock breaking at the injection speed.
  • the particle impact frequency is more than 10 million times per minute, which has a good impact rock breaking effect and improves drilling efficiency.
  • the particle injection pressure in the particle injection step is 5-55 MPa, and in this specific pressure range, the injection speed of the particles can be effectively ensured, the drilling efficiency is improved, and the drilling riser can be effectively prevented from being damaged, and the particle drilling is ensured. Work stability.
  • the storage tank is a rotary storage tank, comprising a tank body, a blade located in the tank body, a support frame, a sieve drum and a motor for driving the rotation of the tank body, and the blade and the support frame are fixedly connected to the inner wall of the tank body, and the sieve barrel
  • the rotating storage tank with the unique structure can realize dynamic storage during forward rotation to prevent agglomeration during particle turnover storage; when reversing, particle discharge can be realized, and the blade will evenly distribute particles Spin out.
  • the injection device is a dual injection pump continuous injection device, comprising a particle mixing hopper connected to the drilling riser through a high pressure pipeline, a reversing pipe is arranged in the particle mixing hopper, and a driving reversing pipe is connected to the reversing pipe.
  • Swinging swing hydraulic cylinder connected first on the particle mixing hopper a conveying cylinder and a second conveying cylinder, one end of the reversing pipe is connected with the high pressure pipeline, and the other end is in communication with the first conveying cylinder or the second conveying cylinder, and when the particles are injected, the first hydraulic cylinder, the second hydraulic cylinder and the swing hydraulic cylinder are first started.
  • the first hydraulic cylinder enters the filling stroke, the swing hydraulic cylinder swings the reversing pipe to the second conveying cylinder and communicates, the particles and the mud enter the first conveying cylinder; meanwhile, the second hydraulic cylinder enters the compression stroke, and the second conveying
  • the particles and mud in the cylinder are injected into the well circulation through the reversing pipe, and the first hydraulic cylinder enters the compression stroke after the filling stroke, and the second hydraulic cylinder enters the filling stroke, and the continuous operation is continuously injected to ensure the injection of the particles in the well.
  • the double injection pump continuous injection device only the first conveying cylinder, the second conveying cylinder, the reversing
  • the tube is in a high pressure state, and replaces the injection device of the high-pressure tank supporting screw conveyor type compared with the prior art, optimizes the injection process, and solves the single high pressure tank.
  • the problem of intermittent injection of particles enables continuous injection of particles; at the same time, it effectively solves the problem that the particles in the screw conveyor are easy to agglomerate, blockage cannot be realized, and the transportation, installation and operation caused by the weight and volume of the equipment of the high-pressure tank are large. Inconvenience, long time and high cost have improved the efficiency of particle drilling operations; the high pressure zone of the injection device has been greatly reduced, and safety has been improved.
  • the swing hydraulic cylinder comprises a cylinder block, a piston, a piston rod, a swing rod and a spline connected to the swing rod, the piston is connected to the swing rod through a piston rod, and the commutating tube is connected to the spline.
  • the swinging hydraulic cylinder of a specific structure and the swinging rod make the reversing tube flexiblely commutate, which not only has the characteristics of reversing flexibility, but also adopts the structure of spline and swing rod to prolong the service life.
  • an arrow type check valve is connected to the high-pressure pipeline, and the arrow type check valve can make the particles and the mud mixture smoothly enter the well through the high-pressure pipeline on the one hand, and prevent the particles and the mud mixture from entering the well on the other hand.
  • the mud leakage is harmed in the process of particle injection, and the safety is further improved.
  • Figure 1 is a schematic structural view of a drilling apparatus of the present invention
  • FIG. 2 is a schematic view showing the connection structure of a continuous injection device of a double injection pump and a drill floor according to the present invention
  • FIG. 3 is a schematic structural view of a swing hydraulic cylinder of the present invention.
  • FIG. 4 is a schematic view showing a connection structure of a continuous injection device of a double injection pump and a drill floor in Embodiment 4 of the present invention
  • Figure 5 is a schematic structural view of a reversing pipe according to Embodiment 5 of the present invention.
  • Figure 6 is a schematic structural view of a rotary storage tank in Embodiment 7 of the present invention.
  • first hydraulic cylinder 2, second hydraulic cylinder, 3, swing hydraulic cylinder, 4, reversing pipe, 5, first piston, 6, first delivery cylinder, 7, second piston, 8 , second delivery cylinder, 9, high pressure pipeline, 10, magnetic separator, 11, mud tank, 12, rotating storage tank, 13, cylinder, 14, piston, 15, piston rod, 16, pendulum, 17, flower Key, 18, arrow check valve, 19, sealing ring, 20, tank, 21, blade, 22, support frame, 23, sieve barrel, 24, motor.
  • a particle drilling method includes a particle injection step and a particle recovery step, wherein the particle injection step refers to injecting mud and particles into the well by an injection device; and the particle recovery step refers to returning from the well.
  • the particles, cuttings and mud mixture are directly drained to the recovery unit via the pipeline through the outlet device of the wellhead, and the separated particles are sent to the storage tank by the magnetic separator 10 in the recovery device.
  • the mud mixture is sent to the mud tank 11; the particles in the tank are transported to the injection device, and injected into the well through the injection device to be drilled again to form a particle impact drilling cycle.
  • This embodiment is the most basic embodiment.
  • the prior art injection device and the storage tank can be used to directly drain the particles, cuttings and mud mixture returned from the well into the magnetic separator in the recovery device through the particle recovery step.
  • Particle separation simplifies the particle screening process. Since the mud and cuttings do not contain ferromagnetic substances, the magnetic separator can easily separate the particles, which has the characteristics of high separation efficiency and good separation effect. The magnetic separator separates the particles. Directly transferred to the storage tank for re-circulation.
  • the particle recovery process is simplified without changing the conventional drilling process, and the jet mixer, the supporting low-pressure pipeline, and the vibration which are prone to mud leakage are eliminated.
  • a particle drilling method includes a particle injection step of injecting mud and particles into a well using an injection device, and a particle recovery step of returning from the well.
  • the particles, cuttings and mud mixture are directly drained to the recovery unit via the pipeline through the outlet device of the wellhead, and the separated particles are sent to the storage tank by the magnetic separator 10 in the recovery device.
  • the mud mixture is sent to the mud tank 11; the particles in the tank are transported to the injection device, and injected into the well through the injection device to be drilled again to form a particle impact drilling cycle.
  • the particle injection speed in the particle injection step was 0.5 kg/s.
  • the particle injection pressure in the particle injection step was 5 MPa.
  • the injection device is a double injection pump continuous injection device, and the double injection pump continuous injection device comprises a first hydraulic cylinder 1, a second hydraulic cylinder 2, a swing hydraulic cylinder 3, a reversing tube 4, a first piston 5, and a first delivery cylinder. 6.
  • the second piston 7 and the second delivery cylinder 8 actuate the first hydraulic cylinder 1, the second hydraulic cylinder 2 and the swing hydraulic cylinder 3, the first hydraulic cylinder 1 enters a filling stroke, and the swing hydraulic cylinder 3 converts the reversing pipe 4 Swinging to the second transfer cylinder 8 and communicating, the particles and the mud mixture enter the first transfer cylinder 6; while the second hydraulic cylinder 2 enters the compression stroke, the particles and the mud mixture in the second transfer cylinder 8
  • the high pressure line 9 is injected into the well circulation through the reversing pipe 4, the first hydraulic cylinder 1 enters the compression stroke after the filling stroke, and the second hydraulic cylinder 2 enters the filling stroke, and the continuous injection is alternately operated.
  • the first hydraulic cylinder, the second hydraulic cylinder and the swing hydraulic cylinder are first activated, the first hydraulic cylinder enters the filling stroke, and the swing hydraulic cylinder swings the reversing tube to the second.
  • the conveying cylinder is connected and connected, and the particles and the mud enter the first conveying cylinder; at the same time, the second hydraulic cylinder enters the compression stroke, and the particles and the mud in the second conveying cylinder are injected into the high-pressure pipeline through the reversing pipe to enter the well circulation, the first hydraulic cylinder After the end of the filling stroke, the compression stroke is entered, the second hydraulic cylinder enters the filling stroke, and the continuous injection is continuously injected to ensure the continuity of the injection of the particles in the well, and at the same time avoid the blockage of particle deposition in the first conveying cylinder and the second conveying cylinder, thereby effectively improving The working efficiency of particle impact drilling; in the continuous injection device of the double injection pump, only the first delivery cylinder, the second delivery cylinder and the reversing tube are in a high pressure state, which greatly reduces the high pressure zone and improves safety.
  • a particle drilling method includes a particle injection step and a particle recovery step, wherein the particle injection step refers to injecting mud and particles into the well by using an injection device;
  • the particles, cuttings and mud mixture returned from the well are directly drained to the recovery device through the pipeline through the outlet device of the wellhead, and the separated particles are sent into the storage tank by the magnetic separator 10 in the recovery device.
  • the cuttings and mud mixture are fed into the mud tank 11; the particles in the tank are transported to the injection device, and injected into the well through the injection device to be drilled again to form a particle impact drilling cycle.
  • the particle injection speed in the particle injection step was 2 kg/s.
  • the particle injection pressure in the particle injection step was 20 MPa.
  • the injection device is a double injection pump continuous injection device, and the double injection pump continuous injection device comprises a first hydraulic cylinder 1, a second hydraulic cylinder 2, a swing hydraulic cylinder 3, a reversing tube 4, a first piston 5, and a first delivery cylinder. 6.
  • the second piston 7 and the second delivery cylinder 8 actuate the first hydraulic cylinder 1, the second hydraulic cylinder 2 and the swing hydraulic cylinder 3, the first hydraulic cylinder 1 enters a filling stroke, and the swing hydraulic cylinder 3 converts the reversing pipe 4 Swinging to the second delivery cylinder 8 and communicating, the particles and mud mixture enter the first delivery cylinder 6; meanwhile, the second hydraulic cylinder 2 enters a compression stroke, and the particles and mud mixture in the second delivery cylinder 8 are passed through the reversing tube 4
  • the injection high pressure line 9 enters the well circulation, the first hydraulic cylinder 1 enters the compression stroke after the end of the filling stroke, the second hydraulic cylinder 2 enters the filling stroke, and the continuous injection is continuously performed.
  • the swing hydraulic cylinder 3 includes a cylinder block 13, a piston 14, a piston rod 15, a swing rod 16 and a spline 17 connected to the swing rod 16.
  • the piston 14 is connected to the swing rod 16 via a piston rod 15, and the commutator tube 4 is connected. On the spline 17.
  • An arrow type check valve 18 is connected to the high pressure line 9.
  • the embodiment is a further preferred embodiment.
  • the swing hydraulic cylinder comprises a cylinder block, a piston, a piston rod, a swing rod and a spline connected to the swing rod.
  • the piston is connected to the swing rod through the piston rod, and the reversing tube is connected to the flower.
  • the swing hydraulic cylinder of this specific structure is adopted, and the swing lever makes the commutating pipe flexiblely reversing, It has only the characteristics of reversing flexibility, and the structure with spline and pendulum extends the service life.
  • An arrow type check valve is connected to the high-pressure pipeline, and the arrow type check valve can smoothly pass the particles and the mud mixture into the well through the high-pressure pipeline, and on the other hand, can prevent the particles and the mud mixture from collapsing into the first conveying cylinder or In the second conveying cylinder, the mud leakage is effectively prevented during the particle injection process, and the safety is further improved.
  • a particle drilling method includes a particle injection step and a particle recovery step, wherein the particle injection step refers to injecting mud and particles into the well by using an injection device; and the particle recovery step It means that the particles, cuttings and mud mixture returned from the well are directly drained to the recovery device through the pipeline through the outlet device of the drilling wellhead, and the separated particles are sent to the storage by the magnetic separator 10 in the recovery device.
  • the cuttings and mud mixture are fed into the mud tank 11; the particles in the tank are transported to the injection device, and injected into the well through the injection device to be drilled again to form a particle impact drilling cycle.
  • the particle injection speed in the particle injection step was 6 kg/s.
  • the particle injection pressure in the particle injection step was 30 MPa.
  • the injection device is a double injection pump continuous injection device, and the double injection pump continuous injection device comprises a first hydraulic cylinder 1, a second hydraulic cylinder 2, a swing hydraulic cylinder 3, a reversing tube 4, a first piston 5, and a first delivery cylinder. 6.
  • the second piston 7 and the second delivery cylinder 8 actuate the first hydraulic cylinder 1, the second hydraulic cylinder 2 and the swing hydraulic cylinder 3, the first hydraulic cylinder 1 enters a filling stroke, and the swing hydraulic cylinder 3 converts the reversing pipe 4 Swinging to the second delivery cylinder 8 and communicating, the particles and mud mixture enter the first delivery cylinder 6; meanwhile, the second hydraulic cylinder 2 enters a compression stroke, and the particles and mud mixture in the second delivery cylinder 8 are passed through the reversing tube 4
  • the injection high pressure line 9 enters the well circulation, the first hydraulic cylinder 1 enters the compression stroke after the end of the filling stroke, the second hydraulic cylinder 2 enters the filling stroke, and the continuous injection is continuously performed.
  • the swing hydraulic cylinder 3 includes a cylinder block 13, a piston 14, a piston rod 15, a swing rod 16 and a spline 17 connected to the swing rod 16.
  • the piston 14 is connected to the swing rod 16 via a piston rod 15, and the commutator tube 4 is connected. On the spline 17.
  • An arrow type check valve 18 is connected to the high pressure line 9.
  • first hydraulic cylinder 1 and the second hydraulic cylinder 2 are both double-rod hydraulic cylinders; two sealing rings 19 are connected in the reversing pipe 4, and two sealing rings 19 are respectively located at two ends of the reversing pipe 4 .
  • the first hydraulic cylinder and the second hydraulic cylinder are double-rod hydraulic cylinders, which can realize constant-speed reciprocating motion, and are convenient for realizing the synchronization of the filling stroke and the compression stroke, and enhancing the continuous injection of particles.
  • the stability of the well ensures the efficiency of particle drilling.
  • a particle drilling method includes a particle injection step and a particle recovery step, wherein the particle injection step refers to injecting mud and particles into the well by using an injection device; and the particle recovery step It means that the particles, cuttings and mud mixture returned from the well are directly drained to the recovery device through the pipeline through the outlet device of the drilling wellhead, and the separated particles are sent to the storage by the magnetic separator 10 in the recovery device.
  • the cuttings and mud mixture are fed into the mud tank 11; the particles in the tank are transported to the injection device, and injected into the well through the injection device to be drilled again to form a particle impact drilling cycle.
  • the particle injection speed in the particle injection step was 8 kg/s.
  • the particle injection pressure in the particle injection step was 40 MPa.
  • the injection device is a double injection pump continuous injection device, and the double injection pump continuous injection device comprises a first hydraulic cylinder 1, a second hydraulic cylinder 2, a swing hydraulic cylinder 3, a reversing tube 4, a first piston 5, and a first delivery cylinder. 6.
  • the second piston 7 and the second delivery cylinder 8 actuate the first hydraulic cylinder 1, the second hydraulic cylinder 2 and the swing hydraulic cylinder 3, the first hydraulic cylinder 1 enters a filling stroke, and the swing hydraulic cylinder 3 converts the reversing pipe 4 Swinging to the second delivery cylinder 8 and communicating, the particles and mud mixture enter the first delivery cylinder 6; meanwhile, the second hydraulic cylinder 2 enters a compression stroke, and the particles and mud mixture in the second delivery cylinder 8 are passed through the reversing tube 4
  • the injection high pressure line 9 enters the well circulation, the first hydraulic cylinder 1 enters the compression stroke after the end of the filling stroke, the second hydraulic cylinder 2 enters the filling stroke, and the continuous injection is continuously performed.
  • the swing hydraulic cylinder 3 includes a cylinder block 13, a piston 14, a piston rod 15, a swing rod 16 and a spline 17 connected to the swing rod 16.
  • the piston 14 is connected to the swing rod 16 via a piston rod 15, and the commutator tube 4 is connected. On the spline 17.
  • An arrow type check valve 18 is connected to the high pressure line 9.
  • the first hydraulic cylinder 1 and the second hydraulic cylinder 2 are both double-rod hydraulic cylinders; two sealing rings 19 are connected in the reversing pipe 4, and two sealing rings 19 are respectively located at two ends of the reversing pipe 4.
  • cross section of the reversing pipe 4 is of an "S" shape.
  • This embodiment is a further preferred embodiment.
  • the cross section of the reversing tube is "S" type, and a specific "S" type reversing tube is adopted, which makes the reversing process more flexible and convenient, and the reversing tube is the first and the first Whether the transfer cylinder is connected or connected to the second transfer cylinder can be quickly connected to ensure the continuity of particle injection.
  • a particle drilling method includes a particle injection step and a particle recovery step, wherein the particle injection step refers to injecting mud and particles into the well by using an injection device;
  • the particle recovery step means that the particles, cuttings and mud mixture returned from the well are directly drained to the recovery device via the pipeline through the outlet device of the wellhead through the outlet device of the drilling wellhead, and the separated particles are separated by the magnetic separator 10 in the recovery device. Feeded into the storage tank, the cuttings and mud mixture are sent into the mud tank 11; the particles in the storage tank are transported to the injection device, and injected through the injection device Drilling again into the well creates a particle impact drilling cycle.
  • the particle injection speed in the particle injection step was 10 kg/s.
  • the particle injection pressure in the particle injection step was 55 MPa.
  • the injection device is a double injection pump continuous injection device, and the double injection pump continuous injection device comprises a first hydraulic cylinder 1, a second hydraulic cylinder 2, a swing hydraulic cylinder 3, a reversing tube 4, a first piston 5, and a first delivery cylinder. 6.
  • the second piston 7 and the second delivery cylinder 8 actuate the first hydraulic cylinder 1, the second hydraulic cylinder 2 and the swing hydraulic cylinder 3, the first hydraulic cylinder 1 enters a filling stroke, and the swing hydraulic cylinder 3 converts the reversing pipe 4 Swinging to the second delivery cylinder 8 and communicating, the particles and mud mixture enter the first delivery cylinder 6; meanwhile, the second hydraulic cylinder 2 enters a compression stroke, and the particles and mud mixture in the second delivery cylinder 8 are passed through the reversing tube 4
  • the injection high pressure line 9 enters the well circulation, the first hydraulic cylinder 1 enters the compression stroke after the end of the filling stroke, the second hydraulic cylinder 2 enters the filling stroke, and the continuous injection is continuously performed.
  • the swing hydraulic cylinder 3 includes a cylinder block 13, a piston 14, a piston rod 15, a swing rod 16 and a spline 17 connected to the swing rod 16.
  • the piston 14 is connected to the swing rod 16 via a piston rod 15, and the commutator tube 4 is connected. On the spline 17.
  • An arrow type check valve 18 is connected to the high pressure line 9.
  • the first hydraulic cylinder 1 and the second hydraulic cylinder 2 are both double-rod hydraulic cylinders; two sealing rings 19 are connected in the reversing pipe 4, and two sealing rings 19 are respectively located at two ends of the reversing pipe 4.
  • the cross section of the reversing tube 4 is of the "S" shape.
  • the rotary storage tank 12 includes a tank body 20, blades 21 located in the tank body 20, a support frame 22, a sieve drum 23, and a motor 24 for driving the rotation of the tank body 20.
  • the blades 21 and the support frame 22 are fixedly connected to the tank On the inner wall of the body 20, the sieve drum 23 is connected to the blade 21 via a support frame 22.
  • the outlet device includes a rotary blowout preventer and a rotary control head coupled to the rotary blowout preventer.
  • the embodiment is a preferred embodiment.
  • the rotary storage tank comprises a tank body, a blade located in the tank body, a support frame, a sieve drum and a motor for driving the rotation of the tank body, and the blade and the support frame are fixedly connected to the inner wall of the tank body, and the sieve barrel
  • the rotating storage tank with the unique structure can realize dynamic storage during forward rotation to prevent agglomeration during particle turnover storage; when reversing, particle discharge can be realized, and the blade will evenly distribute particles Spin out.
  • the particles, cuttings and mud mixture returned from the well are directly drained to the magnetic separator in the recovery device through the rotary control head of the outlet device for particle separation, which simplifies the particle screening process, due to mud and cuttings. Containing ferromagnetic substances, the magnetic separator can easily separate the particles, and has the characteristics of high separation efficiency and good separation effect.
  • the magnetic separator separates the particles and directly transports them to the storage tank for recycling, which is more than the prior art. Under the premise of not changing the conventional drilling process, the particle recovery process is simplified, and the jet mixer, the supporting low-pressure pipeline, the vibrating screen and the cuttings storage funnel which are prone to mud leakage are eliminated, and the installation efficiency of the recovery system is effectively improved.
  • the operation and maintenance convenience greatly improve the efficiency of particle impact drilling; effectively solve the problem that the cuttings and mud mixture are pumped to the well vibrating screen first, then transported
  • the problem of mud leakage caused by the recovery device greatly reduces the risk of environmental pollution.
  • the specific injection speed can not only ensure the performance of the drilling fluid during the drilling process, but also the particle impact frequency of the particle impact rock breaking is more than 10 million times/min at the injection speed, which has a good impact rock breaking effect and improves Drilling efficiency. Under this specific pressure, the injection speed of the particles can be effectively ensured, the drilling efficiency can be improved, and the drilling riser can be effectively prevented from being damaged, and the stability of the particle drilling operation can be ensured.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

一种粒子钻井方法,包括如下步骤:a、粒子注入步骤,是指采用注入装置将泥浆和粒子注入井内;b、粒子回收步骤,是指从井内返出的粒子、岩屑和泥浆混合物通过钻台上的旋转控制头经管线引流至磁选机(10)内,磁选机(10)将分离出来的粒子送入储罐内,岩屑和泥浆混合物送入泥浆罐(11)内;c、将储罐内的粒子通过注入装置注入到井内再次钻井,形成一个钻井循环。本方案有效解决了现有技术中泥浆泄漏点多的问题,极大的降低了环境污染风险。

Description

一种粒子钻井方法 技术领域
本发明涉及到油气钻井工程技术领域,尤其涉及一种粒子钻井方法。
背景技术
常规的钻井方法是利用井底钻头的钻压和旋转实现机械破岩,达到钻进的目的,这种方式在遇到深部硬地层和强研磨地层时,仅依靠钻头的机械作用进行破岩,泥浆的作用只是携带岩屑,无法实现水力加机械的联合破岩效果,存在钻速慢、周期长、成本高的问题。近年来,粒子冲击钻井技术作为一项革命性的提速技术,得到了广泛的应用;粒子冲击钻井是一种通过将直径1-3毫米的球形钢粒注入井底,以辅助破碎深部硬地层和强研磨地层的钻井技术。粒子冲击钻井效果的好坏,其中一个关键因子便是粒子注入装置,现有技术的粒子注入装置通常采用单高压罐式注入结构,无法实现粒子连续注入;且高压罐重量和体积较大,运输不方便,高压区覆盖面广,安全风险高;此外,还存在地面单位面积承压大,需通过水泥固化加强地基,耗时长、费用高的问题。因此亟需研制一种可实现粒子连续注入,且运输方便、安全性高的注入装置,以满足现场需求。
公开号为CN 203742449U,公开日为2014年07月30日的中国专利文献公开了一种粒子立式注入装置,其特征在于:包括高压容器,高压容器的上部设置进料管,底部设置出料管,出料管上设置倾斜出口,高压容器内设置旋转轴,旋转轴上设置螺旋齿,旋转轴和高压容器的顶部和底部之间分别设置上密封体和下密封体,上密封体和旋转轴之间、下密封体和旋转轴之间均设置轴承,上下端的轴承外侧分别设置上端盖和下端盖,上端盖上轴向设置泄压孔,旋转轴底部通过联轴器连接电机,电机通过支撑筋固定在支腿上,高压容器固定在支腿上,倾斜出口连接高压液动阀,高压液动阀连接高压三通。该专利文献公开的粒子立式注入装置,虽然可使粒子均匀下落,避免粒子在高压容器底部堆积,但是,采用单高压容器注入仅能粒子间断性注入,无法实现粒子连续注入;采用的高压容器重量和体积较大,造成地面单位面积承压大,需通过水泥固化加强地基,耗时长、费用高和运输不便,并且装置高压区覆盖面大,安全风险高。
公开号为CN 103195363A,公开日为2013年07月10日的中国专利文献公开了一种负压射流式粒子冲击钻井注入装置,包括高压粒子注入罐, 高压粒子注入罐顶部设置进料口,底部设置出料口,其特征在于:进料口一侧安装平衡压力射流管,平衡压力射流管一端设置射流防堵喷头,另一端置于主管汇顶部,射流防堵喷头位于高压粒子注入罐底部,出料口底部设置负压粒子注入管,负压粒子注入管一端设置喷嘴,喷嘴连通主管汇,主管汇底部设置调节管,调节管末端连通负压粒子注入管出口,调节管内设置调节阀。该专利文献公开的负压射流式粒子冲击钻井注入装置,采用自旋转式射流防堵喷头,对高压粒子注入罐出料口实现全方位、多角度搅动,能够解决高压粒子注入罐底部堵塞问题;但是,其采用单高压容器注入仅能粒子间断性注入,无法实现粒子连续注入;采用的高压容器重量和体积较大,造成地面单位面积承压大,需通过水泥固化加强地基,耗时长、费用高和运输不便,并且装置高压区覆盖面大,安全风险高。
公开号为CN 102619468A,公开日为2012年08月01日的中国专利文献公开了一种粒子冲击钻井注入装置,包括地面高压主管线、分流管线、分流管线控制阀、钢粒储存罐、液动(或手动)加料阀、储存罐泄压管线、储存罐泄压控制阀、钢粒、螺旋推进机、钢粒注入控制阀及限流装置,其特征在于:所述的限流装置设置在分流管线之后,分流管线控制阀设置在地面高压主管线和钢粒储存罐之间,储存罐泄压控制阀在钢粒储存罐与钻井液池之间,所述的螺旋推进机位于钢粒储存罐之下,钢粒注入控制阀位于螺旋推进机与地面高压主管线之间。该专利文献公开的粒子冲击钻井注入装置,采用左、右两套完全相同、各自独立的注入装置,通过交替重复使用,虽然也实现了粒子连续注入,但是,实际使用中,注入装置中的螺旋推进机内的粒子易结块,堵塞螺旋推进机,导致其无法实现粒子的正常注入;采用的钢粒储存罐重量和体积较大,造成地面单位面积承压大,需通过水泥固化加强地基,耗时长、费用高和运输不便,并且装置高压区覆盖面大,安全风险高。
近年来,粒子钻井的方法得到广泛的应用,粒子钻井方法主要涉及到的装置有注入装置和回收装置,其中回收装置主要包括井队振动筛、射流混浆器、磁选机、振动筛、岩屑储存漏斗、泥浆罐和静止储罐。整个钻井工作过程为:通过注入装置将粒子和泥浆混合物注入到井内进行钻井,从井内返出的粒子、岩屑和泥浆混合物依次通过井队振动筛、射流混浆器和磁选机,磁选机将粒子从岩屑和泥浆混合物中分离出来,然后泵送至静止储罐内备用,剩下的岩屑和泥浆混合物通过振动筛筛选后,岩屑落入岩屑储存漏斗内,泥浆落入泥浆罐内备用,至此完成了一次钻井周期。
采用这种粒子钻井方法,不仅回收装置中的射流混浆器、振动筛、岩屑储存漏斗以及配套的低压管线极易发生钻井液泄漏,造成环境污染;而且存在设备多,安装位置分散,安装复杂,耗时较长,维护成本较高的缺 点。
公开号为CN 102022078A,公开日为2011年04月20日的中国专利文献公开了一种新型的钻井方法,其特征是:在钻井泵的泵出管路上连接一套粒子注入***,使要注入井内的高压泥浆中不断地混入坚硬的粒径在2-8mm范围的粒子,其沿钻柱下行直到钻头,在水眼处得以加速,以极高的速度冲击岩石,从而达到机械与粒子冲击联合破岩的效果,提高坚硬地层中的钻进速度,在井口泥浆返回管路中连接一套粒子分离***,将金属颗粒从井底返回的混合液中分离出来,重复循环利用。
该专利文献公开的钻井方法,为了能够提高粒子注入效率,采用了两套能分别单独工作的注入装置,但是该方法中涉及的设备繁多、结构复杂、安装不便,不易操作;该方法中涉及的螺旋推进机内的粒子易结块,堵塞螺旋推进机,导致其无法实现粒子的正常注入;采用的注入装置重量和体积较大,造成地面单位面积承压大,需通过水泥固化加强地基,耗时长、费用高和运输不便,并且装置高压区覆盖面大,安全风险高;两套注入装置各自独立,不能有机联系在一起,增大了与粒子分离***和粒子输送***相互间的配合难度,实质上限制了粒子的钻井效率。
发明内容
本发明为了克服上述现有技术的缺陷,提供一种粒子钻井方法,本发明将井内返出的粒子、岩屑和泥浆混合物利用流体能量通过井口的出口装置直接引流至磁选机内,进行粒子分离储存,有效解决了现有技术中岩屑和泥浆直接泵至井队振动筛带来的泥浆泄漏点多的问题,极大的降低了环境污染风险。
本发明通过下述技术方案实现:
一种粒子钻井方法,包括粒子注入步骤和粒子回收步骤,其特征在于:
a、所述粒子注入步骤是指采用注入装置将泥浆和粒子注入井内;
b、所述粒子回收步骤是指从井内返出的粒子、岩屑和泥浆混合物依靠流体能量通过钻台井口的出口装置经管线直接引流至回收装置,再由回收装置内的磁选机将分离出来的粒子送入储罐内,岩屑和泥浆混合物送入泥浆罐内;
c、将储罐内的粒子输送至注入装置,通过注入装置注入到井内再次钻井,形成一个粒子冲击钻井循环。
所述粒子注入步骤中的粒子注入速度为0.5-10kg/s。
所述粒子注入步骤中的粒子注入压力为5-55MPa。
所述储罐为旋转储罐,包括罐体、位于罐体内的叶片、支撑架、筛桶和驱动罐体旋转的电机,叶片和支撑架固定连接在罐体的内壁上,筛桶通 过支撑架与叶片连接。
所述注入装置为双注入泵连续注入装置,包括通过高压管线与钻井立管连接的粒子混合料斗,粒子混合料斗内设置有换向管,换向管上连接有驱动换向管左右摆动的摆动液压缸,粒子混合料斗上连接有第一输送缸和第二输送缸,换向管一端与高压管线连通,另一端与第一输送缸或第二输送缸连通,粒子注入时,首先启动第一液压缸、第二液压缸和摆动液压缸,第一液压缸进入添注冲程,摆动液压缸将换向管摆动到第二输送缸处并连通,粒子和泥浆进入第一输送缸内;同时第二液压缸进入压缩冲程,将第二输送缸内的粒子和泥浆通过换向管注入高压管线进入井内循环,第一液压缸添注冲程结束后进入压缩冲程,第二液压缸进入添注冲程,交替运行连续注入。
所述摆动液压缸包括缸体、活塞、活塞杆、摆杆和连接在摆杆上的花键,活塞通过活塞杆与摆杆连接,换向管连接在花键上。
所述高压管线上连接有箭型止回阀。
所述泥浆罐由圆柱罐体和锥形罐体构成,锥形罐***于圆柱罐体下方,锥形罐体和圆柱罐体为一体成型结构。
所述出口装置包括旋转防喷器和连接在旋转防喷器上的旋转控制头。
本发明的工作原理如下:
在粒子冲击钻井过程中,先通过螺杆输送机将粒子钻井回收装置中分离储存的粒子添注至粒子混合料斗内,并通过调整螺杆输送机的螺杆转速来控制粒子的添注速度,并通过渣浆泵向粒子混合料斗内泵送泥浆,并维持粒子混合料斗内粒子、泥浆混合物占粒子混合料斗容积的1/2-2/3之间;当粒子混合料斗内粒子、泥浆混合物达到其容积的1/2时,启动第一液压缸和第二液压缸,第一液压缸进入添注冲程,同时摆动液压缸启动,摆动换向管到第二输送缸处,使换向管迅速与第二输送缸连通,粒子混合料斗内的粒子、泥浆混合物便添注入第一输送缸内;与此同时,第二液压缸进入压缩冲程,挤压来自粒子混合料斗并储存在第二输送缸内的粒子、泥浆混合物,粒子、泥浆混合物通过换向管注入高压管线内,并最终进入井内循环;当第二活塞运动至极限位置,压缩冲程结束,第二液压缸进入添注冲程,摆动液压缸再将换向管摆动到第一输送缸处,并与第一输送缸连通,第一液压缸由添注冲程转为压缩冲程,将第一输送缸内的粒子、泥浆混合物通过换向管注入高压管线内,并最终进入井内循环,实现了第一输送缸和第二输送缸的交替运行,使粒子能够被连续注入井内;井内返出的泥浆、岩屑和粒子混合物直接通过旋转控制头和管线引流到磁选机内,磁选机在泥浆、岩屑和粒子混合物中筛选出粒子,并通过水平输送机将粒子运输至 旋转储罐内储存,岩屑和泥浆落入磁选机下方的泥浆罐内,通过砂浆泵和管线直接将泥浆罐内的岩屑、泥浆混合物直接泵至井队振动筛,就实现了粒子的分离和回收,分离出的粒子储存在旋转储罐内,再通过螺杆输送机直接泵至粒子混合料斗内,自此便实现了粒子在整个钻井过程中的循环使用。
本发明的有益效果主要表现在以下几个方面:
一、本发明,“粒子注入步骤是指采用注入装置将泥浆和粒子注入井内;粒子回收步骤是指从井内返出的粒子、岩屑和泥浆混合物依靠流体能量通过钻台井口的出口装置经管线直接引流至回收装置,再由回收装置内的磁选机将分离出来的粒子送入储罐内,岩屑和泥浆混合物送入泥浆罐内;将储罐内的粒子输送至注入装置,通过注入装置注入到井内再次钻井,形成一个粒子冲击钻井循环”,通过粒子回收步骤将井内返出的粒子、岩屑和泥浆混合物直接引流至回收装置中的磁选机内进行粒子分离,简化了粒子筛选流程,由于泥浆和岩屑不含铁磁类物质,磁选机能够轻易将粒子分离出来,具有分离效率高,分离效果好的特点,磁选机将粒子分离后直接输送至储罐内再次循环使用,较现有技术而言,在不改变常规钻井流程的前提下,简化了粒子回收流程,取消了易发生泥浆泄漏的射流混浆器、配套低压管线、振动筛和岩屑存储漏斗等设备,有效提高回收***安装效率、操作和维护便利性,极大地提高了粒子冲击钻井作业效率;有效解决了岩屑和泥浆混合物先泵至井队振动筛,再输送至回收装置所带来的泥浆泄漏点多的问题,极大的降低了环境污染风险。
二、本发明,粒子注入步骤中的粒子注入速度为0.5-10kg/s,采用该特定的注入速度,不仅能够在钻井过程中保证钻井液的性能,而且在该注入速度下,粒子冲击破岩的粒子冲击频率大于1000万次/分钟,具有良好的冲击破岩效果,提高了钻井效率。
三、本发明,粒子注入步骤中的粒子注入压力为5-55MPa,在该特定的压力范围,能够有效保证粒子的注入速度,提高钻井效率,而且能够有效防止钻井立管受到损害,保证粒子钻井工作稳定性。
四、本发明,储罐为旋转储罐,包括罐体、位于罐体内的叶片、支撑架、筛桶和驱动罐体旋转的电机,叶片和支撑架固定连接在罐体的内壁上,筛桶通过支撑架与叶片连接,采用该独特结构的旋转储罐,正转时,可实现动态储存,防止粒子周转储存过程中发生结块;反转时,即可实现粒子出料,叶片将粒子均匀的旋出。
五、本发明,注入装置为双注入泵连续注入装置,包括通过高压管线与钻井立管连接的粒子混合料斗,粒子混合料斗内设置有换向管,换向管上连接有驱动换向管左右摆动的摆动液压缸,粒子混合料斗上连接有第一 输送缸和第二输送缸,换向管一端与高压管线连通,另一端与第一输送缸或第二输送缸连通,粒子注入时,首先启动第一液压缸、第二液压缸和摆动液压缸,第一液压缸进入添注冲程,摆动液压缸将换向管摆动到第二输送缸处并连通,粒子和泥浆进入第一输送缸内;同时第二液压缸进入压缩冲程,将第二输送缸内的粒子和泥浆通过换向管注入高压管线进入井内循环,第一液压缸添注冲程结束后进入压缩冲程,第二液压缸进入添注冲程,交替运行连续注入,保证了井内粒子注入的连续性,同时避免第一输送缸和第二输送缸内粒子沉积堵塞,有效提高粒子冲击钻井的工作效率;该双注入泵连续注入装置中,仅第一输送缸、第二输送缸、换向管为高压状态,较现有技术而言,替代了高压罐配套螺旋输送机式的注入装置,优化了注入流程,解决了单高压罐仅能粒子间断性注入的问题,实现了粒子连续注入;同时,有效解决了螺旋输送机内粒子易结块、堵塞无法实现粒子注入,以及高压罐配套设备重量和体积大引起的运输、安装、操作不便和耗时长、费用高等问题,提高了粒子钻井作业效率;大幅度降低了注入装置高压区,提高了安全性。
六、本发明,摆动液压缸包括缸体、活塞、活塞杆、摆杆和连接在摆杆上的花键,活塞通过活塞杆与摆杆连接,换向管连接在花键上,采用此种特定结构的摆动液压缸,摆杆使换向管灵活的换向,不仅具有换向灵活的特点,而且采用花键、摆杆的这种结构延长了使用寿命。
七、本发明,高压管线上连接有箭型止回阀,采用箭型止回阀一方面能够使粒子、泥浆混合物顺畅的经高压管线进入井内,另一方面能够防止粒子、泥浆混合物逆窜入第一输送缸或第二输送缸内,有效避免粒子注入过程中泥浆泄漏伤人,进一步提高安全性。
附图说明
图1为本发明钻井装置的结构示意图;
图2为本发明双注入泵连续注入装置与钻台的连接结构示意图;
图3为本发明摆动液压缸的结构示意图;
图4为本发明实施例4中双注入泵连续注入装置与钻台的连接结构示意图;
图5为本发明实施例5中换向管的结构示意图;
图6为本发明实施例7中旋转储罐的结构示意图;
图中标记:1、第一液压缸,2、第二液压缸,3、摆动液压缸,4、换向管,5、第一活塞,6、第一输送缸,7、第二活塞,8、第二输送缸,9、高压管线,10、磁选机,11、泥浆罐,12、旋转储罐,13、缸体,14、活塞,15、活塞杆,16、摆杆,17、花键,18、箭型止回阀,19、密封圈,20、罐体,21、叶片,22、支撑架,23、筛桶,24、电机。
具体实施方式
实施例1
参见图1和图2,一种粒子钻井方法,包括粒子注入步骤和粒子回收步骤,所述粒子注入步骤是指采用注入装置将泥浆和粒子注入井内;所述粒子回收步骤是指从井内返出的粒子、岩屑和泥浆混合物依靠流体能量通过钻台井口的出口装置经管线直接引流至回收装置,再由回收装置内的磁选机10将分离出来的粒子送入储罐内,岩屑和泥浆混合物送入泥浆罐11内;将储罐内的粒子输送至注入装置,通过注入装置注入到井内再次钻井,形成一个粒子冲击钻井循环。
本实施例为最基本的实施方式,采用现有技术的注入装置和储罐即可,通过粒子回收步骤将井内返出的粒子、岩屑和泥浆混合物直接引流至回收装置中的磁选机内进行粒子分离,简化了粒子筛选流程,由于泥浆和岩屑不含铁磁类物质,磁选机能够轻易将粒子分离出来,具有分离效率高,分离效果好的特点,磁选机将粒子分离后直接输送至储罐内再次循环使用,较现有技术而言,在不改变常规钻井流程的前提下,简化了粒子回收流程,取消了易发生泥浆泄漏的射流混浆器、配套低压管线、振动筛和岩屑存储漏斗等设备,有效提高回收***安装效率、操作和维护便利性,极大地提高了粒子冲击钻井作业效率;有效解决了岩屑和泥浆混合物先泵至井队振动筛,再输送至回收装置所带来的泥浆泄漏点多的问题,极大的降低了环境污染风险。
实施例2
参见图1-图3,一种粒子钻井方法,包括粒子注入步骤和粒子回收步骤,所述粒子注入步骤是指采用注入装置将泥浆和粒子注入井内;所述粒子回收步骤是指从井内返出的粒子、岩屑和泥浆混合物依靠流体能量通过钻台井口的出口装置经管线直接引流至回收装置,再由回收装置内的磁选机10将分离出来的粒子送入储罐内,岩屑和泥浆混合物送入泥浆罐11内;将储罐内的粒子输送至注入装置,通过注入装置注入到井内再次钻井,形成一个粒子冲击钻井循环。
所述粒子注入步骤中的粒子注入速度为0.5kg/s。
所述粒子注入步骤中的粒子注入压力为5MPa。
所述注入装置为双注入泵连续注入装置,双注入泵连续注入装置包括第一液压缸1、第二液压缸2、摆动液压缸3、换向管4、第一活塞5、第一输送缸6、第二活塞7和第二输送缸8,启动第一液压缸1、第二液压缸2和摆动液压缸3,第一液压缸1进入添注冲程,摆动液压缸3将换向管4摆动到第二输送缸8处并连通,粒子、泥浆混合物进入第一输送缸6内;同时第二液压缸2进入压缩冲程,将第二输送缸8内的粒子、泥浆混合物 通过换向管4注入高压管线9进入井内循环,第一液压缸1添注冲程结束后进入压缩冲程,第二液压缸2进入添注冲程,交替运行连续注入。
本实施例为一较佳实施方式,粒子注入时,首先启动第一液压缸、第二液压缸和摆动液压缸,第一液压缸进入添注冲程,摆动液压缸将换向管摆动到第二输送缸处并连通,粒子和泥浆进入第一输送缸内;同时第二液压缸进入压缩冲程,将第二输送缸内的粒子和泥浆通过换向管注入高压管线进入井内循环,第一液压缸添注冲程结束后进入压缩冲程,第二液压缸进入添注冲程,交替运行连续注入,保证了井内粒子注入的连续性,同时避免第一输送缸和第二输送缸内粒子沉积堵塞,有效提高粒子冲击钻井的工作效率;该双注入泵连续注入装置中,仅第一输送缸、第二输送缸、换向管为高压状态,大大降低了高压区,提高了安全性。
实施例3
参见图1、图3和图4,一种粒子钻井方法,包括粒子注入步骤和粒子回收步骤,所述粒子注入步骤是指采用注入装置将泥浆和粒子注入井内;所述粒子回收步骤是指从井内返出的粒子、岩屑和泥浆混合物依靠流体能量通过钻台井口的出口装置经管线直接引流至回收装置,再由回收装置内的磁选机10将分离出来的粒子送入储罐内,岩屑和泥浆混合物送入泥浆罐11内;将储罐内的粒子输送至注入装置,通过注入装置注入到井内再次钻井,形成一个粒子冲击钻井循环。
所述粒子注入步骤中的粒子注入速度为2kg/s。
所述粒子注入步骤中的粒子注入压力为20MPa。
所述注入装置为双注入泵连续注入装置,双注入泵连续注入装置包括第一液压缸1、第二液压缸2、摆动液压缸3、换向管4、第一活塞5、第一输送缸6、第二活塞7和第二输送缸8,启动第一液压缸1、第二液压缸2和摆动液压缸3,第一液压缸1进入添注冲程,摆动液压缸3将换向管4摆动到第二输送缸8处并连通,粒子、泥浆混合物进入第一输送缸6内;同时第二液压缸2进入压缩冲程,将第二输送缸8内的粒子、泥浆混合物通过换向管4注入高压管线9进入井内循环,第一液压缸1添注冲程结束后进入压缩冲程,第二液压缸2进入添注冲程,交替运行连续注入。
所述摆动液压缸3包括缸体13、活塞14、活塞杆15、摆杆16和连接在摆杆16上的花键17,活塞14通过活塞杆15与摆杆16连接,换向管4连接在花键17上。
所述高压管线9上连接有箭型止回阀18。
本实施例为又一较佳实施方式,摆动液压缸包括缸体、活塞、活塞杆、摆杆和连接在摆杆上的花键,活塞通过活塞杆与摆杆连接,换向管连接在花键上,采用此种特定结构的摆动液压缸,摆杆使换向管灵活的换向,不 仅具有换向灵活的特点,而且采用花键、摆杆的这种结构延长了使用寿命。高压管线上连接有箭型止回阀,采用箭型止回阀一方面能够使粒子、泥浆混合物顺畅的经高压管线进入井内,另一方面能够防止粒子、泥浆混合物逆窜入第一输送缸或第二输送缸内,有效避免粒子注入过程中泥浆泄漏伤人,进一步提高安全性。
实施例4
参见图1、图3、图4和图5,一种粒子钻井方法,包括粒子注入步骤和粒子回收步骤,所述粒子注入步骤是指采用注入装置将泥浆和粒子注入井内;所述粒子回收步骤是指从井内返出的粒子、岩屑和泥浆混合物依靠流体能量通过钻台井口的出口装置经管线直接引流至回收装置,再由回收装置内的磁选机10将分离出来的粒子送入储罐内,岩屑和泥浆混合物送入泥浆罐11内;将储罐内的粒子输送至注入装置,通过注入装置注入到井内再次钻井,形成一个粒子冲击钻井循环。
所述粒子注入步骤中的粒子注入速度为6kg/s。
所述粒子注入步骤中的粒子注入压力为30MPa。
所述注入装置为双注入泵连续注入装置,双注入泵连续注入装置包括第一液压缸1、第二液压缸2、摆动液压缸3、换向管4、第一活塞5、第一输送缸6、第二活塞7和第二输送缸8,启动第一液压缸1、第二液压缸2和摆动液压缸3,第一液压缸1进入添注冲程,摆动液压缸3将换向管4摆动到第二输送缸8处并连通,粒子、泥浆混合物进入第一输送缸6内;同时第二液压缸2进入压缩冲程,将第二输送缸8内的粒子、泥浆混合物通过换向管4注入高压管线9进入井内循环,第一液压缸1添注冲程结束后进入压缩冲程,第二液压缸2进入添注冲程,交替运行连续注入。
所述摆动液压缸3包括缸体13、活塞14、活塞杆15、摆杆16和连接在摆杆16上的花键17,活塞14通过活塞杆15与摆杆16连接,换向管4连接在花键17上。
所述高压管线9上连接有箭型止回阀18。
进一步的,第一液压缸1和第二液压缸2均为双杆液压缸;所述换向管4内连接有两个密封圈19,两个密封圈19分别位于换向管4的两端。
本实施例为又一较佳实施方式,第一液压缸和第二液压缸均为双杆液压缸,能够实现等速往复运动,便于实现添注冲程和压缩冲程的同步性,增强粒子连续注入井内的稳定性,从而保证粒子钻井工作效率。换向管内连接有两个密封圈,两个密封圈分别位于换向管的两端,当换向管与第一输送缸或第二输送缸接通时,密封圈能够防止第一输送缸或第二输送缸内压力的泄漏,使添注冲程和压缩冲程都能够稳定的进行,保证粒子顺利的注入井内。
实施例5
参见图1、图3、图4和图5,一种粒子钻井方法,包括粒子注入步骤和粒子回收步骤,所述粒子注入步骤是指采用注入装置将泥浆和粒子注入井内;所述粒子回收步骤是指从井内返出的粒子、岩屑和泥浆混合物依靠流体能量通过钻台井口的出口装置经管线直接引流至回收装置,再由回收装置内的磁选机10将分离出来的粒子送入储罐内,岩屑和泥浆混合物送入泥浆罐11内;将储罐内的粒子输送至注入装置,通过注入装置注入到井内再次钻井,形成一个粒子冲击钻井循环。
所述粒子注入步骤中的粒子注入速度为8kg/s。
所述粒子注入步骤中的粒子注入压力为40MPa。
所述注入装置为双注入泵连续注入装置,双注入泵连续注入装置包括第一液压缸1、第二液压缸2、摆动液压缸3、换向管4、第一活塞5、第一输送缸6、第二活塞7和第二输送缸8,启动第一液压缸1、第二液压缸2和摆动液压缸3,第一液压缸1进入添注冲程,摆动液压缸3将换向管4摆动到第二输送缸8处并连通,粒子、泥浆混合物进入第一输送缸6内;同时第二液压缸2进入压缩冲程,将第二输送缸8内的粒子、泥浆混合物通过换向管4注入高压管线9进入井内循环,第一液压缸1添注冲程结束后进入压缩冲程,第二液压缸2进入添注冲程,交替运行连续注入。
所述摆动液压缸3包括缸体13、活塞14、活塞杆15、摆杆16和连接在摆杆16上的花键17,活塞14通过活塞杆15与摆杆16连接,换向管4连接在花键17上。
所述高压管线9上连接有箭型止回阀18。
所述第一液压缸1和第二液压缸2均为双杆液压缸;所述换向管4内连接有两个密封圈19,两个密封圈19分别位于换向管4的两端。
进一步的,换向管4的横截面呈“S”型。
本实施例为又一较佳实施方式,换向管的横截面呈“S”型,采用特定的“S”型换向管,使换向过程更加灵活方便,换向管无论是与第一输送缸连接,还是与第二输送缸连接,均能快速的连通,以保证粒子注入的连续性。
实施例6
参见图1、图3、图4、图5和图6,一种粒子钻井方法,包括粒子注入步骤和粒子回收步骤,所述粒子注入步骤是指采用注入装置将泥浆和粒子注入井内;所述粒子回收步骤是指从井内返出的粒子、岩屑和泥浆混合物依靠流体能量通过钻台井口的出口装置经管线直接引流至回收装置,再由回收装置内的磁选机10将分离出来的粒子送入储罐内,岩屑和泥浆混合物送入泥浆罐11内;将储罐内的粒子输送至注入装置,通过注入装置注入 到井内再次钻井,形成一个粒子冲击钻井循环。
所述粒子注入步骤中的粒子注入速度为10kg/s。
所述粒子注入步骤中的粒子注入压力为55MPa。
所述注入装置为双注入泵连续注入装置,双注入泵连续注入装置包括第一液压缸1、第二液压缸2、摆动液压缸3、换向管4、第一活塞5、第一输送缸6、第二活塞7和第二输送缸8,启动第一液压缸1、第二液压缸2和摆动液压缸3,第一液压缸1进入添注冲程,摆动液压缸3将换向管4摆动到第二输送缸8处并连通,粒子、泥浆混合物进入第一输送缸6内;同时第二液压缸2进入压缩冲程,将第二输送缸8内的粒子、泥浆混合物通过换向管4注入高压管线9进入井内循环,第一液压缸1添注冲程结束后进入压缩冲程,第二液压缸2进入添注冲程,交替运行连续注入。
所述摆动液压缸3包括缸体13、活塞14、活塞杆15、摆杆16和连接在摆杆16上的花键17,活塞14通过活塞杆15与摆杆16连接,换向管4连接在花键17上。
所述高压管线9上连接有箭型止回阀18。
所述第一液压缸1和第二液压缸2均为双杆液压缸;所述换向管4内连接有两个密封圈19,两个密封圈19分别位于换向管4的两端。
所述换向管4的横截面呈“S”型。
进一步的,所述旋转储罐12包括罐体20、位于罐体20内的叶片21、支撑架22、筛桶23和驱动罐体20旋转的电机24,叶片21和支撑架22固定连接在罐体20的内壁上,筛桶23通过支撑架22与叶片21连接。
进一步的,出口装置包括旋转防喷器和连接在旋转防喷器上的旋转控制头。
本实施例为最佳实施方式,旋转储罐包括罐体、位于罐体内的叶片、支撑架、筛桶和驱动罐体旋转的电机,叶片和支撑架固定连接在罐体的内壁上,筛桶通过支撑架与叶片连接,采用该独特结构的旋转储罐,正转时,可实现动态储存,防止粒子周转储存过程中发生结块;反转时,即可实现粒子出料,叶片将粒子均匀的旋出。通过粒子回收步骤将井内返出的粒子、岩屑和泥浆混合物经出口装置的旋转控制头直接引流至回收装置中的磁选机内进行粒子分离,简化了粒子筛选流程,由于泥浆和岩屑不含铁磁类物质,磁选机能够轻易将粒子分离出来,具有分离效率高,分离效果好的特点,磁选机将粒子分离后直接输送至储罐内再次循环使用,较现有技术而言,在不改变常规钻井流程的前提下,简化了粒子回收流程,取消了易发生泥浆泄漏的射流混浆器、配套低压管线、振动筛和岩屑存储漏斗等设备,有效提高回收***安装效率、操作和维护便利性,极大地提高了粒子冲击钻井作业效率;有效解决了岩屑和泥浆混合物先泵至井队振动筛,再输送 至回收装置所带来的泥浆泄漏点多的问题,极大的降低了环境污染风险。采用该特定的注入速度,不仅能够在钻井过程中保证钻井液的性能,而且在该注入速度下,粒子冲击破岩的粒子冲击频率大于1000万次/分钟,具有良好的冲击破岩效果,提高了钻井效率。在该特定的压力下,能够有效保证粒子的注入速度,提高钻井效率,而且能够有效防止钻井立管受到损害,保证粒子钻井工作稳定性。

Claims (8)

  1. 一种粒子钻井方法,包括粒子注入步骤和粒子回收步骤,其特征在于:
    a、所述粒子注入步骤是指采用注入装置将泥浆和粒子注入井内;
    b、所述粒子回收步骤是指从井内返出的粒子、岩屑和泥浆混合物依靠流体能量通过钻台井口的出口装置经管线直接引流至回收装置,再由回收装置内的磁选机将分离出来的粒子送入储罐内,岩屑和泥浆混合物送入泥浆罐内;
    c、将储罐内的粒子输送至注入装置,通过注入装置注入到井内再次钻井,形成一个粒子冲击钻井循环。
  2. 根据权利要求1所述的一种粒子钻井方法,其特征在于:所述粒子注入步骤中的粒子注入速度为0.5-10kg/s。
  3. 根据权利要求1所述的一种粒子钻井方法,其特征在于:所述粒子注入步骤中的粒子注入压力为5-55MPa。
  4. 根据权利要求1所述的一种粒子钻井方法,其特征在于:所述储罐为旋转储罐,包括罐体、位于罐体内的叶片、支撑架、筛桶和驱动罐体旋转的电机,叶片和支撑架固定连接在罐体的内壁上,筛桶通过支撑架与叶片连接。
  5. 根据权利要求1所述的一种粒子钻井方法,其特征在于:所述注入装置为双注入泵连续注入装置,包括通过高压管线与钻井立管连接的粒子混合料斗,粒子混合料斗内设置有换向管,换向管上连接有驱动换向管左右摆动的摆动液压缸,粒子混合料斗上连接有第一输送缸和第二输送缸,粒子注入时,首先启动第一液压缸、第二液压缸和摆动液压缸,第一液压缸进入添注冲程,摆动液压缸将换向管摆动到第二输送缸处并连通,粒子和泥浆进入第一输送缸内;同时第二液压缸进入压缩冲程,将第二输送缸内的粒子和泥浆通过换向管注入高压管线进入井内循环,第一液压缸添注冲程结束后进入压缩冲程,第二液压缸进入添注冲程,交替运行连续注入。
  6. 根据权利要求5所述的一种粒子钻井方法,其特征在于:所述摆动液压缸包括缸体、活塞、活塞杆、摆杆和连接在摆杆上的花键,活塞通过活塞杆与摆杆连接,换向管连接在花键上。
  7. 根据权利要求5或6所述的一种粒子钻井方法,其特征在于:所述高压管线上连接有箭型止回阀。
  8. 根据权利要求1所述的一种粒子钻井方法,其特征在于:所述出口装置包括旋转防喷器和连接在旋转防喷器上的旋转控制头。
PCT/CN2016/089442 2015-07-09 2016-07-08 一种粒子钻井方法 WO2017005217A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/562,829 US20180106112A1 (en) 2015-07-09 2016-07-08 Particle drilling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510399376.9A CN105134080A (zh) 2015-07-09 2015-07-09 一种粒子钻井方法
CN201510399376.9 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017005217A1 true WO2017005217A1 (zh) 2017-01-12

Family

ID=54719619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089442 WO2017005217A1 (zh) 2015-07-09 2016-07-08 一种粒子钻井方法

Country Status (3)

Country Link
US (1) US20180106112A1 (zh)
CN (1) CN105134080A (zh)
WO (1) WO2017005217A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108194029A (zh) * 2017-12-28 2018-06-22 重庆聚亨机械有限公司 一种凿岩机钻臂

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134080A (zh) * 2015-07-09 2015-12-09 四川川庆石油钻采科技有限公司 一种粒子钻井方法
CN109488317B (zh) * 2018-11-27 2023-06-20 中铁工程装备集团有限公司 利用高速粒子冲击破岩的新型全断面隧道掘进机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751887A (en) * 1987-09-15 1988-06-21 Environmental Pyrogenics Services, Inc. Treatment of oil field wastes
CN102022078A (zh) * 2009-09-11 2011-04-20 中国石化集团胜利石油管理局钻井工艺研究院 粒子冲击钻井方法及装置
CN102619468A (zh) * 2011-01-31 2012-08-01 中国石油化工集团公司 一种粒子冲击钻井注入装置
CN104763334A (zh) * 2015-02-06 2015-07-08 中国石油大学(华东) 一种压力自动补偿式压差引射粒子连续注入装置及方法
CN104975809A (zh) * 2015-07-09 2015-10-14 四川川庆石油钻采科技有限公司 一种适用于钻井的环保粒子循环***
CN204782761U (zh) * 2015-07-09 2015-11-18 四川川庆石油钻采科技有限公司 一种适用于钻井的环保粒子循环***
CN105134080A (zh) * 2015-07-09 2015-12-09 四川川庆石油钻采科技有限公司 一种粒子钻井方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2287819A (en) * 1938-05-21 1942-06-30 Cities Service Oil Co Device for recording drilling operations
US3713499A (en) * 1971-08-11 1973-01-30 Gulf Research Development Co Method and apparatus for treating drilling mud
WO1999054588A1 (en) * 1998-04-21 1999-10-28 Bulk Mixer, Inc. Drilling fluid mixing apparatus and methods
US7997355B2 (en) * 2004-07-22 2011-08-16 Pdti Holdings, Llc Apparatus for injecting impactors into a fluid stream using a screw extruder
US7770666B2 (en) * 2007-04-26 2010-08-10 Barrett Allen Drilling fluid containing a recoverable lost circulation material and method of using and recovering the same
RU2009146356A (ru) * 2007-05-16 2011-06-27 Террауотт Холдингз Корпорейшн (Us) Способ (варианты) и система для струйного бурения с использованием частиц
US8037950B2 (en) * 2008-02-01 2011-10-18 Pdti Holdings, Llc Methods of using a particle impact drilling system for removing near-borehole damage, milling objects in a wellbore, under reaming, coring, perforating, assisting annular flow, and associated methods
US8556083B2 (en) * 2008-10-10 2013-10-15 National Oilwell Varco L.P. Shale shakers with selective series/parallel flow path conversion
US20100226837A1 (en) * 2009-01-27 2010-09-09 Cooperative Mineral Resources, Llc Production of metal products directly from underground ore deposits
US8567525B2 (en) * 2009-08-19 2013-10-29 Smith International, Inc. Method for determining fluid control events in a borehole using a dynamic annular pressure control system
CN102767333B (zh) * 2011-05-06 2014-09-03 中国石油天然气集团公司 粒子冲击钻井模拟实验方法及其装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751887A (en) * 1987-09-15 1988-06-21 Environmental Pyrogenics Services, Inc. Treatment of oil field wastes
CN102022078A (zh) * 2009-09-11 2011-04-20 中国石化集团胜利石油管理局钻井工艺研究院 粒子冲击钻井方法及装置
CN102619468A (zh) * 2011-01-31 2012-08-01 中国石油化工集团公司 一种粒子冲击钻井注入装置
CN104763334A (zh) * 2015-02-06 2015-07-08 中国石油大学(华东) 一种压力自动补偿式压差引射粒子连续注入装置及方法
CN104975809A (zh) * 2015-07-09 2015-10-14 四川川庆石油钻采科技有限公司 一种适用于钻井的环保粒子循环***
CN204782761U (zh) * 2015-07-09 2015-11-18 四川川庆石油钻采科技有限公司 一种适用于钻井的环保粒子循环***
CN105134080A (zh) * 2015-07-09 2015-12-09 四川川庆石油钻采科技有限公司 一种粒子钻井方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108194029A (zh) * 2017-12-28 2018-06-22 重庆聚亨机械有限公司 一种凿岩机钻臂

Also Published As

Publication number Publication date
US20180106112A1 (en) 2018-04-19
CN105134080A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
CN110953013B (zh) 松软煤层可控射流冲孔卸压增透装置及其方法
WO2017005217A1 (zh) 一种粒子钻井方法
CN102022078A (zh) 粒子冲击钻井方法及装置
CN108894755B (zh) 一种海底天然气水合物开采***及方法
CN104314490A (zh) 一种钻机固控循环***
CN113338802B (zh) 一种地面定向钻井流态化水力采煤***
CN103195363A (zh) 负压射流式粒子冲击钻井注入装置
CN206408628U (zh) 地下连续墙大容量泥浆循环利用装备
CN113338801A (zh) 一种地面定向钻井流态化水力采煤方法
CN108104749A (zh) 砂岩地热井气举反循环冲砂洗井工艺及设备
CN114382403A (zh) 一种矿产开采用节能型自动钻探设备
CN111852552A (zh) 充填料浆制备***及其制备方法
CN107676051A (zh) 一种煤层气井环空增压捞煤粉装置及方法
CN106894776A (zh) 一种煤层气井有杆泵排采的煤粉携带清除装置及方法
CN110952927B (zh) 双管式高压磨料喷射水平钻孔装置
WO2017005216A1 (zh) 一种适用于粒子钻井的双注入泵连续注入方法
CN104975809A (zh) 一种适用于钻井的环保粒子循环***
CN204782761U (zh) 一种适用于钻井的环保粒子循环***
CN204782762U (zh) 一种适用于粒子钻井的双注入泵连续注入装置
CN206309354U (zh) 砾石填充防砂工艺地面泵注装置
CN104358545A (zh) 排砂排煤粉采气的方法及其装置
CN108518179A (zh) 一种煤矿巷道底板小直径锚索反循环钻机及施工方法
CN104963631A (zh) 一种适用于粒子钻井的双注入泵连续注入装置
CN105350518B (zh) 一种混凝土喷浆设备
CN201187437Y (zh) 产出液液柱重力复位的单管液压抽油泵

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15562829

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16820868

Country of ref document: EP

Kind code of ref document: A1