WO2017000700A1 - 一种多荧光通道同步显微成像方法及装置 - Google Patents

一种多荧光通道同步显微成像方法及装置 Download PDF

Info

Publication number
WO2017000700A1
WO2017000700A1 PCT/CN2016/082767 CN2016082767W WO2017000700A1 WO 2017000700 A1 WO2017000700 A1 WO 2017000700A1 CN 2016082767 W CN2016082767 W CN 2016082767W WO 2017000700 A1 WO2017000700 A1 WO 2017000700A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation light
light source
fluorescence
monochromatic
fluorescent excitation
Prior art date
Application number
PCT/CN2016/082767
Other languages
English (en)
French (fr)
Inventor
罗浦文
夏浩涵
Original Assignee
上海睿钰生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海睿钰生物科技有限公司 filed Critical 上海睿钰生物科技有限公司
Publication of WO2017000700A1 publication Critical patent/WO2017000700A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/16Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the invention relates to the field of fluorescence microscopic imaging technology, and more particularly to a multi-fluorescence channel synchronous microscopic imaging method and device.
  • a conventional fluorescence microscopic imaging apparatus comprising: a monochromatic fluorescence excitation light source 1 and a dichroic phase mirror 2 disposed at an angle of 45 degrees to the illumination direction of the monochromatic fluorescence excitation light source 1
  • the monochromatic fluorescent excitation light source 1 emits excitation light, is reflected by the dichroic mirror 2 to the objective lens 3, and then irradiated onto the sample plate to be tested of the sample placement table 4, and the particles in the sample plate to be tested are excited to emit fluorescence, and pass through the second After the hue mirror 2 and the emission filter 5, the camera 6 is imaged.
  • the existing fluorescence microscopic imaging device can only realize the detection of one fluorescent channel at a time.
  • the detection of multiple fluorescent channels is required, only after one fluorescent channel detection is completed, switching to another fluorescent channel for detection, and then more The detection results of the fluorescent channels were integrated.
  • Many fluorescent dyes today have rapid quenching properties.
  • the quenching effect of fluorescence is difficult to measure due to the difference in the time during which the sample is repeatedly irradiated or irradiated. Therefore, if the multi-fluorescence channel synchronization detection can be realized during the detection of the multi-fluorescence channel, the influence of the fluorescence quenching property due to the step detection can be solved.
  • the present invention provides a multi-fluorescence channel synchronous microscopic imaging method and device, which realizes simultaneous microscopic imaging of multiple fluorescent channels, avoids the influence of fluorescence quenching caused by step detection, and is convenient for experiments; Moreover, the monochromatic fluorescent excitation light entering the objective lens is reduced, so that the acquired fluorescent image is more accurate; in addition, the device has a simple structure and low cost.
  • a multi-fluorescence channel synchronous microscopic imaging method after the sample plate to be tested is placed, includes:
  • a combination of a plurality of monochromatic fluorescent excitation light sources of different colors simultaneously illuminated in a plurality of monochromatic fluorescence excitation light sources is a target light source, wherein each monochromatic fluorescent excitation light source emits a monochromatic fluorescent excitation light a predetermined detection area that is injected into the sample plate to be tested;
  • the detection area is enlarged to a preset multiple
  • the method further includes:
  • the monochromatic fluorescent excitation light emitted by each of the monochromatic fluorescent excitation light sources in the target light source is condensed.
  • the present invention also provides a multi-fluorescence channel synchronous microscopic imaging device, comprising:
  • a light source device a sample placement table, an objective lens, a multi-band filter, and an image acquisition device;
  • the light source device includes: a plurality of monochromatic fluorescent excitation light sources and a control system electrically connected to the plurality of monochromatic fluorescent excitation light sources, wherein the plurality of monochromatic fluorescent excitation light sources surround the objective lens and the image acquisition device Forming an imaging optical path in which the central axis is disposed, and the monochromatic fluorescent excitation light emitted by each of the monochromatic fluorescent excitation light sources intersects the central axis of the imaging optical path at a preset position of the sample placement stage, and the control system is in accordance with experimental requirements.
  • the sample placement stage is disposed at a intersection of the monochromatic fluorescent excitation light emitted by the plurality of monochromatic fluorescent excitation light sources for placing the sample plate to be tested, and the preset detection area of the sample plate to be tested is set in the The preset position of the sample placement table;
  • the objective lens is disposed on a side of the sample placing table facing away from the light source device;
  • the multi-band filter is disposed on a side of the objective lens facing away from the sample placing table;
  • the image acquisition device is disposed on a side of the multi-band filter facing away from the objective lens.
  • the light source device further includes:
  • a bright field light source the full-band white light emitted by the bright field light source is directed toward the sample placement stage and coincides with an axis of the imaging optical path.
  • the monochromatic fluorescent excitation source is a monochromatic LED fluorescent excitation source.
  • the light source device further includes:
  • an excitation filter disposed between the monochromatic LED fluorescence excitation light source and the sample placement stage disposed in an illumination direction of the monochromatic LED fluorescence excitation light source.
  • the monochromatic fluorescent excitation light source comprises:
  • an excitation filter disposed in an irradiation direction of the white light excitation light source and disposed between the white excitation light source and the sample placement stage.
  • the light source device further includes:
  • a concentrating module disposed in an irradiation direction of the monochromatic fluorescent excitation light source and disposed between the monochromatic fluorescent excitation light source and the sample placing stage.
  • the concentrating module is a concentrating lens group composed of a condensing lens or a plurality of lenses.
  • the image acquisition device is an eyepiece or a camera.
  • the technical solution provided by the present invention has at least the following advantages:
  • the invention provides a multi-fluorescence channel synchronous microscopic imaging method and device, comprising: simultaneously lighting a combination of a plurality of monochromatic fluorescent excitation light sources of different colors in a plurality of monochromatic fluorescent excitation light sources as a target light source according to an experimental requirement, wherein, the monochromatic fluorescent excitation light emitted by each of the monochromatic fluorescent excitation light sources is obliquely incident into a predetermined detection area of the sample plate to be tested; and the collection side of the sample plate to be tested faces away from the target light source Fluctuating the particles in the predetermined detection area by the illumination of the multi-color fluorescent excitation light emitted by the target light source, and amplifying the preset detection area to a preset multiple; for the preset detection area The fluorescence excited by the particles is subjected to multi-band filter processing; and the fluorescence image of the preset detection area is acquired.
  • the technical solution provided by the present invention is in a plurality of monochromes according to experimental requirements.
  • a plurality of monochromatic fluorescent excitation light sources of different colors are simultaneously illuminated in the fluorescence excitation light source, and the preset detection regions of the sample plate to be tested are synchronously excited by the monochromatic fluorescence excitation light sources of different colors, and are subjected to fluorescence collection and preset detection regions.
  • the fluorescence is subjected to multi-band filtering to remove stray light, and finally a fluorescence image of the preset detection area is obtained.
  • the monochromatic fluorescent excitation light emitted by all the monochromatic fluorescent excitation light sources is obliquely incident on the preset detection area of the sample plate to be tested, thereby greatly reducing the monochromatic fluorescent excitation light entering the objective lens, so that Subsequent acquired fluorescence images are more accurate.
  • the multi-fluorescence channel synchronous microscopic imaging device provided by the present invention does not require a two-color phase mirror, the structure of the device is simpler and cheaper, and the loss of light when passing through the dichroic mirror is avoided, so that the final The acquired fluorescence image is clearer.
  • FIG. 1 is a schematic structural view of a conventional fluorescence microscopic imaging device
  • FIG. 2 is a flowchart of a method for synchronous microscopic imaging of multiple fluorescent channels according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a multi-fluorescence channel synchronous microscopic imaging apparatus according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of another multi-fluorescence channel synchronous microscopic imaging apparatus according to an embodiment of the present application.
  • the existing fluorescence microscopic imaging device can only realize the detection of one fluorescent channel at a time.
  • only one fluorescent channel can be switched to another fluorescent channel after the detection of one fluorescent channel is completed. The detection is performed, and then the detection results of the plurality of fluorescent channels are integrated.
  • Many fluorescent dyes today have rapid quenching properties.
  • the quenching effect of fluorescence is difficult to measure due to the difference in the time during which the sample is repeatedly irradiated or irradiated. Therefore, if the multi-fluorescence channel synchronization detection can be realized during the detection of the multi-fluorescence channel, the influence of the fluorescence quenching property due to the step detection can be solved.
  • the embodiments of the present application provide a multi-fluorescence channel synchronous microscopic imaging method and device, which realizes synchronous microscopic imaging of multiple fluorescent channels, avoids the influence of fluorescence quenching caused by step detection, and is convenient for experiments. Moreover, the monochromatic fluorescent excitation light entering the objective lens is reduced, so that the acquired fluorescent image is more accurate; in addition, the device has a simple structure and low cost.
  • FIG. 2 a flowchart of a multi-fluorescence channel synchronous microscopic imaging method provided by an embodiment of the present application, wherein after the sample plate to be tested is placed, the method includes:
  • the side of the sample plate to be tested is away from the target light source, and the fluorescence of the particles in the preset detection area is excited by the multi-color fluorescent excitation light emitted by the target light source, and the preset detection area is enlarged to a preset multiple;
  • the plurality of monochromatic fluorescent excitation light sources provided by the embodiments of the present application include a monochromatic fluorescent excitation light source with different colors (or bands).
  • the colors of all the monochromatic fluorescent excitation sources provided by the embodiments of the present application are different; or all the monochromatic fluorescent excitation sources are divided into groups, and the colors of the monochromatic fluorescent excitation sources in each group are the same, and between the groups
  • the color is different to increase the brightness of the fluorescent excitation light of each color, and the present application is not specifically limited.
  • a plurality of monochromatic fluorescent excitation light sources of different colors are simultaneously illuminated in a plurality of monochromatic fluorescent excitation light sources according to an experimental requirement, and the preset detection of the sample plate to be tested is performed by a monochromatic fluorescent excitation light source of different colors.
  • the area is synchronously excited and amplified by fluorescence collection and preset detection area After that, the fluorescence is subjected to multi-band filter processing to remove stray light, and finally a fluorescence image of the preset detection area is obtained.
  • the simultaneous microscopic imaging of the multi-fluorescence channel is realized, and the influence of fluorescence quenching caused by the step detection is avoided, which is convenient for the experiment.
  • the monochromatic fluorescence excitation light emitted by all the monochromatic fluorescence excitation sources is obliquely incident on the preset detection area of the sample plate to be tested, which greatly reduces the monochromatic fluorescence excitation light entering the objective lens, so that the subsequent acquired fluorescence image is more accurate.
  • the embodiment of the present application provides a technical solution that does not require a dichroic mirror to perform splitting, thereby making the corresponding device structure simpler and cheaper, and avoiding loss of light when passing through the dichroic mirror, the finally obtained is obtained. Fluorescent images are sharper.
  • the fluorescence color excited by each particle can be analyzed.
  • the wavelength band between the monochromatic fluorescent excitation light sources of different colors in the target light source is non-overlapping, therefore, all the fluorescent bands and any one of the monochromatic fluorescent excitation lights are filtered in the subsequent filtering of the fluorescence excited by the particles.
  • the band is also non-overlapping, avoiding the influence of the monochromatic fluorescence excitation light of the same band on the fluorescence filter, that is, the band transmitted by the multi-band filter and the band of the monochromatic fluorescence excitation source are not intersected. Stacked.
  • the purple excitation source (band range 385nm ⁇ 10, including the endpoint value), the blue excitation source (band range 480nm ⁇ 10, including the endpoint value), and the green excitation source (band range) are illuminated according to the experimental requirements.
  • 550 nm ⁇ 10, including the endpoint value is the target light source, that is, the bands between the monochromatic fluorescent excitation light sources of different colors in the target light source do not overlap;
  • the target light source emits purple excitation light, blue excitation light, and green excitation light, respectively.
  • the emitted fluorescence is blue (the wavelength band is 460 nm); if the particles in the predetermined detection area are preset Only excited by green excitation light, the emitted fluorescence is red (band is greater than 600nm); if the particles in the preset detection area are only excited by blue excitation light, the emitted fluorescence is green (band 520nm); If the particles in the preset detection area are excited by the blue excitation light and the purple excitation light, the emitted fluorescence is cyan; if the particles in the preset detection area are excited by the purple excitation light and the green excitation light, the emitted fluorescence It is purple; if the particles in the preset detection area are excited by blue excitation light and green excitation light, the emitted fluorescence It is purple; if the particles in the preset detection area are excited by blue excitation light and green excitation light, the emitted fluor
  • the multi-band filter is used to transmit blue light with a wavelength range of 460 nm ⁇ 10 (including the endpoint value), green light of 520 nm ⁇ 10 (including the endpoint value), and not less than A three-band filter of red light in the 600 nm band.
  • the multi-band filter can not only transmit blue fluorescence, green fluorescence and red fluorescence excited by the particles; but also can transmit blue fluorescence, green fluorescence and red fluorescence when the particles are excited by multi-color excitation light.
  • Fluorescence of any combination for example, excited by blue excitation light and purple excitation light, emits cyan fluorescence combined with blue fluorescence and green fluorescence, and multi-band filter transmits blue fluorescence and green fluorescence through cyan fluorescence.
  • the combination Therefore, the wavelength band of the multi-band filter and the monochromatic fluorescence excitation source of different colors in the target light source are set to be non-overlapping, thereby filtering the fluorescence emitted by the particles to remove stray light.
  • multi-fluorescence channel simultaneous microscopic imaging such as two-channel synchronous microscopic imaging and three-channel synchronous microscopic imaging is realized by simultaneously illuminating a plurality of monochromatic fluorescent excitation light sources of different colors.
  • the brightness of the multi-color fluorescent excitation light emitted by the target light source is increased, and the multi-color fluorescence emitted by the target light source after the target light source is illuminated Before the excitation light is injected into the sample plate to be tested, it also includes:
  • the monochromatic fluorescent excitation light emitted by each of the monochromatic fluorescent excitation sources in the target light source is condensed.
  • FIG. 3 a schematic structural diagram of a multi-fluorescence channel synchronous microscopic imaging apparatus provided by an embodiment of the present application, wherein the multi-fluorescence channel synchronous microscopic imaging apparatus includes:
  • a light source device 100 a sample placement table 200, an objective lens 300, a multi-band filter 400, and an image acquisition device 500;
  • the light source device 100 includes a plurality of monochromatic fluorescent excitation light sources 101 and a control system (not shown) electrically connected to the plurality of monochromatic fluorescent excitation light sources 101, wherein the plurality of monochromatic fluorescent excitation light sources 101 surround the objective lens 300 and image acquisition
  • the imaging optical path formed by the device 500 is disposed in the axis X, and the monochromatic fluorescent excitation light emitted by each of the monochromatic fluorescent excitation light sources 101 intersects the central axis of the imaging optical path at a preset position of the sample placement table 200, and the control system is in accordance with experimental requirements.
  • the sample placing table 200 is disposed on a monochromatic fluorescent excitation emitted by a plurality of monochromatic fluorescent excitation light sources 101 a light intersection position for placing the sample plate to be tested, and a preset detection area of the sample plate to be tested is set at a preset position of the sample placement table 200;
  • the objective lens 300 is disposed on a side of the sample placing table 200 facing away from the light source device 100 for collecting fluorescence excited by the irradiation of the multi-color fluorescent excitation light emitted by the target light source in the preset detection area, and amplifying the preset detection area to Preset multiple;
  • the multi-band filter 400 is disposed on the side of the objective lens 300 facing away from the sample placing table 200 for performing multi-band filtering on the fluorescence excited by the particles in the preset detection area;
  • the image acquisition device 500 is disposed on the side of the multi-band filter 400 facing away from the objective lens 300 for acquiring a fluorescent image of the preset detection area.
  • the image acquisition device may be an eyepiece, a camera, or the like, which is not specifically limited herein.
  • the multi-fluorescence channel synchronous microscopic imaging device provided by the embodiment of the present application further includes:
  • the bright field light source 102 the full-band white light emitted by the bright field light source 102 faces the sample placement stage 200 and coincides with the axis X of the imaging optical path.
  • the monochromatic fluorescent excitation light source provided by the embodiment of the present application may be a single-color LED (Light Emitting Diode) fluorescent excitation light source.
  • the light source device provided by the embodiment of the present application further includes: being disposed in the illumination direction of the monochromatic LED fluorescent excitation source, and disposed on An excitation filter between the monochromatic LED fluorescence excitation source and the sample placement stage.
  • the light outside the wavelength band of the monochromatic fluorescent excitation light is absorbed by the excitation filter, and only the monochromatic fluorescent excitation light is used, thereby improving the singularity of the monochromatic fluorescent excitation light emitted by the monochromatic LED fluorescent excitation light source.
  • the monochromatic fluorescent excitation light source may further include: a white light excitation light source;
  • the white excitation light source emits full-band white light, and then the excitation filter absorbs light of an unnecessary wavelength band, and the monochromatic fluorescence of the predetermined wavelength band excites the light.
  • the white light excitation light source provided by the embodiment of the present application may be a mercury lamp, a xenon lamp, or the like, which is not specifically limited herein.
  • the monochromatic fluorescent excitation light source is preferably a monochromatic LED fluorescent excitation light source.
  • the control system provided by the embodiment of the present application may be a single-chip microcomputer or the like, and the present application does not specifically limit the present application.
  • a schematic diagram of a multi-fluorescence channel synchronous microscopic imaging device wherein the light source device further comprises:
  • the concentrating module 600 is disposed between the monochromatic fluorescent excitation light source 101 and the sample placing table 200 in the irradiation direction of the monochromatic fluorescence excitation light source 101.
  • the concentrating module may be a single concentrating lens or a concentrating lens group composed of a plurality of lenses, which is not specifically limited in this embodiment.
  • the fluorescence microscopic imaging device provided by the embodiment of the present application can fix all the structures thereof through a fixing frame.
  • Embodiments of the present application provide a multi-fluorescence channel synchronous microscopic imaging method and apparatus, including: aiming at simultaneously combining a plurality of monochromatic fluorescent excitation light sources of different colors in a plurality of monochromatic fluorescent excitation light sources according to experimental requirements a light source, wherein the monochromatic fluorescent excitation light emitted by each of the monochromatic fluorescent excitation light sources is obliquely incident on a predetermined detection area of the sample plate to be tested; and the sample plate to be tested faces away from the target light source, Collecting fluorescence of the particles in the preset detection area excited by the multi-color fluorescent excitation light emitted by the target light source, and amplifying the preset detection area to a preset multiple; and the preset detection area The fluorescence excited by the particles is subjected to multi-band filter processing; a fluorescence image of the preset detection area is acquired.
  • the technical solution provided by the embodiments of the present application simultaneously illuminates a plurality of monochromatic fluorescent excitation light sources of different colors in a plurality of monochromatic fluorescence excitation light sources according to experimental requirements, and is excited by monochromatic fluorescence of different colors.
  • the light source is synchronously excited by the preset detection area of the sample plate to be tested, and after the fluorescence collection and the preset detection area are amplified, the multi-band filtering process is performed on the fluorescence to remove the stray light, and finally the fluorescence image of the preset detection area is obtained. .
  • the simultaneous microscopic imaging of the multi-fluorescence channel is realized, and the influence of fluorescence quenching caused by the step detection is avoided, which is convenient for the experiment.
  • the technical solution provided by the embodiment of the present application is a single issued by all the monochromatic fluorescent excitation light sources.
  • the color fluorescence excitation light is obliquely incident on the preset detection area of the sample plate to be tested, which greatly reduces the monochromatic fluorescence excitation light entering the objective lens, so that the subsequently acquired fluorescence image is more accurate.
  • the dichroic phase mirror is not needed, so that the device structure is simpler and cheaper, and the loss of light when passing through the dichroic mirror is avoided. Make the final acquired fluorescence image clearer.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种多荧光通道同步显微成像方法和装置,通过根据实验要求在多个单色荧光激发光源(101)中同时点亮多个不同颜色的单色荧光激发光源(101),以通过不同颜色的单色荧光激发光源(101)对待测样品板的预设检测区域进行同步激发,并经过荧光收集和预设检测区域放大后,对荧光进行多波段滤光处理,以将杂散光去除,最终获取预设检测区域的荧光图像。实现了多荧光通道同步显微成像,避免了因分步检测而导致的荧光淬灭性的影响。所有单色荧光激发光源(101)所发出的单色荧光激发光均倾斜射入待测样品板的预设检测区域,大大减少了进入物镜的单色荧光激发光。由于该方案无需二色相镜,使得装置结构更加简单且成本低廉,避免了光损耗的情况。

Description

一种多荧光通道同步显微成像方法及装置
本申请要求于2015年07月01日提交中国专利局、申请号为201510376530.0、发明名称为“集成式荧光激发光源装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2015年07月28日提交中国专利局、申请号为201510452279.1、发明名称为“一种多荧光通道同步显微成像方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及荧光显微成像技术领域,更为具体的说,涉及一种多荧光通道同步显微成像方法及装置。
背景技术
参考图1所示,为现有的一种荧光显微成像装置,其包括:一单色荧光激发光源1、与单色荧光激发光源1的照射方向呈45度角设置的二色相镜2、物镜3、样品放置台4、发射滤光片5和相机6。其中,单色荧光激发光源1发出激发光,经过二色相镜2反射至物镜3后,照射至样品放置台4的待测样品板上,而待测样品板内颗粒受激发发出荧光,通过二色相镜2和发射滤光片5后,进入相机6成像。
现有的荧光显微成像装置一次只能实现一个荧光通道的检测,当需要多个荧光通道的检测时,只能在一个荧光通道检测完成后,切换至另一个荧光通道进行检测,而后对多个荧光通道的检测结果进行整合。现今很多荧光染料具有快速的淬灭性,在进行多个荧光通道分步检测时,由于样品被反复照射或照射的时间有差异,荧光的淬灭性影响很难测定。因此,若在多荧光通道的检测过程中,能够实现多荧光通道同步检测,即能解决因分步检测而导致的荧光淬灭性的影响。
发明内容
有鉴于此,本发明提供了一种多荧光通道同步显微成像方法和装置,实现了多荧光通道同步显微成像,避免了因分步检测而导致的荧光淬灭性的影响,便于实验;而且减少了进入物镜的单色荧光激发光,使得获取的荧光图像更加精确;此外,该装置结构简单且成本低。
为实现上述目的,本发明提供的技术方案如下:
一种多荧光通道同步显微成像方法,将待测样品板放置完毕后,包括:
根据实验要求在多个单色荧光激发光源中同时点亮多个不同颜色的单色荧光激发光源的组合为目标光源,其中,每个单色荧光激发光源所发出的单色荧光激发光均倾斜射入所述待测样品板的预设检测区域;
在所述待测样品板背离所述目标光源一侧,收集所述预设检测区域内的颗粒受所述目标光源发出的多色荧光激发光的照射而激发的荧光,并将所述预设检测区域放大至预设倍数;
对所述预设检测区域内的颗粒激发的荧光进行多波段滤光处理;
获取所述预设检测区域的荧光图像。
优选的,在点亮所述目标光源后,且在所述目标光源所发出的多色荧光激发光未射入所述待测样品板之前,还包括:
对所述目标光源中每个单色荧光激发光源所发出的单色荧光激发光进行聚光处理。
相应的,本发明还提供了一种多荧光通道同步显微成像装置,包括:
光源装置、样品放置台、物镜、多波段滤光片和图像获取装置;
所述光源装置包括:多个单色荧光激发光源和与所述多个单色荧光激发光源电连接的控制***,其中,所述多个单色荧光激发光源环绕所述物镜和图像获取装置所构成的成像光路中轴设置,且每个单色荧光激发光源所发出的单色荧光激发光与所述成像光路中轴相交于所述样品放置台的预设位置,所述控制***根据实验要求在多个单色荧光激发光源中同时点亮多个不同颜色的单色荧光激发光源的组合为目标光源;
所述样品放置台设置于所述多个单色荧光激发光源所发出的单色荧光激发光交汇位置,用于放置待测样品板,且所述待测样品板的预设检测区域设置于所述样品放置台的预设位置;
所述物镜设置于所述样品放置台背离所述光源装置一侧;
所述多波段滤光片设置于所述物镜背离所述样品放置台一侧;
所述图像获取装置设置于所述多波段滤光片背离所述物镜一侧。
优选的,所述光源装置还包括:
明场光源,所述明场光源所发出的全波段白光朝向所述样品放置台、且与所述成像光路中轴重合。
优选的,所述单色荧光激发光源为单色LED荧光激发光源。
优选的,所述光源装置还包括:
设置于所述单色LED荧光激发光源的照射方向上、且设置于所述单色LED荧光激发光源与所述样品放置台之间的激发滤光片。
优选的,所述单色荧光激发光源包括:
白光激发光源;
以及,设置于所述白光激发光源的照射方向上、且设置于所述白色激发光源与所述样品放置台之间的激发滤光片。
优选的,所述光源装置还包括:
设置于所述单色荧光激发光源的照射方向上、且设置于所述单色荧光激发光源与所述样品放置台之间的聚光模组。
优选的,所述聚光模组为聚光透镜或多个镜片组成的聚光镜片组。
优选的,所述图像获取装置为目镜或相机。
相较于现有技术,本发明提供的技术方案至少具有以下优点:
本发明提供了一种多荧光通道同步显微成像方法和装置,包括:根据实验要求在多个单色荧光激发光源中同时点亮多个不同颜色的单色荧光激发光源的组合为目标光源,其中,每个单色荧光激发光源所发出的单色荧光激发光均倾斜射入所述待测样品板的预设检测区域;在所述待测样品板背离所述目标光源一侧,收集所述预设检测区域内的颗粒受所述目标光源发出的多色荧光激发光的照射而激发的荧光,并将所述预设检测区域放大至预设倍数;对所述预设检测区域内的颗粒激发的荧光进行多波段滤光处理;获取所述预设检测区域的荧光图像。
由上述内容可知,本发明提供的技术方案,通过根据实验要求在多个单色 荧光激发光源中同时点亮多个不同颜色的单色荧光激发光源,以通过不同颜色的单色荧光激发光源对待测样品板的预设检测区域进行同步激发,并经过荧光收集和预设检测区域放大后,对荧光进行多波段滤光处理,以将杂散光去除,最终获取预设检测区域的荧光图像。由此实现了多荧光通道同步显微成像,避免了因分步检测而导致的荧光淬灭性的影响,便于实验。
另外,本发明提供的技术方案,所有单色荧光激发光源所发出的单色荧光激发光均倾斜射入待测样品板的预设检测区域,大大减少了进入物镜的单色荧光激发光,使得后续获取的荧光图像更加精确。此外,由于本发明提供的多荧光通道同步显微成像装置中,无需二色相镜,使得该装置结构更加简单且成本低廉,并且避免了光在透过二色相镜时出现损耗的情况,使得最终获取的荧光图像更加清晰。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有的一种荧光显微成像装置的结构示意图;
图2为本申请实施例提供的一种多荧光通道同步显微成像方法的流程图;
图3为本申请实施例提供的一种多荧光通道同步显微成像装置的结构示意图;
图4为本申请实施例提供的另一种多荧光通道同步显微成像装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
正如背景技术所述,现有的荧光显微成像装置一次只能实现一个荧光通道的检测,当需要多个荧光通道的检测时,只能在一个荧光通道检测完成后,切换至另一个荧光通道进行检测,而后对多个荧光通道的检测结果进行整合。现今很多荧光染料具有快速的淬灭性,在进行多个荧光通道分步检测时,由于样品被反复照射或照射的时间有差异,荧光的淬灭性影响很难测定。因此,若在多荧光通道的检测过程中,能够实现多荧光通道同步检测,即能解决因分步检测而导致的荧光淬灭性的影响。
基于此,本申请实施例提供了一种多荧光通道同步显微成像方法和装置,实现了多荧光通道同步显微成像,避免了因分步检测而导致的荧光淬灭性的影响,便于实验;而且减少了进入物镜的单色荧光激发光,使得获取的荧光图像更加精确;此外,该装置结构简单且成本低。
具体的,参考图2所示,为本申请实施例提供的一种多荧光通道同步显微成像方法的流程图,其中,将待测样品板放置完毕后,包括:
S1、根据实验要求在多个单色荧光激发光源中同时点亮多个不同颜色的单色荧光激发光源的组合为目标光源,其中,每个单色荧光激发光源所发出的单色荧光激发光均倾斜射入待测样品板的预设检测区域;
S2、在待测样品板背离目标光源一侧,收集预设检测区域内的颗粒受目标光源发出的多色荧光激发光的照射而激发的荧光,并将预设检测区域放大至预设倍数;
S3、对预设检测区域内的颗粒激发的荧光进行多波段滤光处理;
S4、获取预设检测区域的荧光图像。
其中,本申请实施例提供的多个单色荧光激发光源中,包括有不同颜色(或波段)的单色荧光激发光源。其中,本申请实施例提供的所有单色荧光激发光源的颜色均不相同;或者,所有单色荧光激发光源分为多组,每组中单色荧光激发光源的颜色相同,且各组之间的颜色不同,以此提高每个颜色的荧光激发光的亮度,对此本申请不作具体限制。
由上述内容可知,通过根据实验要求在多个单色荧光激发光源中同时点亮多个不同颜色的单色荧光激发光源,以通过不同颜色的单色荧光激发光源对待测样品板的预设检测区域进行同步激发,并经过荧光收集和预设检测区域放大 后,对荧光进行多波段滤光处理,以将杂散光去除,最终获取预设检测区域的荧光图像。由此实现了多荧光通道同步显微成像,避免了因分步检测而导致的荧光淬灭性的影响,便于实验。
另外,所有单色荧光激发光源所发出的单色荧光激发光均倾斜射入待测样品板的预设检测区域,大大减少了进入物镜的单色荧光激发光,使得后续获取的荧光图像更加精确。此外,由于本申请实施例提供技术方案中无需二色相镜进行分光,进而使得相应的装置结构更加简单且成本低廉,并且避免了光在透过二色相镜时出现损耗的情况,使得最终获取的荧光图像更加清晰。
需要说明的是,对于本申请实施例提供技术方案最终获取的荧光图像的分析,可以通过对每个颗粒激发的荧光颜色进行分析。其中,目标光源中不同颜色的单色荧光激发光源之间的波段是无交叠的,因此,在后续对颗粒激发的荧光进行滤光时,所有荧光的波段与任意一单色荧光激发光的波段同样是无交叠的,避免相同波段的单色荧光激发光对荧光滤光时造成影响,亦即,采用的多波段滤光片透过的波段与单色荧光激发光源的波段是无交叠的。
举例说明,假设根据实验要求同时点亮紫色激发光源(波段范围为385nm±10,包括端点值)、蓝色激发光源(波段范围为480nm±10,包括端点值)和绿色激发光源(波段范围为550nm±10,包括端点值)为目标光源时,即,目标光源中不同颜色的单色荧光激发光源之间的波段无交叠;
目标光源相应发出紫色激发光、蓝色激发光和绿色激发光。其中,当目标光源照射至预设检测区域时,若预设检测区域内的颗粒仅受紫色激发光的激发,则发出的荧光为蓝色(波段为460nm);若预设检测区域内的颗粒仅受绿色激发光的激发,则发出的荧光为红色(波段为大于600nm);若预设检测区域内的颗粒仅受蓝色激发光的激发,则发出的荧光为绿色(波段为520nm);若预设检测区域内的颗粒受蓝色激发光和紫色激发光的激发,则发出的荧光为青色;若预设检测区域内的颗粒受紫色激发光和绿色激发光的激发,则发出的荧光为紫色;若预设检测区域内的颗粒受蓝色激发光和绿色激发光的激发,则发出的荧光为黄色;若预设检测区域内的颗粒受紫色激发光、绿色激发光和蓝色激发光的激发,则发出的荧光为白色。由于颗粒受不同颜色的荧光激发光的激发,而发出的颜色不同,因此可以通过此原理对获取的荧光图像进行分析。
与此同时,采用多波段滤光片透过波段为能够透过波段范围为460nm±10的波段(包括端点值)的蓝色光、520nm±10的波段(包括端点值)的绿色光和不小于600nm的波段的红色光的三波段滤光片。进而,多波段滤光片不仅能够透过颗粒激发出的蓝色荧光、绿色荧光和红色荧光;而且当颗粒受多色激发光激发时,同样能够透过蓝色荧光、绿色荧光和红色荧光中任意组合的荧光,例如,受蓝色激发光和紫色激发光激发,则发出蓝色荧光和绿色荧光组合的青色荧光,多波段滤光片透过青色荧光即为透过蓝色荧光和绿色荧光的组合。因此,将多波段滤光片的透过波段与目标光源中不同颜色的单色荧光激发光源的波段设置为无交叠,以此对颗粒发出的荧光进行滤光处理,以清除杂散光。
基于此,通过同时点亮多个不同颜色的单色荧光激发光源,以实现二通道同步显微成像、三通道同步显微成像等多荧光通道同步显微成像。
进一步的,为了提高单色荧光激发光源发出的荧光激发光的亮度,以提高目标光源所发出的多色荧光激发光的亮度,在点亮目标光源后,且在目标光源所发出的多色荧光激发光未射入待测样品板之前,还包括:
对目标光源中每个单色荧光激发光源所发出的单色荧光激发光进行聚光处理。
相应的,参考图3所述,为本申请实施例提供的一种多荧光通道同步显微成像装置的结构示意图,其中,多荧光通道同步显微成像装置包括:
光源装置100、样品放置台200、物镜300、多波段滤光片400和图像获取装置500;
光源装置100包括:多个单色荧光激发光源101和与多个单色荧光激发光源101电连接的控制***(未画出),其中,多个单色荧光激发光源101环绕物镜300和图像获取装置500所构成的成像光路中轴X设置,且每个单色荧光激发光源101所发出的单色荧光激发光与成像光路中轴相交于样品放置台200的预设位置,控制***根据实验要求在多个单色荧光激发光源101中同时点亮多个不同颜色的单色荧光激发光源的组合为目标光源;
样品放置台200设置于多个单色荧光激发光源101所发出的单色荧光激发 光交汇位置,用于放置待测样品板,且待测样品板的预设检测区域设置于样品放置台200的预设位置;
物镜300设置于样品放置台200背离光源装置100一侧,用于收集预设检测区域内的颗粒受目标光源发出的多色荧光激发光的照射而激发的荧光,并将预设检测区域放大至预设倍数;
多波段滤光片400设置于物镜300背离样品放置台200一侧,用于对预设检测区域内的颗粒激发的荧光进行多波段滤光处理;
图像获取装置500设置于多波段滤光片400背离物镜300一侧,用于获取预设检测区域的荧光图像,其中,图像获取装置可以为目镜、相机等,对此本申请不作具体限制。
进一步的,参考图3所示,本申请实施例提供的多荧光通道同步显微成像装置,其光源装置100还包括:
明场光源102,明场光源102所发出的全波段白光朝向样品放置台200、且与成像光路中轴X重合。
具体的,本申请实施例提供的单色荧光激发光源可以为单色LED(Light Emitting Diode,发光二极管)荧光激发光源。进一步的,为了提高单色LED荧光激发光源所发出的单色荧光激发光的单一性,本申请实施例提供的光源装置还包括:设置于单色LED荧光激发光源的照射方向上、且设置于单色LED荧光激发光源与样品放置台之间的激发滤光片。其中,通过激发滤光片将除单色荧光激发光的波段外的光吸收,仅仅通过单色荧光激发光,进而提高单色LED荧光激发光源所发出的单色荧光激发光的单一性。
或者,
在本申请实施例中,单色荧光激发光源还可以包括:白光激发光源;
以及,设置于白光激发光源的照射方向上、且设置于白色激发光源与样品放置台之间的激发滤光片。其中,白色激发光源发出全波段的白光,而后通过激发滤光片吸收不需要的波段的光,而通过预设波段的单色荧光激发光。需要说明的是,本申请实施例提供的白光激发光源可以为汞灯、氙灯等,对此本申请不作具体限制。
需要说明的是,由于LED具有响应时间短、耗能低、成本低、使用寿命 长、体积小等诸多优点,因此,在本申请实施例中单色荧光激发光源优选为单色LED荧光激发光源。此外,本申请实施例提供的控制***可以为单片机等,对此本申请不作具体限制。
进一步的,为了提高单色荧光激发光源发出的单色荧光激发光的亮度,即,提高目标光源所发出的多色荧光激发光的亮度,参考图4所示,为本申请实施例提供的另一种多荧光通道同步显微成像装置的结构示意图,其中,光源装置还包括:
设置于单色荧光激发光源101的照射方向上、且设置于单色荧光激发光源101与样品放置台200之间的聚光模组600。其中,聚光模组可以为单个的聚光透镜,或者为多个镜片组成的聚光镜片组,对此本申请实施例不作具体限制。
为了将光源装置、样品放置台、物镜、多波段滤光片、图像获取装置等结构固定,本申请实施例提供的荧光显微成像装置可以通过一固定架将其所有结构固定。
本申请实施例提供了一种多荧光通道同步显微成像方法和装置,包括:根据实验要求在多个单色荧光激发光源中同时点亮多个不同颜色的单色荧光激发光源的组合为目标光源,其中,每个单色荧光激发光源所发出的单色荧光激发光均倾斜射入所述待测样品板的预设检测区域;在所述待测样品板背离所述目标光源一侧,收集所述预设检测区域内的颗粒受所述目标光源发出的多色荧光激发光的照射而激发的荧光,并将所述预设检测区域放大至预设倍数;对所述预设检测区域内的颗粒激发的荧光进行多波段滤光处理;获取所述预设检测区域的荧光图像。
由上述内容可知,本申请实施例提供的技术方案,通过根据实验要求在多个单色荧光激发光源中同时点亮多个不同颜色的单色荧光激发光源,以通过不同颜色的单色荧光激发光源对待测样品板的预设检测区域进行同步激发,并经过荧光收集和预设检测区域放大后,对荧光进行多波段滤光处理,以将杂散光去除,最终获取预设检测区域的荧光图像。由此实现了多荧光通道同步显微成像,避免了因分步检测而导致的荧光淬灭性的影响,便于实验。
另外,本申请实施例提供的技术方案,所有单色荧光激发光源所发出的单 色荧光激发光均倾斜射入待测样品板的预设检测区域,大大减少了进入物镜的单色荧光激发光,使得后续获取的荧光图像更加精确。此外,由于本申请实施例提供的多荧光通道同步显微成像装置中,无需二色相镜,使得该装置结构更加简单且成本低廉,并且避免了光在透过二色相镜时出现损耗的情况,使得最终获取的荧光图像更加清晰。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种多荧光通道同步显微成像方法,其特征在于,将待测样品板放置完毕后,包括:
    根据实验要求在多个单色荧光激发光源中同时点亮多个不同颜色的单色荧光激发光源的组合为目标光源,其中,每个单色荧光激发光源所发出的单色荧光激发光均倾斜射入所述待测样品板的预设检测区域;
    在所述待测样品板背离所述目标光源一侧,收集所述预设检测区域内的颗粒受所述目标光源发出的多色荧光激发光的照射而激发的荧光,并将所述预设检测区域放大至预设倍数;
    对所述预设检测区域内的颗粒激发的荧光进行多波段滤光处理;
    获取所述预设检测区域的荧光图像。
  2. 根据权利要求1所述的多荧光通道同步显微成像方法,其特征在于,在点亮所述目标光源后,且在所述目标光源所发出的多色荧光激发光未射入所述待测样品板之前,还包括:
    对所述目标光源中每个单色荧光激发光源所发出的单色荧光激发光进行聚光处理。
  3. 一种多荧光通道同步显微成像装置,其特征在于,包括:
    光源装置、样品放置台、物镜、多波段滤光片和图像获取装置;
    所述光源装置包括:多个单色荧光激发光源和与所述多个单色荧光激发光源电连接的控制***,其中,所述多个单色荧光激发光源环绕所述物镜和图像获取装置所构成的成像光路中轴设置,且每个单色荧光激发光源所发出的单色荧光激发光与所述成像光路中轴相交于所述样品放置台的预设位置,所述控制***根据实验要求在多个单色荧光激发光源中同时点亮多个不同颜色的单色荧光激发光源的组合为目标光源;
    所述样品放置台设置于所述多个单色荧光激发光源所发出的单色荧光激发光交汇位置,用于放置待测样品板,且所述待测样品板的预设检测区域设置于所述样品放置台的预设位置;
    所述物镜设置于所述样品放置台背离所述光源装置一侧;
    所述多波段滤光片设置于所述物镜背离所述样品放置台一侧;
    所述图像获取装置设置于所述多波段滤光片背离所述物镜一侧。
  4. 根据权利要求3所述的多荧光通道同步显微成像装置,其特征在于,所述光源装置还包括:
    明场光源,所述明场光源所发出的全波段白光朝向所述样品放置台、且与所述成像光路中轴重合。
  5. 根据权利要求3所述的多荧光通道同步显微成像装置,其特征在于,所述单色荧光激发光源为单色LED荧光激发光源。
  6. 根据权利要求5所述的多荧光通道同步显微成像装置,其特征在于,所述光源装置还包括:
    设置于所述单色LED荧光激发光源的照射方向上、且设置于所述单色LED荧光激发光源与所述样品放置台之间的激发滤光片。
  7. 根据权利要求3多荧光通道同步显微成像装置,其特征在于,所述单色荧光激发光源包括:
    白光激发光源;
    以及,设置于所述白光激发光源的照射方向上、且设置于所述白色激发光源与所述样品放置台之间的激发滤光片。
  8. 根据权利要求3所述的多荧光通道同步显微成像装置,其特征在于,所述光源装置还包括:
    设置于所述单色荧光激发光源的照射方向上、且设置于所述单色荧光激发光源与所述样品放置台之间的聚光模组。
  9. 根据权利要求8所述的多荧光通道同步显微成像装置,其特征在于,所述聚光模组为聚光透镜或多个镜片组成的聚光镜片组。
  10. 根据权利要求3所述的多荧光通道同步显微成像装置,其特征在于,所述图像获取装置为目镜或相机。
PCT/CN2016/082767 2015-07-01 2016-05-20 一种多荧光通道同步显微成像方法及装置 WO2017000700A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201510376530 2015-07-01
CN201510376530.0 2015-07-01
CN201510452279.1 2015-07-28
CN201510452279.1A CN105158220B (zh) 2015-07-01 2015-07-28 一种多荧光通道同步显微成像方法及装置

Publications (1)

Publication Number Publication Date
WO2017000700A1 true WO2017000700A1 (zh) 2017-01-05

Family

ID=54164772

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/CN2016/082769 WO2017000702A1 (zh) 2015-07-01 2016-05-20 荧光激发光源装置及***和荧光显微成像***
PCT/CN2016/082768 WO2017000701A1 (zh) 2015-07-01 2016-05-20 一种荧光显微成像方法和装置
PCT/CN2016/082767 WO2017000700A1 (zh) 2015-07-01 2016-05-20 一种多荧光通道同步显微成像方法及装置
PCT/CN2016/082770 WO2017000703A1 (zh) 2015-07-01 2016-05-20 自动多通道类流式图像荧光分析***
PCT/CN2016/091901 WO2017000926A1 (zh) 2015-07-01 2016-07-27 集成式荧光激发光源装置

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/082769 WO2017000702A1 (zh) 2015-07-01 2016-05-20 荧光激发光源装置及***和荧光显微成像***
PCT/CN2016/082768 WO2017000701A1 (zh) 2015-07-01 2016-05-20 一种荧光显微成像方法和装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2016/082770 WO2017000703A1 (zh) 2015-07-01 2016-05-20 自动多通道类流式图像荧光分析***
PCT/CN2016/091901 WO2017000926A1 (zh) 2015-07-01 2016-07-27 集成式荧光激发光源装置

Country Status (5)

Country Link
US (1) US10161873B2 (zh)
EP (1) EP3318865A4 (zh)
JP (1) JP2018519550A (zh)
CN (6) CN105092550A (zh)
WO (5) WO2017000702A1 (zh)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105092550A (zh) * 2015-07-01 2015-11-25 上海睿钰生物科技有限公司 一种荧光显微成像方法和装置
CN105465745B (zh) * 2015-12-31 2019-04-05 中国科学院苏州生物医学工程技术研究所 多波段荧光照明装置
EP3405898A1 (en) 2016-01-21 2018-11-28 Protein Dynamic Solutions LLC Method and system for spectral data analysis
LU93022B1 (de) * 2016-04-08 2017-11-08 Leica Microsystems Verfahren und Mikroskop zum Untersuchen einer Probe
WO2018065115A1 (en) * 2016-10-07 2018-04-12 Boehringer Ingelheim Vetmedica Gmbh Method for controlling an analysis device and analysis system
CN107037576B (zh) * 2017-05-03 2023-08-15 中国科学院苏州生物医学工程技术研究所 光学显微成像设备及其成像方法
CN107356515B (zh) * 2017-07-20 2020-04-03 上海睿钰生物科技有限公司 一种荧光图像的荧光强度确定方法和***
CN107367456B (zh) * 2017-07-20 2020-04-03 上海睿钰生物科技有限公司 一种免洗涤图像类流式荧光检测方法和***
CN107272196A (zh) * 2017-08-03 2017-10-20 苏州天准科技股份有限公司 一种削弱远心光学***环形光照明鬼影的方法
CN109932316A (zh) * 2017-12-18 2019-06-25 长光华大基因测序设备(长春)有限公司 基因测序光学装置
CN108318468B (zh) * 2018-05-05 2024-01-16 哈尔滨索飞永诚科技有限公司 一种用于对液体样品中荧光染料染色微粒进行快速计数的计数***
CN109001900A (zh) * 2018-09-05 2018-12-14 南京大学 一种明场和荧光双模态的显微成像***及方法
CN111041076B (zh) * 2018-10-11 2023-09-26 深圳华大生命科学研究院 气泡检测方法及***、基因测序仪、计算机可读存储介质
CN111427142A (zh) 2019-01-09 2020-07-17 卡尔蔡司显微镜有限责任公司 用于显微镜设备的照明模块及相关控制方法和显微镜设备
CN111435192B (zh) * 2019-01-15 2021-11-23 卡尔蔡司显微镜有限责任公司 利用荧光显微镜生成荧光照片的方法
WO2020183433A1 (en) * 2019-03-14 2020-09-17 3M Innovative Properties Company Sterilization indicator reading apparatus with a color sensor
CN111239086B (zh) * 2019-08-30 2024-04-05 北京临近空间飞行器***工程研究所 视觉背景装置,荧光显微光学***,扫描分析***
CN110866918B (zh) 2019-12-11 2022-04-05 上海睿钰生物科技有限公司 酵母分析方法
CN110987768B (zh) * 2019-12-11 2022-02-15 上海睿钰生物科技有限公司 酵母计数方法
CN110991379B (zh) * 2019-12-11 2022-02-22 上海睿钰生物科技有限公司 藻类计数方法
CN111024696B (zh) * 2019-12-11 2022-01-11 上海睿钰生物科技有限公司 藻类分析方法
CN111551531B (zh) * 2020-05-19 2023-04-18 北京金诺美科技股份有限公司 一种荧光激发***及实时荧光定量pcr仪
CN111443042A (zh) * 2020-06-01 2020-07-24 厦门汇美集智科技有限公司 一种变温长余辉特性的测量装置
CN113946043A (zh) * 2020-07-16 2022-01-18 香港科技大学 一种激发光源和包括该激发光源的荧光显微镜
CN112946673B (zh) * 2021-01-29 2023-01-06 上海睿钰生物科技有限公司 一种激光测距方法、对焦方法、激光测距***及对焦***
CN113092428B (zh) * 2021-04-02 2023-07-25 安图实验仪器(郑州)有限公司 一种多重荧光检测方法、装置、设备和***
CN113109314A (zh) * 2021-05-28 2021-07-13 上海睿钰生物科技有限公司 多荧光信号检测***和方法
CN114199849A (zh) * 2021-12-17 2022-03-18 广州博鹭腾生物科技有限公司 一种应用于荧光成像的荧光光路***
CN114441496B (zh) * 2022-02-14 2024-03-01 江苏禹视科技有限公司 一种多光源荧光扫描分析***和方法
CN115061270B (zh) * 2022-05-30 2024-01-16 中国人民解放军国防科技大学 一种倾斜模式望远显微组合成像方法
CN114813522B (zh) * 2022-06-29 2022-10-21 深圳安侣医学科技有限公司 基于显微放大数字图像的血液细胞分析方法及***
CN117890580B (zh) * 2024-03-07 2024-05-24 南通戴尔诺斯生物科技有限公司 一种采用荧光标记的免疫层析检测设备及其使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329725A (zh) * 2010-06-16 2012-01-25 三星泰科威株式会社 光透射温度控制装置、生物诊断设备和方法
CN102507518A (zh) * 2011-10-25 2012-06-20 天津港东科技发展股份有限公司 12灯位多通道原子荧光光度计
JP2012168088A (ja) * 2011-02-16 2012-09-06 Ncd:Kk 蛍光反応検出装置
CN203811540U (zh) * 2013-10-22 2014-09-03 闽浪仪器科技(厦门)有限公司 一种高度集成的多道数字荧光成像***
CN204347334U (zh) * 2014-07-09 2015-05-20 闽浪仪器科技(厦门)有限公司 一种阵列式微滤片多道荧光显微镜
CN105092550A (zh) * 2015-07-01 2015-11-25 上海睿钰生物科技有限公司 一种荧光显微成像方法和装置
CN204945041U (zh) * 2015-07-28 2016-01-06 上海睿钰生物科技有限公司 一种多荧光通道同步显微成像装置

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3164609B2 (ja) * 1990-10-31 2001-05-08 オリンパス光学工業株式会社 内視鏡装置
JP2000235002A (ja) * 1999-02-15 2000-08-29 Fuji Photo Film Co Ltd 撮影方法および撮影装置
JP3783826B2 (ja) * 2000-01-17 2006-06-07 横河電機株式会社 バイオチップ読み取り装置
GB0200938D0 (en) 2002-01-16 2002-03-06 Solexa Ltd Prism design for scanning applications
CN2522855Y (zh) * 2002-01-30 2002-11-27 无锡市朗珈生物医学工程有限公司 带滤光片转盘的生物芯片荧光检测扫描装置
JP2004325174A (ja) * 2003-04-23 2004-11-18 Olympus Corp 蛍光検出装置
JP2005062023A (ja) * 2003-08-14 2005-03-10 Japan Science & Technology Agency 落射型蛍光測定装置
ZA200601273B (en) * 2003-08-14 2007-09-26 Cytonome Inc Optical detector for a particle sorting system
JP4825426B2 (ja) * 2005-01-31 2011-11-30 財団法人 東京都医学総合研究所 生物顕微鏡に用いる暗視野照明装置
US7355696B2 (en) * 2005-02-01 2008-04-08 Arryx, Inc Method and apparatus for sorting cells
FR2889404B1 (fr) 2005-08-01 2009-03-27 Commissariat Energie Atomique Source lumineuse a deux longueurs d'onde et de puissance d'eclairement variable et utilisation d'une telle source lumineuse
GB0614297D0 (en) * 2006-07-19 2006-08-30 Shaw Water Engineering Ltd Apparatus, system and method for detecting particles
CN101191770B (zh) * 2006-11-21 2011-06-15 杭州远方光电信息股份有限公司 发光二极管荧光粉发射光谱测量方法
CN200968935Y (zh) * 2006-11-21 2007-10-31 杭州远方光电信息有限公司 用于发光二极管荧光粉测试的激发与接收装置
CN101149327B (zh) * 2007-11-06 2010-06-30 浙江大学 基于细胞显微图像信息的抗肿瘤药物评价和筛选方法
CN101363839B (zh) * 2008-09-12 2012-02-08 首都师范大学 可观测带荧光生物样品的非损伤微测***
JP5759377B2 (ja) 2008-09-25 2015-08-05 コーニンクレッカ フィリップス エヌ ヴェ 検出システム及び方法
JP2010134382A (ja) * 2008-12-08 2010-06-17 Olympus Corp 観察装置
CN102341696B (zh) * 2009-03-03 2013-12-11 万迈医疗仪器有限公司 用于高灵敏度荧光分析的检测***和方法
JP5499732B2 (ja) * 2009-06-23 2014-05-21 ソニー株式会社 生体サンプル像取得装置、生体サンプル像取得方法及び生体サンプル像取得プログラム
JP2011028187A (ja) * 2009-07-21 2011-02-10 Kenichi Tanehashi 実体顕微鏡のステージ上に置いて透過蛍光観察をする装置
PL2524221T3 (pl) * 2010-01-12 2022-06-20 Nexcelom Bioscience Llc System do zliczania komórek i biocząsteczek
CN102754011B (zh) * 2010-02-03 2015-08-05 株式会社尼康 观察装置及观察方法
JP2011186182A (ja) * 2010-03-09 2011-09-22 Claro Inc 顕微鏡装置
JP2011237549A (ja) * 2010-05-10 2011-11-24 Iponacology Ltd 顕微鏡照明装置における光源ユニット、およびそれを備える顕微鏡
DE102010023486A1 (de) 2010-06-11 2011-12-15 B. Braun Avitum Ag Nachweisvorrichtung und -verfahren
JP5707758B2 (ja) 2010-07-13 2015-04-30 ソニー株式会社 撮像装置、撮像システム、手術用ナビゲーションシステム、及び撮像方法
EP2607889A4 (en) 2010-08-18 2016-11-09 Nanoentek Inc FLUORESCENCE MICROSCOPE FOR MULTI-FLUORESCENCE IMAGE OBSERVATION, FLUORESCENCE IMAGE OBSERVATION METHOD USING THE SAME, AND MULTI-FLUORESCENCE IMAGE OBSERVATION SYSTEM
CN102151122B (zh) * 2011-03-17 2012-12-19 中国科学院自动化研究所 激发荧光分子成像***及一次荧光成像方法
DE202011000688U1 (de) * 2011-03-25 2011-06-09 Leica Microsystems CMS GmbH, 35578 Vorrichtung zur Aufnahme von Filtern für Mikroskope
CN202057599U (zh) * 2011-05-17 2011-11-30 易定容 微多光谱荧光接收和处理***
CN102305778B (zh) * 2011-05-17 2013-10-30 易定容 微多光谱荧光接收和处理***
DE102011105181A1 (de) * 2011-06-17 2012-12-20 Leica Microsystems Cms Gmbh Mikroskop und Verfahren zur bildgebenden Fluoreszenzmikroskopie
DE102011051278A1 (de) * 2011-06-22 2012-12-27 Leica Microsystems Cms Gmbh Verfahren und lichtmikroskopische Einrichtung zur bildlichen Darstellung einer Probe
US20130015362A1 (en) * 2011-07-12 2013-01-17 Sharp Kabushiki Kaisha Fluid purification and sensor system
DE102011079942B4 (de) * 2011-07-27 2016-12-15 Leica Microsystems Cms Gmbh Mikroskopbeleuchtungsverfahren und Mikroskop
DE102011083215A1 (de) * 2011-09-22 2013-03-28 Siemens Aktiengesellschaft Probenträger und Verfahren zur mikroskopischen Untersuchung biologischer Proben
CN103134780B (zh) * 2011-12-01 2015-12-09 中国科学院大连化学物理研究所 一种紧贴式激发光路的发光二极管诱导荧光检测器
JP5947553B2 (ja) * 2012-01-27 2016-07-06 浜松ホトニクス株式会社 撮像装置及び撮像装置の製造方法
DE102012201286A1 (de) * 2012-01-30 2013-08-01 Carl Zeiss Microscopy Gmbh Mikroskop und Verfahren für die wellenlängenselektive und örtlich hochauflösende Mikroskopie
WO2013137247A1 (ja) * 2012-03-12 2013-09-19 三菱レイヨン株式会社 蛍光検出装置及び蛍光検出方法
WO2013177617A1 (en) * 2012-05-29 2013-12-05 Macquarie University Two-directional scanning for luminescence microscopy
US8901514B2 (en) * 2012-06-28 2014-12-02 Molecular Devices, Llc Sample analysis system with spotlight illumination
CN103777336B (zh) * 2012-10-22 2017-09-05 承奕科技股份有限公司 显微光学撷取装置用荧光辅具模组、基架及该装置
US8785885B1 (en) * 2013-01-30 2014-07-22 Omnivision Technologies, Inc. Fluorescence imaging module
CN103134784B (zh) * 2013-02-05 2015-04-29 华中科技大学 光纤化活体荧光激发光谱成像装置
WO2014191003A1 (en) * 2013-05-28 2014-12-04 Chemometec A/S Image forming cytometer
CN203337549U (zh) * 2013-06-28 2013-12-11 陕西师范大学 一种适用于微痕量***物荧光检测的光学组件
CN104568859B (zh) * 2013-10-22 2017-10-13 承奕科技股份有限公司 具多组异角度光源的荧光观测装置、基架及荧光显微镜
CN103645167A (zh) * 2013-12-13 2014-03-19 苏州东胜兴业科学仪器有限公司 一种聚合酶链反应检测仪
CN103995346A (zh) * 2014-06-09 2014-08-20 武汉理工大学 一种显微镜物镜轴向扫描装置
CN204330595U (zh) * 2014-07-15 2015-05-13 闽浪仪器科技(厦门)有限公司 一种实时多通道荧光检测***
CN104198458B (zh) * 2014-09-26 2017-02-22 哈尔滨工业大学 一种飞秒激光双光子荧光生物显微成像***及其成像方法
CN104296687A (zh) * 2014-11-05 2015-01-21 哈尔滨工业大学 基于荧光共焦显微技术的光滑大曲率样品测量装置与方法
CN204389397U (zh) * 2015-01-21 2015-06-10 南京中科神光科技有限公司 一种快速、多通道实时荧光定量检测装置
CN104677871A (zh) * 2015-02-27 2015-06-03 中国科学院自动化研究所 多光子激发光片照明显微成像***
CN104730054B (zh) * 2015-04-10 2018-08-21 中国科学院烟台海岸带研究所 一种一体化探头式光电水质多参数在线测量***
CN204789341U (zh) * 2015-07-01 2015-11-18 上海睿钰生物科技有限公司 集成式荧光激发光源装置
CN204945042U (zh) * 2015-07-28 2016-01-06 上海睿钰生物科技有限公司 自动多通道类流式图像荧光分析***
CN204945040U (zh) * 2015-07-28 2016-01-06 上海睿钰生物科技有限公司 荧光激发光源装置及***和荧光显微成像***

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102329725A (zh) * 2010-06-16 2012-01-25 三星泰科威株式会社 光透射温度控制装置、生物诊断设备和方法
JP2012168088A (ja) * 2011-02-16 2012-09-06 Ncd:Kk 蛍光反応検出装置
CN102507518A (zh) * 2011-10-25 2012-06-20 天津港东科技发展股份有限公司 12灯位多通道原子荧光光度计
CN203811540U (zh) * 2013-10-22 2014-09-03 闽浪仪器科技(厦门)有限公司 一种高度集成的多道数字荧光成像***
CN204347334U (zh) * 2014-07-09 2015-05-20 闽浪仪器科技(厦门)有限公司 一种阵列式微滤片多道荧光显微镜
CN105092550A (zh) * 2015-07-01 2015-11-25 上海睿钰生物科技有限公司 一种荧光显微成像方法和装置
CN105158220A (zh) * 2015-07-01 2015-12-16 上海睿钰生物科技有限公司 一种多荧光通道同步显微成像方法及装置
CN204945041U (zh) * 2015-07-28 2016-01-06 上海睿钰生物科技有限公司 一种多荧光通道同步显微成像装置

Also Published As

Publication number Publication date
CN105158220A (zh) 2015-12-16
CN105158220B (zh) 2018-05-01
US10161873B2 (en) 2018-12-25
WO2017000702A1 (zh) 2017-01-05
CN104949953A (zh) 2015-09-30
WO2017000926A1 (zh) 2017-01-05
US20180188178A1 (en) 2018-07-05
WO2017000703A1 (zh) 2017-01-05
WO2017000701A1 (zh) 2017-01-05
CN105486667A (zh) 2016-04-13
JP2018519550A (ja) 2018-07-19
CN104990907A (zh) 2015-10-21
CN104990907B (zh) 2018-05-08
EP3318865A4 (en) 2018-12-05
CN205091263U (zh) 2016-03-16
CN105092550A (zh) 2015-11-25
EP3318865A1 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
WO2017000700A1 (zh) 一种多荧光通道同步显微成像方法及装置
US9297992B2 (en) Microscope illumination method and microscope
EP3465161B1 (en) Imaging system with oblique illumination
WO2015111349A1 (ja) 多色蛍光画像分析装置
JP2018536191A (ja) 透過顕微鏡検査および蛍光顕微鏡検査のための顕微鏡
WO2015053144A1 (ja) 核酸配列決定装置及び核酸配列決定方法
US10795143B2 (en) Microscopy system and microscopy method for recording fluorescence images and white-light images
US11668918B2 (en) System and method for fluorescence microscopy with detection of light emission from multiple fluorochromes
CN204945041U (zh) 一种多荧光通道同步显微成像装置
JP2010256623A (ja) 顕微鏡観察装置
CN214612496U (zh) 一种包含复眼透镜的光路***
WO2021129588A1 (zh) 荧光照明装置和显微成像***
US10067059B2 (en) Device for simultaneous fluorescence contrasting effect in transmitted light and reflected light
CN110927948A (zh) 具有固态光学***的荧光显微镜
CN112730239A (zh) 多色远心成像装置及其细胞分析***
KR102271873B1 (ko) 관찰 장치 및 관찰 방법
JP2012127924A (ja) 複数の対象物の検出装置及び検出方法
CN115097618A (zh) 荧光显微成像光路、光学成像***及细胞分析仪
TW201314198A (zh) 雙光源燈箱實驗系統
JP2000097858A (ja) 走査型共焦点顕微鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817064

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817064

Country of ref document: EP

Kind code of ref document: A1