WO2017002993A1 - 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템 - Google Patents

색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템 Download PDF

Info

Publication number
WO2017002993A1
WO2017002993A1 PCT/KR2015/006790 KR2015006790W WO2017002993A1 WO 2017002993 A1 WO2017002993 A1 WO 2017002993A1 KR 2015006790 W KR2015006790 W KR 2015006790W WO 2017002993 A1 WO2017002993 A1 WO 2017002993A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
display panel
depth
lens array
lens
Prior art date
Application number
PCT/KR2015/006790
Other languages
English (en)
French (fr)
Inventor
신동학
김은수
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Publication of WO2017002993A1 publication Critical patent/WO2017002993A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers

Definitions

  • the present invention relates to a depth-first integrated video display system comprising a lens array consisting of a basic lens having a rectangular shape. It is an object of the present invention to provide a depth-first integrated imaging system that eliminates color separation that occurs when a three-dimensional stereoscopic image is formed by forming a basic lens of an array.
  • the autostereoscopic three-dimensional image display method has a parallax barrier method and a semi-cylindrical lens that separate and observe an image through a vertical grid-shaped aperture in front of each image corresponding to left and right eyes. It can be divided into a lenticular (lenticular) method using a lenticular plate in which the array is arranged and an integrated imaging method using a lens array of a fly's eye shape.
  • Such a stereoscopic image display method is limited to a small number of people due to the fixed viewing range, but it is convenient because no glasses are worn, such as a stereoscopic image display method by special glasses, and is easier to implement than a holographic display method. Among them, more preferred.
  • the integrated imaging technology displays a three-dimensional image by arranging a lens array in front of the display panel, thereby making it simple to use a commercially available display panel and achieving continuous color three-dimensional images within a viewing angle range. It is easy.
  • the integrated imaging system has two types of structures depending on the arrangement interval of the display panel and the lens array.
  • g be the distance between the display panel and the lens array, and let f be the focal length of the small elementary lens of the lens array.
  • the two structures differ in display resolution and display depth of the 3D image.
  • the element image is enlarged to a predetermined size, and the enlarged respective elements Generating a reconstructed image by adding pixels located at the same coordinates of the image; Measuring a blur metric value of each reconstructed image; Selecting a reconstructed image corresponding to an inflection point of the blur metric value according to a focal length as a focus image; Generating an erosion image through an erosion operation of subtracting each pixel value of a corresponding erosion mask from each pixel value of the focus image; And a method for mapping the eroded image to the reconstructed image.
  • the present invention has been made to solve the above-described problem, color separation generated when a three-dimensional stereoscopic image is realized through a lens array in a display panel consisting of red (r), green (g), and blue (b) pixels. It is to provide a depth-first integrated imaging system that eliminates the phenomenon.
  • Depth-first integrated image display system to remove the color separation phenomenon of the present invention is a display panel consisting of subpixels of red (r), green (g) and blue (b), and disposed on the back of the display panel to the light toward the display panel And a lens array disposed on the front of the display panel to enlarge and pass the subpixels of the display panel.
  • the lens array includes a basic lens having a rectangular vertical cross section arranged up, down, left, and right. It is characteristic that there is.
  • the present invention eliminates the color separation that occurs when the three-dimensional stereoscopic image is implemented by forming the basic lens of the lens array in a rectangular shape, thereby providing a three-dimensional image with clear image quality, thereby providing a more three-dimensional image. There is a remarkable effect such as being able to enjoy.
  • FIG. 1 is a schematic diagram illustrating the principle of an integrated imaging technique according to the prior art
  • FIG. 2 is a schematic diagram illustrating a system of integrated images classified according to arrangement intervals of a display panel and a lens array according to the prior art
  • FIG. 3 is a schematic diagram illustrating a structure of a depth-first integrated imaging system using a display panel composed of red, green, and blue subpixels according to the prior art
  • Figure 4 is a schematic diagram showing a depth-first integrated image display system for removing the color separation phenomenon of the present invention.
  • FIG. 5 is a schematic diagram showing a display panel and a lens array structure for subpixel enlargement display of a depth-first integrated image display system for removing color separation from the present invention
  • FIG. 6 is a schematic diagram illustrating the positional relationship between a subpixel magnifying lens array and a display panel of a depth-first integrated image display system for eliminating color separation;
  • FIG. 7 is a schematic diagram showing a relationship between a unit lens and a subpixel of a display panel.
  • FIG. 8 is a schematic diagram of exchanging a new element image of a depth-first integrated image display system that removes the present invention color separation from an existing element image.
  • FIG. 9 is a schematic diagram showing an example of an image display for a two-dimensional element image in a depth-first integrated image display system to remove the color separation phenomenon of the present invention.
  • FIG. 10 is a schematic diagram showing the principle of imaging of three-dimensional image in the conventional method.
  • FIG. 11 is a schematic diagram showing the principle of image formation of a three-dimensional image in the depth-first integrated image display system to remove the color separation phenomenon of the present invention.
  • Depth-first integrated image display system to remove the color separation phenomenon of the present invention is a display panel 250 consisting of subpixels of red (r), green (g) and blue (b) and on the back of the display panel 250
  • a backlight unit 260 disposed to provide light toward the display panel 250 and a lens array 220 disposed on the front of the display panel 250 to enlarge and pass the subpixels of the display panel 250.
  • the lens array 220 is characterized in that the vertical lens is a vertical cross-section of the primary lens is arranged up, down, left and right.
  • the basic lens of the lens array 220 is characterized in that the three made of one unit lens.
  • the primary lens is characterized in that the parallel beam is made by passing the red (r), green (g) and blue (b) light respectively.
  • FIG. 1 is a schematic diagram illustrating the principle of integrated imaging technology according to the prior art.
  • the integrated image technology is largely divided into the image acquisition step 100 and the image reproduction step 200 as shown in FIG.
  • the image acquisition step 100 is composed of a two-dimensional sensor such as an image sensor and the lens array 120, wherein the three-dimensional object 110 is located in front of the lens array 120.
  • various image information of the 3D object 110 passes through the lens array 120 and is stored in the 2D sensor.
  • the stored image is used for reproducing the 3D image 210 as the element image 130.
  • the image reproducing step 200 of the integrated imaging technology is a reverse process of the image acquiring step 100, and includes an image reproducing apparatus such as a liquid crystal display and a lens array 220.
  • the element image 230 obtained in the image acquisition step 200 is displayed on the image reproducing apparatus, and the image information of the element image 230 passes through the lens array 220 to the 3D image 210 in space. Will be played.
  • the element image 130 of the image acquisition step 100 and the element image 230 of the image reproduction step 200 are substantially the same, but the element image 230 of the image reproduction step 200 is the image acquisition step.
  • the element image 120 acquired in (100) is stored in a 2D sensor and used to reproduce a 3D image.
  • the element image 120 is distinguished by using different reference numerals to distinguish the image acquisition step 100 and the image reproduction step 200. Shown.
  • FIG. 2 is a schematic diagram illustrating a system of integrated images classified according to an arrangement interval of a display panel and a lens array according to the related art.
  • FIG. 2A is a schematic diagram illustrating a depth-first integrated image system
  • FIG. It is a schematic diagram showing the video system.
  • the integrated image method may be classified into two types according to the distance g between the lens array 220 and the element image display apparatus.
  • the distance g may be divided into a case where the distance g is the same as the focal length f of the base lens of the lens array 220 and a case where the distance g is not.
  • one pixel of the element image 230 becomes a parallel beam through the lens to form an integrated beam.
  • This case is called a depth-first integrated image method, and it is possible to maximize the depth area for displaying a 3D image, but has a disadvantage in that the resolution of the 3D image 210 is low.
  • g is not equal to f
  • An integrated beam is formed by converging beams of one pixel of the element image 230 through a lens, and in this case, the 3D image 210.
  • the resolution can be increased, but the depth area is drastically reduced.
  • FIG. 3 is a schematic diagram illustrating a structure of a depth-first integrated imaging system using a display panel including red, green, and blue subpixels according to the related art.
  • Figure 4 is a schematic diagram showing a depth-first integrated image display system for removing the color separation phenomenon of the present invention.
  • the depth-first integrated image display system for removing color separation of the present invention includes a display panel 250 including red (r), green (g), and blue (b) subpixels.
  • a backlight unit 260 disposed on a rear surface of the display panel 250 to provide light toward the display panel 250 and an enlarged subpixel of the display panel 250 disposed on the front surface of the display panel 250. It is composed of a lens array 220, the lens array 220 is characterized in that the vertical lens is arranged in a vertical cross-section of the base lens in the vertical, vertical, left and right.
  • the image of the display panel 250 basically consists of red (r), green (g) and blue (b), and red (r), green (g) and blue (b) are called rgb.
  • the pixel corresponding to the rgb color is called a subpixel.
  • a backlight unit 260 is positioned on a rear surface of the display panel 250 as a light source that provides light to the display panel 250.
  • the backlight unit 260 is disposed in front of the display panel 250 and is a subpixel of the display panel 250. It consists of a lens array 220 to pass through.
  • the lens array 200 has a basic lens having a vertical cross section of a rectangular shape arranged up, down, left, and right.
  • the elementary lens is a convex lens.
  • FIG. 5 is a schematic diagram illustrating a structure of a display panel and a lens array for subpixel enlargement display of a depth-first integrated image display system which eliminates color separation.
  • the three rectangular basic lenses thus manufactured are constructed as one unit.
  • a unit lens having three basic lenses as one unit is called a unit lens, and a lens array 220 composed of such unit lenses is placed on the display panel 250 having a subpixel structure.
  • FIG. 6 is a schematic diagram illustrating a positional relationship between a subpixel magnifying lens array and a display panel of a depth-first integrated image display system that eliminates color separation.
  • the distance between the lens array 220 and the display panel 250 is equal to the focal length of the base lens of the lens array 220.
  • the beams (rays) passing through the display panel 250 pass through the respective basic lenses to form parallel beams.
  • the unit lens used in the present invention is composed of three small base lenses, and the parallel beams of different colors are made through each base lens.
  • FIG. 7 is a schematic diagram illustrating a relationship between a unit lens and a subpixel of a display panel.
  • FIG. 7 shows an example in which four subpixels and one elementary lens are matched in one dimension.
  • the position of the rgb color should be changed as shown in FIG.
  • FIG. 8 is a schematic diagram of exchanging a new element image of a depth-first integrated image display system to remove the color separation phenomenon of the present invention from an existing element image.
  • the three elementary lenses of the unit lens are arranged by dividing the rgb pixels.
  • the k-th pixel is converted into a subpixel position of (k, k + N, k + 2N), and the swap arrangement is performed according to the rgb color information. .
  • 1r is converted to the first, 1g to the fifth pixel, and 1b to the ninth pixel.
  • K 2
  • the second, sixth, and tenth subpixel positions are connected, and when the color positions are rearranged, 2r is connected to the tenth, 2g to the second, and 2b to the sixth.
  • FIG. 9 is a schematic diagram illustrating an example of an image display of a 2D element image in a depth-first integrated image display system that eliminates color separation.
  • the observer sees an image of rgb type at a short range.
  • This structure is similar to the form in which each of the display panels 250 of the subpixel structure is enlarged.
  • the viewer can observe the image to be displayed.
  • FIG. 10 is a schematic diagram showing the principle of imaging of a three-dimensional image in the conventional method.
  • FIG. 11 is a schematic diagram illustrating an imaging principle of a 3D image in a depth-first integrated image display system that eliminates color separation.
  • one point image is divided into color components of rgb, and the imaging principle is applied to each color information.
  • the image is interpreted by connecting the geometric optical structure of the pixels connected to the subpixel of r in the display panel 250.
  • the observer only displays the intensity of the r information without losing color information.
  • the observer can combine rgb to observe the color and light intensity displayed properly.
  • the element image 230 passes through the lens array 220 and the mask panel to make clear 3 Dimensional images can be displayed.
  • the mask panel is composed of a blocking region where the element image does not pass and a transmission region through which the element image passes, and the cut area and the transmissive region are alternately positioned with time in order to provide a clearer 3D image. It can be displayed.
  • the 2D image is displayed without displaying the 3D image in space
  • the display panel is displayed in white only in a portion of the display panel
  • Two-dimensional image is displayed in the area of the mask panel corresponding to the white area of the display panel.
  • the element image passes through the lens array and the mask panel and is three-dimensional in space.
  • a method of displaying an image may be selectively implemented.
  • the present invention eliminates the color separation that occurs when the three-dimensional stereoscopic image is realized by forming the basic lens of the lens array in a rectangular shape, thereby providing a three-dimensional image with clear image quality, thereby providing a more three-dimensional effect. There is a remarkable effect, such as being able to enjoy 3D images.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

본 발명 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템에 관한 것으로서, 더욱 상세하게는 적색(r)과 녹색(g) 그리고 청색(b)의 서브픽셀로 이루어진 디스플레이패널과, 상기 디스플레이패널의 배면에 배치되어 디스플레이패널 측으로 빛을 제공하는 백라이트 유닛과, 상기 디스플레이패널의 전면에 배치되어 디스플레이패널의 서브픽셀을 확대하여 통과시키는 렌즈어레이로 구성되는 것으로, 상기 렌즈어레이는 수직단면이 직사각형 형상인 기초렌즈가 상하좌우로 배열되어 있는 것이 특징이다.

Description

색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템
본 발명은 직사각형 형상의 기초렌즈로 이루어진 렌즈어레이가 구성된 깊이우선 집적 영상 디스플레이 시스템에 관한 것으로, 더욱 상세하게는 적색(r)과 녹색(g) 그리고 청색(b)의 픽셀로 이루어진 디스플레이패널에서 렌즈어레이의 기초렌즈가 직사각형 형상으로 형성됨으로써 3차원 입체 영상을 구현할 시 발생하는 색분리 현상을 제거하는 깊이우선 집적 영상 시스템을 제공하고자 하는 것이다.
현재, 3차원 입체 영상을 표시하기 위해 제시된 기술로는, 특수 안경에 의한 입체 화상 디스플레이, 무안경식 입체 화상 디스플레이 및 홀로그래픽(Holographic) 디스플레이 방식이 있다.
이 중, 무안경식 입체 화상 디스플레이 방식은 좌우안에 해당하는 각각의 화상 앞에 세로격자 모양의 개구(Aperture)를 통하여 화상을 분리하여 관찰할 수 있게 하는 패러랙스 배리어(parallax barrier) 방식과, 반원통형 렌즈를 배열한 렌티큘러 판(lenticular plate)를 이용하는 렌티큘러(lenticular) 방식 및 파리 눈 모양의 렌즈 배열을 이용하는 집적 영상 (integral imaging) 방식으로 나눌 수 있다.
이러한 무안경식 입체 영상 디스플레이 방식은 관찰 범위가 고정되어 소수 인원에 한정되지만, 특수 안경에 의한 입체 영 상 디스플레이 방식과 같이 별도의 안경을 착용하지 않아 편리하고, 홀로그래픽 디스플레이 방식에 비해 구현이 쉽기 때문에 이들 중 더욱 선호되고 있다.
이 중에서 집적 영상 기술은 렌즈 배열을 표시 패널 전면에 배치하여 3차원 영상을 표시하기 때문에 구조적으로 간단하고, 상용화된 표시 패널을 직접적으로 사용할 수 있으며, 시야각 범위 내에서 연속적인 칼라 3차원 영상 구현이 용이하다.
집적 영상 시스템은 표시 패널과 렌즈 배열의 배치 간격에 따라 크게 2가지 형태의 구조로 이루어진다.
표시 패널과 렌즈 배열의 배치 간격을 g라고 하고, 렌즈 배열의 작은 기초렌즈가 가지는 초점거리를 f라고 하자.
이때 g=f 인 경우를 깊이우선 (depth-priority) 집적 영상이라 표현하고, g~=f 인 경우를 해상도우선 (resolution-priority) 집적 영상이라고 한다.
이 두 구조는 3차원 영상의 표시 해상도와 표시 깊이감에서 차이가 있다.
이러한 3차원 집적 영상표시방법의 종래문헌으로는 등록특허 제0891160호에 요소 영상 압축 장치가 영역 분할 기법을 적용하여 요소 영상을 압축하는 방법에 있어서, (a) 3차원 객체로부터 렌즈 어레이를 통하여 서로 다른 시차를 가지는 요소 영상을 획득하는 단계; (b) 상기 획득된 요소 영상을 유사 상관도에 따라 복수의 유사한 영상을 가진 유사 영역으로 분할하는 단계; (c) 상기 각각의 유사 영역에 포함된 영상을 1차원 요소 영상 배열로 재배열하는 단계; 및 (d) 상기 재배열되어 생성된 1차원 요소 영상 배열을 압축하는 단계를 포함하는 영역 분할 기법을 이용한 요소 영상 압축 방법이 기재되어 있다.
또 다른 종래문헌의 실시 예로는 등록특허 제0942271호에 렌즈 어레이를 통해 픽업한 요소 영상을 이용하여 집적 영상을 복원하는 방법에 있어서, 상기 요소 영상을 미리 지정된 크기로 확대하고, 상기 확대된 각 요소 영상의 동일 좌표에 위치하는 픽셀을 합하여 복원 영상을 생성하는 단계; 상기 각 복원 영상의 블러 메트릭 값을 측정하는 단계; 초점 거리에 따른 상기 블러 메트릭 값의 변곡점에 상응하는 복원 영상을 포커스 영상으로 선정하는 단계; 상기 포커스 영상의 각 픽셀값에서 상응하는 침식 마스크의 각 픽셀값을 빼는 침식 연산을 통해 침식 영상을 생성하는 단계; 및 상기 복원 영상에 상기 침식 영상을 매핑하는 단계를 포함하는 집적 영상 복원 방법이 기재되어 있다.
그러나 상기 종래의 집적 영상 시스템의 렌즈어레이에 사용되는 기초렌즈는 원형이기에 색분리 현상이 발생하여 제대로 된 색상정보를 보여주지 못하게 된다는 단점이 있다.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 적색(r)과 녹색(g) 그리고 청색(b)의 픽셀로 이루어진 디스플레이패널에서 렌즈어레이를 통하여 3차원 입체 영상을 구현할 시 발생하는 색분리 현상을 제거하는 깊이우선 집적 영상 시스템을 제공하고자 하는 것이다.
본 발명 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템은 적색(r)과 녹색(g) 그리고 청색(b)의 서브픽셀로 이루어진 디스플레이패널과, 상기 디스플레이패널의 배면에 배치되어 디스플레이패널 측으로 빛을 제공하는 백라이트 유닛과, 상기 디스플레이패널의 전면에 배치되어 디스플레이패널의 서브픽셀을 확대하여 통과시키는 렌즈어레이로 구성되는 것으로, 상기 렌즈어레이는 수직단면이 직사각형 형상인 기초렌즈가 상하좌우로 배열되어 있는 것이 특징이다.
따라서, 본 발명은 렌즈어레이의 기초렌즈가 직사각형 형상으로 형성됨으로써 3차원 입체 영상을 구현할 시 발생하는 색분리 현상이 제거되며, 이로 인해 선명한 화질의 3차원 영상이 제공되어 더욱더 입체감 있는 3차원 영상을 즐길 수 있다는 등의 현저한 효과가 있다.
도 1은 종래 기술에 따른 집적 영상 기술의 원리를 설명하는 개요도.
도 2는 종래 기술에 따른 표시패널과 렌즈어레이의 배치간격에 따라 분류된 집적 영상의 시스템을 설명하는 개요도.
도 3은 종래 기술에 따른 적색, 녹색, 청색의 서브픽셀로 이루어진 표시 패널을 사용하는 깊이 우선 집적 영상 시스템의 구조를 설명하는 개요도.
도 4는 본 발명의 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템을 나타낸 개략도.
도 5는 본 발명의 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템의 디스플레이패널과 서브픽셀 확대표시용 렌즈어레이 구조를 나타낸 개요도.
도 6은 본 발명의 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템의 서브픽셀 확대용 렌즈어레이와 디스플레이패널 사이의 위치 관계를 설명하는 개요도.
도 7은 단위렌즈와 디스플레이패널의 서브픽셀 사이의 관계를 보여주는 개요도.
도 8은 기존의 요소영상에서 본 발명 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템의 새로운 요소영상으로 교환하는 개요도.
도 9는 본 발명 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템에서 2차원 요소영상에 대한 영상 표시의 예를 보여주는 개요도.
도 10은 기존의 방법에서 3차원 영상의 결상 원리를 나타낸 개요도.
도 11은 본 발명 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템에서 3차원 영상의 결상원리를 나타낸 개요도.
<도면의 주요 부분에 대한 부호의 설명>
100. 영상획득단계
110. 3차원 물체 120. 렌즈어레이 130. 요소영상
200. 영상재생단계
210. 3차원 영상 220. 렌즈어레이 230. 요소영상
250. 디스플레이패널 260. 백라이트 유닛
본 발명 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템은 적색(r)과 녹색(g) 그리고 청색(b)의 서브픽셀로 이루어진 디스플레이패널(250)과, 상기 디스플레이패널(250)의 배면에 배치되어 디스플레이패널(250) 측으로 빛을 제공하는 백라이트 유닛(260)과, 상기 디스플레이패널(250)의 전면에 배치되어 디스플레이패널(250)의 서브픽셀을 확대하여 통과시키는 렌즈어레이(220)로 구성되는 것으로, 상기 렌즈어레이(220)는 수직단면이 직사각형 형상인 기초렌즈가 상하좌우로 배열되어 있는 것이 특징이다.
그리고 상기 렌즈어레이(220)의 기초렌즈는 3개가 하나의 단위렌즈로 이루어지지는 것이 특징이다.
또한, 상기 기초렌즈에는 적색(r)과 녹색(g) 그리고 청색(b)의 빛이 각각 통과함으로써 평행빔이 만들어지는 것이 특징이다.
이하, 본 발명 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템을 첨부한 도면에 의해 상세히 설명하면 다음과 같다.
도 1은 종래 기술에 따른 집적 영상 기술의 원리를 설명하는 개요도이다.
먼저, 도 1을 참조하면, 기본적으로 3차원 물체(110)를 3차원 영상(210)으로 재생하는 원리는 3차원 물체(110)가 렌즈어레이(120)를 투시하도록 하여 요소영상(130)을 획득하는 영상획득단계(100)와 영상획득단계(100)에 의해 수집된 요소영상(100)을 다시 렌즈어레이(220)를 통해 공간상에 3차원 영상(210)로 재생하는 영상재생단계(200)로 구성된다.
즉, 집적 영상 기술은 도 1에서와 같이 크게 영상획득단계(100)와 영상재생단계(200)로 나누어진다.
영상획득단계(100)는 이미지 센서와 같은 2차원 감지기와 렌즈어레이(120)로 구성되며, 이때 3차원 물체(110)는 렌즈어레이(120) 앞에 위치한다.
그러면 3차원 물체(110)의 다양한 영상정보들이 렌즈어레이(120)를 통과한 후 2차원 감지기에 저장된다.
이때 저장된 영상은 요소영상(130)으로서 3차원 영상(210)의 재생을 위해 이용된다.
이후 집적 영상기술의 영상재생단계(200)는 영상획득단계(100)의 역 과정으로, 액정 표시 장치와 같은 영상재생장치와 렌즈어레이(220)로 구성된다.
여기서, 영상획득단계(200)에서 얻은 요소영상(230)은 영상재생장치에 표시되고, 요소영상(230)의 영상정보는 렌즈어레이(220)를 통과하여 공간상에 3차원 영상(210)으로 재생되게 된다.
실질적으로 영상획득단계(100)의 요소영상(130)과 영상재생단계(200)의 요소영상(230)은 실질적으로 동일한 것으로 단지, 영상재생단계(200)의 요소영상(230)은 영상획득단계(100)에서 획득한 요소영상(120)을 2차원 감지기에 저장되어 3차원 영상을 재생하기 위해 사용하는 것으로서 편의상 영상획득단계(100)와 영상재생단계(200)를 구분하기 위하여 다른 도면부호로 도시하였다.
도 2는 종래 기술에 따른 표시패널과 렌즈어레이의 배치간격에 따라 분류된 집적 영상의 시스템을 설명하는 개요도로서, 특히, 도 2a는 깊이 우선 집적 영상방식을 나타낸 개요도이고, 도 2b는 해상도 우선 집적 영상방식을 나타낸 개요도이다.
이러한 집적 영상 방식은 렌즈어레이(220)와 요소영상 표시장치 사이의 거리(g)에 따라서 2종류로 구분할 수 있다.
즉, 거리 g가 렌즈 배열(220)의 기초렌즈의 초점거리 (f)와 동일한 경우와 그렇지 않은 경우로 나눌 수 있다.
g=f인 경우는 도 2(a)와 같이 요소 영상(230)의 한 픽셀이 렌즈를 통하여 평행빔이 되어서 집적 빔이 만들어지게 된다.
이 경우를 깊이 우선 집적 영상 방식이라 부르며, 3차원 영상을 표시하는 깊이 영역을 최대로 만들 수 있지만 3차원 영상(210)의 해상도가 낮은 단점이 있다.
이에 반해서 g가 f와 동일하지 않은 경우는 해상도 우선 집적 영상방식이라 부르며, 요소 영상(230)의 한 픽셀이 렌즈를 통하여 수렴빔이 되어서 집적 빔이 만들어지며, 이 경우에 3차원 영상(210)의 해상도를 증가시킬 수 있지만 깊이 영역이 급격히 줄어든다.
도 3은 종래 기술에 따른 적색, 녹색, 청색의 서브픽셀로 이루어진 표시 패널을 사용하는 깊이 우선 집적 영상 시스템의 구조를 설명하는 개요도이다.
이에, 도 3을 참조하면, 기존의 렌즈 배열을 이용한 깊이우선 집적 영상 방식에서는 하나의 점광원을 생성하는 방식에서 서브픽셀 구조의 표시패널을 사용하게 되면 점광원으로 결상되는 광선들의 세기 정보는 복원이 가능하지만, 색상 정보를 읽어버리는 문제점이 있다.
도 3에서 보여지듯이 점광원을 만드는데, 다양한 칼라정보가 모이게 된다.
이 점광원들이 관측자에게 관측될 때에는 제대로된 색상정보를 보여주지 못하게 된다. 이러한 문제가 색분리 현상의 주요 원인이다.
따라서, 올바른 3차원 영상을 구현하기에는 어려운 문제점이 있다.
도 4는 본 발명의 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템을 나타낸 개략도이다.
도 4에 도시된 바와 같이 본 발명의 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템은 적색(r)과 녹색(g) 그리고 청색(b)의 서브픽셀로 이루어진 디스플레이패널(250)과, 상기 디스플레이패널(250)의 배면에 배치되어 디스플레이패널(250) 측으로 빛을 제공하는 백라이트 유닛(260)과, 상기 디스플레이패널(250)의 전면에 배치되어 디스플레이패널(250)의 서브픽셀을 확대하여 통과시키는 렌즈어레이(220)로 구성되는 것으로, 상기 렌즈어레이(220)는 수직단면이 직사각형 형상인 기초렌즈가 상하좌우로 배열되어 있는 것이 특징이다.
즉, 디스플레이패널(250)의 영상은 기본적으로 적색(r)과 녹색(g) 그리고 청색(b)으로 이루어져 있으며, 적색(r)과 녹색(g) 그리고 청색(b)을 rgb라 부르며, 본 발명에서는 이러한 rgb칼라에 해당하는 픽셀을 서브픽셀로 부르기로 한다.
그리고 상기 디스플레이패널(250)의 배면에는 디스플레이패널(250)에 빛을 제공하는 광원으로서 백라이트 유닛(260)이 위치하고 있으며, 상기 디스플레이패널(250)의 전면에 배치되어 디스플레이패널(250)의 서브픽셀을 확대하여 통과시키는 렌즈어레이(220)로 구성된다.
특히, 본 발명에서 상기 렌즈어레이(200)는 수직단면이 직사각형 형상인 기초렌즈가 상하좌우로 배열되어 있다.
일반적으로 상기 기초렌즈는 볼록렌즈이다.
도 5는 본 발명의 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템의 디스플레이패널과 서브픽셀 확대표시용 렌즈어레이 구조를 나타낸 개요도이다.
한편, 도 5에 도시된 바와 같이 기존의 렌즈어레이(220)의 구조에서는 기초렌즈가 동일한 모양의 원형이나 사각형 모양과는 달리 수직단면이 직사각형 형상의 구조를 가지도록 제작된다.
그리고 이렇게 제작된 직사각형 기초렌즈 3개를 하나의 단위로 구성한다.
기초렌즈 3개를 하나의 단위로 한 것을 단위렌즈라 일컬으며, 이러한 단위렌즈로 구성된 렌즈어레이(220)를 서브픽셀 구조의 디스플레이패널(250)에 위에 올려둔다.
도 6은 본 발명의 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템의 서브픽셀 확대용 렌즈어레이와 디스플레이패널 사이의 위치 관계를 설명하는 개요도이다.
도 6에서 도시되어 있는 바와 같이 렌즈어레이(220)와 디스플레이패널(250) 사이의 거리는 렌즈어레이(220)의 기초렌즈의 초점거리와 같게 한다.
그러면 디스플레이패널(250)을 통과하는 빔(광선)은 각각의 기초렌즈를 통과하여 평행빔으로 만들어지게 된다.
앞서 기재된 바와 같이, 본 발명에서 사용하는 단위렌즈는 작은 3개의 기초렌즈로 구성되어 있으며, 각각의 기초렌즈를 통하여 서로 다른 색깔의 평행빔이 만들어지도록 한다.
도 7은 단위렌즈와 디스플레이패널의 서브픽셀 사이의 관계를 보여주는 개요도이다.
도 7은 1차원적으로 4개의 서브픽셀과 하나의 기초렌즈가 매칭이 되는 예를 보여 준다.
이것은 도 7b에서 집적영상 방식에서 4픽셀의 요소영상(12subpixel)을 사용하는 경우와 동일하다.
본 발명에서의 방식에서 3차원 영상을 표시하기 위해서는 도 7(a)와 같이 rgb칼라의 위치를 바꾸어야 한다.
도 8은 기존의 요소영상에서 본 발명 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템의 새로운 요소영상으로 교환하는 개요도이다.
픽셀을 교환하는 원리는 다음과 같다.
단위렌즈의 3개의 기초렌즈는 rgb픽셀을 나누어서 배치하는 것이다.
N개의 픽셀 (3N 서브픽셀)에 대해서 변환을 한다고 하면 k번째 픽셀에 대해서는 (k, k+N, k+2N)의 서브픽셀 위치로 변환이 일어나며, 여기서 rgb칼라 정보에 맞추어서 교환 배치를 하면 된다.
예를 들면 N=4인 요소영상 픽셀(12 서브픽셀)에 대해서는 다음과 같다.
k=1이면 1, 5, 9번째의 서브픽셀 위치와 연결이 되고, 칼라에 맞추어서 재 배치하게 된다.
그러면 1r은 1번째에, 1g는 5번째 픽셀에, 1b는 9번째 픽셀로 변환된다.
K=2이면 2, 6, 10번째의 서브픽셀 위치와 연결이 되고, 칼라위치를 맞추어서 재배치하면 2r는 10번째에, 2g는 2번째에, 2b는 6번째로 연결된다.
K=3와 k=4d인 경우에도 동일한 원리를 적용하여 변환할 수 있다.
도 9는 본 발명 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템에서 2차원 요소영상에 대한 영상 표시의 예를 보여주는 개요도이다.
도 9에 도시된 바와 같이 서브픽셀 확대용 렌즈어레이(220)를 디스플레이패널(250)에 올려지면, 관측자는 렌즈어레이(220)를 통해서 디스플레이패널(250)의 서브픽셀 중에서 하나의 서브픽셀을 확대해서 보여준다.
도 9(b)에서와 같이 관측자는 근거리에서는 rgb형태의 영상을 보게 된다.
이 구조는 마치 서브픽셀 구조의 디스플레이패널(250)을 각각 확대한 형태와 동일하다.
그러면 실제 표시하고자 하는 영상으로 관측자는 관측이 가능하다.
도 10은 기존의 방법에서 3차원 영상의 결상 원리를 나타낸 개요도이다.
렌즈어레이(220)를 통하여 결상되는 점영상을 관측자가 관측할 때 관측하는 점결상 영상의 색깔정보를 잃어버리게 되는 문제점이 있고, 이것이 칼라 색분산의 기본적인 원인이다.
도 11은 본 발명 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템에서 3차원 영상의 결상원리를 나타낸 개요도이다.
기존의 방법과는 다르게 하나의 점결상 영상을 rgb의 칼라성분으로 분리하여 구성하고, 각각의 칼라정보에 대해서 결상의 원리를 적용하는 것이다.
예로 빨간색에 대한 점결상을 영상을 만든다고 하면, 디스플레이패널(250)에서 r의 서브픽셀과 연결되는 픽셀들과의 기하광학적 구조를 연결하여 결상을 해석한다.
이 경우에는 관측자는 색깔정보를 잃어버리지 않고 r정보의 세기만을 표시한다.
g와 b에 대한 결상원리도 동일하게 적용이 가능하다.
관측자는 rgb를 결합하여 관측함으로써 제대로 표시된 칼라와 빛의 세기를 구현할 수 있다.
또한, 영상재생단계(200)에서 3차원 영상을 디스플레이할 때, 렌즈어레이(220)의 전면에 마스크 패널을 설치하여 요소영상(230)이 렌즈어레이(220)와 마스크 패널을 통과하도록 함으로써 선명한 3차원 영상이 디스플레이될 수 있도록 하였다.
한편, 상기 마스크 패널은 요소영상이 통과되지 않는 차단영역과 요소영상이 통과하는 투과영역으로 구성되어 있되, 상기 차단영역과 투과영역이 시간에 따라 순차적으로 위치가 교번되도록 함으로써 더욱 선명한 3차원 영상이 디스플레이될 수 있도록 하였다.
그리고 디스플레이패널이 흰색으로 표시됨과 동시에 마스크 패널에 2차원 영상이 표시되면, 공간상에는 3차원 영상이 디스플레이되지 않고 2차원 영상이 디스플레이되는 되는 것, 상기 디스플레이패널의 일부 영역에만 흰색으로 표시되면, 상기 디스플레이패널의 흰색 영역에 대응되는 마스크 패널의 영역에는 2차원 영상이 디스플레이되는 것, 흰색으로 표시되지 않는 상기 디스플레이장치패널의 나머지 영역에서는 요소영상이 렌즈어레이와 마스크 패널을 통과하여 공간상에 3차원 영상이 디스플레이되는 방법을 선택적으로 구현할 수 있다.
상술한 바와 같이, 본 발명은 렌즈어레이의 기초렌즈가 직사각형 형상으로 형성됨으로써 3차원 입체 영상을 구현할 시 발생하는 색분리 현상이 제거되며, 이로 인해 선명한 화질의 3차원 영상이 제공되어 더욱더 입체감 있는 3차원 영상을 즐길 수 있다는 등의 현저한 효과가 있다.

Claims (3)

  1. 적색(r)과 녹색(g) 그리고 청색(b)의 서브픽셀로 이루어진 디스플레이패널(250)과, 상기 디스플레이패널(250)의 배면에 배치되어 디스플레이패널(250) 측으로 빛을 제공하는 백라이트 유닛(260)과, 상기 디스플레이패널(250)의 전면에 배치되어 디스플레이패널(250)의 서브픽셀을 확대하여 통과시키는 렌즈어레이(220)로 구성되는 것으로, 상기 렌즈어레이(220)는 수직단면이 직사각형 형상인 기초렌즈가 상하좌우로 배열되어 있는 것이 특징인 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템.
  2. 제1항에 있어서,
    상기 렌즈어레이(220)의 기초렌즈는 3개가 하나의 단위렌즈로 이루어지는 것이 특징인 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템.
  3. 제2항에 있어서,
    상기 기초렌즈에는 적색(r)과 녹색(g) 그리고 청색(b)의 빛이 각각 통과함으로써 평행빔이 만들어지는 것이 특징인 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템.
PCT/KR2015/006790 2015-07-01 2015-07-02 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템 WO2017002993A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150094157A KR101691297B1 (ko) 2015-07-01 2015-07-01 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템
KR10-2015-0094157 2015-07-01

Publications (1)

Publication Number Publication Date
WO2017002993A1 true WO2017002993A1 (ko) 2017-01-05

Family

ID=57608572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006790 WO2017002993A1 (ko) 2015-07-01 2015-07-02 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템

Country Status (2)

Country Link
KR (1) KR101691297B1 (ko)
WO (1) WO2017002993A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070196A (ja) * 2019-10-30 2021-05-06 株式会社ミマキエンジニアリング 印刷装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102006079B1 (ko) * 2017-12-07 2019-07-31 전자부품연구원 육각 렌즈를 이용한 집적영상 시스템의 시점영상 매핑 방법
CN110398843B (zh) * 2019-07-28 2024-03-05 成都航空职业技术学院 宽视角和均匀分辨率的双视3d显示装置
CN115202064B (zh) * 2021-04-12 2023-10-03 幻景启动股份有限公司 立体影像显示设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101930A (ja) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd 立体像要素画像作成表示方法および立体像表示装置
JP2007298762A (ja) * 2006-04-28 2007-11-15 Casio Comput Co Ltd 表示装置
KR20080104849A (ko) * 2007-05-29 2008-12-03 주식회사 옵토메카 유기 전계발광 소자
KR20120090507A (ko) * 2011-02-08 2012-08-17 엘지디스플레이 주식회사 집적 영상 방식의 입체 영상 표시 장치
KR101515036B1 (ko) * 2013-12-04 2015-04-24 동서대학교산학협력단 깊이우선 집적영상 디스플레이에서의 색 분리 현상 감소 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101930A (ja) * 2005-10-05 2007-04-19 Matsushita Electric Ind Co Ltd 立体像要素画像作成表示方法および立体像表示装置
JP2007298762A (ja) * 2006-04-28 2007-11-15 Casio Comput Co Ltd 表示装置
KR20080104849A (ko) * 2007-05-29 2008-12-03 주식회사 옵토메카 유기 전계발광 소자
KR20120090507A (ko) * 2011-02-08 2012-08-17 엘지디스플레이 주식회사 집적 영상 방식의 입체 영상 표시 장치
KR101515036B1 (ko) * 2013-12-04 2015-04-24 동서대학교산학협력단 깊이우선 집적영상 디스플레이에서의 색 분리 현상 감소 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021070196A (ja) * 2019-10-30 2021-05-06 株式会社ミマキエンジニアリング 印刷装置
JP7355604B2 (ja) 2019-10-30 2023-10-03 株式会社ミマキエンジニアリング 印刷装置

Also Published As

Publication number Publication date
KR101691297B1 (ko) 2016-12-29

Similar Documents

Publication Publication Date Title
KR100658545B1 (ko) 입체 화상 재생 장치
KR101188429B1 (ko) 색분리 현상을 제거한 고해상도 표시 패널 및 이를 이용한입체 영상 표시 장치
US20090115800A1 (en) Multi-view display device
JP4469930B2 (ja) パララックスバリア方式の立体映像表示装置
CN102917235B (zh) 图像处理装置和图像处理方法
KR101001627B1 (ko) 입체 영상표시장치
WO2012121520A2 (ko) 다시점 영상 디스플레이 장치
KR20050002587A (ko) 다중 뷰 디스플레이
WO2012030090A2 (ko) 사선 방향 패럴랙스 베리어 방식 입체영상 표시 장치
KR20050013875A (ko) 고해상도 3차원 영상 디스플레이
JP2009139947A (ja) 3次元映像表示装置及びその駆動方法
JPH1032843A (ja) 3次元画像表示用の液晶表示装置
WO2017002993A1 (ko) 색분리 현상을 제거하는 깊이우선 집적 영상 디스플레이 시스템
US20120092470A1 (en) Stereoscopic display device and stereoscopic display method
US20120113510A1 (en) Display device and display method
US20230008318A1 (en) Multi-viewpoint 3d display screen and multi-viewpoint 3d display device
WO2016056735A1 (ko) 다시점 영상 디스플레이 장치 및 그 제어 방법
KR100662429B1 (ko) 입체 영상 표시 장치
US20120050290A1 (en) Three-dimensional image display apparatus and display method
WO2020075956A1 (ko) 패럴랙스 배리어 및 이를 포함하는 입체 표시 장치
WO2014175547A1 (ko) 다인시점 무안경 입체영상 디스플레이 장치
WO2014196726A1 (ko) 무안경 입체영상 디스플레이 장치
JP2003295115A (ja) 眼鏡なし立体映像表示装置
KR100763398B1 (ko) 휴대용 영상 표시장치를 이용한 입체영상의 표시방법
JP3234354B2 (ja) 投写型映像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897216

Country of ref document: EP

Kind code of ref document: A1