WO2016208728A1 - Zeolite, zeolite production method, honeycomb catalyst using zeolite, and exhaust gas purification device - Google Patents

Zeolite, zeolite production method, honeycomb catalyst using zeolite, and exhaust gas purification device Download PDF

Info

Publication number
WO2016208728A1
WO2016208728A1 PCT/JP2016/068858 JP2016068858W WO2016208728A1 WO 2016208728 A1 WO2016208728 A1 WO 2016208728A1 JP 2016068858 W JP2016068858 W JP 2016068858W WO 2016208728 A1 WO2016208728 A1 WO 2016208728A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
honeycomb
cha
catalyst
honeycomb catalyst
Prior art date
Application number
PCT/JP2016/068858
Other languages
French (fr)
Japanese (ja)
Inventor
豊浩 碓氷
尚紀 女屋
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2016208728A1 publication Critical patent/WO2016208728A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors

Definitions

  • the present invention relates to zeolite, a method for producing the zeolite, a honeycomb catalyst using the zeolite, and an exhaust gas purification device.
  • an SCR (Selective Catalytic Reduction) system that uses ammonia to reduce NOx to nitrogen and water has been known as one of the systems for purifying exhaust gas from automobiles.
  • Zeolite having a site (Chabazite: CHA) structure has attracted attention as a zeolite having an SCR catalytic action.
  • a honeycomb unit having a large number of through-holes extending in the longitudinal direction through which exhaust gas passes is used as an SCR catalyst carrier (for example, a patent) Reference 1).
  • Patent Document 2 discloses that the composition ratio SiO 2 / Al 2 O 3 is less than 15 and the average particle diameter is intended to increase heat resistance and durability when used as an SCR catalyst carrier.
  • a zeolite with a CHA structure of 1.0-8.0 ⁇ m is disclosed.
  • the honeycomb catalyst produced by directly extruding or coating the zeolite has a low catalyst layer density, Therefore, the contact efficiency between the exhaust gas and the catalyst is poor, and the exhaust gas purification performance (NOx purification performance) may not be sufficiently exhibited.
  • the present invention has been made to solve the above problems, and when used as a honeycomb catalyst, the density of the catalyst layer can be increased, and the contact efficiency between the exhaust gas and the catalyst is sufficiently increased.
  • An object of the present invention is to provide a zeolite capable of improving the NOx purification performance.
  • another object of the present invention is to provide a honeycomb catalyst and an exhaust gas purification apparatus that are excellent in NOx purification performance using the zeolite.
  • the present inventors have a zeolite having a CHA structure obtained by a conventional synthesis method as disclosed in Patent Document 2 and have a cubic particle shape.
  • a honeycomb catalyst is prepared by direct extrusion or coating.
  • the density of the catalyst layer is lowered.
  • such a honeycomb catalyst cannot achieve efficient contact between the exhaust gas and the catalyst due to the low density of the catalyst layer. Therefore, as a result of intensive studies by the present inventors, by setting the average particle diameter and average aspect ratio of a zeolite having a CHA structure (hereinafter sometimes referred to as CHA-type zeolite) to a specific range, The knowledge that the said subject can be solved was acquired.
  • the present invention is a zeolite having a CHA structure, having an average particle size of 0.05 ⁇ m or more and less than 1.0 ⁇ m, as measured by an SEM image, and an average aspect ratio of 1.1 to 3.0.
  • a zeolite is provided.
  • the CHA-type zeolite having the average particle diameter and average aspect ratio as described above can increase the density of the catalyst layer sufficiently because the particle shape is a so-called irregular shape other than a cube.
  • the exhaust gas flow path in the catalyst layer can be sufficiently secured. Thereby, the contact efficiency between the exhaust gas and the catalyst is sufficiently increased, and the NOx purification performance can be improved. If the average particle diameter is 1.0 ⁇ m or more, when the honeycomb catalyst is manufactured, the density of the catalyst layer is lowered, and the exhaust gas flow path in the catalyst layer is restricted.
  • the average aspect ratio is less than 1.1
  • the density of the catalyst layer is reduced as in the case where the conventional particle shape is a cube
  • the average aspect ratio exceeds 3.0
  • the honeycomb catalyst is prepared.
  • the zeolite is excessively oriented and the flow path of the exhaust gas in the catalyst layer is limited, efficient contact between the exhaust gas and the catalyst cannot be obtained, and the NOx purification performance becomes low.
  • the zeolite of the present invention preferably has an average aspect ratio of 1.15 to 2.70.
  • the average aspect ratio By setting the average aspect ratio to 1.15 to 2.70, when used as a honeycomb catalyst, the density of the catalyst layer can be sufficiently increased, and the NOx purification performance can be improved.
  • the zeolite of the present invention preferably has an average particle size of 0.05 to 0.5 ⁇ m. If the average particle diameter of the zeolite measured by the SEM image is 0.05 to 0.5 ⁇ m, the honeycomb catalyst can be highly filled with CHA-type zeolite, and the NOx purification performance can be further enhanced. If the average particle size of the zeolite is within the above range, when the honeycomb catalyst is manufactured, the displacement due to contraction or expansion when the honeycomb catalyst absorbs and dehydrates moisture in the air and exhaust gas (hereinafter referred to as the amount of water absorption displacement). ), The cracks are less likely to occur when the SCR catalyst is produced and when it is used as a catalyst, and the durability is excellent.
  • the zeolite of the present invention preferably has a SiO 2 / Al 2 O 3 composition ratio (SAR) of less than 15. If the SiO 2 / Al 2 O 3 composition ratio (SAR) of the zeolite is less than 15, the amount of alumina increases, and the amount of supported metal such as Cu that functions as a catalyst can be increased in proportion to this, so NOx purification performance Can be further enhanced.
  • SiO 2 / Al 2 O 3 composition ratio (SAR) of the zeolite is less than 15, the amount of alumina increases, and the amount of supported metal such as Cu that functions as a catalyst can be increased in proportion to this, so NOx purification performance Can be further enhanced.
  • the zeolite of the present invention preferably supports Cu and has a Cu / Al (molar ratio) of 0.2 to 0.5. If the supported amount of Cu is in the above range, high NOx purification performance can be obtained with a small amount of zeolite, that is, even if the volume of the catalyst is reduced.
  • the sum of integral intensities of the (211) plane, (104) plane and (220) plane of the X-ray diffraction spectrum by powder X-ray analysis method is preferably 50,000 or more.
  • the higher the integrated intensity, the better the crystallinity, and the sum of the integrated intensities of the (211) plane, (104) plane and (220) plane of the X-ray diffraction spectrum by zeolite powder X-ray analysis is 50,000 or more. If so, the NOx purification performance can be further improved based on high crystallinity.
  • the method for producing a zeolite of the present invention includes a synthesis step of synthesizing a zeolite having a CHA structure using a raw material composition containing a Si source, an Al source, an alkali source and a structure directing agent, and the CHA structure obtained in the synthesis step. And a micronization step of micronizing the zeolite having
  • the CHA-type zeolite has a cubic shape as in the prior art described above only in the synthesis step, and therefore the average particle size is 0.05 ⁇ m or more and less than 1.0 ⁇ m by the refinement step, and the average It becomes possible to easily obtain a CHA-type zeolite having an aspect ratio of 1.1 to 3.0.
  • the method for producing a zeolite of the present invention may further include a recrystallization step of mixing a zeolite having a CHA structure refined by the above-described refinement step with a solution containing a Si source and an alkali source and hydrating. preferable.
  • the micronization step is a step of wet-grinding a zeolite having a CHA structure using a wet bead mill.
  • a wet bead mill By using a wet bead mill, it is possible to suppress a decrease in crystallinity of the CHA-type zeolite.
  • the honeycomb catalyst of the present invention includes a honeycomb unit in which a plurality of longitudinally extending through holes are arranged in parallel with a partition wall therebetween, and the honeycomb unit includes a zeolite and an inorganic binder, and the zeolite is the zeolite of the present invention. It is. Since the honeycomb catalyst of the present invention is configured using the zeolite of the present invention, a honeycomb catalyst composed of a honeycomb unit having high NOx purification performance can be obtained.
  • the exhaust gas purifying apparatus of the present invention is formed by placing a holding sealing material on the outer peripheral portion of the honeycomb catalyst of the present invention and canning the metal container. Since the exhaust gas purification apparatus of the present invention includes the honeycomb catalyst of the present invention, it is excellent in NOx purification performance.
  • the density of the catalyst layer can be sufficiently increased, and the contact efficiency between the exhaust gas and the catalyst can be sufficiently increased, thereby purifying NOx.
  • Zeolite can be provided that can significantly improve performance. Further, according to the present invention, it is possible to provide a honeycomb catalyst and an exhaust gas purification device that are excellent in NOx purification performance using the zeolite.
  • FIG. 1 is a perspective view schematically showing an example of the honeycomb catalyst of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of the exhaust gas purifying apparatus of the present invention.
  • FIG. 3 is a perspective view schematically showing another example of the honeycomb catalyst of the present invention.
  • Fig. 4 is a perspective view schematically showing an example of a honeycomb unit constituting the honeycomb catalyst shown in Fig. 3.
  • FIG. 5 is a chart showing the XRD pattern of the CHA-type zeolite obtained in the synthesis step of Example 1.
  • FIG. 6 is a chart showing the XRD pattern of the CHA-type zeolite obtained in the refinement process of Example 1.
  • FIG. 7 is a chart showing an XRD pattern of the CHA-type zeolite obtained in the recrystallization process of Example 1.
  • FIG. 8 is an SEM photograph of the CHA-type zeolite obtained in the recrystallization process of Example 1.
  • the zeolite of the present invention has a CHA structure, has an average particle size of 0.05 ⁇ m or more and less than 1.0 ⁇ m as measured by an SEM image, and an average aspect ratio of 1.1 to 3.0.
  • the zeolite produced by the present invention is named and classified by the structure code CHA in the International Zeolite Association (IZA), and has a crystal structure equivalent to that of naturally occurring chabazite. It is a zeolite having
  • the average particle diameter and average aspect ratio of the zeolite were measured using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800) at a magnification of 20000 times and projected on a plane.
  • SEM scanning electron microscope
  • the long side and short side length of the smallest rectangle (called circumscribed rectangle) when the particle image is enclosed by a rectangle are measured, and the average of each long side and short side ((long side + short side) / 2 )
  • the average of the 10 particles is average particle diameter and average Defined as aspect ratio.
  • Measurement conditions are as follows: acceleration voltage: 1 kV, emission: 10 ⁇ A, WD: 2.2 mm or less.
  • the average particle diameter of zeolite is 0.05 ⁇ m or more and less than 1.0 ⁇ m.
  • the average particle diameter measured by the SEM image is 0.05 ⁇ m or more, when the honeycomb catalyst is manufactured, the exhaust gas flow path in the catalyst layer can be sufficiently secured, and when it is less than 1.0 ⁇ m, the catalyst The density of the layer is high and the flow path of the exhaust gas in the catalyst layer is not restricted.
  • the average particle size of the zeolite is preferably 0.05 to 0.5 ⁇ m, more preferably 0.1 to 0.5 ⁇ m.
  • the zeolite of the present invention has an average aspect ratio of 1.1 to 3.0.
  • An average aspect ratio greater than 1 means that the zeolite particles are not cubic. If the zeolite has an irregular shape other than a cubic shape, when used as a honeycomb catalyst, the adhesion between the zeolites increases, and the density of the honeycomb catalyst can be increased.
  • the average aspect ratio of the zeolite is 1.1 or more, when the honeycomb catalyst is manufactured, the density of the catalyst layer can be increased, and when it is 3.0 or less, the zeolite is excessively oriented,
  • the exhaust gas flow path is not limited, and efficient contact between the exhaust gas and the catalyst can be obtained.
  • the average aspect ratio of the zeolite is preferably 1.15 to 2.70, more preferably 1.20 to 2.50.
  • the crystal structure of zeolite can be analyzed using an X-ray diffraction (XRD) apparatus.
  • XRD X-ray diffraction
  • XRD measurement is performed using an X-ray diffractometer (Uriga IV manufactured by Rigaku Corporation).
  • the sample weight should not be changed by 0.1% or more before and after the XRD measurement.
  • the obtained XRD data is subjected to peak search using the powder X-ray diffraction pattern comprehensive analysis software JADE 6.0, and the half width and integrated intensity of each peak are calculated.
  • the peak search conditions are as follows. Filter type: parabolic filter, K ⁇ 2 peak elimination: yes, peak position definition: peak top, threshold ⁇ : 3, peak intensity% cutoff: 0.1, BG determination range: 1, BG averaging points: 7 .
  • the reason why the integrated intensity of the peaks of the (211) plane, (104) plane, and (220) plane of zeolite is used is that the influence of water absorption of the sample is small.
  • the sum X 0 of integral intensities of the (211) plane, (104) plane and (220) plane of the planar surface of the CHA zeolite is preferably 50000 or more, more preferably 55000 to 70000. is there. A sum of integral intensities of 50000 or more is preferable because of high crystallinity and high NOx purification performance.
  • the zeolite of the present invention preferably has a SiO 2 / Al 2 O 3 composition ratio (SAR) of less than 15.
  • the composition ratio of SiO 2 / Al 2 O 3 means the molar ratio (SAR) of SiO 2 to Al 2 O 3 in the zeolite.
  • the acid sites of the zeolite can be made a sufficient number, and the acid sites can be used for ion exchange with metal ions.
  • a more preferable SiO 2 / Al 2 O 3 composition ratio is 10 to 14.9.
  • the molar ratio of zeolite (SiO 2 / Al 2 O 3 ) can be measured using fluorescent X-ray analysis (XRF).
  • the zeolite supporting Cu has a Cu / Al (molar ratio) of 0.2 to 0.5.
  • the supported amount of Cu is within this range, high NOx purification performance can be obtained with a small amount of zeolite. If the molar ratio exceeds 0.5, ammonia oxidation is promoted at a high temperature, and the NOx purification performance may be lowered.
  • the zeolite of the present invention includes, for example, a synthesis step of synthesizing a zeolite having a CHA structure using a raw material composition containing a Si source, an Al source, an alkali source, and a structure directing agent, and the CHA structure obtained in the synthesis step. It can manufacture through the refinement
  • a raw material composition comprising a Si source, an Al source, an alkali source, water and a structure directing agent is prepared.
  • the Si source refers to a compound, a salt, and a composition that are raw materials for the silicon component of zeolite.
  • the Si source for example, colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and the like can be used, and two or more of these may be used in combination. Of these, colloidal silica is desirable.
  • Al source examples include aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, alumino-silicate gel, and dry aluminum hydroxide gel. Of these, dry aluminum hydroxide gel is preferred.
  • the target CHA-type zeolite in order to produce the target CHA-type zeolite, it is desirable to use a Si source and an Al source having the same molar ratio as that of the zeolite to be produced (SiO 2 / Al 2 O 3 ).
  • the molar ratio (SiO 2 / Al 2 O 3 ) in the raw material composition is preferably 15 or less, and more preferably 10 to 15.
  • examples of the alkali source include sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium hydroxide, aluminate, and alkali components in silicate, aluminosilicate gel.
  • the alkali component in the inside can be used, and two or more of these may be used in combination.
  • potassium hydroxide, sodium hydroxide, and lithium hydroxide are desirable.
  • the amount of water is not particularly limited, but the ratio of the number of moles of water to the total number of moles of Si of Si source and Al of Al source (H 2 O mole number / The total number of moles of Si and Al is preferably 12-30, and the ratio of the number of moles of water to the total number of moles of Si of the Si source and Al of the Si source (H 2 O moles / total of Si and Al) The number of moles) is more preferably 15-25.
  • the structure-directing agent refers to an organic molecule that defines the pore diameter and crystal structure of zeolite.
  • the structure of the obtained zeolite can be controlled by the type of the structure-directing agent.
  • Structure directing agents include hydroxides, halides, carbonates, methyl carbonates, sulfates and nitrates with N, N, N-trialkyladamantanammonium as a cation; and N, N, N-trimethylbenzylammonium ions , N-alkyl-3-quinuclidinol ions, or hydroxides, halides, carbonates, methyl carbonate salts, sulfates and nitrates having a cation of N, N, N-trialkylexoaminonorbornane as a cation At least one selected from can be used.
  • N, N, N-trimethyladamantanammonium hydroxide hereinafter also referred to as TMAAOH
  • N, N, N-trimethyladamantanammonium halide N, N, N-trimethyladamantanammonium carbonate
  • TMAAOH N, N-trimethyladamantanammonium halide
  • N, N, N-trimethyladamantanammonium carbonate It is preferable to use at least one selected from the group consisting of N, N, N-trimethyladamantanammonium methyl carbonate and N, N, N-trimethyladamantanammonium sulfate, and it is more preferable to use TMAAOH.
  • zeolite seed crystals may be further added to the raw material composition.
  • the crystallization speed of the zeolite is increased, the time for producing the zeolite can be shortened, and the yield is improved.
  • zeolite seed crystal it is desirable to use CHA-type zeolite.
  • the amount of zeolite seed crystals added is preferably small, but considering the reaction rate and the effect of suppressing impurities, it should be 0.1 to 20% by mass with respect to the silica component contained in the raw material composition. Desirably, 0.5 to 15% by mass is more desirable. If it is less than 0.1% by mass, the contribution to improving the crystallization rate of the zeolite is small, and if it exceeds 20% by mass, impurities are likely to enter the zeolite obtained by synthesis.
  • zeolite is synthesized by reacting the prepared raw material composition. Specifically, it is desirable to synthesize zeolite by hydrothermal synthesis of the raw material composition.
  • the reaction vessel used for hydrothermal synthesis is not particularly limited as long as it is used for known hydrothermal synthesis, and may be a heat and pressure resistant vessel such as an autoclave.
  • the zeolite can be crystallized by putting the raw material composition into the reaction vessel, sealing and heating.
  • the raw material mixture When synthesizing the zeolite, the raw material mixture may be in a stationary state, but is preferably in a state of being stirred and mixed.
  • the heating temperature when synthesizing the zeolite of the present invention is preferably 100 to 200 ° C., more preferably 120 to 180 ° C.
  • the heating temperature is less than 100 ° C., the crystallization rate becomes slow, and the yield tends to decrease.
  • the heating temperature exceeds 200 ° C., impurities are likely to be generated.
  • the heating time in the synthesis process of the present invention is preferably 10 to 200 hours. If the heating time is less than 10 hours, unreacted raw materials remain and the yield tends to decrease. On the other hand, even when the heating time exceeds 200 hours, the yield and crystallinity are hardly improved.
  • the pressure in the synthesis process is not particularly limited, and the pressure generated when the raw material composition placed in a closed container is heated to the above temperature range is sufficient, but if necessary, an inert gas such as nitrogen gas is added. May be boosted.
  • the zeolite obtained in the synthesis step is sufficiently cooled, separated into solid and liquid, and washed with a sufficient amount of water.
  • the zeolite obtained by the synthesis process contains SDA in the pores, it may be removed if necessary.
  • SDA can be removed by a liquid phase treatment using an acidic solution or a chemical solution containing an SDA decomposition component, an exchange treatment using a resin, a thermal decomposition treatment, or the like.
  • the average particle size of the CHA-type zeolite obtained by the above synthesis process is, for example, 0.2 to 5.0 ⁇ m.
  • miniaturization process of this invention it is the process which refines
  • the average particle size is 0.05 ⁇ m or more and less than 1.0 ⁇ m, preferably 0.05 to 0.5 ⁇ m, and the average aspect ratio is 1.1 to 3.0, preferably 1.15 to 2.70. More preferably, it is pulverized and refined until it becomes 1.20 to 2.50.
  • the refinement means employed in the refinement process of the present invention is not particularly limited as long as an apparatus that can pulverize the CHA-type zeolite obtained in the synthesis process to a desired particle size and average aspect ratio. It may be carried out by wet or wet, and examples thereof include a ball mill, a bead mill, and a jet mill. In the present invention, wet grinding using a wet bead mill is preferably employed. In the wet bead mill, the coarse powder of the material to be crushed and the beads as a medium are placed in a pulverization chamber together with a liquid dispersion medium, and the beads are agitated by rotating a rotating blade rotating in the pulverization chamber at a high speed. Then, the object to be pulverized is refined by applying frictional force or shearing force generated by the beads to the object to be pulverized.
  • the beads used are preferably at least one selected from the group consisting of zirconia and alumina, and zirconia is particularly preferable.
  • the particle size of the beads is preferably 30 to 1000 ⁇ m, more preferably 50 to 500 ⁇ m, so that the average particle size of the CHA-type zeolite is less than 1.0 ⁇ m.
  • the beads are preferably used 0.5 to 5 times, preferably 2 to 4 times the volume of the CHA-type zeolite. When the amount of beads used is within this range, it is possible to reduce the size to a target average particle size in a short time.
  • the rotational speed of the wet bead mill is preferably 1000 to 4200 rpm, and more preferably 1500 to 3500 rpm.
  • the pulverization time is preferably 5 to 60 minutes, more preferably 10 to 45 minutes.
  • Examples of the dispersion medium include water, and the amount of the dispersion medium introduced into the wet bead mill is 2 to 10 times in terms of volume with respect to the amount of the CHA-type zeolite.
  • the crystal structure of the zeolite having an average particle diameter of 0.05 ⁇ m or more and less than 1.0 ⁇ m and an average aspect ratio of 1.1 to 3.0 is extremely impaired. Can be obtained without.
  • the present invention it is preferable to recrystallize the CHA-type zeolite obtained in the above step by mixing it with a solution containing a Si source and an alkali source and subjecting it to a hydration treatment. By performing this recrystallization step, the crystal structure of the zeolite can be repaired.
  • a solution containing an Si source and an alkali source (hereinafter referred to as a recrystallization solution) used in the recrystallization process of the present invention is prepared by using water as a solvent and an Si source of 0.03 to 0.5 mol / L and an alkali source of A solution containing 0.04 to 0.7 mol / L can be used.
  • a recrystallization solution may contain an Al source.
  • Al source those listed in the above synthesis step can be used.
  • the solution which has the same composition as the raw material composition containing the Si source in the said synthetic
  • the recrystallization solution can be used as it is after the completion of the above synthesis step, the CHA-type zeolite, and the residual liquid of the reaction liquid after removal, and the residual liquid is concentrated 1 to 5 times. It can be used by diluting up to 1-fold.
  • the mixing ratio of the refined CHA-type zeolite and the recrystallization solution is, for example, 1 to 12, preferably 1 to 8, when the mass of the CHA zeolite is 1.
  • the solid-liquid ratio By setting the mass-solid-liquid ratio of the CHA-type zeolite and the recrystallization solution to 1 to 12, the crystal structure can be restored in a relatively short time.
  • the same conditions as in the hydrothermal synthesis of the raw material composition in the synthesis step can be adopted.
  • the crystal structure of the CHA-type zeolite damaged in the refinement process is repaired, and the crystallinity can be sufficiently enhanced.
  • the average particle size of the CHA-type zeolite after the recrystallization step is almost the same as the average particle size of the CHA-type zeolite obtained after the refining step.
  • Cu ion exchange it is preferable to perform Cu ion exchange on the CHA-type zeolite.
  • the Cu ion exchange method can be carried out by immersing CHA-type zeolite in a kind of aqueous solution selected from an aqueous copper acetate solution, an aqueous copper nitrate solution, an aqueous copper sulfate solution, and an aqueous copper chloride solution. Of these, it is preferable to use an aqueous copper acetate solution. This is because a large amount of Cu can be supported at one time.
  • Cu can be supported on the CHA-type zeolite by ion exchange of a copper (II) acetate aqueous solution having a copper concentration of 0.1 to 2.5 mass% at a solution temperature of room temperature to 50 ° C. and atmospheric pressure.
  • a copper (II) acetate aqueous solution having a copper concentration of 0.1 to 2.5 mass% at a solution temperature of room temperature to 50 ° C. and atmospheric pressure.
  • the obtained Cu-supporting zeolite preferably has a Cu / Al (molar ratio) of 0.2 to 0.5, more preferably 0.25 to 0.48. preferable.
  • the Cu / Al (molar ratio) is 0.2 or more, high NOx purification performance can be obtained with a small amount of zeolite. Further, when the molar ratio is 0.5 or less, it is possible to prevent NOx purification performance from being deteriorated due to ammonia oxidation at a high temperature.
  • the amount of Cu supported can be measured by ICP emission spectroscopic analysis (ICP-AES).
  • the amount of Al can be measured using the X-ray fluorescence analyzer described above, and the Cu / Al molar ratio can be calculated.
  • ICP-AES can be measured using an ICP emission spectroscopic analyzer (manufactured by Shimadzu Corporation: ICPE-9000).
  • the measurement conditions are as follows. As a pretreatment of the sample, 0.1 g of zeolite after Cu ion exchange dried at 400 ° C. for 4 hours is placed in a platinum dish, 5 ml of nitric acid, 20 ml of hydrofluoric acid, and 5 ml of sulfuric acid are added until sulfuric acid white smoke is generated. Heat. This is adjusted to be a 50 ml aqueous solution and used as a measurement sample. A measurement sample is put into the apparatus, and Cu element is designated to perform measurement.
  • the honeycomb catalyst of the present invention is a honeycomb catalyst including a honeycomb unit in which a plurality of through holes extending in the longitudinal direction are arranged in parallel with a partition wall therebetween.
  • FIG. 1 shows an example of the honeycomb catalyst of the present invention.
  • a honeycomb catalyst 10 shown in FIG. 1 includes a single honeycomb unit 11 in which a plurality of longitudinally extending through-holes 11a are arranged in parallel with a partition wall 11b therebetween, and an outer peripheral coating layer is formed on the outer peripheral surface of the honeycomb unit 11. 12 is formed.
  • the honeycomb unit 11 contains zeolite and an inorganic binder.
  • the maximum peak pore diameter of the partition walls of the honeycomb unit (hereinafter sometimes referred to as the maximum peak pore diameter of the honeycomb unit) is preferably 0.03 to 0.15 ⁇ m, and 0 It is more desirable that the thickness is 0.05 to 0.10 ⁇ m.
  • the pore size of the honeycomb unit can be measured using a mercury intrusion method.
  • the mercury contact angle is 130 °
  • the surface tension is 485 mN / m
  • the pore diameter is in the range of 0.01 to 100 ⁇ m.
  • the value of the pore diameter at the maximum peak in this range is called the maximum peak pore diameter.
  • the porosity of the honeycomb unit is preferably 50 to 60%.
  • the porosity of the honeycomb unit is less than 50%, the exhaust gas hardly enters the inside of the partition walls of the honeycomb unit, and the zeolite is not effectively used for purification of NOx.
  • the porosity of the honeycomb unit exceeds 60%, the density of the catalyst layer is too low, the NOx purification performance is lowered, and the strength of the honeycomb unit becomes insufficient.
  • the density of the catalyst layer can be measured as the porosity of the honeycomb catalyst.
  • the porosity of the honeycomb unit can be measured by a gravimetric method.
  • the method for measuring the porosity by the gravimetric method is as follows.
  • the honeycomb unit is cut into a size of 7 cells ⁇ 7 cells ⁇ 10 mm to obtain a measurement sample.
  • This sample is ultrasonically cleaned with ion-exchanged water and acetone, and then dried at 100 ° C. in an oven.
  • a measuring microscope manufactured by Nikon, Measuring Microscope MM-40, magnification 100 times
  • the dimensions of the cross-sectional shape of the sample are measured, and the volume is obtained from geometric calculation.
  • required from geometric calculation a cross-sectional area is calculated
  • the weight when the sample is assumed to be a complete dense body is calculated from the calculated volume and the true density of the sample measured with a pycnometer.
  • the measurement procedure with a pycnometer is as follows. The honeycomb unit is pulverized to prepare 23.6 cc of powder, and the obtained powder is dried at 200 ° C. for 8 hours. Thereafter, the true density is measured according to JIS-R-1620 (1995) using an Auto Pycnometer 1320 (manufactured by Micromeritics).
  • the exhaust time at this time is 40 minutes.
  • the actual weight of the sample is measured with an electronic balance (HR202i manufactured by Shimadzu Corporation), and the porosity is calculated by the following calculation formula.
  • Porosity (%) 100 ⁇ (actual weight / weight as dense body) ⁇ 100
  • the zeolite contained in the honeycomb unit is a zeolite having the CHA structure manufactured according to the present invention described above. Since the zeolite has been described in detail in the description of the zeolite of the present invention, detailed description thereof will be omitted here.
  • the content of zeolite in the honeycomb unit is preferably 40 to 90% by volume, and more preferably 50 to 80% by volume. If the zeolite content is less than 40% by volume, the NOx purification performance is lowered. On the other hand, when the content of zeolite exceeds 90% by volume, the amount of other materials contained is too small and the strength tends to decrease.
  • the honeycomb unit may contain zeolite other than CHA-type zeolite and silicoaluminophosphate (SAPO) within a range not impairing the effects of the present invention.
  • SAPO silicoaluminophosphate
  • the honeycomb unit preferably contains 100 to 320 g / L, more preferably 120 to 300 g / L of the zeolite of the present invention per apparent volume of the honeycomb unit.
  • the inorganic binder contained in the honeycomb unit is not particularly limited, but is contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite, etc. from the viewpoint of maintaining strength as a honeycomb catalyst.
  • the solid content is suitable, and two or more kinds may be used in combination.
  • the content of the inorganic binder in the honeycomb unit is preferably 3 to 20% by volume, and more preferably 5 to 15% by volume.
  • the content of the inorganic binder is less than 3% by volume, the strength of the honeycomb unit is lowered.
  • the content of the inorganic binder exceeds 20% by volume, the content of zeolite in the honeycomb unit decreases, and the NOx purification performance decreases.
  • the honeycomb unit may further contain inorganic particles in order to adjust the pore diameter of the honeycomb unit.
  • the inorganic particles contained in the honeycomb unit are not particularly limited, and examples thereof include particles of alumina, titania, zirconia, silica, ceria, magnesia, and the like. Two or more of these may be used in combination.
  • the inorganic particles are preferably one or more particles selected from the group consisting of alumina, titania and zirconia, and more preferably any one of alumina, titania and zirconia.
  • the average particle size of the inorganic particles is preferably 0.01 to 1.0 ⁇ m, and more preferably 0.03 to 0.5 ⁇ m.
  • the average particle size of the inorganic particles is the particle size (Dv50) at an integrated value of 50% in the particle size distribution (volume basis) obtained by the laser diffraction / scattering method.
  • the content of inorganic particles in the honeycomb unit is preferably 10 to 40% by volume, and more preferably 15 to 35% by volume.
  • the content of the inorganic particles is less than 10% by volume, the effect of lowering the absolute value of the linear expansion coefficient of the honeycomb unit due to the addition of the inorganic particles is small, and the honeycomb unit is easily damaged by thermal stress.
  • the content of the inorganic particles exceeds 40% by volume, the content of the zeolite of the present invention is lowered and the NOx purification performance is lowered.
  • the volume ratio of the zeolite of the present invention to inorganic particles is desirably 50:50 to 90:10, and more desirably 60:40 to 80:20.
  • the pore diameter of the honeycomb unit can be adjusted while maintaining the NOx purification performance.
  • the honeycomb unit may further include one or more selected from the group consisting of inorganic fibers and scale-like substances in order to improve the strength.
  • the inorganic fiber contained in the honeycomb unit is preferably composed of one or more selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, potassium titanate and aluminum borate.
  • the scaly substance contained in the honeycomb unit is preferably made of one or more selected from the group consisting of glass, muscovite, alumina, and silica. This is because all of them have high heat resistance, and even when used as a catalyst carrier in an SCR system, there is no melting damage and the effect as a reinforcing material can be maintained.
  • the content of inorganic fibers and / or scaly substances in the honeycomb unit is preferably 3 to 30% by volume, and more preferably 5 to 20% by volume.
  • the content is less than 3% by volume, the effect of improving the strength of the honeycomb unit is reduced.
  • the content exceeds 30% by volume, the content of zeolite in the honeycomb unit decreases, and the NOx purification performance decreases.
  • the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit is desirably 50 to 75%. If the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit is less than 50%, zeolite is not effectively used for NOx purification. On the other hand, when the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit exceeds 75%, the strength of the honeycomb unit becomes insufficient.
  • the density of the through-holes in the cross section perpendicular to the longitudinal direction of the honeycomb unit is preferably 31 to 155 holes / cm 2 . If the density of the through-holes having a cross section perpendicular to the longitudinal direction of the honeycomb unit is less than 31 / cm 2 , it becomes difficult for the zeolite and the exhaust gas to come into contact with each other, and the NOx purification performance decreases. On the other hand, when the density of the through holes in the cross section perpendicular to the longitudinal direction of the honeycomb unit exceeds 155 holes / cm 2 , the pressure loss of the honeycomb catalyst increases.
  • the thickness of the partition walls of the honeycomb unit is preferably 0.1 to 0.4 mm, and more preferably 0.1 to 0.3 mm.
  • the thickness of the partition walls of the honeycomb unit is less than 0.1 mm, the strength of the honeycomb unit decreases.
  • the thickness of the partition wall of the honeycomb unit exceeds 0.4 mm, the exhaust gas hardly enters the inside of the partition wall of the honeycomb unit, and the zeolite is not effectively used for purification of NOx.
  • the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm.
  • the thickness of the outer peripheral coat layer is less than 0.1 mm, the effect of improving the strength of the honeycomb catalyst becomes insufficient.
  • the thickness of the outer peripheral coat layer exceeds 2.0 mm, the content of zeolite per unit volume of the honeycomb catalyst decreases, and the NOx purification performance decreases.
  • the shape of the honeycomb catalyst of the present invention is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape).
  • the shape of the through hole is not limited to a quadrangular prism shape, and examples thereof include a triangular prism shape and a hexagonal prism shape.
  • honeycomb catalyst 10 shown in FIG. 1 First, it is extruded using a raw material paste containing the CHA-type zeolite of the present invention and an inorganic binder, and if necessary, one or more selected from the group consisting of inorganic fibers and scale-like substances and inorganic particles. Then, a cylindrical honeycomb formed body (honeycomb unit) in which a plurality of through-holes extending in the longitudinal direction are arranged side by side with a partition wall is produced.
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin, and two or more kinds may be used in combination.
  • the addition amount of the organic binder is desirably 1 to 10% with respect to the total mass of zeolite, inorganic particles, inorganic binder, inorganic fiber, and scale-like substance.
  • the dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like, and two or more kinds may be used in combination.
  • a pore former may be added to the raw material paste as necessary. Although it does not specifically limit as a pore making material, A polystyrene particle, an acrylic particle, starch, etc. are mentioned, You may use 2 or more types together. Of these, polystyrene particles are desirable.
  • the pore diameter distribution of the partition walls can be controlled within a predetermined range.
  • the pore size distribution of the partition walls can be controlled within a predetermined range by controlling the particle size of zeolite and inorganic particles.
  • the raw material paste When preparing the raw material paste, it is desirable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
  • the honeycomb formed body is dried by using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to prepare a honeycomb dried body.
  • a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to prepare a honeycomb dried body.
  • honeycomb dried body is degreased to produce a honeycomb degreased body.
  • the degreasing conditions can be appropriately selected depending on the type and amount of organic matter contained in the dried honeycomb body, but it is desirable that the degreasing conditions be 200 to 500 ° C. for 2 to 6 hours.
  • the honeycomb degreased body is fired to produce a cylindrical honeycomb unit 11.
  • the firing temperature is desirably 600 to 1000 ° C., and more desirably 600 to 800 ° C.
  • the sintering does not proceed and the strength of the honeycomb unit 11 is lowered.
  • the calcination temperature exceeds 1000 ° C., the sintering proceeds too much and the reaction sites of the zeolite decrease.
  • the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the cylindrical honeycomb unit 11.
  • the inorganic binder contained in the outer periphery coating layer paste is not particularly limited, but is added as silica sol, alumina sol or the like, and two or more kinds may be used in combination. Among these, it is desirable to add as silica sol.
  • the inorganic particles contained in the outer coat layer paste are not particularly limited, but oxide particles such as zeolite, eucryptite, alumina and silica, carbide particles such as silicon carbide, and nitride particles such as silicon nitride and boron nitride. And two or more of them may be used in combination. Among them, eucryptite particles having a thermal expansion coefficient close to that of the honeycomb unit are desirable.
  • the inorganic fiber contained in the outer periphery coat layer paste is not particularly limited, and examples thereof include silica alumina fiber, mullite fiber, alumina fiber, silica fiber and the like, and two or more kinds may be used in combination. Among these, alumina fibers are preferable.
  • the outer periphery coating layer paste may further contain an organic binder.
  • an organic binder contained in the paste for outer periphery coating layers Polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, etc. are mentioned, You may use 2 or more types together.
  • the outer periphery coat layer paste may further contain balloons, pore formers, and the like, which are fine hollow spheres of oxide ceramics.
  • the balloon contained in the outer periphery coating layer paste is not particularly limited, and examples thereof include alumina balloons, glass micro balloons, shirasu balloons, fly ash balloons, mullite balloons, and the like, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
  • the pore former contained in the outer periphery coat layer paste is not particularly limited, and examples thereof include spherical acrylic particles and graphite, and two or more kinds may be used in combination.
  • the honeycomb unit 11 coated with the outer periphery coating layer paste is dried and solidified to produce a columnar honeycomb catalyst 10.
  • the outer peripheral coat layer paste contains an organic binder, it is desirable to degrease.
  • the degreasing conditions can be appropriately selected depending on the kind and amount of the organic substance, but it is desirable that the degreasing conditions be 500 ° C. for 1 hour.
  • FIG. 2 shows an example of the exhaust gas purifying apparatus of the present invention.
  • the exhaust gas purification apparatus 100 shown in FIG. 2 can be manufactured by canning the metal container (shell) 30 in a state where the holding sealing material 20 is disposed on the outer peripheral portion of the honeycomb catalyst 10. Further, in the exhaust gas purification apparatus 100, in the pipe (not shown) on the upstream side of the honeycomb catalyst 10 with respect to the flow direction of the exhaust gas (in FIG. 2, the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by an arrow).
  • an injection means such as an injection nozzle that injects ammonia or a compound that decomposes to generate ammonia is provided.
  • an injection means such as an injection nozzle that injects ammonia or a compound that decomposes to generate ammonia is provided.
  • ammonia is added to the exhaust gas flowing through the pipe, so that NOx contained in the exhaust gas is reduced by the zeolite contained in the honeycomb unit 11.
  • the compound that decomposes to generate ammonia is not particularly limited as long as it can be hydrolyzed in the pipe to generate ammonia, but urea water is preferable because of excellent storage stability.
  • FIG. 3 shows another example of the honeycomb catalyst of the present invention.
  • a plurality of honeycomb units 11 ′ in which a plurality of longitudinally extending through-holes 11 a are arranged with a partition wall 11 b therebetween are bonded via an adhesive layer 13. Except for this, the configuration is the same as that of the honeycomb catalyst 10.
  • the cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ is preferably 10 to 200 cm 2 .
  • the cross-sectional area is less than 10 cm 2 , the pressure loss of the honeycomb catalyst 10 ′ increases.
  • the cross-sectional area exceeds 200 cm 2 , it is difficult to bond the honeycomb units 11 ′.
  • the honeycomb unit 11 ′ has the same configuration as the honeycomb unit 11 except for the cross-sectional area of the cross section perpendicular to the longitudinal direction.
  • the thickness of the adhesive layer 13 is preferably 0.1 to 3.0 mm. When the thickness of the adhesive layer 13 is less than 0.1 mm, the adhesive strength of the honeycomb unit 11 ′ becomes insufficient. On the other hand, when the thickness of the adhesive layer 13 exceeds 3.0 mm, the pressure loss of the honeycomb catalyst 10 ′ increases or cracks occur in the adhesive layer.
  • a fan-shaped honeycomb unit 11 ′ is manufactured in the same manner as the honeycomb unit 11 constituting the honeycomb catalyst 10.
  • an adhesive layer paste is applied to the outer peripheral surface excluding the arc side of the honeycomb unit 11 ′, the honeycomb unit 11 ′ is adhered, and dried and solidified to produce an aggregate of the honeycomb units 11 ′.
  • the adhesive layer paste is not particularly limited, and examples thereof include a mixture of inorganic binder and inorganic particles, a mixture of inorganic binder and inorganic fibers, a mixture of inorganic binder, inorganic particles, and inorganic fibers.
  • the inorganic binder contained in the adhesive layer paste is not particularly limited, but is added as silica sol, alumina sol or the like, and two or more kinds may be used in combination. Among these, it is desirable to add as silica sol.
  • the inorganic particles contained in the adhesive layer paste are not particularly limited, but oxide particles such as zeolite, eucryptite, alumina and silica, carbide particles such as silicon carbide, nitride particles such as silicon nitride and boron nitride, etc. And two or more of them may be used in combination. Among them, eucryptite particles having a thermal expansion coefficient close to that of the honeycomb unit are desirable.
  • the inorganic fiber contained in the adhesive layer paste is not particularly limited, and examples thereof include silica alumina fiber, mullite fiber, alumina fiber, silica fiber and the like, and two or more kinds may be used in combination. Among these, alumina fibers are preferable.
  • the adhesive layer paste may contain an organic binder. Although it does not specifically limit as an organic binder contained in the paste for contact bonding layers, Polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose etc. are mentioned, You may use 2 or more types together.
  • the adhesive layer paste may further include balloons, pore formers, and the like, which are fine hollow spheres of oxide ceramics.
  • the balloon contained in the adhesive layer paste is not particularly limited, and examples thereof include an alumina balloon, a glass microballoon, a shirasu balloon, a fly ash balloon, and a mullite balloon, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
  • the pore former contained in the adhesive layer paste is not particularly limited, and examples thereof include spherical acrylic particles and graphite, and two or more kinds may be used in combination.
  • the aggregate of the honeycomb units 11 ′ is cut and polished as necessary to produce the aggregate of the cylindrical honeycomb units 11 ′.
  • the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the aggregate of the cylindrical honeycomb unit 11 ′.
  • the outer periphery coat layer paste may be the same as or different from the adhesive layer paste.
  • a columnar honeycomb catalyst 10 ′ is manufactured by drying and solidifying the aggregate of columnar honeycomb units 11 ′ coated with the outer periphery coating layer paste.
  • the adhesive for the adhesive layer and / or the paste for the outer peripheral coat layer contains an organic binder, it is desirable to degrease.
  • the degreasing conditions can be appropriately selected depending on the kind and amount of the organic substance, but it is desirable that the degreasing conditions be 500 ° C. for 1 hour.
  • the honeycomb catalyst 10 ′ is configured by bonding four honeycomb units 11 ′ via the adhesive layer 13, but the number of honeycomb units constituting the honeycomb catalyst is not particularly limited.
  • a columnar honeycomb catalyst may be configured by adhering 16 square columnar honeycomb units via an adhesive layer.
  • honeycomb catalyst 10 and 10 ′ may not have the outer peripheral coat layer 12 formed thereon.
  • NOx purification performance can be improved by forming a honeycomb unit using the zeolite of the present invention as the zeolite.
  • the measurement of the average particle diameter and the average aspect ratio of zeolite was performed as follows. Using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800), SEM photographs of 10 CHA-type zeolites were taken, and their particle diameter and aspect ratio were measured. The measurement conditions were acceleration voltage: 1 kV, emission: 10 ⁇ A, WD: 2.2 mm or less. The measurement magnification was 20000 times. The long side and short side length of the smallest rectangle (usually called circumscribed rectangle) when the particle image of each particle projected on a plane is surrounded by a rectangle is measured, and the long side and short side of the particle are measured. The average of the sides is defined as the particle diameter ((long side + short side) / 2), and the ratio (long side / short side) is used as the aspect ratio to calculate the average of 10 pieces, and this is the average particle size and average aspect. Ratio.
  • the measurement of the molar ratio of zeolite (SAR: SiO 2 / Al 2 O 3 ) was performed as follows.
  • the molar ratio (SAR: SiO 2 / Al 2 O 3 ) of CHA-type zeolite was measured using an X-ray fluorescence analyzer (XRF, ZSX Primus 2 manufactured by Rigaku Corporation).
  • the measurement conditions were as follows: X-ray tube: Rh, rated maximum output: 4 kW, detection element range: F to U, quantitative method: SQX method, analysis region: 10 mm ⁇ .
  • the measurement of the amount of Cu supported on zeolite was performed as follows.
  • the amount of Cu supported on the CHA-type zeolite was measured using an ICP emission spectroscopic analyzer (manufactured by Shimadzu Corporation: ICPE-9000).
  • ICPE-9000 ICP emission spectroscopic analyzer
  • 0.1 g of zeolite after Cu ion exchange dried at 400 ° C. for 4 hours is placed in a platinum dish, 5 ml of nitric acid, 20 ml of hydrofluoric acid, and 5 ml of sulfuric acid are added until sulfuric acid white smoke is generated. Heat. This is adjusted to be a 50 ml aqueous solution and used as a measurement sample.
  • the measurement sample was put in the apparatus, and Cu element was designated and measured.
  • the Cu / Al molar ratio was calculated from the measured value of the Cu loading.
  • Analysis of the obtained XRD data was performed using powder X-ray diffraction pattern comprehensive analysis software JADE 6.0.
  • the analysis conditions are: filter type: parabolic filter, elimination of K ⁇ 2 peak: yes, peak position definition: peak top, threshold ⁇ : 3, peak intensity% cutoff: 0.1, BG determination range: 1, BG average The number of conversion points was set to 7.
  • Example 1 ⁇ Synthesis process> Colloidal silica (manufactured by Nissan Chemical Industries, Snowtex) as the Si source, dry aluminum hydroxide gel (manufactured by Tomita Pharmaceutical) as the Al source, sodium hydroxide (manufactured by Tokuyama) and potassium hydroxide (Toagosei Co., Ltd.) as the alkali source N, N, N-trimethyladamantanammonium hydroxide (TMAAOH) 25% aqueous solution (manufactured by Sachem) as a structure directing agent (SDA), SSZ-13 as a seed crystal, and deionized water A composition was prepared.
  • colloidal silica manufactured by Nissan Chemical Industries, Snowtex
  • dry aluminum hydroxide gel manufactured by Tomita Pharmaceutical
  • sodium hydroxide manufactured by Tokuyama
  • potassium hydroxide Toagosei Co., Ltd.
  • the molar ratios of the raw material compositions were SiO 2 : 15 mol, Al 2 O 3 : 1 mol, NaOH: 1.6 mol, KOH: 0.53 mol, TMAAOH: 1.62 mol, and H 2 O: 300 mol. Further, 5.0% by mass of seed crystals was added to SiO 2 and Al 2 O 3 in the raw material composition.
  • the raw material composition was charged into a 500 L autoclave, and hydrothermal synthesis was performed at a heating temperature of 160 ° C. and a heating time of 24 hours to synthesize CHA-type zeolite.
  • the average particle diameter of the obtained CHA-type zeolite was 0.74 ⁇ m, and the sum of integrated intensities (X 0 ) was 54357.
  • ⁇ Recrystallization process> A solution obtained by concentrating the solution excluding the CHA-type zeolite powder after the synthesis step three times (concentration rate: 3) is used as the recrystallization solution, and the solid-liquid ratio is 8 times the mass of the CHA-type zeolite Then, recrystallization was performed with stirring in an autoclave at 200 ° C. for 24 hours.
  • the concentration rate of the recrystallization solution is a concentration rate calculated from the mass of the recrystallization solution before concentration / the mass of the recrystallization solution after concentration, and water was removed by evaporation.
  • the hydration treatment was hydrothermal treatment using an autoclave.
  • the average particle diameter, average aspect ratio, sum of integral intensities (X 0 ) of the CHA-type zeolite obtained after the recrystallization step, and the molar ratio (SAR) of the CHA-type zeolite were determined.
  • the average particle diameter was 0.12 ⁇ m
  • the average aspect ratio was 1.20
  • the sum of integrated intensities (X 0 ) was 53813
  • the SAR was 12.2.
  • the CHA-type zeolite obtained after the recrystallization step was used for the first ion exchange with an aqueous copper (II) acetate solution having a copper concentration of 2.34% by mass, and for the second ion exchange, the copper concentration was 0.59.
  • a mass% aqueous solution of copper (II) acetate ion exchange was performed for 1 hour at a solution temperature of 50 ° C. and atmospheric pressure.
  • FIG. 5 shows the XRD pattern of the zeolite particles obtained in the synthesis step of Example 1
  • FIG. 6 shows the XRD pattern of the zeolite particles obtained in the refinement step of Example 1
  • FIG. 8 The XRD pattern of the zeolite particles obtained in the recrystallization process is shown in FIG. 8 as an SEM photograph of the zeolite obtained in the recrystallization process of Example 1.
  • the zeolite obtained in the synthesis process is a CHA-type zeolite.
  • FIG. 6 the crystal structure of the zeolite particles is damaged by the refinement process, and from FIG. 7, the crystal structure damaged by the refinement process is restored. It was found that it was repaired by the crystallization process.
  • Example 2 For the CHA-type zeolite obtained in the synthesis step of Example 1, 13 kg of zirconia (bead particle size: 300 ⁇ m) was used as a grinding bead, and the rotational speed was 9 m using a wet bead mill (manufactured by Ashizawa Finetech, Labstar Mini). / S for 60 minutes.
  • the solution excluding the CHA-type zeolite powder after the synthesis step was used as a recrystallization solution without concentrating (concentration rate: 1), and twice the mass of the CHA-type zeolite.
  • Example 3 Zirconia balls (particle diameter: 2 mm) were used as grinding balls for the CHA-type zeolite obtained in the synthesis step of Example 1 using a planetary ball mill (Fritz planetary ball mill Classic Line P-5 container size 500 ml). Was crushed for 30 minutes at a rotational speed of 400 rpm. A recrystallization process was performed on the crushed zeolite in the same manner as in Example 1. The average particle diameter, average aspect ratio, sum of integral intensities (X 0 ), and molar ratio (SAR) of the CHA zeolite after the refinement process and the recrystallization process were determined. The results are shown in Table 1.
  • Example 1 The CHA-type zeolite obtained in the synthesis step of Example 1 was used. Cu ion exchange was performed in the same manner as in Example 1 on the CHA-type zeolite obtained in the synthesis step. Table 1 shows the average particle diameter, average aspect ratio, sum of integral intensities (X 0 ) and CHA-type zeolite molar ratio (SAR) of the CHA-type zeolite after the synthesis step in Comparative Example 1.
  • Comparative Example 2 Colloidal silica (manufactured by Nissan Chemical Industries, Snowtex) as the Si source, dry aluminum hydroxide gel (manufactured by Tomita Pharmaceutical) as the Al source, sodium hydroxide (manufactured by Tokuyama) and potassium hydroxide (Toagosei Co., Ltd.) as the alkali source N, N, N-trimethyladamantanammonium hydroxide (TMAAOH) 25% aqueous solution (manufactured by Sachem) as a structure directing agent (SDA), SSZ-13 as a seed crystal, and deionized water A composition was prepared.
  • SDA structure directing agent
  • the molar ratios of the raw material compositions were SiO 2 : 36 mol, Al 2 O 3 : 1 mol, KOH: 3.6 mol, TMAAOH: 2.9 mol, and H 2 O: 468 mol. Further, 5.0% by mass of seed crystals was added to SiO 2 and Al 2 O 3 in the raw material composition.
  • the raw material composition was loaded into a 500 L autoclave, and hydrothermal synthesis was performed at a heating temperature of 160 ° C. and a heating time of 24 hours to synthesize a zeolite having a CHA structure. Cu ion exchange was performed on the CHA-type zeolite obtained in this synthesis step in the same manner as in Example 1.
  • Comparative Example 3 Colloidal silica (manufactured by Nissan Chemical Industries, Snowtex) as the Si source, dry aluminum hydroxide gel (manufactured by Tomita Pharmaceutical) as the Al source, sodium hydroxide (manufactured by Tokuyama) and potassium hydroxide (Toagosei Co., Ltd.) as the alkali source N, N, N-trimethyladamantanammonium hydroxide (TMAAOH) 25% aqueous solution (manufactured by Sachem) as a structure directing agent (SDA), SSZ-13 as a seed crystal, and deionized water A composition was prepared.
  • SDA structure directing agent
  • the molar ratios of the raw material compositions were SiO 2 : 15 mol, Al 2 O 3 : 1 mol, NaOH: 1.6 mol, KOH: 0.53 mol, TMAAOH: 1.62 mol, and H 2 O: 300 mol. Further, 5.0% by mass of seed crystals was added to SiO 2 and Al 2 O 3 in the raw material composition.
  • the raw material composition was charged into a 500 L autoclave, and hydrothermal synthesis was carried out at a heating temperature of 190 ° C. and a heating time of 24 hours to synthesize CHA-type zeolite. Cu ion exchange was performed on the CHA-type zeolite obtained in this synthesis step in the same manner as in Example 1.
  • Example 4 Zirconia balls (particle diameter: 2 mm) were used as grinding balls for the CHA-type zeolite obtained in the synthesis step of Example 1 using a planetary ball mill (Fritz planetary ball mill Classic Line P-5 container size 500 ml). Was crushed for 60 minutes at a rotational speed of 400 rpm. A recrystallization process was performed on the crushed zeolite in the same manner as in Example 1. The average particle diameter, average aspect ratio, sum of integral intensities (X 0 ), and molar ratio (SAR) of the CHA zeolite after the refinement process and the recrystallization process were determined. The results are shown in Table 1.
  • the raw material paste was extruded using an extrusion molding machine to produce a honeycomb formed body. Then, using a vacuum microwave dryer, the honeycomb formed body was dried at an output of 4.5 kW and a reduced pressure of 6.7 kPa for 7 minutes, and then degreased and fired at an oxygen concentration of 1% and 700 ° C. for 5 hours. Unit).
  • the honeycomb unit had a regular quadrangular prism shape with a side of 35 mm and a length of 150 mm, a through hole density of 124 holes / cm 2 , and a partition wall thickness of 0.20 mm.
  • a cylindrical test piece having a diameter of 25.4 mm and a length of 38.1 mm was cut out from the honeycomb unit using a diamond cutter.
  • a simulated gas at 200 ° C. is allowed to flow through the test piece at a space velocity (SV) of 100000 hr ⁇ 1 , and flows out from the test piece using a catalyst evaluation apparatus (manufactured by Horiba, Ltd., SIGU-2000 / MEXA-6000FT).
  • the NOx outflow amount was measured, and the NOx purification rate (%) represented by the following formula (1) was calculated.
  • the constituent components of the simulated gas were 350 ppm nitrogen monoxide, 350 ppm ammonia, 10% oxygen, 5% carbon dioxide, 5% water, and nitrogen.
  • Purification rate (%) (NOx inflow amount ⁇ NOx outflow amount) / (NOx inflow amount) ⁇ 100 (1)
  • the NOx purification rate [%] was calculated while flowing a simulated gas at 525 ° C. at SV: 100000 hr ⁇ 1 .
  • the constituent components of the simulated gas at this time were 315 ppm nitric oxide, 35 ppm nitrogen dioxide, 385 ppm ammonia, 10% oxygen, 5% carbon dioxide, 5% water, and nitrogen.
  • Table 2 shows the NOx purification rates of the honeycomb catalysts using the zeolites obtained in Examples 1 to 3 and Comparative Examples 1 to 4.
  • the honeycomb unit is cut into a size of 7 cells ⁇ 7 cells ⁇ 10 mm to obtain a measurement sample.
  • This sample is ultrasonically cleaned with ion-exchanged water and acetone, and then dried at 100 ° C. in an oven.
  • the dimensions of the cross-sectional shape of the sample were measured using a measuring microscope (Nikon Corporation, Measuring Microscope MM-40, magnification 100 times), and the volume was obtained from geometric calculation. Thereafter, the weight when the sample was assumed to be a complete dense body was calculated from the volume obtained by calculation and the true density of the sample measured with a pycnometer.
  • the measurement procedure with a pycnometer is as follows.
  • the honeycomb catalyst obtained in Examples 1 to 3 uses the zeolite of the present invention, the density of the catalyst layer can be sufficiently increased, and the contact efficiency between the exhaust gas and the catalyst can be sufficiently increased. Thus, it has been found that the NOx purification performance can be remarkably improved. In contrast, the honeycomb catalysts obtained in Comparative Examples 1 to 4 did not use the zeolite of the present invention, so the NOx purification performance was inferior to that of Examples 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

The purpose of the present invention is to provide a zeolite that can sufficiently increase catalyst density and that also sufficiently increases the contact efficiency between exhaust gas and a catalyst and can thereby remarkably improve NOx-purification performance. This zeolite has a CHA structure, has an average particle diameter, as measured by SEM image, of 0.05 μm or more but less than 1.0 μm, and has an average aspect ratio of 1.1-3.0.

Description

ゼオライト、該ゼオライトの製造方法、該ゼオライトを使用したハニカム触媒及び排ガス浄化装置Zeolite, method for producing the zeolite, honeycomb catalyst using the zeolite, and exhaust gas purification device
 本発明は、ゼオライト、該ゼオライトの製造方法、該ゼオライトを使用したハニカム触媒及び排ガス浄化装置に関する。 The present invention relates to zeolite, a method for producing the zeolite, a honeycomb catalyst using the zeolite, and an exhaust gas purification device.
 従来から、自動車の排ガスを浄化するシステムの1つとして、アンモニアを用いて、NOxを窒素と水に還元するSCR(Selective Catalytic Reduction)システムが知られており、銅(Cu)が担持されたチャバサイト(Chabazite:CHA)構造を有するゼオライトは、SCR触媒作用を有するゼオライトとして注目されている。 Conventionally, an SCR (Selective Catalytic Reduction) system that uses ammonia to reduce NOx to nitrogen and water has been known as one of the systems for purifying exhaust gas from automobiles. Zeolite having a site (Chabazite: CHA) structure has attracted attention as a zeolite having an SCR catalytic action.
 このCuが担持されたCHA構造を有するゼオライトを用いたSCRシステムでは、排ガスが通過する多数の長手方向に延びる貫通孔が並設されたハニカムユニットがSCR触媒担体として用いられている(例えば、特許文献1参照。)。 In an SCR system using a zeolite having a CHA structure on which Cu is supported, a honeycomb unit having a large number of through-holes extending in the longitudinal direction through which exhaust gas passes is used as an SCR catalyst carrier (for example, a patent) Reference 1).
 また、特許文献2には、SCR触媒担体として使用した際の耐熱性、耐久性を上げることを目的として、その組成比SiO/Alが15未満であり、かつ、平均粒子径が1.0~8.0μmのCHA構造のゼオライトが開示されている。 Patent Document 2 discloses that the composition ratio SiO 2 / Al 2 O 3 is less than 15 and the average particle diameter is intended to increase heat resistance and durability when used as an SCR catalyst carrier. A zeolite with a CHA structure of 1.0-8.0 μm is disclosed.
日本国特開2007-296521号公報Japanese Unexamined Patent Publication No. 2007-296521 日本国特開2012-211066号公報Japanese Unexamined Patent Publication No. 2012-211066
 しかしながら、特許文献2に記載のゼオライトは、耐熱性や耐久性にある程度の改善は見込まれるものの、該ゼオライトを直接押出やコーティング等して製造したハニカム触媒は、触媒層の密度が低く、また、そのために排ガスと触媒との接触効率が悪く、排ガス浄化性能(NOx浄化性能)が十分に発現しない場合があった。 However, although the zeolite described in Patent Document 2 is expected to have some improvement in heat resistance and durability, the honeycomb catalyst produced by directly extruding or coating the zeolite has a low catalyst layer density, Therefore, the contact efficiency between the exhaust gas and the catalyst is poor, and the exhaust gas purification performance (NOx purification performance) may not be sufficiently exhibited.
 本発明は、上記課題を解決するためになされたものであり、ハニカム触媒として用いたときに、触媒層の密度を高くすることができ、かつ、排ガスと該触媒との接触効率も十分に高め、これによりNOx浄化性能を改善し得るゼオライトを提供することを目的とする。
 また本発明は、該ゼオライトを用い、NOx浄化性能に優れたハニカム触媒及び排ガス浄化装置を提供することを別の目的とする。
The present invention has been made to solve the above problems, and when used as a honeycomb catalyst, the density of the catalyst layer can be increased, and the contact efficiency between the exhaust gas and the catalyst is sufficiently increased. An object of the present invention is to provide a zeolite capable of improving the NOx purification performance.
In addition, another object of the present invention is to provide a honeycomb catalyst and an exhaust gas purification apparatus that are excellent in NOx purification performance using the zeolite.
 本発明者らは、特許文献2に開示されたような従来の合成方法によって得られるCHA構造を有するゼオライトは、粒子形状が立方体であり、この形状では直接押出やコーティングによりハニカム触媒を調製したときに、触媒層の密度が低下してしまうことを突き止めた。また、このようなハニカム触媒は、触媒層の密度が低いために排ガスと触媒との効率的な接触が達成されないことも分かった。
 そこで、本発明者らが鋭意検討を行った結果、CHA構造を有するゼオライト(以下、CHA型ゼオライトと言うことがある。)の平均粒子径及び平均アスペクト比を特定の範囲に設定することにより、上記課題を解決できるという知見を得た。
The present inventors have a zeolite having a CHA structure obtained by a conventional synthesis method as disclosed in Patent Document 2 and have a cubic particle shape. In this shape, a honeycomb catalyst is prepared by direct extrusion or coating. In addition, it has been found that the density of the catalyst layer is lowered. It has also been found that such a honeycomb catalyst cannot achieve efficient contact between the exhaust gas and the catalyst due to the low density of the catalyst layer.
Therefore, as a result of intensive studies by the present inventors, by setting the average particle diameter and average aspect ratio of a zeolite having a CHA structure (hereinafter sometimes referred to as CHA-type zeolite) to a specific range, The knowledge that the said subject can be solved was acquired.
 すなわち、本発明は、CHA構造を有するゼオライトであって、SEM画像によって測定した平均粒子径が0.05μm以上、1.0μm未満であり、かつ平均アスペクト比が1.1~3.0であるゼオライトを提供する。 That is, the present invention is a zeolite having a CHA structure, having an average particle size of 0.05 μm or more and less than 1.0 μm, as measured by an SEM image, and an average aspect ratio of 1.1 to 3.0. A zeolite is provided.
 上記のような平均粒子径と平均アスペクト比を有するCHA型ゼオライトは、ハニカム触媒として用いたときに、粒子の形状が立方体以外のいわゆる異形であることから触媒層の密度を十分に高くすることができ、また、触媒層中の排ガスの流路を十分に確保できる。これにより、排ガスと該触媒との接触効率が十分に高まり、NOx浄化性能を改善することができる。平均粒子径が1.0μm以上だと、ハニカム触媒を製造した時に、触媒層の密度が低くなり、かつ触媒層中の排ガスの流路が制限されてしまう。さらに、平均アスペクト比が1.1未満では、従来の粒子形状が立方体であるときと同様に、触媒層の密度が低くなり、平均アスペクト比が3.0を超えると、ハニカム触媒を調製した時に、ゼオライトが配向しすぎ、触媒層中の排ガスの流路が制限されるため、排ガスと触媒との効率的な接触が得られず、NOx浄化性能が低いものとなる。 When used as a honeycomb catalyst, the CHA-type zeolite having the average particle diameter and average aspect ratio as described above can increase the density of the catalyst layer sufficiently because the particle shape is a so-called irregular shape other than a cube. In addition, the exhaust gas flow path in the catalyst layer can be sufficiently secured. Thereby, the contact efficiency between the exhaust gas and the catalyst is sufficiently increased, and the NOx purification performance can be improved. If the average particle diameter is 1.0 μm or more, when the honeycomb catalyst is manufactured, the density of the catalyst layer is lowered, and the exhaust gas flow path in the catalyst layer is restricted. Further, when the average aspect ratio is less than 1.1, the density of the catalyst layer is reduced as in the case where the conventional particle shape is a cube, and when the average aspect ratio exceeds 3.0, the honeycomb catalyst is prepared. Further, since the zeolite is excessively oriented and the flow path of the exhaust gas in the catalyst layer is limited, efficient contact between the exhaust gas and the catalyst cannot be obtained, and the NOx purification performance becomes low.
 本発明のゼオライトは、上記平均アスペクト比が1.15~2.70であることが好ましい。平均アスペクト比を1.15~2.70にすることで、ハニカム触媒として用いたときに、より触媒層の密度を十分に高くすることができ、NOx浄化性能を向上することができる。 The zeolite of the present invention preferably has an average aspect ratio of 1.15 to 2.70. By setting the average aspect ratio to 1.15 to 2.70, when used as a honeycomb catalyst, the density of the catalyst layer can be sufficiently increased, and the NOx purification performance can be improved.
 本発明のゼオライトは、上記平均粒子径が0.05~0.5μmであることが好ましい。SEM画像によって測定したゼオライトの平均粒子径が0.05~0.5μmであれば、ハニカム触媒中にCHA型ゼオライトを高充填することができ、NOx浄化性能をさらに高めることができる。また、ゼオライトの平均粒子径が上記範囲であれば、ハニカム触媒を作製した場合に、ハニカム触媒が空気中及び排ガス中の水分を吸脱水した際の収縮や膨張などによる変位(以下、吸水変位量と言う。)が小さくなり、SCR触媒の製造時及び触媒としての使用時にクラックが生じにくく、耐久性に優れる。 The zeolite of the present invention preferably has an average particle size of 0.05 to 0.5 μm. If the average particle diameter of the zeolite measured by the SEM image is 0.05 to 0.5 μm, the honeycomb catalyst can be highly filled with CHA-type zeolite, and the NOx purification performance can be further enhanced. If the average particle size of the zeolite is within the above range, when the honeycomb catalyst is manufactured, the displacement due to contraction or expansion when the honeycomb catalyst absorbs and dehydrates moisture in the air and exhaust gas (hereinafter referred to as the amount of water absorption displacement). ), The cracks are less likely to occur when the SCR catalyst is produced and when it is used as a catalyst, and the durability is excellent.
 本発明のゼオライトは、SiO/Al組成比(SAR)が15未満であることが好ましい。ゼオライトのSiO/Al組成比(SAR)が15未満であれば、アルミナ量が増え、それに比例して触媒として機能するCuのような金属の担持量を多くできるため、NOx浄化性能をさらに高めることができる。 The zeolite of the present invention preferably has a SiO 2 / Al 2 O 3 composition ratio (SAR) of less than 15. If the SiO 2 / Al 2 O 3 composition ratio (SAR) of the zeolite is less than 15, the amount of alumina increases, and the amount of supported metal such as Cu that functions as a catalyst can be increased in proportion to this, so NOx purification performance Can be further enhanced.
 本発明のゼオライトは、Cuが担持され、Cu/Al(モル比)が0.2~0.5であることが好ましい。Cuの担持量が上記範囲であれば、少量のゼオライトで、すなわち触媒の容積を小さくしても、高いNOx浄化性能が得られる。 The zeolite of the present invention preferably supports Cu and has a Cu / Al (molar ratio) of 0.2 to 0.5. If the supported amount of Cu is in the above range, high NOx purification performance can be obtained with a small amount of zeolite, that is, even if the volume of the catalyst is reduced.
 本発明のゼオライトは、粉末X線解析法によるX線回折スペクトルの(211)面、(104)面及び(220)面の積分強度の和が50000以上であることが好ましい。積分強度が高いほど結晶性が良好であることを示し、ゼオライトの粉末X線解析法によるX線回折スペクトルの(211)面、(104)面及び(220)面の積分強度の和が50000以上であれば、高い結晶性に基づき、NOx浄化性能をさらに改善することができる。 In the zeolite of the present invention, the sum of integral intensities of the (211) plane, (104) plane and (220) plane of the X-ray diffraction spectrum by powder X-ray analysis method is preferably 50,000 or more. The higher the integrated intensity, the better the crystallinity, and the sum of the integrated intensities of the (211) plane, (104) plane and (220) plane of the X-ray diffraction spectrum by zeolite powder X-ray analysis is 50,000 or more. If so, the NOx purification performance can be further improved based on high crystallinity.
 本発明のゼオライトの製造方法は、Si源、Al源、アルカリ源及び構造規定剤を含む原料組成物を用いてCHA構造を有するゼオライトを合成する合成工程と、上記合成工程で得られたCHA構造を有するゼオライトを微細化する微細化工程とを含む。 The method for producing a zeolite of the present invention includes a synthesis step of synthesizing a zeolite having a CHA structure using a raw material composition containing a Si source, an Al source, an alkali source and a structure directing agent, and the CHA structure obtained in the synthesis step. And a micronization step of micronizing the zeolite having
 CHA型ゼオライトは合成工程のみでは、上述した従来技術のように、形状が立方体になるため、微細化工程を行うことで、平均粒子径が0.05μm以上、1.0μm未満であり、かつ平均アスペクト比が1.1~3.0のCHA型ゼオライトを容易に得ることが可能となる。 The CHA-type zeolite has a cubic shape as in the prior art described above only in the synthesis step, and therefore the average particle size is 0.05 μm or more and less than 1.0 μm by the refinement step, and the average It becomes possible to easily obtain a CHA-type zeolite having an aspect ratio of 1.1 to 3.0.
 本発明のゼオライトの製造方法は、上記微細化工程により微細化されたCHA構造を有するゼオライトと、Si源及びアルカリ源を含む溶液とを混合し、水和処理する再結晶工程をさらに含むことが好ましい。再結晶工程を行うことで、微細化工程で一部破壊されたCHA型ゼオライトの結晶構造を修復することが可能となり、NOx浄化性能を向上することができる。 The method for producing a zeolite of the present invention may further include a recrystallization step of mixing a zeolite having a CHA structure refined by the above-described refinement step with a solution containing a Si source and an alkali source and hydrating. preferable. By performing the recrystallization process, it becomes possible to repair the crystal structure of the CHA-type zeolite partially destroyed in the refinement process, and the NOx purification performance can be improved.
 本発明のゼオライトの製造方法は、上記微細化工程が、湿式ビーズミルを用いてCHA構造を有するゼオライトを湿式粉砕する工程であることが好ましい。湿式ビーズミルを用いることで、CHA型ゼオライトの結晶性の低下を抑えることが可能となる。 In the method for producing zeolite of the present invention, it is preferable that the micronization step is a step of wet-grinding a zeolite having a CHA structure using a wet bead mill. By using a wet bead mill, it is possible to suppress a decrease in crystallinity of the CHA-type zeolite.
 本発明のハニカム触媒は、複数の長手方向に延びる貫通孔が隔壁を隔てて並設されたハニカムユニットを備え、上記ハニカムユニットは、ゼオライトと無機バインダとを含み、上記ゼオライトが上記本発明のゼオライトである。本発明のハニカム触媒が本発明のゼオライトを用いて構成されることから、NOx浄化性能の高いハニカムユニットからなるハニカム触媒を得ることができる。 The honeycomb catalyst of the present invention includes a honeycomb unit in which a plurality of longitudinally extending through holes are arranged in parallel with a partition wall therebetween, and the honeycomb unit includes a zeolite and an inorganic binder, and the zeolite is the zeolite of the present invention. It is. Since the honeycomb catalyst of the present invention is configured using the zeolite of the present invention, a honeycomb catalyst composed of a honeycomb unit having high NOx purification performance can be obtained.
 また、本発明の排ガス浄化装置は、本発明のハニカム触媒の外周部に保持シール材を配置し、金属容器にキャニングしてなる。本発明の排ガス浄化装置は本発明のハニカム触媒を備えていることから、NOxの浄化性能に優れる。 In addition, the exhaust gas purifying apparatus of the present invention is formed by placing a holding sealing material on the outer peripheral portion of the honeycomb catalyst of the present invention and canning the metal container. Since the exhaust gas purification apparatus of the present invention includes the honeycomb catalyst of the present invention, it is excellent in NOx purification performance.
 以上のように本発明によれば、ハニカム触媒として用いたときに、触媒層の密度を十分に高くすることができ、かつ、排ガスと該触媒との接触効率も十分に高め、これによりNOx浄化性能を著しく改善し得るゼオライトを提供することができる。
 また、本発明によれば、該ゼオライトを用い、NOx浄化性能に優れたハニカム触媒及び排ガス浄化装置を提供することができる。
As described above, according to the present invention, when used as a honeycomb catalyst, the density of the catalyst layer can be sufficiently increased, and the contact efficiency between the exhaust gas and the catalyst can be sufficiently increased, thereby purifying NOx. Zeolite can be provided that can significantly improve performance.
Further, according to the present invention, it is possible to provide a honeycomb catalyst and an exhaust gas purification device that are excellent in NOx purification performance using the zeolite.
図1は、本発明のハニカム触媒の一例を模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing an example of the honeycomb catalyst of the present invention. 図2は、本発明の排ガス浄化装置の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of the exhaust gas purifying apparatus of the present invention. 図3は、本発明のハニカム触媒の別の一例を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing another example of the honeycomb catalyst of the present invention. 図4は、図3に示すハニカム触媒を構成するハニカムユニットの一例を模式的に示す斜視図である。Fig. 4 is a perspective view schematically showing an example of a honeycomb unit constituting the honeycomb catalyst shown in Fig. 3. 図5は、実施例1の合成工程で得られたCHA型ゼオライトのXRDパターンを示すチャートである。FIG. 5 is a chart showing the XRD pattern of the CHA-type zeolite obtained in the synthesis step of Example 1. 図6は、実施例1の微細化工程で得られたCHA型ゼオライトのXRDパターンを示すチャートである。FIG. 6 is a chart showing the XRD pattern of the CHA-type zeolite obtained in the refinement process of Example 1. 図7は、実施例1の再結晶工程で得られたCHA型ゼオライトのXRDパターンを示すチャートである。FIG. 7 is a chart showing an XRD pattern of the CHA-type zeolite obtained in the recrystallization process of Example 1. 図8は、実施例1の再結晶工程で得られたCHA型ゼオライトのSEM写真である。FIG. 8 is an SEM photograph of the CHA-type zeolite obtained in the recrystallization process of Example 1.
(発明の詳細な説明)
 以下、本発明について具体的に説明する。しかしながら、本発明は、以下の記載に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。
 尚、本明細書において、「質量」は「重量」のことを意味するものとする。
(Detailed description of the invention)
Hereinafter, the present invention will be specifically described. However, the present invention is not limited to the following description, and can be appropriately modified and applied without departing from the scope of the present invention.
In the present specification, “mass” means “weight”.
 本発明のゼオライトは、CHA構造を有し、SEM画像によって測定した平均粒子径が0.05μm以上、1.0μm未満であり、かつ平均アスペクト比が1.1~3.0であることを特徴とする。 The zeolite of the present invention has a CHA structure, has an average particle size of 0.05 μm or more and less than 1.0 μm as measured by an SEM image, and an average aspect ratio of 1.1 to 3.0. And
 なお、本発明により製造されるゼオライトは、国際ゼオライト学会(International Zeolite Association:IZA)において、CHAという構造コードで命名され、分類されており、天然に産出するチャバサイト(chabazite)と同等の結晶構造を有するゼオライトである。 The zeolite produced by the present invention is named and classified by the structure code CHA in the International Zeolite Association (IZA), and has a crystal structure equivalent to that of naturally occurring chabazite. It is a zeolite having
 ゼオライトの平均粒子径と平均アスペクト比は、走査型電子顕微鏡(SEM、日立ハイテク社製、S-4800)を用いて、10個の粒子のSEM写真を20000倍で撮影し、平面上に投影した粒子像を長方形で囲んだ時の最小長方形(外接長方形と呼ばれる)の長辺と、短辺の長さを測定し、それぞれの長辺と短辺の平均((長辺+短辺)/2)を算出し、これを粒子径とし、また、長辺と短辺の比(長辺/短辺)を算出し、これをアスペクト比として、該10個の平均をそれぞれ、平均粒子径及び平均アスペクト比と定義する。なお、測定条件は、加速電圧:1kV、エミッション:10μA、WD:2.2mm以下とする。 The average particle diameter and average aspect ratio of the zeolite were measured using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800) at a magnification of 20000 times and projected on a plane. The long side and short side length of the smallest rectangle (called circumscribed rectangle) when the particle image is enclosed by a rectangle are measured, and the average of each long side and short side ((long side + short side) / 2 ) As the particle diameter, and the ratio of the long side to the short side (long side / short side) is calculated, and this is used as the aspect ratio, and the average of the 10 particles is average particle diameter and average Defined as aspect ratio. Measurement conditions are as follows: acceleration voltage: 1 kV, emission: 10 μA, WD: 2.2 mm or less.
 本発明において、ゼオライトの平均粒子径は、0.05μm以上、1.0μm未満である。SEM画像によって測定した平均粒子径が0.05μm以上であると、ハニカム触媒を製造した時に、触媒層中の排ガスの流路を十分に確保することができ、1.0μm未満であると、触媒層の密度が高く、かつ触媒層中の排ガスの流路が制限されることがない。ゼオライトの平均粒子径は、好ましくは0.05~0.5μmであり、より好ましくは0.1~0.5μmである。 In the present invention, the average particle diameter of zeolite is 0.05 μm or more and less than 1.0 μm. When the average particle diameter measured by the SEM image is 0.05 μm or more, when the honeycomb catalyst is manufactured, the exhaust gas flow path in the catalyst layer can be sufficiently secured, and when it is less than 1.0 μm, the catalyst The density of the layer is high and the flow path of the exhaust gas in the catalyst layer is not restricted. The average particle size of the zeolite is preferably 0.05 to 0.5 μm, more preferably 0.1 to 0.5 μm.
 本発明のゼオライトは平均アスペクト比が1.1~3.0である。平均アスペクト比が1よりも大きいということは、ゼオライトの粒子が立方体ではないことを意味する。ゼオライトが立方体以外の異形であれば、ハニカム触媒として用いたときに、ゼオライト同士の密着性が高まり、ハニカム触媒の密度を高くすることができる。
 ゼオライトの平均アスペクト比が1.1以上であると、ハニカム触媒を製造した時に、触媒層の密度を高くすることができ、3.0以下であると、ゼオライトが配向しすぎ、触媒層中の排ガスの流路が制限されることがなく、排ガスと触媒との効率的な接触を得ることができる。ゼオライトの平均アスペクト比は、好ましくは1.15~2.70であり、より好ましくは1.20~2.50である。
The zeolite of the present invention has an average aspect ratio of 1.1 to 3.0. An average aspect ratio greater than 1 means that the zeolite particles are not cubic. If the zeolite has an irregular shape other than a cubic shape, when used as a honeycomb catalyst, the adhesion between the zeolites increases, and the density of the honeycomb catalyst can be increased.
When the average aspect ratio of the zeolite is 1.1 or more, when the honeycomb catalyst is manufactured, the density of the catalyst layer can be increased, and when it is 3.0 or less, the zeolite is excessively oriented, The exhaust gas flow path is not limited, and efficient contact between the exhaust gas and the catalyst can be obtained. The average aspect ratio of the zeolite is preferably 1.15 to 2.70, more preferably 1.20 to 2.50.
 ゼオライトの結晶構造の解析は、X線回折(XRD)装置を用いて行うことができる。CHA型ゼオライトは、粉末X線解析法によるX線回折スペクトルで、2θ=20.7°付近、25.1°付近、26.1°付近にそれぞれ、CHA型ゼオライト結晶の(211)面、(104)面及び(220)面に相当するピークが現れる。 The crystal structure of zeolite can be analyzed using an X-ray diffraction (XRD) apparatus. The CHA-type zeolite is an X-ray diffraction spectrum by a powder X-ray analysis method, and the (211) plane of the CHA-type zeolite crystals at 2θ = 20.7 °, 25.1 °, and 26.1 °, respectively ( The peaks corresponding to the (104) plane and the (220) plane appear.
 XRD測定は、X線回折装置(リガク社製 UltimaIV)を用いて行う。なお、測定条件は、次の通りとする。
線源:CuKα(λ=0.154nm)、測定法:FT法、回折角:2θ=5~48°、ステップ幅:0.02°、積算時間:1秒、発散スリット、散乱スリット:2/3°、発散縦制限スリット:10mm、加速電圧:40kV、加速電流:40mA。
 XRD測定前後でサンプル重量が0.1%以上の変化がないようにする。得られたXRDデータは、粉末X線回折パターン総合解析ソフトJADE6.0を用いてピークサーチを行い、さらに各ピークの半値幅と積分強度を算出する。なお、ピークサーチの条件は次の通りとする。
フィルタータイプ:放物線フィルター、Kα2ピークの消去:あり、ピーク位置定義:ピークトップ、閾値σ:3、ピーク強度%カットオフ:0.1、BG決定の範囲:1、BG平均化のポイント数:7。
 得られたデータから、ゼオライトの(211)面(2θ=20.7°付近)、(104)面(2θ=25.1°付近)、(220)面(2θ=26.1°付近)の積分強度の和Xを求めることができる。
 なお、ゼオライトの(211)面、(104)面、(220)面のピークの積分強度を用いるのは、サンプルの吸水の影響が小さいためである。
XRD measurement is performed using an X-ray diffractometer (Uriga IV manufactured by Rigaku Corporation). The measurement conditions are as follows.
Radiation source: CuKα (λ = 0.154 nm), measurement method: FT method, diffraction angle: 2θ = 5 to 48 °, step width: 0.02 °, integration time: 1 second, divergence slit, scattering slit: 2 / 3 °, divergence length limiting slit: 10 mm, acceleration voltage: 40 kV, acceleration current: 40 mA.
The sample weight should not be changed by 0.1% or more before and after the XRD measurement. The obtained XRD data is subjected to peak search using the powder X-ray diffraction pattern comprehensive analysis software JADE 6.0, and the half width and integrated intensity of each peak are calculated. The peak search conditions are as follows.
Filter type: parabolic filter, Kα2 peak elimination: yes, peak position definition: peak top, threshold σ: 3, peak intensity% cutoff: 0.1, BG determination range: 1, BG averaging points: 7 .
From the obtained data, the (211) plane (near 2θ = 20.7 °), (104) plane (near 2θ = 25.1 °), (220) plane (near 2θ = 26.1 °) of the zeolite. it can be the sum X 0 of the integrated intensity.
The reason why the integrated intensity of the peaks of the (211) plane, (104) plane, and (220) plane of zeolite is used is that the influence of water absorption of the sample is small.
 本発明のゼオライトは、CHA型ゼオライトの平面表面の(211)面、(104)面及び(220)面の積分強度の和Xが50000以上であるのが好ましく、より好ましくは55000~70000である。積分強度の和が50000以上であると、結晶性が高く、NOx浄化性能を高くすることができるため好ましい。 In the zeolite of the present invention, the sum X 0 of integral intensities of the (211) plane, (104) plane and (220) plane of the planar surface of the CHA zeolite is preferably 50000 or more, more preferably 55000 to 70000. is there. A sum of integral intensities of 50000 or more is preferable because of high crystallinity and high NOx purification performance.
 本発明のゼオライトは、SiO/Al組成比(SAR)が15未満であることが好ましい。SiO/Al組成比とは、ゼオライト中のAlに対するSiOのモル比(SAR)を意味している。その組成比SiO/Alが15未満であることにより、ゼオライトの酸点を充分な数とすることができ、その酸点を利用して金属イオンとイオン交換することができ、Cuのような触媒金属を多く担持することができるので、NOxの浄化性能に優れている。
 より好ましいSiO/Al組成比は、10~14.9である。
 なおゼオライトのモル比(SiO/Al)は、蛍光X線分析(XRF)を用いて測定することができる。
The zeolite of the present invention preferably has a SiO 2 / Al 2 O 3 composition ratio (SAR) of less than 15. The composition ratio of SiO 2 / Al 2 O 3 means the molar ratio (SAR) of SiO 2 to Al 2 O 3 in the zeolite. When the composition ratio SiO 2 / Al 2 O 3 is less than 15, the acid sites of the zeolite can be made a sufficient number, and the acid sites can be used for ion exchange with metal ions. As a result, it is possible to carry a large amount of catalytic metal such as the above, and therefore it is excellent in NOx purification performance.
A more preferable SiO 2 / Al 2 O 3 composition ratio is 10 to 14.9.
The molar ratio of zeolite (SiO 2 / Al 2 O 3 ) can be measured using fluorescent X-ray analysis (XRF).
 本発明において、Cuが担持されたゼオライトは、Cu/Al(モル比)が0.2~0.5であることが好ましい。
 Cuの担持量がこの範囲であれば、少量のゼオライトで、高いNOx浄化性能が得られる。なお、上記モル比が0.5を超えると高温でアンモニア酸化が促進され、NOxの浄化性能が低下する場合がある。
In the present invention, it is preferable that the zeolite supporting Cu has a Cu / Al (molar ratio) of 0.2 to 0.5.
When the supported amount of Cu is within this range, high NOx purification performance can be obtained with a small amount of zeolite. If the molar ratio exceeds 0.5, ammonia oxidation is promoted at a high temperature, and the NOx purification performance may be lowered.
 本発明のゼオライトは、例えば、Si源、Al源、アルカリ源及び構造規定剤を含む原料組成物を用いてCHA構造を有するゼオライトを合成する合成工程と、上記合成工程で得られたCHA構造を有するゼオライトを微細化する微細化工程とを経て製造することができる。 The zeolite of the present invention includes, for example, a synthesis step of synthesizing a zeolite having a CHA structure using a raw material composition containing a Si source, an Al source, an alkali source, and a structure directing agent, and the CHA structure obtained in the synthesis step. It can manufacture through the refinement | miniaturization process which refines | miniaturizes the zeolite which has.
<合成工程>
 本発明の合成工程においては、まず、Si源、Al源、アルカリ源、水及び構造規定剤からなる原料組成物を準備する。
<Synthesis process>
In the synthesis process of the present invention, first, a raw material composition comprising a Si source, an Al source, an alkali source, water and a structure directing agent is prepared.
 Si源とは、ゼオライトのシリコン成分の原料となる化合物、塩及び組成物をいう。
 Si源としては、例えば、コロイダルシリカ、無定型シリカ、珪酸ナトリウム、テトラエチルオルトシリケート、アルミノシリケートゲル等を用いることができ、これらを二種以上併用してもよい。これらの中では、コロイダルシリカが望ましい。
The Si source refers to a compound, a salt, and a composition that are raw materials for the silicon component of zeolite.
As the Si source, for example, colloidal silica, amorphous silica, sodium silicate, tetraethylorthosilicate, aluminosilicate gel, and the like can be used, and two or more of these may be used in combination. Of these, colloidal silica is desirable.
 Al源としては、例えば、硫酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、塩化アルミニウム、アルミノ-シリケートゲル、乾燥水酸化アルミニウムゲル等が挙げられる。これらの中では、乾燥水酸化アルミニウムゲルが好ましい。 Examples of the Al source include aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, alumino-silicate gel, and dry aluminum hydroxide gel. Of these, dry aluminum hydroxide gel is preferred.
 本発明においては、目的とするCHA型ゼオライトを製造するためには、ほぼ製造されるゼオライトのモル比(SiO/Al)と同じモル比のSi源、Al源を用いることが望ましく、原料組成物中のモル比(SiO/Al)を、15以下とすることが望ましく、10~15とすることがより望ましい。 In the present invention, in order to produce the target CHA-type zeolite, it is desirable to use a Si source and an Al source having the same molar ratio as that of the zeolite to be produced (SiO 2 / Al 2 O 3 ). The molar ratio (SiO 2 / Al 2 O 3 ) in the raw material composition is preferably 15 or less, and more preferably 10 to 15.
 本発明のゼオライトの製造方法において、アルカリ源としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化リチウム、アルミン酸塩及び珪酸塩中のアルカリ成分、アルミノシリケートゲル中のアルカリ成分等を用いることができ、これらを二種以上併用してもよい。これらの中では、水酸化カリウム、水酸化ナトリウム、水酸化リチウムが望ましい。ゼオライトの単相を得るためには特に水酸化カリウムと水酸化ナトリウムを併用することが好ましい。 In the method for producing a zeolite of the present invention, examples of the alkali source include sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium hydroxide, aluminate, and alkali components in silicate, aluminosilicate gel. The alkali component in the inside can be used, and two or more of these may be used in combination. Of these, potassium hydroxide, sodium hydroxide, and lithium hydroxide are desirable. In order to obtain a single phase of zeolite, it is particularly preferable to use potassium hydroxide and sodium hydroxide in combination.
 本発明のゼオライトの製造方法において、水の量は、特に限定されるものではないが、Si源のSi及びAl源のAlの合計モル数に対する水のモル数の比(HOモル数/Si及びAlの合計モル数)が12~30であることが望ましく、Si源のSi及びAl源のAlの合計モル数に対する水のモル数の比(HOモル数/Si及びAlの合計モル数)が15~25であることがより望ましい。 In the method for producing a zeolite of the present invention, the amount of water is not particularly limited, but the ratio of the number of moles of water to the total number of moles of Si of Si source and Al of Al source (H 2 O mole number / The total number of moles of Si and Al is preferably 12-30, and the ratio of the number of moles of water to the total number of moles of Si of the Si source and Al of the Si source (H 2 O moles / total of Si and Al) The number of moles) is more preferably 15-25.
 構造規定剤(以下、SDAとも記載する。)とは、ゼオライトの細孔径や結晶構造を規定する有機分子を示す。構造規定剤の種類等によって、得られるゼオライトの構造等を制御することができる。
 構造規定剤としては、N,N,N-トリアルキルアダマンタンアンモニウムをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩、硫酸塩及び硝酸塩;及びN,N,N-トリメチルベンジルアンモニウムイオン、N-アルキル-3-キヌクリジノールイオン、又はN,N,N-トリアルキルエキソアミノノルボルナンをカチオンとする水酸化物、ハロゲン化物、炭酸塩、メチルカーボネート塩、硫酸塩及び硝酸塩からなる群から選ばれる少なくとも一種を用いることができる。これらの中では、N,N,N-トリメチルアダマンタンアンモニウム水酸化物(以下、TMAAOHとも記載する。)、N,N,N-トリメチルアダマンタンアンモニウムハロゲン化物、N,N,N-トリメチルアダマンタンアンモニウム炭酸塩、N,N,N-トリメチルアダマンタンアンモニウムメチルカーボネート塩及びN,N,N-トリメチルアダマンタンアンモニウム硫酸塩からなる群から選ばれる少なくとも一種を用いることが望ましく、TMAAOHを用いることがより望ましい。
The structure-directing agent (hereinafter also referred to as SDA) refers to an organic molecule that defines the pore diameter and crystal structure of zeolite. The structure of the obtained zeolite can be controlled by the type of the structure-directing agent.
Structure directing agents include hydroxides, halides, carbonates, methyl carbonates, sulfates and nitrates with N, N, N-trialkyladamantanammonium as a cation; and N, N, N-trimethylbenzylammonium ions , N-alkyl-3-quinuclidinol ions, or hydroxides, halides, carbonates, methyl carbonate salts, sulfates and nitrates having a cation of N, N, N-trialkylexoaminonorbornane as a cation At least one selected from can be used. Among these, N, N, N-trimethyladamantanammonium hydroxide (hereinafter also referred to as TMAAOH), N, N, N-trimethyladamantanammonium halide, N, N, N-trimethyladamantanammonium carbonate It is preferable to use at least one selected from the group consisting of N, N, N-trimethyladamantanammonium methyl carbonate and N, N, N-trimethyladamantanammonium sulfate, and it is more preferable to use TMAAOH.
 本発明の合成工程においては、原料組成物に、さらにゼオライトの種結晶を加えてもよい。種結晶を用いることにより、ゼオライトの結晶化速度が速くなり、ゼオライト製造における時間が短縮でき、収率が向上する。 In the synthesis step of the present invention, zeolite seed crystals may be further added to the raw material composition. By using the seed crystal, the crystallization speed of the zeolite is increased, the time for producing the zeolite can be shortened, and the yield is improved.
 ゼオライトの種結晶としては、CHA型ゼオライトを用いることが望ましい。 As the zeolite seed crystal, it is desirable to use CHA-type zeolite.
 ゼオライトの種結晶の添加量は、少ない方が望ましいが、反応速度や不純物の抑制効果等を考慮すると、原料組成物に含まれるシリカ成分に対して、0.1~20質量%であることが望ましく、0.5~15質量%であることがより望ましい。0.1質量%未満であると、ゼオライトの結晶化速度を向上する寄与が小さく、20質量%を超えると、合成して得られるゼオライトに不純物が入りやすくなる。 The amount of zeolite seed crystals added is preferably small, but considering the reaction rate and the effect of suppressing impurities, it should be 0.1 to 20% by mass with respect to the silica component contained in the raw material composition. Desirably, 0.5 to 15% by mass is more desirable. If it is less than 0.1% by mass, the contribution to improving the crystallization rate of the zeolite is small, and if it exceeds 20% by mass, impurities are likely to enter the zeolite obtained by synthesis.
 本発明の合成工程においては、準備した原料組成物を反応させることにより、ゼオライトを合成する。具体的には、原料組成物を水熱合成することによりゼオライトを合成することが望ましい。 In the synthesis step of the present invention, zeolite is synthesized by reacting the prepared raw material composition. Specifically, it is desirable to synthesize zeolite by hydrothermal synthesis of the raw material composition.
 水熱合成に用いられる反応容器は、既知の水熱合成に用いられるものであれば特に限定されず、オートクレーブなどの耐熱耐圧容器であればよい。反応容器に原料組成物を投入して密閉して加熱することにより、ゼオライトを結晶化させることができる。 The reaction vessel used for hydrothermal synthesis is not particularly limited as long as it is used for known hydrothermal synthesis, and may be a heat and pressure resistant vessel such as an autoclave. The zeolite can be crystallized by putting the raw material composition into the reaction vessel, sealing and heating.
 ゼオライトを合成する際、原料混合物は静置した状態でもよいが、攪拌混合した状態であることが望ましい。 When synthesizing the zeolite, the raw material mixture may be in a stationary state, but is preferably in a state of being stirred and mixed.
 本発明のゼオライトを合成する際の加熱温度は、100~200℃であることが望ましく、120~180℃であることがより望ましい。加熱温度が100℃未満であると、結晶化速度が遅くなり、収率が低下しやすくなる。一方、加熱温度が200℃を超えると、不純物が発生しやすくなる。 The heating temperature when synthesizing the zeolite of the present invention is preferably 100 to 200 ° C., more preferably 120 to 180 ° C. When the heating temperature is less than 100 ° C., the crystallization rate becomes slow, and the yield tends to decrease. On the other hand, when the heating temperature exceeds 200 ° C., impurities are likely to be generated.
 本発明の合成工程における加熱時間は、10~200時間であることが望ましい。加熱時間が10時間未満であると、未反応の原料が残存し、収率が低下しやすくなる。一方、加熱時間が200時間を超えても、収率や結晶性の向上がほとんど見られない。 The heating time in the synthesis process of the present invention is preferably 10 to 200 hours. If the heating time is less than 10 hours, unreacted raw materials remain and the yield tends to decrease. On the other hand, even when the heating time exceeds 200 hours, the yield and crystallinity are hardly improved.
 合成工程における圧力は特に限定されず、密閉容器中に入れた原料組成物を上記温度範囲に加熱したときに生じる圧力で充分であるが、必要に応じて、窒素ガスなどの不活性ガスを加えて昇圧してもよい。 The pressure in the synthesis process is not particularly limited, and the pressure generated when the raw material composition placed in a closed container is heated to the above temperature range is sufficient, but if necessary, an inert gas such as nitrogen gas is added. May be boosted.
 合成工程により得られたゼオライトは、充分に放冷し、固液分離し、充分量の水で洗浄することが望ましい。 It is desirable that the zeolite obtained in the synthesis step is sufficiently cooled, separated into solid and liquid, and washed with a sufficient amount of water.
 合成工程により得られたゼオライトは、細孔内にSDAを含有しているため、必要に応じてこれを除去してもよい。例えば、酸性溶液又はSDA分解成分を含む薬液を用いた液相処理、レジンなどを用いた交換処理、熱分解処理などにより、SDAを除去することができる。 Since the zeolite obtained by the synthesis process contains SDA in the pores, it may be removed if necessary. For example, SDA can be removed by a liquid phase treatment using an acidic solution or a chemical solution containing an SDA decomposition component, an exchange treatment using a resin, a thermal decomposition treatment, or the like.
 以上の合成工程により得られるCHA型ゼオライトの平均粒子径は、例えば0.2~5.0μmとなる。 The average particle size of the CHA-type zeolite obtained by the above synthesis process is, for example, 0.2 to 5.0 μm.
<微細化工程>
 本発明の微細化工程では、合成工程で得られたCHA型ゼオライトを、所望の平均粒子径及び平均アスペクト比となるように微細化する工程である。具体的には、平均粒子径が0.05μm以上1.0μm未満、好ましくは0.05~0.5μm、かつ平均アスペクト比が1.1~3.0、好ましくは1.15~2.70、より好ましくは1.20~2.50となるまで粉砕して微細化する。
<Refining process>
In the refinement | miniaturization process of this invention, it is the process which refines | miniaturizes the CHA type zeolite obtained by the synthesis | combination process so that it may become a desired average particle diameter and average aspect-ratio. Specifically, the average particle size is 0.05 μm or more and less than 1.0 μm, preferably 0.05 to 0.5 μm, and the average aspect ratio is 1.1 to 3.0, preferably 1.15 to 2.70. More preferably, it is pulverized and refined until it becomes 1.20 to 2.50.
 本発明の微細化工程で採用される微細化手段としては、合成工程で得られたCHA型ゼオライトを所望の粒子径及び平均アスペクト比まで粉砕できる装置を適宜用いればよく、特に制限されないが、乾式で行ってもよく湿式で行ってもよく、ボールミル、ビーズミル、ジェットミル等が挙げられる。本発明では湿式ビーズミルを用いる湿式粉砕を採用するのが好ましい。なお、湿式ビーズミルは被粉砕物の粗粉末とメディアとしてのビーズとを、液体からなる分散媒とともに粉砕室に装入し、該粉砕室内で回転可能な回転翼を高速回転させることによりビーズを撹拌し、ビーズにより生じる摩擦力やせん断力等を被粉砕物に加えることにより、被粉砕物を微細化するものである。 The refinement means employed in the refinement process of the present invention is not particularly limited as long as an apparatus that can pulverize the CHA-type zeolite obtained in the synthesis process to a desired particle size and average aspect ratio. It may be carried out by wet or wet, and examples thereof include a ball mill, a bead mill, and a jet mill. In the present invention, wet grinding using a wet bead mill is preferably employed. In the wet bead mill, the coarse powder of the material to be crushed and the beads as a medium are placed in a pulverization chamber together with a liquid dispersion medium, and the beads are agitated by rotating a rotating blade rotating in the pulverization chamber at a high speed. Then, the object to be pulverized is refined by applying frictional force or shearing force generated by the beads to the object to be pulverized.
 微細化工程が湿式ビーズミルを用いて行われる場合、使用されるビーズは、ジルコニア及びアルミナからなる群から選択される少なくとも1つであることが好ましく、中でもジルコニアを用いることが好ましい。 When the micronization step is performed using a wet bead mill, the beads used are preferably at least one selected from the group consisting of zirconia and alumina, and zirconia is particularly preferable.
 本発明のゼオライトの製造方法において、ビーズの粒径は、CHA型ゼオライトの平均粒子径を1.0μm未満にするために、30~1000μmであることが好ましく、より好ましくは50~500μmである。 In the method for producing zeolite of the present invention, the particle size of the beads is preferably 30 to 1000 μm, more preferably 50 to 500 μm, so that the average particle size of the CHA-type zeolite is less than 1.0 μm.
 ビーズは、CHA型ゼオライトの体積に対して0.5~5倍用いることが好ましく、好ましくは2~4倍である。ビーズの使用量がこの範囲であると、短時間で狙いの平均粒子径まで微細化することが可能となる。 The beads are preferably used 0.5 to 5 times, preferably 2 to 4 times the volume of the CHA-type zeolite. When the amount of beads used is within this range, it is possible to reduce the size to a target average particle size in a short time.
 本発明のゼオライトの製造方法において、湿式ビーズミルの運転条件として、湿式ビーズミルの回転数は、1000~4200rpmであることが好ましく、1500~3500rpmであることがより好ましい。また、粉砕時間は、5~60分であることが好ましく、10~45分であることがより好ましい。湿式ビーズミルの回転数及び粉砕時間が上記範囲であると、粒径及び平均アスペクト比の制御が十分に実行でき所望の平均粒子径及び平均アスペクト比のゼオライトを製造することができるとともに、良好な生産性を確保することができる。 In the method for producing a zeolite of the present invention, as the operation condition of the wet bead mill, the rotational speed of the wet bead mill is preferably 1000 to 4200 rpm, and more preferably 1500 to 3500 rpm. The pulverization time is preferably 5 to 60 minutes, more preferably 10 to 45 minutes. When the rotational speed and grinding time of the wet bead mill are within the above ranges, the control of the particle diameter and the average aspect ratio can be sufficiently performed, and a zeolite having a desired average particle diameter and average aspect ratio can be produced, and a good production can be achieved. Sex can be secured.
 分散媒としては、水が挙げられ、湿式ビーズミルに導入する分散媒の量は、CHA型ゼオライトの量に対して体積換算で2~10倍である。 Examples of the dispersion medium include water, and the amount of the dispersion medium introduced into the wet bead mill is 2 to 10 times in terms of volume with respect to the amount of the CHA-type zeolite.
 以上の条件を採用することにより、平均粒子径が0.05μm以上、1.0μm未満であり、かつ平均アスペクト比が1.1~3.0であるゼオライトを、その結晶構造を極端に損なわせることなく、得ることができる。 By adopting the above conditions, the crystal structure of the zeolite having an average particle diameter of 0.05 μm or more and less than 1.0 μm and an average aspect ratio of 1.1 to 3.0 is extremely impaired. Can be obtained without.
 本発明において、上記工程で得られたCHA型ゼオライトを、Si源及びアルカリ源を含む溶液とを混合し、水和処理することに再結晶させることが好ましい。この再結晶工程を行うことにより、ゼオライトの結晶構造を修復することができる。 In the present invention, it is preferable to recrystallize the CHA-type zeolite obtained in the above step by mixing it with a solution containing a Si source and an alkali source and subjecting it to a hydration treatment. By performing this recrystallization step, the crystal structure of the zeolite can be repaired.
<再結晶工程>
 本発明の再結晶工程に用いるSi源及びアルカリ源を含む溶液(以下、再結晶用溶液と言う。)は、水を溶媒として、Si源を0.03~0.5mol/L、アルカリ源を0.04~0.7mol/L含む溶液を使用することができる。Si源、アルカリ源としては、上記合成工程で列挙したものを用いることができる。
 また、再結晶用溶液には、Al源を含んでもよく、Al源としては上記合成工程で列挙したものを用いることができる。
 さらにまた、上記合成工程におけるSi源、Al源、アルカリ源及び構造規定剤を含む原料組成物と同じ組成を有する溶液を使用してもよい。
 これとは別に再結晶用溶液は、上記合成工程終了後にCHA型ゼオライトと取り出した後の反応液の残液をそのまま使用することもでき、その残液を1~5倍に濃縮、1/3~1倍に希釈して使用することもできる。
<Recrystallization process>
A solution containing an Si source and an alkali source (hereinafter referred to as a recrystallization solution) used in the recrystallization process of the present invention is prepared by using water as a solvent and an Si source of 0.03 to 0.5 mol / L and an alkali source of A solution containing 0.04 to 0.7 mol / L can be used. As the Si source and the alkali source, those listed in the above synthesis step can be used.
The recrystallization solution may contain an Al source. As the Al source, those listed in the above synthesis step can be used.
Furthermore, you may use the solution which has the same composition as the raw material composition containing the Si source in the said synthetic | combination process, Al source, an alkali source, and a structure-directing agent.
Separately from this, the recrystallization solution can be used as it is after the completion of the above synthesis step, the CHA-type zeolite, and the residual liquid of the reaction liquid after removal, and the residual liquid is concentrated 1 to 5 times. It can be used by diluting up to 1-fold.
 微細化されたCHA型ゼオライトと、再結晶用溶液との混合割合は、CHA型ゼオライトの質量を1としたとき、再結晶用溶液は例えば1~12であり、好ましくは1~8である(以下、固液比と言う。)。CHA型ゼオライトと再結晶用溶液の質量固液比を1~12とすることで、比較的短時間で、結晶構造を修復することができる。 The mixing ratio of the refined CHA-type zeolite and the recrystallization solution is, for example, 1 to 12, preferably 1 to 8, when the mass of the CHA zeolite is 1. Hereinafter referred to as the solid-liquid ratio.) By setting the mass-solid-liquid ratio of the CHA-type zeolite and the recrystallization solution to 1 to 12, the crystal structure can be restored in a relatively short time.
 本発明の再結晶工程における水和処理は、例えば、合成工程における原料組成物の水熱合成と同じ条件を採用することができる。 For the hydration treatment in the recrystallization step of the present invention, for example, the same conditions as in the hydrothermal synthesis of the raw material composition in the synthesis step can be adopted.
 以上のような再結晶工程により、微細化工程で損なわれたCHA型ゼオライトの結晶構造が修復され、その結晶性を十分に高めることができる。 By the recrystallization process as described above, the crystal structure of the CHA-type zeolite damaged in the refinement process is repaired, and the crystallinity can be sufficiently enhanced.
 なお、再結晶工程後のCHA型ゼオライトの平均粒子径は、微細化工程後で得られたCHA型ゼオライトの平均粒子径とほぼ同じである。 Note that the average particle size of the CHA-type zeolite after the recrystallization step is almost the same as the average particle size of the CHA-type zeolite obtained after the refining step.
<Cuイオン交換>
 本発明においては、CHA型ゼオライトに対し、Cuイオン交換を行うことが好ましい。
 Cuイオン交換方法としては、酢酸銅水溶液、硝酸銅水溶液、硫酸銅水溶液及び塩化銅水溶液から選ばれる一種の水溶液にCHA型ゼオライトを浸漬することで、行うことができる。これらのうち、酢酸銅水溶液を用いることが好ましい。一度で多量のCuを担持することができるためである。例えば、銅濃度が0.1~2.5質量%の酢酸銅(II)水溶液を溶液温度が室温~50℃、大気圧にてイオン交換を行うことで、CHA型ゼオライトにCuを担持できる。
<Cu ion exchange>
In the present invention, it is preferable to perform Cu ion exchange on the CHA-type zeolite.
The Cu ion exchange method can be carried out by immersing CHA-type zeolite in a kind of aqueous solution selected from an aqueous copper acetate solution, an aqueous copper nitrate solution, an aqueous copper sulfate solution, and an aqueous copper chloride solution. Of these, it is preferable to use an aqueous copper acetate solution. This is because a large amount of Cu can be supported at one time. For example, Cu can be supported on the CHA-type zeolite by ion exchange of a copper (II) acetate aqueous solution having a copper concentration of 0.1 to 2.5 mass% at a solution temperature of room temperature to 50 ° C. and atmospheric pressure.
 Cuイオン交換を行った場合、得られたCuを担持するゼオライトのCu/Al(モル比)が0.2~0.5であるのが好ましく、0.25~0.48であるのがより好ましい。
 Cu/Al(モル比)が0.2以上であることにより、少量のゼオライトで高いNOx浄化性能を得ることができる。また該モル比が0.5以下であることにより、高温でのアンモニア酸化によりNOx浄化性能が低下することを防止できる。Cuの担持量はICP発光分光分析(ICP-AES)により測定することができる。Al量は前述した蛍光X線分析装置を用いて測定し、Cu/Alモル比を算出することができる。
When Cu ion exchange is performed, the obtained Cu-supporting zeolite preferably has a Cu / Al (molar ratio) of 0.2 to 0.5, more preferably 0.25 to 0.48. preferable.
When the Cu / Al (molar ratio) is 0.2 or more, high NOx purification performance can be obtained with a small amount of zeolite. Further, when the molar ratio is 0.5 or less, it is possible to prevent NOx purification performance from being deteriorated due to ammonia oxidation at a high temperature. The amount of Cu supported can be measured by ICP emission spectroscopic analysis (ICP-AES). The amount of Al can be measured using the X-ray fluorescence analyzer described above, and the Cu / Al molar ratio can be calculated.
 ICP-AESとしては、ICP発光分光分析装置(島津製作所社製:ICPE-9000)を用いて測定することができる。なお、測定条件は、次の通りとする。
 試料の前処理として、400℃、4時間乾燥したCuイオン交換後のゼオライト0.1gを白金皿にとり、5mlの硝酸と20mlのフッ化水素酸と5mlの硫酸を加えて、硫酸白煙発生まで加熱する。これを50mlの水溶液となるように調整し、測定試料とする。
 測定試料を装置に入れ、Cu元素を指定して、測定を行う。
ICP-AES can be measured using an ICP emission spectroscopic analyzer (manufactured by Shimadzu Corporation: ICPE-9000). The measurement conditions are as follows.
As a pretreatment of the sample, 0.1 g of zeolite after Cu ion exchange dried at 400 ° C. for 4 hours is placed in a platinum dish, 5 ml of nitric acid, 20 ml of hydrofluoric acid, and 5 ml of sulfuric acid are added until sulfuric acid white smoke is generated. Heat. This is adjusted to be a 50 ml aqueous solution and used as a measurement sample.
A measurement sample is put into the apparatus, and Cu element is designated to perform measurement.
 次に、本発明のハニカム触媒について説明する。
 本発明のハニカム触媒は、複数の長手方向に延びる貫通孔が隔壁を隔てて並設されたハニカムユニットを備えたハニカム触媒である。
Next, the honeycomb catalyst of the present invention will be described.
The honeycomb catalyst of the present invention is a honeycomb catalyst including a honeycomb unit in which a plurality of through holes extending in the longitudinal direction are arranged in parallel with a partition wall therebetween.
 図1に、本発明のハニカム触媒の一例を示す。図1に示すハニカム触媒10は、複数の長手方向に延びる貫通孔11aが隔壁11bを隔てて並設された単一のハニカムユニット11を備えており、ハニカムユニット11の外周面には外周コート層12が形成されている。また、ハニカムユニット11は、ゼオライトと無機バインダとを含んでいる。 FIG. 1 shows an example of the honeycomb catalyst of the present invention. A honeycomb catalyst 10 shown in FIG. 1 includes a single honeycomb unit 11 in which a plurality of longitudinally extending through-holes 11a are arranged in parallel with a partition wall 11b therebetween, and an outer peripheral coating layer is formed on the outer peripheral surface of the honeycomb unit 11. 12 is formed. The honeycomb unit 11 contains zeolite and an inorganic binder.
 本発明のハニカム触媒では、ハニカムユニットの隔壁の最大ピーク気孔径(以下、ハニカムユニットの最大ピーク気孔径と記載する場合がある。)は、0.03~0.15μmであることが望ましく、0.05~0.10μmであることがより望ましい。 In the honeycomb catalyst of the present invention, the maximum peak pore diameter of the partition walls of the honeycomb unit (hereinafter sometimes referred to as the maximum peak pore diameter of the honeycomb unit) is preferably 0.03 to 0.15 μm, and 0 It is more desirable that the thickness is 0.05 to 0.10 μm.
 なお、ハニカムユニットの気孔径は、水銀圧入法を用いて測定することができる。この時の水銀の接触角を130°、表面張力を485mN/mとして、気孔径が0.01~100μmの範囲で測定する。この範囲での最大ピークとなる時の気孔径の値を最大ピーク気孔径という。 Note that the pore size of the honeycomb unit can be measured using a mercury intrusion method. The mercury contact angle is 130 °, the surface tension is 485 mN / m, and the pore diameter is in the range of 0.01 to 100 μm. The value of the pore diameter at the maximum peak in this range is called the maximum peak pore diameter.
 本発明のハニカム触媒において、ハニカムユニットの気孔率は、50~60%であることが望ましい。ハニカムユニットの気孔率が50%未満であると、ハニカムユニットの隔壁の内部まで排ガスが侵入しにくくなって、ゼオライトがNOxの浄化に有効に利用されなくなる。一方、ハニカムユニットの気孔率が60%を超えると、触媒層の密度が低すぎ、NOx浄化性能が低下するとともに、ハニカムユニットの強度が不十分となる。触媒層の密度は、ハニカム触媒の気孔率として測定することができる。 In the honeycomb catalyst of the present invention, the porosity of the honeycomb unit is preferably 50 to 60%. When the porosity of the honeycomb unit is less than 50%, the exhaust gas hardly enters the inside of the partition walls of the honeycomb unit, and the zeolite is not effectively used for purification of NOx. On the other hand, if the porosity of the honeycomb unit exceeds 60%, the density of the catalyst layer is too low, the NOx purification performance is lowered, and the strength of the honeycomb unit becomes insufficient. The density of the catalyst layer can be measured as the porosity of the honeycomb catalyst.
 なお、ハニカムユニットの気孔率は、重量法により測定することができる。
 重量法での気孔率の測定方法は下記の通りである。
 ハニカムユニットを7セル×7セル×10mmの大きさに切断して測定試料とし、この試料をイオン交換水及びアセトンを用いて超音波洗浄した後、オーブンにて100℃で乾燥する。次いで、測定顕微鏡(Nikon社製、Measuring Microscope MM-40、倍率100倍)を用いて、試料の断面形状の寸法を計測し、幾何学的な計算から体積を求める。なお、幾何学的な計算から体積を求めることができない場合は、断面写真の画像処理により断面積を求め、断面積×高さ10mmにて体積を計算する。
 その後、計算上求められた体積及びピクノメーターで測定した試料の真密度から、試料が完全な緻密体であったと仮定した場合の重量を計算する。
 なお、ピクノメーターでの測定手順は、以下の通りとする。ハニカムユニットを粉砕し、23.6ccの粉末を調製し、得られた粉末を200℃で8時間乾燥させる。その後、Auto Pycnometer 1320(Micromeritics社製)を用いて、JIS-R-1620(1995)に準拠し真密度を測定する。なお、この時の排気時間は40分とする。
 次に、試料の実際の重量を電子天秤(島津製作所社製 HR202i)にて測定し、気孔率を以下の計算式にて計算する。
  気孔率(%)=100-(実際の重量/緻密体としての重量)×100
The porosity of the honeycomb unit can be measured by a gravimetric method.
The method for measuring the porosity by the gravimetric method is as follows.
The honeycomb unit is cut into a size of 7 cells × 7 cells × 10 mm to obtain a measurement sample. This sample is ultrasonically cleaned with ion-exchanged water and acetone, and then dried at 100 ° C. in an oven. Next, using a measuring microscope (manufactured by Nikon, Measuring Microscope MM-40, magnification 100 times), the dimensions of the cross-sectional shape of the sample are measured, and the volume is obtained from geometric calculation. In addition, when a volume cannot be calculated | required from geometric calculation, a cross-sectional area is calculated | required by the image processing of a cross-sectional photograph, and a volume is calculated by cross-sectional area x height 10mm.
Thereafter, the weight when the sample is assumed to be a complete dense body is calculated from the calculated volume and the true density of the sample measured with a pycnometer.
The measurement procedure with a pycnometer is as follows. The honeycomb unit is pulverized to prepare 23.6 cc of powder, and the obtained powder is dried at 200 ° C. for 8 hours. Thereafter, the true density is measured according to JIS-R-1620 (1995) using an Auto Pycnometer 1320 (manufactured by Micromeritics). The exhaust time at this time is 40 minutes.
Next, the actual weight of the sample is measured with an electronic balance (HR202i manufactured by Shimadzu Corporation), and the porosity is calculated by the following calculation formula.
Porosity (%) = 100− (actual weight / weight as dense body) × 100
 本発明のハニカム触媒において、ハニカムユニットに含まれるゼオライトは、上記した本発明で製造されたCHA構造を有するゼオライトである。該ゼオライトは、本発明のゼオライトの説明において詳しく説明したので、ここでは詳しい説明を省略することとする。 In the honeycomb catalyst of the present invention, the zeolite contained in the honeycomb unit is a zeolite having the CHA structure manufactured according to the present invention described above. Since the zeolite has been described in detail in the description of the zeolite of the present invention, detailed description thereof will be omitted here.
 ハニカムユニット中のゼオライトの含有量は、40~90体積%であることが望ましく、50~80体積%であることがより望ましい。ゼオライトの含有量が40体積%未満であると、NOxの浄化性能が低下する。一方、ゼオライトの含有量が90体積%を超えると、その他に含有する材料の量が少なすぎて、強度が低下しやすくなる。 The content of zeolite in the honeycomb unit is preferably 40 to 90% by volume, and more preferably 50 to 80% by volume. If the zeolite content is less than 40% by volume, the NOx purification performance is lowered. On the other hand, when the content of zeolite exceeds 90% by volume, the amount of other materials contained is too small and the strength tends to decrease.
 本発明のハニカム触媒において、ハニカムユニットは、本発明の効果を損なわない範囲内で、CHA型ゼオライト以外のゼオライト及びシリコアルミノリン酸塩(SAPO)を含んでいてもよい。 In the honeycomb catalyst of the present invention, the honeycomb unit may contain zeolite other than CHA-type zeolite and silicoaluminophosphate (SAPO) within a range not impairing the effects of the present invention.
 本発明のハニカム触媒において、ハニカムユニットは、本発明のゼオライトをハニカムユニットの見掛けの体積当たり100~320g/L含有することが望ましく、120~300g/L含有することがより望ましい。 In the honeycomb catalyst of the present invention, the honeycomb unit preferably contains 100 to 320 g / L, more preferably 120 to 300 g / L of the zeolite of the present invention per apparent volume of the honeycomb unit.
 本発明のハニカム触媒において、ハニカムユニットに含まれる無機バインダとしては、特に限定されないが、ハニカム触媒としての強度を保つという観点から、アルミナゾル、シリカゾル、チタニアゾル、水ガラス、セピオライト、アタパルジャイト、ベーマイト等に含まれる固形分が好適なものとして挙げられ、二種以上併用してもよい。 In the honeycomb catalyst of the present invention, the inorganic binder contained in the honeycomb unit is not particularly limited, but is contained in alumina sol, silica sol, titania sol, water glass, sepiolite, attapulgite, boehmite, etc. from the viewpoint of maintaining strength as a honeycomb catalyst. The solid content is suitable, and two or more kinds may be used in combination.
 ハニカムユニット中の無機バインダの含有量は、3~20体積%であることが望ましく、5~15体積%であることがより望ましい。無機バインダの含有量が3体積%未満であると、ハニカムユニットの強度が低下する。
 一方、無機バインダの含有量が20体積%を超えると、ハニカムユニット中のゼオライトの含有量が低下して、NOxの浄化性能が低下する。
The content of the inorganic binder in the honeycomb unit is preferably 3 to 20% by volume, and more preferably 5 to 15% by volume. When the content of the inorganic binder is less than 3% by volume, the strength of the honeycomb unit is lowered.
On the other hand, when the content of the inorganic binder exceeds 20% by volume, the content of zeolite in the honeycomb unit decreases, and the NOx purification performance decreases.
 本発明のハニカム触媒において、ハニカムユニットは、ハニカムユニットの気孔径を調整するために、無機粒子をさらに含んでいてもよい。 In the honeycomb catalyst of the present invention, the honeycomb unit may further contain inorganic particles in order to adjust the pore diameter of the honeycomb unit.
 ハニカムユニットに含まれる無機粒子としては、特に限定されないが、例えば、アルミナ、チタニア、ジルコニア、シリカ、セリア、マグネシア等の粒子が挙げられる。これらは二種以上併用してもよい。無機粒子は、アルミナ、チタニア及びジルコニアからなる群より選択される一種以上の粒子であることが望ましく、アルミナ、チタニア及びジルコニアのいずれか一種の粒子であることがより望ましい。 The inorganic particles contained in the honeycomb unit are not particularly limited, and examples thereof include particles of alumina, titania, zirconia, silica, ceria, magnesia, and the like. Two or more of these may be used in combination. The inorganic particles are preferably one or more particles selected from the group consisting of alumina, titania and zirconia, and more preferably any one of alumina, titania and zirconia.
 無機粒子の平均粒子径は、0.01~1.0μmであることが望ましく、0.03~0.5μmであることがより望ましい。無機粒子の平均粒子径が0.01~1.0μmであると、ハニカムユニットの気孔径を調整することが可能となる。
 なお、無機粒子の平均粒子径は、レーザー回折・散乱法によって求めた粒度分布(体積基準)における積算値50%での粒径(Dv50)である。
The average particle size of the inorganic particles is preferably 0.01 to 1.0 μm, and more preferably 0.03 to 0.5 μm. When the average particle diameter of the inorganic particles is 0.01 to 1.0 μm, the pore diameter of the honeycomb unit can be adjusted.
The average particle size of the inorganic particles is the particle size (Dv50) at an integrated value of 50% in the particle size distribution (volume basis) obtained by the laser diffraction / scattering method.
 ハニカムユニット中の無機粒子の含有量は、10~40体積%であることが望ましく、15~35体積%であることがより望ましい。無機粒子の含有量が10体積%未満であると、無機粒子の添加によるハニカムユニットの線膨張係数の絶対値を下げる効果が小さく、熱応力によってハニカムユニットが破損しやすくなる。一方、無機粒子の含有量が40体積%を超えると、本発明のゼオライトの含有量が低下して、NOxの浄化性能が低下する。 The content of inorganic particles in the honeycomb unit is preferably 10 to 40% by volume, and more preferably 15 to 35% by volume. When the content of the inorganic particles is less than 10% by volume, the effect of lowering the absolute value of the linear expansion coefficient of the honeycomb unit due to the addition of the inorganic particles is small, and the honeycomb unit is easily damaged by thermal stress. On the other hand, when the content of the inorganic particles exceeds 40% by volume, the content of the zeolite of the present invention is lowered and the NOx purification performance is lowered.
 本発明のゼオライト及び無機粒子の体積比(CHA型ゼオライト:無機粒子)は、望ましくは50:50~90:10であり、より望ましくは60:40~80:20である。本発明のゼオライト及び無機粒子の体積比が上記の範囲にあると、NOxの浄化性能を保ちつつ、ハニカムユニットの気孔径を調整することが可能となる。 The volume ratio of the zeolite of the present invention to inorganic particles (CHA-type zeolite: inorganic particles) is desirably 50:50 to 90:10, and more desirably 60:40 to 80:20. When the volume ratio of the zeolite of the present invention and the inorganic particles is in the above range, the pore diameter of the honeycomb unit can be adjusted while maintaining the NOx purification performance.
 本発明のハニカム触媒において、ハニカムユニットは、強度を向上させるために、無機繊維及び鱗片状物質からなる群より選択される一種以上をさらに含んでいてもよい。 In the honeycomb catalyst of the present invention, the honeycomb unit may further include one or more selected from the group consisting of inorganic fibers and scale-like substances in order to improve the strength.
 ハニカムユニットに含まれる無機繊維は、アルミナ、シリカ、炭化ケイ素、シリカアルミナ、ガラス、チタン酸カリウム及びホウ酸アルミニウムからなる群より選択される一種以上からなることが望ましい。ハニカムユニットに含まれる鱗片状物質は、ガラス、白雲母、アルミナ及びシリカからなる群より選択される一種以上からなることが望ましい。いずれも耐熱性が高く、SCRシステムにおける触媒担体として使用した時でも、溶損などがなく、補強材としての効果を持続することができるためである。 The inorganic fiber contained in the honeycomb unit is preferably composed of one or more selected from the group consisting of alumina, silica, silicon carbide, silica alumina, glass, potassium titanate and aluminum borate. The scaly substance contained in the honeycomb unit is preferably made of one or more selected from the group consisting of glass, muscovite, alumina, and silica. This is because all of them have high heat resistance, and even when used as a catalyst carrier in an SCR system, there is no melting damage and the effect as a reinforcing material can be maintained.
 ハニカムユニット中の無機繊維及び/又は鱗片状物質の含有量は、3~30体積%であることが望ましく、5~20体積%であることがより望ましい。上記含有量が3体積%未満であると、ハニカムユニットの強度を向上させる効果が小さくなる。一方、上記含有量が30体積%を超えると、ハニカムユニット中のゼオライトの含有量が低下して、NOxの浄化性能が低下する。 The content of inorganic fibers and / or scaly substances in the honeycomb unit is preferably 3 to 30% by volume, and more preferably 5 to 20% by volume. When the content is less than 3% by volume, the effect of improving the strength of the honeycomb unit is reduced. On the other hand, when the content exceeds 30% by volume, the content of zeolite in the honeycomb unit decreases, and the NOx purification performance decreases.
 本発明のハニカム触媒において、ハニカムユニットの長手方向に垂直な断面の開口率は、50~75%であることが望ましい。ハニカムユニットの長手方向に垂直な断面の開口率が50%未満であると、ゼオライトがNOxの浄化に有効に利用されなくなる。一方、ハニカムユニットの長手方向に垂直な断面の開口率が75%を超えると、ハニカムユニットの強度が不十分となる。 In the honeycomb catalyst of the present invention, the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit is desirably 50 to 75%. If the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit is less than 50%, zeolite is not effectively used for NOx purification. On the other hand, when the opening ratio of the cross section perpendicular to the longitudinal direction of the honeycomb unit exceeds 75%, the strength of the honeycomb unit becomes insufficient.
 本発明のハニカム触媒において、ハニカムユニットの長手方向に垂直な断面の貫通孔の密度は、31~155個/cmであることが望ましい。ハニカムユニットの長手方向に垂直な断面の貫通孔の密度が31個/cm未満であると、ゼオライトと排ガスが接触しにくくなって、NOxの浄化性能が低下する。一方、ハニカムユニットの長手方向に垂直な断面の貫通孔の密度が155個/cmを超えると、ハニカム触媒の圧力損失が増大する。 In the honeycomb catalyst of the present invention, the density of the through-holes in the cross section perpendicular to the longitudinal direction of the honeycomb unit is preferably 31 to 155 holes / cm 2 . If the density of the through-holes having a cross section perpendicular to the longitudinal direction of the honeycomb unit is less than 31 / cm 2 , it becomes difficult for the zeolite and the exhaust gas to come into contact with each other, and the NOx purification performance decreases. On the other hand, when the density of the through holes in the cross section perpendicular to the longitudinal direction of the honeycomb unit exceeds 155 holes / cm 2 , the pressure loss of the honeycomb catalyst increases.
 本発明のハニカム触媒において、ハニカムユニットの隔壁の厚さは、0.1~0.4mmであることが望ましく、0.1~0.3mmであることがより望ましい。ハニカムユニットの隔壁の厚さが0.1mm未満であると、ハニカムユニットの強度が低下する。一方、ハニカムユニットの隔壁の厚さが0.4mmを超えると、ハニカムユニットの隔壁の内部まで排ガスが侵入しにくくなって、ゼオライトがNOxの浄化に有効に利用されなくなる。 In the honeycomb catalyst of the present invention, the thickness of the partition walls of the honeycomb unit is preferably 0.1 to 0.4 mm, and more preferably 0.1 to 0.3 mm. When the thickness of the partition walls of the honeycomb unit is less than 0.1 mm, the strength of the honeycomb unit decreases. On the other hand, when the thickness of the partition wall of the honeycomb unit exceeds 0.4 mm, the exhaust gas hardly enters the inside of the partition wall of the honeycomb unit, and the zeolite is not effectively used for purification of NOx.
 本発明のハニカム触媒において、ハニカムユニットに外周コート層が形成されている場合、外周コート層の厚さは、0.1~2.0mmであることが望ましい。外周コート層の厚さが0.1mm未満であると、ハニカム触媒の強度を向上させる効果が不十分になる。一方、外周コート層の厚さが2.0mmを超えると、ハニカム触媒の単位体積当たりのゼオライトの含有量が低下して、NOxの浄化性能が低下する。 In the honeycomb catalyst of the present invention, when the outer peripheral coat layer is formed on the honeycomb unit, the thickness of the outer peripheral coat layer is preferably 0.1 to 2.0 mm. When the thickness of the outer peripheral coat layer is less than 0.1 mm, the effect of improving the strength of the honeycomb catalyst becomes insufficient. On the other hand, when the thickness of the outer peripheral coat layer exceeds 2.0 mm, the content of zeolite per unit volume of the honeycomb catalyst decreases, and the NOx purification performance decreases.
 本発明のハニカム触媒の形状としては、円柱状に限定されず、角柱状、楕円柱状、長円柱状、丸面取りされている角柱状(例えば、丸面取りされている三角柱状)等が挙げられる。 The shape of the honeycomb catalyst of the present invention is not limited to a cylindrical shape, and examples thereof include a prismatic shape, an elliptical cylindrical shape, a long cylindrical shape, and a rounded chamfered prismatic shape (for example, a rounded chamfered triangular prism shape).
 本発明のハニカム触媒において、貫通孔の形状としては、四角柱状に限定されず、三角柱状、六角柱状等が挙げられる。 In the honeycomb catalyst of the present invention, the shape of the through hole is not limited to a quadrangular prism shape, and examples thereof include a triangular prism shape and a hexagonal prism shape.
 次に、図1に示すハニカム触媒10の製造方法の一例について説明する。
 まず、本発明のCHA型ゼオライトと無機バインダとを含み、必要に応じて、無機繊維、鱗片状物質、からなる群より選択される一種以上や無機粒子をさらに含む原料ペーストを用いて押出成形し、複数の長手方向に延びる貫通孔が隔壁を隔てて並設されている円柱状のハニカム成形体(ハニカムユニット)を作製する。
Next, an example of a method for manufacturing the honeycomb catalyst 10 shown in FIG. 1 will be described.
First, it is extruded using a raw material paste containing the CHA-type zeolite of the present invention and an inorganic binder, and if necessary, one or more selected from the group consisting of inorganic fibers and scale-like substances and inorganic particles. Then, a cylindrical honeycomb formed body (honeycomb unit) in which a plurality of through-holes extending in the longitudinal direction are arranged side by side with a partition wall is produced.
 なお、原料ペーストには、有機バインダ、分散媒、成形助剤等を、必要に応じて適宜添加してもよい。 In addition, you may add an organic binder, a dispersion medium, a shaping | molding adjuvant, etc. to a raw material paste suitably as needed.
 有機バインダとしては、特に限定されないが、メチルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリエチレングリコール、フェノール樹脂、エポキシ樹脂等が挙げられ、二種以上併用してもよい。なお、有機バインダの添加量は、ゼオライト、無機粒子、無機バインダ、無機繊維、鱗片状物質の総質量に対して、1~10%であることが望ましい。 The organic binder is not particularly limited, and examples thereof include methyl cellulose, carboxymethyl cellulose, hydroxyethyl cellulose, polyethylene glycol, phenol resin, and epoxy resin, and two or more kinds may be used in combination. The addition amount of the organic binder is desirably 1 to 10% with respect to the total mass of zeolite, inorganic particles, inorganic binder, inorganic fiber, and scale-like substance.
 分散媒としては、特に限定されないが、水、ベンゼン等の有機溶媒、メタノール等のアルコール等が挙げられ、二種以上併用してもよい。 The dispersion medium is not particularly limited, and examples thereof include water, organic solvents such as benzene, alcohols such as methanol, and the like.
 成形助剤としては、特に限定されないが、エチレングリコール、デキストリン、脂肪酸、脂肪酸石鹸、ポリアルコール等が挙げられ、二種以上併用してもよい。 The molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid soap, polyalcohol and the like, and two or more kinds may be used in combination.
 さらに、原料ペーストには、必要に応じて造孔材を添加してもよい。
 造孔材としては、特に限定されないが、ポリスチレン粒子、アクリル粒子、澱粉等が挙げられ、二種以上併用してもよい。これらの中では、ポリスチレン粒子が望ましい。
Furthermore, a pore former may be added to the raw material paste as necessary.
Although it does not specifically limit as a pore making material, A polystyrene particle, an acrylic particle, starch, etc. are mentioned, You may use 2 or more types together. Of these, polystyrene particles are desirable.
 ゼオライト及び造孔材の粒子径を制御することにより、隔壁の気孔径分布を所定の範囲に制御することができる。 By controlling the particle diameters of the zeolite and the pore former, the pore diameter distribution of the partition walls can be controlled within a predetermined range.
 また、造孔材を添加しない場合であっても、ゼオライト及び無機粒子の粒子径を制御することにより、隔壁の気孔径分布を所定の範囲に制御することができる。 Even when no pore former is added, the pore size distribution of the partition walls can be controlled within a predetermined range by controlling the particle size of zeolite and inorganic particles.
 原料ペーストを調製する際には、混合混練することが望ましく、ミキサー、アトライタ等を用いて混合してもよく、ニーダー等を用いて混練してもよい。 When preparing the raw material paste, it is desirable to mix and knead, and it may be mixed using a mixer, an attritor or the like, or may be kneaded using a kneader or the like.
 次に、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥機、真空乾燥機、凍結乾燥機等の乾燥機を用いて、ハニカム成形体を乾燥してハニカム乾燥体を作製する。 Next, the honeycomb formed body is dried by using a dryer such as a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer or the like to prepare a honeycomb dried body.
 さらに、ハニカム乾燥体を脱脂してハニカム脱脂体を作製する。脱脂条件は、ハニカム乾燥体に含まれる有機物の種類及び量によって適宜選択することができるが、200~500℃で2~6時間であることが望ましい。 Further, the honeycomb dried body is degreased to produce a honeycomb degreased body. The degreasing conditions can be appropriately selected depending on the type and amount of organic matter contained in the dried honeycomb body, but it is desirable that the degreasing conditions be 200 to 500 ° C. for 2 to 6 hours.
 次に、ハニカム脱脂体を焼成することにより、円柱状のハニカムユニット11を作製する。焼成温度は、600~1000℃であることが望ましく、600~800℃であることがより望ましい。焼成温度が600℃未満であると、焼結が進行せず、ハニカムユニット11の強度が低くなる。一方、焼成温度が1000℃を超えると、焼結が進行しすぎて、ゼオライトの反応サイトが減少する。 Next, the honeycomb degreased body is fired to produce a cylindrical honeycomb unit 11. The firing temperature is desirably 600 to 1000 ° C., and more desirably 600 to 800 ° C. When the firing temperature is less than 600 ° C., the sintering does not proceed and the strength of the honeycomb unit 11 is lowered. On the other hand, if the calcination temperature exceeds 1000 ° C., the sintering proceeds too much and the reaction sites of the zeolite decrease.
 次に、円柱状のハニカムユニット11の両端面を除く外周面に外周コート層用ペーストを塗布する。 Next, the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the cylindrical honeycomb unit 11.
 外周コート層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。 Although it does not specifically limit as a paste for outer periphery coating layers, The mixture of an inorganic binder and an inorganic particle, the mixture of an inorganic binder and an inorganic fiber, the mixture of an inorganic binder, an inorganic particle, and an inorganic fiber etc. are mentioned.
 外周コート層用ペーストに含まれる無機バインダは、特に限定されないが、シリカゾル、アルミナゾル等として添加されており、二種以上併用してもよい。中でも、シリカゾルとして添加されていることが望ましい。 The inorganic binder contained in the outer periphery coating layer paste is not particularly limited, but is added as silica sol, alumina sol or the like, and two or more kinds may be used in combination. Among these, it is desirable to add as silica sol.
 外周コート層用ペーストに含まれる無機粒子としては、特に限定されないが、ゼオライト、ユークリプタイト、アルミナ、シリカ等の酸化物粒子、炭化ケイ素等の炭化物粒子、窒化ケイ素、窒化ホウ素等の窒化物粒子等が挙げられ、二種以上併用してもよい。中でも、ハニカムユニットとの熱膨張係数が近いユークリプタイトの粒子が望ましい。 The inorganic particles contained in the outer coat layer paste are not particularly limited, but oxide particles such as zeolite, eucryptite, alumina and silica, carbide particles such as silicon carbide, and nitride particles such as silicon nitride and boron nitride. And two or more of them may be used in combination. Among them, eucryptite particles having a thermal expansion coefficient close to that of the honeycomb unit are desirable.
 外周コート層用ペーストに含まれる無機繊維としては、特に限定されないが、シリカアルミナ繊維、ムライト繊維、アルミナ繊維、シリカ繊維等が挙げられ、二種以上併用してもよい。中でも、アルミナ繊維が望ましい。 The inorganic fiber contained in the outer periphery coat layer paste is not particularly limited, and examples thereof include silica alumina fiber, mullite fiber, alumina fiber, silica fiber and the like, and two or more kinds may be used in combination. Among these, alumina fibers are preferable.
 外周コート層用ペーストは、有機バインダをさらに含んでいてもよい。
 外周コート層用ペーストに含まれる有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。
The outer periphery coating layer paste may further contain an organic binder.
Although it does not specifically limit as an organic binder contained in the paste for outer periphery coating layers, Polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose, etc. are mentioned, You may use 2 or more types together.
 外周コート層用ペーストは、酸化物系セラミックスの微小中空球体であるバルーン、造孔材等をさらに含んでいてもよい。 The outer periphery coat layer paste may further contain balloons, pore formers, and the like, which are fine hollow spheres of oxide ceramics.
 外周コート層用ペーストに含まれるバルーンとしては、特に限定されないが、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン、ムライトバルーン等が挙げられ、二種以上併用してもよい。中でも、アルミナバルーンが望ましい。 The balloon contained in the outer periphery coating layer paste is not particularly limited, and examples thereof include alumina balloons, glass micro balloons, shirasu balloons, fly ash balloons, mullite balloons, and the like, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
 外周コート層用ペーストに含まれる造孔材としては、特に限定されないが、球状アクリル粒子、グラファイト等が挙げられ、二種以上併用してもよい。 The pore former contained in the outer periphery coat layer paste is not particularly limited, and examples thereof include spherical acrylic particles and graphite, and two or more kinds may be used in combination.
 次に、外周コート層用ペーストが塗布されたハニカムユニット11を乾燥固化し、円柱状のハニカム触媒10を作製する。このとき、外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが望ましい。脱脂条件は、有機物の種類及び量によって適宜選択することができるが、500℃で1時間であることが望ましい。 Next, the honeycomb unit 11 coated with the outer periphery coating layer paste is dried and solidified to produce a columnar honeycomb catalyst 10. At this time, when the outer peripheral coat layer paste contains an organic binder, it is desirable to degrease. The degreasing conditions can be appropriately selected depending on the kind and amount of the organic substance, but it is desirable that the degreasing conditions be 500 ° C. for 1 hour.
 本発明のハニカム触媒の具体的な利用例として、排ガス浄化装置が挙げられる(以下、本発明の排ガス浄化装置と言う。)。
 図2に、本発明の排ガス浄化装置の一例を示す。図2に示す排ガス浄化装置100は、ハニカム触媒10の外周部に保持シール材20を配置した状態で、金属容器(シェル)30にキャニングすることにより作製することができる。また、排ガス浄化装置100には、排ガス(図2中、排ガスをGで示し、排ガスの流れを矢印で示す。)が流れる方向に対して、ハニカム触媒10の上流側の配管(不図示)内に、アンモニア又は分解してアンモニアを発生させる化合物を噴射する噴射ノズル等の噴射手段(図示せず)が設けられている。これにより、配管を流れる排ガス中にアンモニアが添加されるため、ハニカムユニット11に含まれるゼオライトにより、排ガス中に含まれるNOxが還元される。
A specific example of the use of the honeycomb catalyst of the present invention is an exhaust gas purification device (hereinafter referred to as the exhaust gas purification device of the present invention).
FIG. 2 shows an example of the exhaust gas purifying apparatus of the present invention. The exhaust gas purification apparatus 100 shown in FIG. 2 can be manufactured by canning the metal container (shell) 30 in a state where the holding sealing material 20 is disposed on the outer peripheral portion of the honeycomb catalyst 10. Further, in the exhaust gas purification apparatus 100, in the pipe (not shown) on the upstream side of the honeycomb catalyst 10 with respect to the flow direction of the exhaust gas (in FIG. 2, the exhaust gas is indicated by G and the flow of the exhaust gas is indicated by an arrow). Further, an injection means (not shown) such as an injection nozzle that injects ammonia or a compound that decomposes to generate ammonia is provided. As a result, ammonia is added to the exhaust gas flowing through the pipe, so that NOx contained in the exhaust gas is reduced by the zeolite contained in the honeycomb unit 11.
 分解してアンモニアを発生させる化合物としては、配管内で加水分解されて、アンモニアを発生させることが可能であれば、特に限定されないが、貯蔵安定性に優れるため、尿素水が望ましい。 The compound that decomposes to generate ammonia is not particularly limited as long as it can be hydrolyzed in the pipe to generate ammonia, but urea water is preferable because of excellent storage stability.
 図3に、本発明のハニカム触媒の別の一例を示す。図3に示すハニカム触媒10´は、複数の長手方向に延びる貫通孔11aが隔壁11bを隔てて並設されているハニカムユニット11´(図4参照。)が接着層13を介して複数個接着されている以外は、ハニカム触媒10と同一の構成である。 FIG. 3 shows another example of the honeycomb catalyst of the present invention. In the honeycomb catalyst 10 ′ shown in FIG. 3, a plurality of honeycomb units 11 ′ (see FIG. 4) in which a plurality of longitudinally extending through-holes 11 a are arranged with a partition wall 11 b therebetween are bonded via an adhesive layer 13. Except for this, the configuration is the same as that of the honeycomb catalyst 10.
 ハニカムユニット11´の長手方向に垂直な断面の断面積は、10~200cmであることが望ましい。上記断面積が10cm未満であると、ハニカム触媒10´の圧力損失が増大する。一方、上記断面積が200cmを超えると、ハニカムユニット11´同士を接着することが困難である。 The cross-sectional area of the cross section perpendicular to the longitudinal direction of the honeycomb unit 11 ′ is preferably 10 to 200 cm 2 . When the cross-sectional area is less than 10 cm 2 , the pressure loss of the honeycomb catalyst 10 ′ increases. On the other hand, when the cross-sectional area exceeds 200 cm 2 , it is difficult to bond the honeycomb units 11 ′.
 ハニカムユニット11´は、長手方向に垂直な断面の断面積以外は、ハニカムユニット11と同一の構成である。 The honeycomb unit 11 ′ has the same configuration as the honeycomb unit 11 except for the cross-sectional area of the cross section perpendicular to the longitudinal direction.
 接着層13の厚さは、0.1~3.0mmであることが望ましい。接着層13の厚さが0.1mm未満であると、ハニカムユニット11´の接着強度が不十分になる。一方、接着層13の厚さが3.0mmを超えると、ハニカム触媒10´の圧力損失が増大したり、接着層内でのクラックが発生したりする。 The thickness of the adhesive layer 13 is preferably 0.1 to 3.0 mm. When the thickness of the adhesive layer 13 is less than 0.1 mm, the adhesive strength of the honeycomb unit 11 ′ becomes insufficient. On the other hand, when the thickness of the adhesive layer 13 exceeds 3.0 mm, the pressure loss of the honeycomb catalyst 10 ′ increases or cracks occur in the adhesive layer.
 次に、図3に示すハニカム触媒10´の製造方法の一例について説明する。
 まず、ハニカム触媒10を構成するハニカムユニット11と同様にして、扇柱状のハニカムユニット11´を作製する。次に、ハニカムユニット11´の円弧側を除く外周面に接着層用ペーストを塗布して、ハニカムユニット11´を接着させ、乾燥固化することにより、ハニカムユニット11´の集合体を作製する。
Next, an example of a method for manufacturing the honeycomb catalyst 10 ′ shown in FIG. 3 will be described.
First, in the same manner as the honeycomb unit 11 constituting the honeycomb catalyst 10, a fan-shaped honeycomb unit 11 ′ is manufactured. Next, an adhesive layer paste is applied to the outer peripheral surface excluding the arc side of the honeycomb unit 11 ′, the honeycomb unit 11 ′ is adhered, and dried and solidified to produce an aggregate of the honeycomb units 11 ′.
 接着層用ペーストとしては、特に限定されないが、無機バインダ及び無機粒子の混合物、無機バインダ及び無機繊維の混合物、無機バインダ、無機粒子及び無機繊維の混合物等が挙げられる。 The adhesive layer paste is not particularly limited, and examples thereof include a mixture of inorganic binder and inorganic particles, a mixture of inorganic binder and inorganic fibers, a mixture of inorganic binder, inorganic particles, and inorganic fibers.
 接着層用ペーストに含まれる無機バインダは、特に限定されないが、シリカゾル、アルミナゾル等として添加されており、二種以上併用してもよい。中でも、シリカゾルとして添加されていることが望ましい。 The inorganic binder contained in the adhesive layer paste is not particularly limited, but is added as silica sol, alumina sol or the like, and two or more kinds may be used in combination. Among these, it is desirable to add as silica sol.
 接着層用ペーストに含まれる無機粒子としては、特に限定されないが、ゼオライト、ユークリプタイト、アルミナ、シリカ等の酸化物粒子、炭化ケイ素等の炭化物粒子、窒化ケイ素、窒化ホウ素等の窒化物粒子等が挙げられ、二種以上併用してもよい。中でも、ハニカムユニットとの熱膨張係数が近いユークリプタイトの粒子が望ましい。 The inorganic particles contained in the adhesive layer paste are not particularly limited, but oxide particles such as zeolite, eucryptite, alumina and silica, carbide particles such as silicon carbide, nitride particles such as silicon nitride and boron nitride, etc. And two or more of them may be used in combination. Among them, eucryptite particles having a thermal expansion coefficient close to that of the honeycomb unit are desirable.
 接着層用ペーストに含まれる無機繊維としては、特に限定されないが、シリカアルミナ繊維、ムライト繊維、アルミナ繊維、シリカ繊維等が挙げられ、二種以上併用してもよい。中でも、アルミナ繊維が望ましい。 The inorganic fiber contained in the adhesive layer paste is not particularly limited, and examples thereof include silica alumina fiber, mullite fiber, alumina fiber, silica fiber and the like, and two or more kinds may be used in combination. Among these, alumina fibers are preferable.
 また、接着層用ペーストは、有機バインダを含んでいてもよい。
 接着層用ペーストに含まれる有機バインダとしては、特に限定されないが、ポリビニルアルコール、メチルセルロース、エチルセルロース、カルボキシメチルセルロース等が挙げられ、二種以上併用してもよい。
The adhesive layer paste may contain an organic binder.
Although it does not specifically limit as an organic binder contained in the paste for contact bonding layers, Polyvinyl alcohol, methylcellulose, ethylcellulose, carboxymethylcellulose etc. are mentioned, You may use 2 or more types together.
 接着層用ペーストは、酸化物系セラミックスの微小中空球体であるバルーン、造孔材等をさらに含んでいてもよい。 The adhesive layer paste may further include balloons, pore formers, and the like, which are fine hollow spheres of oxide ceramics.
 接着層用ペーストに含まれるバルーンとしては、特に限定されないが、アルミナバルーン、ガラスマイクロバルーン、シラスバルーン、フライアッシュバルーン、ムライトバルーン等が挙げられ、二種以上併用してもよい。中でも、アルミナバルーンが望ましい。 The balloon contained in the adhesive layer paste is not particularly limited, and examples thereof include an alumina balloon, a glass microballoon, a shirasu balloon, a fly ash balloon, and a mullite balloon, and two or more kinds may be used in combination. Among these, an alumina balloon is preferable.
 接着層用ペーストに含まれる造孔材としては、特に限定されないが、球状アクリル粒子、グラファイト等が挙げられ、二種以上併用してもよい。 The pore former contained in the adhesive layer paste is not particularly limited, and examples thereof include spherical acrylic particles and graphite, and two or more kinds may be used in combination.
 次に、真円度を上げるために必要に応じて、ハニカムユニット11´の集合体に切削加工及び研磨を施し、円柱状のハニカムユニット11´の集合体を作製する。 Next, in order to increase the roundness, the aggregate of the honeycomb units 11 ′ is cut and polished as necessary to produce the aggregate of the cylindrical honeycomb units 11 ′.
 次に、円柱状のハニカムユニット11´の集合体の両端面を除く外周面に外周コート層用ペーストを塗布する。 Next, the outer peripheral coat layer paste is applied to the outer peripheral surface excluding both end surfaces of the aggregate of the cylindrical honeycomb unit 11 ′.
 外周コート層用ペーストは、接着層用ペーストと同一であってもよいし、異なっていてもよい。 The outer periphery coat layer paste may be the same as or different from the adhesive layer paste.
 次に、外周コート層用ペーストが塗布された円柱状のハニカムユニット11´の集合体を乾燥固化することにより、円柱状のハニカム触媒10´を作製する。このとき、接着層用ペースト及び/又は外周コート層用ペーストに有機バインダが含まれている場合は、脱脂することが望ましい。脱脂条件は、有機物の種類及び量によって適宜選択することができるが、500℃で1時間であることが望ましい。 Next, a columnar honeycomb catalyst 10 ′ is manufactured by drying and solidifying the aggregate of columnar honeycomb units 11 ′ coated with the outer periphery coating layer paste. At this time, when the adhesive for the adhesive layer and / or the paste for the outer peripheral coat layer contains an organic binder, it is desirable to degrease. The degreasing conditions can be appropriately selected depending on the kind and amount of the organic substance, but it is desirable that the degreasing conditions be 500 ° C. for 1 hour.
 ハニカム触媒10´は、4個のハニカムユニット11´が接着層13を介して接着されることにより構成されているが、ハニカム触媒を構成するハニカムユニットの個数は特に限定されない。例えば、16個の四角柱状のハニカムユニットが接着層を介して接着されることにより円柱状のハニカム触媒が構成されていてもよい。 The honeycomb catalyst 10 ′ is configured by bonding four honeycomb units 11 ′ via the adhesive layer 13, but the number of honeycomb units constituting the honeycomb catalyst is not particularly limited. For example, a columnar honeycomb catalyst may be configured by adhering 16 square columnar honeycomb units via an adhesive layer.
 なお、ハニカム触媒10及び10´は、外周コート層12が形成されていなくてもよい。 Note that the honeycomb catalyst 10 and 10 ′ may not have the outer peripheral coat layer 12 formed thereon.
 上述のとおり、本発明のハニカム触媒においては、ゼオライトとして本発明のゼオライトを用いてハニカムユニットを形成することによって、NOxの浄化性能を向上させることができる。 As described above, in the honeycomb catalyst of the present invention, NOx purification performance can be improved by forming a honeycomb unit using the zeolite of the present invention as the zeolite.
 以下、本発明をより具体的に開示した実施例を示す。なお、本発明はこの実施例のみに限定されるものではない。 Hereinafter, examples that more specifically disclose the present invention will be shown. In addition, this invention is not limited only to this Example.
<平均粒子径及び平均アスペクト比の測定>
 以下の各実施例において、ゼオライトの平均粒子径及び平均アスペクト比の測定は以下のように行った。
 走査型電子顕微鏡(SEM、日立ハイテク社製、S-4800)を用いて、10個のCHA型ゼオライトのSEM写真を撮影し、それらの粒子径及びアスペクト比を測定した。測定条件は、加速電圧:1kV、エミッション:10μA、WD:2.2mm以下とした。測定倍率は、20000倍とした。それぞれの粒子を平面上に投影した粒子像を長方形で囲んだ時の最小長方形(通常、外接長方形と呼ばれる。)の長辺と、短辺の長さを測定し、該粒子の長辺と短辺の平均を粒子径((長辺+短辺)/2)とし、その比(長辺/短辺)をアスペクト比として、それぞれ10個の平均を算出し、これを平均粒子径及び平均アスペクト比とした。
<Measurement of average particle diameter and average aspect ratio>
In each of the following examples, the measurement of the average particle diameter and the average aspect ratio of zeolite was performed as follows.
Using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S-4800), SEM photographs of 10 CHA-type zeolites were taken, and their particle diameter and aspect ratio were measured. The measurement conditions were acceleration voltage: 1 kV, emission: 10 μA, WD: 2.2 mm or less. The measurement magnification was 20000 times. The long side and short side length of the smallest rectangle (usually called circumscribed rectangle) when the particle image of each particle projected on a plane is surrounded by a rectangle is measured, and the long side and short side of the particle are measured. The average of the sides is defined as the particle diameter ((long side + short side) / 2), and the ratio (long side / short side) is used as the aspect ratio to calculate the average of 10 pieces, and this is the average particle size and average aspect. Ratio.
<ゼオライトのモル比(SiO/Al)の測定>
 以下の各実施例において、ゼオライトのモル比(SAR:SiO/Al)の測定は以下のように行った。
 蛍光X線分析装置(XRF、リガク社製 ZSX Primus2)を用いて、CHA型ゼオライトのモル比(SAR:SiO/Al)を測定した。測定条件は、X線管:Rh、定格最大出力:4kW、検出元素範囲:F~U、定量法:SQX法、分析領域:10mmφとした。
<Measurement of molar ratio of zeolite (SiO 2 / Al 2 O 3 )>
In each of the following examples, the measurement of the molar ratio of zeolite (SAR: SiO 2 / Al 2 O 3 ) was performed as follows.
The molar ratio (SAR: SiO 2 / Al 2 O 3 ) of CHA-type zeolite was measured using an X-ray fluorescence analyzer (XRF, ZSX Primus 2 manufactured by Rigaku Corporation). The measurement conditions were as follows: X-ray tube: Rh, rated maximum output: 4 kW, detection element range: F to U, quantitative method: SQX method, analysis region: 10 mmφ.
<Cu担持量の測定>
 以下の各実施例において、ゼオライトのCu担持量の測定は以下のように行った。
 ICP発光分光分析装置(島津製作所社製:ICPE-9000)を用いてCHA型ゼオライトに担持されたCu量を測定した。
 試料の前処理として、400℃、4時間乾燥したCuイオン交換後のゼオライト0.1gを白金皿にとり、5mlの硝酸と20mlのフッ化水素酸と5mlの硫酸を加えて、硫酸白煙発生まで加熱する。これを50mlの水溶液となるように調整し、測定試料とする。
 測定試料を装置に入れ、Cu元素を指定して、測定した。Cu担持量の測定値から、Cu/Alモル比を算出した。
<Measurement of Cu loading>
In each of the following examples, the measurement of the amount of Cu supported on zeolite was performed as follows.
The amount of Cu supported on the CHA-type zeolite was measured using an ICP emission spectroscopic analyzer (manufactured by Shimadzu Corporation: ICPE-9000).
As a pretreatment of the sample, 0.1 g of zeolite after Cu ion exchange dried at 400 ° C. for 4 hours is placed in a platinum dish, 5 ml of nitric acid, 20 ml of hydrofluoric acid, and 5 ml of sulfuric acid are added until sulfuric acid white smoke is generated. Heat. This is adjusted to be a 50 ml aqueous solution and used as a measurement sample.
The measurement sample was put in the apparatus, and Cu element was designated and measured. The Cu / Al molar ratio was calculated from the measured value of the Cu loading.
<結晶構造の解析>
 以下の各実施例において、ゼオライトの結晶構造の解析は以下のように行った。
 X線回折装置(リガク社製、Ultima IV)を用い、CHA型ゼオライトについて、XRD測定を行い、X線回折スペクトルの(211)面、(104)面及び(220)面の積分強度の和(X)を算出した。
 測定条件は、線源:CuKα(λ=0.154nm)、測定法:FT法、回折角:2θ=5~48°、ステップ幅:0.02°、積算時間:1秒、発散スリット、散乱スリット:2/3°、発散縦制限スリット:10mm、加速電圧:40kV、加速電流:40mAとした。
 得られたXRDデータの解析は、粉末X線回折パターン総合解析ソフトJADE6.0を用いて行った。なお、解析条件は、フィルタータイプ:放物線フィルター、Kα2ピークの消去:あり、ピーク位置定義:ピークトップ、閾値σ:3、ピーク強度%カットオフ:0.1、BG決定の範囲:1、BG平均化のポイント数:7とした。
<Analysis of crystal structure>
In each of the following examples, the crystal structure of zeolite was analyzed as follows.
XRD measurement was performed on CHA-type zeolite using an X-ray diffractometer (manufactured by Rigaku Corporation, Ultimate IV), and the sum of integrated intensities of the (211), (104) and (220) planes of the X-ray diffraction spectrum ( X 0 ) was calculated.
Measurement conditions are: radiation source: CuKα (λ = 0.154 nm), measurement method: FT method, diffraction angle: 2θ = 5 to 48 °, step width: 0.02 °, integration time: 1 second, divergence slit, scattering Slit: 2/3 °, divergence length limiting slit: 10 mm, acceleration voltage: 40 kV, acceleration current: 40 mA.
Analysis of the obtained XRD data was performed using powder X-ray diffraction pattern comprehensive analysis software JADE 6.0. The analysis conditions are: filter type: parabolic filter, elimination of Kα2 peak: yes, peak position definition: peak top, threshold σ: 3, peak intensity% cutoff: 0.1, BG determination range: 1, BG average The number of conversion points was set to 7.
(実施例1)
<合成工程>
 Si源としてコロイダルシリカ(日産化学工業社製、スノーテックス)、Al源として乾燥水酸化アルミニウムゲル(富田製薬社製)、アルカリ源として水酸化ナトリウム(トクヤマ社製)と水酸化カリウム(東亜合成社製)、構造規定剤(SDA)としてN,N,N-トリメチルアダマンタンアンモニウム水酸化物(TMAAOH)25%水溶液(Sachem社製)、種結晶としてSSZ-13、及び脱イオン水を混合し、原料組成物を準備した。原料組成物のモル比は、SiO:15mol、Al:1mol、NaOH:1.6mol、KOH:0.53mol、TMAAOH:1.62mol、HO:300molの割合とした。また原料組成物中のSiO、Alに5.0質量%の種結晶を加えた。原料組成物を500Lオートクレーブに装填し、加熱温度160℃、加熱時間24時間で水熱合成を行い、CHA型ゼオライトを合成した。
 得られたCHA型ゼオライトの平均粒子径は0.74μmであり、積分強度の和(X)は54357であった。
(Example 1)
<Synthesis process>
Colloidal silica (manufactured by Nissan Chemical Industries, Snowtex) as the Si source, dry aluminum hydroxide gel (manufactured by Tomita Pharmaceutical) as the Al source, sodium hydroxide (manufactured by Tokuyama) and potassium hydroxide (Toagosei Co., Ltd.) as the alkali source N, N, N-trimethyladamantanammonium hydroxide (TMAAOH) 25% aqueous solution (manufactured by Sachem) as a structure directing agent (SDA), SSZ-13 as a seed crystal, and deionized water A composition was prepared. The molar ratios of the raw material compositions were SiO 2 : 15 mol, Al 2 O 3 : 1 mol, NaOH: 1.6 mol, KOH: 0.53 mol, TMAAOH: 1.62 mol, and H 2 O: 300 mol. Further, 5.0% by mass of seed crystals was added to SiO 2 and Al 2 O 3 in the raw material composition. The raw material composition was charged into a 500 L autoclave, and hydrothermal synthesis was performed at a heating temperature of 160 ° C. and a heating time of 24 hours to synthesize CHA-type zeolite.
The average particle diameter of the obtained CHA-type zeolite was 0.74 μm, and the sum of integrated intensities (X 0 ) was 54357.
<微細化工程>
 粉砕用ビーズとしてジルコニア(ビーズ粒径:300μm)を13kg用い、湿式ビーズミル(アシザワファインテック社製、ラボスターミニ)により、上記合成工程で得られたCHA型ゼオライトを、回転速度12m/sで60分間粉砕した。その後、評価のために、550℃、10時間、空気雰囲気で加熱して、積分強度の和(X)を求めた。
 その結果、積分強度の和(X)は33991であった。
<Refining process>
Using 13 kg of zirconia (bead particle size: 300 μm) as grinding beads, the CHA-type zeolite obtained in the above synthesis step was transferred to a wet bead mill (manufactured by Ashizawa Finetech Co., Ltd., Labstar Mini) at a rotational speed of 12 m / s. Milled for minutes. Then, for evaluation, 550 ° C., 10 hours, and heated in an air atmosphere, was determined sum of integrated intensity of (X 0).
As a result, the sum of integrated intensities (X 0 ) was 33991.
<再結晶工程>
 合成工程後のCHA型ゼオライト粉末を除いた溶液を3倍に濃縮したもの(濃縮率:3)を再結晶用溶液として用い、CHA型ゼオライトの質量に対して8倍量の固液比となるように添加し、オートクレーブにて200℃、24時間、撹拌しながら再結晶を行った。なお、再結晶用溶液の濃度率は、濃縮前の再結晶用溶液の質量/濃縮後の再結晶用溶液の質量から算出される濃縮率であり、水は蒸発により除去した。
 水和処理は、オートクレーブを用いる水熱処理とした。
 再結晶工程後に得られたCHA型ゼオライトの平均粒子径、平均アスペクト比、積分強度の和(X)並びにCHA型ゼオライトのモル比(SAR)を求めた。
 その結果、平均粒子径は0.12μmであり、平均アスペクト比は1.20であり、積分強度の和(X)は53813であり、SARは12.2であった。
<Recrystallization process>
A solution obtained by concentrating the solution excluding the CHA-type zeolite powder after the synthesis step three times (concentration rate: 3) is used as the recrystallization solution, and the solid-liquid ratio is 8 times the mass of the CHA-type zeolite Then, recrystallization was performed with stirring in an autoclave at 200 ° C. for 24 hours. The concentration rate of the recrystallization solution is a concentration rate calculated from the mass of the recrystallization solution before concentration / the mass of the recrystallization solution after concentration, and water was removed by evaporation.
The hydration treatment was hydrothermal treatment using an autoclave.
The average particle diameter, average aspect ratio, sum of integral intensities (X 0 ) of the CHA-type zeolite obtained after the recrystallization step, and the molar ratio (SAR) of the CHA-type zeolite were determined.
As a result, the average particle diameter was 0.12 μm, the average aspect ratio was 1.20, the sum of integrated intensities (X 0 ) was 53813, and the SAR was 12.2.
 次いで、再結晶工程後に得られたCHA型ゼオライトを、1回目のイオン交換は銅濃度が2.34質量%の酢酸銅(II)水溶液を用い、2回目のイオン交換は銅濃度が0.59質量%の酢酸銅(II)水溶液を用い、溶液温度50℃、大気圧にて1時間、イオン交換を行った。 Subsequently, the CHA-type zeolite obtained after the recrystallization step was used for the first ion exchange with an aqueous copper (II) acetate solution having a copper concentration of 2.34% by mass, and for the second ion exchange, the copper concentration was 0.59. Using a mass% aqueous solution of copper (II) acetate, ion exchange was performed for 1 hour at a solution temperature of 50 ° C. and atmospheric pressure.
 図5に、実施例1の合成工程で得られたゼオライト粒子のXRDパターンを、図6に、実施例1の微細化工程で得られたゼオライト粒子のXRDパターンを、図7に実施例1の再結晶工程で得られたゼオライト粒子のXRDパターンを、図8に、実施例1の再結晶工程で得られたゼオライトのSEM写真を示す。
 図5から、合成工程で得られたゼオライトはCHA型ゼオライトであり、図6から、微細化工程によってゼオライト粒子の結晶構造が損なわれ、図7から、微細化工程によって損なわれた結晶構造が再結晶工程により修復されたことが分かった。
FIG. 5 shows the XRD pattern of the zeolite particles obtained in the synthesis step of Example 1, FIG. 6 shows the XRD pattern of the zeolite particles obtained in the refinement step of Example 1, and FIG. The XRD pattern of the zeolite particles obtained in the recrystallization process is shown in FIG. 8 as an SEM photograph of the zeolite obtained in the recrystallization process of Example 1.
From FIG. 5, the zeolite obtained in the synthesis process is a CHA-type zeolite. From FIG. 6, the crystal structure of the zeolite particles is damaged by the refinement process, and from FIG. 7, the crystal structure damaged by the refinement process is restored. It was found that it was repaired by the crystallization process.
(実施例2)
 実施例1の合成工程で得られたCHA型ゼオライトに対し、粉砕用ビーズとしてジルコニア(ビーズ粒径:300μm)を13kg用い、湿式ビーズミル(アシザワファインテック社製、ラボスターミニ)により、回転速度9m/s、60分間粉砕した。
 粉砕後のゼオライトに対して、合成工程後のCHA型ゼオライト粉末を除いた溶液を濃縮せずに再結晶用溶液として用い(濃縮率:1)、CHA型ゼオライトの質量に対して2倍量の固液比となるように添加し、オートクレーブにて200℃、4時間、撹拌しながら再結晶を行った。
 微細化工程及び再結晶工程後のCHA型ゼオライトの平均粒子径、平均アスペクト比、積分強度の和(X)並びにCHA型ゼオライトのモル比(SAR)をそれぞれ求めた。結果を表1に示す。
(Example 2)
For the CHA-type zeolite obtained in the synthesis step of Example 1, 13 kg of zirconia (bead particle size: 300 μm) was used as a grinding bead, and the rotational speed was 9 m using a wet bead mill (manufactured by Ashizawa Finetech, Labstar Mini). / S for 60 minutes.
For the zeolite after pulverization, the solution excluding the CHA-type zeolite powder after the synthesis step was used as a recrystallization solution without concentrating (concentration rate: 1), and twice the mass of the CHA-type zeolite. It added so that it might become a solid-liquid ratio, and it recrystallized, stirring with an autoclave at 200 degreeC for 4 hours.
The average particle diameter, average aspect ratio, sum of integral intensities (X 0 ), and molar ratio (SAR) of the CHA zeolite after the refinement process and the recrystallization process were determined. The results are shown in Table 1.
(実施例3)
 実施例1の合成工程で得られたCHA型ゼオライトに対し、遊星ボールミル(フリッチュ社 遊星型ボールミル クラシックラインP-5 容器サイズ500ml)を用いて、粉砕用ボールとして、ジルコニアボール(粒径:2mm)を300g用い、回転速度400rpmで30分間粉砕した。
 粉砕後のゼオライトに対して、実施例1と同様に再結晶工程を行った。
 微細化工程及び再結晶工程後のCHA型ゼオライトの平均粒子径、平均アスペクト比、積分強度の和(X)並びにCHA型ゼオライトのモル比(SAR)をそれぞれ求めた。結果を表1に示す。
(Example 3)
Zirconia balls (particle diameter: 2 mm) were used as grinding balls for the CHA-type zeolite obtained in the synthesis step of Example 1 using a planetary ball mill (Fritz planetary ball mill Classic Line P-5 container size 500 ml). Was crushed for 30 minutes at a rotational speed of 400 rpm.
A recrystallization process was performed on the crushed zeolite in the same manner as in Example 1.
The average particle diameter, average aspect ratio, sum of integral intensities (X 0 ), and molar ratio (SAR) of the CHA zeolite after the refinement process and the recrystallization process were determined. The results are shown in Table 1.
(比較例1)
 実施例1の合成工程で得られたCHA型ゼオライトを用いた。合成工程で得られたCHA型ゼオライトに対し、実施例1と同様にしてCuイオン交換を行った。
 比較例1における、合成工程後のCHA型ゼオライトの平均粒子径、平均アスペクト比、積分強度の和(X)並びにCHA型ゼオライトのモル比(SAR)を表1に示す。
(Comparative Example 1)
The CHA-type zeolite obtained in the synthesis step of Example 1 was used. Cu ion exchange was performed in the same manner as in Example 1 on the CHA-type zeolite obtained in the synthesis step.
Table 1 shows the average particle diameter, average aspect ratio, sum of integral intensities (X 0 ) and CHA-type zeolite molar ratio (SAR) of the CHA-type zeolite after the synthesis step in Comparative Example 1.
(比較例2)
 Si源としてコロイダルシリカ(日産化学工業社製、スノーテックス)、Al源として乾燥水酸化アルミニウムゲル(富田製薬社製)、アルカリ源として水酸化ナトリウム(トクヤマ社製)と水酸化カリウム(東亜合成社製)、構造規定剤(SDA)としてN,N,N-トリメチルアダマンタンアンモニウム水酸化物(TMAAOH)25%水溶液(Sachem社製)、種結晶としてSSZ-13、及び脱イオン水を混合し、原料組成物を準備した。原料組成物のモル比は、SiO:36mol、Al:1mol、KOH:3.6mol、TMAAOH:2.9mol、HO:468molの割合とした。また原料組成物中のSiO、Alに5.0質量%の種結晶を加えた。原料組成物を500Lオートクレーブに装填し、加熱温度160℃、加熱時間24時間で水熱合成を行い、CHA構造を有するゼオライトを合成した。この合成工程で得られたCHA型ゼオライトに対し、実施例1と同様にしてCuイオン交換を行った。
 比較例2において、合成工程後のCHA型ゼオライトの平均粒子径、平均アスペクト比、積分強度の和(X)並びにCHA型ゼオライトのモル比(SAR)を測定した。結果を表1に示す。
(Comparative Example 2)
Colloidal silica (manufactured by Nissan Chemical Industries, Snowtex) as the Si source, dry aluminum hydroxide gel (manufactured by Tomita Pharmaceutical) as the Al source, sodium hydroxide (manufactured by Tokuyama) and potassium hydroxide (Toagosei Co., Ltd.) as the alkali source N, N, N-trimethyladamantanammonium hydroxide (TMAAOH) 25% aqueous solution (manufactured by Sachem) as a structure directing agent (SDA), SSZ-13 as a seed crystal, and deionized water A composition was prepared. The molar ratios of the raw material compositions were SiO 2 : 36 mol, Al 2 O 3 : 1 mol, KOH: 3.6 mol, TMAAOH: 2.9 mol, and H 2 O: 468 mol. Further, 5.0% by mass of seed crystals was added to SiO 2 and Al 2 O 3 in the raw material composition. The raw material composition was loaded into a 500 L autoclave, and hydrothermal synthesis was performed at a heating temperature of 160 ° C. and a heating time of 24 hours to synthesize a zeolite having a CHA structure. Cu ion exchange was performed on the CHA-type zeolite obtained in this synthesis step in the same manner as in Example 1.
In Comparative Example 2, the average particle diameter, average aspect ratio, sum of integral intensities (X 0 ) of the CHA-type zeolite after the synthesis step and the molar ratio (SAR) of the CHA-type zeolite were measured. The results are shown in Table 1.
(比較例3)
 Si源としてコロイダルシリカ(日産化学工業社製、スノーテックス)、Al源として乾燥水酸化アルミニウムゲル(富田製薬社製)、アルカリ源として水酸化ナトリウム(トクヤマ社製)と水酸化カリウム(東亜合成社製)、構造規定剤(SDA)としてN,N,N-トリメチルアダマンタンアンモニウム水酸化物(TMAAOH)25%水溶液(Sachem社製)、種結晶としてSSZ-13、及び脱イオン水を混合し、原料組成物を準備した。原料組成物のモル比は、SiO:15mol、Al:1mol、NaOH:1.6mol、KOH:0.53mol、TMAAOH:1.62mol、HO:300molの割合とした。また原料組成物中のSiO、Alに5.0質量%の種結晶を加えた。原料組成物を500Lオートクレーブに装填し、加熱温度190℃、加熱時間24時間で水熱合成を行い、CHA型ゼオライトを合成した。この合成工程で得られたCHA型ゼオライトに対し、実施例1と同様にしてCuイオン交換を行った。
 比較例3において、合成工程後のCHA型ゼオライトの平均粒子径、平均アスペクト比、積分強度の和(X)並びにCHA型ゼオライトのモル比(SAR)を測定した。結果を表1に示す。
(Comparative Example 3)
Colloidal silica (manufactured by Nissan Chemical Industries, Snowtex) as the Si source, dry aluminum hydroxide gel (manufactured by Tomita Pharmaceutical) as the Al source, sodium hydroxide (manufactured by Tokuyama) and potassium hydroxide (Toagosei Co., Ltd.) as the alkali source N, N, N-trimethyladamantanammonium hydroxide (TMAAOH) 25% aqueous solution (manufactured by Sachem) as a structure directing agent (SDA), SSZ-13 as a seed crystal, and deionized water A composition was prepared. The molar ratios of the raw material compositions were SiO 2 : 15 mol, Al 2 O 3 : 1 mol, NaOH: 1.6 mol, KOH: 0.53 mol, TMAAOH: 1.62 mol, and H 2 O: 300 mol. Further, 5.0% by mass of seed crystals was added to SiO 2 and Al 2 O 3 in the raw material composition. The raw material composition was charged into a 500 L autoclave, and hydrothermal synthesis was carried out at a heating temperature of 190 ° C. and a heating time of 24 hours to synthesize CHA-type zeolite. Cu ion exchange was performed on the CHA-type zeolite obtained in this synthesis step in the same manner as in Example 1.
In Comparative Example 3, the average particle diameter, average aspect ratio, sum of integral intensities (X 0 ) of the CHA-type zeolite after the synthesis step and the molar ratio (SAR) of the CHA-type zeolite were measured. The results are shown in Table 1.
(比較例4)
 実施例1の合成工程で得られたCHA型ゼオライトに対し、遊星ボールミル(フリッチュ社 遊星型ボールミル クラシックラインP-5 容器サイズ500ml)を用いて、粉砕用ボールとして、ジルコニアボール(粒径:2mm)を500g用い、回転速度400rpmで60分間粉砕した。
 粉砕後のゼオライトに対して、実施例1と同様に再結晶工程を行った。
 微細化工程及び再結晶工程後のCHA型ゼオライトの平均粒子径、平均アスペクト比、積分強度の和(X)並びにCHA型ゼオライトのモル比(SAR)をそれぞれ求めた。結果を表1に示す。
(Comparative Example 4)
Zirconia balls (particle diameter: 2 mm) were used as grinding balls for the CHA-type zeolite obtained in the synthesis step of Example 1 using a planetary ball mill (Fritz planetary ball mill Classic Line P-5 container size 500 ml). Was crushed for 60 minutes at a rotational speed of 400 rpm.
A recrystallization process was performed on the crushed zeolite in the same manner as in Example 1.
The average particle diameter, average aspect ratio, sum of integral intensities (X 0 ), and molar ratio (SAR) of the CHA zeolite after the refinement process and the recrystallization process were determined. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(ハニカム触媒の作製)
 実施例1~3及び比較例1~4で得られたCu担持後のCHA型ゼオライト粒子を24.2質量%、無機バインダとしてアルミナゾルを10.9質量%、平均繊維長が100μmのガラス繊維を3.9質量%、チタニア(酸化チタン)を18.9質量%、メチルセルロースを6質量%、界面活性剤を3.3質量%及びイオン交換水を27.8質量%、平均粒子径0.8μmのアクリル樹脂を5.1質量%を混合混練して、原料ペーストを作成した。
(Preparation of honeycomb catalyst)
Glass fibers having 24.2% by mass of the CHA-type zeolite particles supported by Cu obtained in Examples 1 to 3 and Comparative Examples 1 to 4, 10.9% by mass of alumina sol as an inorganic binder, and an average fiber length of 100 μm were used. 3.9% by mass, titania (titanium oxide) 18.9% by mass, methyl cellulose 6% by mass, surfactant 3.3% by mass, ion-exchanged water 27.8% by mass, average particle size 0.8 μm A raw material paste was prepared by mixing and kneading 5.1% by mass of the above acrylic resin.
 次に、押出成形機を用いて、原料ペーストを押出成形して、ハニカム成形体を作製した。そして減圧マイクロ波乾燥機を用いて、ハニカム成形体を出力4.5kW、減圧6.7kPaで7分間乾燥させた後、酸素濃度1%、700℃で5時間脱脂焼成して、ハニカム触媒(ハニカムユニット)を作製した。ハニカムユニットは、一辺が35mm、長さが150mmの正四角柱状であり、貫通孔の密度が124個/cm、隔壁の厚さが0.20mmであった。 Next, the raw material paste was extruded using an extrusion molding machine to produce a honeycomb formed body. Then, using a vacuum microwave dryer, the honeycomb formed body was dried at an output of 4.5 kW and a reduced pressure of 6.7 kPa for 7 minutes, and then degreased and fired at an oxygen concentration of 1% and 700 ° C. for 5 hours. Unit). The honeycomb unit had a regular quadrangular prism shape with a side of 35 mm and a length of 150 mm, a through hole density of 124 holes / cm 2 , and a partition wall thickness of 0.20 mm.
<NOxの浄化率の測定>
 ハニカムユニットからダイヤモンドカッターを用いて、直径25.4mm、長さ38.1mmの円柱状試験片を切り出した。この試験片に、200℃の模擬ガスを空間速度(SV)を100000hr-1で流しながら、触媒評価装置(堀場製作所社製、SIGU-2000/MEXA-6000FT)を用いて、試験片から流出するNOx流出量を測定し、下記の式(1)で表されるNOxの浄化率(%)を算出した。なお、模擬ガスの構成成分は、一酸化窒素350ppm、アンモニア350ppm、酸素10%、二酸化炭素5%、水5%、窒素(balance)とした。
  浄化率(%)=(NOxの流入量-NOxの流出量)/(NOxの流入量)×100・・・(1)
 同様に、525℃の模擬ガスをSV:100000hr-1で流しながら、NOxの浄化率[%]を算出した。この時の模擬ガスの構成成分は、一酸化窒素315ppm、二酸化窒素35ppm、アンモニア385ppm、酸素10%、二酸化炭素5%、水5%、窒素(balance)とした。実施例1~3及び比較例1~4で得られたゼオライトを使用したハニカム触媒のNOxの浄化率を表2に示す。
<Measurement of NOx purification rate>
A cylindrical test piece having a diameter of 25.4 mm and a length of 38.1 mm was cut out from the honeycomb unit using a diamond cutter. A simulated gas at 200 ° C. is allowed to flow through the test piece at a space velocity (SV) of 100000 hr −1 , and flows out from the test piece using a catalyst evaluation apparatus (manufactured by Horiba, Ltd., SIGU-2000 / MEXA-6000FT). The NOx outflow amount was measured, and the NOx purification rate (%) represented by the following formula (1) was calculated. The constituent components of the simulated gas were 350 ppm nitrogen monoxide, 350 ppm ammonia, 10% oxygen, 5% carbon dioxide, 5% water, and nitrogen.
Purification rate (%) = (NOx inflow amount−NOx outflow amount) / (NOx inflow amount) × 100 (1)
Similarly, the NOx purification rate [%] was calculated while flowing a simulated gas at 525 ° C. at SV: 100000 hr −1 . The constituent components of the simulated gas at this time were 315 ppm nitric oxide, 35 ppm nitrogen dioxide, 385 ppm ammonia, 10% oxygen, 5% carbon dioxide, 5% water, and nitrogen. Table 2 shows the NOx purification rates of the honeycomb catalysts using the zeolites obtained in Examples 1 to 3 and Comparative Examples 1 to 4.
<ハニカムユニットの気孔率の測定>
 ハニカムユニットを7セル×7セル×10mmの大きさに切断して測定試料とし、この試料をイオン交換水及びアセトンを用いて超音波洗浄した後、オーブンにて100℃で乾燥する。次いで、測定顕微鏡(Nikon社製、Measuring Microscope MM-40、倍率100倍)を用いて、試料の断面形状の寸法を計測し、幾何学的な計算から体積を求めた。
 その後、計算上求められた体積及びピクノメーターで測定した試料の真密度から、試料が完全な緻密体であったと仮定した場合の重量を計算した。
 なお、ピクノメーターでの測定手順は、以下の通りとする。ハニカムユニットを粉砕し、23.6ccの粉末を調製し、得られた粉末を200℃で8時間乾燥させる。その後、Auto Pycnometer 1320(Micromeritics社製)を用いて、JIS-R-1620(1995)に準拠し真密度を測定する。なお、この時の排気時間は40分とする。
 次に、試料の実際の重量を電子天秤(島津製作所社製 HR202i)にて測定し、気孔率を以下の計算式にて計算する。
  気孔率(%)=100-(実際の重量/緻密体としての重量)×100
 その結果を表2に示す。
<Measurement of porosity of honeycomb unit>
The honeycomb unit is cut into a size of 7 cells × 7 cells × 10 mm to obtain a measurement sample. This sample is ultrasonically cleaned with ion-exchanged water and acetone, and then dried at 100 ° C. in an oven. Next, the dimensions of the cross-sectional shape of the sample were measured using a measuring microscope (Nikon Corporation, Measuring Microscope MM-40, magnification 100 times), and the volume was obtained from geometric calculation.
Thereafter, the weight when the sample was assumed to be a complete dense body was calculated from the volume obtained by calculation and the true density of the sample measured with a pycnometer.
The measurement procedure with a pycnometer is as follows. The honeycomb unit is pulverized to prepare 23.6 cc of powder, and the obtained powder is dried at 200 ° C. for 8 hours. Thereafter, the true density is measured according to JIS-R-1620 (1995) using an Auto Pycnometer 1320 (manufactured by Micromeritics). The exhaust time at this time is 40 minutes.
Next, the actual weight of the sample is measured with an electronic balance (HR202i manufactured by Shimadzu Corporation), and the porosity is calculated by the following calculation formula.
Porosity (%) = 100− (actual weight / weight as dense body) × 100
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~3で得られたハニカム触媒は、本発明のゼオライトを用いているので、触媒層の密度を十分に高くすることができ、かつ、排ガスと該触媒との接触効率も十分に高まり、これによりNOx浄化性能を著しく改善できることが分かった。これに対し、比較例1~4で得られたハニカム触媒では、本発明のゼオライトを用いていないので、NOx浄化性能が、実施例1~3に比べ劣るものであった。 Since the honeycomb catalyst obtained in Examples 1 to 3 uses the zeolite of the present invention, the density of the catalyst layer can be sufficiently increased, and the contact efficiency between the exhaust gas and the catalyst can be sufficiently increased. Thus, it has been found that the NOx purification performance can be remarkably improved. In contrast, the honeycomb catalysts obtained in Comparative Examples 1 to 4 did not use the zeolite of the present invention, so the NOx purification performance was inferior to that of Examples 1 to 3.
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2015年6月25日出願の日本特許出願(特願2015-127732)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on June 25, 2015 (Japanese Patent Application No. 2015-127732), the contents of which are incorporated herein by reference.
10、10´ ハニカム触媒
11、11´ ハニカムユニット
11a 貫通孔
11b 隔壁
12 外周コート層
13 接着層
20 保持シール材
30 金属容器
100 排ガス浄化装置
G 排ガス
10, 10 'Honeycomb catalyst 11, 11' Honeycomb unit 11a Through- hole 11b Partition 12 Outer peripheral coat layer 13 Adhesive layer 20 Holding sealing material 30 Metal container 100 Exhaust gas purification device G Exhaust gas

Claims (11)

  1.  CHA構造を有するゼオライトであって、SEM画像によって測定した平均粒子径が0.05μm以上、1.0μm未満であり、かつ平均アスペクト比が1.1~3.0である、ゼオライト。 Zeolite having a CHA structure, having an average particle size of 0.05 μm or more and less than 1.0 μm as measured by an SEM image, and an average aspect ratio of 1.1 to 3.0.
  2.  前記平均アスペクト比が1.15~2.70である、請求項1に記載のゼオライト。 The zeolite according to claim 1, wherein the average aspect ratio is 1.15 to 2.70.
  3.  前記平均粒子径が0.05~0.5μmである、請求項1又は2に記載のゼオライト。 The zeolite according to claim 1 or 2, wherein the average particle diameter is 0.05 to 0.5 µm.
  4.  SiO/Al組成比(SAR)が15未満である、請求項1~3のいずれか1項に記載のゼオライト。 The zeolite according to any one of claims 1 to 3, wherein the composition ratio (SAR) of SiO 2 / Al 2 O 3 is less than 15.
  5.  Cuが担持され、Cu/Al(モル比)が0.2~0.5である、請求項1~4のいずれか1項に記載のゼオライト。 The zeolite according to any one of claims 1 to 4, wherein Cu is supported and Cu / Al (molar ratio) is 0.2 to 0.5.
  6.  粉末X線解析法によるX線回折スペクトルの(211)面、(104)面及び(220)面の積分強度の和が50000以上である、請求項1~5のいずれか1項に記載のゼオライト。 The zeolite according to any one of claims 1 to 5, wherein the sum of the integrated intensities of the (211) plane, (104) plane and (220) plane of the X-ray diffraction spectrum by powder X-ray analysis is 50,000 or more. .
  7.  請求項1~6のいずれか1項に記載のゼオライトの製造方法であって、
     Si源、Al源、アルカリ源及び構造規定剤を含む原料組成物を用いてCHA構造を有するゼオライトを合成する合成工程と、
     前記合成工程で得られたCHA構造を有するゼオライトを微細化する微細化工程と、
    を含む、ゼオライトの製造方法。
    A method for producing a zeolite according to any one of claims 1 to 6,
    A synthesis step of synthesizing a zeolite having a CHA structure using a raw material composition containing a Si source, an Al source, an alkali source and a structure-directing agent;
    A refining step of refining the zeolite having the CHA structure obtained in the synthesis step;
    A method for producing zeolite, comprising:
  8.  前記微細化工程により微細化されたCHA構造を有するゼオライトと、Si源及びアルカリ源を含む溶液とを混合し、水和処理する再結晶工程、
    をさらに含む、請求項7に記載のゼオライトの製造方法。
    A recrystallization step of mixing a zeolite having a CHA structure refined by the refinement step with a solution containing a Si source and an alkali source, and hydrating.
    The method for producing a zeolite according to claim 7, further comprising:
  9.  前記微細化工程が、湿式ビーズミルを用いてCHA構造を有するゼオライトを湿式粉砕する工程である、請求項7又は8に記載のゼオライトの製造方法。 The method for producing zeolite according to claim 7 or 8, wherein the micronization step is a step of wet-grinding a zeolite having a CHA structure using a wet bead mill.
  10.  複数の長手方向に延びる貫通孔が隔壁を隔てて並設されたハニカムユニットを備えたハニカム触媒であって、
     前記ハニカムユニットは、ゼオライトと無機バインダとを含み、
     前記ゼオライトが請求項1~6のいずれか1項に記載のゼオライトである、ハニカム触媒。
    A honeycomb catalyst provided with a honeycomb unit in which a plurality of through holes extending in the longitudinal direction are arranged side by side across a partition wall,
    The honeycomb unit includes a zeolite and an inorganic binder,
    A honeycomb catalyst, wherein the zeolite is the zeolite according to any one of claims 1 to 6.
  11.  請求項10に記載のハニカム触媒の外周部に保持シール材を配置し、金属容器にキャニングしてなる、排ガス浄化装置。 An exhaust gas purification apparatus comprising a holding sealing material disposed on the outer periphery of the honeycomb catalyst according to claim 10 and canned in a metal container.
PCT/JP2016/068858 2015-06-25 2016-06-24 Zeolite, zeolite production method, honeycomb catalyst using zeolite, and exhaust gas purification device WO2016208728A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-127732 2015-06-25
JP2015127732A JP2017007912A (en) 2015-06-25 2015-06-25 Zeolite, manufacturing method thereof, honeycomb catalyst therewith and exhaust gas purifying equipment

Publications (1)

Publication Number Publication Date
WO2016208728A1 true WO2016208728A1 (en) 2016-12-29

Family

ID=57585175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068858 WO2016208728A1 (en) 2015-06-25 2016-06-24 Zeolite, zeolite production method, honeycomb catalyst using zeolite, and exhaust gas purification device

Country Status (2)

Country Link
JP (1) JP2017007912A (en)
WO (1) WO2016208728A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113164943A (en) * 2018-12-03 2021-07-23 古河电气工业株式会社 Catalyst structure for synthesis gas production, precursor thereof, synthesis gas production apparatus, and method for producing catalyst structure for synthesis gas production

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296521A (en) * 2006-05-02 2007-11-15 Argillon Gmbh Extrusion-molded solid catalyst and its manufacturing method
JP2012211066A (en) * 2010-12-22 2012-11-01 Tosoh Corp Chabazite-type zeolite and method for producing the same, low-silica zeolite having copper supported, nitrogen oxide reduction removal catalyst including the zeolite, and method for reduction removing nitrogen oxide using the catalyst
JP2013049602A (en) * 2011-08-31 2013-03-14 Yokohama National Univ Method of manufacturing fine zeolite
JP2013095653A (en) * 2011-11-04 2013-05-20 Tosoh Corp Zeolite having copper and alkali metal
JP2014139124A (en) * 2012-12-21 2014-07-31 Yokohama National Univ Method of synthesizing nanosize zeolite
JP2014210221A (en) * 2013-04-17 2014-11-13 株式会社キャタラー Scr catalyst and catalyst system for exhaust gas purification
JP2015044146A (en) * 2013-08-27 2015-03-12 イビデン株式会社 Honeycomb catalyst and exhaust gas purification device
JP2015044144A (en) * 2013-08-27 2015-03-12 イビデン株式会社 Honeycomb catalyst and exhaust gas purification device
JP2015101506A (en) * 2013-11-25 2015-06-04 日揮触媒化成株式会社 Method for synthesis of chabazite zeolite

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007296521A (en) * 2006-05-02 2007-11-15 Argillon Gmbh Extrusion-molded solid catalyst and its manufacturing method
JP2012211066A (en) * 2010-12-22 2012-11-01 Tosoh Corp Chabazite-type zeolite and method for producing the same, low-silica zeolite having copper supported, nitrogen oxide reduction removal catalyst including the zeolite, and method for reduction removing nitrogen oxide using the catalyst
JP2013049602A (en) * 2011-08-31 2013-03-14 Yokohama National Univ Method of manufacturing fine zeolite
JP2013095653A (en) * 2011-11-04 2013-05-20 Tosoh Corp Zeolite having copper and alkali metal
JP2014139124A (en) * 2012-12-21 2014-07-31 Yokohama National Univ Method of synthesizing nanosize zeolite
JP2014210221A (en) * 2013-04-17 2014-11-13 株式会社キャタラー Scr catalyst and catalyst system for exhaust gas purification
JP2015044146A (en) * 2013-08-27 2015-03-12 イビデン株式会社 Honeycomb catalyst and exhaust gas purification device
JP2015044144A (en) * 2013-08-27 2015-03-12 イビデン株式会社 Honeycomb catalyst and exhaust gas purification device
JP2015101506A (en) * 2013-11-25 2015-06-04 日揮触媒化成株式会社 Method for synthesis of chabazite zeolite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113164943A (en) * 2018-12-03 2021-07-23 古河电气工业株式会社 Catalyst structure for synthesis gas production, precursor thereof, synthesis gas production apparatus, and method for producing catalyst structure for synthesis gas production
CN113164943B (en) * 2018-12-03 2024-05-10 古河电气工业株式会社 Catalyst structure for producing synthesis gas, precursor thereof, synthesis gas production apparatus, and method for producing catalyst structure for producing synthesis gas

Also Published As

Publication number Publication date
JP2017007912A (en) 2017-01-12

Similar Documents

Publication Publication Date Title
JP5732170B1 (en) Zeolite, honeycomb catalyst and exhaust gas purification device
WO2016182067A1 (en) Zeolite, method for producing zeolite, honeycomb catalyst using zeolite, and exhaust gas purifying device
JP5740040B1 (en) Zeolite, honeycomb catalyst and exhaust gas purification device
WO2016208733A1 (en) Zeolite, zeolite production method, honeycomb catalyst using zeolite, and exhaust gas purification device
WO2016056577A1 (en) Honeycomb catalyst
JP6546731B2 (en) Honeycomb catalyst
JP5732169B1 (en) Zeolite production method and honeycomb catalyst
JP6616101B2 (en) Zeolite, method for producing the zeolite, honeycomb catalyst using the zeolite, and exhaust gas purification device
JP2018083725A (en) Method for producing zeolite
WO2016208728A1 (en) Zeolite, zeolite production method, honeycomb catalyst using zeolite, and exhaust gas purification device
JP2017007914A (en) Manufacturing method of zeolite, the zeolite therewith, and manufacturing method of honeycomb catalyst
JP2017007911A (en) Manufacturing method of zeolite mixed particle, honeycomb catalyst therewith and exhaust gas purifying equipment
WO2016208734A1 (en) Zeolite production method, zeolite obtained by means of same, and honeycomb catalyst production method
JP6792426B2 (en) Zeolite and honeycomb catalyst
JP6558947B2 (en) Method for manufacturing honeycomb catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814497

Country of ref document: EP

Kind code of ref document: A1