WO2016203865A1 - 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法 - Google Patents

石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法 Download PDF

Info

Publication number
WO2016203865A1
WO2016203865A1 PCT/JP2016/063753 JP2016063753W WO2016203865A1 WO 2016203865 A1 WO2016203865 A1 WO 2016203865A1 JP 2016063753 W JP2016063753 W JP 2016063753W WO 2016203865 A1 WO2016203865 A1 WO 2016203865A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
heavy metal
liquid
absorption
fired boiler
Prior art date
Application number
PCT/JP2016/063753
Other languages
English (en)
French (fr)
Inventor
今田 典幸
片川 篤
祐隆 山成
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to EP16811340.5A priority Critical patent/EP3311905A4/en
Priority to US15/736,673 priority patent/US10247414B2/en
Publication of WO2016203865A1 publication Critical patent/WO2016203865A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/022Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material for removing solid particulate material from the gasflow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/505Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound in a spray drying process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/50Inorganic acids
    • B01D2251/502Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/50Inorganic acids
    • B01D2251/506Sulfuric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/90Chelants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8665Removing heavy metals or compounds thereof, e.g. mercury
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/60Heavy metals; Compounds thereof

Definitions

  • the present invention relates to a flue gas treatment device and a flue gas treatment method for purifying exhaust gas from a coal fired boiler using coal as fuel, and in particular, an exhaust gas treatment device for a coal fired boiler that removes heavy metals such as mercury contained in the exhaust gas.
  • the present invention relates to an exhaust gas treatment method for a coal fired boiler.
  • FIG. 1 An example of a conventional coal-fired boiler for power generation and its exhaust gas treatment device is shown in FIG.
  • the coal supplied from the coal supply line 21 is burned in the boiler 1 by the air supplied from the combustion air supply line 36, and the generated high-temperature exhaust gas is heat-exchanged by the heat exchanger 11 provided at the boiler 1 outlet.
  • Steam is generated and the generator 13 is operated by the steam turbine 12.
  • the low-pressure steam that has exited the steam turbine 12 is gradually cooled by the condenser 14, then pressurized by the pump 15, and sent to the heat exchanger 11.
  • Combustion exhaust gas is processed as follows. First, nitrogen oxide (hereinafter referred to as NOx) in exhaust gas is reduced to nitrogen by a denitration catalyst in a denitration device 2 installed on the downstream side of the exhaust gas flow of the boiler 1, and then gas is produced by an air heater (A / H) 3. The temperature is lowered, ash is removed by the dust collector 4, sulfur oxide (hereinafter referred to as SOx) is removed by the desulfurizer 5, and then released into the atmosphere from the chimney 16, so that dust in the exhaust gas, NOx and It is configured to remove SOx.
  • NOx nitrogen oxide
  • SOx sulfur oxide
  • a desulfurization absorption liquid containing an absorbent such as limestone (calcium carbonate) or slurry containing lime is sprayed as fine droplets from the desulfurization spray nozzle 27.
  • SOx in the exhaust gas is absorbed by the desulfurization spray nozzle 27 together with soot, hydrogen chloride (HCl), and hydrogen fluoride (HF) in the exhaust gas. It is absorbed and removed chemically at the surface.
  • gypsum calcium sulfate
  • the absorption liquid separated from the gypsum 30 is returned from the storage tank 31 by the pump 32 to the desulfurization apparatus 5 from the desulfurization absorption liquid return pipe 35 or partly sent to the waste water treatment apparatus 67. Moreover, it may return to the calcium carbonate supply apparatus 44 and may be used for adjustment of absorbents, such as a limestone slurry.
  • absorbents such as a limestone slurry.
  • the wastewater treatment device 67 after removing harmful substances including heavy metals contained in the wastewater, the drainage is discharged out of the system.
  • regulations on mercury and the like contained in coal have been strengthened, and several methods for removing heavy metals, mainly mercury, in exhaust gas have been proposed and put into practical use.
  • mercury removal characteristics are improved by enhancing the mercury oxidation function of the denitration catalyst.
  • Mercury in coal is released into the exhaust gas in the form of metallic mercury in the combustion field.
  • This metallic mercury is difficult to be adsorbed by solids such as ash and is also difficult to dissolve in water. In this form, it passes through conventional exhaust gas treatment equipment such as dust collectors and desulfurization equipment and is released into the atmosphere. It will be. Therefore, in patent document 1, the mercury oxidation function which converts the said metallic mercury into oxidized mercury is added to the denitration catalyst.
  • Oxidized mercury has the property of being easily adsorbed on solids and easily dissolved in water, part of which adheres to the ash in the exhaust gas and is removed together with the ash by the dust collector. Since it is absorbed by the absorbing liquid, it can be prevented from being released into the atmosphere.
  • Patent Document 2 mercury removal characteristics are improved by adding a halogen compound to the exhaust gas flow upstream side of the denitration catalyst.
  • Mercury reacts with halogen (chlorine and bromine) in the exhaust gas to form oxidized mercury. If these halogens are low in the coal, the proportion of mercury that is converted to oxidized mercury will decrease. Therefore, in Patent Document 2, by adding halogen to the upstream side of the exhaust gas flow of the denitration catalyst, the conversion ratio to oxidized mercury in the exhaust gas is increased, and the mercury removal rate in the exhaust gas is increased.
  • Patent Document 3 by adding a mercury adsorbent such as activated carbon to the duct on the upstream side of the exhaust gas flow of the dust collector, the mercury in the exhaust gas is adsorbed by the adsorbent and recovered and removed together with the ash by the dust collector. ing.
  • a mercury adsorbent such as activated carbon
  • a scrubber is provided in an exhaust gas flow path between a dust collector and a desulfurization device, activated carbon is added to the exhaust gas to adsorb mercury, and then the scrubber is used for cleaning.
  • the liquid is separated by a solid-liquid separator and returned to the scrubber for reuse. Further, the activated carbon of the solid is dried at a temperature not exceeding 90 ° C. so that mercury is not desorbed, and then added again to the exhaust gas.
  • SO 2 absorbed in the absorbing solution is converted into gypsum by oxidized air.
  • a reaction may occur in which oxidized mercury in the solution is reduced to metallic mercury. .
  • absorbed mercury is released again to the exhaust gas side, and as a result, it is diffused into the atmosphere.
  • ⁇ Current coal in Japan mainly contains a small amount of heavy metals such as mercury, but overseas, coal containing heavy metals at high concentrations may be used. Moreover, since the low quality coal which is cheap and imported from overseas may be used, in such a case, the said problem becomes especially remarkable.
  • An exhaust gas treatment apparatus for a coal fired boiler and an exhaust gas treatment method for a coal fired boiler are provided.
  • the object of the present invention can be achieved by adopting the following constitution.
  • the invention according to claim 1 includes a denitration device (2) provided with a denitration catalyst for removing nitrogen oxides in exhaust gas in a flow path of exhaust gas discharged from a coal-fired boiler (1);
  • a dust collector (4) for removing the soot and a desulfurization device (5) for removing sulfur oxides in the exhaust gas with an absorbing liquid are sequentially arranged from the upstream side to the downstream side of the exhaust gas flow.
  • a heavy metal component removal device (10) for removing heavy metal components in the exhaust gas is provided in the exhaust gas flow path between the dust collector (4) and the desulfurization device (5), and the heavy metal component removal device (10)
  • a heavy metal absorption part (47) for spraying an acidic absorption liquid that absorbs heavy metal a storage part (49) for storing a heavy metal absorption liquid that has absorbed heavy metal in the heavy metal absorption part (47), and the storage part (49 ) Heavy metal absorption liquid
  • An absorption tower (45) provided with a circulation part (50, 69) to be supplied to (47), an extraction part (51) for extracting the heavy metal absorbent from the absorption tower (45), and an extraction from the extraction part (51)
  • the neutral component (52, 60) for supplying and neutralizing the pH adjusting agent to the heavy metal absorbing solution, and the solid component and the liquid component are separated from the heavy metal absorbing solution neutralized by the neutralizing component (52, 60).
  • the invention according to claim 2 is the exhaust gas treatment apparatus for a coal fired boiler according to claim 1, wherein the pH of the acidic absorbent sprayed by the heavy metal absorber (47) is 1 to 3. .
  • the invention according to claim 3 is provided with a control unit (100) for controlling the supply amount of the pH adjusting agent so that the pH of the heavy metal absorbent is 5 to 7 in the neutralization unit (52, 60).
  • the exhaust gas treatment apparatus for a coal fired boiler according to claim 2 wherein the exhaust gas treatment apparatus is a coal fired boiler.
  • a waste liquid supply part that supplies a part of the liquid separated by the solid-liquid separation part to an exhaust gas flow path between the denitration device and the dust collector.
  • the invention according to claim 5 removes nitrogen oxides in exhaust gas discharged from a coal-fired boiler using a denitration catalyst, removes soot from the exhaust gas after removing nitrogen oxides, and removes soot
  • an exhaust gas treatment method for a coal fired boiler that removes sulfur oxide from an exhaust gas with an absorbing solution
  • an acidic absorbing solution that absorbs heavy metals is sprayed on the exhaust gas after removing the soot and before removing the sulfur oxide, and after spraying
  • the heavy metal absorption liquid is used again for heavy metal absorption, and after neutralizing by supplying a pH adjuster to a part of the heavy metal absorption liquid after spraying, the solids and liquids are separated. It is the exhaust gas processing method for coal fired boilers characterized by removing the heavy metal component.
  • a sixth aspect of the present invention is the exhaust gas treatment method for a coal fired boiler according to the fifth aspect, wherein an absorbent having a pH of 1 to 3 is used as the acidic absorbent.
  • a seventh aspect of the present invention provides the coal fired boiler according to the sixth aspect, wherein the pH adjusting agent is supplied so that the pH of the heavy metal absorbent after spraying the acidic absorbent is 5-7. Exhaust gas treatment method.
  • the invention according to claim 8 is characterized in that a part of the separated liquid is supplied to the exhaust gas after removing the nitrogen oxides and before removing the dust.
  • Oxidized mercury in exhaust gas is easily soluble in water, and its adsorption performance hardly depends on the pH of the absorption liquid. Therefore, in the absorption tower of the heavy metal component removal device, the absorption liquid mainly composed of water is used as the exhaust gas. By spraying, most of the oxidized mercury in the exhaust gas is absorbed by the absorbing solution. When SO 2 in the exhaust gas is absorbed simultaneously with mercury by the absorbing solution, the mercury in the solution is reduced and released into the exhaust gas (re-release of mercury) in the process of oxidizing the SO 2 in the absorbing solution. Although it is a concern, it is difficult to absorb SO 2 by making the pH of the absorbing solution acidic.
  • FIG. 3A to 3C show examples of the pH of the absorbing solution, mercury absorption characteristics, and SO 2 absorption characteristics.
  • the vertical axis in FIG. 3 (A) indicates the Hg absorption rate (%)
  • the vertical axis in FIG. 3 (B) indicates the SO 2 absorption rate (%)
  • the vertical axis in FIG. Hg concentration ( ⁇ g / L) is shown.
  • the absorption liquid was industrial water, the liquid temperature was set to 50 ° C., the same as the actual apparatus, the mercury concentration in the liquid was set to 100 ⁇ g / L, and the pH was changed from 1 to 5. Since SO 2 exists in the gas, calcium carbonate (alkali) was used as a pH adjuster.
  • industrial water is water used for industrial production, and usually has a neutral pH (about 6 to 8).
  • a neutral pH about 6 to 8
  • purified water of sewage is used in addition to water, groundwater, river water.
  • the temperature of the simulated exhaust gas is 50 ° C.
  • the components of the simulated exhaust gas are oxygen concentration: 8%, carbon dioxide concentration: 13%, SO 2 concentration: 2000 ppm, Hg concentration: 10 ⁇ g / m 3 N, and the rest is nitrogen.
  • the Hg concentration and SO 2 concentration in the gas were measured using each monitor.
  • Mercury concentration in the liquid was measured by reductive vaporization-atomic absorption.
  • a part of mercury in the absorbing liquid is transferred to dust contained in the liquid by setting the pH of the liquid to 5 or more. Thereafter, by separating the solid component and the liquid component, trace heavy metals such as mercury in the absorption liquid are discharged out of the system together with the solid component.
  • the heavy metal concentration in the absorption liquid in the desulfurization unit can be greatly reduced, when absorbing SOx in the exhaust gas, the absorbed heavy metal can be prevented from being re-released, and the heavy metal can be released into the atmosphere. It can be greatly reduced.
  • the absorption tower of the heavy metal component removal apparatus can efficiently remove trace heavy metals such as mercury by using an acidic absorption liquid, and then neutralize the absorption liquid to effectively transfer the trace heavy metal to the solid content. Thus, heavy metal components can be discharged out of the system.
  • the pH of the liquid that has absorbed heavy metals in the neutralizing part is 5-7.
  • the migration of heavy metal to the solid side is promoted, and the heavy metal is efficiently recovered in the solid-liquid separation unit.
  • wastewater can be effectively used by supplying wastewater generated from the heavy metal component removing device to the upstream side of the exhaust gas flow path of the dust collector.
  • chlorine contained in the waste water is removed by a dust collector together with ash because the water evaporates into a solid when it comes into contact with high-temperature exhaust gas.
  • the absorption rate of heavy metals in the absorption tower is further increased, and the removal is efficiently performed. It becomes possible to do.
  • FIG. 1 shows the configuration of an exhaust gas treatment apparatus that is an embodiment of the present invention.
  • the description of members having the same reference numerals as those of the exhaust gas treatment apparatus of FIG. 4 is partially omitted.
  • the coal supplied from the coal supply line 21 is combusted in the boiler 1 by the air supplied from the combustion air supply line 36, and the generated high-temperature exhaust gas is heat-exchanged by the heat exchanger 11 at the boiler 1 outlet to generate steam.
  • the generator 13 is operated by the steam turbine 12.
  • the low-pressure steam that has exited the steam turbine 12 is gradually cooled by the condenser 14, then pressurized by the pump 15, and sent to the heat exchanger 11.
  • Combustion exhaust gas is processed as follows. First, after NOx in the exhaust gas is reduced to nitrogen by the denitration catalyst in the denitration device 2 installed on the downstream side of the exhaust gas flow of the boiler 1, the gas temperature is lowered by A / H3, ash is removed by the dust collector 4, and desulfurization is performed. After the SOx is removed by the device 5, the exhaust gas is discharged from the chimney 16 into the atmosphere, thereby removing the soot, NOx and SOx in the exhaust gas.
  • a desulfurization absorption liquid containing an absorbent such as slurry containing limestone or lime is sprayed as fine droplets from the desulfurization spray nozzle 27.
  • SOx in the exhaust gas is chemically absorbed and removed on the surface of the absorption droplets of the desulfurization spray nozzle 27 together with soot in the exhaust gas and acidic gases such as HCl and HF.
  • the absorbing solution that has absorbed SOx (mainly SO 2 ) temporarily accumulates in the circulation tank 28 at the bottom of the desulfurization apparatus 5 and is oxidized by air supplied from an oxidizing air supply pipe (not shown) to generate gypsum.
  • a part of the absorption liquid extracted from the circulation tank 28 is supplied from the circulation pipe 25 to the desulfurization spray nozzle 27 by the pump 26, the rest is separated from the gypsum by the gypsum separator 29, and the gypsum 30 is recovered.
  • the absorption liquid separated from the gypsum 30 is returned from the storage tank 31 to the desulfurization apparatus 5 from the desulfurization absorption liquid return pipe 35 by the pump 32, or partly sent to the waste water treatment apparatus 67. Moreover, it may return to the calcium carbonate supply apparatus 44 and may be used for adjustment of absorbents, such as a limestone slurry. In the wastewater treatment device 67, after removing harmful substances including heavy metals contained in the wastewater, the drainage is discharged out of the system.
  • the present embodiment is characterized in that the heavy metal absorption tower 45 is installed in the exhaust gas flow path between the dust collector 4 and the desulfurization apparatus 5 to configure the heavy metal component removal apparatus 10.
  • the heavy metal absorption tower 45 is provided with an exhaust gas inlet 46, a heavy metal absorption liquid spray nozzle 47 for spraying heavy metal absorption liquid, an exhaust gas outlet 48, and a heavy metal absorption liquid circulation tank 49 in order from the top to the bottom.
  • the heavy metal absorbing liquid in the circulation tank 49 is boosted by the pump 50 and supplied to the heavy metal absorbing liquid spray nozzle 47 from the circulation pipe 69.
  • the extraction pipe 51 is connected to the circulation pipe 69, and a part of the heavy metal absorbing liquid is sent from the extraction pipe 51 to the neutralization tank 52, the solid-liquid separator 53, the storage tank 54 and the pump 55. ing. Industrial water was used as the heavy metal absorbing solution.
  • a catalyst with enhanced mercury oxidation function was employed as the denitration catalyst, and the NOx removal rate was about 95% at a gas temperature of 380 ° C.
  • the denitration catalyst is not limited to a catalyst with enhanced mercury oxidation function, and the catalyst with enhanced mercury oxidation function is not particularly limited.
  • the catalyst with enhanced mercury oxidation function is not particularly limited.
  • V vanadium
  • W tungsten
  • Mo molybdenum
  • Ni nickel
  • Co cobalt
  • Co iron
  • Cr chromium
  • Cu copper
  • Mn manganese
  • a catalyst supporting a noble metal such as platinum (Pt), ruthenium (Ru), rhodium (Rh), palladium (Pd), iridium (Ir), or a mixture thereof.
  • the exhaust gas is heat-exchanged with combustion air flowing through the combustion air supply line 36 at A / H3, and the gas temperature is lowered to about 180 ° C. and supplied to the dust collector 4.
  • the dust collector 4 a part of the oxidized mercury in the exhaust gas adheres to the ash and is discharged out of the system together with the ash.
  • the mercury concentration in the ash collected by the dust collector 4 was measured by a reduction vaporization-atomic absorption method, about 10% of mercury in the exhaust gas adhered to the ash and was removed.
  • the exhaust gas is supplied to the heavy metal absorption tower 45, and most of the oxidized mercury in the exhaust gas is absorbed by the heavy metal absorption liquid sprayed from the heavy metal absorption liquid spray nozzle 47.
  • the heavy metal absorbing solution was adjusted so that its pH was 1 to 3.
  • the pH of the heavy metal absorbing liquid is lowered to 1 or less by absorbing SO 2 in the exhaust gas at the start of operation.
  • the pH of the liquid increases from 1 by returning to the heavy metal absorption tower 45 again. It is about 1 to 3.
  • the mercury in the liquid can be transferred to the solid side by setting the pH to 5 or more in the neutralization tank 52. If the pH is 7 or more, there is no difference in the rate of migration to the solid side, and only the consumption of the pH adjuster increases, so 7 is the upper limit. In order to control more strictly, it is good to carry out as follows.
  • the pH of the heavy metal absorption liquid in the neutralization tank 52 and the pH of the heavy metal absorption liquid in the circulation tank 49 of the heavy metal absorption tower 45 are measured by pH meters (pH meters) 70 and 71, respectively.
  • the control device 100 controls the supply amount of the sodium hydroxide aqueous solution from the pH adjuster supply device 60 so that the pH of the absorption solution is 5 to 7, and the pH of the heavy metal absorption solution in the circulation tank 49 is 1 to 3.
  • the supply amount of the pH adjusting agent from the pH adjusting agent supply device 63 was controlled by the control device 100 so that
  • an alkali agent NaOH, Na 2 CO 3 , CaCO 3 , Ca (OH) 2 or the like
  • an acid hydroochloric acid, sulfuric acid or the like
  • 3 (A) and 3 (B) also show that mercury re-release can be suppressed by setting the pH of the absorbent to 1 to 3.
  • the pH of the heavy metal absorbing solution fluctuates around 3, it is desirable to control it near 3.
  • the heavy metal absorption liquid absorbs trace heavy metals such as mercury in the exhaust gas and at the same time removes part of the dust in the exhaust gas.
  • a part of the absorbing solution containing the absorbed oxidized mercury is sent to the neutralization tank 52 through the extraction pipe 51, and the pH is adjusted to about 5-7.
  • Mercury in the absorption liquid is adjusted to pH 5 to 7, so that it shifts to dust contained in the liquid and is adsorbed by ash. Accordingly, mercury can be removed efficiently.
  • solid chelating heavy metal scavengers for example, Uniselec (registered trademark) UR-120H (manufactured by Akata Maintenance Co., Ltd.), Eporus (registered trademark) Z-7 (manufactured by Miyoshi Oil & Fats Co., Ltd.), etc.
  • Uniselec registered trademark
  • UR-120H manufactured by Akata Maintenance Co., Ltd.
  • Eporus registered trademark
  • Z-7 manufactured by Miyoshi Oil & Fats Co., Ltd.
  • the mercury monitor 72 installed in the outlet duct of the dust collector 4 measures the Hg concentration in the exhaust gas, and the signal (Hg concentration measurement signal) is input to the control device 100 so that the control device 100 An output signal is sent to the heavy metal scavenger supply device 61 to control the supply amount.
  • the amount of mercury in coal is measured in advance and the supply amount from the heavy metal scavenger supply device 61 is controlled based on the value.
  • the amount of the heavy metal scavenger supplied from the heavy metal scavenger supply device 61 and the pH adjuster supplied from the pH adjuster supply devices 60 and 63 are controlled by opening and closing the valves of the pipes provided in each device. Easy to adjust.
  • the heavy metal scavenger includes chelating agents having a glucamine group, an iminodiacetic acid group, a polyamino group, a dithiocarbamic acid group, and the like.
  • chelating agents having a glucamine group, an iminodiacetic acid group, a polyamino group, a dithiocarbamic acid group, and the like.
  • the above chelating agent was used as the heavy metal scavenger, but the same effect can be obtained with an inorganic flocculant or a polymer flocculant.
  • inorganic flocculants include PAC (polyaluminum chloride), sulfated clay (aluminum sulfate), and iron chloride (ferric chloride).
  • polymer flocculants include cationic polymers (water-soluble aniline resins).
  • a thickener and a dehydrator are used as the solid-liquid separator 53.
  • other means may be used as long as the apparatus and equipment can separate and remove the solid.
  • the absorption liquid separated by the solid-liquid separator 53 and from which heavy metals such as mercury have been removed is sent to the storage tank 54 and is returned to the heavy metal absorption tower 45 from the absorption liquid return pipe 56 by the pump 55 for reuse. . Therefore, water used in the heavy metal component removing device 10 can be saved.
  • FIG. 2 shows another embodiment of the present invention.
  • a part of the absorption liquid after the solid content 65 is removed from the heavy metal absorption liquid of the heavy metal absorption tower 45 by the solid-liquid separator 53 is removed by the drain return pipe (drainage supply part) 62 of the dust collector 4. It is configured to supply to the upstream side of the exhaust gas passage.
  • drain return pipe drainage supply part
  • a configuration may be added in which a part of the absorbent is extracted from the absorbent return pipe 56 or the drain return pipe 62 and sent to the waste water treatment device 67 (FIG. 1) to treat heavy metals contained in the waste water.
  • the same effects as those of the first embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Chimneys And Flues (AREA)

Abstract

ボイラ(1)から排出される排ガスの流路に、脱硝装置(2)と、集塵機(4)と、脱硫装置(5)とを順次設けた排ガス処理装置において、集塵機(4)と脱硫装置(5)との間の排ガス流路に重金属成分除去装置(10)を設ける。この装置(10)は、排ガスに酸性吸収液を噴霧するノズル(47)と重金属を吸収した液を溜めるタンク(49)とタンク(49)の液をノズル(47)に供給するポンプ(50)とを備えた吸収塔(45)と、吸収塔(45)から抜き出した液を中和する中和槽(52)と、中和した液から固体分と液体分を分離する分離器(53)とを備えている。吸収塔(45)で微量重金属を除去できることで、脱硫装置(5)での重金属の再放出を防止する。

Description

石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法
 本発明は、石炭を燃料とする石炭焚ボイラの排ガスを浄化する排煙処理装置及び排煙処理方法に係わり、特に排ガス中に含まれる水銀などの重金属を除去する石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法に関する。
 従来の発電用石炭焚きボイラ及びその排ガス処理装置の一例を図4に示す。
 石炭供給ライン21から供給される石炭を燃焼用空気供給ライン36から供給される空気によりボイラ1で燃焼させ、発生した高温の排ガスをボイラ1出口に設けた熱交換器11により熱交換することで蒸気を発生させ、蒸気タービン12により発電機13を運転する。蒸気タービン12を出た低圧蒸気は復水器14により徐冷された後、再びポンプ15で加圧され、熱交換器11に送られる。
 燃焼排ガスは、以下のように処理される。まず、ボイラ1の排ガス流れ下流側に設置した脱硝装置2内の脱硝触媒によって排ガス中の窒素酸化物(以下、NOxと言う)を窒素に還元した後、エアヒーター(A/H)3によりガス温度を低下させ、集塵機4で灰を除去し、脱硫装置5で硫黄酸化物(以下、SOxと言う)を除去した後、煙突16から大気中に放出することで、排ガス中の煤塵、NOx及びSOxを除去する構成となっている。
 脱硫装置5では、石灰石(炭酸カルシウム)又は石灰を含むスラリ等の吸収剤を含んだ脱硫吸収液が脱硫スプレノズル27から微細な液滴として噴霧される。脱硫吸収液の液滴と排ガスとを接触させることで、排ガス中の煤塵や塩化水素(HCl)、フッ化水素(HF)等の酸性ガスと共に、排ガス中のSOxが脱硫スプレノズル27の吸収液滴表面で化学的に吸収、除去される。
 SOx(主にSO2)を吸収した吸収液は、一旦脱硫装置5の底部の循環タンク28に溜まり、図示しない酸化用空気供給管から供給される空気により酸化され、硫酸カルシウム(石膏)を生成する。循環タンク28から抜き出された吸収液のうち、一部はポンプ26によって循環配管25から脱硫スプレノズル27に供給され、残りは石膏分離機29で石膏と分離され、石膏30は回収される。
 石膏30と分離された吸収液は貯留タンク31からポンプ32により脱硫吸収液戻り配管35から脱硫装置5内に戻されたり、一部は排水処理装置67に送られたりする。また、炭酸カルシウム供給装置44に戻されて石灰石スラリ等の吸収剤の調整に用いられることもある。排水処理装置67では排水中に含まれる重金属等を含む有害物質を除去した後、排液は系外に放出される。
 近年では、石炭中に含まれる水銀などに対する規制が強化されるようになり、排ガス中の重金属、主に水銀を除去するいくつかの方法が提案、実用化されている。
 下記特許文献1によれば、脱硝触媒の水銀酸化機能を強化することで、水銀の除去特性を改善している。石炭中の水銀は燃焼場で、金属状水銀の形態として排ガス中に放出される。この金属状水銀は、灰などの固体に吸着されにくく、また、水にも溶けにくい性質があり、このままの形態では、従来の集塵機や脱硫装置などの排ガス処理装置を通過して大気中に放出されてしまう。そのため、特許文献1では、上記金属状水銀を酸化状水銀に変換する水銀酸化機能を脱硝触媒に付加している。酸化状水銀は、固体に吸着しやすく、また、水にも溶けやすいという性質があり、その一部は排ガス中の灰に付着して集塵機で灰と共に除去され、また、そのほとんどは脱硫装置の吸収液に吸収されることから、大気中への放出を防止できる。
 また、下記特許文献2によれば、脱硝触媒の排ガス流れ上流側にハロゲン化合物を添加することで、水銀の除去特性の改善を図っている。水銀は排ガス中のハロゲン(塩素や臭素)と反応して酸化状水銀となる。石炭中にこれらのハロゲンが少ない場合は、酸化状水銀に変換される水銀割合が減少することになる。そのため、特許文献2では、脱硝触媒の排ガス流れ上流側にハロゲンを添加することで、排ガス中の酸化状水銀への変換割合を増加させて、排ガス中の水銀除去率を上げている。
 また、下記特許文献3によれば、集塵機の排ガス流れ上流側のダクトに活性炭等の水銀吸着剤を添加することで、排ガス中の水銀を吸着剤で吸着し、集塵機で灰と共に回収、除去している。
 また、下記特許文献4によれば、集塵機と脱硫装置との間の排ガス流路にスクラバを設け、排ガスに活性炭を添加して水銀を吸着させてからスクラバで洗浄し、洗浄後の排液を固液分離装置で分離して液体分をスクラバに戻して再利用している。また、固体分の活性炭は水銀が脱着しない、90℃を超えない温度で乾燥した後、再び排ガスに添加している。
特許第5186699号公報 特許第5484689号公報 特許第5198786号公報 特開2010-23004号公報
 上記の方法により、排ガス中の水銀の一部を除去することができ、大気中への放散割合を低減することが可能となるが、これらの技術では、以下のような問題点がある。
 特許文献1及び2では、変換された酸化状水銀のほとんどが脱硫装置の吸収液に吸収される。吸収された水銀の一部は、脱硫装置での副生物である石膏中に移行し、一部は排水液側に残存する。この残存する水銀の配分割合は、燃料である石炭の種類や、脱硫装置の方式或いは運転条件等により変化する。
 副生物である石膏に水銀が多量に移行した場合は、石膏の再利用が制限されるという問題がある。また、吸収された水銀が排液側に多量に残存する場合は、脱硫装置内を循環する吸収液中の水銀濃度が高くなり、吸収された水銀が再び排ガス中に放出されてしまうという問題もある。
 また、吸収液に吸収されたSO2は酸化空気によって石膏に変換されるが、この時、条件によっては、液中の酸化状水銀が金属状水銀に還元される反応が生じてしまう場合がある。その場合は、一度吸収した水銀を再び排ガス側に放出することになり、結果として大気中に放散されてしまう。
 また、特許文献3では、集塵機で回収した灰中に多量の活性炭が含まれることになり、灰の再利用ができなくなるという問題が生じる。
 更に、特許文献4では、排ガス温度を粉末活性炭から水銀が脱落しない温度に冷却することで、水銀の脱落は防止できるものの、粉末活性炭を一部繰り返し使用するため、水銀の吸着性能についても同様に低下するものと推測される。従って、水銀の除去効率も良いとは言えず、また、粉末活性炭に吸着されなかった水銀が洗浄水に残存すると再放出を招いたり、濃縮されたりしてしまう。また、粉末活性炭の一部はスクラバで除去されずに、脱硫装置に供給されることとなり、石膏に活性炭及び水銀が混入することも考えられる。
 現在の日本で主に使用している石炭では水銀などの含有重金属量が少ないが、海外では重金属を高濃度に含む石炭を使用する場合もある。また、海外から輸入する安価な低品質の石炭を使用する場合もあるため、このような場合は上記問題点が特に顕著となる。
 本発明の課題は、脱硫装置の吸収液からの重金属の再放出や副生物である石膏への重金属の混入を防止して、外気へ排出される重金属量を低減すると共に、効率良く重金属を除去できる石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法を提供することである。
 上記本発明の課題は、下記の構成を採用することにより達成できる。
 請求項1記載の発明は、石炭を燃料としたボイラ(1)から排出される排ガスの流路に、排ガス中の窒素酸化物を除去する脱硝触媒を備えた脱硝装置(2)と、排ガス中の煤塵を除去する集塵機(4)と、排ガス中の硫黄酸化物を吸収液により除去する脱硫装置(5)とを排ガス流れの上流側から下流側に順次配置した石炭焚ボイラ用排ガス処理装置において、前記集塵機(4)と脱硫装置(5)との間の排ガス流路に、排ガス中の重金属成分を除去する重金属成分除去装置(10)を設け、該重金属成分除去装置(10)は、排ガスに、重金属を吸収する酸性の吸収液を噴霧する重金属吸収部(47)と、該重金属吸収部(47)で重金属を吸収した重金属吸収液を溜める貯留部(49)と、該貯留部(49)の重金属吸収液を重金属吸収部(47)に供給する循環部(50,69)とを備えた吸収塔(45)と、該吸収塔(45)から重金属吸収液を抜き出す抜き出し部(51)と、抜き出し部(51)より抜き出した重金属吸収液にpH調整剤を供給して中和する中和部(52,60)と、中和部(52,60)で中和した重金属吸収液から固体分と液体分とを分離する固液分離部(53)とを備えたことを特徴とする石炭焚ボイラ用排ガス処理装置である。
 請求項2記載の発明は、前記重金属吸収部(47)で噴霧される酸性の吸収液のpHは1~3であることを特徴とする請求項1記載の石炭焚ボイラ用排ガス処理装置である。 
 請求項3記載の発明は、前記中和部(52,60)で重金属吸収液のpHが5~7になるようにpH調整剤の供給量を制御する制御部(100)を設けたことを特徴とする請求項2記載の石炭焚ボイラ用排ガス処理装置である。
 請求項4記載の発明は、前記固液分離部で分離した液体分の一部を、前記脱硝装置と集塵機との間の排ガス流路に供給する排液供給部を設けたことを特徴とする請求項1から請求項3の何れか1項に記載の石炭焚ボイラ用排ガス処理装置である。
 請求項5記載の発明は、石炭を燃料としたボイラから排出される排ガス中の窒素酸化物を脱硝触媒により除去し、窒素酸化物を除去後の排ガスから煤塵を除去し、煤塵を除去後の排ガスから硫黄酸化物を吸収液により除去する石炭焚ボイラ用排ガス処理方法において、前記煤塵の除去後で硫黄酸化物を除去前の排ガスに、重金属を吸収する酸性の吸収液を噴霧し、噴霧後の重金属吸収液を再び重金属の吸収に使用すると共に、噴霧後の重金属吸収液の一部にpH調整剤を供給して中和した後、固体分と液体分とを分離することにより、排ガス中の重金属成分を除去することを特徴とする石炭焚ボイラ用排ガス処理方法である。
 請求項6記載の発明は、前記酸性の吸収液としてpHが1~3の吸収液を使用することを特徴とする請求項5記載の石炭焚ボイラ用排ガス処理方法である。
 請求項7記載の発明は、前記酸性の吸収液を噴霧後の重金属吸収液のpHが5~7になるように前記pH調整剤を供給することを特徴とする請求項6記載の石炭焚ボイラ用排ガス処理方法である。
 請求項8記載の発明は、前記窒素酸化物の除去後で煤塵を除去前の排ガスに、前記分離した液体分の一部を供給することを特徴とする請求項5から請求項7の何れか1項に記載の石炭焚ボイラ用排ガス処理方法である。
(作用)
 排ガス中の酸化状水銀は水に溶けやすい性質があり、またその吸着性能は吸収液のpHにほとんど依存しないことから、重金属成分除去装置の吸収塔では水を主成分とした吸収液を排ガスに噴霧することで、排ガス中の酸化状水銀のほとんどは吸収液に吸収される。吸収液で排ガス中のSO2を水銀と同時に吸収した場合、吸収液中のSO2が酸化される過程で、液中の水銀を還元し、排ガス中に放出(水銀の再放出)することが懸念されるが、吸収液のpHを酸性にすることで、SO2が吸収されにくくなる。例えば、吸収液のpHを1~3とすることでSO2を吸収することはなく、水銀の再放出は抑制される。即ち、排ガス中のSO2を吸収して吸収液のpHが1~3になると、SO2の吸収平衡によりSO2を吸収できなくなる。
 図3(A)~(C)には、吸収液のpHと、水銀吸収特性及びSO2吸収特性の一例を示す。図3(A)での縦軸はHg吸収率(%)を示し、図3(B)での縦軸はSO2吸収率(%)を示し、図3(C)での縦軸は液中のHg濃度(μg/L)を示している。これらのデータは、重金属成分除去装置の吸収塔を模擬した反応器内に吸収液を入れ、吸収液中に排ガスを模擬したガスを供給して、Hg、SO2の吸収特性を測定したものである。吸収液は、工業用水であり、液温度を実機装置と同じ50℃に、液中水銀濃度は100μg/Lとし、pHを1~5まで変化させた。ガス中にはSO2が存在するため、pH調整剤として、炭酸カルシウム(アルカリ)を用いた。
 尚、本明細書中、工業用水とは、工業生産に使用する水で、通常、pHは中性域(6~8程度)であり、具体的には工業製品の製造過程で冷却、洗浄、製品処理などに使用する水であり、上水、地下水、河川水の他、下水の浄化水が用いられる。また、模擬排ガスの温度は50℃とし、模擬排ガスの成分は、酸素濃度:8%、二酸化炭素濃度:13%、SO2濃度:2000ppm、Hg濃度:10μg/m3N、残りを窒素とした。ガス中のHg濃度、SO2濃度は、各モニタを使用して測定した。液中の水銀濃度は還元気化-原子吸光法で測定した。
 図3(B)によれば、吸収液のpHが3以下になると、排ガス中のSO2はほとんど吸収されなくなる。一方、図3(A)から、排ガス中の水銀吸収特性は、pHが3以上になると、液中の水銀が排ガス中に再放出するため水銀吸着性能が低下することが分かる。pHが3以上で再放出する理由は、図3(B)より、SO2を吸収する際にSO2が酸化され、水銀が還元されるからであると言える。また、液中のpHが1以下と低すぎる場合においても、わずかではあるが水銀の再放出が生じることが分かっている。従って、吸収液のpHは1~3に制御することが望ましい。
 また、図3(C)に示すように、吸収液中の水銀の一部は、液のpHを5以上とすることで、液中に含まれる煤塵に移行する。その後、固体分と液体分とを分離することにより、吸収液中の水銀等の微量重金属は固体分と共に系外に排出される。
 従って、請求項1又は請求項5記載の発明によれば、集塵機と脱硫装置との間の排ガス流路に重金属成分除去装置を設けることで、灰が除去された後に、効率よく水銀等の微量重金属を除去することができる。従って、脱硫装置で排ガス中に含まれるSOxを除去する際の副生物である石膏中に重金属が混入することを大幅に低減でき、回収した石膏を有効に再利用することが可能となる。
 更に、脱硫装置内の吸収液中の重金属濃度も大幅に低減できるため、排ガス中のSOxを吸収処理する際に、吸収した重金属が再放出することも防止でき、大気中への重金属の放散を大幅に低減できる。
 そして、重金属成分除去装置の吸収塔では酸性の吸収液を用いることで水銀等の微量重金属を効率よく除去でき、その後吸収液を中和することで、微量重金属を効果的に固形分に移行させて、重金属成分を系外に排出できる。
 また、請求項2又は請求項6記載の発明によれば、上記請求項1又は上記請求項5に記載の発明の作用に加えて、重金属成分除去装置の吸収塔で噴霧する吸収液のpHを排ガス中のSO2が吸収されにくく、且つ水銀の排ガス中への再放出がされにくい範囲にすることで、より一層吸収塔における重金属の吸収率が高まり、効率よく除去される。
 また、請求項3又は請求項7記載の発明によれば、上記請求項2又は上記請求項6に記載の発明の作用に加えて、中和部で重金属を吸収した液のpHを5~7にすることで、重金属の固体側への移行を促進し、固液分離部で重金属が効率良く回収される。
 更に、請求項4又は請求項8記載の発明によれば、上記請求項1から請求項3の何れか1項、上記請求項5から請求項7の何れか1項に記載の発明の作用に加えて、重金属成分除去装置から発生する排水を集塵機の排ガス流路の上流側に供給することで、排水を有効利用できる。また、排水中に含まれる塩素は、高温の排ガスと接触することで水が蒸発して固体となるため、灰と共に集塵機で除去される。
 請求項1又は請求項5記載の発明によれば、効率よく吸収塔で水銀等の微量重金属を除去、回収することができるため、脱硫装置での副生物である石膏中への重金属の混入を大幅に低減でき、回収した石膏を有効に再利用することが可能となる。
 更に、脱硫装置内の吸収液中の重金属濃度も大幅に低減できるため、吸収液中の重金属の再放出も防止でき、大気中への重金属の放散を大幅に低減できる。
 また、請求項2又は請求項6記載の発明によれば、上記請求項1又は上記請求項5に記載の発明の効果に加えて、より一層吸収塔における重金属の吸収率が高まり、効率よく除去することが可能となる。
 また、請求項3又は請求項7記載の発明によれば、上記請求項2又は上記請求項6に記載の発明の効果に加えて、中和部で重金属の固体側への移行が促進されることで、固液分離部で重金属を効率良く回収できる。
 更に、請求項4又は請求項8記載の発明によれば、上記請求項1から請求項3の何れか1項、上記請求項5から請求項7の何れか1項に記載の発明の効果に加えて、吸収塔から発生する排水を有効利用できることから、排ガス処理装置全体の排水処理設備を小さくすることができ、簡素な構成となる。また、排ガス中の塩素も集塵機で効率よく除去できる。
本発明の一実施例(実施例1)である排ガス処理装置の構成を示した図である。 本発明の他の実施例(実施例2)である排ガス処理装置の構成を示した図である。 重金属吸収液のpHと、水銀吸収特性及びSO2吸収特性の一例を示した図である。 従来技術の排ガス処理装置の構成を示した図である。
 以下に、本発明の実施の形態を説明する。
 図1には、本発明の一実施例である排ガス処理装置の構成を示す。尚、図1の排ガス処理装置において、図4の排ガス処理装置と同じ符号の部材の説明は一部省略している。 
 石炭供給ライン21から供給される石炭を燃焼用空気供給ライン36から供給される空気によりボイラ1で燃焼させ、発生した高温の排ガスをボイラ1出口の熱交換器11により熱交換することで蒸気を発生させ、蒸気タービン12により発電機13を運転する。蒸気タービン12を出た低圧蒸気は復水器14により徐冷された後、再びポンプ15で加圧され、熱交換器11に送られる。
 燃焼排ガスは、以下のように処理される。まず、ボイラ1の排ガス流れ下流側に設置した脱硝装置2内の脱硝触媒によって排ガス中のNOxを窒素に還元した後、A/H3によりガス温度を低下させ、集塵機4で灰を除去し、脱硫装置5でSOxを除去した後、煙突16から大気中に放出することで、排ガス中の煤塵、NOx及びSOxを除去する構成となっている。
 脱硫装置5では、石灰石又は石灰を含むスラリ等の吸収剤を含んだ脱硫吸収液が脱硫スプレノズル27から微細な液滴として噴霧される。脱硫吸収液の液滴と排ガスとを接触させることで、排ガス中の煤塵やHCl、HF等の酸性ガスと共に、排ガス中のSOxが脱硫スプレノズル27の吸収液滴表面で化学的に吸収、除去される。
 SOx(主にSO2)を吸収した吸収液は、一旦脱硫装置5の底部の循環タンク28に溜まり、図示しない酸化用空気供給管から供給される空気により酸化され、石膏を生成する。循環タンク28から抜き出された吸収液のうち、一部はポンプ26によって循環配管25から脱硫スプレノズル27に供給され、残りは石膏分離機29で石膏と分離され、石膏30は回収される。
 石膏30と分離された吸収液は貯留タンク31からポンプ32により脱硫吸収液戻り配管35から脱硫装置5内に戻されたり、一部は排水処理装置67に送られたりする。また、炭酸カルシウム供給装置44に戻されて石灰石スラリ等の吸収剤の調整に用いられることもある。排水処理装置67では排水中に含まれる重金属等を含む有害物質を除去した後、排液は系外に放出される。
 本実施例では、集塵機4と脱硫装置5との間の排ガス流路に、重金属吸収塔45を設置し、重金属成分除去装置10を構成したことを特徴としている。重金属吸収塔45は、上方から下方に向かって順に、排ガス入口46、重金属吸収液を噴霧する重金属吸収液スプレノズル47、排ガス出口48、重金属吸収液の循環タンク49を設けた構成である。また、循環タンク49の重金属吸収液はポンプ50により昇圧し、循環配管69から重金属吸収液スプレノズル47に供給される。更に、循環配管69には抜出配管51が接続し、重金属吸収液の一部は抜出配管51から中和槽52、固液分離器53、貯留タンク54及びポンプ55に送られる構成となっている。重金属吸収液としては、工業用水を用いた。
 本構成により、集塵機4で灰が除去された後に、重金属吸収塔45で水銀等の微量重金属を除去することができるため、脱硫装置5での副生物である石膏中への重金属の混入を大幅に低減でき、回収した石膏を有効に再利用することが可能となる。更に、脱硫装置5内の吸収液中の重金属濃度も大幅に低減できるため、吸収液中の重金属の再放出も防止でき、大気中への重金属の放散を大幅に低減できる。
 次に水銀等の重金属成分の挙動について述べる。
 ボイラ1で石炭中の水銀は、金属状水銀として排ガス中に放出され、脱硝装置2内の脱硝触媒でその一部が酸化状水銀に変換される。
 本実施例では、脱硝触媒として水銀酸化機能を強化した触媒を採用しており、NOxの除去率はガス温度380℃において、約95%であった。尚、脱硝触媒は水銀酸化機能を強化した触媒に限定されず、また水銀酸化機能を強化した触媒においても、特に限定はないが、例えばTiO2、SiO2、ZrO2、ゼオライト等の少なくとも1種類の担体に、例えば、バナジウム(V)、タングステン(W)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、鉄(Fe)、クロム(Cr)、銅(Cu)、マンガン(Mn)等の金属酸化物若しくは硫酸塩又は白金(Pt)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、イリジウム(Ir)等の貴金属、又はこれらの混合物、を担持した触媒がある。
 次に、排ガスはA/H3で燃焼用空気供給ライン36を流れる燃焼用空気と熱交換され、ガス温度は約180℃まで低下し、集塵機4に供給される。集塵機4では、排ガス中の酸化状水銀の一部が灰に付着して、灰と共に系外に排出される。本実施例では、集塵機4で回収した灰中の水銀濃度を還元気化-原子吸光法により測定したところ、排ガス中の約10%の水銀が灰に付着して除去された。
 その後、排ガスは重金属吸収塔45に供給され、排ガス中の酸化状水銀のほとんどが重金属吸収液スプレノズル47から噴霧される重金属吸収液に吸収される。この重金属吸収液は、そのpHが1~3となるように調整した。
 具体的には、以下の方法による。
 重金属吸収液のpHが高い、運転開始時に排ガス中のSO2を吸収させることでpHは1以下にまで低下する。
 一方、重金属吸収液の一部を抜出配管51より抜き出して中和槽52でpHを5~7とした後、再び重金属吸収塔45に戻すことで、液のpHは1よりも増加して1~3程度となる。図3(C)からも分かるように、中和槽52でpHを5以上にすることで、液中の水銀を固体側に移行させることが出来る。尚、pHが7以上では固体側への移行割合に差がなくなり、pH調整剤の消費量だけが増えることになるので7を上限とする。より厳密に制御する場合は、以下のように行うと良い。
 中和槽52内の重金属吸収液のpHと重金属吸収塔45の循環タンク49内の重金属吸収液のpHを、それぞれpH計(pHメータ)70,71で測定し、中和槽52内の重金属吸収液のpHが5~7となるように制御装置100によりpH調整剤供給装置60からの水酸化ナトリウム水溶液の供給量を制御すると共に、循環タンク49内の重金属吸収液のpHが1~3となるように制御装置100によりpH調整剤供給装置63からのpH調整剤の供給量を制御した。尚、各pH調整剤供給装置60,63で使用するpH調整剤としては、アルカリ剤(NaOH、Na2CO3、CaCO3、Ca(OH)2など)や酸(塩酸や硫酸など)を用いると良い。
 図3(A)及び図3(B)からも、吸収液のpHを1~3にすることで、水銀の再放出を抑制できることが分かっている。特に、重金属吸収液のpHは3を境に変動するため、3近傍に制御することが望ましい。
 重金属吸収液は、排ガス中の水銀などの微量重金属を吸収すると同時に、排ガス中の煤塵の一部も除去する。吸収した酸化状水銀を含む吸収液の一部は、抜出配管51より中和槽52に送られ、pHが5~7程度に調整される。吸収液中の水銀はpHが5~7に調整されることで、液中に含まれる煤塵に移行し、灰に吸着される。従って、水銀を効率よく除去することが可能となる。
 また、中和槽52では、重金属吸収液中に含まれるCr(クロム)やAl(アルミニウム)などの成分が析出して固体となる。更に、固体状のキレート状の重金属捕集剤(例えば、ユニセレック(登録商標)UR-120H(アカタメンテナンス株式会社製)、エポラス(登録商標)Z-7(ミヨシ油脂株式会社製)などがある)を重金属捕集剤供給装置61から排ガス中のHg濃度に合わせて供給することで、重金属吸収液中の水銀等が重金属捕集剤に吸着される。
 具体的には、集塵機4の出口ダクトに設置した水銀モニタ72により、排ガス中のHg濃度を測定し、その信号(Hg濃度測定信号)が制御装置100に入力されることで、制御装置100から重金属捕集剤供給装置61に出力信号が送られて、供給量が制御される。或いは、石炭中の水銀量をあらかじめ測定し、その値に基づき、重金属捕集剤供給装置61からの供給量を制御する方法もある。重金属捕集剤供給装置61から供給される重金属捕集剤や上記pH調整剤供給装置60,63から供給されるpH調整剤の量は、各装置に設けた配管の弁を開閉制御することにより容易に調整できる。
 尚、重金属捕集剤としては、グルカミン基、イミノジ酢酸基、ポリアミノ基、ジチオカルバミン酸基等を持つキレート剤がある。
 これにより、重金属吸収液中の水銀(Hg)の他、Pd(パラジウム)、Cd(カドミウム)及びSe(セレン)の一部が重金属捕集剤に付着する。その後、固液分離器53としてシックナー及び脱水機を使用することにより吸収液中の重金属は固体側に移行し、固形分65が分離除去される。それと同時に重金属捕集剤に付着したHg等の重金属が系外に放出されて管理型廃棄物として処理される。また、中和槽52で重金属の固体側への移行が促進されることで、固液分離器53で重金属を効率良く回収できる。回収した固形分65を還元気化-原子吸光法で測定したところ、固形分65での水銀除去率は、全体の80~85%であった。
 尚、本実施例では、重金属捕集剤として上記のキレート剤を使用したが、無機系凝集剤や高分子凝集剤等でも同様の効果が得られる。
 無機系凝集剤としては、PAC(ポリ塩化アルミニウム)、硫酸ばん土(硫酸アルミニウム)や塩化鉄(塩化第二鉄)などがあり、高分子凝集剤としては、陽イオン性ポリマー(水溶性アニリン樹脂、ポリチオ尿素、ポリエチレンイミンなど)、陰イオン性ポリマー(アルギン酸ナトリウム、ポリアクリル酸ナトリウムなど)、非イオン性ポリマー(ポリアクリルアミド、ポリオキシエチレンなど)等があり、重金属吸収液の性状に応じて使い分ければ良い。
 また、本実施例では、固液分離器53として、シックナー及び脱水機を使用したが、固体を分離、除去できる装置や設備であれば、他の手段でも構わない。例えば、液体サイクロン、フィルタ類、遠心分離機等がある。
 固液分離器53で分離され、水銀等の重金属が除去された吸収液は貯留タンク54に送られ、ポンプ55によって吸収液戻り配管56から重金属吸収塔45に戻されることで、再利用される。従って、重金属成分除去装置10での使用水を節約できる。
 尚、この時、重金属吸収液を全て重金属吸収塔45に戻すと、重金属吸収液中の塩素濃度が増加し、材料の腐食を促進させるという問題がある。吸収液中の塩素は、重金属捕集剤では除去されないため、そのほとんどが吸収液中に残存することとなり、再利用を繰り返すことにより、濃縮されてしまう。従って、その一部を抜き出し、排水処理装置67に送り、処理した後で系外に放出することで重金属吸収液中の塩素濃度を所定値(例えば、3000ppm)に収まるようにした。
 本発明の他の実施例を図2に示す。本実施例では、重金属吸収塔45の重金属吸収液から固形分65を固液分離器53で取り除いた後の吸収液の一部を、排水戻り配管(排液供給部)62により、集塵機4の排ガス流路の上流側に供給する構成としている。この点で、実施例1の構成とは異なるが、その他の構成は実施例1と同様である。
 固液分離器53で固形分65を分離した後の吸収液中には、水銀などの重金属成分はほとんど除去されており、重金属捕集剤で除去できない成分、主に塩素が含まれている。この重金属吸収液を集塵機4の上流側のダクトに添加することで、高温の排ガスによって水分が蒸気となり、塩素は排ガス中の成分と塩を形成し、固体となって灰と共に下流側の集塵機4で除去される。従って、排ガス中の塩素も効率よく除去される。
 本構成により、排ガス中に含まれる重金属成分は、固液分離器53で分離される固形分65中にまとめて捕集、回収できることになる。また、重金属成分除去装置10からの排水が発生しなくなることから、排ガス処理装置全体の排水処理設備が簡素な構成となり、設備のコストを低減できる。
 尚、吸収液戻り配管56又は排水戻り配管62から吸収液の一部を抜き出して、排水処理装置67(図1)に送り、排水中に含まれる重金属等を処理する構成を付加しても良い。また、本実施例によっても、実施例1と同様の効果が奏せられる。
 ボイラではなく他の燃焼炉においても、排ガス中のHg除去技術として利用可能性がある。
1 ボイラ         2 脱硝装置
3 A/H         4 集塵機
5 脱硫装置        10 重金属成分除去装置
11 熱交換器       12 タービン
13 発電機        14 復水器
15,26,32,50,55 ポンプ
16 煙突         21 石炭供給ライン
25、69 循環配管    27 脱硫スプレノズル
28 脱硫吸収液循環タンク 29 石膏分離機
30 石膏         31,54 貯留タンク
35 脱硫吸収液戻り配管  36 燃焼用空気供給ライン
44 炭酸カルシウム供給装置
45 重金属吸収塔     46 吸収塔入り口
47 重金属吸収液スプレノズル
48 吸収塔出口      49 重金属吸収液循環タンク
51 吸収液抜出配管    52 中和槽
53 固液分離器      56 吸収液戻り配管
60,63 pH調整剤供給装置
61 重金属捕集剤供給装置 62 排水戻り配管
65 固形分        67 排水処理装置
70,71 pH計     72 水銀モニタ
100 制御装置

Claims (8)

  1.  石炭を燃料としたボイラから排出される排ガスの流路に、排ガス中の窒素酸化物を除去する脱硝触媒を備えた脱硝装置と、排ガス中の煤塵を除去する集塵機と、排ガス中の硫黄酸化物を吸収液により除去する脱硫装置とを排ガス流れの上流側から下流側に順次配置した石炭焚ボイラ用排ガス処理装置において、
     前記集塵機と脱硫装置との間の排ガス流路に、排ガス中の重金属成分を除去する重金属成分除去装置を設け、
     該重金属成分除去装置は、排ガスに、重金属を吸収する酸性の吸収液を噴霧する重金属吸収部と、該重金属吸収部で重金属を吸収した重金属吸収液を溜める貯留部と、該貯留部の重金属吸収液を重金属吸収部に供給する循環部とを備えた吸収塔と、該吸収塔から重金属吸収液を抜き出す抜き出し部と、抜き出し部より抜き出した重金属吸収液にpH調整剤を供給して中和する中和部と、中和部で中和した重金属吸収液から固体分と液体分とを分離する固液分離部と
    を備えたことを特徴とする石炭焚ボイラ用排ガス処理装置。
  2.  前記重金属吸収部で噴霧される酸性の吸収液のpHは1~3であることを特徴とする請求項1記載の石炭焚ボイラ用排ガス処理装置。
  3.  前記中和部で重金属吸収液のpHが5~7になるようにpH調整剤の供給量を制御する制御部を設けたことを特徴とする請求項2記載の石炭焚ボイラ用排ガス処理装置。
  4.  前記固液分離部で分離した液体分の一部を、前記脱硝装置と集塵機との間の排ガス流路に供給する排液供給部を設けたことを特徴とする請求項1から請求項3の何れか1項に記載の石炭焚ボイラ用排ガス処理装置。
  5.  石炭を燃料としたボイラから排出される排ガス中の窒素酸化物を脱硝触媒により除去し、窒素酸化物を除去後の排ガスから煤塵を除去し、煤塵を除去後の排ガスから硫黄酸化物を吸収液により除去する石炭焚ボイラ用排ガス処理方法において、
     前記煤塵の除去後で硫黄酸化物を除去前の排ガスに、重金属を吸収する酸性の吸収液を噴霧し、噴霧後の重金属吸収液を再び重金属の吸収に使用すると共に、噴霧後の重金属吸収液の一部にpH調整剤を供給して中和した後、固体分と液体分とを分離することにより、排ガス中の重金属成分を除去することを特徴とする石炭焚ボイラ用排ガス処理方法。
  6.  前記酸性の吸収液としてpHが1~3の吸収液を使用することを特徴とする請求項5記載の石炭焚ボイラ用排ガス処理方法。
  7.  前記酸性の吸収液を噴霧後の重金属吸収液のpHが5~7になるように前記pH調整剤を供給することを特徴とする請求項6記載の石炭焚ボイラ用排ガス処理方法。
  8.  前記窒素酸化物の除去後で煤塵を除去前の排ガスに、前記分離した液体分の一部を供給することを特徴とする請求項5から請求項7の何れか1項に記載の石炭焚ボイラ用排ガス処理方法。
PCT/JP2016/063753 2015-06-18 2016-05-09 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法 WO2016203865A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16811340.5A EP3311905A4 (en) 2015-06-18 2016-05-09 EXHAUST TREATMENT DEVICE FOR COAL-FIRED BOILERS AND EXHAUST TREATMENT PROCESSES FOR COAL-FIRED BOILERS
US15/736,673 US10247414B2 (en) 2015-06-18 2016-05-09 Coal-fired boiler exhaust gas treatment apparatus and coal-fired boiler exhaust gas treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-122793 2015-06-18
JP2015122793A JP6637682B2 (ja) 2015-06-18 2015-06-18 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法

Publications (1)

Publication Number Publication Date
WO2016203865A1 true WO2016203865A1 (ja) 2016-12-22

Family

ID=57545113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063753 WO2016203865A1 (ja) 2015-06-18 2016-05-09 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法

Country Status (4)

Country Link
US (1) US10247414B2 (ja)
EP (1) EP3311905A4 (ja)
JP (1) JP6637682B2 (ja)
WO (1) WO2016203865A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109731472A (zh) * 2019-03-11 2019-05-10 新昌县以琳环保科技有限公司 节能锅炉烟气净化***及方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016182954A1 (en) * 2015-05-08 2016-11-17 Houweling Nurseries Oxnard, Inc. Waste energy recycling system
CN108744908A (zh) * 2018-07-02 2018-11-06 芜湖万向新元环保科技有限公司 一种烟尘除硝除硫环保设备
CN108889069A (zh) * 2018-07-10 2018-11-27 界首市菁华科技信息咨询服务有限公司 一种再生铅冶炼尾气封闭处理零排放循环***
JP6616463B1 (ja) * 2018-07-10 2019-12-04 エスエヌ環境テクノロジー株式会社 煤塵処理装置、焼却設備および煤塵処理方法
CN110064280B (zh) * 2019-04-22 2020-10-27 西安交通大学 一种锅炉烟气酸洗和干燥生物质的***及方法
CN110280129A (zh) * 2019-06-26 2019-09-27 东南大学 一种尿素湿法脱硫联合非均相类芬顿湿法脱硝装置及方法
CN111672279A (zh) * 2020-05-11 2020-09-18 北京航天试验技术研究所 一种液体火箭发动机地面试验用燃气吸收装置
CN112125363B (zh) * 2020-09-22 2023-05-02 国家电投集团远达环保工程有限公司重庆科技分公司 用于处理烟气脱硫废水的***和方法
CN113041792A (zh) * 2021-03-25 2021-06-29 常州诚鉺正环保技术有限公司 一种废气循环处理用水洗机
CN116173713A (zh) * 2023-03-20 2023-05-30 重庆中润新材料股份有限公司 一种甲胺及nmp生产尾气处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169594A (ja) * 1983-03-16 1984-09-25 Mitsubishi Heavy Ind Ltd 廃水の処理方法
JPS6041529A (ja) * 1983-08-12 1985-03-05 Mitsubishi Heavy Ind Ltd 排ガス処理装置における排液の処理方法
JPS6438195A (en) * 1987-08-04 1989-02-08 Kurita Water Ind Ltd Treatment of waste water
JPH09313881A (ja) * 1996-05-31 1997-12-09 Ishikawajima Harima Heavy Ind Co Ltd ボイラ排煙脱硫装置の無排水化装置
JP2006281171A (ja) * 2005-04-05 2006-10-19 Sumitomo Heavy Ind Ltd 有機性廃水と焼却炉廃ガスの処理方法および装置
JP2012200721A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 脱硫排液からの脱水濾液の噴霧乾燥装置、脱水濾液の噴霧乾燥方法及び排ガス処理システム
JP2014057912A (ja) * 2012-09-14 2014-04-03 Mitsubishi Heavy Ind Ltd 排ガス中の水銀処理システム
JP2014121685A (ja) * 2012-12-21 2014-07-03 Babcock-Hitachi Co Ltd 排ガス処理装置
JP2014237073A (ja) * 2013-06-06 2014-12-18 バブコック日立株式会社 排ガス処理装置及び排ガス処理方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2103339B8 (en) * 2006-12-27 2021-01-20 Mitsubishi Power, Ltd. Exhaust gas treating method and apparatus
JP5198786B2 (ja) 2007-04-13 2013-05-15 バブコック日立株式会社 排ガス浄化方法と装置
JP4893617B2 (ja) * 2007-12-27 2012-03-07 株式会社Ihi 水銀除去装置、及び水銀除去方法
JP2009166012A (ja) * 2008-01-21 2009-07-30 Mitsubishi Heavy Ind Ltd 石炭焚ボイラの排ガス処理システム及びその運転方法
JP5484689B2 (ja) 2008-04-25 2014-05-07 三菱重工業株式会社 排ガス処理システム及び排ガス中の水銀除去方法
JP2010023004A (ja) 2008-07-24 2010-02-04 Babcock Hitachi Kk 排ガス処理装置
JP5186699B2 (ja) 2008-10-06 2013-04-17 バブコック日立株式会社 排ガス中の金属水銀の酸化触媒及び該触媒を用いた金属水銀の酸化処理方法
KR101489044B1 (ko) * 2010-02-25 2015-02-02 미츠비시 쥬고교 가부시키가이샤 배기 가스 처리 시스템 및 배기 가스 처리 방법
US8883099B2 (en) * 2012-04-11 2014-11-11 ADA-ES, Inc. Control of wet scrubber oxidation inhibitor and byproduct recovery
WO2013179462A1 (ja) * 2012-05-31 2013-12-05 三菱重工業株式会社 排ガス中の水銀処理システム及び方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169594A (ja) * 1983-03-16 1984-09-25 Mitsubishi Heavy Ind Ltd 廃水の処理方法
JPS6041529A (ja) * 1983-08-12 1985-03-05 Mitsubishi Heavy Ind Ltd 排ガス処理装置における排液の処理方法
JPS6438195A (en) * 1987-08-04 1989-02-08 Kurita Water Ind Ltd Treatment of waste water
JPH09313881A (ja) * 1996-05-31 1997-12-09 Ishikawajima Harima Heavy Ind Co Ltd ボイラ排煙脱硫装置の無排水化装置
JP2006281171A (ja) * 2005-04-05 2006-10-19 Sumitomo Heavy Ind Ltd 有機性廃水と焼却炉廃ガスの処理方法および装置
JP2012200721A (ja) * 2011-03-28 2012-10-22 Mitsubishi Heavy Ind Ltd 脱硫排液からの脱水濾液の噴霧乾燥装置、脱水濾液の噴霧乾燥方法及び排ガス処理システム
JP2014057912A (ja) * 2012-09-14 2014-04-03 Mitsubishi Heavy Ind Ltd 排ガス中の水銀処理システム
JP2014121685A (ja) * 2012-12-21 2014-07-03 Babcock-Hitachi Co Ltd 排ガス処理装置
JP2014237073A (ja) * 2013-06-06 2014-12-18 バブコック日立株式会社 排ガス処理装置及び排ガス処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3311905A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109731472A (zh) * 2019-03-11 2019-05-10 新昌县以琳环保科技有限公司 节能锅炉烟气净化***及方法
CN109731472B (zh) * 2019-03-11 2021-10-22 内蒙古佳源环保科技有限公司 节能锅炉烟气净化***及方法

Also Published As

Publication number Publication date
JP2017006822A (ja) 2017-01-12
EP3311905A4 (en) 2019-02-27
US10247414B2 (en) 2019-04-02
US20180180285A1 (en) 2018-06-28
EP3311905A1 (en) 2018-04-25
JP6637682B2 (ja) 2020-01-29

Similar Documents

Publication Publication Date Title
WO2016203865A1 (ja) 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法
WO2009093576A1 (ja) 石炭焚ボイラの排ガス処理システム及びその運転方法
JP5180097B2 (ja) 排ガス処理方法と装置
JP4395315B2 (ja) 排ガス中の水銀除去方法およびそのシステム
JP4920993B2 (ja) 排ガス処理装置および排ガス処理方法
JP5484689B2 (ja) 排ガス処理システム及び排ガス中の水銀除去方法
US9289720B2 (en) System and method for treating mercury in flue gas
JP6230818B2 (ja) 排ガス処理装置及び排ガス処理方法
WO2009093574A1 (ja) 石炭焚ボイラの排ガス処理システム及び方法
JPWO2008078722A1 (ja) 排ガス処理方法と装置
JP2008259992A (ja) 排ガス浄化方法と装置
JP2012101158A (ja) 排ガス処理方法と装置
JP2009166011A (ja) 石炭焚ボイラの排ガス処理システム及び方法
JP6095923B2 (ja) 排ガス中の水銀処理システム
CA2888538A1 (en) A non-selective and non-catalytic flue gas treatment system and method
JP2009166013A (ja) 石炭焚ボイラの排ガス処理システム
JP2016120438A (ja) 湿式脱硫装置及び湿式脱硫方法
JP2014057913A5 (ja)
TWI531538B (zh) Oxidation tank, seawater desulfurization system and power generation system
JP5371172B2 (ja) 排ガス処理装置及び方法
JP4936002B2 (ja) 排ガス処理方法及び排ガス処理装置
WO2014041951A1 (ja) 排ガス中の水銀処理システム
AU2015263824A1 (en) Integrated de-SOx and de-NOx process
JP5299600B2 (ja) 排ガス処理方法及び排ガス処理装置
JP2013220376A (ja) 海水脱硫装置と方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16811340

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15736673

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016811340

Country of ref document: EP