WO2016207342A1 - Optimization of the heat balance in reformers by using metal catalyst supports - Google Patents

Optimization of the heat balance in reformers by using metal catalyst supports Download PDF

Info

Publication number
WO2016207342A1
WO2016207342A1 PCT/EP2016/064655 EP2016064655W WO2016207342A1 WO 2016207342 A1 WO2016207342 A1 WO 2016207342A1 EP 2016064655 W EP2016064655 W EP 2016064655W WO 2016207342 A1 WO2016207342 A1 WO 2016207342A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheets
reaction
metallic catalyst
reaction chamber
product
Prior art date
Application number
PCT/EP2016/064655
Other languages
German (de)
French (fr)
Inventor
Ralf Abraham
Domenico Pavone
Dobrin Toporov
Martina GENTHNER
Original Assignee
Thyssenkrupp Industrial Solutions Ag
Thyssenkrupp Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Industrial Solutions Ag, Thyssenkrupp Ag filed Critical Thyssenkrupp Industrial Solutions Ag
Publication of WO2016207342A1 publication Critical patent/WO2016207342A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/249Plate-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2458Flat plates, i.e. plates which are not corrugated or otherwise structured, e.g. plates with cylindrical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2451Geometry of the reactor
    • B01J2219/2456Geometry of the plates
    • B01J2219/2459Corrugated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2461Heat exchange aspects
    • B01J2219/2465Two reactions in indirect heat exchange with each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2477Construction materials of the catalysts
    • B01J2219/2479Catalysts coated on the surface of plates or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2476Construction materials
    • B01J2219/2483Construction materials of the plates
    • B01J2219/2485Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2492Assembling means
    • B01J2219/2493Means for assembling plates together, e.g. sealing means, screws, bolts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • B01J2219/2401Reactors comprising multiple separate flow channels
    • B01J2219/245Plate-type reactors
    • B01J2219/2491Other constructional details
    • B01J2219/2497Size aspects, i.e. concrete sizes are being mentioned in the classified document
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/3221Corrugated sheets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1035Catalyst coated on equipment surfaces, e.g. reactor walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a method and an apparatus for producing a product in a reformer, wherein the heat balance within the reformer is optimized by the use of metallic catalyst carriers.
  • Reformers are usually suitable for carrying out a whole series of chemical reactions.
  • hydrocarbons in reformers with steam can be catalytically converted to synthesis gas, ie mixtures of hydrogen and carbon monoxide.
  • synthesis gas ie mixtures of hydrogen and carbon monoxide.
  • steam reforming steam reforming
  • a synthesis gas can be produced, which in turn can be converted into other major base chemicals such as methanol or ammonia.
  • the steam reforming of natural gas takes place in the reaction tubes of a reformer furnace, wherein the reaction tubes contain a catalyst and are usually arranged parallel to one another. Since the process of steam reforming is strongly endothermic, the reaction tubes of the reformer furnace are usually tempered by an external firing.
  • the synthesis of propylene is preferably carried out in reformers.
  • propane is reacted to form a propylene and hydrogen-enriched gas stream.
  • procedures such as steam cracking or catalytic cracking processes can be used.
  • the outer walls of a typical reformer furnace, as well as its ceiling and floor are usually lined with several layers of refractory materials which withstand temperatures of up to 2400 ° C.
  • heat is transmitted to the reaction tubes of the reformer by means of ceiling lighting, especially when the reactions taking place within the reformer are endothermic.
  • the heat of the Feuerungsflammen is transported through the pipe wall of the reaction tubes further inwards to usually ceramic catalyst carrier and to the gas flowing through.
  • the reaction tubes are often fired by means of burners, which are mounted on the top or the bottom or on the side walls of the reformer and directly the Firing space between the reaction tubes. Due to the heat transport mechanisms and the simultaneous endothermic reactions, an axial and a radial temperature profile within the reaction tubes typically sets in.
  • WO 02/40156 A2 discloses a method in which a metallic catalyst carrier is used in a converter for purifying exhaust gas.
  • the metallic catalyst carrier comprises a flat and a corrugated metal sheet, which are both connected together. Thereby, a plurality of cell channels parallel to each other are formed, which extend in the longitudinal direction between the flat and the corrugated sheet, so that the exhaust gas flows in the longitudinal direction through the cell channels.
  • the converter with the metallic catalyst carrier is arranged downstream of an internal combustion engine to remove pollutants from the exhaust gas of the internal combustion engine.
  • DE 603 00 81 1 T2 discloses a metallic catalyst carrier which is installed in an exhaust system of an internal combustion engine and the like for the purpose of cleaning the exhaust gases.
  • DE 195 34 433 C1 discloses a catalyst layer structure for use in a methanol reforming reactor, in particular in a plate reactor, and a process suitable for the production thereof.
  • the catalyst layer structure is to be realized by a compacted metal foam carrier layer in whose pores the catalyst material is fixed.
  • the catalyst material is introduced as a suitable fractionated powder in the metal foam pores. Subsequently, the metal foam carrier layer containing the catalyst powder is then compressed, whereby the catalyst material remains fixed in the pores.
  • a first aspect of the invention relates to a method for producing a product in a reaction apparatus, the reaction apparatus comprising a combustion chamber and a reaction chamber which are in heat exchange with each other, and wherein the method comprises the steps of:
  • step (b) combusting at least a portion of the fuel gas provided in step (b) in the combustion chamber to produce exhaust gas and heat;
  • step (a) passing at least part of the composition provided in step (a) through metallic catalyst carriers in the reaction chamber;
  • step (c) producing a product in the reaction chamber using the heat generated in step (c).
  • a reaction device refers to a device that is configured to perform chemical reactions.
  • Suitable reaction devices are, for example, reactors, which preferably comprise stirred tanks and / or flow-through reactors. Depending on the operating requirements, reaction devices can be made of unalloyed or alloyed steel; they may preferably be clad, enamelled or gummed.
  • the reaction device according to the invention may also preferably comprise high-pressure, high-temperature, tubular, loop and / or fluidized-bed reactors. Further preferred for example, the reaction apparatus may comprise a reformer which may be preferably configured to produce a synthesis gas comprising carbon monoxide and hydrogen.
  • the reaction apparatus is configured to dehydrogenate propane to form propylene and hydrogen.
  • the reaction device can be configured for all methods known to a person skilled in the art for the dehydrogenation of propane, for example the steam cracking or catalytic cracking process.
  • a reaction chamber refers to the location of a reaction device at which the formation of a product takes place.
  • the reaction chamber comprises reaction tubes, which may be made of high-alloy steel, for example.
  • combustion chamber of a reaction device designates the place where the heat required for the synthesis is generated.
  • Combustion chamber and reaction chamber are preferably in heat exchange with each other, but preferably not in gas exchange.
  • a composition comprising hydrocarbon is provided.
  • the composition preferably comprises hydrocarbon-containing energy carriers, which may comprise natural gas, light gasoline, methanol, biogas and / or biomass.
  • the composition provided in step (a) may comprise propane, for example when propylene is produced in the process of the present invention.
  • the composition may comprise further components inert to the process. If propylene is produced in the process according to the invention, the inert components include, for example, noble gases and / or nitrogen. If the process according to the invention is a steam reforming, the inert components comprise, for example, noble gases and / or carbon dioxide.
  • the composition in step (a) is provided continuously, but the provision can also be made only temporarily.
  • a fuel gas is provided.
  • the fuel gas comprises a hydrocarbon-containing energy carrier, which may comprise natural gas, mineral spirits, methanol, biogas and / or biomass.
  • the fuel gas comprises mixtures of natural gas and hydrogen, carbon monoxide, carbon dioxide and other hydrocarbons.
  • the fuel gas and the composition provided in step (a) may or may not be identical.
  • the flame temperature is at least 1000 ° C, more preferably at least 1400 ° C or 1600 ° C.
  • the flame temperature is in the range of 1000 ° C to 2400 ° C, more preferably in the range of 1200 ° C to 2300 ° C or in the range of 1500 ° C to 2200 ° C.
  • step (c) of the method according to the invention at least part of the fuel gas provided in step (b) is combusted in the combustion chamber to produce exhaust gas and heat.
  • step (c) at least 50% by volume of the provided fuel gas is burned, more preferably at least 60% by volume, at least 70% by volume, at least 80% by volume, at least 90% by volume or at least 99% by volume .-%.
  • step (d) of the process according to the invention at least part of the composition provided in step (a) is passed in the reaction chamber through metallic catalyst supports, which are preferably coated with a suitable catalyst.
  • metallic catalyst supports which are preferably coated with a suitable catalyst.
  • Metallic catalyst supports preferably comprise a steel support with a catalytic coating. Furthermore, metallic catalyst supports preferably comprise spirally wound, rolled sheets or thin metal foils.
  • the metal foils preferably comprise high alloy special steels having a relatively high aluminum content in the range of 1 to 15 wt%, more preferably in the range of 2 to 12 wt%, or in the range of 5 to 10 wt%.
  • the metallic catalyst supports preferably have a significantly higher thermal and mechanical stability than ceramic catalyst supports.
  • the metallic catalyst carriers comprise mutually parallel, cell-like channels.
  • the wall thickness of the metallic catalyst carriers is preferably lower than in the case of ceramic catalyst carriers.
  • the wall thickness of the metallic catalyst supports is preferably at most 100 ⁇ m, more preferably at most 90 ⁇ m, at most 80 ⁇ m, at most 70 ⁇ m, at most 60 ⁇ m, at most 50 ⁇ m, at most 40 ⁇ m, at most 30 ⁇ m, at most 20 ⁇ m or at most 10 ⁇ m.
  • the small wall thickness of the metallic catalyst supports preferably allows an improved heat transfer to the composition which flows through the reaction chamber.
  • the metallic catalyst support is characterized by a high thermal conductivity.
  • the high thermal conductivity preferably allows a rapid temperature compensation within the reaction chamber, preferably in the radial and in the axial direction.
  • a uniform temperature distribution exists both in the axial and in the radial direction within the reaction chamber.
  • the axial direction preferably denotes the direction along the reaction tubes of the reaction device.
  • the radial direction preferably designates the heat distribution along a cross section through a reaction tube.
  • the metallic catalyst supports allow a uniform temperature distribution within the reaction tubes so that the temperatures at the outer wall of the reaction tubes and the temperatures at the center of the reaction tubes differ by at most 100 ° C, more preferably at most 50 ° C, at most 40 ° C maximum 30 ° C, maximum 20 ° C, maximum 10 ° C, maximum 8 ° C, maximum 6 ° C, maximum 4 ° C, maximum 2 ° C or maximum 1 ° C.
  • the metallic catalyst support allows a reduced temperature gradient along the axial alignment of the reaction tubes.
  • the temperature difference between two ends of a reaction tube is at most 100 ° C, more preferably at most 50 ° C, at most 40 ° C, at most 30 ° C, at most 20 ° C, at most 10 ° C, at most 8 ° C, at most 6 ° C, not more than 4 ° C, not more than 2 ° C or not more than 1 ° C.
  • the metallic catalyst supports thus enable the highest possible heat exchange in the three-dimensional direction of the catalyst.
  • the metallic catalyst supports preferably have a low heat capacity.
  • the low heat capacity and the high thermal conductivity of the metallic catalyst supports allow a faster and more uniform heating of the reaction device to its operating temperature than when using ceramic catalyst supports.
  • a person skilled in the art recognizes that the capacity of a reaction device can be increased by a faster heating of the reaction device to its operating temperature and thus its operating costs can be reduced.
  • thermo shock resistance An essential material property of materials is their thermal shock resistance. Inhomogeneous temperature distributions can cause thermal stresses within a material. If these stresses merely lead to elastic deformation, they disappear when the temperature is equalized. However, if they exceed the strength of the material, changes occur up to breakage.
  • the metallic catalyst supports are characterized by a considerably higher thermal shock resistance compared to ceramic catalyst supports. When passing the composition provided in step (a) through the metallic catalyst supports, pressure losses may occur.
  • the pressure loss of the composition provided in step (a) when passing through the metallic catalyst supports in step (d) is at most 3 bar, more preferably at most 2 bar, at most 1 bar, at most 0.8 bar, at most 0.6 bar , not more than 0.4 bar, not more than 0.2 bar or not more than 0.1 bar.
  • the metallic catalyst supports are electrically heated.
  • the metallic catalyst supports can be electrically heated continuously or only during the arrival and / or shutdown of the reaction device.
  • the metallic catalyst carriers are preferably electrically heated in order to enable a faster start-up of the reaction device, so that the catalyst can be brought to operating temperature as quickly as possible when the reaction device starts up in the shortest possible time.
  • the metallic catalyst carriers are electrically heated when the reaction device is shut down, so that the reaction device can be kept at operating temperature for as long as possible during the shutdown.
  • the metallic catalyst supports are heated electrically to a temperature of at least 100 ° C, more preferably to a temperature of at least 150 ° C, at least 200 ° C, at least 300 ° C, at least 400 ° C, at least 500 ° C, at least 600 ° C. , at least 700 ° C, at least 800 ° C, at least 900 ° C or at least 1000 ° C.
  • step (e) of the process according to the invention a product is produced in the reaction chamber while consuming the heat generated in step (c).
  • the product is prepared at at least 500 ° C, more preferably at least 600 ° C, at least 700 ° C, at least 800 ° C, at least 900 ° C or at least 1000 ° C.
  • the reaction device is a steam reformer.
  • the steam reformer can be a tube reformer or a steam reformer, both of which are preferably suitable for carrying out steam reforming.
  • a preferably preheated composition containing light hydrocarbons eg natural gas, liquefied petroleum gas, naphtha
  • the catalyst preferably accelerates the steam reforming of the hydrocarbons and simultaneously supports the so-called water gas shift reaction.
  • the product is a synthesis gas.
  • the synthesis gas mainly comprises carbon monoxide and hydrogen, but may also include other components.
  • the reaction device is a steam reformer and the product is a synthesis gas.
  • the reaction device is a propane dehydrogenation reformer and the product comprises at least propylene.
  • propane is preferably reacted in the propane dehydrogenation reformer to form at least propylene and hydrogen.
  • the propane dehydrogenation can be carried out by all methods known to the person skilled in the art for the dehydrogenation of propane, for example steam cracking or catalytic cracking processes.
  • Another aspect of the invention relates to a device for producing a product, the device comprising the following interacting components:
  • reaction chamber configured to perform a reaction, the reaction chamber comprising metallic catalyst carriers, and
  • the components of the device according to the invention are in operative connection with each other, i. are connected to each other by suitable piping etc. in a manner which ensures the general functioning of the device.
  • the necessary measures are known to a person skilled in the art.
  • a composition is reacted, which preferably comprises hydrocarbon.
  • the combustion chamber is arranged so that a transfer of the heat generated in the combustion chamber to the reaction chamber is possible.
  • the combustion chamber is in direct contact with the reaction chamber.
  • the reaction chamber is configured for steam reforming of hydrocarbons or for dehydrogenation of propane.
  • the metallic catalyst support comprises a spirally wound composite of sheets.
  • the sheets may be steel sheets or aluminum sheets.
  • the sheets preferably include high alloy special steels having a relatively high aluminum content in the range of 1 to 15 weight percent, more preferably in the range of 2 to 12 weight percent, or in the range of 5 to 10 weight percent.
  • the sheets preferably have a uniform thickness, the thickness of the sheets being at most 500 ⁇ m, more preferably at most 400 ⁇ m, at most 300 ⁇ m, at most 200 ⁇ m, at most 100 ⁇ m, at most 80 ⁇ m, at most 60 ⁇ m, at most 40 ⁇ m, at most 20 ⁇ m or at most 10 ⁇ .
  • the spirally wound composite of sheets alternately comprises at least one smooth sheet and at least one corrugated sheet.
  • the smooth sheet is preferably characterized in that it has no or only minor bumps or bends on its surface.
  • the corrugated sheet preferably comprises regularly spaced, parallel aligned pleats, whereby the corrugated sheet has zigzag pattern.
  • the corrugated sheet can be made by folding a smooth sheet.
  • the corrugated sheet is such that the distance between two adjacent parallel folds is in the range of 1 to 20 cm, more preferably in the range of 2 to 18 cm, in the range of 3 to 16 cm, in the range of 4 to 14 cm or in the range of 5 to 12 cm.
  • the spirally wound composite of sheets forms cell-like channels.
  • the corrugated sheet and the smooth sheet are stacked in several layers and rolled up.
  • the spirally wound composite of sheets forms cell-like channels.
  • the cell-like channels are configured to flow through the composition.
  • a smooth sheet and a corrugated sheet are alternately stacked and then rolled up to produce the metallic catalyst support.
  • alternately a smooth and at least two corrugated sheets can be stacked so that the edges of the corrugated sheets protrude into each other.
  • the cell-like channels are aligned parallel to one another and arranged such that they extend in the longitudinal direction between the smooth and the corrugated sheet metal.
  • the cell-like channels all have a substantially same diameter, which is in the range of 0.1 to 5 cm more preferably in the range of 0.2 to 4 cm, in the range of 0.3 to 3 cm, in the range of 0.4 to 2 cm or in the range of 0.5 to 1 cm.
  • a substantially equal diameter means that the diameter of the largest and the smallest channel deviate from each other by more than 5%.
  • the sheets are coated with a washcoat so that they have an increased surface area.
  • a washcoat preferably denotes a highly fissured surface coating.
  • the washcoat comprises porous alumina.
  • the washcoat causes a rough surface of the sheets, so that the surface can be greatly increased.
  • the sheets are coated with a noble metal.
  • the sheets are coated, for example, with platinum and / or palladium and / or rhodium.
  • the noble metal with which the sheets are coated in a functionalized or activated form. Methods of functionalizing or activating a noble metal are known to a person skilled in the art.
  • the metallic catalyst supports preferably have an increased thermal shock resistance in comparison to ceramic catalyst supports.
  • the device according to the invention is preferably used in the method according to the invention.
  • Figure 1 shows a smooth sheet (1) and a corrugated sheet (2), wherein the upper part of the figure shows a plan view of the sheets and the lower part of the figure shows a side view of the sheets.
  • a smooth sheet (1) and a corrugated sheet (2) are stacked one above the other to produce the metallic catalyst support.
  • one smooth and two corrugated sheets can alternately be stacked so that the edges of the corrugated sheets protrude into each other.
  • Cellular channels are preferably formed by the stacking, which are preferably aligned parallel to each other and are arranged so that they extend in the longitudinal direction between the smooth and the corrugated metal sheet.
  • the corrugated sheet can be made by folding a smooth sheet.
  • FIG. 2 shows a cross section of the metallic catalyst support according to the invention, wherein the upper part of FIG. 2 represents an enlarged section of the cross section.
  • the sheets are coated with a washcoat to have an increased surface area.
  • the sheets are preferably coated with a catalyst configured to catalyze a reaction.

Abstract

The invention relates to a method and a device for producing a product in a reformer, wherein the heat balance within the reformer is optimized by the use of metal catalyst supports.

Description

Optimierung des Wärmehaushalts in Reformern durch Einsatz von metallischen  Optimization of heat balance in reformers by use of metallic
Katalysatorträgern  catalyst supports
[0001 ] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung eines Produkts in einem Reformer, wobei der Wärmehaushalt innerhalb des Reformers durch den Einsatz von metallischen Katalysatorträgern optimiert wird. The invention relates to a method and an apparatus for producing a product in a reformer, wherein the heat balance within the reformer is optimized by the use of metallic catalyst carriers.
[0002] Reformer eignen sich üblicherweise zur Durchführung einer ganzen Reihe von chemischen Umsetzungen. Beispielsweise können Kohlenwasserstoffe in Reformern mit Dampf katalytisch zu Synthesegas, also Mischungen von Wasserstoff und Kohlenmonoxid, umgesetzt werden. Hierbei kann mittels Dampfreformierung (steam reforming) ein Synthesegas produziert werden, welches wiederum zu weiteren bedeutenden Grundchemikalien wie Methanol oder Ammoniak umgesetzt werden kann. Die Dampfreformierung von Erdgas erfolgt in den Reaktionsrohren eines Reformerofens, wobei die Reaktionsrohre einen Katalysator enthalten und üblicherweise parallel zueinander angeordnet sind. Da der Prozess der Dampfreformierung stark endotherm verläuft, werden die Reaktionsrohre des Reformerofens üblicherweise durch eine externe Befeuerung temperiert. Reformers are usually suitable for carrying out a whole series of chemical reactions. For example, hydrocarbons in reformers with steam can be catalytically converted to synthesis gas, ie mixtures of hydrogen and carbon monoxide. Here, by steam reforming (steam reforming), a synthesis gas can be produced, which in turn can be converted into other major base chemicals such as methanol or ammonia. The steam reforming of natural gas takes place in the reaction tubes of a reformer furnace, wherein the reaction tubes contain a catalyst and are usually arranged parallel to one another. Since the process of steam reforming is strongly endothermic, the reaction tubes of the reformer furnace are usually tempered by an external firing.
[0003] Auch die Synthese von Propylen wird vorzugsweise in Reformern durchgeführt. In einer Propandehydrierungsvorrichtung wird Propan unter Bildung eines an Propylen und Wasserstoff angereicherten Gasstroms umgesetzt. Dabei können für die Dehydrierung von Propan Verfahrensweisen wie das Steam-Cracking oder auch katalytische Crackverfahren verwendet werden. The synthesis of propylene is preferably carried out in reformers. In a propane dehydrogenation apparatus, propane is reacted to form a propylene and hydrogen-enriched gas stream. For the dehydrogenation of propane, procedures such as steam cracking or catalytic cracking processes can be used.
[0004] Die Außenwände eines typischen Reformerofens sowie seine Decke und sein Boden sind üblicherweise mit mehreren Schichten aus feuerfesten Materialien ausgekleidet, welche Temperaturen von bis zu 2400°C standhalten. Zum Betreiben von Reformern wird mittels einer Deckenbefeuerung Wärme an die Reaktionsrohre des Reformers übertragen, insbesondere wenn die innerhalb des Reformers ablaufenden Reaktionen endotherm sind. Die Wärme der Feuerungsflammen wird durch die Rohrwand der Reaktionsrohre weiter nach innen an üblicherweise keramische Katalysatorträger und an das durchströmende Gas transportiert. Dabei erfolgt der Wärmeübergang auf die Reaktionsrohre durch Wärmestrahlung und konvektive Wärmeübertragung von den heißen Rauchgasen. Die Reaktionsrohre werden dabei häufig mit Hilfe von Brennern befeuert, welche an der Ober- oder der Unterseite oder an den Seitenwänden des Reformers angebracht sind und direkt den Zwischenraum zwischen den Reaktionsrohren befeuern. Durch die Wärmetransportmechanismen und die gleichzeitig ablaufenden endothermen Reaktionen stellt sich typischerweise ein axiales und ein radiales Temperaturprofil innerhalb der Reaktionsrohre ein. The outer walls of a typical reformer furnace, as well as its ceiling and floor are usually lined with several layers of refractory materials which withstand temperatures of up to 2400 ° C. To operate reformers, heat is transmitted to the reaction tubes of the reformer by means of ceiling lighting, especially when the reactions taking place within the reformer are endothermic. The heat of the Feuerungsflammen is transported through the pipe wall of the reaction tubes further inwards to usually ceramic catalyst carrier and to the gas flowing through. In this case, the heat transfer to the reaction tubes by heat radiation and convective heat transfer from the hot flue gases. The reaction tubes are often fired by means of burners, which are mounted on the top or the bottom or on the side walls of the reformer and directly the Firing space between the reaction tubes. Due to the heat transport mechanisms and the simultaneous endothermic reactions, an axial and a radial temperature profile within the reaction tubes typically sets in.
[0005] Je nach Anwendungsfall laufen mit Zunahme des Produkts entlang der Rohrlänge im Gasstrom neben der Hauptreaktion auch mehr oder weniger stark unerwünschte Nebenreaktionen ab. Insbesondere im Falle eines Propandehydrierungs-Reformers sind aufgrund der starken radialen und axialen Temperaturgradienten in demjenigen wandnahen Bereich der Reaktionsrohre, welcher auf der zum Brenner abgewandten Seite liegt, verstärkt unerwünschte Nebenreaktionen zu erwarten. Dies wird im Wesentlichen durch die sehr geringe Wärmeleitfähigkeit der keramischen Katalysatorträger verursacht. Keramische Katalysatorträger sind dabei nicht nur aufgrund ihrer geringen Wärmeleitfähigkeit nachteilig, sondern weisen darüber hinaus auch den Nachteil auf, dass sie einen sehr hohen Druckverlust in dem Gasstrom verursachen, welcher durch die keramischen Katalysatorträger strömt. Dieser Druckverlust ist üblicherweise größer als 3 bar. Depending on the application run with increase in the product along the length of the tube in the gas stream in addition to the main reaction also more or less unwanted side reactions. Especially in the case of a propane dehydrogenation reformer undesirable side reactions are to be expected due to the strong radial and axial temperature gradients in that region near the wall of the reaction tubes, which is located on the side facing away from the burner. This is essentially caused by the very low thermal conductivity of the ceramic catalyst carrier. Ceramic catalyst supports are disadvantageous not only because of their low thermal conductivity, but also have the disadvantage that they cause a very high pressure drop in the gas flow, which flows through the ceramic catalyst support. This pressure loss is usually greater than 3 bar.
[0006] Es ist eine Aufgabe der Erfindung, den Wärmehaushalt sowohl innerhalb der Reaktionsrohre als auch innerhalb der Katalysatorträger eines Reformers zu verbessern. It is an object of the invention to improve the heat balance both within the reaction tubes and within the catalyst carrier of a reformer.
[0007] Es wurde überraschend gefunden, dass der Wärmehaushalt in Reformern durch den Einsatz von metallischen Katalysatorträgern anstelle von keramischen Katalysatorträgern entscheidend optimiert werden kann. Metallische Katalysatorträger zeichnen sich insbesondere durch eine hohe Wärmeleitfähigkeit und eine geringe Wärmekapazität aus. It has surprisingly been found that the heat balance in reformers can be decisively optimized by the use of metallic catalyst supports instead of ceramic catalyst supports. Metallic catalyst supports are characterized in particular by a high thermal conductivity and a low heat capacity.
[0008] WO 02/40156 A2 offenbart ein Verfahren, bei dem ein metallischer Katalysatorträger in einem Konverter zur Reinigung von Abgas verwendet wird. Dabei umfasst der metallische Katalysatorträger ein flaches und ein gewelltes Blech aus Metall, die beide miteinander verbunden sind. Dadurch wird eine Vielzahl von zueinander parallelen Zellkanälen gebildet, die sich in Längsrichtung zwischen dem flachen und dem gewellten Blech erstrecken, so dass das Abgas in Längsrichtung durch die Zellkanäle strömt. Der Konverter mit dem metallischen Katalysatorträger ist dabei stromabwärts eines Verbrennungsmotors angeordnet, um Schadstoffe aus dem Abgas des Verbrennungsmotors zu entfernen. WO 02/40156 A2 discloses a method in which a metallic catalyst carrier is used in a converter for purifying exhaust gas. In this case, the metallic catalyst carrier comprises a flat and a corrugated metal sheet, which are both connected together. Thereby, a plurality of cell channels parallel to each other are formed, which extend in the longitudinal direction between the flat and the corrugated sheet, so that the exhaust gas flows in the longitudinal direction through the cell channels. The converter with the metallic catalyst carrier is arranged downstream of an internal combustion engine to remove pollutants from the exhaust gas of the internal combustion engine.
[0009] DE 603 00 81 1 T2 offenbart einen metallischen Katalysatorträger, der in ein Abgassystem einer Verbrennungskraftmaschine und dergleichen zwecks Reinigung der Abgase eingebaut wird. [0010] DE 195 34 433 C1 offenbart eine Katalysatorschichtstruktur zur Verwendung in einem Methanolreformierungsreaktor, insbesondere in einem Plattenreaktor, sowie ein zu deren Herstellung geeignetes Verfahren. Dabei soll die Katalysatorschichtstruktur durch eine verdichtete Metallschaum-Trägerschicht realisiert werden, in deren Poren das Katalysatormaterial fixiert ist. Dabei wird das Katalysatormaterial als geeignet fraktioniertes Pulver in die Metallschaumporen eingebracht. Anschließend wird dann die das Katalysatorpulver enthaltende Metallschaum-Trägerschicht verdichtet, wodurch das Katalysatormaterial in den Poren fixiert bleibt. DE 603 00 81 1 T2 discloses a metallic catalyst carrier which is installed in an exhaust system of an internal combustion engine and the like for the purpose of cleaning the exhaust gases. DE 195 34 433 C1 discloses a catalyst layer structure for use in a methanol reforming reactor, in particular in a plate reactor, and a process suitable for the production thereof. In this case, the catalyst layer structure is to be realized by a compacted metal foam carrier layer in whose pores the catalyst material is fixed. In this case, the catalyst material is introduced as a suitable fractionated powder in the metal foam pores. Subsequently, the metal foam carrier layer containing the catalyst powder is then compressed, whereby the catalyst material remains fixed in the pores.
[001 1 ] Die genannten Verfahren und Vorrichtungen lösen die Aufgabe der Erfindung nur unzureichend und es besteht ein Bedarf an verbesserten Verfahren zur Wärmeübertragung in die Reaktionsrohre und an die Katalysatorträger von Reformern. [001] The above methods and devices solve the object of the invention only insufficiently and there is a need for improved methods for heat transfer into the reaction tubes and to the catalyst supports of reformers.
[0012] Diese Aufgabe wird durch die vorliegende Erfindung gelöst. This object is achieved by the present invention.
[0013] Ein erster Aspekt der Erfindung betrifft ein Verfahren zur Herstellung eines Produkts in einer Reaktionsvorrichtung, wobei die Reaktionsvorrichtung eine Verbrennungskammer und eine Reaktionskammer umfasst, welche in Wärmeaustausch miteinander stehen, und wobei das Verfahren die Schritte umfasst: A first aspect of the invention relates to a method for producing a product in a reaction apparatus, the reaction apparatus comprising a combustion chamber and a reaction chamber which are in heat exchange with each other, and wherein the method comprises the steps of:
a) Bereitstellen einer Zusammensetzung umfassend Kohlenwasserstoff; a) providing a composition comprising hydrocarbon;
b) Bereitstellen eines Brenngases; b) providing a fuel gas;
c) Verbrennen zumindest eines Teils des in Schritt (b) bereitgestellten Brenngases in der Verbrennungskammer unter Erzeugen von Abgas und Wärme; c) combusting at least a portion of the fuel gas provided in step (b) in the combustion chamber to produce exhaust gas and heat;
d) Durchleiten zumindest eines Teils der in Schritt (a) bereitgestellten Zusammensetzung durch metallische Katalysatorträger in der Reaktionskammer; und d) passing at least part of the composition provided in step (a) through metallic catalyst carriers in the reaction chamber; and
e) Herstellen eines Produkts in der Reaktionskammer unter Verbrauch der in Schritt (c) erzeugten Wärme. e) producing a product in the reaction chamber using the heat generated in step (c).
[0014] Eine Reaktionsvorrichtung bezeichnet eine Vorrichtung, welche zur Durchführung von chemischen Reaktionen konfiguriert ist. Geeignete Reaktionsvorrichtungen sind beispielsweise Reaktoren, welche bevorzugt Rührkessel und/oder Durchflussreaktoren umfassen. Je nach den Betriebsanforderungen können Reaktionsvorrichtungen aus unlegiertem bzw. legiertem Stahl bestehen; sie können bevorzugt plattiert, emailliert oder gummiert sein. Ebenso bevorzugt kann die erfindungsgemäße Reaktionsvorrichtung Hochdruck-, Hochtemperatur-, Rohr-, Schlaufen- und/oder Wirbelschichtreaktoren umfassen. Weiterhin bevorzugt kann die Reaktionsvorrichtung einen Reformer umfassen, welcher bevorzugt zur Herstellung eines Synthesegases umfassend Kohlenstoffmonoxid und Wasserstoff konfiguriert sein kann. A reaction device refers to a device that is configured to perform chemical reactions. Suitable reaction devices are, for example, reactors, which preferably comprise stirred tanks and / or flow-through reactors. Depending on the operating requirements, reaction devices can be made of unalloyed or alloyed steel; they may preferably be clad, enamelled or gummed. The reaction device according to the invention may also preferably comprise high-pressure, high-temperature, tubular, loop and / or fluidized-bed reactors. Further preferred For example, the reaction apparatus may comprise a reformer which may be preferably configured to produce a synthesis gas comprising carbon monoxide and hydrogen.
[0015] In einer weiteren bevorzugten Ausführungsform ist die Reaktionsvorrichtung zur Dehydrierung von Propan unter Bildung von Propylen und Wasserstoff konfiguriert. Die Reaktionsvorrichtung kann dabei für alle einem Fachmann für die Dehydrierung von Propan bekannten Verfahrensweisen konfiguriert sein, wie beispielsweise dem Steam-Cracking oder katalytischen Crackverfahren. In another preferred embodiment, the reaction apparatus is configured to dehydrogenate propane to form propylene and hydrogen. The reaction device can be configured for all methods known to a person skilled in the art for the dehydrogenation of propane, for example the steam cracking or catalytic cracking process.
[0016] Eine Reaktionskammer bezeichnet den Ort einer Reaktionsvorrichtung, an dem die Bildung eines Produkts erfolgt. Bevorzugt umfasst die Reaktionskammer Reaktionsröhren, die beispielsweise aus hochlegiertem Stahl bestehen können. A reaction chamber refers to the location of a reaction device at which the formation of a product takes place. Preferably, the reaction chamber comprises reaction tubes, which may be made of high-alloy steel, for example.
[0017] Die Verbrennungskammer einer Reaktionsvorrichtung bezeichnet den Ort, an dem die für die Synthese benötigte Wärme erzeugt wird. Verbrennungskammer und Reaktionskammer stehen bevorzugt miteinander in Wärmeaustausch, vorzugsweise jedoch nicht in Gasaustausch. The combustion chamber of a reaction device designates the place where the heat required for the synthesis is generated. Combustion chamber and reaction chamber are preferably in heat exchange with each other, but preferably not in gas exchange.
[0018] In Schritt (a) des erfindungsgemäßen Verfahrens wird eine Zusammensetzung bereitgestellt, welche Kohlenwasserstoff umfasst. Bevorzugt umfasst die Zusammensetzung kohlenwasserstoffhaltige Energieträger, welche Erdgas, Leichtbenzin, Methanol, Biogas und/oder Biomasse umfassen kann. Alternativ kann die in Schritt (a) bereitgestellte Zusammensetzung Propan umfassen, beispielsweise wenn in dem erfindungsgemäßen Verfahren Propylen hergestellt wird. Weiterhin kann die Zusammensetzung weitere, für das Verfahren inerte Komponenten umfassen. Wird bei dem erfindungsgemäßen Verfahren Propylen hergestellt, umfassen die inerten Komponenten beispielsweise Edelgase und/oder Stickstoff. Handelt es sich bei dem erfindungsgemäßen Verfahren um eine Dampfrefor- mierung, umfassen die inerten Komponenten beispielsweise Edelgase und/oder Kohlendioxid. In step (a) of the process of the invention, a composition comprising hydrocarbon is provided. The composition preferably comprises hydrocarbon-containing energy carriers, which may comprise natural gas, light gasoline, methanol, biogas and / or biomass. Alternatively, the composition provided in step (a) may comprise propane, for example when propylene is produced in the process of the present invention. Furthermore, the composition may comprise further components inert to the process. If propylene is produced in the process according to the invention, the inert components include, for example, noble gases and / or nitrogen. If the process according to the invention is a steam reforming, the inert components comprise, for example, noble gases and / or carbon dioxide.
[0019] Bevorzugt wird die Zusammensetzung in Schritt (a) kontinuierlich bereitgestellt, die Bereitstellung kann aber auch nur zeitweise erfolgen. Preferably, the composition in step (a) is provided continuously, but the provision can also be made only temporarily.
[0020] In Schritt (b) des erfindungsgemäßen Verfahrens wird ein Brenngas bereitgestellt. Bevorzugt umfasst das Brenngas einen kohlenwasserstoffhaltigen Energieträger, welcher Erdgas, Leichtbenzin, Methanol, Biogas und/oder Biomasse umfassen kann. Weiterhin kann das Brenngas Mischungen aus Erdgas und Wasserstoff, Kohlenmonoxid, Kohlendioxid und weiteren Kohlenwasserstoffe umfassen. Das Brenngas und die in Schritt (a) bereitgestellte Zusammensetzung können, müssen aber nicht identisch sein. Bei der Verbrennung der Brenngase beträgt die Flammentemperatur mindestens 1000°C, bevorzugter mindestens 1400°C oder 1600°C. Bevorzugt liegt die Flammentemperatur im Bereich von 1000°C bis 2400°C, bevorzugter im Bereich von 1200°C bis 2300°C oder im Bereich von 1500°C bis 2200°C. In step (b) of the method according to the invention, a fuel gas is provided. Preferably, the fuel gas comprises a hydrocarbon-containing energy carrier, which may comprise natural gas, mineral spirits, methanol, biogas and / or biomass. Furthermore, can the fuel gas comprises mixtures of natural gas and hydrogen, carbon monoxide, carbon dioxide and other hydrocarbons. The fuel gas and the composition provided in step (a) may or may not be identical. When combusting the fuel gases, the flame temperature is at least 1000 ° C, more preferably at least 1400 ° C or 1600 ° C. Preferably, the flame temperature is in the range of 1000 ° C to 2400 ° C, more preferably in the range of 1200 ° C to 2300 ° C or in the range of 1500 ° C to 2200 ° C.
[0021 ] In Schritt (c) des erfindungsgemäßen Verfahrens wird zumindest ein Teil des in Schritt (b) bereitgestellten Brenngases in der Verbrennungskammer unter Erzeugen von Abgas und Wärme verbrannt. Bevorzugt werden in Schritt (c) mindestens 50 Vol.-% des bereitgestellten Brenngases verbrannt, bevorzugter mindestens 60 Vol.-%, mindestens 70 Vol.-%, mindestens 80 Vol.-%, mindestens 90 Vol.-% oder mindestens 99 Vol.-%. In step (c) of the method according to the invention, at least part of the fuel gas provided in step (b) is combusted in the combustion chamber to produce exhaust gas and heat. Preferably in step (c) at least 50% by volume of the provided fuel gas is burned, more preferably at least 60% by volume, at least 70% by volume, at least 80% by volume, at least 90% by volume or at least 99% by volume .-%.
[0022] In Schritt (d) des erfindungsgemäßen Verfahrens wird zumindest ein Teil der in Schritt (a) bereitgestellten Zusammensetzung in der Reaktionskammer durch metallische Katalysatorträger geleitet, welche bevorzugt mit einem geeigneten Katalysator beschichtet sind. Ein Fachmann erkennt, welcher Katalysator für welches Verfahren besonders geeignet ist. In step (d) of the process according to the invention, at least part of the composition provided in step (a) is passed in the reaction chamber through metallic catalyst supports, which are preferably coated with a suitable catalyst. A person skilled in the art will recognize which catalyst is particularly suitable for which process.
[0023] Metallische Katalysatorträger umfassen bevorzugt einen Stahlträger mit einer katalytischen Beschichtung. Weiterhin umfassen metallische Katalysatorträger bevorzugt spiralförmig gewickelte, ausgewalzte Bleche bzw. dünne Metallfolien. Die Metallfolien umfassen bevorzugt hochlegierte Spezial-Edelstähle mit einem relativ hohen Aluminiumanteil im Bereich von 1 bis 15 Gew.-%, bevorzugter im Bereich von 2 bis 12 Gew.-% oder im Bereich von 5 bis 10 Gew.-%. Bevorzugt weisen die metallischen Katalysatorträger eine deutlich höhere thermische und mechanische Stabilität auf als keramische Katalysatorträger. Metallic catalyst supports preferably comprise a steel support with a catalytic coating. Furthermore, metallic catalyst supports preferably comprise spirally wound, rolled sheets or thin metal foils. The metal foils preferably comprise high alloy special steels having a relatively high aluminum content in the range of 1 to 15 wt%, more preferably in the range of 2 to 12 wt%, or in the range of 5 to 10 wt%. The metallic catalyst supports preferably have a significantly higher thermal and mechanical stability than ceramic catalyst supports.
[0024] Bevorzugt umfassen die metallischen Katalysatorträger zueinander parallele, zellenartige Kanäle. Die Wanddicke der metallischen Katalysatorträger ist dabei bevorzugt geringer als bei keramischen Katalysatorträgern. Bevorzugt beträgt die Wanddicke der metallischen Katalysatorträger höchstens 100 μηη, bevorzugter höchstens 90 μηη, höchstens 80 μηη, höchstens 70 μηη, höchstens 60 μηη, höchstens 50 μηη, höchstens 40 μηη, höchstens 30 μηη, höchstens 20 μηη oder höchstens 10 μηη. Die geringe Wanddicke der metallischen Katalysatorträger ermöglicht dabei bevorzugt eine verbesserte Wärmeübertragung auf die Zusammensetzung, welche durch die Reaktionskammer strömt. [0025] Bevorzugt ist der metallische Katalysatorträger durch eine hohe Wärmeleitfähigkeit gekennzeichnet. Die hohe Wärmeleitfähigkeit ermöglicht bevorzugt einen raschen Temperaturausgleich innerhalb der Reaktionskammer, und zwar bevorzugt in radialer und in axialer Richtung. In einer bevorzugten Ausführungsform liegt innerhalb der Reaktionskammer eine gleichmäßige Temperaturverteilung sowohl in axialer als auch in radialer Richtung vor. Bevorzugt bezeichnet die axiale Richtung dabei die Richtung entlang der Reaktionsrohre der Reaktionsvorrichtung. Die radiale Richtung bezeichnet dabei bevorzugt die Wärmeverteilung entlang eines Querschnitts durch ein Reaktionsrohr. Bevorzugt ermöglichen die metallischen Katalysatorträger eine gleichmäßige Temperaturverteilung innerhalb der Reaktionsrohre, so dass die Temperaturen an der Außenwand der Reaktionsrohre und die Temperaturen im Mittelpunkt der Reaktionsrohre um höchstens 100°C voneinander abweichen, bevorzugter um höchstens 50°C, um höchstens 40°C, um höchstens 30°C, um höchstens 20°C, um höchstens 10°C, um höchstens 8°C, um höchstens 6°C, um höchstens 4°C, um höchstens 2°C oder um höchstens 1 °C. Weiterhin ermöglicht der metallische Katalysatorträger einen verringerten Temperaturgradienten entlang der axialen Ausrichtung der Reaktionsrohre. Bevorzugt beträgt die Temperaturdifferenz zwischen zwei Enden eines Reaktionsrohres höchstens 100°C, bevorzugter höchstens 50°C, höchstens 40°C, höchstens 30°C, höchstens 20°C, höchstens 10°C, höchstens 8°C, höchstens 6°C, höchstens 4°C, höchstens 2°C oder höchstens 1 °C. Die metallischen Katalysatorträger ermöglichen somit einen möglichst hohen Wärmeaustausch in dreidimensionaler Richtung des Katalysators. Preferably, the metallic catalyst carriers comprise mutually parallel, cell-like channels. The wall thickness of the metallic catalyst carriers is preferably lower than in the case of ceramic catalyst carriers. The wall thickness of the metallic catalyst supports is preferably at most 100 μm, more preferably at most 90 μm, at most 80 μm, at most 70 μm, at most 60 μm, at most 50 μm, at most 40 μm, at most 30 μm, at most 20 μm or at most 10 μm. The small wall thickness of the metallic catalyst supports preferably allows an improved heat transfer to the composition which flows through the reaction chamber. Preferably, the metallic catalyst support is characterized by a high thermal conductivity. The high thermal conductivity preferably allows a rapid temperature compensation within the reaction chamber, preferably in the radial and in the axial direction. In a preferred embodiment, a uniform temperature distribution exists both in the axial and in the radial direction within the reaction chamber. In this case, the axial direction preferably denotes the direction along the reaction tubes of the reaction device. The radial direction preferably designates the heat distribution along a cross section through a reaction tube. Preferably, the metallic catalyst supports allow a uniform temperature distribution within the reaction tubes so that the temperatures at the outer wall of the reaction tubes and the temperatures at the center of the reaction tubes differ by at most 100 ° C, more preferably at most 50 ° C, at most 40 ° C maximum 30 ° C, maximum 20 ° C, maximum 10 ° C, maximum 8 ° C, maximum 6 ° C, maximum 4 ° C, maximum 2 ° C or maximum 1 ° C. Furthermore, the metallic catalyst support allows a reduced temperature gradient along the axial alignment of the reaction tubes. Preferably, the temperature difference between two ends of a reaction tube is at most 100 ° C, more preferably at most 50 ° C, at most 40 ° C, at most 30 ° C, at most 20 ° C, at most 10 ° C, at most 8 ° C, at most 6 ° C, not more than 4 ° C, not more than 2 ° C or not more than 1 ° C. The metallic catalyst supports thus enable the highest possible heat exchange in the three-dimensional direction of the catalyst.
[0026] Bevorzugt verfügen die metallischen Katalysatorträger über eine geringe Wärmekapazität. Bevorzugt ermöglichen die geringe Wärmekapazität und die hohe Wärmeleitfähigkeit der metallischen Katalysatorträger ein schnelleres und gleichmäßigeres Aufheizen der Reaktionsvorrichtung auf ihre Betriebstemperatur als bei der Verwendung von keramischen Katalysatorträgern. Ein Fachmann erkennt, dass durch ein schnelleres Aufheizen der Reaktionsvorrichtung auf ihre Betriebstemperatur die Kapazität einer Reaktionsvorrichtung gesteigert werden kann und damit ihre Betriebskosten gesenkt werden können. The metallic catalyst supports preferably have a low heat capacity. Preferably, the low heat capacity and the high thermal conductivity of the metallic catalyst supports allow a faster and more uniform heating of the reaction device to its operating temperature than when using ceramic catalyst supports. A person skilled in the art recognizes that the capacity of a reaction device can be increased by a faster heating of the reaction device to its operating temperature and thus its operating costs can be reduced.
[0027] Eine wesentliche Stoffeigenschaft von Materialien ist ihre Temperaturwechselbeständigkeit. Bei inhomogenen Temperaturverteilungen können thermische Spannungen innerhalb eines Materials entstehen. Führen diese Spannungen lediglich zu elastischer Verformung, verschwinden sie bei Temperaturausgleich. Überschreiten sie jedoch die Festigkeit des Materials, entstehen Veränderungen bis hin zum Bruch. In einer bevorzugten Ausführungsform zeichnen sich die metallischen Katalysatorträger durch eine erheblich höhere Temperaturwechselbeständigkeit im Vergleich zu keramischen Katalysatorträgern aus. [0028] Beim Durchleiten der in Schritt (a) bereitgestellten Zusammensetzung durch die metallischen Katalysatorträger kann es zu Druckverlusten kommen. In einer bevorzugten Ausführungsform beträgt der Druckverlust der in Schritt (a) bereitgestellten Zusammensetzung beim Durchleiten durch die metallischen Katalysatorträger in Schritt (d) höchstens 3 bar, bevorzugter höchstens 2 bar, höchstens 1 bar, höchstens 0,8 bar, höchstens 0,6 bar, höchstens 0,4 bar, höchstens 0,2 bar oder höchstens 0,1 bar. An essential material property of materials is their thermal shock resistance. Inhomogeneous temperature distributions can cause thermal stresses within a material. If these stresses merely lead to elastic deformation, they disappear when the temperature is equalized. However, if they exceed the strength of the material, changes occur up to breakage. In a preferred embodiment, the metallic catalyst supports are characterized by a considerably higher thermal shock resistance compared to ceramic catalyst supports. When passing the composition provided in step (a) through the metallic catalyst supports, pressure losses may occur. In a preferred embodiment, the pressure loss of the composition provided in step (a) when passing through the metallic catalyst supports in step (d) is at most 3 bar, more preferably at most 2 bar, at most 1 bar, at most 0.8 bar, at most 0.6 bar , not more than 0.4 bar, not more than 0.2 bar or not more than 0.1 bar.
[0029] In einer bevorzugten Ausführungsform werden die metallischen Katalysatorträger elektrisch beheizt. Die metallischen Katalysatorträger können dabei kontinuierlich oder nur während des An- und/oder Abfahrens der Reaktionsvorrichtung elektrisch beheizt werden. Bevorzugt werden die metallischen Katalysatorträger elektrisch beheizt, um ein schnelleres Anfahren der Reaktionsvorrichtung zu ermöglichen, so dass der Katalysator kurzfristig beim Anfahren der Reaktionsvorrichtung möglichst schnell auf Betriebstemperatur gebracht werden kann. In einer anderen bevorzugten Ausführungsform werden die metallischen Katalysatorträger beim Abfahren der Reaktionsvorrichtung elektrisch beheizt, so dass die Reaktionsvorrichtung beim Abfahren möglichst lange auf Betriebstemperatur gehalten werden kann. Bevorzugt werden die metallischen Katalysatorträger elektrisch auf eine Temperatur von mindestens 100°C geheizt, bevorzugter auf eine Temperatur von mindestens 150°C, mindestens 200°C, mindestens 300°C, mindestens 400°C, mindestens 500°C, mindestens 600°C, mindestens 700°C, mindestens 800°C, mindestens 900°C oder mindestens 1000°C. In a preferred embodiment, the metallic catalyst supports are electrically heated. The metallic catalyst supports can be electrically heated continuously or only during the arrival and / or shutdown of the reaction device. The metallic catalyst carriers are preferably electrically heated in order to enable a faster start-up of the reaction device, so that the catalyst can be brought to operating temperature as quickly as possible when the reaction device starts up in the shortest possible time. In another preferred embodiment, the metallic catalyst carriers are electrically heated when the reaction device is shut down, so that the reaction device can be kept at operating temperature for as long as possible during the shutdown. Preferably, the metallic catalyst supports are heated electrically to a temperature of at least 100 ° C, more preferably to a temperature of at least 150 ° C, at least 200 ° C, at least 300 ° C, at least 400 ° C, at least 500 ° C, at least 600 ° C. , at least 700 ° C, at least 800 ° C, at least 900 ° C or at least 1000 ° C.
[0030] In Schritt (e) des erfindungsgemäßen Verfahrens wird in der Reaktionskammer ein Produkt unter Verbrauch der in Schritt (c) erzeugten Wärme hergestellt. Bevorzugt wird das Produkt bei mindestens 500°C hergestellt, bevorzugter bei mindestens 600°C, mindestens 700°C, mindestens 800°C, mindestens 900°C oder mindestens 1000°C. In step (e) of the process according to the invention, a product is produced in the reaction chamber while consuming the heat generated in step (c). Preferably, the product is prepared at at least 500 ° C, more preferably at least 600 ° C, at least 700 ° C, at least 800 ° C, at least 900 ° C or at least 1000 ° C.
[0031 ] In einer bevorzugten Ausführungsform ist die Reaktionsvorrichtung ein Dampfreformer. Beispielsweise kann es sich bei dem Dampfreformer um einen Rohrreformer oder einen Steamreformer handeln, welche beide bevorzugt geeignet sind zur Durchführung einer Dampfreformierung. Bevorzugt wird dabei eine bevorzugt vorgewärmte Zusammensetzung, die leichte Kohlenwasserstoffe (z.B. Erdgas, Flüssiggas, Naphtha) enthält, mit Wasserdampf gemischt und bevorzugt durch Reaktionsrohre geleitet, die mit einem Katalysatorträger ausgestattet sind, welcher bevorzugt mit Nickeloxid beschichtet ist. Bevorzugt beschleunigt der Katalysator dabei die Dampfreformierung der Kohlenwasserstoffe und unterstützt gleichzeitig die so genannte Wassergas-Shiftreaktion. [0032] In einer bevorzugten Ausführungsform ist das Produkt ein Synthesegas. Bevorzugt umfasst das Synthesegas hauptsächlich Kohlenstoffmonoxid und Wasserstoff, es kann aber auch weitere Komponenten umfassen. Bevorzugt ist die Reaktionsvorrichtung ein Dampfreformer und das Produkt ein Synthesegas. In a preferred embodiment, the reaction device is a steam reformer. For example, the steam reformer can be a tube reformer or a steam reformer, both of which are preferably suitable for carrying out steam reforming. Preference is given to a preferably preheated composition containing light hydrocarbons (eg natural gas, liquefied petroleum gas, naphtha), mixed with water vapor and preferably passed through reaction tubes, which are equipped with a catalyst support, which is preferably coated with nickel oxide. The catalyst preferably accelerates the steam reforming of the hydrocarbons and simultaneously supports the so-called water gas shift reaction. In a preferred embodiment, the product is a synthesis gas. Preferably, the synthesis gas mainly comprises carbon monoxide and hydrogen, but may also include other components. Preferably, the reaction device is a steam reformer and the product is a synthesis gas.
[0033] In einer anderen bevorzugten Ausführungsform ist die Reaktionsvorrichtung ein Propandehydrierungsreformer und das Produkt umfasst zumindest Propylen. Dabei wird bevorzugt Propan in dem Propandehydrierungsreformer unter Bildung zumindest von Propylen und Wasserstoff umgesetzt. Die Propandehydrierung kann dabei grundsätzlich durch alle dem Fachmann für die Dehydrierung von Propan bekannten Verfahrensweisen wie beispielsweise dem Steam-Cracking oder katalytischen Crackverfahren durchgeführt werden. In another preferred embodiment, the reaction device is a propane dehydrogenation reformer and the product comprises at least propylene. In this case, propane is preferably reacted in the propane dehydrogenation reformer to form at least propylene and hydrogen. In principle, the propane dehydrogenation can be carried out by all methods known to the person skilled in the art for the dehydrogenation of propane, for example steam cracking or catalytic cracking processes.
[0034] Ein weiterer Aspekt der Erfindung betrifft eine Vorrichtung zur Herstellung eines Produkts, wobei die Vorrichtung die folgenden miteinander in Wirkverbindung stehenden Komponenten umfasst: Another aspect of the invention relates to a device for producing a product, the device comprising the following interacting components:
a) eine Reaktionskammer, konfiguriert zum Durchführen einer Reaktion, wobei die Reaktionskammer metallische Katalysatorträger umfasst, und a) a reaction chamber configured to perform a reaction, the reaction chamber comprising metallic catalyst carriers, and
b) eine Verbrennungskammer, konfiguriert zur Erzeugung von Wärme. b) a combustion chamber configured to generate heat.
[0035] Die Komponenten der erfindungsgemäßen Vorrichtung stehen miteinander in Wirkverbindung, d.h. sind durch geeignete Rohrleitungen etc. miteinander in einer Weise verbunden, welche die allgemeine Funktionsfähigkeit der Vorrichtung gewährleistet. Die dafür erforderlichen Maßnahmen sind einem Fachmann bekannt. The components of the device according to the invention are in operative connection with each other, i. are connected to each other by suitable piping etc. in a manner which ensures the general functioning of the device. The necessary measures are known to a person skilled in the art.
[0036] Alle bevorzugten Ausführungsformen, welche vorstehend im Zusammenhang mit dem erfindungsgemäßen Verfahren beschrieben wurden, gelten analog auch für die erfindungsgemäße Vorrichtung und werden daher nicht wiederholt. All preferred embodiments, which have been described above in connection with the method according to the invention, apply analogously to the device according to the invention and are therefore not repeated.
[0037] In der Reaktionskammer wird eine Zusammensetzung umgesetzt, welche bevorzugt Kohlenwasserstoff umfasst. In the reaction chamber, a composition is reacted, which preferably comprises hydrocarbon.
[0038] Die Verbrennungskammer ist so angeordnet, dass eine Übertragung der in der Verbrennungskammer erzeugten Wärme auf die Reaktionskammer möglich ist. Bevorzugt befindet sich die Verbrennungskammer in direktem Kontakt mit der Reaktionskammer. [0039] In einer bevorzugten Ausführungsform ist die Reaktionskammer zur Dampfrefor- mierung von Kohlenwasserstoffen oder zur Dehydrierung von Propan konfiguriert. The combustion chamber is arranged so that a transfer of the heat generated in the combustion chamber to the reaction chamber is possible. Preferably, the combustion chamber is in direct contact with the reaction chamber. In a preferred embodiment, the reaction chamber is configured for steam reforming of hydrocarbons or for dehydrogenation of propane.
[0040] Bevorzugt umfasst der metallische Katalysatorträger einen spiralförmig gewickelten Verbund von Blechen. Die Beschaffenheit der Bleche ist erfindungsgemäß nicht eingeschränkt. Beispielsweise kann es sich bei den Blechen um Stahlbleche oder Aluminiumbleche handeln. Die Bleche umfassen bevorzugt hochlegierte Spezial-Edelstähle mit einem relativ hohen Aluminiumanteil im Bereich von 1 bis 15 Gew.-%, bevorzugter im Bereich von 2 bis 12 Gew.-% oder im Bereich von 5 bis 10 Gew.-%. Bevorzugt haben die Bleche eine einheitliche Dicke, wobei die Dicke der Bleche höchstens 500 μηη beträgt, bevorzugter höchstens 400 μηη, höchstens 300 μηη, höchstens 200 μηη, höchstens 100 μηη, höchstens 80 μηη, höchstens 60 μηη, höchstens 40 μηη, höchstens 20 μηη oder höchstens 10 μηη. Preferably, the metallic catalyst support comprises a spirally wound composite of sheets. The nature of the sheets is not limited according to the invention. For example, the sheets may be steel sheets or aluminum sheets. The sheets preferably include high alloy special steels having a relatively high aluminum content in the range of 1 to 15 weight percent, more preferably in the range of 2 to 12 weight percent, or in the range of 5 to 10 weight percent. The sheets preferably have a uniform thickness, the thickness of the sheets being at most 500 μm, more preferably at most 400 μm, at most 300 μm, at most 200 μm, at most 100 μm, at most 80 μm, at most 60 μm, at most 40 μm, at most 20 μm or at most 10 μηη.
[0041 ] Bevorzugt umfasst der spiralförmig gewickelte Verbund von Blechen abwechselnd mindestens ein glattes Blech und mindestens ein geriffeltes Blech. Das glatte Blech ist bevorzugt dadurch gekennzeichnet, dass es auf seiner Oberfläche keine oder nur geringfügige Unebenheiten bzw. Biegungen aufweist. Das geriffelte Blech umfasst bevorzugt in regelmäßigen Abständen auftretende, parallele zueinander ausgerichtete Falten, wodurch das geriffelte Blech Zickzack-Muster aufweist. Das geriffelte Blech kann dabei durch Falten eines glatten Bleches hergestellt werden. Bevorzugt ist das geriffelte Blech derart beschaffen, dass der Abstand zwischen zwei benachbarten, parallelen Falten im Bereich von 1 bis 20 cm liegt, bevorzugter im Bereich von 2 bis 18 cm, im Bereich von 3 bis 16 cm, im Bereich von 4 bis 14 cm oder im Bereich von 5 bis 12 cm liegt. In einer bevorzugten Ausführungsform bildet der spiralförmig gewickelte Verbund von Blechen zellenartige Kanäle. Preferably, the spirally wound composite of sheets alternately comprises at least one smooth sheet and at least one corrugated sheet. The smooth sheet is preferably characterized in that it has no or only minor bumps or bends on its surface. The corrugated sheet preferably comprises regularly spaced, parallel aligned pleats, whereby the corrugated sheet has zigzag pattern. The corrugated sheet can be made by folding a smooth sheet. Preferably, the corrugated sheet is such that the distance between two adjacent parallel folds is in the range of 1 to 20 cm, more preferably in the range of 2 to 18 cm, in the range of 3 to 16 cm, in the range of 4 to 14 cm or in the range of 5 to 12 cm. In a preferred embodiment, the spirally wound composite of sheets forms cell-like channels.
[0042] Bevorzugt sind das geriffelte Blech und das glatte Blech in mehreren Lagen gestapelt und aufgerollt. Bevorzugt bildet der spiralförmig gewickelte Verbund von Blechen zellenartige Kanäle. Bevorzugt sind die zellenartigen Kanäle dazu konfiguriert, von der Zusammensetzung durchströmt zu werden. Bevorzugt werden zur Herstellung des metallischen Katalysatorträgers abwechselnd jeweils ein glattes Blech und ein geriffeltes Blech übereinander gestapelt und anschließend aufgerollt. Ebenso können abwechselnd ein glattes und mindestens zwei geriffelte Bleche so gestapelt werden, dass die Kanten der geriffelten Bleche ineinander ragen. Bevorzugt sind die zellenartigen Kanäle parallel zueinander ausgerichtet und derart angeordnet, dass sie sich in Längsrichtung zwischen dem glatten und dem geriffelten Blech erstrecken. Bevorzugt weisen die zellenartigen Kanäle alle einen im Wesentlichen gleichen Durchmesser auf, welcher im Bereich von 0,1 bis 5 cm liegt, bevorzugter im Bereich von 0,2 bis 4 cm, im Bereich von 0,3 bis 3 cm, im Bereich von 0,4 bis 2 cm oder im Bereich von 0,5 bis 1 cm. Dabei bedeutet ein im Wesentlichen gleicher Durchmesser, dass der Durchmesser des größten und des kleinsten Kanals höchstens 5% voneinander abweichen. Preferably, the corrugated sheet and the smooth sheet are stacked in several layers and rolled up. Preferably, the spirally wound composite of sheets forms cell-like channels. Preferably, the cell-like channels are configured to flow through the composition. Preferably, a smooth sheet and a corrugated sheet are alternately stacked and then rolled up to produce the metallic catalyst support. Likewise, alternately a smooth and at least two corrugated sheets can be stacked so that the edges of the corrugated sheets protrude into each other. Preferably, the cell-like channels are aligned parallel to one another and arranged such that they extend in the longitudinal direction between the smooth and the corrugated sheet metal. Preferably, the cell-like channels all have a substantially same diameter, which is in the range of 0.1 to 5 cm more preferably in the range of 0.2 to 4 cm, in the range of 0.3 to 3 cm, in the range of 0.4 to 2 cm or in the range of 0.5 to 1 cm. In this case, a substantially equal diameter means that the diameter of the largest and the smallest channel deviate from each other by more than 5%.
[0043] In einer bevorzugten Ausführungsform sind die Bleche mit einem Washcoat beschichtet, so dass sie eine vergrößerte Oberfläche aufweisen. Ein Washcoat bezeichnet dabei bevorzugt eine stark zerklüftete Oberflächenbeschichtung. Bevorzugt umfasst der Washcoat poröses Aluminiumoxid. Bevorzugt bedingt der Washcoat eine raue Oberfläche der Bleche, so dass die Oberfläche stark vergrößert werden kann. In a preferred embodiment, the sheets are coated with a washcoat so that they have an increased surface area. A washcoat preferably denotes a highly fissured surface coating. Preferably, the washcoat comprises porous alumina. Preferably, the washcoat causes a rough surface of the sheets, so that the surface can be greatly increased.
[0044] In einer bevorzugten Ausführungsform sind die Bleche mit einem Edelmetall beschichtet. Dabei sind die Bleche beispielsweise mit Platin und/oder Palladium und/oder Rhodium beschichtet. Bevorzugt liegt das Edelmetall, mit welchem die Bleche beschichtet sind, in einer funktionalisierten bzw. aktivierten Form vor. Methoden, ein Edelmetall zu funktionalisieren bzw. zu aktivieren, sind einem Fachmann bekannt. In a preferred embodiment, the sheets are coated with a noble metal. The sheets are coated, for example, with platinum and / or palladium and / or rhodium. Preferably, the noble metal with which the sheets are coated in a functionalized or activated form. Methods of functionalizing or activating a noble metal are known to a person skilled in the art.
[0045] Bevorzugt weisen die metallischen Katalysatorträger eine im Vergleich zu keramischen Katalysatorträgern erhöhte Temperaturwechselbeständigkeit auf. The metallic catalyst supports preferably have an increased thermal shock resistance in comparison to ceramic catalyst supports.
[0046] Bevorzugt wird die erfindungsgemäße Vorrichtung in dem erfindungsgemäßen Verfahren verwendet. The device according to the invention is preferably used in the method according to the invention.
[0047] Die Erfindung wird anhand der Figuren 1 und 2 beispielhaft illustriert. Ein Fachmann erkennt, dass bei einer erfindungsgemäßen Vorrichtung nicht zwingend alle abgebildeten Merkmale gleichzeitig verwirklicht sein müssen. The invention is illustrated by way of example with reference to Figures 1 and 2. A person skilled in the art will recognize that, in the case of a device according to the invention, it is not absolutely necessary for all the imaged features to be realized simultaneously.
[0048] Figur 1 zeigt ein glattes Blech (1 ) und ein geriffeltes Blech (2), wobei der obere Teil der Figur jeweils eine Aufsicht der Bleche zeigt und der untere Teil der Figur jeweils eine Seitenansicht der Bleche zeigt. Bevorzugt werden zur Herstellung des metallischen Katalysatorträgers abwechselnd jeweils ein glattes Blech (1 ) und ein geriffeltes Blech (2) übereinander gestapelt. Ebenso können abwechselnd ein glattes und zwei geriffelte Bleche so gestapelt werden, dass die Kanten der geriffelten Bleche ineinander ragen. Bevorzugt werden durch die Stapelung zellenartige Kanäle gebildet, welche bevorzugt parallel zueinander ausgerichtet sind und derart angeordnet sind, dass sie sich in Längsrichtung zwischen dem glatten und dem geriffelten Blech erstrecken. Das geriffelte Blech kann dabei durch Falten eines glatten Bleches hergestellt werden. [0049] Figur 2 zeigt einen Querschnitt des erfindungsgemäßen metallischen Katalysatorträgers, wobei der obere Teil von Figur 2 einen vergrößerten Ausschnitt des Querschnitts darstellt. Durch eine Stapelung von glatten und geriffelten Blechen und ein spiralförmiges Aufwickeln der so gestapelten Bleche werden bevorzugt zellenartige Kanäle gebildet, die bevorzugt zur Durchströmung mit einem Gasstrom konfiguriert sind. Bevorzugt werden die Bleche mit einem Washcoat beschichtet, um eine vergrößerte Oberfläche aufzuweisen. Weiterhin sind die Bleche bevorzugt mit einem Katalysator beschichtet, welcher zur Katalyse einer Reaktion konfiguriert ist. Figure 1 shows a smooth sheet (1) and a corrugated sheet (2), wherein the upper part of the figure shows a plan view of the sheets and the lower part of the figure shows a side view of the sheets. Preferably, in each case a smooth sheet (1) and a corrugated sheet (2) are stacked one above the other to produce the metallic catalyst support. Similarly, one smooth and two corrugated sheets can alternately be stacked so that the edges of the corrugated sheets protrude into each other. Cellular channels are preferably formed by the stacking, which are preferably aligned parallel to each other and are arranged so that they extend in the longitudinal direction between the smooth and the corrugated metal sheet. The corrugated sheet can be made by folding a smooth sheet. FIG. 2 shows a cross section of the metallic catalyst support according to the invention, wherein the upper part of FIG. 2 represents an enlarged section of the cross section. By a stacking of smooth and corrugated sheets and a spiral winding of the sheets thus stacked preferably cell-like channels are formed, which are preferably configured to flow through with a gas stream. Preferably, the sheets are coated with a washcoat to have an increased surface area. Furthermore, the sheets are preferably coated with a catalyst configured to catalyze a reaction.

Claims

Patentansprüche: claims:
1. Ein Verfahren zur Herstellung eines Produkts in einer Reaktionsvorrichtung, wobei die Reaktionsvorrichtung eine Verbrennungskammer und eine Reaktionskammer umfasst, welche in Wärmeaustausch miteinander stehen, und wobei das Verfahren die Schritte umfasst: A method for producing a product in a reaction apparatus, wherein the reaction apparatus comprises a combustion chamber and a reaction chamber which are in heat exchange with each other, and wherein the method comprises the steps of:
a) Bereitstellen einer Zusammensetzung umfassend Kohlenwasserstoff;  a) providing a composition comprising hydrocarbon;
b) Bereitstellen eines Brenngases;  b) providing a fuel gas;
c) Verbrennen zumindest eines Teils des in Schritt (b) bereitgestellten Brenngases in der Verbrennungskammer unter Erzeugen von Abgas und Wärme; d) Leiten zumindest eines Teils der in Schritt (a) bereitgestellten Zusammensetzung durch metallische Katalysatorträger in der Reaktionskammer; und  c) combusting at least a portion of the fuel gas provided in step (b) in the combustion chamber to produce exhaust gas and heat; d) passing at least part of the composition provided in step (a) through metallic catalyst supports in the reaction chamber; and
e) Herstellen eines Produkts in der Reaktionskammer unter Verbrauch der in Schritt (c) erzeugten Wärme.  e) producing a product in the reaction chamber using the heat generated in step (c).
2. Das Verfahren nach Anspruch 1 , wobei die Reaktionsvorrichtung ein Dampfreformer umfasst. 2. The method of claim 1, wherein the reaction device comprises a steam reformer.
3. Das Verfahren nach Anspruch 1 , wobei das Produkt ein Synthesegas ist. 3. The process of claim 1, wherein the product is a synthesis gas.
4. Das Verfahren nach Anspruch 1 , wobei die Reaktionsvorrichtung ein Propandehydrie- rungsreformer ist und das Produkt zumindest Propylen umfasst. 4. The method of claim 1, wherein the reaction device is a propane dehydration reformer and the product comprises at least propylene.
5. Verfahren nach einem der vorstehenden Ansprüche, wobei der metallische Katalysatorträger einen spiralförmig gewickelten Verbund von Blechen umfasst. 5. The method of any one of the preceding claims, wherein the metallic catalyst carrier comprises a spirally wound composite of sheets.
6. Das Verfahren nach einem der vorstehenden Ansprüche, wobei innerhalb der Reaktionskammer eine gleichmäßige Temperaturverteilung vorliegt. 6. The method according to any one of the preceding claims, wherein within the reaction chamber is a uniform temperature distribution.
7. Das Verfahren nach einem der vorstehenden Ansprüche, wobei der Druckverlust der in Schritt (a) bereitgestellten Zusammensetzung beim Durchleiten durch die metallischen Katalysatorträger in Schritt (d) höchstens 3 bar beträgt. 7. The method according to any one of the preceding claims, wherein the pressure loss of the composition provided in step (a) when passing through the metallic catalyst carrier in step (d) is at most 3 bar.
8. Das Verfahren nach einem der vorstehenden Ansprüche, wobei die metallischen Katalysatorträger elektrisch beheizt werden. 8. The method according to any one of the preceding claims, wherein the metallic catalyst carriers are electrically heated.
9. Vorrichtung zur Herstellung eines Produkts, wobei die Vorrichtung die folgenden miteinander in Wirkverbindung stehenden Komponenten umfasst: 9. An apparatus for producing a product, the apparatus comprising the following components operatively connected to each other:
a) eine Reaktionskammer, konfiguriert zum Durchführen einer Reaktion, wobei die Reaktionskammer metallische Katalysatorträger umfasst, und  a) a reaction chamber configured to perform a reaction, the reaction chamber comprising metallic catalyst carriers, and
b) eine Verbrennungskammer, konfiguriert zur Erzeugung von Wärme.  b) a combustion chamber configured to generate heat.
10. Die Vorrichtung nach Anspruch 9, wobei die Reaktionskammer zur Dampfreformierung von Kohlenwasserstoffen oder zur Dehydrierung von Propan konfiguriert ist. The apparatus of claim 9, wherein the reaction chamber is configured for steam reforming of hydrocarbons or for dehydrogenation of propane.
1 1. Die Vorrichtung nach einem der Ansprüche 9 und 10, wobei der metallische Katalysatorträger einen spiralförmig gewickelten Verbund von Blechen umfasst. 1 The apparatus of any of claims 9 and 10, wherein the metallic catalyst carrier comprises a spirally wound composite of sheets.
12. Die Vorrichtung nach Anspruch 1 1 , wobei der spiralförmig gewickelte Verbund von Blechen abwechselnd mindestens ein glattes Blech (1 ) und mindestens ein geriffeltes Blech (2) umfasst. 12. The apparatus of claim 1 1, wherein the spirally wound composite of sheets alternately at least one smooth sheet (1) and at least one corrugated sheet (2).
13. Die Vorrichtung nach Anspruch 1 1 , wobei der spiralförmig gewickelte Verbund von Blechen abwechselnd ein glattes und mindestens zwei geriffelte Bleche aufweist, die so gestapelt sind, dass die Kanten der geriffelten Bleche ineinander ragen. 13. The apparatus of claim 1, wherein the spirally wound composite of sheets alternately comprises a smooth and at least two corrugated sheets stacked so that the edges of the corrugated sheets are interlocked.
14. Die Vorrichtung nach einem der Ansprüche 1 1 bis 13, wobei der spiralförmig gewickelte Verbund von Blechen zellenartige Kanäle bildet. 14. The apparatus of any one of claims 11 to 13, wherein the spirally wound composite of sheets forms cell-like channels.
15. Die Vorrichtung nach Anspruch 14, wobei durch die Stapelung von Blechen zellenartige Kanäle gebildet sind, welche parallel zueinander ausgerichtet sind. 15. The apparatus of claim 14, wherein cell-like channels are formed by the stacking of sheets, which are aligned parallel to each other.
16. Die Vorrichtung nach einem der Ansprüche 14 und 15, wobei durch die Stapelung von Blechen zellenartige Kanäle gebildet, welche derart angeordnet sind, dass sie sich in Längsrichtung zwischen einem glatten und einem geriffelten Blech erstrecken. The apparatus of any of claims 14 and 15, wherein cell-like channels are formed by the stacking of sheets arranged to extend longitudinally between a smooth and a corrugated sheet.
17. Die Vorrichtung nach einem der Ansprüche 12, 13 und 16, wobei das geriffelte Blech durch Falten eines glatten Bleches hergestellt ist. 17. The apparatus of any one of claims 12, 13 and 16, wherein the corrugated sheet is made by folding a smooth sheet.
18. Die Vorrichtung nach einem der Ansprüche 1 1 bis 17, wobei die Bleche mit einem Washcoat beschichtet sind, so dass sie eine vergrößerte Oberfläche aufweisen. 18. The apparatus of any of claims 1-17, wherein the sheets are coated with a washcoat to have an increased surface area.
19. Die Vorrichtung nach einem der Ansprüche 1 1 bis 18, wobei die Bleche mit einem Edelmetall beschichtet sind. 19. The device according to any one of claims 1 1 to 18, wherein the sheets are coated with a noble metal.
Verwendung der Vorrichtung nach einem der Ansprüche 9 bis 19 in einem Verfahren gemäß einem der Ansprüche 1 bis 8. Use of the device according to one of claims 9 to 19 in a method according to one of claims 1 to 8.
PCT/EP2016/064655 2015-06-24 2016-06-24 Optimization of the heat balance in reformers by using metal catalyst supports WO2016207342A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015110120.3A DE102015110120A1 (en) 2015-06-24 2015-06-24 Optimization of the heat balance in reformers by using metallic catalyst carriers
DE102015110120.3 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016207342A1 true WO2016207342A1 (en) 2016-12-29

Family

ID=56203398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/064655 WO2016207342A1 (en) 2015-06-24 2016-06-24 Optimization of the heat balance in reformers by using metal catalyst supports

Country Status (2)

Country Link
DE (1) DE102015110120A1 (en)
WO (1) WO2016207342A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220075347A (en) * 2019-10-01 2022-06-08 할도르 토프쉐 에이/에스 Customized hydrogen from ammonia
ES2955244T3 (en) * 2019-10-01 2023-11-29 Topsoe As Offshore reforming facility or vessel
EP4038014A1 (en) * 2019-10-01 2022-08-10 Haldor Topsøe A/S On demand synthesis gas from methanol
WO2021063792A1 (en) * 2019-10-01 2021-04-08 Haldor Topsøe A/S Synthesis gas on demand
CA3155515A1 (en) * 2019-10-01 2021-04-08 Haldor Topsoe A/S On demand hydrogen from methanol
CA3163634A1 (en) * 2019-12-04 2021-06-10 Topsoe A/S Biogas conversion to synthesis gas for producing hydrocarbons
CN114746362A (en) * 2019-12-04 2022-07-12 托普索公司 Electrothermal steam methane reforming synthetic fuel
EP4069414B1 (en) * 2019-12-04 2024-01-31 Topsoe A/S Gas heater
CN115231520B (en) * 2021-04-25 2023-07-28 中国石油大学(北京) Steel smelting method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534433C1 (en) 1995-09-16 1996-10-10 Daimler Benz Ag Composite metallic foam catalyst layered structure for high throughput methanol reformer
US20020054837A1 (en) * 1998-06-29 2002-05-09 Fumio Abe Reformer
WO2002040156A2 (en) 2000-11-15 2002-05-23 Nissan Motor Co., Ltd. Metallic catalyst carrier
US20060019827A1 (en) * 2004-07-21 2006-01-26 Whittenberger William A High-performance catalyst support
DE60300811T2 (en) 2002-12-11 2006-03-23 Calsonic Kansei Corp. Metallic catalyst carrier body
US20100119421A1 (en) * 2008-11-11 2010-05-13 Jin-Goo Ahn Catalyst support, method of manufacturing the same, and reformer having the same
US20120195801A1 (en) * 2011-01-28 2012-08-02 Catacel Corporation Stackable structural reactors

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19721630C1 (en) * 1997-05-23 1999-02-11 Fraunhofer Ges Forschung Device for reforming hydrocarbons containing starting materials
DE19727841A1 (en) * 1997-06-24 1999-01-07 Fraunhofer Ges Forschung Method and device for the autothermal reforming of hydrocarbons
US6831204B2 (en) * 2002-10-11 2004-12-14 Conocophillips Company MCrAlY supported catalysts for oxidative dehydrogenation of alkanes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534433C1 (en) 1995-09-16 1996-10-10 Daimler Benz Ag Composite metallic foam catalyst layered structure for high throughput methanol reformer
US20020054837A1 (en) * 1998-06-29 2002-05-09 Fumio Abe Reformer
WO2002040156A2 (en) 2000-11-15 2002-05-23 Nissan Motor Co., Ltd. Metallic catalyst carrier
DE60300811T2 (en) 2002-12-11 2006-03-23 Calsonic Kansei Corp. Metallic catalyst carrier body
US20060019827A1 (en) * 2004-07-21 2006-01-26 Whittenberger William A High-performance catalyst support
US20100119421A1 (en) * 2008-11-11 2010-05-13 Jin-Goo Ahn Catalyst support, method of manufacturing the same, and reformer having the same
KR20100052689A (en) * 2008-11-11 2010-05-20 삼성에스디아이 주식회사 Monolith catalyst support and manufacturing method thereof and reformer having the monolith catalyst support
US20120195801A1 (en) * 2011-01-28 2012-08-02 Catacel Corporation Stackable structural reactors

Also Published As

Publication number Publication date
DE102015110120A1 (en) 2016-12-29

Similar Documents

Publication Publication Date Title
WO2016207342A1 (en) Optimization of the heat balance in reformers by using metal catalyst supports
EP0991587B1 (en) Method and device for reforming hydrocarbons autothermally
DE60203315T2 (en) CATALYTIC REACTOR
EP3497058B1 (en) Synthesis device and method for producing a product
DE60307885T3 (en) CATALYTIC PROCEDURE
EP1877173B1 (en) Method and reactor for carrying out endothermic catalytic reactions
EP3296255A1 (en) Reformer tube with structured catalyst and improved temperature control
EP2776365B1 (en) Reformer tube having internal heat exchange
EP1835990B1 (en) Device and method for preparing a homogeneous mixture consisting of fuel and oxidants
EP2101900A1 (en) Reactor for carrying out a continuous oxide hydrogenation, and method
EP3837922A1 (en) Device and method for heating a fluid in a pipeline
EP4155259A1 (en) Method for producing synthesis gas with reduced steam export
EP3266739B1 (en) Corrosion protected reformer tube with internal heat exchanger
WO2009121827A2 (en) Improved method for producing hydrogen cyanide through catalytic dehydration of gaseous formamide–direct heating
DE4128423A1 (en) DEVICE FOR CARRYING OUT A CATALYTIC REACTION
DE102004063151A1 (en) Reformer for a fuel cell
WO2001094005A1 (en) Catalytic plate reactor with internal heat recovery
WO2015070963A1 (en) Method and device for steam reforming and for steam cracking of hydrocarbons
EP3135370B1 (en) Reactor for the production of synthesis gas by steam reforming
DE102016221602A1 (en) Reformer and method for operating a reformer
DE3100641C2 (en) Method of operating a device for generating cracked gas for the production of NH? 3? Synthesis gas
DE10209886A1 (en) Device and method for reforming hydrocarbons from a feed gas
WO2018108321A1 (en) Heat exchanger having a burner
DE102014004264A1 (en) Heat-integrated high-temperature reactors for autothermal partial oxidation
EP2407241B1 (en) Structure and assembly of a catalyst for increasing the effectiveness of catalytic chemical processes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16731910

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16731910

Country of ref document: EP

Kind code of ref document: A1