WO2016202167A1 - 一种锂离子电池钛酸锂负极浆料及其制备方法 - Google Patents

一种锂离子电池钛酸锂负极浆料及其制备方法 Download PDF

Info

Publication number
WO2016202167A1
WO2016202167A1 PCT/CN2016/083958 CN2016083958W WO2016202167A1 WO 2016202167 A1 WO2016202167 A1 WO 2016202167A1 CN 2016083958 W CN2016083958 W CN 2016083958W WO 2016202167 A1 WO2016202167 A1 WO 2016202167A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium titanate
negative electrode
lithium
electrode slurry
tin powder
Prior art date
Application number
PCT/CN2016/083958
Other languages
English (en)
French (fr)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2016202167A1 publication Critical patent/WO2016202167A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the patent relates to a lithium ion battery lithium titanate negative electrode slurry and a preparation method thereof, specifically, the application of lithium titanate as a negative electrode material, and adding nano tin powder and carbon fiber material in a lithium ion battery negative electrode.
  • the commercial lithium ion battery anode material is a lithium titanate-based carbon material, which has the advantages of low lithium insertion/deintercalation potential, suitable reversible capacity, abundant resources, and low price, and is an ideal lithium ion battery anode. material.
  • Carbon materials have been widely used in lithium ion batteries because of their low cost, non-toxicity and superior electrochemical properties. Its interface state and fine structure have a great influence on electrode performance.
  • commercial lithium ion battery carbon anode materials can be divided into lithium titanate, hard carbon and soft carbon.
  • lithium titanate materials are still the mainstream of lithium ion battery anode materials.
  • Lithium titanate-based carbon materials which have the advantages of low lithium insertion/deintercalation potential, suitable reversible capacity, abundant resources, and low price, are ideal anode materials for lithium ion batteries.
  • Electrolyte membrane SEI
  • the solid electrolyte membrane is formed by reacting an electrolyte, a negative electrode material, and lithium ions, and irreversibly consuming lithium ions, which is a major factor in forming an irreversible capacity. The second is that the electrolyte is easily embedded in the lithium ion intercalation process.
  • the electrolyte is reduced, and the generated gas product causes the lithium titanate sheet to peel off.
  • the lithium titanate sheet peels off to form a new interface, resulting in further SEI formation, irreversible capacity. Increase, while the cycle stability decreases.
  • carbon materials still have shortcomings such as low charge and discharge capacity, large irreversible loss of primary circulation, co-insertion of solvent molecules and high production cost.
  • Li 4 Ti 5 O 12 is a new type of negative electrode material for lithium ion secondary batteries. Compared with other commercial materials, Li 4 Ti 5 O 12 has the advantages of good cycle performance, no reaction with electrolyte, high safety performance, and stable charge and discharge platform. It is one of the most excellent anode materials for lithium-ion batteries that has received much attention in recent years. Compared with carbon negative electrode materials, lithium titanate has many advantages.
  • the deintercalation of lithium ions in lithium titanate is reversible, and the crystal form of lithium ion in the process of inserting or extracting lithium titanate is not Changed, volume change is less than 1%, so it is called "zero strain material", which can avoid the structure damage caused by the back and forth expansion of the electrode material in the charge and discharge cycle, thereby improving the cycle performance and service life of the electrode, reducing the The number of cycles increases and the specific capacity is greatly attenuated, which has better cycle performance than the carbon negative electrode; however, since lithium titanate is an insulating material, its electrical conductivity is low, resulting in the rate performance in the application of lithium battery. Poor problem, while the theoretical specific capacity of lithium titanate material is 175mAh/g, the actual specific capacity is greater than 160mAh/g, and has the disadvantages of low gram capacity.
  • Metal tin has the advantages of high lithium storage capacity (994 mAh/g) and low lithium ion deintercalation platform voltage, and is a non-carbon negative electrode material with great development potential. In recent years, extensive research has been carried out on such materials and some progress has been made. However, in the process of reversible lithium storage, the volume expansion of metallic tin is remarkable, resulting in poor cycle performance and rapid decay of capacity, so it is difficult to meet the requirements of large-scale production. For this reason, by introducing a non-metallic element such as carbon, the metal tin is stabilized by alloying or compounding, and the volume expansion of tin is slowed down. Carbon can prevent direct contact between tin particles, inhibit the agglomeration and growth of tin particles, and act as a buffer layer.
  • tin As a negative electrode material, tin has a platform potential higher than that of metal lithium by about 0.2V, and lithium deposition is less likely to occur on the negative electrode during battery charging.
  • carbon fiber has the characteristics of high strength, excellent electrical conductivity and good thermal conductivity. Because of its long fibrous structure, it can be added to the negative electrode together with nano tin powder, and can be combined with lithium titanate, nano tin powder conductive agent and other components. Intertwined to strengthen the anode material and increase the conductivity. The two work together to improve the capacity and cycle performance of the battery.
  • the purpose of this patent is to provide a lithium ion battery lithium titanate negative electrode slurry and a preparation method thereof to improve battery capacity and improve battery cycle life.
  • a lithium ion battery lithium titanate negative electrode slurry including lithium titanate, a conductive agent, a binder, a thickener, a solvent and a dispersing agent, wherein Also included are tin powder and carbon fiber, the conductive agent accounts for 0%-3% of the total solid weight, the dispersant is added in the amount of 2%-10% of the total solid mass fraction, and the nano tin powder accounts for 2%-20% of the total solids. Carbon fiber accounts for 20-80% of the weight of the nano tin powder, the nano tin The powder median diameter D50 ranges from 10 to 100 nm, and the carbon fiber has a straight particle diameter D50 of between 10 and 200 nm.
  • the carbon fiber is a hollow or solid structure.
  • the hollow structure of the carbon fiber is a single layer hollow or a plurality of layers hollow.
  • the nano tin powder has a particle size of between 30 and 100 nm.
  • the conductive agent is one of Super-P, graphite conductive agent, and Ketjen black.
  • the solvent is deionized water
  • the binder is styrene-butadiene rubber
  • the thickener is sodium carboxymethylcellulose
  • the dispersing agent is ethylene glycol or glycerol.
  • the nano tin powder has the characteristics of high capacity, but it is accompanied by a large volume change during charging and discharging of the battery, which easily causes the negative electrode material to fall off from the current collector and affect the cycle life.
  • This patent uses ball milling method and uses dispersant to add nano tin powder and carbon fiber to the negative electrode of lithium ion battery in proportion.
  • the carbon fiber has high strength, excellent electrical conductivity, good thermal conductivity, and fibrous shape. Structural features, making it with lithium titanate
  • the components such as the tin-iron powder conductive agent are intertwined to each other, thereby reinforcing the negative electrode material and increasing the conductivity. Thereby increasing battery capacity and improving battery cycle life.
  • nano tin powder and carbon fiber are added according to the ratio and compounding method provided by the patent in the negative electrode dosing, and the comparison shows that the capacity and cycle performance of the lithium ion battery are improved.
  • the length of the positive and negative electrode sheets is calculated according to the steel shell filling rate of 95%, and the examples and comparative examples are the negative electrode batching methods and ratio examples.
  • sodium carboxymethyl cellulose a thickener having a solid mass fraction of 1.5%
  • sodium carboxymethylcellulose a thickener having a solid mass fraction of 1.5%
  • the dissolved sodium carboxymethylcellulose was poured into a ball mill, super-P was added to a solid mass fraction of 1%, and the ball mill was dispersed for 1 hour.
  • Lithium titanate having a solid mass fraction of 82.5% was added and dispersed by a ball mill for 2 hours.
  • a dispersant ethylene glycol having a solid mass fraction of 5% was added, and after dispersing for 10 minutes by ball milling, nano tin powder having a solid mass fraction of 5% and carbon powder having a mass fraction of 2% were added to the mixed liquid for further one hour.
  • the thickener carboxymethylcellulose sodium which accounts for 1.5% of the solid mass fraction, is dissolved uniformly with a stirrer.
  • the dissolved sodium carboxymethylcellulose was poured into a ball mill, super-P was added at a solid mass fraction of 3%, and the ball mill was dispersed for 1 hour.
  • Lithium titanate having a solid mass fraction of 82.5% was added and dispersed by a ball mill for 2 hours.
  • a dispersant ethylene glycol having a solid mass fraction of 5% was added, and after dispersing for 10 minutes by ball milling, nano tin powder having a solid mass fraction of 5% was added to the mixed liquid and dispersion was continued for 1 hour.
  • the thickener carboxymethylcellulose sodium which accounts for 1.5% of the solid mass fraction, is dissolved uniformly with a stirrer.
  • the dissolved sodium carboxymethylcellulose was poured into a ball mill, super-P was added to a solid mass fraction of 1%, and the ball mill was dispersed for 1 hour.
  • Lithium titanate having a solid mass fraction of 92.5% was added and dispersed by a ball mill for 2 hours.
  • a dispersant ethylene glycol having a solid mass fraction of 5% was added, and after dispersing for 10 minutes by ball milling, 2% by mass of carbon fibers were added to the mixed liquid to continue dispersion for 1 hour.
  • the thickener carboxymethylcellulose sodium which accounts for 1.5% of the solid mass fraction, is dissolved uniformly with a stirrer.
  • the dissolved sodium carboxymethylcellulose was poured into a ball mill, super-P was added at a solid mass fraction of 3%, and the ball mill was dispersed for 1 hour.
  • Lithium titanate having a solid mass fraction of 92.5% was added and dispersed by a ball mill for 2 hours.
  • the lithium ion battery negative electrode sheets were prepared from the slurry prepared by the comparative example and the method of the examples, and assembled, and the number of cycles of the capacity, the first efficiency, and the capacity retention rate of 80% are shown in Table 1.
  • Comparing Comparative Example 1 with Comparative Example 3 it can be found that adding nano tin powder to the negative electrode can effectively improve the battery capacity, but the cycle performance is significantly reduced, which may be due to the large volume change of the nano tin powder during charging and discharging of the battery. The structure of the negative electrode material loosely falls off, which affects the cycle performance of the battery. It can be found by comparison between Comparative Example 2 and Comparative Example 3 that the battery cycle performance can be improved only when carbon fiber is added to the negative electrode, but the battery capacity is not improved greatly; Comparative Example 1 and Comparative Example 1 In Comparative Example 3, it was found that the addition of nano tin powder and carbon fiber to the negative electrode of the battery not only significantly increased the battery capacity, but also improved the cycle performance.
  • the carbon fiber has a fibrous structure characteristic, which is intertwined with components such as lithium titanate, nano tin powder, and conductive agent, thereby reinforcing the negative electrode material and increasing conductivity, thereby improving battery capacity and improving.
  • the cycle life of the battery is a fibrous structure characteristic, which is intertwined with components such as lithium titanate, nano tin powder, and conductive agent, thereby reinforcing the negative electrode material and increasing conductivity, thereby improving battery capacity and improving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂离子电池钛酸锂负极浆料及其制备方法,包括钛酸锂、导电剂、粘结剂、增稠剂、溶剂和分散剂,其特征是,还包括纳米锡粉和碳纤维。本发明将纳米锡粉和碳纤维按比例添加到锂离子电池负极之中,利用碳纤维具有强度高、导电性优良、导热性良好,以及其具有的纤维状结构特点,使其与钛酸锂、纳米锡粉导电剂等各组份相互缠绕,起到加固负极材料、增加导电性的作用。从而提高电池容量、改善电池循环寿命。

Description

一种锂离子电池钛酸锂负极浆料及其制备方法 技术领域
本专利涉及一种锂离子电池钛酸锂负极浆料及其制备方法,具体为以钛酸锂为负极材料,并添加纳米锡粉和碳纤维材料在锂离子电池负极中的应用。
背景技术
自上世纪90年代初日本索尼能源技术公司率先成功开发出使用碳负极的锂离子电池以来,锂离子电池以年均15%的速度迅速占领民用二次电池市场,已经成为当前便携式电子设备的首选电源。锂离子电池的飞速发展主要是得益于电极材料的贡献,特别是负极材料的进步。目前商业化锂离子电池负极材料采用的是钛酸锂类碳材料,具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。
碳材料以其价廉、无毒及其优越的电化学性能在锂离子电池中得到了广泛的应用,它本身的界面状况和微细结构对电极性能有很大的影响。目前,商品化的锂离子电池碳负极材料可分为钛酸锂、硬碳和软碳三类,其中钛酸锂类材料依然是锂离子电池负极材料的主流。钛酸锂类碳材料,具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。但其理论比容量只有372mAh/g,因而限制了锂离子电池比能量的进一步提高,不能满足日益发展的高能量便携式移动电源的需求。同时,钛酸锂作为负极材料时,在首次充放电过程中在其表面形成一层固体 电解质膜(SEI)。固体电解质膜是电解液、负极材料和锂离子等相互反应形成,不可逆地消耗锂离子,是形成不可逆容量的一个主要的因素;其二是在锂离子嵌入的过程中,电解质容易与其共嵌在迁出的过程中,电解液被还原,生成的气体产物导致钛酸锂片层剥落,尤其在含有PC的电解液中,钛酸锂片层脱落将形成新界面,导致进一步SEI形成,不可逆容量增加,同时循环稳定性下降。碳材料作为锂离子电池负极材料依然存在充放电容量低、初次循环不可逆损失大、溶剂分子共插层和制备成本高等缺点,这些也是在目前锂离子电池研究方面所需解决的关键问题。
Li4Ti5O12作为一种新型的锂离子二次电池负极材料,与其它商业化的材料相比,具有循环性能好、不与电解液反应、安全性能高、充放电平台平稳等优点,是近几年来备受关注的最优异的锂离子电池负极材料之一。与碳负电极材料相比,钛酸锂有很多的优势,其中,锂离子在钛酸锂中的脱嵌是可逆的,而且锂离子在嵌入或脱出钛酸锂的过程中,其晶型不发生变化,体积变化小于1%,因此被称为“零应变材料”,能够避免充放电循环中由于电极材料的来回伸缩而导致结构的破坏,从而提高电极的循环性能和使用寿命,减少了随循环次数增加而带来比容量大幅度的衰减,具有比碳负极更优良的循环性能;但是,由于钛酸锂是一种绝缘材料,其电导率低,从而导致在锂电中的应用存在倍率性能较差的问题,同时钛酸锂材料理论比容量为175mAh/g,实际比容量大于160mAh/g,具有克容量较低等缺点。
金属锡具有高的储锂容量(994mAh/g)和低的锂离子脱嵌平台电压等优点,是一种极具发展潜力的非碳负极材料。近年来人们对这类材料开展了广泛的研究,并取得了一定的进展。但在可逆储锂过程中,金属锡体积膨胀显著,导致循环性能变差,容量迅速衰减,因此难以满足大规模生产的要求。为此,通过引入碳等非金属元素,以合金化或复合的方式来稳定金属锡,减缓锡的体积膨胀。碳能够阻止锡颗粒间的直接接触,抑制锡颗粒的团聚和长大,起到缓冲层的作用。
锡作为负极材料其平台电势比金属锂高出大概0.2V,在电池充电过程中负极上不易出现析锂现象。同时碳纤维具有强度高、导电性优良、导热性良好等特点,由于其具有纤长的纤维状结构,与纳米锡粉同时添加到负极中,可与钛酸锂、纳米锡粉导电剂等各组份相互缠绕,起到加固负极材料、增加导电性的作用,两者协同配合,提高了电池的容量和循环性能。
发明内容
本专利的目的是提供一种锂离子电池钛酸锂负极浆料及其制备方法,以提高电池容量、改善电池循环寿命。
为实现上述目的,本专利采用的技术方案是:一种锂离子电池钛酸锂负极浆料,包括钛酸锂、导电剂、粘结剂、增稠剂、溶剂和分散剂,其特征是,还包括纳米锡粉和碳纤维,导电剂占总固体重量的0%-3%,分散剂加入量占总固体质量分数的2%-10%,纳米锡粉占总固体量的2%-20%,碳纤维占纳米锡粉重量的20-80%,所述纳米锡 粉中值粒径D50范围介于10-100nm之间,所述碳纤维中直粒径径D50介于10-200nm之间。
所述碳纤维为中空或实心结构。
所述碳纤维的中空结构为单层中空或多层中空。
所述纳米锡粉粒径介于30-100nm之间。
导电剂为Super-P、石墨导电剂、科琴黑中的一种。
所述溶剂为去离子水、粘结剂为丁苯橡胶,增稠剂为羧甲基纤维素钠。
所述分散剂为乙二醇或丙三醇。
一种锂离子电池钛酸锂负极浆料的制备步骤如下:
(1)以去离子水为溶剂,将增稠剂羧甲基纤维素钠用搅拌机溶解均匀;将溶解后的羧甲基纤维素钠倒入球磨机中,加入导电剂,球磨分散1小时;加入钛酸锂,球磨分散2小时;
(2)加入分散剂乙二醇,球磨分散10分钟后将纳米锡粉和碳纤维加入混合液体中继续分散1小时;
(3)加入丁苯橡胶,球磨分散1小时,调节浆料粘度至2000-3000mPa·s,出料。
纳米锡粉具有高容量的特点,但在电池充放电过程中伴随着很大的体积变化,容易导致负极物料从集流体脱落,影响循环寿命。本专利运用球磨方式配料,并配合使用分散剂,将纳米锡粉和碳纤维按比例添加到锂离子电池负极之中,利用碳纤维具有强度高、导电性优良、导热性良好,以及其具有的纤维状结构特点,使其与钛酸锂、纳 米锡粉导电剂等各组份相互缠绕,起到加固负极材料、增加导电性的作用。从而提高电池容量、改善电池循环寿命。
具体实施方式
以圆柱型18650锂离子电池为例,在负极配料时按本专利所提供的比例及配料方法添加纳米锡粉和碳纤维,对比说明其对锂离子电池容量及循环性能改善。电池设计中,按钢壳填充率95%计算正负极片长度,实施例与比较例为负极配料方式及配比举例。
实施例1
以去离子水为溶剂,将占固体质量分数为1.5%的增稠剂羧甲基纤维素钠用搅拌机溶解均匀。将溶解后的羧甲基纤维素钠倒入球磨机中,加入占固体质量分数1%的super-P,球磨分散1小时。
加入占固体质量分数82.5%的钛酸锂,球磨分散2小时。
加入占固体质量分数5%的分散剂乙二醇,球磨分散10分钟后将占固体质量分数5%的纳米锡粉和占质量分数2%碳纤维加入混合液体中继续分散1小时。
加入占固体质量分数3%的丁苯橡胶,球磨分散1小时,调节浆料粘度到合理范围,出料。
比较例1
以去离子水为溶剂,将占固体质量分数为1.5%的增稠剂羧甲基纤维素钠用搅拌机溶解均匀,
将溶解后的羧甲基纤维素钠倒入球磨机中,加入占固体质量分数3%的super-P,球磨分散1小时。
加入占固体质量分数82.5%的钛酸锂,球磨分散2小时。
加入占固体质量分数5%的分散剂乙二醇,球磨分散10分钟后将占固体质量分数5%的纳米锡粉加入混合液体中继续分散1小时。
加入占固体质量分数3%的丁苯橡胶,球磨分散1小时,调节浆料粘度到合理范围,出料。
比较例2
以去离子水为溶剂,将占固体质量分数为1.5%的增稠剂羧甲基纤维素钠用搅拌机溶解均匀,
将溶解后的羧甲基纤维素钠倒入球磨机中,加入占固体质量分数1%的super-P,球磨分散1小时。
加入占固体质量分数92.5%的钛酸锂,球磨分散2小时。
加入占固体质量分数5%的分散剂乙二醇,球磨分散10分钟后将占质量分数2%碳纤维加入混合液体中继续分散1小时。
加入占固体质量分数3%的丁苯橡胶,球磨分散1小时,调节浆料粘度到合理范围,出料。
比较例3
以去离子水为溶剂,将占固体质量分数为1.5%的增稠剂羧甲基纤维素钠用搅拌机溶解均匀,
将溶解后的羧甲基纤维素钠倒入球磨机中,加入占固体质量分数3%的super-P,球磨分散1小时。
加入占固体质量分数92.5%的钛酸锂,球磨分散2小时。
加入占固体质量分数3%的丁苯橡胶,球磨分散1小时,调节浆料粘度到合理范围,出料。
由比较例和实施例方法制备的浆料制作锂离子电池负极片,并装配电池,其容量、首次效率和容量保持率80%时的循环次数列于表1。
表1
  电池容量(mAh) 首次效率(%) 300次循环容量保持率(%)
实施例1 1884 92.4 98.1
比较例1 1853 90.5 92.2
比较例2 1338 89.1 97.5
比较例3 1304 88.2 96.3
通过比较例1和比较例3对比可发现,在负极中添加纳米锡粉可有效提高电池容量,但循环性能下降较为显著,这可能是由于电池充放电过程中纳米锡粉体积变化较大,导致负极材料结构松散脱落,影响电池循环性能;通过比较例2和比较例3对比可发现,负极中仅添加碳纤维时可提高电池循环性能,但电池容量提升不大;对比实施例1和比较例1、比较例3可发现,电池负极中同时添加纳米锡粉和碳纤维不但可以显著提高电池容量,其循环性能也得到较大提升。原因在于碳纤维具有的纤维状结构特点,使其与钛酸锂、纳米锡粉、导电剂等各组份相互缠绕,起到加固负极材料、增加导电性的作用,从而提高了电池容量、改善了电池的循环寿命。

Claims (7)

  1. 一种锂离子电池钛酸锂负极浆料及其制备方法,包括钛酸锂、导电剂、粘结剂、增稠剂、溶剂和分散剂,其特征是,还包括纳米锡粉和碳纤维,导电剂占总固体重量的0%-3%,分散剂加入量占总固体质量分数的2%-10%,纳米锡粉占总固体量的2%-20%,碳纤维占纳米锡粉重量的20-80%,所述纳米锡粉中值粒径D50范围介于10-100nm之间,所述碳纤维中直粒径径D50介于10-200nm之间,其制备步骤如下:
    (1)将增稠剂加入溶剂用搅拌机溶解均匀,将溶解后的增稠剂倒入球磨机中,加入导电剂,球磨分散1小时;
    (2)加入钛酸锂,球磨分散2小时;
    (3)加入分散剂,球磨分散10分钟后将纳米锡粉和碳纤维加入混合液体中继续分散1小时;
    (4)加入粘结剂,球磨分散1小时,调节浆料粘度至2000-3000mPa·s,出料。
  2. 根据权利要求1所述的一种锂离子电池钛酸锂负极浆料及其制备方法,其特征是,所述碳纤维为中空或实心结构。
  3. 根据权利要求2所述的一种锂离子电池钛酸锂负极浆料及其制备方法,其特征是,所述碳纤维的中空结构为单层中空或多层中空。
  4. 根据权利要求1所述的一种锂离子电池钛酸锂负极浆料及其制备方法,其特征是,所述纳米锡粉粒径介于30-100nm之间。
  5. 根据权利要求1所述的一种锂离子电池钛酸锂负极浆料及其制备方法,其特征是,所述的导电剂为Super-P、石墨导电剂、科琴黑中的一种。
  6. 根据权利要求1所述的一种锂离子电池钛酸锂负极浆料及其制备方法,其特征是,所述溶剂为去离子水,粘结剂为丁苯橡胶,增稠剂为羧甲基纤维素钠。
  7. 根据权利要求1所述的一种锂离子电池钛酸锂负极浆料及其制备方法,其特征是,所述分散剂为乙二醇或丙三醇。
PCT/CN2016/083958 2015-06-18 2016-05-30 一种锂离子电池钛酸锂负极浆料及其制备方法 WO2016202167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510337679.8 2015-06-18
CN201510337679.8A CN104993119A (zh) 2015-06-18 2015-06-18 一种锂离子电池钛酸锂负极浆料及其制备方法

Publications (1)

Publication Number Publication Date
WO2016202167A1 true WO2016202167A1 (zh) 2016-12-22

Family

ID=54304898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083958 WO2016202167A1 (zh) 2015-06-18 2016-05-30 一种锂离子电池钛酸锂负极浆料及其制备方法

Country Status (2)

Country Link
CN (1) CN104993119A (zh)
WO (1) WO2016202167A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638228A (zh) * 2018-11-27 2019-04-16 扬州大学 一种铁镍电池负极材料的制备方法
CN110459770A (zh) * 2019-07-31 2019-11-15 桑顿新能源科技(长沙)有限公司 一种钛酸锂负极材料、制备方法、负极极片及锂离子电池
CN111293280A (zh) * 2018-12-10 2020-06-16 北方奥钛纳米技术有限公司 负极片及其备方法、锂离子电池及其制造方法
CN116013697A (zh) * 2022-12-21 2023-04-25 广东风华高新科技股份有限公司 一种锂离子电容器及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993119A (zh) * 2015-06-18 2015-10-21 田东 一种锂离子电池钛酸锂负极浆料及其制备方法
CN105470520B (zh) * 2015-12-01 2018-02-02 东莞市创明电池技术有限公司 一种锂离子电池浆料的制备方法
CN105489860A (zh) * 2015-12-15 2016-04-13 昆明仁旺科技有限公司 一种锂离子电池负极材料及其制备方法
CN107681119A (zh) * 2016-08-02 2018-02-09 万向二三股份公司 一种无桨式分散制备锂电池浆料的方法
CN106972150A (zh) * 2017-04-17 2017-07-21 上海德朗能动力电池有限公司 一种钛酸锂基锂离子电池负极、锂离子电池及其化成方法
CN110534707A (zh) * 2019-08-19 2019-12-03 江苏特丰新材料科技有限公司 一种钛酸锂浆料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1291800A (zh) * 1999-08-30 2001-04-18 松下电器产业株式会社 非水电解质二次电池负极、其制法及非水电解质地二次电池
CN101232094A (zh) * 2008-02-02 2008-07-30 广州市鹏辉电池有限公司 锂离子电池负极活性物质及其电池
CN102082259A (zh) * 2010-12-30 2011-06-01 常州华科新能源科技有限公司 一种锂二次电池电极及其制造方法
CN103606698A (zh) * 2013-11-15 2014-02-26 江苏天鹏电源有限公司 一种功率高的锂离子电池
CN104009218A (zh) * 2014-05-07 2014-08-27 上海应用技术学院 锂离子电池负极材料锡/钛酸锂复合电极材料的制备方法
CN104993119A (zh) * 2015-06-18 2015-10-21 田东 一种锂离子电池钛酸锂负极浆料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076026B2 (en) * 2010-02-05 2011-12-13 International Battery, Inc. Rechargeable battery using an aqueous binder
KR20140116948A (ko) * 2012-01-23 2014-10-06 바스프 에스이 복합재료, 이의 제조 방법 및 전기화학 전지용 분리기에서 이의 용도
CN104681785A (zh) * 2015-02-12 2015-06-03 山东精工电子科技有限公司 锂离子电池负极涂覆材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1291800A (zh) * 1999-08-30 2001-04-18 松下电器产业株式会社 非水电解质二次电池负极、其制法及非水电解质地二次电池
CN101232094A (zh) * 2008-02-02 2008-07-30 广州市鹏辉电池有限公司 锂离子电池负极活性物质及其电池
CN102082259A (zh) * 2010-12-30 2011-06-01 常州华科新能源科技有限公司 一种锂二次电池电极及其制造方法
CN103606698A (zh) * 2013-11-15 2014-02-26 江苏天鹏电源有限公司 一种功率高的锂离子电池
CN104009218A (zh) * 2014-05-07 2014-08-27 上海应用技术学院 锂离子电池负极材料锡/钛酸锂复合电极材料的制备方法
CN104993119A (zh) * 2015-06-18 2015-10-21 田东 一种锂离子电池钛酸锂负极浆料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109638228A (zh) * 2018-11-27 2019-04-16 扬州大学 一种铁镍电池负极材料的制备方法
CN109638228B (zh) * 2018-11-27 2021-02-05 扬州大学 一种铁镍电池负极材料的制备方法
CN111293280A (zh) * 2018-12-10 2020-06-16 北方奥钛纳米技术有限公司 负极片及其备方法、锂离子电池及其制造方法
CN110459770A (zh) * 2019-07-31 2019-11-15 桑顿新能源科技(长沙)有限公司 一种钛酸锂负极材料、制备方法、负极极片及锂离子电池
CN116013697A (zh) * 2022-12-21 2023-04-25 广东风华高新科技股份有限公司 一种锂离子电容器及其制备方法

Also Published As

Publication number Publication date
CN104993119A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2016202167A1 (zh) 一种锂离子电池钛酸锂负极浆料及其制备方法
CN108933242B (zh) 一种锂离子电池混合正极的制备方法
WO2016201982A1 (zh) 一种锂离子电池石墨负极浆料及其制备方法
CN101510625B (zh) 一种超高倍率锂离子电池
WO2016201940A1 (zh) 一种炭/石墨复合负极材料的制备方法
CN106784798A (zh) 正极活性材料、制备方法及包含其的高性能正极浆料和全固态锂离子电池
CN101901907B (zh) 锂离子二次电池及其正极材料
CN110993884B (zh) 锂离子电池负极浆料、制备方法、负极极片以及电池
WO2019052572A1 (zh) 一种微胶囊型硅碳复合负极材料及其制备方法和应用
CN104681785A (zh) 锂离子电池负极涂覆材料及其制备方法
WO2016202168A1 (zh) 一种锂离子电池正极浆料及其制备方法
WO2017032155A1 (zh) 一种锂电池钛酸锂负极浆料的制备方法
CN103066250A (zh) 一种具有双层活性物质结构的锂离子电池用负极和使用该负极的锂离子电池
WO2020134765A1 (zh) 一种降低锂离子电池阻抗的负极片及其制备方法
CN109088033B (zh) 高安全高能量长循环的磷酸铁锂型18650锂电池及其制备方法
WO2017032166A1 (zh) 一种锡粉掺杂锂电池负极浆料的制备方法
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
CN104241696A (zh) 一种高能量密度的锂离子电池及其制备方法
CN113675365B (zh) 一种负极片及锂离子电池
WO2017024896A1 (zh) 一种金属锡掺杂复合钛酸锂负极材料的制备方法
CN116053452A (zh) 硅基负极材料及其制备方法、电池和终端
WO2017024902A1 (zh) 一种改性锂电池钛酸锂负极材料的制备方法
CN104993120A (zh) 一种锂离子电池负极浆料及其制备方法
CN103840130A (zh) 一种防止过放电的锂电池碳负极
CN113745519B (zh) 一种具有人工sei膜的硅基负极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16810908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16810908

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 23/02/2018)