WO2017000784A1 - 一种移动控制装置及移动控制方法 - Google Patents

一种移动控制装置及移动控制方法 Download PDF

Info

Publication number
WO2017000784A1
WO2017000784A1 PCT/CN2016/085908 CN2016085908W WO2017000784A1 WO 2017000784 A1 WO2017000784 A1 WO 2017000784A1 CN 2016085908 W CN2016085908 W CN 2016085908W WO 2017000784 A1 WO2017000784 A1 WO 2017000784A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
collected data
unit
point cloud
control
Prior art date
Application number
PCT/CN2016/085908
Other languages
English (en)
French (fr)
Inventor
蔡明峻
Original Assignee
芋头科技(杭州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芋头科技(杭州)有限公司 filed Critical 芋头科技(杭州)有限公司
Publication of WO2017000784A1 publication Critical patent/WO2017000784A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the invention relates to the technical field of positioning control of a robot device, in particular to a mobile control device and a control method.
  • a robot is a machine that automatically performs work. It can accept human command, run pre-programmed procedures, or act on principles that are based on artificial intelligence techniques. Its mission is to assist or replace the work of human work.
  • indoor mobile robots generally perform indoor positioning and navigation through Bluetooth or WIFI, and deploy transmitters (Bluetooth launchers or WIFI hotspots) in various places in the room according to the received The strength of different signal of the transmitting point is combined with the built-in indoor floor plan matching the environment to calculate the distance of the position at the transmitter, and then obtain the position information of the position.
  • the existing indoor positioning technology has the following defects: (1) the robot itself needs prior knowledge of the indoor plan; (2) it is necessary to properly install as many launch points as possible indoors, and the more the launch points, the more the cost High, and the fewer the number of launch points, the lower the accuracy of the positioning; the signal of the launch point will cause uncertainties in the positioning error due to the barrier or reflection of the wall; (3) The robot enters a new unknown environment. Unable to locate right away.
  • the present invention provides a mobile control device and a control method with accurate positioning and simple structure.
  • the invention is achieved by the following method:
  • a mobile control device applied to a robot control system wherein:
  • An acquisition unit is disposed at a predetermined position of the robot, configured to acquire point cloud data of the robot in a current environment, and form an collected data output according to the point cloud data;
  • control unit configured to receive the collected data, and form a control signal output according to the collected data
  • the moving mechanism receives the control signal and, under the action of the control signal, drives the robot to perform a corresponding movement.
  • control unit includes
  • a modeling unit is configured to receive the collected data, and form a spatial plan corresponding to the current environment according to the collected data and the current pose information of the robot.
  • a spatial plan view matching the current environment is formed in the modeling unit, and the control unit further includes
  • a judging unit respectively reading the collected data and the space plan, and forming a judgment result according to the collected data and the space plan
  • a calculation unit that accepts the determination result and forms a calculation result output containing the position information of the robot according to the determination result.
  • pre-fabricating a space plan matching the current environment in the control unit further comprising
  • a judging unit respectively reading the collected data and the space plan, and forming a judgment result according to the collected data and the space plan
  • a calculation unit that accepts the determination result and forms a calculation result output containing the position information of the robot according to the determination result.
  • the above mobile control device further includes an update unit, the collection unit collects the point cloud data in real time, and the update unit updates the space plan in real time according to the point cloud data.
  • the acquisition unit is a laser scanning ranging sensor
  • the laser scanning ranging sensor is configured to acquire the point cloud data in an environment in which the robot is currently located.
  • the moving mechanism is mainly composed of a plurality of driving wheels and one thousand Formed toward the wheel, the drive wheel and the universal wheel are disposed on the bottom of the robot in a triangular shape.
  • a mobile control method applied to a robot control system wherein:
  • Step S1 the control collection unit is configured to acquire point cloud data of the robot in the current environment, and form an collected data output according to the point cloud data;
  • Step S2 the control unit receives the collected data, and forms a control signal output according to the collected data;
  • Step S3 Control the moving mechanism to drive the robot to perform corresponding movement under the action of the control signal.
  • step S2 specifically includes the following steps:
  • Step S21 determining whether a space plan is set in the control unit
  • Step S22 in a state where the space plan is not set in the control unit, the modeling unit receives the collected data, and forms a current environment with the current position information of the robot according to the collected data. Matching space plan,
  • Step S23 The determining unit respectively reads the collected data and the space plan, and forms a judgment result according to the collected data and the space plan.
  • Step S24 the calculation unit accepts the determination result, and forms a calculation result output containing the robot position information according to the determination result.
  • the acquisition unit collects the distance information between the robot and each obstacle in the current environment in real time to determine the position of the robot, without setting a plurality of transmitters, the cost is low, and the ranging method is from the passive receiving transmitter.
  • the transmitted signal is switched to actively send ranging information, and the resource utilization rate is improved.
  • the collecting device performs acquisition, and the ranging information is accurate. According to the more accurate ranging information, the positioning accuracy is high and the efficiency is high.
  • FIG. 1 is a schematic structural view of a mobile control device according to the present invention.
  • FIG. 2 is a schematic flow chart of a mobile control method according to the present invention.
  • a mobile control device is applied to a robot control system, wherein:
  • An acquisition unit is disposed at a predetermined position of the robot to acquire a plurality of point cloud data of the robot in a current environment, and form an collected data output according to the point cloud data; further, the The acquisition unit is a laser scanning ranging sensor, wherein the laser scanning ranging sensor can be disposed at a position 150 mm away from the horizontal plane, and the laser scanning ranging sensor can be rotated 360°, and the laser scanning ranging sensor is used to acquire the current robot The point cloud data in the environment.
  • Each of the point cloud data includes three-dimensional coordinate information, color information, and reflection intensity information.
  • the laser scanning distance measuring sensor can measure the distance between the robot and the obstacle by rotating the internal laser ranging module by 1°, and the laser ranging module rotates in a horizontal direction, and the robot can be acquired by repeatedly rotating the distance measurement.
  • the distance between the current position and the obstacle can also be obtained from the indoor floor plan in the environment in which the robot is currently located.
  • control unit configured to receive the collected data, and form a control signal output according to the collected data; the control unit determines, according to the collected data acquired by the collecting unit, a spatial position letter of the robot And then, according to the control command input by the user, a control signal is formed in combination with the spatial position information.
  • the moving mechanism receives the control signal and, under the action of the control signal, drives the robot to perform a corresponding movement.
  • the acquisition unit collects the distance information between the robot and each obstacle in the current environment in real time to determine the position of the robot, without setting a plurality of transmitters, the cost is low, and the ranging method is from the passive receiving transmitter.
  • the transmitted signal is switched to actively send ranging information, and the resource utilization rate is improved.
  • the collecting device performs acquisition, and the ranging information is accurate. According to the more accurate ranging information, the positioning accuracy is high and the efficiency is high.
  • the food conveying robot needs to move back and forth between the kitchen and the unsynchronized target position, the user sets the target position of the robot, and the collecting device collects and judges the current position and obstacle in real time.
  • the distance between the object the obstacle includes the fixed obstacle and the movable obstacle
  • the control unit forms a control signal according to the collected data in combination with the spatial plan of the current environment and the target position set by the user, and the control signal drives the transmission mechanism according to the The control signal performs a matching movement until it reaches the target position.
  • control unit includes
  • a modeling unit is configured to receive the collected data, and form a spatial plan corresponding to the current environment according to the collected data and the current pose information of the robot.
  • the interior of the robot does not store a space plan that matches the current environment, and the robot enters the environment without positional movement.
  • the plurality of point cloud data of the robot in the current environment is acquired by the acquiring device, and the modeling unit forms a spatial plan corresponding to the current environment according to the collected data and the current pose information of the robot.
  • a spatial plan view matching the current environment is formed in the modeling unit, and the control unit further includes
  • a judging unit respectively reading the collected data and the space plan, and forming a judgment result according to the collected data and the space plan
  • a calculation unit that accepts the determination result and forms a calculation result output containing the position information of the robot according to the determination result.
  • the determining unit reads the collected data and the space plan, and forms a judgment result according to the collected data and the space plan.
  • the calculating unit accepts the judgment result, and forms a calculation result output containing the robot position information according to the judgment structure.
  • pre-fabricating a space plan matching the current environment in the control unit further comprising
  • a judging unit respectively reading the collected data and the space plan, and forming a judgment result according to the collected data and the space plan
  • a calculation unit that accepts the determination result and forms a calculation result output containing the position information of the robot according to the determination result.
  • the above mobile control device further includes an update unit, the collection unit collects the point cloud data in real time, and the update unit updates the space plan in real time according to the point cloud data.
  • the space plan is updated in real time through the update unit to improve the accuracy of the robot positioning.
  • the moving mechanism is mainly formed by a plurality of driving wheels and a universal wheel, and the driving wheel and the universal wheel are disposed at a bottom of the robot in a triangular shape.
  • a mobile control method is applied to a robot control system, wherein:
  • Step S1 the control collection unit is configured to acquire point cloud data of the robot in the current environment, and form an collected data output according to the point cloud data;
  • Step S2 the control unit receives the collected data, and forms a control signal output according to the collected data;
  • Step S3 Control the moving mechanism to drive the robot to perform corresponding movement under the action of the control signal.
  • the mobile control method provided by the present invention is similar to the working principle of the above mobile control device, and is not described herein.
  • step S2 specifically includes the following steps:
  • Step S21 determining whether a space plan is set in the control unit
  • Step S22 in a state where the space plan is not set in the control unit, the modeling unit receives the collected data, and forms a current environment with the current position information of the robot according to the collected data. Matching space plan,
  • Step S23 The determining unit respectively reads the collected data and the space plan, and forms a judgment result according to the collected data and the space plan.
  • Step S24 the calculation unit accepts the determination result, and forms a calculation result output containing the robot position information according to the determination result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)

Abstract

一种机器人装置的定位控制技术领域,尤其涉及一种移动控制装置及移动控制方法,包括采集单元,用以获取机器人于当前所处环境中的点云数据,并根据点云数据形成一采集数据输出;控制单元,用以接收采集数据,并根据采集数据形成一控制信号输出;移动机构,并于控制信号的作用下,驱动机器人执行相应的移动。与现有技术相比,通过采集单元实时采集机器人与当前环境中的各个障碍物之间的距离信息判断机器人所处位置,无需设置多个发射器,成本较低,且测距方式从被动的接收发射器发射的信号转为主动发出测距信息,资源利用率提高,同时采集装置实施采集,测距信息准确,根据较为准确的测距信息,定位准确率高,效率较高。

Description

一种移动控制装置及移动控制方法 技术领域
本发明涉及一种机器人装置的定位控制技术领域,尤其涉及一种移动控制装置及控制方法。
背景技术
机器人是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,目前室内移动机器人一般通过蓝牙或者WIFI为进行室内的定位与寻航,于室内多个地方布局发射器(蓝牙发射装置或WIFI热点)机器人根据接收的不同发射点信号的强弱,结合内置的与该环境相匹配的室内平面图计算判断所处位置于发射器的距离,进而获取自身所处为位置信息。但是现有此种室内定位的技术存在以下缺陷:(1)机器人自身需要室内平面图的先验知识;(2)需要在室内合理地安装尽量多的发射点,发射点越多,则成本就越高,而发射点的数量越少,定位的精度越低;发射点的信号会因为墙壁的阻隔或反射,会给定位的误差带来不确定的因素;(3)机器人进入一个新的未知环境无法马上进行定位。
发明内容
针对现有技术的不足,本发明提供一种定位准确、结构简单的移动控制装置及控制方法。
本发明通过如下方法实现:
一种移动控制装置,应用于机器人控制***,其中:包括,
采集单元,设置于所述机器人的预定位置处,用以获取所述机器人于当前所处环境中的点云数据,并根据所述点云数据形成一采集数据输出;
控制单元,用以接收所述采集数据,并根据所述采集数据形成一控制信号输出;
移动机构,接收所述控制信号,并于所述控制信号的作用下,驱动所述机器人执行相应的移动。
上述的移动控制装置,其中:所述控制单元包括
一建模单元,用以接收所述采集数据,并根据所述采集数据结合所述机器人当前位姿信息形成一与当前所处环境相匹配的空间平面图。
上述的移动控制装置,其中:于所述建模单元中形成有一与当前所述环境相匹配的空间平面图,所述控制单元还包括
一判断单元,分别读取所述采集数据与所述空间平面图,并根据所述采集数据与所述空间平面图形成一判断结果,
一计算单元,接受所述判断结果,并根据所述判断结果形成一含有所述机器人位置信息的计算结果输出。
上述的移动控制装置,其中:于所述控制单元中预制一与当前所述环境相匹配的空间平面图,还包括
一判断单元,分别读取所述采集数据与所述空间平面图,并根据所述采集数据与所述空间平面图形成一判断结果,
一计算单元,接受所述判断结果,并根据所述判断结果形成一含有所述机器人位置信息的计算结果输出。
上述的移动控制装置,其中:还包括一更新单元,所述采集单元实时采集所述点云数据,所述更新单元根据所述点云数据实时更新所述空间平面图。
上述的移动控制装置,其中:所述采集单元为激光扫描测距传感器,所述激光扫描测距传感器用以获取所述机器人当前所处环境中的所述点云数据。
上述的移动控制装置,其中:所述移动机构主要由复数个驱动轮和一个万 向轮形成,所述驱动轮与所述万向轮按照一三角形状设置于所述机器人底部。
一种移动控制方法,应用于机器人控制***,其中:包括,
步骤S1,控制采集单元用以获取所述机器人于当前所处环境中的点云数据,并根据所述点云数据形成一采集数据输出;
步骤S2,控制单元接收所述采集数据,并根据所述采集数据形成一控制信号输出;
步骤S3、控制移动机构于所述控制信号的作用下,驱动所述机器人执行相应的移动。
上述的移动控制方法,其中:所述步骤S2具体包括如下步骤:
步骤S21、判断所述控制单元中是否设置有一空间平面图;
步骤S22,于所述控制单元中未设置有所述空间平面图的状态下,建模单元接收所述采集数据,并根据所述采集数据结合所述机器人当前位姿信息形成一与当前所处环境相匹配的空间平面图,
步骤S23、判断单元分别读取所述采集数据与所述空间平面图,并根据所述采集数据与所述空间平面图形成一判断结果,
步骤S24,计算单元接受所述判断结果,并根据所述判断结果形成一含有所述机器人位置信息的计算结果输出。
与现有技术相比,本发明的优点是:
本发明中,通过采集单元实时采集机器人与当前环境中的各个障碍物之间的距离信息判断机器人所处位置,无需设置多个发射器,成本较低,且测距方式从被动的接收发射器发射的信号转为主动发出测距信息,资源利用率提高,同时采集装置实施采集,测距信息准确,根据较为准确的测距信息,定位准确率高,效率较高。
附图说明
图1为本发明一种移动控制装置结构示意图;
图2为本发明一种移动控制方法流程示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。
如图1所示,一种移动控制装置,应用于机器人控制***,其中:包括,
采集单元,设置于所述机器人的预定位置处,用以获取所述机器人于当前所处环境中的复数个点云数据,并根据所述点云数据形成一采集数据输出;进一步地,所述采集单元为激光扫描测距传感器,其中所述激光扫描测距传感器可设置距离水平面150mm的位置,激光扫描测距传感器可360°旋转,所述激光扫描测距传感器用以获取所述机器人当前所处环境中的所述点云数据。每个所述点云数据包含有三维坐标信息、颜色信息、以及反射强度信息。其中激光扫描测距传感器通过不行旋转内部的激光测距模块,每旋转1°即可测量到机器人与障碍物的距离,激光测距模块成水平方向旋转,通过多次旋转测距,可以获取机器人当前所述位置与障碍物的距离,同时也可获取机器人当前所处环境中的室内平面图。
控制单元,用以接收所述采集数据,并根据所述采集数据形成一控制信号输出;控制单元根据采集单元获取的采集数据判断机器人所处的空间位置信 息,进而根据用户输入的控制命令,结合空间位置信息形成一控制信号。
移动机构,接收所述控制信号,并于所述控制信号的作用下,驱动所述机器人执行相应的移动。
本发明中,通过采集单元实时采集机器人与当前环境中的各个障碍物之间的距离信息判断机器人所处位置,无需设置多个发射器,成本较低,且测距方式从被动的接收发射器发射的信号转为主动发出测距信息,资源利用率提高,同时采集装置实施采集,测距信息准确,根据较为准确的测距信息,定位准确率高,效率较高。
此处列举一具体实施方式:以传菜机器人为例,传菜机器人需要从厨房到不同步的目标位置之间来回走动,用户设置机器人的目标位置,采集装置实时采集判断当前所处位置与障碍物(障碍物包括固定障碍物和可移动障碍物)之间的距离,控制单元根据采集数据结合当前所处环境的空间平面图、以及用户设置的目标位置形成控制信号,控制信号驱动传动机构根据该控制信号执行与之相匹配的移动,直至到达目标位置。
上述的移动控制装置,其中:所述控制单元包括
一建模单元,用以接收所述采集数据,并根据所述采集数据结合所述机器人当前位姿信息形成一与当前所处环境相匹配的空间平面图。当机器人进入一个未知环境或者用户首次使用机器人时,机器人内部未保存有与当前所处环境相匹配的空间平面图,则机器人进入该环境中,不发生位置移动。首先通过采集装置获取所述机器人于当前所处环境中的复数个点云数据,建模单元根据所述采集数据结合所述机器人当前位姿信息形成一与当前所处环境相匹配的空间平面图。
上述的移动控制装置,其中:于所述建模单元中形成有一与当前所述环境相匹配的空间平面图,所述控制单元还包括
一判断单元,分别读取所述采集数据与所述空间平面图,并根据所述采集数据与所述空间平面图形成一判断结果,
一计算单元,接受所述判断结果,并根据所述判断结果形成一含有所述机器人位置信息的计算结果输出。
于所述建模单元中形成有一与当前所述环境相匹配的空间平面图,判断单元读取所述采集数据与所述空间平面图,并根据所述采集数据与所述空间平面图形成一判断结果,计算单元,接受所述判断结果,并根据所述判断结构形成一含有所述机器人位置信息的计算结果输出。
上述的移动控制装置,其中:于所述控制单元中预制一与当前所述环境相匹配的空间平面图,还包括
一判断单元,分别读取所述采集数据与所述空间平面图,并根据所述采集数据与所述空间平面图形成一判断结果,
一计算单元,接受所述判断结果,并根据所述判断结果形成一含有所述机器人位置信息的计算结果输出。
上述的移动控制装置,其中:还包括一更新单元,所述采集单元实时采集所述点云数据,所述更新单元根据所述点云数据实时更新所述空间平面图。通过更新单元,实时更新所述空间平面图,提高机器人定位的准确度。
上述的移动控制装置,其中:所述移动机构主要由复数个驱动轮和一个万向轮形成,所述驱动轮与所述万向轮按照一三角形状设置于所述机器人底部。
如图2所示,一种移动控制方法,应用于机器人控制***,其中:包括,
步骤S1,控制采集单元用以获取所述机器人于当前所处环境中的点云数据,并根据所述点云数据形成一采集数据输出;
步骤S2,控制单元接收所述采集数据,并根据所述采集数据形成一控制信号输出;
步骤S3、控制移动机构于所述控制信号的作用下,驱动所述机器人执行相应的移动。
本发明提供的一种移动控制方法,与上述的移动控制装置工作原理相似,此处不做赘述。
上述的移动控制方法,其中:所述步骤S2具体包括如下步骤:
步骤S21、判断所述控制单元中是否设置有一空间平面图;
步骤S22,于所述控制单元中未设置有所述空间平面图的状态下,建模单元接收所述采集数据,并根据所述采集数据结合所述机器人当前位姿信息形成一与当前所处环境相匹配的空间平面图,
步骤S23、判断单元分别读取所述采集数据与所述空间平面图,并根据所述采集数据与所述空间平面图形成一判断结果,
步骤S24,计算单元接受所述判断结果,并根据所述判断结果形成一含有所述机器人位置信息的计算结果输出。
以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。

Claims (9)

  1. 一种移动控制装置,应用于机器人控制***,其特征在于:包括,
    采集单元,设置于所述机器人的预定位置处,用以获取所述机器人于当前所处环境中的点云数据,并根据所述点云数据形成一采集数据输出;
    控制单元,用以接收所述采集数据,并根据所述采集数据形成一控制信号输出;
    移动机构,接收所述控制信号,并于所述控制信号的作用下,驱动所述机器人执行相应的移动。
  2. 根据权利要求1所述的移动控制装置,其特征在于:所述控制单元包括
    一建模单元,用以接收所述采集数据,并根据所述采集数据结合所述机器人当前位姿信息形成一与当前所处环境相匹配的空间平面图。
  3. 根据权利要求2所述的移动控制装置,其特征在于:于所述建模单元中形成有一与当前所述环境相匹配的空间平面图,所述控制单元还包括
    一判断单元,分别读取所述采集数据与所述空间平面图,并根据所述采集数据与所述空间平面图形成一判断结果,
    一计算单元,接受所述判断结果,并根据所述判断结果形成一含有所述机器人位置信息的计算结果输出。
  4. 根据权利要求1所述的移动控制装置,其特征在于:于所述控制单元中预制一与当前所述环境相匹配的空间平面图,还包括
    一判断单元,分别读取所述采集数据与所述空间平面图,并根据所述采集数据与所述标准空间平面图形成一判断结果,
    一计算单元,接受所述判断结果,并根据所述判断结果形成一含有所述机器人位置信息的计算结果输出。
  5. 根据权利要求3或4所述的移动控制装置,其特征在于:还包括一更新单元,所述采集单元实时采集所述点云数据,所述更新单元根据所述点云数据实时更新所述空间平面图。
  6. 根据权利要求1所述的移动控制装置,其特征在于,所述采集单元为激光扫描测距传感器,所述激光扫描测距传感器用以获取所述机器人当前所处环境中的所述点云数据。
  7. 根据权利要求1所述的移动控制装置,其特征在于,所述移动机构主要由复数个驱动轮和一个万向轮形成,所述驱动轮与所述万向轮按照一三角形状设置于所述机器人底部。
  8. 一种移动控制方法,应用于机器人控制***,其特征在于:包括,
    步骤S1,控制采集单元用以获取所述机器人于当前所处环境中的点云数据,并根据所述点云数据形成一采集数据输出;
    步骤S2,控制单元接收所述采集数据,并根据所述采集数据形成一控制信号输出;
    步骤S3、控制移动机构于所述控制信号的作用下,驱动所述机器人执行相应的移动。
  9. 根据权利要求8所述的移动控制方法,其特征在于:所述步骤S2具体包括如下步骤:
    步骤S21、判断所述控制单元中是否设置有一空间平面图;
    步骤S22,于所述控制单元中未设置有所述空间平面图的状态下,建模单元接收所述采集数据,并根据所述采集数据结合所述机器人当前位姿信息形成一与当前所处环境相匹配的空间平面图,
    步骤S23、判断单元分别读取所述采集数据与所述标准空间平面图,并根据所述采集数据与所述标准空间平面图形成一判断结果,
    步骤S24,计算单元接受所述判断结果,并根据所述判断结果形成一含有所述机器人位置信息的计算结果输出。
PCT/CN2016/085908 2015-06-30 2016-06-15 一种移动控制装置及移动控制方法 WO2017000784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510381495.1A CN106325268A (zh) 2015-06-30 2015-06-30 一种移动控制装置及移动控制方法
CN201510381495.1 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017000784A1 true WO2017000784A1 (zh) 2017-01-05

Family

ID=57607879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085908 WO2017000784A1 (zh) 2015-06-30 2016-06-15 一种移动控制装置及移动控制方法

Country Status (4)

Country Link
CN (1) CN106325268A (zh)
HK (1) HK1231578A1 (zh)
TW (1) TW201701091A (zh)
WO (1) WO2017000784A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109144072A (zh) * 2018-09-30 2019-01-04 亿嘉和科技股份有限公司 一种基于三维激光的机器人智能避障方法
CN112141734A (zh) * 2020-09-30 2020-12-29 大连华锐重工集团股份有限公司 一种用于刮板取料机的取料控制***及取料方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108287345A (zh) * 2017-11-10 2018-07-17 广东康云多维视觉智能科技有限公司 基于点云数据的空间扫描方法及***
CN108364340A (zh) * 2017-12-03 2018-08-03 广东康云多维视觉智能科技有限公司 同步空间扫描的方法及***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060129276A1 (en) * 2004-12-14 2006-06-15 Honda Motor Co., Ltd. Autonomous mobile robot
CN102426455A (zh) * 2011-12-31 2012-04-25 浙江中控研究院有限公司 太阳能镜面清洗机器人***
CN102566574A (zh) * 2012-01-20 2012-07-11 北人机器人***(苏州)有限公司 一种基于激光传感的机器人轨迹生成方法及装置
CN103400416A (zh) * 2013-08-15 2013-11-20 东南大学 一种基于概率多层地形的城市环境机器人导航方法
CN103885443A (zh) * 2012-12-20 2014-06-25 联想(北京)有限公司 用于即时定位与地图构建单元的设备、***和方法
CN104536445A (zh) * 2014-12-19 2015-04-22 深圳先进技术研究院 移动导航方法和***
CN104634328A (zh) * 2013-11-14 2015-05-20 沈阳新松机器人自动化股份有限公司 空间测量机器人及其空间测量方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103884330B (zh) * 2012-12-21 2016-08-10 联想(北京)有限公司 信息处理方法、可移动电子设备、引导设备和服务器
CN103885444B (zh) * 2012-12-21 2017-05-24 联想(北京)有限公司 信息处理方法、可移动电子设备和决策控制设备
CN103412565B (zh) * 2013-05-17 2016-01-27 浙江中控研究院有限公司 一种具有全局位置快速估计能力的机器人定位方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060129276A1 (en) * 2004-12-14 2006-06-15 Honda Motor Co., Ltd. Autonomous mobile robot
CN102426455A (zh) * 2011-12-31 2012-04-25 浙江中控研究院有限公司 太阳能镜面清洗机器人***
CN102566574A (zh) * 2012-01-20 2012-07-11 北人机器人***(苏州)有限公司 一种基于激光传感的机器人轨迹生成方法及装置
CN103885443A (zh) * 2012-12-20 2014-06-25 联想(北京)有限公司 用于即时定位与地图构建单元的设备、***和方法
CN103400416A (zh) * 2013-08-15 2013-11-20 东南大学 一种基于概率多层地形的城市环境机器人导航方法
CN104634328A (zh) * 2013-11-14 2015-05-20 沈阳新松机器人自动化股份有限公司 空间测量机器人及其空间测量方法
CN104536445A (zh) * 2014-12-19 2015-04-22 深圳先进技术研究院 移动导航方法和***

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109144072A (zh) * 2018-09-30 2019-01-04 亿嘉和科技股份有限公司 一种基于三维激光的机器人智能避障方法
CN112141734A (zh) * 2020-09-30 2020-12-29 大连华锐重工集团股份有限公司 一种用于刮板取料机的取料控制***及取料方法
CN112141734B (zh) * 2020-09-30 2023-07-25 大连华锐重工集团股份有限公司 一种用于刮板取料机的取料控制***及取料方法

Also Published As

Publication number Publication date
HK1231578A1 (zh) 2017-12-22
CN106325268A (zh) 2017-01-11
TW201701091A (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
WO2017000784A1 (zh) 一种移动控制装置及移动控制方法
CN108073167A (zh) 一种基于深度相机与激光雷达的定位与导航方法
KR100561855B1 (ko) 로봇용 로컬라이제이션 시스템
JP7223732B2 (ja) 自動装置ペアリングのためのシステム及び方法
US8396254B1 (en) Methods and systems for estimating a location of a robot
CN105823478A (zh) 一种自主避障导航信息共享和使用方法
CN111033561A (zh) 用于利用语义信息来导航机器人设备的***和方法
CN107992035A (zh) 一种基于室内全局定位的多移动机器人编队控制方法
De Silva et al. Development of a relative localization scheme for ground-aerial multi-robot systems
WO2018228254A1 (zh) 一种移动电子设备以及该移动电子设备中的方法
JP2012137909A (ja) 移動体遠隔操縦システムおよびそのための制御プログラム
CN106965179A (zh) 一种工业机器人的视觉定位***及方法
CN112236733A (zh) 一种将移动机器人引导到坞站的计算机化***及其使用方法
JP4675822B2 (ja) 無線通信領域測定システム、方法およびプログラム
EP3737537A1 (en) Systems, devices, articles, and methods for calibration of rangefinders and robots
KR101094465B1 (ko) 다중 이동체의 동시 조작 방법 및 장치 및 그를 수행하는 컴퓨터 판독가능 프로그램을 저장한 기록매체
CN111465908A (zh) 一种分段式自主充电对接方法及移动设备、充电站
US20170090477A1 (en) Indoor positioning system training
CN109029423A (zh) 变电站室内移动机器人导航定位***及其导航定位方法
JP2012173051A (ja) 電波計測システム
CN109521399B (zh) 一种定位控制器的室内定位装置及方法
JP2016191735A (ja) 地図作成装置、自律走行体、自律走行体システム、携帯端末、地図作成方法、地図作成プログラム及びコンピュータ読み取り可能な記録媒体
CN111060921A (zh) 一种房屋信息采集终端及***
CN108507580A (zh) 一种移动机器人平台自定位***及自定位方法
WO2018141285A1 (en) Robot-assisted learning for wireless coverage and interference maps

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817148

Country of ref document: EP

Kind code of ref document: A1