WO2016189807A1 - Motor system - Google Patents

Motor system Download PDF

Info

Publication number
WO2016189807A1
WO2016189807A1 PCT/JP2016/002282 JP2016002282W WO2016189807A1 WO 2016189807 A1 WO2016189807 A1 WO 2016189807A1 JP 2016002282 W JP2016002282 W JP 2016002282W WO 2016189807 A1 WO2016189807 A1 WO 2016189807A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
compressor
engine
rotational force
vehicle
Prior art date
Application number
PCT/JP2016/002282
Other languages
French (fr)
Japanese (ja)
Inventor
健治 杉原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016189807A1 publication Critical patent/WO2016189807A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters

Definitions

  • the present invention relates to a motor system having a motor and a compressor.
  • Patent Document 1 discloses a starter generator in which a motor and a variable displacement swash plate compressor are connected by a common shaft, the motor generates power by power transmitted from the engine to the shaft, and the compressor compresses the air-conditioning refrigerant. Is disclosed.
  • a motor system includes a motor, a compressor that compresses an air-conditioning refrigerant, a first clutch that transmits and blocks rotational force between the motor and a drive shaft that drives a vehicle, and a motor.
  • a second clutch that transmits and shuts off the rotational force between the compressor and the compressor;
  • FIG. 1 is a block diagram showing an example of a configuration of a motor system according to Embodiment 1 Timing chart showing an example of operation of the motor system according to the first embodiment Timing chart showing an example of operation of the motor system according to the second embodiment
  • An object of the present invention is to provide a motor system that can effectively prevent power loss.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a motor system according to the first embodiment.
  • the motor system 100 is mounted on a vehicle such as a car, for example. In the following, it is assumed that the motor system 100 is mounted on a vehicle.
  • the motor system 100 includes, for example, a battery 101, an inverter 102, a compressor 103, a motor 104, an engine 105, a crankshaft 106, a pulley 107, a belt 108, a compressor side clutch 109, an engine side clutch 110, a compressor side shaft 111, A motor side shaft 112 and a control unit 113 are provided.
  • the battery 101 supplies power to the motor 104 via the inverter 102.
  • the battery 101 is charged by the motor 104 via the inverter 102.
  • the inverter 102 operates under the control of the control unit 113, converts DC power output from the battery 101 into AC power, and supplies the AC power to the motor 104. Further, the inverter 102 charges the battery 101 by converting the AC power generated by the motor 104 into DC power and supplying it to the battery 101.
  • the compressor 103 is driven by the rotation of the compressor side shaft 111 and compresses the refrigerant of the air conditioner.
  • the motor 104 receives supply of electric power from the battery 101 via the inverter 102 and rotates the motor-side shaft 112 to start the engine 105 or drive the compressor 103. Further, the motor 104 generates power with the driving force transmitted from the engine 105 and charges the battery 101 via the inverter 102.
  • An engine side clutch 110 is provided on one side of the motor side shaft 112, and a compressor side clutch 109 is provided on the other side.
  • Engine 105 drives the car.
  • the crankshaft 106, the pulley 107, and the belt 108 transmit the power generated by the engine 105 to the engine side clutch 110.
  • the crankshaft 106 is an example of a drive shaft that drives a vehicle, and transmits the rotational force generated by the engine 105.
  • the compressor-side clutch 109 transmits and shuts off rotational force between the motor 104 and the compressor 103 via the compressor-side shaft 111 under the control of the control unit 113.
  • the engine side clutch 110 transmits and shuts off the rotational force between the motor 104 and the engine 105 through the crankshaft 106, the pulley 107, and the belt 108 under the control of the control unit 113.
  • the motor 104 is connected to the drive shaft of the vehicle via the engine side clutch 110.
  • the engine side clutch 110 is connected to the motor side shaft 112, but may be configured to be connected to the crankshaft 106.
  • the control unit 113 controls the inverter 102, the compressor-side clutch 109, and the engine-side clutch 110 based on the traveling state of the vehicle and the operation request of the air conditioner.
  • a gear is provided between the crankshaft 106, the compressor side shaft 111, and the motor side shaft 112 in order to change the rotational speed.
  • FIG. 2 is a timing chart showing an example of the operation of the motor system 100 according to the first embodiment.
  • the motor system 100 starts operation when the ignition switch of the vehicle is switched from the off state to the on state.
  • control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the engine side clutch 110 to generate the rotational force generated by the motor 104. Is transmitted to the engine 105 to perform cranking ((c), (d), (f) in FIG. 2).
  • the vehicle travels at a predetermined vehicle speed ((a) in FIG. 2).
  • the control unit 113 controls the inverter 102 to stop the driving of the motor 104 by cutting off the supply of power from the battery 101 to the motor 104 ((f) in FIG. 2).
  • control unit 113 controls the engine-side clutch 110 to block the rotational force so that the rotational force generated by the engine 105 is not transmitted to the motor 104 ((d) in FIG. 2). Thus, the vehicle travels only with the driving force of the engine 105 ((c) in FIG. 2).
  • the vehicle decelerates during time T3 ((a) of FIG. 2).
  • the control unit 113 controls the engine side clutch 110 to transmit the rotational force generated by the engine 105 to the motor 104 ((d) in FIG. 2). Accordingly, the motor 104 performs power regeneration and charges the battery 101 ((f) in FIG. 2).
  • the compressor-side clutch 109 cuts off the transmission of the rotational force between the motor 104 and the compressor 103 (see FIG. 2). 2 (e)). Thereby, the loss in the compressor 103 of the power generated by the engine 105 can be eliminated.
  • the vehicle is stopped ((a) in FIG. 2), and the engine 105 is stopped by the idling stop function ((c) in FIG. 2).
  • the control unit 113 controls the engine side clutch 110 so that the rotational force is not transmitted from the motor 104 to the engine 105 even when the motor 104 is driven ((d) in FIG. 2).
  • control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the compressor-side clutch 109 to generate rotation generated by the motor 104.
  • the force is transmitted to the compressor 103, and the compressor 103 is driven ((e), (f), (g) in FIG. 2).
  • the engine-side clutch 110 does not transmit the rotational force generated by the motor 104 to the engine 105 ((c) and (d) in FIG. 2).
  • control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the engine side clutch 110 to generate the rotational force generated by the motor 104. Is transmitted to the engine 105 to perform cranking ((c), (d), (f) in FIG. 2).
  • control unit 113 controls the compressor-side clutch 109 to transmit the rotational force between the motor 104 and the compressor 103. Is temporarily blocked ((e) in FIG. 2).
  • the control unit 113 may control the compressor side clutch 109 to transmit the rotational force from the motor 104 to the compressor 103.
  • the vehicle travels at a predetermined vehicle speed ((a) in FIG. 2). Since there is an A / C request at time T7 ((b) in FIG. 2), the control unit 113 controls the compressor side clutch 109 to transmit the rotational force generated by the motor 104 to the compressor 103, The compressor 103 is driven ((e) and (g) in FIG. 2).
  • control unit 113 controls the engine side clutch 110 to block the rotational force so that the rotational force generated by the motor 104 is not transmitted to the engine 105 ((d) in FIG. 2).
  • the vehicle travels only with the driving force of the engine 105 ((c) in FIG. 2).
  • the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 2).
  • the compressor 103 stops driving ((g) in FIG. 2).
  • control unit 113 controls the inverter 102 to stop the driving of the motor 104 by cutting off the supply of power from the battery 101 to the motor 104 ((f) in FIG. 2).
  • control unit 113 controls the compressor side clutch 109 so that the rotational force is not transmitted from the motor 104 to the compressor 103 even when the motor 104 is driven ((e) in FIG. 2).
  • the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 2).
  • a predetermined vehicle speed ((a) in FIG. 2).
  • a / C request ((b) in FIG. 2).
  • control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the compressor-side clutch 109 to generate rotation generated by the motor 104.
  • the force is transmitted to the compressor 103, and the compressor 103 is driven ((e), (f), (g) in FIG. 2).
  • the engine-side clutch 110 does not transmit the rotational force generated by the motor 104 to the engine 105 ((c) and (d) in FIG. 2).
  • the vehicle decelerates during time T10 ((a) in FIG. 2).
  • the control unit 113 controls the engine side clutch 110 to transmit the rotational force generated by the engine 105 to the motor 104 ((d) in FIG. 2). Accordingly, the motor 104 performs power regeneration and charges the battery 101 ((f) in FIG. 2).
  • the control unit 113 keeps the compressor side clutch 109 in the same state as time T9 so that the rotational force is transmitted from the motor 104 to the compressor 103. ((E) of FIG. 2).
  • the rotational force generated by the engine 105 can be used not only for charging the battery 101 but also for driving the compressor 103 ((g) in FIG. 2).
  • the vehicle is stopped ((a) in FIG. 2), and the engine 105 is stopped by the idling stop function ((c) in FIG. 2).
  • the control unit 113 controls the engine side clutch 110 so that the rotational force generated by the motor 104 is not transmitted to the engine 105 ((d) in FIG. 2).
  • the rotation force is transmitted and cut off between the motor 104, the compressor 103 that compresses the air-conditioning refrigerant, and the crankshaft 106 that drives the motor 104 and the vehicle.
  • the engine-side clutch 110 and the compressor-side clutch 109 that transmits and shuts off the rotational force between the motor 104 and the compressor 103 the loss of power generated by the motor 104 is effectively reduced. Can be prevented.
  • the engine 105 that drives the vehicle is further provided, and the crankshaft 106 transmits the rotational force generated by the engine 105, so that the power generated by the motor 104 and the engine 105 is increased. Loss can be effectively prevented.
  • the motor 104 is further provided with the control unit 113 that controls the compressor-side clutch 109 and the engine-side clutch 110 based on the driving state of the vehicle and the air conditioning operation request. Rotational force transmission and interruption between the compressor 103 and the compressor 103, and transmission and interruption of the rotational force between the motor 104 and the engine 105 can be efficiently switched.
  • the control unit 113 controls the compressor side clutch 109 to transmit the rotational force between the motor 104 and the compressor 103. By shutting off, loss of power generated by the motor 104 and the engine 105 can be effectively prevented.
  • control unit 113 performs cranking by the motor 104 via the engine side clutch 110 when starting the engine 105, so that the motor 104 is not only driven by the compressor 103, Can also be used for cranking.
  • the compressor-side clutch 109 temporarily interrupts transmission of the rotational force between the motor 104 and the compressor 103 when the vehicle starts to travel, so that the engine 105 is started.
  • the load applied to the motor 104 can be reduced, and the vehicle can be accelerated smoothly.
  • the compressor-side clutch 109 is generated by the engine 105 by transmitting the rotational force to the compressor 103.
  • the rotating force can be used not only for charging the battery 101 but also for driving the compressor 103.
  • FIG. 3 is a timing chart showing an example of the operation of the motor system according to the second embodiment.
  • the present embodiment is different from the first embodiment in that the motor 104 assists driving of the vehicle.
  • Motor system 100 starts operation when an ignition switch of a vehicle such as a vehicle is switched from an off state to an on state.
  • control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the engine side clutch 110 to generate the rotational force generated by the motor 104. Is transmitted to the engine 105 and cranking is performed ((c), (d), (f) in FIG. 3).
  • the compressor-side clutch 109 since the air conditioner has not received an operation request (hereinafter referred to as “A / C request”) ((b) in FIG. 3), the compressor-side clutch 109 has a rotational force generated by the motor 104. Is not transmitted to the compressor 103 ((e) of FIG. 3). Therefore, the compressor 103 stops operating ((g) in FIG. 3). Thereby, the loss in the compressor 103 of the power generated by the motor 104 can be eliminated.
  • the vehicle travels at a predetermined vehicle speed ((a) in FIG. 3).
  • the control unit 113 controls the inverter 102 to continue the supply of electric power from the battery 101 to the motor 104, thereby assisting the motor 104 in driving the vehicle by the engine 105 ((f) in FIG. 3).
  • the difference in the output of the motor 104 is represented by the difference in the height of the graph.
  • the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 3).
  • the control unit 113 controls the inverter 102 to stop the drive of the motor 104 by cutting off the supply of power from the battery 101 to the motor 104 ((f) in FIG. 3).
  • control unit 113 controls the engine-side clutch 110 to block the rotational force so that the rotational force generated by the engine 105 is not transmitted to the motor 104 ((d) in FIG. 3). Thus, the vehicle travels only with the driving force of the engine 105 ((c) in FIG. 3).
  • the vehicle decelerates during time T24 ((a) of FIG. 3).
  • the control unit 113 controls the engine side clutch 110 to transmit the rotational force generated by the engine 105 to the motor 104 ((d) in FIG. 3).
  • the motor 104 performs power regeneration and charges the battery 101 ((f) in FIG. 3).
  • the compressor-side clutch 109 cuts off the transmission of the rotational force between the motor 104 and the compressor 103 (FIG. 3). 3 (e)). Thereby, the loss in the compressor 103 of the power generated by the engine 105 can be eliminated.
  • the car is stopped ((a) in FIG. 3), and the engine 105 is stopped by the idling stop function ((c) in FIG. 3).
  • the control unit 113 controls the engine side clutch 110 so that the rotational force is not transmitted from the motor 104 to the engine 105 even when the motor 104 is driven ((d) in FIG. 3).
  • control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the compressor-side clutch 109 to generate rotation generated by the motor 104.
  • the force is transmitted to the compressor 103 to drive the compressor 103 ((e), (f), (g) in FIG. 3).
  • the engine-side clutch 110 does not transmit the rotational force generated by the motor 104 to the engine 105 ((c) and (d) in FIG. 3).
  • control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the engine side clutch 110 to generate the rotational force generated by the motor 104. Is transmitted to the engine 105 and cranking is performed ((c), (d), (f) in FIG. 3).
  • control unit 113 controls the compressor side clutch 109 to transmit the rotational force between the motor 104 and the compressor 103. Is temporarily blocked ((e) in FIG. 3).
  • the control unit 113 may control the compressor side clutch 109 to transmit the rotational force from the motor 104 to the compressor 103.
  • the vehicle travels at a predetermined vehicle speed for a time T28 ((a) in FIG. 3).
  • the control unit 113 controls the compressor-side clutch 109 to transmit the rotational force generated by the motor 104 to the compressor 103 and drive the compressor 103 ((e) and (g in FIG. 3). )).
  • the engine-side clutch 110 is also configured such that the rotational force generated by the motor 104 is transmitted to the engine 105 ((d) in FIG. 3). That is, the motor 104 is used for both driving the compressor 103 and assisting the engine 105.
  • the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 3). Since there is no A / C request at time T29 ((b) in FIG. 3), the compressor 103 stops driving ((f) in FIG. 3).
  • control unit 113 controls the compressor side clutch 109 so that the rotational force is not transmitted from the motor 104 to the compressor 103, and stops the driving of the compressor 103 ((e) in FIG. 3). (F)).
  • control unit 113 controls the inverter 102 to continue supplying power from the battery 101 to the motor 104, thereby assisting the motor 104 in driving the vehicle by the engine 105 ((f) in FIG. 3).
  • the difference in the output of the motor 104 is represented by the difference in the height of the graph.
  • the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 3).
  • the control unit 113 controls the inverter 102 to stop the drive of the motor 104 by cutting off the supply of power from the battery 101 to the motor 104 ((f) in FIG. 3).
  • control unit 113 controls the engine side clutch 110 so that the rotational force is not transmitted from the motor 104 to the engine 105 even when the motor 104 is driven ((d) in FIG. 3). Thus, the vehicle travels only with the driving force of the engine 105 ((c) in FIG. 3).
  • the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 3).
  • a predetermined vehicle speed ((a) in FIG. 3).
  • a / C request ((b) in FIG. 3).
  • control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the compressor-side clutch 109 to generate rotation generated by the motor 104.
  • the force is transmitted to the compressor 103, and the compressor 103 is operated ((e), (f), (g) in FIG. 3).
  • the engine-side clutch 110 does not transmit the rotational force generated by the motor 104 to the engine 105 ((c) and (d) in FIG. 3).
  • the vehicle decelerates during time T32 ((a) of FIG. 3).
  • the control unit 113 controls the engine side clutch 110 to transmit the rotational force generated by the engine 105 to the motor 104 ((d) in FIG. 3).
  • the motor 104 performs power regeneration and charges the battery 101 ((f) in FIG. 3).
  • the control unit 113 keeps the compressor side clutch 109 in the same state as at time T31, and the rotational force is applied from the motor 104 to the compressor 103. It is made to transmit ((e) of FIG. 3). Thereby, the rotational force generated by the engine 105 can be used not only for charging the battery 101 but also for driving the compressor 103.
  • the vehicle is stopped ((a) in FIG. 3), and the engine 105 is stopped by the idling stop function ((c) in FIG. 3).
  • the control unit 113 controls the engine side clutch 110 so that the rotational force generated by the motor 104 is not transmitted to the engine 105 ((d) of FIG. 3).
  • loss of power generated by the motor 104 and the engine 105 can be effectively prevented.
  • FIG. 4 is a block diagram showing an example of the configuration of the motor system 200 according to the third embodiment.
  • the same elements as those of the motor system 100 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the motor system 200 is mounted on a vehicle such as a car, for example. In the following, it is assumed that the motor system 200 is mounted on a vehicle.
  • the motor system 200 includes, for example, a battery 101, an inverter 102, a compressor 103, a motor 104, a compressor side clutch 109, a compressor side shaft 111, a motor side shaft 112, a tire side clutch 201, a tire 202, a tire side shaft 203, A control unit 204 is included.
  • the inverter 102 operates under the control of the control unit 204, converts DC power output from the battery 101 into AC power, and supplies the AC power to the motor 104. Further, the inverter 102 charges the battery 101 by converting the AC power generated by the motor 104 into DC power and supplying it to the battery 101.
  • the motor 104 receives supply of electric power from the battery 101 via the inverter 102 and rotates the motor-side shaft 112 to drive the tire 202 and the compressor 103. Further, the motor 104 generates electric power with the rotational force transmitted from the tire 202 and charges the battery 101 via the inverter 102. Further, one side of the motor side shaft 112 is provided with a tire side clutch 201, and the other side is provided with a compressor side clutch 109.
  • the compressor side clutch 109 transmits and shuts off the rotational force between the motor 104 and the compressor 103 via the compressor side shaft 111 under the control of the control unit 204. Further, the tire side clutch 201 transmits and interrupts the rotational force between the motor 104 and the tire 202 via the tire side shaft 203 under the control of the control unit 204.
  • the tire-side shaft 203 is an example of a drive shaft that drives the vehicle, and transmits the rotational force generated by the motor 104 to the tire 202.
  • the control unit 204 controls the inverter 102, the compressor side clutch 109, and the tire side clutch 201 based on the traveling state of the vehicle and the operation request of the air conditioner.
  • FIG. 5 is a timing chart showing an example of the operation of the motor system 200 according to the third embodiment.
  • the motor system 200 starts operation when the ignition switch of the vehicle is switched from the off state to the on state.
  • control unit 204 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the tire-side clutch 201 to generate the rotational force generated by the motor 104. Is transmitted to the tire 202 to drive the vehicle (FIGS. 5C and 5E).
  • the compressor side clutch 109 does not transmit the rotational force generated by the motor 104 to the compressor 103 (FIG. 5). (D)). Therefore, the compressor 103 has stopped operating ((f) in FIG. 5). Thereby, the loss in the compressor 103 of the power generated by the motor 104 can be eliminated.
  • the vehicle travels at a predetermined vehicle speed ((a) in FIG. 5).
  • the motor 104 continues to be supplied with electric power from the battery 101 and is driven ((e) in FIG. 5).
  • the tire side clutch 201 transmits the rotational force generated by the motor 104 to the tire 202 and causes the vehicle to travel ((c) in FIG. 5).
  • the vehicle decelerates during time T43 ((a) of FIG. 5).
  • the tire side clutch 201 transmits the rotational force generated by the tire 202 to the motor 104 ((c) of FIG. 5).
  • the motor 104 performs power regeneration and charges the battery 101 ((e) of FIG. 5).
  • the compressor-side clutch 109 cuts off the transmission of the rotational force between the motor 104 and the compressor 103 (FIG. (D) of 5). Thereby, the loss in the compressor 103 of the rotational force produced by the tire 202 can be eliminated.
  • the control unit 204 controls the tire side clutch 201 so that the rotational force is not transmitted from the motor 104 to the tire 202 even when the motor 104 is driven ((c) of FIG. 5).
  • control unit 204 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the compressor-side clutch 109 to generate rotation generated by the motor 104.
  • the force is transmitted to the compressor 103 to drive the compressor 103 ((d), (e), (f) in FIG. 5).
  • the difference in the output of the motor 104 is expressed by the difference in the height of the graph.
  • the tire side clutch 201 does not transmit the rotational force generated by the motor 104 to the tire 202 ((c) of FIG. 5).
  • control unit 204 controls the tire-side clutch 201 to transmit the rotational force generated by the motor 104 to the tire 202, thereby causing the vehicle to travel ((c) and (e) in FIG. 5).
  • control unit 204 controls the compressor side clutch 109 to transmit the rotational force between the motor 104 and the compressor 103. Is shut off ((d) of FIG. 5).
  • the control unit 204 may control the compressor-side clutch 109 to transmit the rotational force from the motor 104 to the compressor 103.
  • the vehicle travels at a predetermined vehicle speed ((a) in FIG. 5). Since there is an A / C request at time T47 ((b) in FIG. 5), the control unit 204 controls the compressor side clutch 109 to transmit the rotational force generated by the motor 104 to the compressor 103, The compressor 103 is driven ((d) and (f) in FIG. 5).
  • the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 5). Since there is no A / C request at time T8 (FIG. 5B), the compressor 103 stops driving (FIG. 5F).
  • control unit 204 controls the compressor side clutch 109 so that the rotational force is not transmitted from the motor 104 to the compressor 103, and stops the driving of the compressor 103 ((d) in FIG. 5). (F)).
  • control unit 204 controls the compressor-side clutch 109 to transmit the rotational force generated by the motor 104 to the compressor 103 and drive the compressor 103 ((d), (f in FIG. 5). )).
  • the vehicle decelerates during time T50 ((a) of FIG. 5).
  • the tire side clutch 201 transmits the rotational force generated by the tire 202 to the motor 104 ((c) of FIG. 5).
  • the motor 104 performs power regeneration and charges the battery 101 ((e) of FIG. 5).
  • the control unit 204 keeps the compressor side clutch 109 in the same state as at time T49, and torque from the motor 104 to the compressor 103 is increased. It is made to transmit ((d) of FIG. 5).
  • the rotational force generated by the tire 202 can be used not only for charging the battery 101 but also for driving the compressor 103 ((f) in FIG. 5).
  • the control unit 204 controls the tire side clutch 201 so that the rotational force generated by the motor 104 is not transmitted to the tire 202 ((c) of FIG. 5).
  • the same effect as that of the first embodiment can be obtained even in a vehicle such as a vehicle that travels only by the driving force of the motor 104 without mounting an engine.
  • the present invention is suitable for a motor system having a motor and a compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Provided is a motor system in which loss of power can be effectively prevented. The motor system is provided with the following: a motor; a compressor that compresses air conditioning coolant; an engine-side clutch that transmits and cuts off rotary force between the motor and a crankshaft that causes the vehicle to be driven; and a compressor-side clutch that transmits and cuts off rotary force between the motor and the compressor.

Description

モータシステムMotor system
 本発明は、モータと圧縮機とを有するモータシステムに関する。 The present invention relates to a motor system having a motor and a compressor.
 従来、車両のエンジンを始動させるとともに、発電機として機能してバッテリの充電を行うモータと、空調冷媒を圧縮する圧縮機とが一体に構成されたスタータジェネレータが提案されている。 Conventionally, there has been proposed a starter generator in which a motor that starts a vehicle engine and functions as a generator to charge a battery and a compressor that compresses an air-conditioning refrigerant are integrated.
 例えば、特許文献1には、モータと容量可変型斜板式圧縮機とを共通のシャフトで連結し、エンジンからシャフトに伝達される動力によりモータが発電し、圧縮機が空調冷媒を圧縮するスタータジェネレータが開示されている。 For example, Patent Document 1 discloses a starter generator in which a motor and a variable displacement swash plate compressor are connected by a common shaft, the motor generates power by power transmitted from the engine to the shaft, and the compressor compresses the air-conditioning refrigerant. Is disclosed.
特開2013-223405号公報JP 2013-223405 A
 本発明に係るモータシステムは、モータと、空調冷媒を圧縮する圧縮機と、モータと乗物を駆動させる駆動軸との間で回転力の伝達、および、遮断を行う第1のクラッチと、モータと圧縮機との間で回転力の伝達、および、遮断を行う第2のクラッチと、を有する。 A motor system according to the present invention includes a motor, a compressor that compresses an air-conditioning refrigerant, a first clutch that transmits and blocks rotational force between the motor and a drive shaft that drives a vehicle, and a motor. A second clutch that transmits and shuts off the rotational force between the compressor and the compressor;
 本発明によれば、動力の損失を効果的に防止することができる。 According to the present invention, power loss can be effectively prevented.
実施の形態1に係るモータシステムの構成の一例を示すブロック図1 is a block diagram showing an example of a configuration of a motor system according to Embodiment 1 実施の形態1に係るモータシステムの動作の一例を示すタイミングチャートTiming chart showing an example of operation of the motor system according to the first embodiment 実施の形態2に係るモータシステムの動作の一例を示すタイミングチャートTiming chart showing an example of operation of the motor system according to the second embodiment 実施の形態3に係るモータシステムの構成の一例を示すブロック図A block diagram showing an example of a configuration of a motor system according to a third embodiment 実施の形態3に係るモータシステムの動作の一例を示すタイミングチャートTiming chart showing an example of operation of the motor system according to the third embodiment
 本発明の実施の形態の説明に先立ち、従来のモータシステムおける問題点を簡単に説明する。特許文献1の従来技術では、モータと圧縮機とでシャフトを共用するため、空調装置を動作させない場合であっても圧縮機の斜板が作動する。そのため、シャフトが回転する状況(エンジンスタート時、電力回生時など)であれば圧縮機の斜板により損失が発生するという問題を有する。 Prior to the description of the embodiment of the present invention, problems in the conventional motor system will be briefly described. In the prior art of Patent Document 1, since the shaft is shared by the motor and the compressor, the swash plate of the compressor operates even when the air conditioner is not operated. For this reason, there is a problem that loss occurs due to the swash plate of the compressor when the shaft rotates (when the engine is started, when power is regenerated, etc.).
 本発明は、動力の損失を効果的に防止することができるモータシステムを提供することを目的とする。 An object of the present invention is to provide a motor system that can effectively prevent power loss.
 以下、図面を適宜参照して、本発明の実施の形態につき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
 (実施の形態1)
 まず、実施の形態1に係るモータシステム100の構成につき、図1を参照しながら詳細に説明する。図1は、実施の形態1に係るモータシステムの構成の一例を示すブロック図である。
(Embodiment 1)
First, the configuration of the motor system 100 according to Embodiment 1 will be described in detail with reference to FIG. FIG. 1 is a block diagram illustrating an example of a configuration of a motor system according to the first embodiment.
 <モータシステムの構成>
 モータシステム100は、例えば、車などの乗物に搭載される。以下では、モータシステム100が車に搭載されているものとする。
<Configuration of motor system>
The motor system 100 is mounted on a vehicle such as a car, for example. In the following, it is assumed that the motor system 100 is mounted on a vehicle.
 モータシステム100は、例えば、バッテリ101、インバータ102、圧縮機103、モータ104、エンジン105、クランクシャフト106、プーリ107、ベルト108、圧縮機側クラッチ109、エンジン側クラッチ110、圧縮機側シャフト111、モータ側シャフト112、および、制御部113を有している。 The motor system 100 includes, for example, a battery 101, an inverter 102, a compressor 103, a motor 104, an engine 105, a crankshaft 106, a pulley 107, a belt 108, a compressor side clutch 109, an engine side clutch 110, a compressor side shaft 111, A motor side shaft 112 and a control unit 113 are provided.
 バッテリ101は、インバータ102を介して、モータ104に電力を供給する。また、バッテリ101は、インバータ102を介して、モータ104により充電される。 The battery 101 supplies power to the motor 104 via the inverter 102. The battery 101 is charged by the motor 104 via the inverter 102.
 インバータ102は、制御部113の制御により動作し、バッテリ101から出力された直流電力を交流電力に変換してモータ104に供給する。また、インバータ102は、モータ104により発電された交流電力を直流電力に変換してバッテリ101に供給することによりバッテリ101を充電する。 The inverter 102 operates under the control of the control unit 113, converts DC power output from the battery 101 into AC power, and supplies the AC power to the motor 104. Further, the inverter 102 charges the battery 101 by converting the AC power generated by the motor 104 into DC power and supplying it to the battery 101.
 圧縮機103は、圧縮機側シャフト111の回転により駆動され、空調装置の冷媒を圧縮する。 The compressor 103 is driven by the rotation of the compressor side shaft 111 and compresses the refrigerant of the air conditioner.
 モータ104は、インバータ102を介してバッテリ101から電力の供給を受けてモータ側シャフト112を回転させ、エンジン105を始動させたり、圧縮機103を駆動させたりする。また、モータ104は、エンジン105から伝達された駆動力で発電し、インバータ102を介してバッテリ101を充電する。また、モータ側シャフト112の一方にはエンジン側クラッチ110が設けられ、他方には圧縮機側クラッチ109が設けられる。 The motor 104 receives supply of electric power from the battery 101 via the inverter 102 and rotates the motor-side shaft 112 to start the engine 105 or drive the compressor 103. Further, the motor 104 generates power with the driving force transmitted from the engine 105 and charges the battery 101 via the inverter 102. An engine side clutch 110 is provided on one side of the motor side shaft 112, and a compressor side clutch 109 is provided on the other side.
 エンジン105は、車を駆動する。クランクシャフト106、プーリ107、および、ベルト108は、エンジン105により生み出された動力をエンジン側クラッチ110に伝達する。クランクシャフト106は、車を駆動する駆動軸の一例であり、エンジン105により生み出された回転力を伝達する。 Engine 105 drives the car. The crankshaft 106, the pulley 107, and the belt 108 transmit the power generated by the engine 105 to the engine side clutch 110. The crankshaft 106 is an example of a drive shaft that drives a vehicle, and transmits the rotational force generated by the engine 105.
 圧縮機側クラッチ109は、制御部113の制御により、圧縮機側シャフト111を介し、モータ104と圧縮機103との間で回転力の伝達、および、遮断を行う。 The compressor-side clutch 109 transmits and shuts off rotational force between the motor 104 and the compressor 103 via the compressor-side shaft 111 under the control of the control unit 113.
 エンジン側クラッチ110は、制御部113の制御により、クランクシャフト106、プーリ107、ベルト108を介し、モータ104とエンジン105との間で回転力の伝達、および、遮断を行う。モータ104は、エンジン側クラッチ110を介して、車の駆動軸と連結される。なお、図1では、エンジン側クラッチ110は、モータ側シャフト112と接続されるが、クランクシャフト106と接続される構成であっても良い。 The engine side clutch 110 transmits and shuts off the rotational force between the motor 104 and the engine 105 through the crankshaft 106, the pulley 107, and the belt 108 under the control of the control unit 113. The motor 104 is connected to the drive shaft of the vehicle via the engine side clutch 110. In FIG. 1, the engine side clutch 110 is connected to the motor side shaft 112, but may be configured to be connected to the crankshaft 106.
 制御部113は、車の走行状況、および、空調装置の稼働要求に基づき、インバータ102や圧縮機側クラッチ109、エンジン側クラッチ110の制御を行う。 The control unit 113 controls the inverter 102, the compressor-side clutch 109, and the engine-side clutch 110 based on the traveling state of the vehicle and the operation request of the air conditioner.
 なお、図1には示していないが、クランクシャフト106、圧縮機側シャフト111、および、モータ側シャフト112の間で回転数を変化させるため、それらの間にギアが設けられる。 Although not shown in FIG. 1, a gear is provided between the crankshaft 106, the compressor side shaft 111, and the motor side shaft 112 in order to change the rotational speed.
 <モータシステムの動作>
 つぎに、実施の形態1に係るモータシステム100の動作につき、図2を参照しながら詳細に説明する。図2は、実施の形態1に係るモータシステム100の動作の一例を示すタイミングチャートである。
<Operation of motor system>
Next, the operation of the motor system 100 according to Embodiment 1 will be described in detail with reference to FIG. FIG. 2 is a timing chart showing an example of the operation of the motor system 100 according to the first embodiment.
 モータシステム100は、車のイグニッションスイッチがオフ状態からオン状態に切り替えられて動作を開始する。 The motor system 100 starts operation when the ignition switch of the vehicle is switched from the off state to the on state.
 動作を開始してから時間T1の間、車は走行を開始して加速することにより、車速が徐々に大きくなる(図2の(a))。 During the time T1 after starting the operation, the vehicle starts running and accelerates, so that the vehicle speed gradually increases ((a) in FIG. 2).
 その際、制御部113は、インバータ102を制御して、バッテリ101からモータ104に電力を供給し、モータ104を駆動させるとともに、エンジン側クラッチ110を制御して、モータ104により生み出された回転力をエンジン105に伝達させ、クランキングを行う(図2の(c)、(d)、(f))。 At that time, the control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the engine side clutch 110 to generate the rotational force generated by the motor 104. Is transmitted to the engine 105 to perform cranking ((c), (d), (f) in FIG. 2).
 この場合、空調装置はユーザからの稼働要求(以下、「A/C要求」と記載する)を受けていないため(図2の(b))、圧縮機側クラッチ109は、モータ104により生み出された回転力を圧縮機103に伝達させない(図2の(e))。そのため、圧縮機103は動作を停止している(図2の(g))。これにより、モータ104により生み出された動力の圧縮機103における損失をなくすことができる。 In this case, since the air conditioner has not received an operation request from the user (hereinafter referred to as “A / C request”) (FIG. 2B), the compressor side clutch 109 is generated by the motor 104. The transmitted rotational force is not transmitted to the compressor 103 ((e) in FIG. 2). Therefore, the compressor 103 has stopped operating ((g) in FIG. 2). Thereby, the loss in the compressor 103 of the power generated by the motor 104 can be eliminated.
 つぎに時間T2の間、車は所定の車速で走行する(図2の(a))。その際、制御部113は、インバータ102を制御して、バッテリ101からモータ104への電力の供給を遮断することによりモータ104の駆動を停止させる(図2の(f))。 Next, during time T2, the vehicle travels at a predetermined vehicle speed ((a) in FIG. 2). At that time, the control unit 113 controls the inverter 102 to stop the driving of the motor 104 by cutting off the supply of power from the battery 101 to the motor 104 ((f) in FIG. 2).
 また、制御部113は、エンジン側クラッチ110を制御して、エンジン105により生み出された回転力がモータ104に伝達されないように回転力を遮断する(図2の(d))。これにより、車は、エンジン105の駆動力のみで走行する(図2の(c))。 Further, the control unit 113 controls the engine-side clutch 110 to block the rotational force so that the rotational force generated by the engine 105 is not transmitted to the motor 104 ((d) in FIG. 2). Thus, the vehicle travels only with the driving force of the engine 105 ((c) in FIG. 2).
 また、時間T2ではA/C要求がないため(図2の(b))、圧縮機側クラッチ109は時間T1と同じ状態に保たれる(図2の(e))。 Further, since there is no A / C request at time T2 ((b) in FIG. 2), the compressor side clutch 109 is kept in the same state as at time T1 ((e) in FIG. 2).
 つぎに時間T3の間、車は減速する(図2の(a))。その際、制御部113は、エンジン側クラッチ110を制御して、エンジン105により生み出された回転力をモータ104に伝達させる(図2の(d))。これにより、モータ104は、電力回生を行って、バッテリ101を充電する(図2の(f))。 Next, the vehicle decelerates during time T3 ((a) of FIG. 2). At that time, the control unit 113 controls the engine side clutch 110 to transmit the rotational force generated by the engine 105 to the motor 104 ((d) in FIG. 2). Accordingly, the motor 104 performs power regeneration and charges the battery 101 ((f) in FIG. 2).
 ここで、時間T3でもA/C要求がないため(図2の(b))、圧縮機側クラッチ109は、モータ104と圧縮機103との間における回転力の伝達を遮断している(図2の(e))。これにより、エンジン105により生み出された動力の圧縮機103における損失をなくすことができる。 Here, since there is no A / C request even at time T3 ((b) of FIG. 2), the compressor-side clutch 109 cuts off the transmission of the rotational force between the motor 104 and the compressor 103 (see FIG. 2). 2 (e)). Thereby, the loss in the compressor 103 of the power generated by the engine 105 can be eliminated.
 つぎに時間T4の間、車は停止中であり(図2の(a))、アイドリングストップ機能によりエンジン105が停止している(図2の(c))。その際、制御部113は、エンジン側クラッチ110を制御して、モータ104が駆動した場合でもモータ104からエンジン105に回転力が伝達しないようにする(図2の(d))。 Next, during time T4, the vehicle is stopped ((a) in FIG. 2), and the engine 105 is stopped by the idling stop function ((c) in FIG. 2). At that time, the control unit 113 controls the engine side clutch 110 so that the rotational force is not transmitted from the motor 104 to the engine 105 even when the motor 104 is driven ((d) in FIG. 2).
 また、時間T4でもA/C要求がないため(図2の(b))、圧縮機側クラッチ109は時間T1~T3と同じ状態に保たれる(図2の(e))。 Since there is no A / C request at time T4 ((b) in FIG. 2), the compressor side clutch 109 is kept in the same state as at times T1 to T3 ((e) in FIG. 2).
 つぎに時間T5の間、時間T4と同様に車が停止中であるため、車速は0になる(図2の(a))。ここで、A/C要求があったものとする(図2の(b))。 Next, during time T5, since the vehicle is stopped as in time T4, the vehicle speed becomes 0 ((a) in FIG. 2). Here, it is assumed that there is an A / C request ((b) in FIG. 2).
 この場合、制御部113は、インバータ102を制御して、バッテリ101からモータ104に電力を供給し、モータ104を駆動させるとともに、圧縮機側クラッチ109を制御して、モータ104により生み出された回転力を圧縮機103に伝達させ、圧縮機103を駆動させる(図2の(e)、(f)、(g))。 In this case, the control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the compressor-side clutch 109 to generate rotation generated by the motor 104. The force is transmitted to the compressor 103, and the compressor 103 is driven ((e), (f), (g) in FIG. 2).
 その際、エンジン側クラッチ110は、モータ104により生み出された回転力をエンジン105に伝達させない(図2の(c)、(d))。 At that time, the engine-side clutch 110 does not transmit the rotational force generated by the motor 104 to the engine 105 ((c) and (d) in FIG. 2).
 つぎに時間T6の間、車が再び走行を開始して加速することにより、車速が徐々に大きくなる(図2の(a))。 Next, during time T6, the vehicle starts running again and accelerates, so that the vehicle speed gradually increases ((a) in FIG. 2).
 その際、制御部113は、インバータ102を制御して、バッテリ101からモータ104に電力を供給し、モータ104を駆動させるとともに、エンジン側クラッチ110を制御して、モータ104により生み出された回転力をエンジン105に伝達させ、クランキングを行う(図2の(c)、(d)、(f))。 At that time, the control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the engine side clutch 110 to generate the rotational force generated by the motor 104. Is transmitted to the engine 105 to perform cranking ((c), (d), (f) in FIG. 2).
 また、時間T6ではA/C要求があるものの(図2の(b))、制御部113は、圧縮機側クラッチ109を制御して、モータ104と圧縮機103との間における回転力の伝達を一時的に遮断する(図2の(e))。 In addition, although there is an A / C request at time T6 ((b) in FIG. 2), the control unit 113 controls the compressor-side clutch 109 to transmit the rotational force between the motor 104 and the compressor 103. Is temporarily blocked ((e) in FIG. 2).
 これにより、エンジン105の始動時にモータ104にかかる負荷を低減することができ、車を円滑に加速させることができる。なお、モータ104が高出力である場合などは、制御部113が、圧縮機側クラッチ109を制御して、モータ104から圧縮機103に回転力を伝達させることとしてもよい。 Thereby, the load applied to the motor 104 when the engine 105 is started can be reduced, and the vehicle can be accelerated smoothly. When the motor 104 has a high output, the control unit 113 may control the compressor side clutch 109 to transmit the rotational force from the motor 104 to the compressor 103.
 つぎに時間T7の間、車は所定の車速で走行する(図2の(a))。時間T7ではA/C要求があるため(図2の(b))、制御部113は、圧縮機側クラッチ109を制御して、モータ104により生み出された回転力を圧縮機103に伝達させ、圧縮機103を駆動させる(図2の(e)、(g))。 Next, during time T7, the vehicle travels at a predetermined vehicle speed ((a) in FIG. 2). Since there is an A / C request at time T7 ((b) in FIG. 2), the control unit 113 controls the compressor side clutch 109 to transmit the rotational force generated by the motor 104 to the compressor 103, The compressor 103 is driven ((e) and (g) in FIG. 2).
 その際、制御部113は、エンジン側クラッチ110を制御して、モータ104により生み出された回転力がエンジン105に伝達されないように回転力を遮断する(図2の(d))。これにより、車は、エンジン105の駆動力のみで走行する(図2の(c))。 At that time, the control unit 113 controls the engine side clutch 110 to block the rotational force so that the rotational force generated by the motor 104 is not transmitted to the engine 105 ((d) in FIG. 2). Thus, the vehicle travels only with the driving force of the engine 105 ((c) in FIG. 2).
 つぎに時間T8の間、車は引き続き所定の車速で走行する(図2の(a))。時間T8では、A/C要求がないため(図2の(b))、圧縮機103は駆動を停止する(図2の(g))。 Next, during time T8, the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 2). At time T8, since there is no A / C request ((b) in FIG. 2), the compressor 103 stops driving ((g) in FIG. 2).
 具体的には、制御部113は、インバータ102を制御して、バッテリ101からモータ104への電力の供給を遮断することによりモータ104の駆動を停止させる(図2の(f))。 Specifically, the control unit 113 controls the inverter 102 to stop the driving of the motor 104 by cutting off the supply of power from the battery 101 to the motor 104 ((f) in FIG. 2).
 また、制御部113は、圧縮機側クラッチ109を制御して、モータ104が駆動した場合でもモータ104から圧縮機103に回転力が伝達しないようにする(図2の(e))。 Further, the control unit 113 controls the compressor side clutch 109 so that the rotational force is not transmitted from the motor 104 to the compressor 103 even when the motor 104 is driven ((e) in FIG. 2).
 つぎに時間T9の間、車は引き続き所定の車速で走行する(図2の(a))。ここで、A/C要求があったものとする(図2の(b))。 Next, during time T9, the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 2). Here, it is assumed that there is an A / C request ((b) in FIG. 2).
 この場合、制御部113は、インバータ102を制御して、バッテリ101からモータ104に電力を供給し、モータ104を駆動させるとともに、圧縮機側クラッチ109を制御して、モータ104により生み出された回転力を圧縮機103に伝達させ、圧縮機103を駆動させる(図2の(e)、(f)、(g))。 In this case, the control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the compressor-side clutch 109 to generate rotation generated by the motor 104. The force is transmitted to the compressor 103, and the compressor 103 is driven ((e), (f), (g) in FIG. 2).
 その際、エンジン側クラッチ110は、モータ104により生み出された回転力をエンジン105に伝達させない(図2の(c)、(d))。 At that time, the engine-side clutch 110 does not transmit the rotational force generated by the motor 104 to the engine 105 ((c) and (d) in FIG. 2).
 つぎに時間T10の間、車は減速する(図2の(a))。その際、制御部113は、エンジン側クラッチ110を制御して、エンジン105により生み出された回転力をモータ104に伝達させる(図2の(d))。これにより、モータ104は、電力回生を行って、バッテリ101を充電する(図2の(f))。 Next, the vehicle decelerates during time T10 ((a) in FIG. 2). At that time, the control unit 113 controls the engine side clutch 110 to transmit the rotational force generated by the engine 105 to the motor 104 ((d) in FIG. 2). Accordingly, the motor 104 performs power regeneration and charges the battery 101 ((f) in FIG. 2).
 また、A/C要求があるため(図2の(b))、制御部113は、圧縮機側クラッチ109を時間T9と同じ状態に保ち、モータ104から圧縮機103に回転力が伝達するようにする(図2の(e))。これにより、エンジン105により生み出された回転力を、バッテリ101の充電だけでなく、圧縮機103の駆動にも用いることができる(図2の(g))。 Further, since there is an A / C request ((b) in FIG. 2), the control unit 113 keeps the compressor side clutch 109 in the same state as time T9 so that the rotational force is transmitted from the motor 104 to the compressor 103. ((E) of FIG. 2). Thus, the rotational force generated by the engine 105 can be used not only for charging the battery 101 but also for driving the compressor 103 ((g) in FIG. 2).
 つぎに時間T11の間、車は停止中であり(図2の(a))、アイドリングストップ機能によりエンジン105は停止している(図2の(c))。その際、制御部113は、エンジン側クラッチ110を制御して、モータ104により生み出された回転力がエンジン105に伝達されないようにする(図2の(d))。 Next, during the time T11, the vehicle is stopped ((a) in FIG. 2), and the engine 105 is stopped by the idling stop function ((c) in FIG. 2). At that time, the control unit 113 controls the engine side clutch 110 so that the rotational force generated by the motor 104 is not transmitted to the engine 105 ((d) in FIG. 2).
 このように、本実施の形態によれば、モータ104と、空調冷媒を圧縮する圧縮機103と、モータ104と乗物を駆動させるクランクシャフト106との間で回転力の伝達、および、遮断を行うエンジン側クラッチ110と、モータ104と圧縮機103との間で回転力の伝達、および、遮断を行う圧縮機側クラッチ109と、を有することにより、モータ104により生み出された動力の損失を効果的に防止することができる。 As described above, according to the present embodiment, the rotation force is transmitted and cut off between the motor 104, the compressor 103 that compresses the air-conditioning refrigerant, and the crankshaft 106 that drives the motor 104 and the vehicle. By having the engine-side clutch 110 and the compressor-side clutch 109 that transmits and shuts off the rotational force between the motor 104 and the compressor 103, the loss of power generated by the motor 104 is effectively reduced. Can be prevented.
 また、本実施の形態によれば、車を駆動するエンジン105をさらに有し、クランクシャフト106がエンジン105により生み出された回転力を伝達することにより、モータ104やエンジン105により生み出された動力の損失を効果的に防止することができる。 In addition, according to the present embodiment, the engine 105 that drives the vehicle is further provided, and the crankshaft 106 transmits the rotational force generated by the engine 105, so that the power generated by the motor 104 and the engine 105 is increased. Loss can be effectively prevented.
 また、本実施の形態によれば、車の走行状況、および、空調の稼働要求に基づき、圧縮機側クラッチ109、および、エンジン側クラッチ110を制御する制御部113をさらに有することにより、モータ104と圧縮機103との間で回転力の伝達、および、遮断と、モータ104とエンジン105との間で回転力の伝達、および、遮断とを効率的に切り替えることができる。 Further, according to the present embodiment, the motor 104 is further provided with the control unit 113 that controls the compressor-side clutch 109 and the engine-side clutch 110 based on the driving state of the vehicle and the air conditioning operation request. Rotational force transmission and interruption between the compressor 103 and the compressor 103, and transmission and interruption of the rotational force between the motor 104 and the engine 105 can be efficiently switched.
 また、本実施の形態によれば、空調の稼働要求を受け付けていない場合、制御部113が、圧縮機側クラッチ109を制御して、モータ104と圧縮機103との間における回転力の伝達を遮断することにより、モータ104やエンジン105により生み出された動力の損失を効果的に防止することができる。 Further, according to the present embodiment, when the air conditioning operation request is not received, the control unit 113 controls the compressor side clutch 109 to transmit the rotational force between the motor 104 and the compressor 103. By shutting off, loss of power generated by the motor 104 and the engine 105 can be effectively prevented.
 また、本実施の形態によれば、制御部113が、エンジン105の始動時に、モータ104によりエンジン側クラッチ110を介してクランキングを行うことにより、モータ104を圧縮機103の駆動だけでなく、クランキングにも使用することができる。 Further, according to the present embodiment, the control unit 113 performs cranking by the motor 104 via the engine side clutch 110 when starting the engine 105, so that the motor 104 is not only driven by the compressor 103, Can also be used for cranking.
 また、本実施の形態によれば、圧縮機側クラッチ109は、車の走行開始時に一時的にモータ104と圧縮機103との間における回転力の伝達を遮断することにより、エンジン105の始動時にモータ104にかかる負荷を低減することができ、車を円滑に加速させることができる。 Further, according to the present embodiment, the compressor-side clutch 109 temporarily interrupts transmission of the rotational force between the motor 104 and the compressor 103 when the vehicle starts to travel, so that the engine 105 is started. The load applied to the motor 104 can be reduced, and the vehicle can be accelerated smoothly.
 また、本実施の形態によれば、車が減速し、モータ104による電力回生が行われる場合に、圧縮機側クラッチ109が、回転力を圧縮機103に伝達することにより、エンジン105により生み出された回転力を、バッテリ101の充電だけでなく、圧縮機103の駆動にも用いることができる。 Further, according to the present embodiment, when the vehicle decelerates and power regeneration is performed by the motor 104, the compressor-side clutch 109 is generated by the engine 105 by transmitting the rotational force to the compressor 103. The rotating force can be used not only for charging the battery 101 but also for driving the compressor 103.
 (実施の形態2)
 実施の形態2では、エンジン105による車の駆動をモータ104が補助する場合について、図1、図3を用いて説明する。図3は、実施の形態2に係るモータシステムの動作の一例を示すタイミングチャートである。なお、本実施の形態は、モータ104が車の駆動を補助する点で実施の形態1とは異なる。
(Embodiment 2)
In the second embodiment, the case where the motor 104 assists the driving of the vehicle by the engine 105 will be described with reference to FIGS. FIG. 3 is a timing chart showing an example of the operation of the motor system according to the second embodiment. The present embodiment is different from the first embodiment in that the motor 104 assists driving of the vehicle.
 <モータシステムの動作>
 モータシステム100は、車両等の乗物のイグニッションスイッチがオフ状態からオン状態に切り替えられて動作を開始する。
<Operation of motor system>
Motor system 100 starts operation when an ignition switch of a vehicle such as a vehicle is switched from an off state to an on state.
 動作を開始してから時間T21の間、車は走行を開始して加速することにより、車速が徐々に大きくなる(図3の(a))。 During the time T21 after starting the operation, the vehicle starts running and accelerates, so that the vehicle speed gradually increases ((a) in FIG. 3).
 その際、制御部113は、インバータ102を制御して、バッテリ101からモータ104に電力を供給し、モータ104を駆動させるとともに、エンジン側クラッチ110を制御して、モータ104により生み出された回転力をエンジン105に伝達させ、クランキングを行う(図3の(c)、(d)、(f))。 At that time, the control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the engine side clutch 110 to generate the rotational force generated by the motor 104. Is transmitted to the engine 105 and cranking is performed ((c), (d), (f) in FIG. 3).
 この場合、空調装置は稼働要求(以下、「A/C要求」と記載する)を受けていないため(図3の(b))、圧縮機側クラッチ109は、モータ104により生み出された回転力を圧縮機103に伝達させない(図3の(e))。そのため、圧縮機103は動作を停止している(図3の(g))。これにより、モータ104により生み出された動力の圧縮機103における損失をなくすことができる。 In this case, since the air conditioner has not received an operation request (hereinafter referred to as “A / C request”) ((b) in FIG. 3), the compressor-side clutch 109 has a rotational force generated by the motor 104. Is not transmitted to the compressor 103 ((e) of FIG. 3). Therefore, the compressor 103 stops operating ((g) in FIG. 3). Thereby, the loss in the compressor 103 of the power generated by the motor 104 can be eliminated.
 つぎに時間T22の間、車は所定の車速で走行する(図3の(a))。その際、制御部113は、インバータ102を制御して、バッテリ101からモータ104への電力の供給を継続することにより、エンジン105による車の駆動をモータ104に補助させる(図3の(f))。なお、図3の(f)では、モータ104の出力の違いをグラフの高さの違いで表現している。 Next, during time T22, the vehicle travels at a predetermined vehicle speed ((a) in FIG. 3). At that time, the control unit 113 controls the inverter 102 to continue the supply of electric power from the battery 101 to the motor 104, thereby assisting the motor 104 in driving the vehicle by the engine 105 ((f) in FIG. 3). ). In FIG. 3F, the difference in the output of the motor 104 is represented by the difference in the height of the graph.
 また、時間T22ではA/C要求がないため(図3の(b))、圧縮機側クラッチ109は時間T21と同じ状態に保たれる(図3の(e))。 Further, since there is no A / C request at time T22 ((b) in FIG. 3), the compressor side clutch 109 is kept in the same state as at time T21 ((e) in FIG. 3).
 つぎに時間T23の間、車は引き続き所定の車速で走行する(図3の(a))。その際、制御部113は、インバータ102を制御して、バッテリ101からモータ104への電力の供給を遮断することによりモータ104の駆動を停止させる(図3の(f))。 Next, during time T23, the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 3). At that time, the control unit 113 controls the inverter 102 to stop the drive of the motor 104 by cutting off the supply of power from the battery 101 to the motor 104 ((f) in FIG. 3).
 また、制御部113は、エンジン側クラッチ110を制御して、エンジン105により生み出された回転力がモータ104に伝達されないように回転力を遮断する(図3の(d))。これにより、車は、エンジン105の駆動力のみで走行する(図3の(c))。 Further, the control unit 113 controls the engine-side clutch 110 to block the rotational force so that the rotational force generated by the engine 105 is not transmitted to the motor 104 ((d) in FIG. 3). Thus, the vehicle travels only with the driving force of the engine 105 ((c) in FIG. 3).
 また、時間T23でもA/C要求がないため(図3の(b))、圧縮機側クラッチ109は時間T21、T22と同じ状態に保たれる(図3の(e))。 Also, since there is no A / C request at time T23 ((b) in FIG. 3), the compressor side clutch 109 is kept in the same state as at times T21 and T22 ((e) in FIG. 3).
 つぎに時間T24の間、車は減速する(図3の(a))。その際、制御部113は、エンジン側クラッチ110を制御して、エンジン105により生み出された回転力をモータ104に伝達させる(図3の(d))。これにより、モータ104は、電力回生を行って、バッテリ101を充電する(図3の(f))。 Next, the vehicle decelerates during time T24 ((a) of FIG. 3). At that time, the control unit 113 controls the engine side clutch 110 to transmit the rotational force generated by the engine 105 to the motor 104 ((d) in FIG. 3). Thus, the motor 104 performs power regeneration and charges the battery 101 ((f) in FIG. 3).
 ここで、時間T24でもA/C要求がないため(図3の(b))、圧縮機側クラッチ109は、モータ104と圧縮機103との間における回転力の伝達を遮断している(図3の(e))。これにより、エンジン105により生み出された動力の圧縮機103における損失をなくすことができる。 Here, since there is no A / C request at time T24 (FIG. 3B), the compressor-side clutch 109 cuts off the transmission of the rotational force between the motor 104 and the compressor 103 (FIG. 3). 3 (e)). Thereby, the loss in the compressor 103 of the power generated by the engine 105 can be eliminated.
 つぎに時間T25の間、車は停止中であり(図3の(a))、アイドリングストップ機能によりエンジン105が停止している(図3の(c))。その際、制御部113は、エンジン側クラッチ110を制御して、モータ104が駆動した場合でもモータ104からエンジン105に回転力が伝達しないようにする(図3の(d))。 Next, during time T25, the car is stopped ((a) in FIG. 3), and the engine 105 is stopped by the idling stop function ((c) in FIG. 3). At that time, the control unit 113 controls the engine side clutch 110 so that the rotational force is not transmitted from the motor 104 to the engine 105 even when the motor 104 is driven ((d) in FIG. 3).
 また、時間T25でもA/C要求がないため(図3の(b))、圧縮機側クラッチ109は時間T21~T24と同じ状態に保たれる(図3の(e))。 Also, since there is no A / C request at time T25 (FIG. 3B), the compressor side clutch 109 is kept in the same state as time T21 to T24 (FIG. 3E).
 つぎに時間T26の間、時間T25と同様に車が停止中であるため、車速は0になる(図3の(a))。ここで、A/C要求があったものとする(図3の(b))。 Next, during time T26, since the vehicle is stopped similarly to time T25, the vehicle speed becomes 0 ((a) in FIG. 3). Here, it is assumed that there is an A / C request ((b) in FIG. 3).
 この場合、制御部113は、インバータ102を制御して、バッテリ101からモータ104に電力を供給し、モータ104を駆動させるとともに、圧縮機側クラッチ109を制御して、モータ104により生み出された回転力を圧縮機103に伝達させ、圧縮機103を駆動させる(図3の(e)、(f)、(g))。 In this case, the control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the compressor-side clutch 109 to generate rotation generated by the motor 104. The force is transmitted to the compressor 103 to drive the compressor 103 ((e), (f), (g) in FIG. 3).
 その際、エンジン側クラッチ110は、モータ104により生み出された回転力をエンジン105に伝達させない(図3の(c)、(d))。 At that time, the engine-side clutch 110 does not transmit the rotational force generated by the motor 104 to the engine 105 ((c) and (d) in FIG. 3).
 つぎに時間T27の間、車が再び走行を開始して加速することにより、車速が徐々に大きくなる(図3の(a))。 Next, during time T27, the vehicle starts running again and accelerates, so that the vehicle speed gradually increases ((a) in FIG. 3).
 その際、制御部113は、インバータ102を制御して、バッテリ101からモータ104に電力を供給し、モータ104を駆動させるとともに、エンジン側クラッチ110を制御して、モータ104により生み出された回転力をエンジン105に伝達させ、クランキングを行う(図3の(c)、(d)、(f))。 At that time, the control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the engine side clutch 110 to generate the rotational force generated by the motor 104. Is transmitted to the engine 105 and cranking is performed ((c), (d), (f) in FIG. 3).
 また、時間T27ではA/C要求があるものの(図3の(b))、制御部113は、圧縮機側クラッチ109を制御して、モータ104と圧縮機103との間における回転力の伝達を一時的に遮断する(図3の(e))。 Although there is an A / C request at time T27 ((b) in FIG. 3), the control unit 113 controls the compressor side clutch 109 to transmit the rotational force between the motor 104 and the compressor 103. Is temporarily blocked ((e) in FIG. 3).
 これにより、エンジン105の始動時にモータ104にかかる負荷を低減することができ、車を円滑に加速させることができる。なお、モータ104が高出力である場合などは、制御部113が、圧縮機側クラッチ109を制御して、モータ104から圧縮機103に回転力を伝達させることとしてもよい。 Thereby, the load applied to the motor 104 when the engine 105 is started can be reduced, and the vehicle can be accelerated smoothly. When the motor 104 has a high output, the control unit 113 may control the compressor side clutch 109 to transmit the rotational force from the motor 104 to the compressor 103.
 つぎに時間T28の間、車は所定の車速で走行する(図3の(a))。その際、制御部113は、圧縮機側クラッチ109を制御して、モータ104により生み出された回転力を圧縮機103に伝達させ、圧縮機103を駆動させる(図3の(e)、(g))。 Next, the vehicle travels at a predetermined vehicle speed for a time T28 ((a) in FIG. 3). At that time, the control unit 113 controls the compressor-side clutch 109 to transmit the rotational force generated by the motor 104 to the compressor 103 and drive the compressor 103 ((e) and (g in FIG. 3). )).
 ここで、エンジン側クラッチ110も、モータ104により生み出された回転力がエンジン105に伝達されるようになっている(図3の(d))。すなわち、モータ104は、圧縮機103の駆動と、エンジン105の補助の両方に用いられる。 Here, the engine-side clutch 110 is also configured such that the rotational force generated by the motor 104 is transmitted to the engine 105 ((d) in FIG. 3). That is, the motor 104 is used for both driving the compressor 103 and assisting the engine 105.
 つぎに時間T29の間、車は引き続き所定の車速で走行する(図3の(a))。時間T29ではA/C要求がないため(図3の(b))、圧縮機103は駆動を停止する(図3の(f))。 Next, during time T29, the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 3). Since there is no A / C request at time T29 ((b) in FIG. 3), the compressor 103 stops driving ((f) in FIG. 3).
 具体的には、制御部113は、圧縮機側クラッチ109を制御して、モータ104から圧縮機103に回転力が伝達しないようにし、圧縮機103の駆動を停止させる(図3の(e)、(f))。 Specifically, the control unit 113 controls the compressor side clutch 109 so that the rotational force is not transmitted from the motor 104 to the compressor 103, and stops the driving of the compressor 103 ((e) in FIG. 3). (F)).
 また、制御部113は、インバータ102を制御して、バッテリ101からモータ104への電力の供給を継続することにより、エンジン105による車の駆動をモータ104に補助させる(図3の(f))。なお、図3の(f)では、モータ104の出力の違いをグラフの高さの違いで表現している。 Further, the control unit 113 controls the inverter 102 to continue supplying power from the battery 101 to the motor 104, thereby assisting the motor 104 in driving the vehicle by the engine 105 ((f) in FIG. 3). . In FIG. 3F, the difference in the output of the motor 104 is represented by the difference in the height of the graph.
 つぎに時間T30の間、車は引き続き所定の車速で走行する(図3の(a))。その際、制御部113は、インバータ102を制御して、バッテリ101からモータ104への電力の供給を遮断することによりモータ104の駆動を停止させる(図3の(f))。 Next, during time T30, the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 3). At that time, the control unit 113 controls the inverter 102 to stop the drive of the motor 104 by cutting off the supply of power from the battery 101 to the motor 104 ((f) in FIG. 3).
 また、制御部113は、エンジン側クラッチ110を制御して、モータ104が駆動した場合でもモータ104からエンジン105に回転力が伝達しないようにする(図3の(d))。これにより、車は、エンジン105の駆動力のみで走行する(図3の(c))。 Further, the control unit 113 controls the engine side clutch 110 so that the rotational force is not transmitted from the motor 104 to the engine 105 even when the motor 104 is driven ((d) in FIG. 3). Thus, the vehicle travels only with the driving force of the engine 105 ((c) in FIG. 3).
 つぎに時間T31の間、車が引き続き所定の車速で走行する(図3の(a))。ここで、A/C要求があったものとする(図3の(b))。 Next, during time T31, the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 3). Here, it is assumed that there is an A / C request ((b) in FIG. 3).
 この場合、制御部113は、インバータ102を制御して、バッテリ101からモータ104に電力を供給し、モータ104を駆動させるとともに、圧縮機側クラッチ109を制御して、モータ104により生み出された回転力を圧縮機103に伝達させ、圧縮機103を稼働させる(図3の(e)、(f)、(g))。 In this case, the control unit 113 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the compressor-side clutch 109 to generate rotation generated by the motor 104. The force is transmitted to the compressor 103, and the compressor 103 is operated ((e), (f), (g) in FIG. 3).
 その際、エンジン側クラッチ110は、モータ104により生み出された回転力をエンジン105に伝達させない(図3の(c)、(d))。 At that time, the engine-side clutch 110 does not transmit the rotational force generated by the motor 104 to the engine 105 ((c) and (d) in FIG. 3).
 つぎに時間T32の間、車は減速する(図3の(a))。その際、制御部113は、エンジン側クラッチ110を制御して、エンジン105により生み出された回転力をモータ104に伝達させる(図3の(d))。これにより、モータ104は、電力回生を行って、バッテリ101を充電する(図3の(f))。 Next, the vehicle decelerates during time T32 ((a) of FIG. 3). At that time, the control unit 113 controls the engine side clutch 110 to transmit the rotational force generated by the engine 105 to the motor 104 ((d) in FIG. 3). Thus, the motor 104 performs power regeneration and charges the battery 101 ((f) in FIG. 3).
 また、時間T32ではA/C要求があるため(図3の(b))、制御部113は、圧縮機側クラッチ109を時間T31と同じ状態に保ち、モータ104から圧縮機103に回転力が伝達するようにする(図3の(e))。これにより、エンジン105により生み出された回転力を、バッテリ101の充電だけでなく、圧縮機103の駆動にも用いることができる。 Further, since there is an A / C request at time T32 ((b) in FIG. 3), the control unit 113 keeps the compressor side clutch 109 in the same state as at time T31, and the rotational force is applied from the motor 104 to the compressor 103. It is made to transmit ((e) of FIG. 3). Thereby, the rotational force generated by the engine 105 can be used not only for charging the battery 101 but also for driving the compressor 103.
 つぎに時間T33の間、車が停止中であり(図3の(a))、アイドリングストップ機能によりエンジン105が停止している(図3の(c))。その際、制御部113は、エンジン側クラッチ110を制御して、モータ104により生み出された回転力がエンジン105に伝達されないようにする(図3の(d))。 Next, during time T33, the vehicle is stopped ((a) in FIG. 3), and the engine 105 is stopped by the idling stop function ((c) in FIG. 3). At that time, the control unit 113 controls the engine side clutch 110 so that the rotational force generated by the motor 104 is not transmitted to the engine 105 ((d) of FIG. 3).
 このように、本実施の形態によれば、上記実施の形態1の場合と同様に、モータ104やエンジン105により生み出された動力の損失を効果的に防止することができる。 Thus, according to the present embodiment, as in the case of the first embodiment, loss of power generated by the motor 104 and the engine 105 can be effectively prevented.
 (実施の形態3)
 実施の形態3では、車の駆動をモータ104が行う場合について説明する。図4は、実施の形態3に係るモータシステム200の構成の一例を示すブロック図である。なお、図4において、図1に示したモータシステム100と同様の要素については同一符号を付し、その説明を省略する。
(Embodiment 3)
In the third embodiment, the case where the motor 104 drives the vehicle will be described. FIG. 4 is a block diagram showing an example of the configuration of the motor system 200 according to the third embodiment. In FIG. 4, the same elements as those of the motor system 100 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
 <モータシステムの構成>
 モータシステム200は、例えば、車などの乗物に搭載される。以下では、モータシステム200が車に搭載されているものとする。
<Configuration of motor system>
The motor system 200 is mounted on a vehicle such as a car, for example. In the following, it is assumed that the motor system 200 is mounted on a vehicle.
 モータシステム200は、例えば、バッテリ101、インバータ102、圧縮機103、モータ104、圧縮機側クラッチ109、圧縮機側シャフト111、モータ側シャフト112、タイヤ側クラッチ201、タイヤ202、タイヤ側シャフト203、制御部204を有している。 The motor system 200 includes, for example, a battery 101, an inverter 102, a compressor 103, a motor 104, a compressor side clutch 109, a compressor side shaft 111, a motor side shaft 112, a tire side clutch 201, a tire 202, a tire side shaft 203, A control unit 204 is included.
 インバータ102は、制御部204の制御により動作し、バッテリ101から出力された直流電力を交流電力に変換してモータ104に供給する。また、インバータ102は、モータ104により発電された交流電力を直流電力に変換してバッテリ101に供給することによりバッテリ101を充電する。 The inverter 102 operates under the control of the control unit 204, converts DC power output from the battery 101 into AC power, and supplies the AC power to the motor 104. Further, the inverter 102 charges the battery 101 by converting the AC power generated by the motor 104 into DC power and supplying it to the battery 101.
 モータ104は、インバータ102を介してバッテリ101から電力の供給を受けてモータ側シャフト112を回転させ、タイヤ202や圧縮機103を駆動させる。また、モータ104は、タイヤ202から伝達された回転力で発電し、インバータ102を介してバッテリ101を充電する。また、モータ側シャフト112の一方にはタイヤ側クラッチ201が設けられ、他方には圧縮機側クラッチ109が設けられる。 The motor 104 receives supply of electric power from the battery 101 via the inverter 102 and rotates the motor-side shaft 112 to drive the tire 202 and the compressor 103. Further, the motor 104 generates electric power with the rotational force transmitted from the tire 202 and charges the battery 101 via the inverter 102. Further, one side of the motor side shaft 112 is provided with a tire side clutch 201, and the other side is provided with a compressor side clutch 109.
 圧縮機側クラッチ109は、制御部204の制御により、圧縮機側シャフト111を介し、モータ104と圧縮機103との間で回転力の伝達、および、遮断を行う。また、タイヤ側クラッチ201は、制御部204の制御により、タイヤ側シャフト203を介し、モータ104とタイヤ202との間で回転力の伝達、および、遮断を行う。タイヤ側シャフト203は、車を駆動する駆動軸の一例であり、モータ104により生み出された回転力をタイヤ202に伝達する。 The compressor side clutch 109 transmits and shuts off the rotational force between the motor 104 and the compressor 103 via the compressor side shaft 111 under the control of the control unit 204. Further, the tire side clutch 201 transmits and interrupts the rotational force between the motor 104 and the tire 202 via the tire side shaft 203 under the control of the control unit 204. The tire-side shaft 203 is an example of a drive shaft that drives the vehicle, and transmits the rotational force generated by the motor 104 to the tire 202.
 制御部204は、車の走行状況、および、空調装置の稼働要求に基づき、インバータ102、圧縮機側クラッチ109、および、タイヤ側クラッチ201の制御を行う。 The control unit 204 controls the inverter 102, the compressor side clutch 109, and the tire side clutch 201 based on the traveling state of the vehicle and the operation request of the air conditioner.
 <モータシステムの動作>
 つぎに、実施の形態3に係るモータシステム200の動作につき、図5を参照しながら詳細に説明する。図5は、実施の形態3に係るモータシステム200の動作の一例を示すタイミングチャートである。
<Operation of motor system>
Next, the operation of the motor system 200 according to Embodiment 3 will be described in detail with reference to FIG. FIG. 5 is a timing chart showing an example of the operation of the motor system 200 according to the third embodiment.
 モータシステム200は、車のイグニッションスイッチがオフ状態からオン状態に切り替えられて動作を開始する。 The motor system 200 starts operation when the ignition switch of the vehicle is switched from the off state to the on state.
 動作を開始してからの時間T41の間、車は走行を開始して加速することにより、車速が徐々に大きくなる(図5の(a))。 During the time T41 after the operation is started, the vehicle starts running and accelerates, so that the vehicle speed gradually increases ((a) in FIG. 5).
 その際、制御部204は、インバータ102を制御して、バッテリ101からモータ104に電力を供給し、モータ104を駆動させるとともに、タイヤ側クラッチ201を制御して、モータ104により生み出された回転力をタイヤ202に伝達させ、車両を走行させる(図5の(c)、(e))。 At that time, the control unit 204 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the tire-side clutch 201 to generate the rotational force generated by the motor 104. Is transmitted to the tire 202 to drive the vehicle (FIGS. 5C and 5E).
 この場合、空調装置はA/C要求を受けていないため(図5の(b))、圧縮機側クラッチ109は、モータ104により生み出された回転力を圧縮機103に伝達させない(図5の(d))。そのため、圧縮機103は動作を停止している(図5の(f))。これにより、モータ104により生み出された動力の圧縮機103における損失をなくすことができる。 In this case, since the air conditioner does not receive the A / C request (FIG. 5B), the compressor side clutch 109 does not transmit the rotational force generated by the motor 104 to the compressor 103 (FIG. 5). (D)). Therefore, the compressor 103 has stopped operating ((f) in FIG. 5). Thereby, the loss in the compressor 103 of the power generated by the motor 104 can be eliminated.
 つぎに時間T42の間、車は所定の車速で走行する(図5の(a))。その際、モータ104は、バッテリ101から電力の供給を受け続けて駆動する(図5の(e))。 Next, during time T42, the vehicle travels at a predetermined vehicle speed ((a) in FIG. 5). At that time, the motor 104 continues to be supplied with electric power from the battery 101 and is driven ((e) in FIG. 5).
 また、タイヤ側クラッチ201は、モータ104により生み出された回転力をタイヤ202に伝達し、車両を走行させる(図5の(c))。 Further, the tire side clutch 201 transmits the rotational force generated by the motor 104 to the tire 202 and causes the vehicle to travel ((c) in FIG. 5).
 なお、時間T42でもA/C要求がないため(図5の(b))、圧縮機側クラッチ109は時間T41と同じ状態に保たれる(図5の(d))。 Since there is no A / C request at time T42 ((b) in FIG. 5), the compressor side clutch 109 is kept in the same state as at time T41 ((d) in FIG. 5).
 つぎに時間T43の間、車は減速する(図5の(a))。その際、タイヤ側クラッチ201は、タイヤ202により生み出された回転力をモータ104に伝達させる(図5の(c))。これにより、モータ104は、電力回生を行って、バッテリ101を充電する(図5の(e))。 Next, the vehicle decelerates during time T43 ((a) of FIG. 5). At that time, the tire side clutch 201 transmits the rotational force generated by the tire 202 to the motor 104 ((c) of FIG. 5). Thereby, the motor 104 performs power regeneration and charges the battery 101 ((e) of FIG. 5).
 ここで、時間T43でもA/C要求がないため(図5の(b))、圧縮機側クラッチ109は、モータ104と圧縮機103との間における回転力の伝達を遮断している(図5の(d))。これにより、タイヤ202により生み出された回転力の圧縮機103における損失をなくすことができる。 Here, since there is no A / C request at time T43 (FIG. 5 (b)), the compressor-side clutch 109 cuts off the transmission of the rotational force between the motor 104 and the compressor 103 (FIG. (D) of 5). Thereby, the loss in the compressor 103 of the rotational force produced by the tire 202 can be eliminated.
 つぎに時間T44の間、モータ104は駆動せず、車は停止している(図5の(a)、(e))。その際、制御部204は、タイヤ側クラッチ201を制御して、モータ104が駆動した場合でもモータ104からタイヤ202に回転力が伝達しないようにする(図5の(c))。 Next, during time T44, the motor 104 is not driven and the car is stopped ((a) and (e) in FIG. 5). At that time, the control unit 204 controls the tire side clutch 201 so that the rotational force is not transmitted from the motor 104 to the tire 202 even when the motor 104 is driven ((c) of FIG. 5).
 また、時間T44でもA/C要求がないため(図5の(b))、圧縮機側クラッチ109は時間T41~T43と同じ状態に保たれる(図5の(d))。 Also, since there is no A / C request at time T44 ((b) in FIG. 5), the compressor side clutch 109 is kept in the same state as at times T41 to T43 ((d) in FIG. 5).
 つぎに時間T45の間、時間T44と同様に車が停止中であるため、車速は0になる(図5の(a))。ここで、A/C要求があったものとする(図5の(b))。 Next, during time T45, since the vehicle is stopped similarly to time T44, the vehicle speed becomes 0 ((a) in FIG. 5). Here, it is assumed that there is an A / C request ((b) of FIG. 5).
 この場合、制御部204は、インバータ102を制御して、バッテリ101からモータ104に電力を供給し、モータ104を駆動させるとともに、圧縮機側クラッチ109を制御して、モータ104により生み出された回転力を圧縮機103に伝達させ、圧縮機103を駆動させる(図5の(d)、(e)、(f))。なお、図5の(e)では、モータ104の出力の違いをグラフの高さの違いで表現している。 In this case, the control unit 204 controls the inverter 102 to supply electric power from the battery 101 to the motor 104 to drive the motor 104 and to control the compressor-side clutch 109 to generate rotation generated by the motor 104. The force is transmitted to the compressor 103 to drive the compressor 103 ((d), (e), (f) in FIG. 5). In FIG. 5E, the difference in the output of the motor 104 is expressed by the difference in the height of the graph.
 また、この場合、タイヤ側クラッチ201は、モータ104により生み出された回転力をタイヤ202に伝達させない(図5の(c))。 In this case, the tire side clutch 201 does not transmit the rotational force generated by the motor 104 to the tire 202 ((c) of FIG. 5).
 つぎに時間T46の間、車が再び走行を開始して加速することにより、車速が徐々に大きくなる(図5の(a))。 Next, during time T46, the vehicle starts running again and accelerates, so that the vehicle speed gradually increases ((a) in FIG. 5).
 その際、制御部204は、タイヤ側クラッチ201を制御して、モータ104により生み出された回転力をタイヤ202に伝達させ、車両を走行させる(図5の(c)、(e))。 At that time, the control unit 204 controls the tire-side clutch 201 to transmit the rotational force generated by the motor 104 to the tire 202, thereby causing the vehicle to travel ((c) and (e) in FIG. 5).
 また、時間T46ではA/C要求があるものの(図5の(b))、制御部204は、圧縮機側クラッチ109を制御して、モータ104と圧縮機103との間における回転力の伝達を遮断する(図5の(d))。 In addition, although there is an A / C request at time T46 ((b) in FIG. 5), the control unit 204 controls the compressor side clutch 109 to transmit the rotational force between the motor 104 and the compressor 103. Is shut off ((d) of FIG. 5).
 これにより、タイヤ202の駆動時にモータ104にかかる負荷を低減することができ、車を円滑に加速させることができる。なお、モータ104が高出力である場合などは、制御部204が、圧縮機側クラッチ109を制御して、モータ104から圧縮機103に回転力を伝達させることとしてもよい。 Thus, the load applied to the motor 104 when the tire 202 is driven can be reduced, and the vehicle can be accelerated smoothly. When the motor 104 has a high output, the control unit 204 may control the compressor-side clutch 109 to transmit the rotational force from the motor 104 to the compressor 103.
 つぎに時間T47の間、車は所定の車速で走行する(図5の(a))。時間T47ではA/C要求があるため(図5の(b))、制御部204は、圧縮機側クラッチ109を制御して、モータ104により生み出された回転力を圧縮機103に伝達させ、圧縮機103を駆動させる(図5の(d)、(f))。 Next, during time T47, the vehicle travels at a predetermined vehicle speed ((a) in FIG. 5). Since there is an A / C request at time T47 ((b) in FIG. 5), the control unit 204 controls the compressor side clutch 109 to transmit the rotational force generated by the motor 104 to the compressor 103, The compressor 103 is driven ((d) and (f) in FIG. 5).
 つぎに時間T48の間、車は引き続き所定の車速で走行する(図5の(a))。時間T8ではA/C要求がないため(図5の(b))、圧縮機103は駆動を停止する(図5の(f))。 Next, during time T48, the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 5). Since there is no A / C request at time T8 (FIG. 5B), the compressor 103 stops driving (FIG. 5F).
 具体的には、制御部204は、圧縮機側クラッチ109を制御して、モータ104から圧縮機103に回転力が伝達しないようにし、圧縮機103の駆動を停止させる(図5の(d)、(f))。 Specifically, the control unit 204 controls the compressor side clutch 109 so that the rotational force is not transmitted from the motor 104 to the compressor 103, and stops the driving of the compressor 103 ((d) in FIG. 5). (F)).
 つぎに時間T49の間、車は引き続き所定の車速で走行する(図5の(a))。ここで、A/C要求があったものとする(図5の(b))。 Next, during time T49, the vehicle continues to travel at a predetermined vehicle speed ((a) in FIG. 5). Here, it is assumed that there is an A / C request ((b) of FIG. 5).
 この場合、制御部204は、圧縮機側クラッチ109を制御して、モータ104により生み出された回転力を圧縮機103に伝達させ、圧縮機103を駆動させる(図5の(d)、(f))。 In this case, the control unit 204 controls the compressor-side clutch 109 to transmit the rotational force generated by the motor 104 to the compressor 103 and drive the compressor 103 ((d), (f in FIG. 5). )).
 つぎに時間T50の間、車は減速する(図5の(a))。その際、タイヤ側クラッチ201は、タイヤ202により生み出された回転力をモータ104に伝達させる(図5の(c))。これにより、モータ104は、電力回生を行って、バッテリ101を充電する(図5の(e))。 Next, the vehicle decelerates during time T50 ((a) of FIG. 5). At that time, the tire side clutch 201 transmits the rotational force generated by the tire 202 to the motor 104 ((c) of FIG. 5). Thereby, the motor 104 performs power regeneration and charges the battery 101 ((e) of FIG. 5).
 また、時間T50でもA/C要求があるため(図5の(b))、制御部204は、圧縮機側クラッチ109を時間T49と同じ状態に保ち、モータ104から圧縮機103に回転力が伝達するようにする(図5の(d))。これにより、タイヤ202により生み出された回転力を、バッテリ101の充電だけでなく、圧縮機103の駆動にも用いることができる(図5の(f))。 In addition, since there is an A / C request at time T50 ((b) in FIG. 5), the control unit 204 keeps the compressor side clutch 109 in the same state as at time T49, and torque from the motor 104 to the compressor 103 is increased. It is made to transmit ((d) of FIG. 5). Thus, the rotational force generated by the tire 202 can be used not only for charging the battery 101 but also for driving the compressor 103 ((f) in FIG. 5).
 つぎに時間T51の間、車は停止中であり、車速は0になる(図5の(a))。その際、制御部204は、タイヤ側クラッチ201を制御して、モータ104により生み出された回転力がタイヤ202に伝達されないようにする(図5の(c))。 Next, during time T51, the vehicle is stopped and the vehicle speed becomes 0 ((a) in FIG. 5). At that time, the control unit 204 controls the tire side clutch 201 so that the rotational force generated by the motor 104 is not transmitted to the tire 202 ((c) of FIG. 5).
 このように、本実施の形態によれば、エンジンを搭載せずに、モータ104の駆動力のみで走行する車などの乗物においても、実施の形態1と同様の効果を得ることができる。 Thus, according to the present embodiment, the same effect as that of the first embodiment can be obtained even in a vehicle such as a vehicle that travels only by the driving force of the motor 104 without mounting an engine.
 本発明は、モータと圧縮機とを有するモータシステムに好適である。 The present invention is suitable for a motor system having a motor and a compressor.
 100,200 モータシステム
 101 バッテリ
 102 インバータ
 103 圧縮機
 104 モータ
 105 エンジン
 106 クランクシャフト
 107 プーリ
 108 ベルト
 109 圧縮機側クラッチ
 110 エンジン側クラッチ
 111 圧縮機側シャフト
 112 モータ側シャフト
 113,204 制御部
 201 タイヤ側クラッチ
 202 タイヤ
 203 タイヤ側シャフト
DESCRIPTION OF SYMBOLS 100,200 Motor system 101 Battery 102 Inverter 103 Compressor 104 Motor 105 Engine 106 Crankshaft 107 Pulley 108 Belt 109 Compressor side clutch 110 Engine side clutch 111 Compressor side shaft 112 Motor side shaft 113,204 Control part 201 Tire side clutch 202 tire 203 tire side shaft

Claims (8)

  1.  モータと、
     空調冷媒を圧縮する圧縮機と、
     前記モータと乗物を駆動させる駆動軸との間で回転力の伝達、および、遮断を行う第1のクラッチと、
     前記モータと前記圧縮機との間で回転力の伝達、および、遮断を行う第2のクラッチと、
     を備えるモータシステム。
    A motor,
    A compressor for compressing the air-conditioning refrigerant;
    A first clutch that transmits and blocks rotational force between the motor and a drive shaft that drives the vehicle;
    A second clutch that transmits and shuts off rotational force between the motor and the compressor;
    A motor system comprising:
  2.  前記乗物の走行状況、および、空調の稼働要求に基づき、前記第1のクラッチ、および、前記第2のクラッチを制御する制御部をさらに備える請求項1に記載のモータシステム。 2. The motor system according to claim 1, further comprising a control unit that controls the first clutch and the second clutch based on a traveling state of the vehicle and an operation request for air conditioning.
  3.  前記制御部は、前記空調の稼働要求を受け付けていない場合、前記第2のクラッチを制御して、前記モータと前記圧縮機との間における回転力の伝達を遮断する請求項2に記載のモータシステム。 3. The motor according to claim 2, wherein when the operation request for the air conditioning is not received, the control unit controls the second clutch to block transmission of rotational force between the motor and the compressor. system.
  4.  前記乗物を駆動するエンジンをさらに備え、
     前記駆動軸は、前記エンジンにより生み出された回転力を伝達する請求項1~3いずれか1項に記載のモータシステム。
    An engine for driving the vehicle;
    The motor system according to any one of claims 1 to 3, wherein the drive shaft transmits a rotational force generated by the engine.
  5.  前記制御部は、前記エンジンの始動時に、前記モータにより前記第1のクラッチを介してクランキングを行う請求項4に記載のモータシステム。 The motor system according to claim 4, wherein the control unit performs cranking by the motor via the first clutch when the engine is started.
  6.  前記第2のクラッチは、前記乗物の走行開始時に一時的に前記モータと前記圧縮機との間における回転力の伝達を遮断する請求項1~5のいずれか1項に記載のモータシステム。 The motor system according to any one of claims 1 to 5, wherein the second clutch temporarily interrupts transmission of rotational force between the motor and the compressor when the vehicle starts to travel.
  7.  前記乗物が減速し、前記モータによる電力回生が行われる場合に、前記第2のクラッチは、前記回転力を前記圧縮機に伝達する請求項1~6のいずれか1項に記載のモータシステム。 The motor system according to any one of claims 1 to 6, wherein the second clutch transmits the rotational force to the compressor when the vehicle decelerates and power regeneration is performed by the motor.
  8.  前記駆動軸は、前記モータにより生み出された回転力をタイヤに伝達する請求項1~3のいずれか1項に記載のモータシステム。 4. The motor system according to claim 1, wherein the drive shaft transmits a rotational force generated by the motor to a tire.
PCT/JP2016/002282 2015-05-28 2016-05-10 Motor system WO2016189807A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015108627A JP2016226113A (en) 2015-05-28 2015-05-28 Motor system
JP2015-108627 2015-05-28

Publications (1)

Publication Number Publication Date
WO2016189807A1 true WO2016189807A1 (en) 2016-12-01

Family

ID=57392663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002282 WO2016189807A1 (en) 2015-05-28 2016-05-10 Motor system

Country Status (2)

Country Link
JP (1) JP2016226113A (en)
WO (1) WO2016189807A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513771A (en) * 2006-12-15 2010-04-30 ヴァレオ エキプマン エレクトリク モトゥール Coupling assembly for vehicle air conditioner, vehicle using the same, and method for controlling engine assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513771A (en) * 2006-12-15 2010-04-30 ヴァレオ エキプマン エレクトリク モトゥール Coupling assembly for vehicle air conditioner, vehicle using the same, and method for controlling engine assembly

Also Published As

Publication number Publication date
JP2016226113A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
JP5467739B2 (en) Power supply system for vehicle accessory elements
US9702330B2 (en) Vehicle having a belt pulley and standstill air-conditioning
JP4360984B2 (en) Auxiliary equipment driven by engine
CN106468235B (en) Method for starting an internal combustion engine of a motor vehicle
JP6432224B2 (en) Control device for electric drive vehicle
JP6153147B2 (en) Motor generator, engine starting device, and engine starting control method
KR20130058993A (en) Hybrid power train for vehicle and method for controlling the same
JP2015063258A5 (en)
WO2014192439A1 (en) Startup control device for internal combustion engines and startup control method
US7882910B2 (en) Hybrid drive for a motor vehicle
JP3858679B2 (en) Auxiliary drive system for automobile
WO2014162471A1 (en) Stop control device for internal combustion engine
CN106080164A (en) A kind of stand-by motor system of hybrid vehicle
WO2016189807A1 (en) Motor system
US10161373B2 (en) Method and device for starting or restarting thermal engine
JP2009044878A (en) Device for driving auxiliary machinery
KR20170069377A (en) Dual electromotive compressor for vehicle
JP2016187976A (en) Drive control device equipped with one-way clutch
JP3871214B2 (en) Auxiliary machine drive device for automobile
WO2017138389A1 (en) Hybrid vehicle
JP3690109B2 (en) Auxiliary drive device for vehicle
JP6053533B2 (en) vehicle
JP5589938B2 (en) Auxiliary drive
JP2002202036A (en) Vehicular rotary machine driving system
JP2004044552A (en) Engine speed controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16799522

Country of ref document: EP

Kind code of ref document: A1