WO2016199475A1 - 低雑音増幅器および電子機器 - Google Patents

低雑音増幅器および電子機器 Download PDF

Info

Publication number
WO2016199475A1
WO2016199475A1 PCT/JP2016/059650 JP2016059650W WO2016199475A1 WO 2016199475 A1 WO2016199475 A1 WO 2016199475A1 JP 2016059650 W JP2016059650 W JP 2016059650W WO 2016199475 A1 WO2016199475 A1 WO 2016199475A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise amplifier
low
low noise
matching line
wave resonator
Prior art date
Application number
PCT/JP2016/059650
Other languages
English (en)
French (fr)
Inventor
仁章 有海
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016199475A1 publication Critical patent/WO2016199475A1/ja
Priority to US15/836,115 priority Critical patent/US10361663B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/26Modifications of amplifiers to reduce influence of noise generated by amplifying elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/601Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators using FET's, e.g. GaAs FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/213A variable capacitor being added in the input circuit, e.g. base, gate, of an amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/378A variable capacitor being added in the output circuit, e.g. collector, drain, of an amplifier stage
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45576Indexing scheme relating to differential amplifiers the IC comprising input impedance adapting or controlling means

Definitions

  • the present invention relates to a low noise amplifier and an electronic apparatus including the same.
  • the low noise amplifier amplifies a received signal in a predetermined frequency band from the antenna in the communication device.
  • an input received signal is often weak. Therefore, the gain of the low noise amplifier is set large. If noise is included in the input signal of the low noise amplifier, the noise is greatly amplified. For this reason, it is necessary to suppress noise included in the input signal as much as possible.
  • Patent Document 1 discloses a low noise amplifier including an LC resonance circuit which includes an inductance element and a capacitor and resonates at a use frequency included in a predetermined frequency band. With such a configuration, the negative resistance generated at a high frequency is attenuated, and the stability as an amplifier is improved.
  • LC resonance circuit has the characteristics that Q value is low and half width is wide. Therefore, the pass band of the LC resonance circuit is wide. For this reason, there is a possibility that noise included in the input signal to the low noise amplifier cannot be effectively suppressed.
  • An object of the present invention is to provide a low noise amplifier capable of effectively suppressing noise included in an input signal to the low noise amplifier.
  • a low noise amplifier is a low noise amplifier for amplifying a reception signal of a predetermined frequency band from an antenna.
  • the low noise amplifier includes an input terminal, an output terminal, a field effect transistor, and a branch circuit.
  • the branch circuit is branched from a circuit connecting an input terminal or an output terminal and a field effect transistor.
  • the branch circuit is connected to the acoustic wave resonator.
  • Connection includes both direct connection and connection through other elements.
  • the elastic wave resonator is outside the duplexer.
  • the low noise amplifier further includes a first matching line and a second matching line.
  • the field effect transistor includes a gate terminal and a source terminal.
  • the first matching line is connected to the gate terminal and the branch circuit.
  • the second matching line has one end connected to the source terminal and the other end grounded.
  • the total length of the first matching line and the second matching line is equal to or less than the length corresponding to the absolute value of the phase of the transmission signal or the phase of the disturbing wave, or 50 / 360 ⁇ or less. .
  • interfering waves include harmonics of transmission signals, a plurality of transmission signals having different frequencies that generate intermodulation waves in the reception frequency band, or signals in which the intermodulation waves with the transmission signal are in the reception frequency band. Can do.
  • the low noise amplifier further includes a first matching line and a second matching line.
  • the field effect transistor includes a drain terminal and a source terminal.
  • the first matching line is connected to the drain terminal and the branch circuit.
  • the second matching line has one end connected to the source terminal and the other end grounded.
  • the total length of the first matching line and the second matching line is equal to or less than the length corresponding to the absolute value of the phase of the transmission signal or the phase of the disturbing wave, or 50 / 360 ⁇ or less. .
  • the low noise amplifier is formed on a silicon substrate together with the CMOS circuit.
  • silicon substrate examples include a bulk silicon substrate or an SOI (Silicon on Insulator) substrate including an insulating film.
  • the branch circuit further includes a first variable capacitance element connected in series with the acoustic wave resonator.
  • variable capacitance element for example, DTC (Digitally Tunable Capacitors) can be cited.
  • the branch circuit further includes a second variable capacitance element connected in parallel with the first variable capacitance element.
  • the acoustic wave resonator includes a support substrate, a high sound velocity film, a low sound velocity film, a piezoelectric film, and an IDT (Interdigital Transducer) electrode.
  • the high acoustic velocity film is laminated on the support substrate.
  • the low acoustic velocity film is laminated on the high acoustic velocity film.
  • the piezoelectric film is laminated on the low sound velocity film.
  • the IDT electrode is formed on the piezoelectric film.
  • the acoustic velocity of the bulk wave propagating through the high acoustic velocity film is higher than the acoustic velocity of the surface acoustic wave propagating through the piezoelectric membrane.
  • the acoustic velocity of the bulk wave propagating through the low acoustic velocity film is lower than the acoustic velocity of the bulk wave propagating through the piezoelectric film.
  • An electronic apparatus includes a duplexer, an acoustic wave resonator, and the above-described low noise amplifier.
  • the acoustic wave resonator filters the signal that has passed through the duplexer.
  • the low noise amplifier is connected to the acoustic wave resonator.
  • the low noise amplifier according to the present invention can effectively suppress noise in the input signal.
  • FIG. 2 For the transmission signal and the interference wave, the relationship between the phase shift caused by passing through the matching line in FIG. 2 and the third-order intermodulation distortion (IM3) of the low noise amplifier in FIG. FIG.
  • IM3 the third-order intermodulation distortion of the low noise amplifier in FIG.
  • FIG. 1 It is a circuit diagram for demonstrating the structure of the low noise amplifier according to the modification 1 of 1st Embodiment. It is a circuit diagram for demonstrating the structure of the low noise amplifier according to the modification 2 of 1st Embodiment. It is a circuit diagram for demonstrating the structure of the low noise amplifier according to the modification 3 of 1st Embodiment.
  • FIG. 1 is a functional block diagram for illustrating functions of electronic device 100 including low noise amplifier 1 according to the first embodiment.
  • the electronic device 100 is a device that performs wireless communication.
  • the electronic device 100 includes, for example, a smartphone.
  • an electronic device 100 includes a low noise amplifier (LNA) 1, an elastic wave resonator 31, a duplexer 5, an antenna 6, a control unit 7, and a power amplifier (PA: Power Amplifier) 8.
  • LNA low noise amplifier
  • PA Power Amplifier
  • the control unit 7 controls the electronic device 100 in an integrated manner.
  • the control unit 7 outputs a transmission signal to the power amplifier 8 at the time of transmission and receives a reception signal from the low noise amplifier 1 at the time of reception.
  • the control unit 7 includes a CMOS circuit, a CPU (Central Processing Unit), and a storage element, although not shown.
  • the storage element is, for example, SRAM (Static Random Access Memory) or DRAM (Dynamic Random Access Memory).
  • the antenna 6 is configured to transmit a transmission signal and receive a reception signal.
  • the duplexer 5 connects the antenna 6 and the power amplifier 8 during transmission, and connects the antenna 6 and the low noise amplifier 1 during reception.
  • the duplexer 5 may be an antenna switch, a diplexer, or a circulator. Instead of providing the antenna 6 with two functions of a transmission antenna and a reception antenna, the antenna 6 may be divided into two, and each may be a transmission antenna and a reception antenna.
  • the power amplifier 8 amplifies the transmission signal from the control unit 7 and outputs it to the antenna 6.
  • the low noise amplifier 1 amplifies the received signal received from the antenna 6 and outputs the amplified signal to the control unit 7.
  • the received signal input from the antenna 6 to the low noise amplifier 1 is often weak. Generally, the gain of the low noise amplifier is set large. Thereby, S / N ratio can be raised. However, when noise is included in the input signal, the noise is greatly amplified, and it is difficult to increase the S / N ratio.
  • the noise input to the low-noise amplifier 1 includes, for example, a transmission signal that has circulated from the transmission-side circuit to the reception-side circuit, harmonics of the transmission signal, and a plurality of frequencies that generate intermodulation waves in the reception frequency band. Or a signal in which an intermodulation wave with the transmission signal falls in the reception frequency band.
  • an acoustic wave resonator is used to suppress noise included in an input signal to low noise amplifier 1.
  • the elastic wave resonator has a narrow frequency band that resonates compared to the LC resonance circuit. That is, the pass band can be narrowed compared to the LC resonance circuit. Therefore, noise included in the input signal to the low noise amplifier 1 can be effectively suppressed by including the frequency band in which the elastic wave resonator resonates in the frequency band of the received signal to be amplified.
  • the elastic wave resonator 31 is outside the duplexer 5.
  • the reason for this is as follows. Since the reception filter in the duplexer 5 is normally designed in a 50 ⁇ system, the power is attenuated. On the other hand, the low noise amplifier 1 is distorted by a voltage.
  • the acoustic wave resonator 31 outside the duplexer 5, it becomes possible to attenuate a voltage portion of noise such as a transmission signal input to the low noise amplifier 1. 1 can be effectively suppressed.
  • FIG. 2 is a circuit diagram for explaining the configuration of the low noise amplifier 1 of FIG.
  • a low noise amplifier 1 includes a field effect transistor (FET) 11, matching lines 21, 22, 23, 24, 26, an impedance element 60, and a branch circuit 81. Prepare.
  • FET field effect transistor
  • the field effect transistor 11, the matching lines 21, 22, 23, 24, 26, the impedance element 60, and the branch circuit 81 are formed on the silicon substrate 70 together with the CMOS circuit 300.
  • the silicon substrate 70 is one embodiment of a semiconductor substrate on which the low noise amplifier 1 is formed.
  • the CMOS circuit 300 constitutes a part or the whole of the control unit 7 shown in FIG.
  • the CMOS circuit 300 performs modulation / demodulation processing of transmission signals and reception signals, encoding / decoding processing of transmission signals and reception signals, and control of the low noise amplifier 1 and the power amplifier 8 and the like.
  • the low noise amplifier 1 forms an RFIC (Radio Frequency Integrated Circuit) 200 together with the CMOS circuit 300.
  • the low noise amplifier 1 can be formed integrally with the CMOS circuit 300 by being formed on the silicon substrate 70. Therefore, the RFIC 200 can be reduced in size. Further, the manufacturing cost of the RFIC 200 can be reduced.
  • the field effect transistor 11 includes a gate terminal G, a source terminal S, and a drain terminal D.
  • One end of the matching line 21 is connected to the gate terminal G.
  • the other end of the matching line 21 is connected to a branch circuit 81 (one end of the matching line 24).
  • the other end of the matching line 24 is connected to the input terminal Tin.
  • the input terminal Tin is connected to the duplexer 5.
  • the branch circuit 81 includes a matching line 25, DTCs 41 and 42, and a shunt terminal 51.
  • the branch circuit 81 is a circuit branched from a circuit connecting the field effect transistor 11 and the input terminal Tin.
  • the branch circuit 81 is a circuit that connects a point on the line connecting the matching line 21 and the matching line 24 and the shunt terminal 51, and includes the shunt terminal 51.
  • One end of the matching line 25 is connected in the middle of the line connecting the matching line 21 and the matching line 24.
  • the DTC 41 is disposed between the matching line 25 and the shunt terminal 51.
  • One end of the DTC 42 is connected in the middle of the line connected to the matching line 25.
  • the DTC 42 is connected in parallel with the DTC 41.
  • the other end of the DTC 42 is grounded.
  • One end of the elastic wave resonator 31 is connected to the shunt terminal 51 from the outside of the low noise amplifier 1.
  • the other end of the acoustic wave resonator 31 is grounded.
  • the acoustic wave resonator 31 and the branch circuit 81 are connected in series via the shunt terminal 51.
  • the DTC 41 changes the resonance frequency of the elastic wave resonator 31. Thereby, the frequency of the signal suppressed in the input signal of the low noise amplifier 1 can be changed.
  • the DTC 42 changes the antiresonance frequency of the elastic wave resonator 31. As a result, the frequency of the signal passing through the low noise amplifier 1 can be changed.
  • the DTCs 41 and 42 are formed inside the low noise amplifier 1. Therefore, loss in the wiring can be reduced. Similarly, in the modifications and embodiments described below, the loss in the wiring can be reduced by forming the DTC inside the RFIC.
  • One end of the impedance element 60 is connected to the drain terminal D of the field effect transistor 11.
  • the other end of the impedance element 60 is connected to the drain side power supply Vdd.
  • One end of the matching line 22 is connected in the middle of the line connecting the drain terminal D and the impedance element 60.
  • the other end of the matching line 22 is connected to one end of the matching line 26.
  • the other end of the matching line 26 is connected to the output terminal Tout.
  • the output terminal Tout is connected to the control unit 7.
  • One end of the matching line 23 is connected to the source terminal S of the field effect transistor 11. The other end of the matching line 23 is grounded.
  • the grounded portion where the other end of the matching line 23 is grounded may be inside the low noise amplifier 1 or outside the low noise amplifier 1, but the first It is preferable to be inside the low noise amplifier 1 as in the embodiment. This is because when the ground portion is outside the low noise amplifier 1, the distance of the ground wiring of the mounting board varies from mounting board to mounting board, and the characteristics of the low noise amplifier 1 may change depending on the mounting board. The inside of the low noise amplifier 1 is less affected by the mounting substrate, and the characteristics of the low noise amplifier 1 are stabilized.
  • FIG. 3 is a structural diagram schematically showing the structure of the acoustic wave resonator 31 of FIG.
  • the acoustic wave resonator 31 includes a support substrate 315, a high acoustic velocity film 314 laminated on the support substrate 315, a low acoustic velocity film 313 laminated on the high acoustic velocity film 314, and a low acoustic velocity.
  • a piezoelectric film 312 stacked on the film 313 and an IDT electrode 311 formed on the piezoelectric film 312 are included.
  • the acoustic velocity of the bulk wave propagating through the high acoustic velocity film 314 is higher than the acoustic velocity of the surface acoustic wave propagating through the piezoelectric membrane 312.
  • the acoustic velocity of the bulk wave propagating through the low acoustic velocity film 313 is lower than the acoustic velocity of the bulk wave propagating through the piezoelectric film 312.
  • the elastic wave resonator 31 is a SAW (Surface Acoustic Wave) resonator having the above-described structure. With such a structure, the Q value of the acoustic wave resonator 31 can be increased. As a result, the range of the resonance frequency and antiresonance frequency that can be changed by the DTCs 41 and 42 can be widened.
  • FIG. 4 is a diagram showing a result of simulating changes in (a) the S parameter S11 of the low noise amplifier 1 and (b) the Y parameter Y11 of the low noise amplifier 1 when the frequency of the input signal is changed.
  • FIG. 4 shows changes in the S parameter S11 and the Y parameter Y11 when the total length of the matching lines 21, 23 is D1, D2, D3, D4 (D1 ⁇ D2 ⁇ D3 ⁇ D4), respectively. .
  • the curve drawn by the S parameter S11 on the Smith chart is a direction in which resistance and reactance increase. Rotate to. This means that the impedance of the low noise amplifier 1 increases.
  • the peak value of Y parameter Y11 decreases as the total length of matching lines 21 and 23 increases. This also means that the impedance of the low noise amplifier 1 increases as in FIG.
  • the impedance of the low noise amplifier 1 increases, the input voltage increases, and as a result, the amplified output signal is easily distorted.
  • the total length of the matching lines 21 and 23 is smaller than the “predetermined length”.
  • the “predetermined length” is a length corresponding to an absolute value of 50 degrees of the phase of the transmission signal or the phase of the interference wave. The same applies to Modifications 1 to 3 of the first embodiment described below.
  • FIG. 5 shows the phase shift of the transmission signal caused by passing through the matching lines 21 and 23 in FIG. 2, and the third-order intermodulation distortion (IM3) and the slope of the third-order intermodulation distortion of the low-noise amplifier 1 in FIG. It is a figure which shows the result of having simulated the relationship collectively.
  • a curve C1 shows a change in IM3 with respect to the phase shift
  • a curve C2 shows a change in the slope of IM3 with respect to the phase shift.
  • FIG. 6 shows the relationship between the phase shift caused by passing through the matching lines 21 and 23 in FIG. 2 and the third-order intermodulation distortion (IM3) of the low noise amplifier 1 in FIG. It is the figure which showed together the result of simulation.
  • IM3 third-order intermodulation distortion
  • the low noise amplifier 1 can effectively suppress noise included in the input signal by including the elastic wave resonator 31.
  • the low noise amplifier 1 includes two DTCs 41 and 42.
  • the low noise amplifier 1 may be configured to include only one of the DTCs 41 and 42 or may be configured to include neither of the DTCs 41 and 42.
  • DTC is not an essential component of a low noise amplifier. The same applies to the modified examples and embodiments described below.
  • the low noise amplifier 1 according to the first embodiment is connected to one acoustic wave resonator 31 arranged outside the low noise amplifier 1.
  • Two or more elastic wave resonators may be connected to the low-noise amplifier according to the embodiment of the present invention.
  • FIG. 7 is a circuit diagram for explaining a configuration of a low-noise amplifier 1A according to the first modification of the first embodiment.
  • low noise amplifier 1 ⁇ / b> A further includes shunt terminal 52 and DTC 43 in addition to the configuration of low noise amplifier 1.
  • the low noise amplifier 1A is connected to an elastic wave resonator 32 arranged outside the low noise amplifier 1A. Since points other than these are the same as those in the first embodiment, description thereof will not be repeated.
  • One end of the acoustic wave resonator 32 is connected to the input terminal Tin, and the other end is connected to the shunt terminal 52.
  • One end of the matching line 24 is connected to a shunt terminal 52.
  • the DTC 43 is disposed between the matching line 21 and the matching line 24 and is connected in series with the acoustic wave resonator 32. The DTC 43 changes the resonance frequency of the elastic wave resonator 32. Thereby, the frequency of the signal suppressed in the input signal of the low noise amplifier 1A can be changed.
  • the low noise amplifier 1A according to the first modification of the first embodiment includes the acoustic wave resonators 31 and 32, thereby effectively suppressing noise included in the input signal as in the first embodiment. be able to.
  • the second acoustic wave resonator 32 is disposed between the input terminal Tin and the matching line 24.
  • the arrangement of the second acoustic wave resonator is not limited to the arrangement in the first modification of the first embodiment.
  • FIG. 8 is a circuit diagram for explaining a configuration of a low noise amplifier 1B according to the second modification of the first embodiment.
  • low noise amplifier 1 ⁇ / b> B includes shunt terminals 53 and 54 and DTCs 43 and 44 in addition to the configuration of low noise amplifier 1.
  • the low noise amplifier 1B is connected to an acoustic wave resonator 33 disposed outside the low noise amplifier 1B. Since points other than these are the same as those in the first embodiment, description thereof will not be repeated.
  • One end of the elastic wave resonator 33 is connected to the shunt terminal 53, and the other end is connected to the shunt terminal 54.
  • the shunt terminals 53 and 54 are respectively connected in the middle of the line connecting the matching line 21 and the matching line 24.
  • One end of the DTC 44 is connected to the shunt terminal 53, and the other end is connected in the middle of the line connecting the matching line 21 and the matching line 24.
  • the DTC 43 is disposed between the matching line 21 and the matching line 24.
  • the DTC 44 changes the resonance frequency of the elastic wave resonator 33. Thereby, the frequency of the signal suppressed in the input signal of the low noise amplifier 1B can be changed.
  • the DTC 43 can change the frequency of the signal passing through the low noise amplifier 1B by changing the antiresonance frequency of the elastic wave resonator 33.
  • the low noise amplifier 1B includes the acoustic wave resonators 31 and 33, thereby effectively suppressing noise included in the input signal as in the first embodiment. be able to.
  • FIG. 9 is a circuit diagram for explaining a configuration of a low-noise amplifier 1C according to the third modification of the first embodiment.
  • low noise amplifier 1 ⁇ / b> C further includes a branch circuit 82 in addition to the configuration of low noise amplifier 1. Since points other than these are the same as those in the first embodiment, description thereof will not be repeated.
  • the branch circuit 82 includes a matching line 27, DTCs 45 and 46, and a shunt terminal 55.
  • the branch circuit 82 is a circuit connected in parallel to a circuit connecting the field effect transistor 11 and the input terminal Tin.
  • the branch circuit 82 is a circuit that connects a point on the line connecting the matching line 21 and the matching line 24 and the shunt terminal 55.
  • One end of the matching line 27 is connected in the middle of the line connecting the matching line 21 and the matching line 24.
  • the DTC 45 is disposed between the matching line 27 and the shunt terminal 55.
  • One end of the DTC 46 is connected in the middle of the line connected to the matching line 27.
  • the DTC 46 is connected in parallel with the DTC 45.
  • One end of the DTC 46 is grounded.
  • the shunt terminal 55 is connected to one end of the acoustic wave resonator 34 from the outside of the low noise amplifier 1C.
  • the other end of the acoustic wave resonator 34 is grounded.
  • the acoustic wave resonator 34 and the branch circuit 82 are connected in series via the shunt terminal 55.
  • DTC 45 changes the resonance frequency of the acoustic wave resonator 34. Thereby, the frequency of the signal suppressed in the input signal of the low noise amplifier 1C can be changed.
  • the DTC 46 changes the antiresonance frequency of the elastic wave resonator 34. As a result, the frequency of the signal passing through the low noise amplifier 1 can be changed.
  • the low noise amplifier 1C according to the third modification of the first embodiment can effectively suppress noise included in the input signal by the acoustic wave resonators 31 and 34, as in the first embodiment. it can.
  • the acoustic wave resonator is provided on the gate side of the field effect transistor.
  • the acoustic wave resonator is not limited to the gate side of the field effect transistor 11. Below, the case where an elastic wave resonator is provided in the drain side of the field effect transistor 11 is demonstrated.
  • FIG. 10 is a circuit diagram for illustrating a configuration of low noise amplifier 2 according to the second embodiment.
  • low noise amplifier 2 includes branch circuit 83 on the drain side of field effect transistor 11 instead of branch circuit 81 arranged on the gate side of field effect transistor 11 in low noise amplifier 1. . Since the configuration other than these is the same as that of the first embodiment, description thereof will not be repeated.
  • the branch circuit 83 includes a matching line 28, DTCs 47 and 48, and a shunt terminal 56.
  • the branch circuit 83 is a circuit connected in parallel to a circuit connecting the field effect transistor 11 and the output terminal Tout.
  • the branch circuit 83 is a circuit that connects a point on the line connecting the matching line 22 and the matching line 26 and the shunt terminal 56.
  • One end of the matching line 28 is connected in the middle of the line connecting the matching line 22 and the matching line 26.
  • the DTC 47 is disposed between the matching line 28 and the shunt terminal 56.
  • One end of the DTC 48 is connected in the middle of the line connected to the matching line 28.
  • the DTC 48 is connected in parallel with the DTC 47.
  • One end of the DTC 48 is grounded.
  • One end of the acoustic wave resonator 35 is connected to the shunt terminal 56 from the outside of the low noise amplifier 2.
  • the other end of the acoustic wave resonator 35 is grounded. That is, the shunt terminal 56 is used to connect to the acoustic wave resonator 35.
  • the acoustic wave resonator 35 and the branch circuit 83 are connected in series via a shunt terminal 56.
  • the DTC 47 can change the frequency of the signal suppressed in the input signal of the low noise amplifier 2 by changing the resonance frequency of the elastic wave resonator 35.
  • the DTC 48 can change the frequency of the signal passing through the low noise amplifier 2 by changing the antiresonance frequency of the elastic wave resonator 35.
  • IM3 in the range where the absolute value of the phase shift is 50 degrees or less is smaller than IM3 in the range where the absolute value of the phase shift is greater than 50 degrees.
  • the total length of the matching lines 22 and 23 is smaller than the length corresponding to the absolute value 50 degrees of the phase of the transmission signal or the phase of the interference wave. Thereby, the low noise amplifier 2 can suppress IM3.
  • the low noise amplifier 2 includes an acoustic wave resonator 35 disposed on the drain side of the field effect transistor 11. According to the second embodiment, although not as much as in the first embodiment, noise included in the input signal can be effectively suppressed.
  • the low noise amplifier 2 can further suppress the noise figure as compared with the first embodiment.
  • the acoustic wave resonator is arranged on either the gate side or the drain side of the field effect transistor.
  • an elastic wave resonator is arrange
  • FIG. 12 is a circuit diagram for illustrating a configuration of low-noise amplifier 3 according to the third embodiment.
  • the low noise amplifier 3 has a configuration in which the branch circuit 83 of the second embodiment is added to the drain side of the configuration of the first embodiment. Since each component has already been described, description thereof will not be repeated hereinafter.
  • the total length of the matching lines 21 and 23 is smaller than the length corresponding to the absolute value 50 degrees of the phase of the transmission signal or the phase of the interference wave.
  • the total length of the matching lines 22 and 23 is smaller than the length corresponding to the absolute value 50 degrees of the phase of the transmission signal or the phase of the interference wave.
  • the low noise amplifier 3 according to the third embodiment can realize the suppression of the noise included in the input signal and the suppression of the noise figure in a balanced manner.
  • the low noise amplifier according to the first embodiment, the second embodiment, and the third embodiment includes one field effect transistor. Two or more field effect transistors may be provided in the low-noise amplifier according to the embodiment. Hereinafter, a case where two field effect transistors are provided will be described.
  • the fourth embodiment is different from the third embodiment in that a second field effect transistor 12 is provided. Since other points are the same as those of the third embodiment, description thereof will not be repeated.
  • FIG. 13 is a circuit diagram for illustrating the configuration of low-noise amplifier 4 according to the fourth embodiment.
  • field effect transistor 12 includes a gate terminal G, a source terminal S, and a drain terminal D.
  • the drain terminal D of the field effect transistor 12 is connected to the impedance element 60.
  • the source terminal S of the field effect transistor 12 is connected to the drain terminal D of the field effect transistor 11.
  • the field effect transistor 11 and the field effect transistor 12 form a cascode stage (interstage).
  • the low noise amplifier 4 according to the fourth embodiment is different from the first to third embodiments by the acoustic wave resonators 31 and 35 even when the two field effect transistors form a cascode stage. Similar effects can be obtained. The same is true when three or more field effect transistors form a cascode stage.
  • the acoustic wave resonators do not need to be arranged on both the gate side and the drain side of the field effect transistor 11. It is sufficient if it is arranged on either the gate side or the drain side.
  • a length corresponding to the absolute value 50 degrees of the phase of the transmission signal or the phase of the disturbing wave is used as the “predetermined length”.
  • the absolute value of the phase is not limited to 50 degrees, and is preferably determined as appropriate based on, for example, a simulation result or a result of an actual machine experiment.
  • the length corresponding to the absolute value 50 degrees of the phase of the transmission signal or the phase of the jamming wave is defined as the wavelength of the transmission signal or the jamming wave when ⁇ is defined as the wavelength of the signal of the transmission signal or the jamming wave.
  • the wavelength is 50/360 (0.139 ⁇ ).
  • the ratio of the wavelengths is not limited to 0.139, and it is desirable that the ratio is appropriately determined based on, for example, a simulation result or a result of an actual machine experiment.
  • the low noise amplifier according to the first to fourth embodiments includes a silicon substrate 70 and is formed integrally with the RFIC.
  • the low noise amplifier according to the embodiment does not need to include a silicon substrate, and may include a substrate including, for example, gallium arsenide (GaAs).
  • GaAs gallium arsenide
  • the low noise amplifier can suppress power consumption by including a substrate containing gallium arsenide. In this case, since the low noise amplifier cannot be formed on the silicon substrate, a circuit different from the CMOS circuit included in the RFIC is formed. That is, the low noise amplifier is not included in the RFIC.
  • SAW resonators are used as the acoustic wave resonators.
  • the acoustic wave resonator may be other than the SAW resonator, and may be, for example, a BAW (Bulk Acoustic Wave) resonator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 入力信号に含まれるノイズを効果的に抑制することができる低雑音増幅器を提供する。本発明の一実施形態に係る低雑音増幅器(1)は、アンテナからの所定の周波数帯の受信信号を増幅する。低雑音増幅器(1)は、入力端子(Tin)と、出力端子(Tout)と、電界効果トランジスタ(11)と、分岐回路(81)とを備える。分岐回路(81)は、入力端子(Tin)または出力端子(Tout)と、電界効果トランジスタ(11)と、を結ぶ回路から分岐されている。分岐回路(81)は、弾性波共振子(31)と接続される。

Description

低雑音増幅器および電子機器
 本発明は、低雑音増幅器およびそれを備える電子機器に関する。
 低雑音増幅器は、通信装置においてアンテナからの所定の周波数帯の受信信号を増幅する。低雑音増幅器においては、入力される受信信号が微弱である場合が多い。したがって、低雑音増幅器の利得は大きく設定される。ノイズが低雑音増幅器の入力信号に含まれると当該ノイズが大きく増幅されてしまう。そのため、当該入力信号に含まれるノイズをできるだけ抑制する必要がある。
 特開平11-234063号公報(特許文献1)は、インダクタンス素子とコンデンサとで構成され、所定の周波数帯に含まれる使用周波数で共振するLC共振回路を備える低雑音増幅器を開示する。このような構成により、高い周波数で生じていた負性抵抗が減衰され、増幅器としての安定性が良好となる。
特開平11-234063号公報
 LC共振回路はQ値が低く、半値幅が広いという特性を有する。したがって、LC共振回路の通過帯域は広い。このため、低雑音増幅器に対する入力信号に含まれるノイズを効果的に抑制することができない可能性がある。
 本発明の目的は、低雑音増幅器に対する入力信号に含まれるノイズを効果的に抑制することができる低雑音増幅器を提供することである。
 本発明の一実施形態に係る低雑音増幅器は、アンテナからの所定の周波数帯の受信信号を増幅するための低雑音増幅器である。低雑音増幅器は、入力端子と、出力端子と、電界効果トランジスタと、分岐回路とを備える。分岐回路は、入力端子または出力端子と、電界効果トランジスタと、を結ぶ回路から分岐されている。分岐回路は、弾性波共振子と接続される。
 「接続」とは、直接接続されている場合、および他の素子を介して接続されている場合の両方を含む。
 好ましくは、弾性波共振子は、デュプレクサの外部にある。
 好ましくは、低雑音増幅器は、第1の整合用線路と、第2の整合用線路とを、さらに備える。電界効果トランジスタは、ゲート端子とソース端子とを含む。第1の整合用線路は、ゲート端子および分岐回路に接続される。第2の整合用線路は、一方端がソース端子に接続され、他方端が接地される。第1の整合用線路と第2の整合用線路との長さの合計が、送信信号の位相または妨害波の位相の絶対値50度に相当する長さ以下、または、50/360λ以下である。
 「妨害波」としては、たとえば送信信号の高調波、受信周波数帯に相互変調波を生成する周波数の異なる複数の送信信号、あるいは送信信号との相互変調波が受信周波数帯となる信号を挙げることができる。
 好ましくは、低雑音増幅器は、第1の整合用線路と、第2の整合用線路とを、さらに備える。電界効果トランジスタは、ドレイン端子とソース端子とを含む。第1の整合用線路は、ドレイン端子および分岐回路に接続される。第2の整合用線路は、一方端がソース端子に接続され、他方端が接地される。第1の整合用線路と第2の整合用線路との長さの合計が、送信信号の位相または妨害波の位相の絶対値50度に相当する長さ以下、または、50/360λ以下である。
 好ましくは、低雑音増幅器は、CMOS回路とともにシリコン基板上に形成されている。
 「シリコン基板」としては、たとえばバルクシリコン基板、或いは絶縁膜を含むSOI(Silicon on Insulator)基板を挙げることができる。
 好ましくは、分岐回路は、弾性波共振子と直列に接続された第1の可変容量素子をさらに備える。
 「可変容量素子」としては、たとえばDTC(Digitally Tunable Capacitors)を挙げることができる。
 好ましくは、分岐回路は、第1の可変容量素子と並列に接続された第2の可変容量素子をさらに備える。
 好ましくは、弾性波共振子は、支持基板と、高音速膜と、低音速膜と、圧電膜と、IDT(Interdigital Transducer)電極とを含む。高音速膜は、支持基板上に積層されている。低音速膜は、高音速膜上に積層されている。圧電膜は、低音速膜上に積層されている。IDT電極は、圧電膜上に形成されている。高音速膜を伝搬するバルク波の音速は、圧電膜を伝搬する表面弾性波の音速よりも高い。低音速膜を伝搬するバルク波の音速は、圧電膜を伝搬するバルク波の音速よりも低い。
 本発明の一実施形態に係る電子機器は、デュプレクサと、弾性波共振子と、上記した低雑音増幅器とを備える。弾性波共振子は、デュプレクサを通過した信号をフィルタする。低雑音増幅器は、弾性波共振子と接続されている。
 本発明に係る低雑音増幅器によれば、入力信号におけるノイズを効果的に抑制することができる。
第1の実施の形態に従う低雑音増幅器を備える電子機器の機能を説明するための機能ブロック図である。 図1の低雑音増幅器の構成を説明するための回路図である。 図2の弾性波共振子の構造を模式的に示す断面図である。 入力信号の周波数を変化させた場合の(a)低雑音増幅器のSパラメータS11および(b)低雑音増幅器のYパラメータY11の変化をシミュレーションした結果を示す図である。 図2の整合用線路を通過することによる送信信号の位相シフトと、図2の低雑音増幅器の3次相互変調歪み(IM3)および3次相互変調歪みの傾きの関係をシミュレーションした結果とを併せて示す図である。 送信信号と妨害波について、図2の整合用線路を通過することによる位相シフトと図2の低雑音増幅器の3次相互変調歪み(IM3)との関係を、それぞれシミュレーションした結果を併せて示した図である。 第1の実施の形態の変形例1に従う低雑音増幅器の構成を説明するための回路図である。 第1の実施の形態の変形例2に従う低雑音増幅器の構成を説明するための回路図である。 第1の実施の形態の変形例3に従う低雑音増幅器の構成を説明するための回路図である。 第2の実施の形態に従う低雑音増幅器の構成を説明するための回路図である。 図10の整合用線路を通過することによる位相シフトと図10の低雑音増幅器の3次相互変調歪み(IM3)との関係を、送信信号と妨害波についてそれぞれシミュレーションした結果を併せて示した図である。 第3の実施の形態に従う低雑音増幅器の構成を説明するための回路図である。 第4の実施の形態に従う低雑音増幅器の構成を説明するための回路図である。
 [第1の実施の形態]
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 図1は、第1の実施の形態に従う低雑音増幅器1を備える電子機器100の機能を説明するための機能ブロック図である。電子機器100は無線による通信を行なう機器である。電子機器100には、たとえばスマートフォンが含まれる。図1を参照して、電子機器100は、低雑音増幅器(LNA:Low Noise Amplifier)1と、弾性波共振子31と、デュプレクサ5と、アンテナ6と、制御部7と、電力増幅器(PA:Power Amplifier)8とを備える。
 制御部7は、電子機器100を統合的に制御する。制御部7は、送信時には送信信号を電力増幅器8に出力し、受信時には低雑音増幅器1から受信信号を受ける。制御部7は、図示はしないが、CMOS回路、CPU(Central Processing Unit)および記憶素子を含む。記憶素子は、たとえばSRAM(Static Random Access Memory)またはDRAM(Dynamic Random Access Memory)である。
 アンテナ6は、送信信号の送信と受信信号の受信とを行なうように構成されている。デュプレクサ5は、送信時にはアンテナ6と電力増幅器8とを接続し、受信時にはアンテナ6と低雑音増幅器1とを接続する。デュプレクサ5はアンテナスイッチ、ダイプレクサ、またはサーキュレータであってもよい。なお、アンテナ6に送信アンテナと受信アンテナの2つの機能を持たせるのではなく、アンテナ6を2つに分けて、それぞれを、送信アンテナと、受信アンテナにしてもよい。
 電力増幅器8は、制御部7からの送信信号を増幅してアンテナ6へ出力する。低雑音増幅器1は、アンテナ6から受けた受信信号を増幅して制御部7へ出力する。
 アンテナ6から低雑音増幅器1に入力される受信信号は微弱である場合が多い。一般に低雑音増幅器の利得は大きく設定される。これにより、S/N比を高めることができる。しかし、ノイズが入力信号に含まれると当該ノイズが大きく増幅されてしまい、S/N比を高めることが難しくなる。
 低雑音増幅器1に入力されるノイズとしては、たとえば送信側の回路から受信側の回路に回り込んできた送信信号、送信信号の高調波、受信周波数帯に相互変調波を生成する周波数の異なる複数の送信信号、あるいは送信信号との相互変調波が受信周波数帯となる信号を挙げることができる。
 第1の実施の形態に従う電子機器100においては、弾性波共振子を用いて、低雑音増幅器1に対する入力信号に含まれるノイズを抑制する。弾性波共振子は、LC共振回路に比べて、共振する周波数帯が狭い。すなわち、LC共振回路に比べて、通過帯域を狭くすることができる。そのため、弾性波共振子が共振する周波数帯を、増幅したい受信信号の周波数帯に含めることにより、低雑音増幅器1に対する入力信号に含まれるノイズを効果的に抑制することができる。
 なお、図1に示すように、弾性波共振子31は、デュプレクサ5の外部にある。この理由は、以下の通りである。デュプレクサ5の中にある受信フィルタは、通常50Ω系で設計されているので、電力を減衰させる。一方、低雑音増幅器1は、電圧で歪む。
 したがって、デュプレクサ5の中にある受信フィルタで、送信信号等のノイズの電力を減衰させたとしても、送信信号等のノイズの電圧部分を減衰しきれない場合がある。そのため、デュプレクサ5の外部に弾性波共振子31を置くことで、低雑音増幅器1に入力される送信信号等のノイズの電圧部分を減衰させることができるようになるので、より一層、低雑音増幅器1に対する入力信号に含まれるノイズを効果的に抑制することができる。
 図2は、図1の低雑音増幅器1の構成を説明するための回路図である。図2を参照して、低雑音増幅器1は、電界効果トランジスタ(FET:Field Effect Transistor)11と、整合用線路21,22,23,24,26と、インピーダンス要素60と、分岐回路81とを備える。
 電界効果トランジスタ11と、整合用線路21,22,23,24,26と、インピーダンス要素60と、分岐回路81とは、CMOS回路300と共にシリコン基板70上に形成されている。シリコン基板70は、低雑音増幅器1が形成される半導体基板の1つの実施形態である。CMOS回路300は、たとえば図1に示した制御部7の一部または全体を構成する。CMOS回路300は、送信信号および受信信号の変復調処理、送信信号および受信信号の符号化・復号化処理、並びに低雑音増幅器1および電力増幅器8等の制御を行なっている。
 低雑音増幅器1は、CMOS回路300と共にRFIC(Radio Frequency Integrated Circuit)200を形成している。低雑音増幅器1は、シリコン基板70上に形成されることによりCMOS回路300と一体的に形成することができる。そのため、これによりRFIC200を小型化することができる。さらにRFIC200の製造コストの低減を図ることができる。
 電界効果トランジスタ11は、ゲート端子Gと、ソース端子Sと、ドレイン端子Dとを含む。整合用線路21の一方の端部はゲート端子Gと接続されている。整合用線路21の他方の端部は分岐回路81(整合用線路24の一方の端部)と接続されている。整合用線路24の他方の端部は入力端子Tinと接続されている。入力端子Tinは、デュプレクサ5と接続されている。
 分岐回路81は、整合用線路25と、DTC41,42と、シャント端子51とを含む。分岐回路81は、電界効果トランジスタ11と入力端子Tinとを結ぶ回路から分岐された回路である。分岐回路81は、整合用線路21および整合用線路24を結ぶ線路上にある点とシャント端子51とを結ぶ回路であり、シャント端子51を含んでいる。
 整合用線路25の一方の端部は、整合用線路21と整合用線路24とを結ぶ線路の途中に接続されている。
 DTC41は整合用線路25とシャント端子51との間に配置されている。DTC42の一方の端部は、整合用線路25に接続されている線路の途中に接続されている。DTC42は、DTC41と並列に接続されている。DTC42の他方の端部は接地されている。
 シャント端子51には、低雑音増幅器1の外部から弾性波共振子31の一方の端部が接続されている。弾性波共振子31の他方の端部は接地されている。弾性波共振子31と分岐回路81とはシャント端子51を介して直列に接続されている。
 DTC41は弾性波共振子31の共振周波数を変化させる。これにより低雑音増幅器1の入力信号において抑制される信号の周波数を変化させることができる。DTC42は弾性波共振子31の***振周波数を変化させる。これにより低雑音増幅器1を通過させる信号の周波数を変化させることができる。DTC41,42は、低雑音増幅器1の内部に形成される。したがって、配線での損失を低減することができる。以下で説明する変形例および実施の形態においても同様に、DTCをRFICの内部に形成することにより、配線での損失を低減することができる。
 インピーダンス要素60の一方の端部は、電界効果トランジスタ11のドレイン端子Dと接続されている。インピーダンス要素60の他方の端部は、ドレイン側電源Vddと接続されている。整合用線路22の一方の端部は、ドレイン端子Dとインピーダンス要素60とを結ぶ線路の途中に接続されている。整合用線路22の他方の端部は、整合用線路26の一方の端部と接続されている。整合用線路26の他方の端部は出力端子Toutに接続されている。出力端子Toutは、制御部7に接続されている。
 整合用線路23の一方の端部は、電界効果トランジスタ11のソース端子Sに接続されている。整合用線路23の他方の端部は接地されている。
 なお、整合用線路23の他方の端部が接地されている上記接地部分は、低雑音増幅器1の内部にあってもよいし、低雑音増幅器1の外部にあってもよいが、第1の実施の形態のように低雑音増幅器1の内部にあった方が好ましい。上記接地部分が低雑音増幅器1の外部にある場合、実装基板の接地配線の距離が実装基板毎に異なるため、実装基板によって低雑音増幅器1の特性が変わってしまう可能性があるためである。低雑音増幅器1の内部にある方が、実装基板による影響を受けにくく、低雑音増幅器1の特性が安定する。
 図3は、図2の弾性波共振子31の構造を模式的に示す構造図である。図3を参照して、弾性波共振子31は、支持基板315と、支持基板315上に積層された高音速膜314と、高音速膜314上に積層された低音速膜313と、低音速膜313上に積層された圧電膜312と、圧電膜312上に形成されたIDT電極311とを含む。高音速膜314を伝搬するバルク波の音速は、圧電膜312を伝搬する表面弾性波の音速よりも高い。低音速膜313を伝搬するバルク波の音速は、圧電膜312を伝搬するバルク波の音速よりも低い。弾性波共振子31は、上記した構造をもつSAW(Surface Acoustic Wave)共振子である。このような構造により、弾性波共振子31のQ値を高くすることができる。その結果、DTC41,42によりそれぞれ変化させることのできる共振周波数および***振周波数の範囲を広くすることができる。
 図4は、入力信号の周波数を変化させた場合の(a)低雑音増幅器1のSパラメータS11および(b)低雑音増幅器1のYパラメータY11の変化をシミュレーションした結果を示す図である。図4においては、整合用線路21,23の長さの合計がD1,D2,D3,D4(D1<D2<D3<D4)の場合のSパラメータS11およびYパラメータY11の変化をそれぞれ示している。
 図4(a)を参照して、整合用線路21,23の長さの合計がD1からD4へと変化するに従って、SパラメータS11がスミスチャート上で描く曲線は、抵抗およびリアクタンスが増加する方向に回転する。これは、低雑音増幅器1のインピーダンスが増加することを意味する。
 図4(b)を参照して、整合用線路21,23の長さの合計が長くなるほど、YパラメータY11のピーク値が下がる。このことも図4(a)と同様に低雑音増幅器1のインピーダンスが増加することを意味する。
 低雑音増幅器1のインピーダンスが増加すると、入力電圧が増加するので、その結果、増幅された出力信号が歪みやすくなる。
 第1の実施の形態においては、整合用線路21,23の長さの合計が「所定の長さ」よりも小さい。具体的には、「所定の長さ」は送信信号の位相または妨害波の位相の絶対値50度に相当する長さである。このことは、以下で説明する第1の実施の形態の変形例1~3においても同様である。
 図5は、図2の整合用線路21,23を通過することによる送信信号の位相シフトと、図2の低雑音増幅器1の3次相互変調歪み(IM3)および3次相互変調歪みの傾きの関係をシミュレーションした結果とを併せて示す図である。図5において、曲線C1は位相シフトに対するIM3の変化を示し、曲線C2は位相シフトに対するIM3の傾きの変化を示す。図5を参照して、送信信号の位相シフトの絶対値が50度を超えると、曲線C1の傾きが急激に増加していることがわかる。これは、送信信号の位相シフトの絶対値が50度を超えるとIM3が急激に増加していくことを意味する。したがって、整合用線路21,23の長さの合計が送信信号の位相の絶対値50度に相当する長さよりも小さくすることにより、低雑音増幅器1はIM3を抑制することができる。
 図6は、送信信号と妨害波について、図2の整合用線路21,23を通過することによる位相シフトと図2の低雑音増幅器1の3次相互変調歪み(IM3)との関係を、それぞれシミュレーションした結果を併せて示した図である。図6を参照して、妨害波についての位相シフトとIM3との関係は、送信信号と同様の傾向を示していることがわかる。したがって、妨害波についても送信信号と同様に、整合用線路21,23の長さの合計が送信信号の位相の絶対値50度に相当する長さよりも小さくすることにより、低雑音増幅器1はIM3を抑制することができる。
 以上から、第1の実施の形態に従う低雑音増幅器1は、弾性波共振子31を備えることにより、入力信号に含まれるノイズを効果的に抑制することができる。
 第1の実施の形態に従う低雑音増幅器1は、2つのDTC41,42を備える。低雑音増幅器1は、DTC41,42のいずれか1つのみを備える構成でもよく、DTC41,42のいずれも備えない構成であってもよい。DTCは低雑音増幅器の必須の構成要素ではない。このことは、以下で説明する変形例および実施の形態においても同様である。
 [第1の実施の形態の変形例1]
 第1の実施の形態に従う低雑音増幅器1は、低雑音増幅器1の外部に配置された1つの弾性波共振子31と接続されている。本発明の実施の形態に従う低雑音増幅器が接続される弾性波共振子の数は2つ以上であってもよい。
 図7は、第1の実施の形態の変形例1に従う低雑音増幅器1Aの構成を説明するための回路図である。図7を参照して、低雑音増幅器1Aは、低雑音増幅器1の構成に加えて、さらにシャント端子52、およびDTC43を備える。また、低雑音増幅器1Aは、低雑音増幅器1Aの外部に配置された弾性波共振子32と接続されている。これら以外の点については第1の実施の形態と同様であるため説明を繰り返さない。
 弾性波共振子32の一方の端部は入力端子Tinに接続され、他方の端部はシャント端子52に接続されている。整合用線路24の一方の端部はシャント端子52に接続されている。DTC43は整合用線路21と整合用線路24との間に配置されて弾性波共振子32と直列に接続されている。DTC43は、弾性波共振子32の共振周波数を変化させる。これにより低雑音増幅器1Aの入力信号において抑制される信号の周波数を変化させることができる。
 第1の実施の形態の変形例1に従う低雑音増幅器1Aは、弾性波共振子31,32を備えることにより、第1の実施の形態と同様に入力信号に含まれるノイズを効果的に抑制することができる。
 [第1の実施の形態の変形例2]
 第1の実施の形態の変形例1においては、第2の弾性波共振子32が入力端子Tinと整合用線路24との間に配置される。第2の弾性波共振子の配置は、第1の実施の形態の変形例1における配置に限られるものではない。
 図8は、第1の実施の形態の変形例2に従う低雑音増幅器1Bの構成を説明するための回路図である。図8を参照して、低雑音増幅器1Bは、低雑音増幅器1の構成に加えて、さらにシャント端子53,54、およびDTC43,44を備える。また、低雑音増幅器1Bは、低雑音増幅器1Bの外部に配置された弾性波共振子33と接続されている。これら以外の点については第1の実施の形態と同様であるため説明を繰り返さない。
 弾性波共振子33の一方の端部はシャント端子53に接続され、他方の端部はシャント端子54に接続されている。シャント端子53,54は、整合用線路21と整合用線路24とを結ぶ線路の途中にそれぞれ接続されている。DTC44の一方の端部はシャント端子53に接続され、他方の端部は整合用線路21と整合用線路24とを結ぶ線路の途中に接続されている。DTC43は整合用線路21と整合用線路24との間に配置されている。
 DTC44は弾性波共振子33の共振周波数を変化させる。これにより低雑音増幅器1Bの入力信号において抑制される信号の周波数を変化させることができる。DTC43は弾性波共振子33の***振周波数を変化させて低雑音増幅器1Bを通過させる信号の周波数を変化させることができる。
 第1の実施の形態の変形例2に従う低雑音増幅器1Bは、弾性波共振子31,33を備えることにより、第1の実施の形態と同様に入力信号に含まれるノイズを効果的に抑制することができる。
 [第1の実施の形態の変形例3]
 以下では、第2の弾性波共振子の配置が、第1の実施の形態の変形例1,2における配置とは異なる場合について説明する。
 図9は、第1の実施の形態の変形例3に従う低雑音増幅器1Cの構成を説明するための回路図である。図9を参照して、低雑音増幅器1Cは、低雑音増幅器1の構成に加えて、さらに分岐回路82を備える。これら以外の点については第1の実施の形態と同様であるため説明を繰り返さない。
 分岐回路82は、整合用線路27と、DTC45,46と、シャント端子55とを含む。分岐回路82は、電界効果トランジスタ11と入力端子Tinとを結ぶ回路に並列に接続された回路である。分岐回路82は、整合用線路21および整合用線路24を結ぶ線路上にある点とシャント端子55とを結ぶ回路である。
 整合用線路27の一方の端部は、整合用線路21と整合用線路24とを結ぶ線路の途中に接続されている。DTC45は整合用線路27とシャント端子55との間に配置されている。DTC46の一方の端部は、整合用線路27に接続されている線路の途中に接続されている。DTC46はDTC45と並列に接続されている。DTC46の一方の端部は接地されている。
 シャント端子55には、低雑音増幅器1Cの外部から弾性波共振子34の一方の端部が接続されている。弾性波共振子34の他方の端部は接地されている。弾性波共振子34と分岐回路82とはシャント端子55を介して直列に接続されている。
 DTC45は弾性波共振子34の共振周波数を変化させる。これにより低雑音増幅器1Cの入力信号において抑制される信号の周波数を変化させることができる。DTC46は弾性波共振子34の***振周波数を変化させる。これにより低雑音増幅器1を通過させる信号の周波数を変化させることができる。
 第1の実施の形態の変形例3に従う低雑音増幅器1Cは、弾性波共振子31,34により、第1の実施の形態と同様に、入力信号に含まれるノイズを効果的に抑制することができる。
 [第2の実施の形態]
 第1の実施の形態においては、弾性波共振子が電界効果トランジスタのゲート側に設けられる。弾性波共振子が設けられるのは電界効果トランジスタ11のゲート側に限られない。以下では、弾性波共振子が電界効果トランジスタ11のドレイン側に設けられる場合について説明する。
 図10は、第2の実施の形態に従う低雑音増幅器2の構成を説明するための回路図である。図10を参照して、低雑音増幅器2は、低雑音増幅器1において電界効果トランジスタ11のゲート側に配置されている分岐回路81に替えて、電界効果トランジスタ11のドレイン側に分岐回路83を備える。これら以外の構成については第1の実施の形態と同様であるため説明を繰り返さない。
 分岐回路83は、整合用線路28、DTC47,48、およびシャント端子56を含む。分岐回路83は、電界効果トランジスタ11と出力端子Toutとを結ぶ回路に並列に接続された回路である。分岐回路83は、整合用線路22および整合用線路26を結ぶ線路上にある点とシャント端子56とを結ぶ回路である。
 整合用線路28の一方の端部は、整合用線路22と整合用線路26とを結ぶ線路の途中に接続されている。DTC47は整合用線路28とシャント端子56との間に配置されている。DTC48の一方の端部は、整合用線路28に接続されている線路の途中に接続されている。DTC48はDTC47と並列に接続されている。DTC48の一方の端部は接地されている。
 シャント端子56には、低雑音増幅器2の外部から弾性波共振子35の一方の端部が接続されている。弾性波共振子35の他方の端部は接地されている。つまり、シャント端子56は、弾性波共振子35と接続するために使用される。
 また、弾性波共振子35と分岐回路83とはシャント端子56を介して直列に接続されている。
 DTC47は弾性波共振子35の共振周波数を変化させることにより低雑音増幅器2の入力信号において抑制される信号の周波数を変化させることができる。DTC48は弾性波共振子35の***振周波数を変化させて低雑音増幅器2を通過させる信号の周波数を変化させることができる。
 図11は、図10の整合用線路22,23を通過することによる位相シフトと図10の低雑音増幅器2の3次相互変調歪み(IM3)との関係を、送信信号と妨害波についてそれぞれシミュレーションした結果を併せて示した図である。図11を参照して、送信信号と妨害波とは、位相シフトとIM3との関係について同様の傾向を示している。位相シフトの絶対値が50度以下の範囲におけるIM3は、位相シフトの絶対値が50度より大きい範囲のIM3よりも小さくなる。
 第2の実施の形態に従う低雑音増幅器2においては、整合用線路22,23の長さの合計が送信信号の位相または妨害波の位相の絶対値50度に相当する長さよりも小さい。このことにより、低雑音増幅器2はIM3を抑制することができる。
 低雑音増幅器2は、電界効果トランジスタ11のドレイン側に配置された弾性波共振子35を含む。第2の実施の形態によれば、第1の実施の形態ほどではないが、入力信号に含まれるノイズを効果的に抑制することができる。
 さらに、弾性波共振子35が電界効果トランジスタ11のドレイン側に配置されていることにより、低雑音増幅器2は、第1の実施の形態と比べて雑音指数をより抑制することができる。
 [第3の実施の形態]
 第1の実施の形態および第2の実施の形態においては、弾性波共振子は電界効果トランジスタのゲート側またはドレイン側のいずれか一方に配置される。以下では、弾性波共振子が電界効果トランジスタのゲート側およびドレイン側の双方に配置される場合について説明する。
 図12は、第3の実施の形態に従う低雑音増幅器3の構成を説明するための回路図である。低雑音増幅器3は、第1の実施の形態の構成のドレイン側に、第2の実施の形態の分岐回路83を加えた構成である。各構成要素は、いずれも既に説明しているため、以降では説明を繰り返さない。
 第3の実施の形態に従う低雑音増幅器3においては、整合用線路21,23の長さの合計が送信信号の位相または妨害波の位相の絶対値50度に相当する長さよりも小さい。加えて、整合用線路22,23の長さの合計は送信信号の位相または妨害波の位相の絶対値50度に相当する長さよりも小さい。このことにより、低雑音増幅器2はIM3を抑制することができる。
 第3の実施の形態に従う低雑音増幅器3は、入力信号に含まれるノイズの抑制と雑音指数の抑制とをバランスよく実現することができる。
 [第4の実施の形態]
 第1の実施の形態、第2の実施の形態、および第3の実施の形態に従う低雑音増幅器は、1つの電界効果トランジスタを備える。実施の形態に従う低雑音増幅器が備える電界効果トランジスタは2つ以上であっても構わない。以下では、電界効果トランジスタを2つ備える場合について説明する。
 第4の実施の形態が第3の実施の形態と異なるのは、第2の電界効果トランジスタ12を備える点である。その他の点については第3の実施の形態と同様であるため説明を繰り返さない。
 図13は、第4の実施の形態に従う低雑音増幅器4の構成を説明するための回路図である。図13を参照して、電界効果トランジスタ12は、ゲート端子Gと、ソース端子Sと、ドレイン端子Dとを含む。電界効果トランジスタ12のドレイン端子Dはインピーダンス要素60に接続されている。電界効果トランジスタ12のソース端子Sは、電界効果トランジスタ11のドレイン端子Dに接続されている。電界効果トランジスタ11と電界効果トランジスタ12とはカスコード段(インターステージ)を形成している。
 第4の実施の形態に従う低雑音増幅器4は、2つの電界効果トランジスタがカスコード段を形成している場合であっても、弾性波共振子31,35により第1~第3の実施の形態と同様の効果を得ることができる。3つ以上の電界効果トランジスタがカスコード段を形成している場合も同様である。
 複数の電界効果トランジスタがカスコード段を形成している場合であっても、弾性波共振子は電界効果トランジスタ11のゲート側およびドレイン側の双方に配置されている必要はなく、電界効果トランジスタ11のゲート側またはドレイン側のいずれか一方に配置されていれば足りる。
 第1~4の実施の形態に従う低雑音増幅器においては、「所定の長さ」として送信信号の位相または妨害波の位相の絶対値50度に相当する長さを用いる。位相の絶対値は50度に限定されるものではなく、たとえば、シミュレーション結果、あるいは実機実験の結果に基づいて適宜決定されることが望ましい。
 なお、送信信号の位相または妨害波の位相の絶対値50度に相当する長さとは、λを送信信号または妨害波の信号の波長であると定義した場合に、送信信号の波長または妨害波の波長の360分の50(0.139λ)となる。ただし、波長の割合は0.139に限定されるものではなく、たとえば、シミュレーション結果、あるいは実機実験の結果に基づいて適宜決定されることが望ましい。
 第1~4の実施の形態に従う低雑音増幅器は、シリコン基板70を備え、RFICと一体として形成される。実施の形態に従う低雑音増幅器は、シリコン基板を備える必要はなく、たとえばガリウムヒ素(GaAs)を含む基板を備えていてもよい。低雑音増幅器はガリウムヒ素を含む基板を備えることにより消費電力を抑えることができる。この場合、低雑音増幅器は、シリコン基板上に形成できないため、RFICに含まれるCMOS回路とは別の回路を形成する。すなわち、低雑音増幅器はRFICに含まれなくなる。
 第1~4の実施の形態に従う低雑音増幅器においては、弾性波共振子としてSAW共振子を用いる。弾性波共振子はSAW共振子以外であってもよく、たとえばBAW(Bulk Acoustic Wave)共振子であっても構わない。
 今回開示された各実施の形態は、適宜組合わせて実施することも予定されている。そして、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A,1B,1C,2,3,4 低雑音増幅器、5 デュプレクサ、6 アンテナ、7 制御部、8 電力増幅器、11,12 電界効果トランジスタ、21,22,23,24,25,26,27,28 整合用線路、31,32,33,34,35 弾性波共振子、51,52,53,54,55,56 シャント端子、60 インピーダンス要素、70 シリコン基板、81,82,83 分岐回路、100 電子機器、200 RFIC、300 CMOS回路、311 電極、312 圧電膜、313 低音速膜、314 高音速膜、315 支持基板、D ドレイン端子、G ゲート端子、S ソース端子、Tin 入力端子、Tout 出力端子、Vdd ドレイン側電源。

Claims (9)

  1.  アンテナからの所定の周波数帯の受信信号を増幅するための低雑音増幅器であって、
     入力端子と、
     出力端子と、
     電界効果トランジスタと、
     前記入力端子または前記出力端子と、前記電界効果トランジスタと、を結ぶ回路から分岐された分岐回路と、を備え、前記分岐回路は、弾性波共振子と接続される、低雑音増幅器。
  2.  前記弾性波共振子は、デュプレクサの外部にある、請求項1に記載の低雑音増幅器。
  3.  前記低雑音増幅器は、第1の整合用線路と、第2の整合用線路とを、さらに備え、
     前記電界効果トランジスタは、ゲート端子とソース端子とを含み、
     前記第1の整合用線路は、前記ゲート端子および前記分岐回路に接続され、
     前記第2の整合用線路は、一方端が前記ソース端子に接続され、他方端が接地され、
     前記第1の整合用線路と前記第2の整合用線路との長さの合計が、送信信号の位相または妨害波の位相の絶対値50度に相当する長さ以下、または、50/360λ以下である、請求項1に記載の低雑音増幅器。
  4.  前記低雑音増幅器は、第1の整合用線路と、第2の整合用線路とを、さらに備え、
     前記電界効果トランジスタは、ドレイン端子とソース端子とを含み、
     前記第1の整合用線路は、前記ドレイン端子および前記分岐回路に接続され、
     前記第2の整合用線路は、一方端が前記ソース端子に接続され、他方端が接地され、
     前記第1の整合用線路と前記第2の整合用線路との長さの合計が、送信信号の位相または妨害波の位相の絶対値50度に相当する長さ以下、または、50/360λ以下である、請求項1に記載の低雑音増幅器。
  5.  前記低雑音増幅器は、CMOS回路とともにシリコン基板上に形成されている、請求項3または請求項4のいずれか1項に記載の低雑音増幅器。
  6.  前記分岐回路は、前記弾性波共振子と直列に接続された第1の可変容量素子を含む、請求項3から請求項5のいずれか1項に記載の低雑音増幅器。
  7.  前記分岐回路は、前記第1の可変容量素子と並列に接続された第2の可変容量素子をさらに含む、請求項6に記載の低雑音増幅器。
  8.  前記弾性波共振子は、
     支持基板と、
     前記支持基板上に積層された高音速膜と、
     前記高音速膜上に積層された低音速膜と、
     前記低音速膜上に積層された圧電膜と、
     前記圧電膜上に形成されたIDT(Interdigital Transducer)電極とを含み、
     前記高音速膜を伝搬するバルク波の音速は、前記圧電膜を伝搬する表面弾性波の音速よりも高く、
     前記低音速膜を伝搬するバルク波の音速は、前記圧電膜を伝搬するバルク波の音速よりも低い、請求項1から請求項7のいずれか1項に記載の低雑音増幅器。
  9.  デュプレクサと、
     前記デュプレクサを通過した信号をフィルタする弾性波共振子と、
     前記弾性波共振子と接続された、請求項1から請求項8のいずれか1項に記載の前記低雑音増幅器と、を備える、電子機器。
PCT/JP2016/059650 2015-06-11 2016-03-25 低雑音増幅器および電子機器 WO2016199475A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/836,115 US10361663B2 (en) 2015-06-11 2017-12-08 Low-noise amplifier and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-118292 2015-06-11
JP2015118292 2015-06-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/836,115 Continuation US10361663B2 (en) 2015-06-11 2017-12-08 Low-noise amplifier and electronic device

Publications (1)

Publication Number Publication Date
WO2016199475A1 true WO2016199475A1 (ja) 2016-12-15

Family

ID=57503673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059650 WO2016199475A1 (ja) 2015-06-11 2016-03-25 低雑音増幅器および電子機器

Country Status (2)

Country Link
US (1) US10361663B2 (ja)
WO (1) WO2016199475A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158094A1 (ja) * 2015-04-01 2016-10-06 株式会社村田製作所 デュプレクサ
JP2018050159A (ja) * 2016-09-21 2018-03-29 株式会社村田製作所 送受信モジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234063A (ja) * 1998-02-10 1999-08-27 Fujitsu Ltd 高周波用増幅器
JP2001136408A (ja) * 1999-11-08 2001-05-18 Maspro Denkoh Corp 棟内catvシステム、ダウンコンバータ、アップコンバータ、及び増幅装置
US6426780B1 (en) * 1998-10-14 2002-07-30 Samsung Electronics Co., Ltd. DTV receiver with low-band final I-F signal filtered for suppressing co-channel interfering NTSC audio carrier
JP2012134637A (ja) * 2010-12-20 2012-07-12 Murata Mfg Co Ltd Tvチューナー
JP2015027018A (ja) * 2013-07-29 2015-02-05 株式会社村田製作所 インピーダンス調整素子および高周波モジュール
JP2015073331A (ja) * 2010-12-24 2015-04-16 株式会社村田製作所 弾性波装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973670B1 (en) 1999-11-08 2005-12-06 Masprodenkoh Kabushikikaisha In-building CATV system, down-converter, up-converter and amplifier
US8493153B2 (en) * 2011-05-19 2013-07-23 Nokia Corporation Narrowband amplifier with improved interference suppression

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234063A (ja) * 1998-02-10 1999-08-27 Fujitsu Ltd 高周波用増幅器
US6426780B1 (en) * 1998-10-14 2002-07-30 Samsung Electronics Co., Ltd. DTV receiver with low-band final I-F signal filtered for suppressing co-channel interfering NTSC audio carrier
JP2001136408A (ja) * 1999-11-08 2001-05-18 Maspro Denkoh Corp 棟内catvシステム、ダウンコンバータ、アップコンバータ、及び増幅装置
JP2012134637A (ja) * 2010-12-20 2012-07-12 Murata Mfg Co Ltd Tvチューナー
JP2015073331A (ja) * 2010-12-24 2015-04-16 株式会社村田製作所 弾性波装置
JP2015027018A (ja) * 2013-07-29 2015-02-05 株式会社村田製作所 インピーダンス調整素子および高周波モジュール

Also Published As

Publication number Publication date
US10361663B2 (en) 2019-07-23
US20180102745A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
US11101787B2 (en) Multiplexer including filter with two types of acoustic wave resonators
US9438288B2 (en) System providing reduced intermodulation distortion
US11563423B2 (en) Filter including acoustic wave resonator in parallel with circuit element
US10483942B2 (en) Acoustic wave device with acoustically separated multi-channel feedback
US20090212861A1 (en) Low noise amplifier
WO2015001828A1 (ja) フロントエンド回路
JP2008085989A (ja) 弾性波デバイス、フィルタおよび分波器
EP2874313B1 (en) Analog active low-pass filters
US20190081612A1 (en) Signal Filtering Using Magnetic Coupling
CN104348434B (zh) 放大电路
US20190036217A1 (en) Selectable Filtering with Switching
JP2021125775A (ja) マルチプレクサ、フロントエンド回路および通信装置
US20200395974A1 (en) Signal processing device, amplifier, and method
WO2018032453A1 (zh) 一种滤波器
US10355739B2 (en) High-frequency front end circuit and communication device
WO2016199475A1 (ja) 低雑音増幅器および電子機器
US10009052B2 (en) UL CA TX-TX tunable cross-isolation method
KR102323572B1 (ko) 수신밴드 가변 필터링 기능을 갖는 다중밴드 고주파 송신 장치
WO2018123913A1 (ja) 高周波モジュール、送受信モジュールおよび通信装置
JPH1056339A (ja) 高周波増幅器
KR101592804B1 (ko) 필터 회로 및 모듈
US10985796B2 (en) Methods and apparatus for enhanced tranceiver performance using differential filtering
KR20210023725A (ko) 분파기
WO2018168603A1 (ja) 高周波モジュール及び通信装置
JPH03211904A (ja) 高周波増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16807182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16807182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP