WO2017004871A1 - 投影终端梯形校正方法、装置、投影终端和存储介质 - Google Patents

投影终端梯形校正方法、装置、投影终端和存储介质 Download PDF

Info

Publication number
WO2017004871A1
WO2017004871A1 PCT/CN2015/088299 CN2015088299W WO2017004871A1 WO 2017004871 A1 WO2017004871 A1 WO 2017004871A1 CN 2015088299 W CN2015088299 W CN 2015088299W WO 2017004871 A1 WO2017004871 A1 WO 2017004871A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
line
terminal
angle
distance
Prior art date
Application number
PCT/CN2015/088299
Other languages
English (en)
French (fr)
Inventor
王煜辰
张俊彦
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/739,786 priority Critical patent/US10645354B2/en
Priority to EP15897527.6A priority patent/EP3306919B1/en
Publication of WO2017004871A1 publication Critical patent/WO2017004871A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3152Modulator illumination systems for shaping the light beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a projection terminal image correction technology, and more particularly to a projection terminal trapezoid correction method, device, projection terminal and storage medium.
  • the projection center line of the projection terminal is difficult to be perpendicular to the projection screen and is opposite to the center point of the projection screen, so that the light spread on the projection screen when the projection light from the projection terminal to the projection screen is relatively close. Smaller; when the projection light from the projection terminal to the projection screen is far away, the light on the projection screen spreads more, and the image placed on the projection screen may have different widths on the upper and lower sides, that is, it will appear on the projection screen. The image of the trapezoid.
  • the above problem can be solved by a trapezoidal correction technique.
  • the principle of the trapezoidal correction is: using an electronic device and performing shape adjustment and compensation on the image before projection by an interpolation algorithm, so that the image projected on the projection screen becomes Rectangular image.
  • the automatic trapezoidal correction technology works by first detecting the angle between the projection center line of the projection terminal and the projection surface (projection screen), for example, setting an acceleration sensor in the projection terminal, using The acceleration sensor detects the angle between the projection center line of the projection terminal and the projection surface (projection screen); after knowing the angle between the projection center line of the projection terminal and the projection surface, according to the projection center line and projection of the projection terminal The angle of the face automatically corrects the trapezoidal distortion of the image.
  • Embodiments of the present invention are directed to providing a projection terminal trapezoidal correction method, apparatus, projection terminal, and storage medium to improve the correction effect of trapezoidal deformation.
  • the technical solution of the embodiment of the present invention is this As implemented:
  • the embodiment of the invention provides a trapezoidal correction method for a projection terminal, comprising:
  • the projection terminal is subjected to trapezoidal correction according to the direction of the projection surface.
  • determining the direction of the projection surface according to the magnitude relationship between the distance of the projection terminal along the first projection line to the projection surface and the distance of the projection terminal along the second projection line to the projection surface comprises:
  • the projection angle of the first projection line is smaller than the projection angle of the second projection line, if the distance of the projection terminal along the first projection line to the projection surface is greater than the projection terminal along the second projection line to the projection surface
  • the distance of the projection surface is a horizontal direction; otherwise, the direction of the projection surface is a vertical direction;
  • the projection angle of the first projection line is greater than the projection angle of the second projection line, if the distance of the projection terminal along the first projection line to the projection surface is smaller than the projection terminal along the second projection line to the projection surface
  • the distance of the projection surface is a horizontal direction; otherwise, the direction of the projection surface is a vertical direction.
  • the obtaining the distance of the projection terminal along the first projection line to the projection surface and the distance of the projection terminal along the second projection line to the projection surface include:
  • the first projection line and the second projection line are any two of the following three projection lines: a projection line having the largest projection angle among the projection lines of the projection terminal to the projection surface; The projection line with the smallest projection angle and the projection center line of the projection terminal.
  • the trapezoidal correction of the projection terminal according to the direction of the projection surface comprises:
  • a trapezoidal correction is performed on the projection terminal based on an angle of a projection center line of the projection terminal and a projection surface.
  • the embodiment of the invention further provides a projection terminal trapezoidal correction device, comprising a judgment module and a trapezoidal correction module; wherein
  • a judging module configured to: when the angle between the projection center line of the projection terminal and the horizontal plane is greater than a set acute angle, according to the distance of the projection terminal along the first projection line to the projection surface and the second along the projection terminal Determining the direction of the projection surface by the magnitude relationship of the distance from the projection surface to the projection surface, the first projection line and the second projection line having different projection angles;
  • the trapezoidal correction module is configured to perform trapezoidal correction on the projection terminal according to a direction of the projection surface.
  • the determining module is configured to acquire a distance of the projection terminal along a first projection line to a projection surface and a distance of the projection terminal along a second projection line to a projection surface; when the first projection line When the projection angle is smaller than the projection angle of the second projection line, if the distance of the projection terminal along the first projection line to the projection surface is greater than the distance of the projection terminal along the second projection line to the projection surface, the projection surface The direction is a horizontal direction; otherwise, the direction of the projection surface is a vertical direction; when the projection angle of the first projection line is greater than the projection angle of the second projection line, if the projection terminal is along the first projection line The distance of the projection surface is smaller than the distance of the projection terminal along the second projection line to the projection surface, and the direction of the projection surface is a horizontal direction; otherwise the projection The direction of the face is vertical.
  • the determining module is configured to sequentially acquire the distance of the projection terminal along the first projection line to the projection surface and the distance of the projection terminal along the second projection line to the projection surface, or to acquire the a distance of the projection terminal along the first projection line to the projection surface and a distance of the projection terminal along the second projection line to the projection surface.
  • the first projection line and the second projection line may be any two of the following three projection lines: a projection line having the largest projection angle among the projection lines of the projection terminal to the projection surface And the projection line with the smallest projection angle and the projection center line of the projection terminal.
  • the trapezoidal correction module is configured to obtain an angle between a projection center line and a projection surface of the projection terminal according to a direction of the projection surface and an angle between a projection center line of the projection terminal and a horizontal plane; A trapezoidal correction is performed on the projection terminal based on an angle of a projection center line of the projection terminal and a projection surface.
  • the embodiment of the invention further provides a projection terminal, which comprises any of the devices described above.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute at least one of the projection terminal trapezoid correction methods.
  • Embodiments of the present invention provide a projection terminal trapezoid correction method, apparatus, projection terminal, and computer storage medium.
  • a projection center line of a projection terminal and a horizontal plane is greater than 45 degrees
  • a plurality of projection terminals are projected along the projection terminal.
  • the distance from the projection surface to the projection surface is compared, and the direction of the projection surface is determined, thereby obtaining an angle between the projection center line of the projection terminal and the projection surface, thereby realizing automatic trapezoidal correction to the projection terminal.
  • FIG. 1 is a flow chart of a first embodiment of a trapezoidal correction method for a projection terminal according to the present invention
  • FIG. 2 is a flow chart of a second embodiment of a trapezoidal correction method for a projection terminal according to the present invention
  • FIG. 3 is a first flow chart of determining a direction of a projection surface in a second embodiment of a trapezoidal correction method for a projection terminal according to the present invention
  • FIG. 4 is a second schematic flowchart of determining a direction of a projection surface in a second embodiment of a trapezoidal correction method for a projection terminal according to the present invention
  • FIG. 5 is a third flow chart of determining a direction of a projection surface in a second embodiment of a trapezoidal correction method for a projection terminal according to the present invention
  • FIG. 6 is a fourth flow chart of determining a direction of a projection surface in a second embodiment of a trapezoidal correction method for a projection terminal according to the present invention.
  • FIG. 7 is a schematic structural diagram of a structure of a trapezoidal correction device for a projection terminal according to an embodiment of the present invention.
  • the projection terminal adopting the automatic trapezoidal correction technology can only perform correct trapezoidal correction when the angle between the projection center line of the projection terminal and the horizontal plane is less than a certain angle.
  • the reason is that when the angle between the projection center line of the projection terminal and the horizontal plane is large, it cannot be determined whether the direction of the projection surface is horizontal or vertical; if the direction of the projection surface is horizontal, for example, the projection surface is a ceiling or a ground.
  • the angle between the projection center line of the projection terminal and the projection surface is equal to the angle between the projection terminal and the horizontal plane; if the direction of the projection surface is a vertical direction, for example, the projection surface is a wall surface, and the projection center line and the projection surface of the projection terminal at this time
  • the angle of the projection is equal to 90 degrees minus the angle between the projection center line of the projection terminal and the projection surface of the horizontal plane. Therefore, when it is impossible to judge whether the direction of the projection surface is the horizontal direction or the vertical direction, the calculated angle between the projection center line of the projection terminal and the projection surface may be erroneous, and thus the correct trapezoidal correction cannot be performed.
  • the distance from the projection terminal along the first projection line to the projection surface is along the second projection of the projection terminal.
  • Line to The magnitude relationship of the distance of the projection surface is determined, and the direction of the projection surface is determined, and the projection terminal is subjected to trapezoidal correction according to the direction of the projection surface. In this way, the problem of poor correction due to the uncertainty of the direction of the projection surface in some cases during the trapezoidal correction process is solved.
  • the projection terminal includes, but is not limited to, a projector and other projection products; the projection center line of the projection terminal refers to the center line of each projection line of the projection terminal, and the projection center line of the projection terminal and the horizontal plane are clipped
  • the angle can range from 0 to 90 degrees.
  • FIG. 1 is a flowchart of a first embodiment of a trapezoidal correction method for a projection terminal according to the present invention. As shown in FIG. 1, the method includes:
  • Step 100 When the angle between the projection center line of the projection terminal and the horizontal plane is greater than the set acute angle, according to the distance of the projection terminal along the first projection line to the projection surface and the projection terminal along the second projection line to the projection The magnitude relationship of the distances of the faces determines the direction of the projection surface, and the first projection line and the second projection line have different projection angles.
  • the set acute angle may be an angle greater than 40 degrees
  • the projection angle of the projection line of the projection terminal is: the angle between the projection line of the projection terminal and the projection of the projection center line of the projection terminal on the horizontal plane, and the projection of the projection terminal
  • the projection angle of the line ranges from 0 degrees to 180 degrees.
  • determining the direction of the projection surface according to the magnitude relationship between the distance of the projection terminal along the first projection line to the projection surface and the distance of the projection terminal along the second projection line to the projection surface comprises:
  • the projection terminal when acquiring the distance of the projection terminal along the first projection line to the projection surface and the distance of the projection terminal along the second projection line to the projection surface, the projection terminal may be sequentially acquired along the first projection line to the projection surface. And a distance between the projection terminal and the projection surface along the second projection line, and the distance between the projection terminal along the first projection line and the projection surface and the projection terminal along the second projection line to the projection surface may be simultaneously acquired. distance.
  • the first projection line and the second projection line may be any two of the following three projection lines: a projection line with the largest projection angle among the projection lines of the projection terminal to the projection surface a projection line having a smallest projection angle, and a projection center line of the projection terminal, for example, one of the first projection line and the second projection line is in each of the projection lines of the projection terminal to the projection surface
  • the projection line having the largest projection angle, and the other projection line is a projection line having the smallest projection angle among the projection lines of the projection terminal to the projection surface.
  • the projection surface when the direction of the projection surface is a horizontal direction, the projection surface may be a projection screen, a ceiling or a ground parallel to the horizontal plane; when the direction of the projection surface is a vertical direction, the projection surface may be a projection perpendicular to the horizontal plane.
  • Curtain or wall when the direction of the projection surface is a horizontal direction, the projection surface may be a projection screen, a ceiling or a ground parallel to the horizontal plane; when the direction of the projection surface is a vertical direction, the projection surface may be a projection perpendicular to the horizontal plane.
  • Curtain or wall when the direction of the projection surface is a horizontal direction, the projection surface may be a projection screen, a ceiling or a ground parallel to the horizontal plane; when the direction of the projection surface is a vertical direction, the projection surface may be a projection perpendicular to the horizontal plane.
  • Step 101 Perform trapezoidal correction on the projection terminal according to a direction of the projection surface.
  • performing trapezoidal correction on the projection terminal according to the direction of the projection surface comprises: obtaining a projection terminal according to a direction of the projection surface and an angle between a projection center line of the projection terminal and a horizontal plane The angle between the projection center line and the projection surface; here, if the direction of the projection surface is horizontal, the angle between the projection center line of the projection terminal and the projection surface is equal to the angle between the projection terminal and the horizontal plane; if the direction of the projection surface is vertical, The angle between the projection center line of the projection terminal and the projection surface is equal to 90 degrees minus the angle between the projection terminal and the horizontal plane.
  • the projection terminal After the angle between the projection center line and the projection surface of the projection terminal is obtained, the projection terminal is subjected to trapezoidal correction based on the angle between the projection center line of the projection terminal and the projection surface.
  • the projection is performed
  • the terminal can perform trapezoidal correction in various existing implementation manners, for example, inputting the projection center line and the projection surface angle of the projection terminal into the projector main control chip located on the projector main board, and the projector main control chip
  • the projection terminal is subjected to trapezoidal correction according to the angle between the projection center line of the projection terminal and the projection surface.
  • the model of the projector main control chip includes but is not limited to DDP2000 and DDP2230.
  • FIG. 2 is a flowchart of a second embodiment of a trapezoidal correction method for a projection terminal according to the present invention. As shown in FIG. 2, the method includes:
  • Step 200 Fix the projector position.
  • the following method can also be used to detect whether the position of the projector is fixed: when the projector projects the light, whether the angle between the projection center line of the projector and the horizontal plane changes, and if there is a change, the flow ends, and the flow is to be projected. If the angle between the projection center line of the instrument and the horizontal plane does not change, step 201 is performed; if the change does not occur, the position of the projector is fixed, and step 201 is performed. In this way, the subsequent steps are performed only when the position of the projector is fixed. When the position of the projector changes for various reasons, the projector trapezoidal correction needs to be performed again.
  • Step 201 When the projector projects the light, the angle between the projection center line of the projector and the horizontal plane is obtained by measurement; if the angle between the projection center line of the projector and the horizontal plane is between 0 degrees and 45 degrees, then the determination is made.
  • the direction of the projection surface is a vertical direction, that is, the projection surface is perpendicular to the horizontal plane; if the angle between the projection center line of the projector and the horizontal plane is greater than 45 degrees and less than 90 degrees, step 202 is performed.
  • the projection center line of the projector may be obliquely upward or directly above the horizontal plane, or may be obliquely below or directly below the horizontal plane.
  • the projection surface may be a projection screen perpendicular to the horizontal plane, a wall surface, a ceiling or a projection screen parallel to the horizontal plane;
  • the projection center line of the projector is inclined obliquely below the horizontal plane, the projection The face can be a projection screen perpendicular to the horizontal plane, a wall surface, a ground surface or a projection screen parallel to the horizontal plane.
  • the projection center line of the projector can be measured by the angle measuring module.
  • the angle measurement module is located in the projector at an angle to the horizontal plane, and the angle measurement module includes but is not limited to a gyroscope and an acceleration sensor.
  • Step 202 In each of the projection lines of the projector to the projection surface, if the projection angle of the projection line having the largest projection angle is greater than or equal to 90 degrees, the direction of the projection surface is determined to be a horizontal direction; if the projection line having the largest projection angle is If the projection angle is less than 90 degrees, step 203 is performed.
  • the projection surface may not be Vertical projection surface. At this time, if the projection surface is a vertical projection surface, the projection line having the largest projection angle cannot be projected onto the projection surface.
  • the projection center line of the projector is obliquely above or directly above the horizontal plane.
  • FIG. 3 is a first schematic diagram of determining a direction of a projection surface in a second embodiment of a trapezoidal correction method for a projection terminal according to the present invention.
  • a point O represents a position of the projector
  • a vertical line represents a vertical projection surface.
  • the three rays of point O represent the projection line with the largest projection angle, the projection center line, and the projection line with the smallest projection angle. It can be seen that at this time, the projection center line of the projector can be inclined upward toward the horizontal plane, and the projection angle is the largest.
  • the projection angle of the line is greater than 90 degrees, and it is obvious that the projection line having the largest projection angle does not intersect the vertical projection surface.
  • Case 2 The projector's projection centerline is obliquely below or directly below the horizontal plane.
  • FIG. 4 is a second schematic diagram of determining the direction of the projection surface in the second embodiment of the trapezoidal correction method of the projection terminal of the present invention.
  • the point P represents the position of the projector
  • the vertical line represents the vertical projection surface.
  • the three rays of point P represent the projection line with the largest projection angle, the projection center line, and the projection line with the smallest projection angle.
  • the projection center line of the projector can be inclined obliquely below the horizontal plane, and the projection line of the projection terminal
  • the projection angle ranges from 0 degrees to 180 degrees, that is, the projection angle of the projection line of the projection terminal takes a positive value; thus, as can be seen in FIG. 4, the projection angle of the projection line having the largest projection angle is greater than 90 degrees. Obviously the projection angle The largest projection line does not intersect the vertical projection surface.
  • Step 203 selecting, in each of the projection lines of the projector to the projection surface, the following two projection lines: a projection line having the largest projection angle and a projection line having the smallest projection angle among the projection lines of the projector to the projection surface ;
  • the distance from the projection line with the largest projection angle to the projection surface and the distance from the projection line with the smallest projection angle to the projection surface of the projector are obtained.
  • the projection line having the largest projection angle among the projection lines of the projector to the projection surface is the upper projection boundary of each projection line of the projector to the projection surface
  • the projection line of the projector along the projection angle to the projection surface is a projection.
  • the rangefinder can be measured by the range finder to the distance from each projection line to the projection surface.
  • the range finder is located inside the projector.
  • the range finder includes but is not limited to laser range finder and infrared range finder. Or an ultrasonic range finder, when the range finder is working, the range finder can rotate according to the projection angle of the projection line, and then the distance of the corresponding projector to the projection surface is measured at the corresponding projection angle.
  • a single range finder or two range finder can be used to measure the distance of the projector along the two selected projection lines to the projection surface.
  • the range finder measures the distance of the projector along the two projection lines to the projection surface in turn.
  • two rangefinders are used to measure the distance of the projector along the two selected projection lines to the projection surface
  • one of the two rangefinders measures the two projections of the projector along the above selection.
  • the distance from one of the lines to the projection surface, and the other rangefinder measures the distance of the projector along the other of the two selected projection lines to the projection surface.
  • Step 204 Determine whether the distance from the projection line with the smallest projection angle to the projection surface of the projector is greater than the distance from the projection line with the largest projection angle to the projection surface; if yes, determine the projection If the direction of the surface is the horizontal direction, step 205 is performed; if not, the direction of the projection surface is determined to be the vertical direction, and step 205 is performed.
  • Case 1 The projection centerline of the projector is obliquely above or directly above the horizontal plane.
  • FIG. 5 is a third schematic diagram of determining the direction of the projection surface in the second embodiment of the trapezoidal correction method of the projection terminal of the present invention.
  • the point A indicates the position of the projector
  • the line segment BF indicates the horizontal projection surface
  • the line segment EI indicates The vertical projection surface
  • the ray AD (the ray passing through the point D from the point A) represents the projection center line of the projector
  • the projection angle of the projection center line of the projector is the angle between the ray AD and the positive X-axis
  • the angle between the ray AD and the X-axis positive is greater than 45 degrees and less than 90 degrees.
  • the ray AB (the ray passing through the point B from the point A) represents the projection line having the largest projection angle among the projection lines of the projector to the projection surface, and the projection line having the largest projection angle among the projection lines from the projector to the projection surface
  • the projection angle is the angle between the ray AB and the positive direction of the X axis
  • the ray AC (the ray passing through the point C from the point A) represents the projection line with the smallest projection angle among the projection lines from the projector to the projection surface, and the projector to the projection
  • the projection angle of the projection line having the smallest projection angle among the projection lines of the surface is the angle between the ray AC and the positive direction of the X-axis.
  • the projection surface is the horizontal projection surface indicated by the line segment BF, as shown in FIG. 5, the distance from the projector projection center line to the horizontal projection surface is the length of the line segment AG, and the distance of the projector along the ray AC to the horizontal projection surface is The length of the line segment AF, the distance of the projector along the ray AB to the horizontal projection surface is the length of the line segment AB. Since the angle between the ray AD and the horizontal plane is greater than 45 degrees and less than 90 degrees, the angle ABF is an obtuse angle.
  • the angle AGF is an obtuse angle; since the obtuse angle of the obtuse triangle is larger than any other side, the length of the line AF is greater than The length of the line segment AG, the length of the line segment AG is greater than the length of the line segment AB, that is, the distance from the projection line with the smallest projection angle to the projection surface of the projector is greater than the projection line with the largest projection angle from the projector to the projection surface to the projection surface. distance.
  • the projection surface is the vertical projection surface represented by the line segment EI, as shown in FIG. 5, the distance from the projection center line of the projector to the vertical projection surface is the length of the line segment AK, and the distance of the projector along the ray AC to the horizontal projection surface is The length of the line segment AJ, the distance of the projector along the ray AB to the horizontal projection surface is the length of the line segment AE. Since the angle between the ray AD and the horizontal plane is greater than 45 degrees and less than 90 degrees, the angle AKE is obtuse according to the geometric relationship.
  • the angle AJE is an obtuse angle; since the obtuse angle of the obtuse triangle is larger than any other side, the line segment AE
  • the length of the line segment AK is greater than the length of the line segment AK, that is, the distance from the projection line with the smallest projection angle to the projection surface is smaller than the projection line with the largest projection angle from the projector to the projection surface. The distance from the projection surface.
  • Case 2 The projector's projection centerline is obliquely below or directly below the horizontal plane.
  • FIG. 6 is a fourth schematic diagram of determining the direction of the projection surface in the second embodiment of the trapezoidal correction method of the projection terminal of the present invention. As shown in FIG. 6, the point A' indicates the position of the projector, and the line segment B'F' indicates the horizontal projection surface.
  • the line segment E'I' represents the vertical projection surface
  • the ray A'D' (the ray passing through the point D' emitted by the point A') represents the projection center line of the projector
  • the projection angle of the projection center line of the projector is the ray A'
  • the angle between D' and the positive X-axis is positive; the angle between the ray A'D' and the horizontal plane is greater than 45 degrees and less than 90 degrees, that is, the angle between the ray A'D' and the positive X-axis is greater than 45 degrees. And less than 90 degrees.
  • the ray A'B' (the ray passing through the point B' emitted by the point A') represents the projection line having the largest projection angle among the projection lines of the projector to the projection surface, and the projection angle of the projector to each projection line of the projection surface
  • the projection angle of the largest projection line is the angle between the ray A'B' and the positive direction of the X-axis
  • the ray A'C' (the ray passing the point C' from the point A') represents the projection of the projector to the projection surface
  • the projection line with the smallest projection angle in the line, the projection angle of the projection line with the smallest projection angle among the projection lines from the projector to the projection surface is the angle between the ray A'C' and the positive direction of the X-axis.
  • the projection surface is the horizontal projection surface indicated by the line segment B'F', as shown in FIG. 6, the distance from the projector projection center line to the horizontal projection surface is the length of the line segment A'G', and the projector along the ray A' The distance from C' to the horizontal projection surface is the length of the line segment A'F', and the projector is horizontally projected along the ray A'B' The distance of the shadow is the length of the line segment A'B'. Since the angle between the ray A'D' and the horizontal plane is greater than 45 degrees and less than 90 degrees, the angle A'B'F' is an obtuse angle.
  • the angle A'G'F' is an obtuse angle; due to the obtuse angle of the obtuse triangle
  • the side of the line is larger than any other side, so the length of the line segment A'F' is greater than the length of the line segment A'G', and the length of the line segment A'G' is greater than the length of the line segment A'B', that is, the projector has the smallest projection angle.
  • the distance from the projection line to the projection surface is greater than the distance from the projection line with the largest projection angle from the projector to the projection surface to the projection surface.
  • the projection surface is the vertical projection surface indicated by the line segment E'I', as shown in FIG. 6, the distance from the projector projection center line to the vertical projection surface is the length of the line segment A'K', and the projector along the ray A' The distance from C' to the horizontal projection surface is the length of the line segment A'J', and the distance from the projector along the ray A'B' to the horizontal projection surface is the length of the line segment A'E'. Since the angle between the ray A'D' and the horizontal plane is greater than 45 degrees and less than 90 degrees, the angle A'K'E' is obtuse angle according to the geometric relationship.
  • the angle A'J'E' is an obtuse angle; due to the obtuse triangle
  • the side of the obtuse angle is larger than any other side, so the length of the line segment A'E' is greater than the length of the line segment A'K', and the length of the line segment A'K' is greater than the length of the line segment A'J', that is, the projector along the length
  • the distance from the projection line with the smallest projection angle to the projection surface is smaller than the distance from the projection line with the largest projection angle from the projector to the projection surface to the projection surface.
  • Step 205 Obtain an angle between the projection center line of the projector and the projection surface. If the direction of the projection surface is a horizontal direction, the angle between the projection center line of the projector and the projection surface is equal to the angle between the projector and the horizontal plane; The direction of the projection surface is the vertical direction, and the angle between the projection center line of the projector and the projection surface is equal to 90 degrees minus the angle between the projector and the horizontal plane. For example, the projection center line of the projector and the projection surface are at an angle of 74 degrees.
  • the angle between the projection center line of the projector and the projection surface is 74 degrees; if the direction of the projection surface is In the vertical direction, the projection center line of the projector and the projection surface are at an angle of 16 degrees.
  • the projector is trapezoidally corrected according to the angle between the projection center line of the projector and the projection surface.
  • various existing implementations for performing trapezoidal correction on the projector according to the angle between the projection center line of the projector and the projection surface and details are not described herein again.
  • FIG. 7 is a schematic structural diagram of a trapezoidal correction device of a projection terminal according to an embodiment of the present invention. As shown in FIG. 7, the device includes a judging module 700 and a trapezoidal correction module 701.
  • the determining module 700 is configured to: when the angle between the projection center line of the projection terminal and the horizontal plane is greater than the set acute angle, according to the distance of the projection terminal along the first projection line to the projection surface and the projection terminal The relationship between the distances of the two projection lines and the projection surface determines the direction of the projection surface, and the first projection line and the second projection line have different projection angles.
  • the trapezoidal correction module 701 is configured to perform trapezoidal correction on the projection terminal according to a direction of the projection surface.
  • the determining module 700 is configured to acquire a distance of the projection terminal along the first projection line to the projection surface and a distance of the projection terminal along the second projection line to the projection surface; when the projection angle of the first projection line is smaller than When the projection angle of the second projection line is greater than the distance from the projection line to the projection surface of the projection terminal along the second projection line to the projection surface, the direction of the projection surface is a horizontal direction; otherwise, the direction of the projection surface is a vertical direction; when the projection angle of the first projection line is greater than the projection angle of the second projection line, if the projection terminal is along the first projection line to the projection surface The distance is smaller than the distance of the projection terminal along the second projection line to the projection surface, and the direction of the projection surface is a horizontal direction; otherwise, the direction of the projection surface is a vertical direction.
  • the determining module may sequentially acquire the distance of the projection terminal along the first projection line to the projection surface and the distance of the projection terminal along the second projection line to the projection surface, or simultaneously acquire the projection terminal along the first projection.
  • the first projection line and the second projection line may be any two of the following three projection lines: a projection line having the largest projection angle and a minimum projection angle among the projection lines of the projection terminal to the projection surface The projection line, and the projection center line of the projection terminal.
  • the trapezoidal correction module 701 is configured to obtain a projection center line and a projection of the projection terminal according to a direction of the projection surface and an angle between a projection center line of the projection terminal and a horizontal plane. An angle of the shadow surface; a trapezoidal correction is performed on the projection terminal based on an angle of a projection center line of the projection terminal and a projection surface.
  • the determining module 700 and the trapezoidal correction module 701 may each be a Central Processing Unit (CPU), a Micro Processor Unit (MPU), and a digital signal processor (Digital) located in the projection terminal.
  • CPU Central Processing Unit
  • MPU Micro Processor Unit
  • Digital Digital
  • DSP Digital Processor
  • FPGA Field Programmable Gate Array
  • the embodiment of the invention further provides a projection terminal, which comprises any projection terminal trapezoidal correction device according to the third embodiment of the invention.
  • the embodiment of the present invention further provides a computer storage medium, where the computer storage medium stores computer executable instructions, and the computer executable instructions are used in at least one of the methods in the foregoing embodiments, specifically And/or the method described in Figure 2.
  • the computer storage medium in this embodiment may be a storage medium such as a hard disk, an optical disk, a USB disk or a magnetic tape, and may be a non-transitory storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

本发明实施例公开了一种投影终端梯形校正方法,当所述投影终端的投射中心线与水平面的夹角大于设定的锐角角度时,根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到投影面的距离的大小关系,判断所述投影面的方向,所述第一投射线和所述第二投射线具有不同的投射角度;根据所述投影面的方向对所述投影终端进行梯形校正。本发明实施例还公开了一种投影终端梯形校正装置、一种投影终端和计算机存储介质。

Description

投影终端梯形校正方法、装置、投影终端和存储介质 技术领域
本发明涉及投影终端图像校正技术,尤其涉及一种投影终端梯形校正方法、装置、投影终端和存储介质。
背景技术
投影终端在放置时,投影终端的投射中心线很难做到垂直于投影幕并且正对投影幕的中心点,这样,投影终端到投影幕的投射光线较近时,在投影幕上的光线扩散较小;而投影终端到投影幕的投射光线较远时,在投影幕上的光线扩散较大,在投影幕上投放出来的影像会出现上下两边宽度不同的现象,即在投影幕上会出现梯形的影像。
在现有技术中,可以通过梯形校正技术来解决上述问题,梯形校正的原理为:利用电子装置并通过插值算法对投影前的图像进行形状调整和补偿,使投影幕上投放出来的影像变为矩形影像。在现有的梯形校正技术中,自动梯形校正技术的工作原理是:先探测投影终端的投射中心线与投影面(投影幕)的夹角,例如,在投影终端内设置一个加速度感应器,利用该加速度感应器来探测投影终端的投射中心线与投影面(投影幕)的夹角;在得知投影终端的投射中心线与投影面的夹角之后,根据该投影终端的投射中心线与投影面的夹角自动校正影像的梯形变形。
然而具体实现时,发现梯形校正在某些情况下的校正效果很差。
发明内容
本发明实施例期望提供一种投影终端梯形校正方法、装置、投影终端和存储介质,以提高梯形变形的校正效果。本发明实施例的技术方案是这 样实现的:
本发明实施例提出了一种投影终端梯形校正方法,包括:
当所述投影终端的投射中心线与水平面的夹角大于设定的锐角角度时,根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到投影面的距离的大小关系,判断所述投影面的方向,所述第一投射线和所述第二投射线具有不同的投射角度;
根据所述投影面的方向对所述投影终端进行梯形校正。
上述方案中,所述根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到投影面的距离的大小关系,判断所述投影面的方向,包括:
获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离;
当所述第一投射线的投射角度小于所述第二投射线的投射角度时,如果所述投影终端沿第一投射线到投影面的距离大于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向为水平方向;否则所述投影面的方向为垂直方向;
当所述第一投射线的投射角度大于所述第二投射线的投射角度时,如果所述投影终端沿第一投射线到投影面的距离小于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向为水平方向;否则所述投影面的方向为垂直方向。
上述方案中,所述获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离,包括:
依次获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离,或者同时获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离。
上述方案中,所述第一投射线和所述第二投射线为以下三条投射线中的任意两条投射线:所述投影终端到投影面的各条投射线中投射角度最大的投射线和投射角度最小的投射线、以及投影终端的投射中心线。
上述方案中,所述根据所述投影面的方向对所述投影终端进行梯形校正包括:
根据所述投影面的方向、以及所述投影终端的投射中心线与水平面的夹角,得出所述投影终端的投射中心线与投影面的角度;
基于所述投影终端的投射中心线与投影面的角度,对所述投影终端进行梯形校正。
本发明实施例还提出了一种投影终端梯形校正装置,包括判断模块和梯形校正模块;其中,
判断模块,配置为在所述投影终端的投射中心线与水平面的夹角大于设定的锐角角度时,根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到投影面的距离的大小关系,判断所述投影面的方向,所述第一投射线和所述第二投射线具有不同的投射角度;
梯形校正模块,配置为根据所述投影面的方向对所述投影终端进行梯形校正。
上述方案中,所述判断模块,配置为获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离;当所述第一投射线的投射角度小于所述第二投射线的投射角度时,如果所述投影终端沿第一投射线到投影面的距离大于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向为水平方向;否则所述投影面的方向为垂直方向;当所述第一投射线的投射角度大于所述第二投射线的投射角度时,如果所述投影终端沿第一投射线到投影面的距离小于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向为水平方向;否则所述投影 面的方向为垂直方向。
上述方案中,所述判断模块,配置为依次获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离,或用于同时获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离。
上述方案中,所述第一投射线和所述第二投射线可以为以下三条投射线中的任意两条投射线:所述投影终端到投影面的各条投射线中投射角度最大的投射线和投射角度最小的投射线、以及投影终端的投射中心线。
上述方案中,所述梯形校正模块配置为根据所述投影面的方向、以及所述投影终端的投射中心线与水平面的夹角,得出所述投影终端的投射中心线与投影面的角度;基于所述投影终端的投射中心线与投影面的角度,对所述投影终端进行梯形校正。
本发明实施例还提出了一种投影终端,所述投影终端包括上述任意一种所述的装置。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述投影终端梯形校正方法的至少其中之一。
本发明实施例提供了一种投影终端梯形校正方法、装置、投影终端和计算机存储介质,在投影终端的投射中心线与水平面的夹角大于45度时,通过对投影终端沿投影终端的多条投射线到投影面的距离进行比较,判断出投影面的方向,从而得出投影终端的投射中心线与投影面的夹角,实现对投影终端的自动梯形校正。
附图说明
图1为本发明投影终端梯形校正方法的第一实施例的流程图;
图2为本发明投影终端梯形校正方法的第二实施例的流程图;
图3为本发明投影终端梯形校正方法的第二实施例中判断投影面方向的第一流程示意图;
图4为本发明投影终端梯形校正方法的第二实施例中判断投影面方向的第二流程示意图;
图5为本发明投影终端梯形校正方法的第二实施例中判断投影面方向的第三流程示意图;
图6为本发明投影终端梯形校正方法的第二实施例中判断投影面方向的第四流程示意图;
图7为本发明实施例投影终端梯形校正装置的组成结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,以下所说明的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
研究发现,目前采用自动梯形校正技术的投影终端,只能在投影终端的投射中心线与水平面的夹角小于一定角度时,进行正确的梯形校正。其原因在于,当投影终端的投射中心线与水平面的夹角较大时,无法判断投影面的方向是水平方向还是垂直方向;如果投影面的方向是水平方向,例如,投影面是天花板或地面,投影终端的投射中心线与投影面的夹角等于投影终端与水平面的夹角;如果投影面的方向是垂直方向,例如,投影面是墙面,此时投影终端的投射中心线与投影面的夹角等于90度减去投影终端的投射中心线与水平面投影面的夹角。因此,当无法判断投影面的方向是水平方向还是垂直方向时,计算出的投影终端的投射中心线与投影面的夹角就可能出现错误,进而也不能进行正确的梯形校正。故基于此,当所述投影终端的投射中心线与水平面的夹角大于设定的锐角角度时,根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到 投影面的距离的大小关系,判断所述投影面的方向,再根据所述投影面的方向对所述投影终端进行梯形校正。这样的话,解决了梯形校正过程中,在某些情况下因投影面方向不确定导致的校正效果差的问题。本发明的各种实施例中,投影终端包括但不限于投影仪以及其他投影产品;投影终端的投射中心线指投影终端的各条投射线的中心线,投影终端的投射中心线与水平面的夹角的取值范围可为0度到90度。
第一实施例
图1为本发明投影终端梯形校正方法的第一实施例的流程图,如图1所示,该方法包括:
步骤100:当投影终端的投射中心线与水平面的夹角大于设定的锐角角度时,根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到投影面的距离的大小关系,判断所述投影面的方向,所述第一投射线和所述第二投射线具有不同的投射角度。
这里,设定的锐角角度可以是大于40度的角度,投影终端的投射线的投射角度为:投影终端的投射线与投影终端的投射中心线在水平面上的投影的夹角,投影终端的投射线的投射角度的取值范围为0度到180度。
本步骤中,根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到投影面的距离的大小关系,判断所述投影面的方向包括:
获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离;如果所述第一投射线的投射角度小于所述第二投射线的投射角度且所述投影终端沿第一投射线到投影面的距离大于所述投影终端沿第二投射线到投影面的距离,或所述第一投射线的投射角度大于所述第二投射线的投射角度且所述投影终端沿第一投射线到投影面的距离小于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向 为水平方向;否则所述投影面的方向为垂直方向。
这里,在获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离时,可以依次获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离,也可以同时获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离。
本步骤中,所述第一投射线和所述第二投射线可以为以下三条投射线中的任意两条投射线:所述投影终端到投影面的各条投射线中投射角度最大的投射线和投射角度最小的投射线、以及投影终端的投射中心线,例如,所述第一投射线和所述第二投射线中的一个投射线为所述投影终端到投影面的各条投射线中投射角度最大的投射线,另一个投射线为所述投影终端到投影面的各条投射线中投射角度最小的投射线。
本步骤中,当所述投影面的方向为水平方向时,投影面可以为与水平面平行的投影幕、天花板或地面;当投影面的方向为垂直方向时,投影面可以为与水平面垂直的投影幕或墙面。
步骤101:根据所述投影面的方向对所述投影终端进行梯形校正。
具体地,根据所述投影面的方向对所述投影终端进行梯形校正包括:根据所述投影面的方向、以及所述投影终端的投射中心线与水平面的夹角,得出所述投影终端的投射中心线与投影面的角度;这里,如果投影面的方向是水平方向,投影终端的投射中心线与投影面的夹角等于投影终端与水平面的夹角;如果投影面的方向是垂直方向,投影终端的投射中心线与投影面的夹角等于90度减去投影终端与水平面的夹角。
在得出所述投影终端的投射中心线与投影面的角度之后,基于所述投影终端的投射中心线与投影面的角度,对所述投影终端进行梯形校正。
在获知所述投影终端的投射中心线与投影面的角度之后,对所述投影 终端进行梯形校正可以采用多种现有的实现方式,例如,将所述投影终端的投射中心线与投影面的角度输入至位于投影机主板上的投影机主控芯片中,投影机主控芯片根据所述投影终端的投射中心线与投影面的角度,对投影终端进行梯形校正。这里,投影机主控芯片的型号包括但不限于DDP2000和DDP2230。
第二实施例:
在上述实施例的基础上,进行进一步的举例说明。图2为本发明投影终端梯形校正方法的第二实施例的流程图,如图2所示,该方法包括:
步骤200:将投影仪位置固定。
本步骤中,还可以利用以下方法检测投影仪的位置是否固定:当投影仪投射出光线时,投影仪的投射中心线与水平面的夹角是否发生变化,如果发生变化,则结束流程,待投影仪的投射中心线与水平面的夹角不变化时,再执行步骤201;如果不发生变化,则说明投影仪的位置已经固定,执行步骤201。如此,只有当投影仪的位置固定时,才进行后续的步骤,当投影仪的位置因各种原因发生变化时,就需要重新进行投影仪梯形校正。
步骤201:当投影仪投射出光线时,通过测量得出投影仪的投射中心线与水平面的夹角;如果投影仪的投射中心线与水平面的夹角在0度到45度之间,则判定投影面的方向是垂直方向,即投影面与水平面垂直;如果投影仪的投射中心线与水平面的夹角大于45度且小于90度,则执行步骤202。
这里,投影仪的投射中心线可以朝向水平面的斜上方或正上方、也可以朝向水平面的斜下方或正下方。投影仪的投射中心线朝向水平面的斜上方时,投影面可以是与水平面垂直的投影幕、墙面、天花板或与水平面平行的投影幕;投影仪的投射中心线朝向水平面的斜下方时,投影面可以是与水平面垂直的投影幕、墙面、地面或与水平面平行的投影幕。
在实际应用中,可以采用角度测量模块测量得出投影仪的投射中心线 与水平面的夹角,角度测量模块位于投影仪内,角度测量模块包括但不限于陀螺仪和加速度传感器。
步骤202:在所述投影仪到投影面的各条投射线中,如果投射角度最大的投射线的投射角度大于等于90度,则判定投影面的方向为水平方向;如果投射角度最大的投射线的投射角度小于90度,则执行步骤203。
本步骤中,当投射角度最大的投射线的投射角度大于等于90度时,由于投影仪的投射中心线与水平面的夹角大于45度且小于90度,根据几何分析可知,投影面不可能是垂直投影面。这时因为如果投影面是垂直投影面,则投射角度最大的投射线不能投射到该投影面上。
下面分两种情况进行说明,第一种情况:投影仪的投射中心线朝向水平面的斜上方或正上方。
图3为本发明投影终端梯形校正方法的第二实施例中判断投影面方向的第一原理示意图,如图3所示,点O代表投影仪所在位置,垂直的直线代表垂直投影面,经过的点O的三条射线分别代表投射角度最大的投射线、投射中心线和投射角度最小的投射线;可以看出,此时,投影仪的投射中心线可以朝向水平面的斜上方,投射角度最大的投射线的投射角度大于90度,显然该投射角度最大的投射线与垂直投影面不相交。
第二种情况:投影仪的投射中心线朝向水平面的斜下方或正下方。
图4为本发明投影终端梯形校正方法的第二实施例中判断投影面方向的第二原理示意图,如图4所示,点P代表投影仪所在位置,垂直的直线代表垂直投影面,经过的点P的三条射线分别代表投射角度最大的投射线、投射中心线和投射角度最小的投射线;可以看出,此时,投影仪的投射中心线可以朝向水平面的斜下方,投影终端的投射线的投射角度的取值范围为0度到180度,即投影终端的投射线的投射角度取正值;如此,在图4中可以看出,投射角度最大的投射线的投射角度大于90度,显然该投射角 度最大的投射线与垂直投影面不相交。
步骤203:在所述投影仪到投影面的各条投射线中,选取出以下两条投射线:投影仪到投影面的各条投射线中投射角度最大的投射线和投射角度最小的投射线;
得出投影仪沿投射角度最大的投射线到投影面的距离以及投影仪沿投射角度最小的投射线到投影面的距离。
这里,投影仪到投影面的各条投射线中投射角度最大的投射线是投影仪到投影面的各条投射线的上投影边界,而投影仪沿投射角度最小的投射线到投影面是投影仪到投影面的各条投射线的下投影边界。
在实际应用中,可以利用测距仪测量得出投影仪沿每条投射线到投影面的距离,测距仪位于投影仪内部,测距仪包括但不限于激光测距仪、红外测距仪或超声波测距仪,在测距仪工作时,测距仪可以按照投射线的投射角度进行旋转,进而在相应的投射角度测量出对应的投影仪到投射面的距离。
这里,可以采用单个测距仪或两个测距仪来测量投影仪沿上述选取出的两条投射线到投影面的距离。
在采用单个测距仪测量投影仪沿上述选取出的两条投射线到投影面的距离时,测距仪对投影仪沿这两条投射线到投影面的距离进行依次测量。在采用两个测距仪来测量投影仪沿上述选取出的两条投射线到投影面的距离时,这两个测距仪中的一个测距仪测量投影仪沿上述选取出的两条投射线中的一条投射线到投影面的距离,同时,另一测距仪测量投影仪沿上述选取出的两条投射线中的另一条投射线到投影面的距离。在采用两个测距仪进行距离测量时,可以减少距离测量时间。
步骤204:判断投影仪沿投射角度最小的投射线到投影面的距离是否大于投影仪沿投射角度最大的投射线到投影面的距离;如果是,则判定投影 面的方向为水平方向,执行步骤205;如果否,则判定投影面的方向为垂直方向,执行步骤205。
下面同样分两种情况说明本步骤中判断投影面方向的原理。
第一种情况:投影仪的投射中心线朝向水平面的斜上方或正上方。
图5为本发明投影终端梯形校正方法的第二实施例中判断投影面方向的第三原理示意图,如图5所示,点A表示投影仪所在位置,线段BF表示水平投影面,线段EI表示垂直投影面,射线AD(由点A发出经过点D的射线)表示投影仪的投射中心线,投影仪的投射中心线的投射角度为射线AD与X轴正向的夹角;射线AD与水平面的夹角大于45度且小于90度,即射线AD与X轴正向的夹角大于45度且小于90度。射线AB(由点A发出经过点B的射线)表示投影仪到投影面的各条投射线中投射角度最大的投射线,投影仪到投影面的各条投射线中投射角度最大的投射线的投射角度为射线AB与X轴正向的夹角;射线AC(由点A发出经过点C的射线)表示投影仪到投影面的各条投射线中投射角度最小的投射线,投影仪到投影面的各条投射线中投射角度最小的投射线的投射角度为射线AC与X轴正向的夹角。
如果投影面是线段BF表示的水平投影面,如图5所示,投影仪沿投影仪投射中心线到水平投影面的距离为线段AG的长度,投影仪沿射线AC到水平投影面的距离为线段AF的长度,投影仪沿射线AB到水平投影面的距离为线段AB的长度。由于射线AD与水平面的夹角大于45度且小于90度,则角ABF为钝角,同理,角AGF为钝角;由于钝角三角形的钝角所对的边大于其余任意一边,所以线段AF的长度大于线段AG的长度,线段AG的长度大于线段AB的长度,也就是说,投影仪沿投射角度最小的投射线到投影面的距离大于投影仪到投影面的投射角度最大的投射线到投影面的距离。
如果投影面是线段EI表示的垂直投影面,如图5所示,投影仪沿投影仪投射中心线到垂直投影面的距离为线段AK的长度,投影仪沿射线AC到水平投影面的距离为线段AJ的长度,投影仪沿射线AB到水平投影面的距离为线段AE的长度。由于射线AD与水平面的夹角大于45度且小于90度,根据几何关系可知角AKE为钝角,同理,角AJE为钝角;由于钝角三角形的钝角所对的边大于其余任意一边,所以线段AE的长度大于线段AK的长度,线段AK的长度大于线段AJ的长度,也就是说,投影仪沿投射角度最小的投射线到投影面的距离小于投影仪到投影面的投射角度最大的投射线到投影面的距离。
第二种情况:投影仪的投射中心线朝向水平面的斜下方或正下方。
图6为本发明投影终端梯形校正方法的第二实施例中判断投影面方向的第四原理示意图,如图6所示,点A’表示投影仪所在位置,线段B’F’表示水平投影面,线段E’I’表示垂直投影面,射线A’D’(由点A’发出经过点D’的射线)表示投影仪的投射中心线,投影仪的投射中心线的投射角度为射线A’D’与X轴正向的夹角,取正值;射线A’D’与水平面的夹角大于45度且小于90度,即射线A’D’与X轴正向的夹角大于45度且小于90度。射线A’B’(由点A’发出经过点B’的射线)表示投影仪到投影面的各条投射线中投射角度最大的投射线,投影仪到投影面的各条投射线中投射角度最大的投射线的投射角度为射线A’B’与X轴正向的夹角;射线A’C’(由点A’发出经过点C’的射线)表示投影仪到投影面的各条投射线中投射角度最小的投射线,投影仪到投影面的各条投射线中投射角度最小的投射线的投射角度为射线A’C’与X轴正向的夹角。
如果投影面是线段B’F’表示的水平投影面,如图6所示,投影仪沿投影仪投射中心线到水平投影面的距离为线段A’G’的长度,投影仪沿射线A’C’到水平投影面的距离为线段A’F’的长度,投影仪沿射线A’B’到水平投 影面的距离为线段A’B’的长度。由于射线A’D’与水平面的夹角大于45度且小于90度,则角A’B’F’为钝角,同理,角A’G’F’为钝角;由于钝角三角形的钝角所对的边大于其余任意一边,所以线段A’F’的长度大于线段A’G’的长度,线段A’G’的长度大于线段A’B’的长度,也就是说,投影仪沿投射角度最小的投射线到投影面的距离大于投影仪到投影面的投射角度最大的投射线到投影面的距离。
如果投影面是线段E’I’表示的垂直投影面,如图6所示,投影仪沿投影仪投射中心线到垂直投影面的距离为线段A’K’的长度,投影仪沿射线A’C’到水平投影面的距离为线段A’J’的长度,投影仪沿射线A’B’到水平投影面的距离为线段A’E’的长度。由于射线A’D’与水平面的夹角大于45度且小于90度,根据几何关系可知角A’K’E’为钝角,同理,角A’J’E’为钝角;由于钝角三角形的钝角所对的边大于其余任意一边,所以线段A’E’的长度大于线段A’K’的长度,线段A’K’的长度大于线段A’J’的长度,也就是说,投影仪沿投射角度最小的投射线到投影面的距离小于投影仪到投影面的投射角度最大的投射线到投影面的距离。
步骤205:得出投影仪的投射中心线与投影面的夹角,如果投影面的方向是水平方向,则投影仪的投射中心线与投影面的夹角等于投影仪与水平面的夹角;如果投影面的方向是垂直方向,则投影仪的投射中心线与投影面的夹角等于90度减去投影仪与水平面的夹角。例如,投影仪的投射中心线与投影面的夹角为74度,如果投影面的方向是水平方向,则投影仪的投射中心线与投影面的夹角为74度;如果投影面的方向是垂直方向,则投影仪的投射中心线与投影面的夹角为16度。
根据投影仪的投射中心线与投影面的夹角,对投影仪进行梯形校正。这里,根据投影仪的投射中心线与投影面的夹角对投影仪进行梯形校正有多种现有的实现方式,这里不再赘述。
第三实施例
图7为本发明实施例投影终端梯形校正装置的组成结构示意图,如图7所示,该装置包括判断模块700和梯形校正模块701;其中,
判断模块700,配置为在所述投影终端的投射中心线与水平面的夹角大于设定的锐角角度时,根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到投影面的距离的大小关系,判断所述投影面的方向,所述第一投射线和所述第二投射线具有不同的投射角度。
梯形校正模块701,配置为根据所述投影面的方向对所述投影终端进行梯形校正。
所述判断模块700,配置为获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离;当所述第一投射线的投射角度小于所述第二投射线的投射角度时,如果所述投影终端沿第一投射线到投影面的距离大于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向为水平方向;否则所述投影面的方向为垂直方向;当所述第一投射线的投射角度大于所述第二投射线的投射角度时,如果所述投影终端沿第一投射线到投影面的距离小于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向为水平方向;否则所述投影面的方向为垂直方向。具体地,判断模块可以依次获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离,也可以同时获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离。所述第一投射线和所述第二投射线可以为以下三条投射线中的任意两条投射线:所述投影终端到投影面的各条投射线中投射角度最大的投射线和投射角度最小的投射线、以及投影终端的投射中心线。
所述梯形校正模块701,配置为根据所述投影面的方向、以及所述投影终端的投射中心线与水平面的夹角,得出所述投影终端的投射中心线与投 影面的角度;基于所述投影终端的投射中心线与投影面的角度,对所述投影终端进行梯形校正。
在实际应用中,所述判断模块700和梯形校正模块701均可由位于投影终端中的中央处理器(Central Processing Unit,CPU)、微处理器(Micro Processor Unit,MPU)、数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
第四实施例
本发明实施例还提供了一种投影终端,该投影终端包括本发明第三实施例中任意一种投影终端梯形校正装置。
第五实施例
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于前述实施例中所述方法的至少其中之一,具体如图1和/或图2中所述的方法。
本实施例所述的计算机存储介质可为硬盘、光盘、U盘或磁带等存储介质,可选为非瞬间存储介质。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡按照本发明原理所作的修改,都应当理解为落入本发明的保护范围。

Claims (12)

  1. 一种投影终端梯形校正方法,所述方法包括:
    当所述投影终端的投射中心线与水平面的夹角大于设定的锐角角度时,根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到投影面的距离的大小关系,判断所述投影面的方向,所述第一投射线和所述第二投射线具有不同的投射角度;
    根据所述投影面的方向对所述投影终端进行梯形校正。
  2. 根据权利要求1所述的方法,其中,所述根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到投影面的距离的大小关系,判断所述投影面的方向,包括:
    获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离;
    当所述第一投射线的投射角度小于所述第二投射线的投射角度时,如果所述投影终端沿第一投射线到投影面的距离大于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向为水平方向;否则所述投影面的方向为垂直方向;
    当所述第一投射线的投射角度大于所述第二投射线的投射角度时,如果所述投影终端沿第一投射线到投影面的距离小于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向为水平方向;否则所述投影面的方向为垂直方向。
  3. 根据权利要求2所述的方法,其中,所述获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离,包括:
    依次获取所述投影终端沿第一投射线到投影面的距离和所述投影终端 沿第二投射线到投影面的距离,或者同时获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离。
  4. 根据权利要求1至3任一项所述的方法,其中,所述第一投射线和所述第二投射线为以下三条投射线中的任意两条投射线:所述投影终端到投影面的各条投射线中投射角度最大的投射线和投射角度最小的投射线、以及投影终端的投射中心线。
  5. 根据权利要求1至3任一项所述的方法,其中,所述根据所述投影面的方向对所述投影终端进行梯形校正包括:
    根据所述投影面的方向、以及所述投影终端的投射中心线与水平面的夹角,得出所述投影终端的投射中心线与投影面的角度;
    基于所述投影终端的投射中心线与投影面的角度,对所述投影终端进行梯形校正。
  6. 一种投影终端梯形校正装置,所述装置包括判断模块和梯形校正模块;其中,
    判断模块,配置为在所述投影终端的投射中心线与水平面的夹角大于设定的锐角角度时,根据所述投影终端沿第一投射线到投影面的距离与所述投影终端沿第二投射线到投影面的距离的大小关系,判断所述投影面的方向,所述第一投射线和所述第二投射线具有不同的投射角度;
    梯形校正模块,配置为根据所述投影面的方向对所述投影终端进行梯形校正。
  7. 根据权利要求6所述的装置,其中,所述判断模块,配置为获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离;当所述第一投射线的投射角度小于所述第二投射线的投射角度时,如果所述投影终端沿第一投射线到投影面的距离大于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向为水平方向;否则 所述投影面的方向为垂直方向;当所述第一投射线的投射角度大于所述第二投射线的投射角度时,如果所述投影终端沿第一投射线到投影面的距离小于所述投影终端沿第二投射线到投影面的距离,则所述投影面的方向为水平方向;否则所述投影面的方向为垂直方向。
  8. 根据权利要求7所述的装置,其中,所述判断模块,配置为依次获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离,或用于同时获取所述投影终端沿第一投射线到投影面的距离和所述投影终端沿第二投射线到投影面的距离。
  9. 根据权利要求6至8任一项所述的装置,其中,所述第一投射线和所述第二投射线可以为以下三条投射线中的任意两条投射线:所述投影终端到投影面的各条投射线中投射角度最大的投射线和投射角度最小的投射线、以及投影终端的投射中心线。
  10. 根据权利要求6至8任一项所述的装置,其中,所述梯形校正模块配置为根据所述投影面的方向、以及所述投影终端的投射中心线与水平面的夹角,得出所述投影终端的投射中心线与投影面的角度;基于所述投影终端的投射中心线与投影面的角度,对所述投影终端进行梯形校正。
  11. 一种投影终端,其中,所述投影终端包括:权利要求6至10任一项所述的装置。
  12. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1至5所述方法的至少其中之一。
PCT/CN2015/088299 2015-07-03 2015-08-27 投影终端梯形校正方法、装置、投影终端和存储介质 WO2017004871A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/739,786 US10645354B2 (en) 2015-07-03 2015-08-27 Projection terminal keystone correction method and device, and projection terminal and storage medium
EP15897527.6A EP3306919B1 (en) 2015-07-03 2015-08-27 Projection terminal keystone correction method and device, and projection terminal and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510391656.5 2015-07-03
CN201510391656.5A CN106331666B (zh) 2015-07-03 2015-07-03 一种投影终端梯形校正方法、装置及投影终端

Publications (1)

Publication Number Publication Date
WO2017004871A1 true WO2017004871A1 (zh) 2017-01-12

Family

ID=57684776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088299 WO2017004871A1 (zh) 2015-07-03 2015-08-27 投影终端梯形校正方法、装置、投影终端和存储介质

Country Status (4)

Country Link
US (1) US10645354B2 (zh)
EP (1) EP3306919B1 (zh)
CN (1) CN106331666B (zh)
WO (1) WO2017004871A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021249754A1 (en) 2020-06-08 2021-12-16 Agfa Offset Bv Lithographic photopolymer printing plate precursor with improved daylight stability

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107343186A (zh) * 2017-06-13 2017-11-10 北京小米移动软件有限公司 投影设备控制方法及装置
CN109587458B (zh) * 2017-09-29 2021-10-15 中强光电股份有限公司 投影***及其自动设定方法
CN114390261B (zh) * 2020-10-20 2023-10-24 深圳海翼智新科技有限公司 投影***及其梯形校正方法、具有存储功能的装置
CN114222102A (zh) * 2022-02-08 2022-03-22 峰米(重庆)创新科技有限公司 投影设备及其调整方法、控制装置、可读存储介质
CN117440139B (zh) * 2023-12-19 2024-03-12 深圳新智联软件有限公司 一种用于投影生成自动梯形校正方法、装置、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099609A1 (en) * 2003-11-06 2005-05-12 Tomonari Masuzawa Projector with auto focus device
CN1823523A (zh) * 2003-07-15 2006-08-23 卡西欧计算机株式会社 投影设备、倾斜角获取方法以及投影图像校正方法
CN1924693A (zh) * 2005-08-29 2007-03-07 株式会社东芝 投影装置
CN102998885A (zh) * 2012-11-20 2013-03-27 芜湖雅图数字视频技术有限公司 对投影仪投影图像失真校正的方法
CN103974048A (zh) * 2014-04-28 2014-08-06 京东方科技集团股份有限公司 控制可穿戴设备投影的方法及装置、可穿戴设备
US20150187057A1 (en) * 2013-12-26 2015-07-02 Sony Corporation Image processing method and image projection device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003243604A1 (en) * 2002-06-12 2003-12-31 Silicon Optix, Inc. Automatic keystone correction system and method
JP3772870B2 (ja) 2003-08-25 2006-05-10 カシオ計算機株式会社 投影装置、投影方法及びプログラム
JP3960390B2 (ja) * 2004-05-31 2007-08-15 Necディスプレイソリューションズ株式会社 台形歪み補正装置を備えたプロジェクタ
DE102008043189A1 (de) * 2007-12-03 2009-06-04 Robert Bosch Gmbh Projektion mit dynamischer Anpassung der Bilddaten
JP2010028412A (ja) * 2008-07-18 2010-02-04 Seiko Epson Corp 電子機器
CN102271237A (zh) * 2011-02-25 2011-12-07 鸿富锦精密工业(深圳)有限公司 投影装置及其矫正梯形失真的方法
US9686388B2 (en) 2011-05-13 2017-06-20 Rohm Co., Ltd. Projector
JP5958072B2 (ja) * 2012-05-18 2016-07-27 株式会社Jvcケンウッド 投射装置および画像補正方法
CN102650805A (zh) * 2012-05-25 2012-08-29 深圳市众进思创科技开发有限公司 一种投影仪及其多方向投影图像的校正方法
WO2014115884A1 (ja) * 2013-01-28 2014-07-31 株式会社Jvcケンウッド 投射装置、画像補正方法およびプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1823523A (zh) * 2003-07-15 2006-08-23 卡西欧计算机株式会社 投影设备、倾斜角获取方法以及投影图像校正方法
US20050099609A1 (en) * 2003-11-06 2005-05-12 Tomonari Masuzawa Projector with auto focus device
CN1924693A (zh) * 2005-08-29 2007-03-07 株式会社东芝 投影装置
CN102998885A (zh) * 2012-11-20 2013-03-27 芜湖雅图数字视频技术有限公司 对投影仪投影图像失真校正的方法
US20150187057A1 (en) * 2013-12-26 2015-07-02 Sony Corporation Image processing method and image projection device
CN103974048A (zh) * 2014-04-28 2014-08-06 京东方科技集团股份有限公司 控制可穿戴设备投影的方法及装置、可穿戴设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021249754A1 (en) 2020-06-08 2021-12-16 Agfa Offset Bv Lithographic photopolymer printing plate precursor with improved daylight stability

Also Published As

Publication number Publication date
EP3306919A1 (en) 2018-04-11
CN106331666A (zh) 2017-01-11
US20180192015A1 (en) 2018-07-05
EP3306919B1 (en) 2020-09-30
EP3306919A4 (en) 2018-07-18
CN106331666B (zh) 2020-02-07
US10645354B2 (en) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2017004871A1 (zh) 投影终端梯形校正方法、装置、投影终端和存储介质
WO2019144666A1 (zh) 一种投影画面自动校正方法、装置和电子设备
US10212403B2 (en) Method and apparatus for realizing trapezoidal distortion correction of projection plane
JP5961945B2 (ja) 画像処理装置、その画像処理装置を有するプロジェクタ及びプロジェクタシステム、並びに、画像処理方法、そのプログラム、及び、そのプログラムを記録した記録媒体
JP2019509569A (ja) 曲面ディスプレイ画面用のパース補正
WO2021031781A1 (zh) 投影图像校准方法、装置及投影设备
WO2017054334A1 (zh) 一种投影方法、装置、终端及计算机存储介质
TWI420081B (zh) 測距系統及測距方法
WO2018163530A1 (ja) 3次元形状計測装置、3次元形状計測方法、及びプログラム
TW201713921A (zh) 雷射測距校正方法與應用此方法的裝置
US20200003549A1 (en) Wire rope measuring device and wire rope measuring method
JP2019215811A (ja) 投影システム、画像処理装置および投影方法
US10154176B1 (en) Calibrating depth cameras using natural objects with expected shapes
WO2017114368A1 (zh) 摄像头模组感光质量的处理方法、装置和存储介质
TWI458532B (zh) 光線槍指向位置確定系統及方法
JP2016200557A (ja) 校正装置、距離計測装置及び校正方法
US20150237344A1 (en) Calibration method of an image capture system
CN109827607A (zh) 线结构光焊缝跟踪传感器的标定方法及装置
CN116156132B (zh) 投影图像校正方法、装置、电子设备及可读存储介质
TW201317587A (zh) 尺寸檢測裝置及方法
CN108106610B (zh) 一种载物台垂直度检测方法、***及其控制装置
TWI545956B (zh) 投影系統和其投影方法
CN104457709A (zh) 一种距离检测方法及电子设备
US10664100B2 (en) Misalignment detection
WO2022244069A1 (ja) 撮影条件決定方法、撮影条件決定システム、撮影条件決定装置、及びコンピュータ可読媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897527

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015897527

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE