WO2016188310A1 - 多功能粘胶纤维及其制备方法 - Google Patents

多功能粘胶纤维及其制备方法 Download PDF

Info

Publication number
WO2016188310A1
WO2016188310A1 PCT/CN2016/081120 CN2016081120W WO2016188310A1 WO 2016188310 A1 WO2016188310 A1 WO 2016188310A1 CN 2016081120 W CN2016081120 W CN 2016081120W WO 2016188310 A1 WO2016188310 A1 WO 2016188310A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
viscose fiber
silver
weight
solution
Prior art date
Application number
PCT/CN2016/081120
Other languages
English (en)
French (fr)
Inventor
唐一林
张金柱
郑应福
张淑云
刘晓敏
许日鹏
Original Assignee
济南圣泉集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南圣泉集团股份有限公司 filed Critical 济南圣泉集团股份有限公司
Priority to EP16799199.1A priority Critical patent/EP3299499B1/en
Priority to KR1020177037008A priority patent/KR101951138B1/ko
Priority to US15/576,158 priority patent/US10544520B2/en
Priority to JP2017560548A priority patent/JP6516876B2/ja
Publication of WO2016188310A1 publication Critical patent/WO2016188310A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath
    • D01F2/10Addition to the spinning solution or spinning bath of substances which exert their effect equally well in either
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods

Definitions

  • the invention belongs to the technical field of viscose fibers, in particular to a multifunctional viscose fiber and a preparation method thereof.
  • Viscose fiber is mainly made of high-quality cellulose dissolving pulp prepared from a series of processes such as acid lysis, alkali hydrolysis and bleaching, which is derived from cotton linters, wood and plant straw.
  • the series of alkali impregnation, pressing, aging, yellowing, dissolving, filtering, spinning, post-treatment and other sections are prepared.
  • Ordinary viscose fiber has similar properties to cotton fiber, is comfortable to wear, has good hygroscopicity and dyeability, and has advantages that other chemical fibers cannot match.
  • With the increasing functional requirements of consumers on clothing and other materials such as far infrared, anti-UV, radiation, anti-static, antibacterial, antibacterial, multi-functional viscose fiber has become one of the current research hotspots.
  • the prior art discloses a plurality of multifunctional viscose fibers
  • the Chinese patent document of the application No. 200510104907.3 discloses a silver-containing antibacterial viscose fiber and a preparation method thereof, including mixing, rubberizing, spinning, and bundling. , cutting, refining, drying and packing steps, and adding a nano-silver colloidal solution with a nanoparticle size of 50-65 nm in the process of making or spinning, the viscose fiber obtained by the method has strong antibacterial and sterilization And a certain anti-static function, however, the preparation method nano-silver particles can not solve the agglomeration phenomenon in the process of rubber making and spinning, affecting the effect of the nano-silver particles.
  • the method directly adds the nano silver colloidal solution, and the obtained viscose fiber has antibacterial properties, but other properties such as far infrared and radiation are not prominent. Therefore, the inventors considered preparing a kind of good Multi-functional viscose fiber with far infrared, anti-UV, anti-radiation, anti-static, antibacterial and antibacterial functions.
  • the object of the present invention is to provide a multifunctional viscose fiber and a preparation method thereof, and the multi-functional viscose fiber provided by the invention has uniform distribution of nanoparticles, and has good far-infrared, anti-ultraviolet, anti-radiation, Anti-static, antibacterial and antibacterial properties.
  • the present invention provides a multifunctional viscose fiber comprising: viscose fiber, graphene and nanosilver, wherein the nanosilver is supported in situ on the graphene sheet.
  • the graphene is prepared as follows:
  • the cellulose is bleached with hydrogen peroxide or sodium hypochlorite to obtain a first intermediate product
  • the activator being one or more of a nickel salt, an iron salt, a cobalt salt or a manganese salt;
  • the second intermediate product is carbonized at 600 to 1400 ° C under a protective gas condition, and a graphene is obtained after the post-treatment step.
  • the nano silver accounts for 1% to 50% by weight of the graphene
  • the graphene accounts for 0.01% by weight to 10% by weight of the viscose fiber.
  • the nano silver accounts for 2% to 30% by weight of the graphene
  • the graphene accounts for 0.1% by weight to 5% by weight of the viscose fiber.
  • the cellulose is porous cellulose
  • the activator is nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, ferric chloride, ferrous chloride, iron nitrate, iron sulfate, ferrous sulfate, iron acetate, cobalt chloride, cobalt nitrate, cobalt sulfate, One or more of cobalt acetate, manganese chloride, manganese nitrate, manganese sulfate, and manganese acetate.
  • the invention also provides a preparation method of multifunctional viscose fiber, characterized in that it comprises:
  • the graphene is prepared as follows:
  • the cellulose is bleached with hydrogen peroxide or sodium hypochlorite to obtain a first intermediate product
  • the activator being one or more of a nickel salt, an iron salt, a cobalt salt or a manganese salt;
  • the second intermediate product is carbonized at 600 to 1400 ° C under a protective gas condition, and post-treated to obtain graphene.
  • the step a) specifically includes:
  • the stabilizer is one or more of sodium carboxymethyl cellulose, polyvinyl alcohol, Tween 80, sodium lauryl sulfate or sodium dodecylbenzenesulfonate.
  • the stabilizer is one or more of sodium carboxymethyl cellulose, polyvinyl alcohol, Tween 80, sodium lauryl sulfate or sodium dodecylbenzenesulfonate.
  • the silver salt is silver nitrate
  • the reducing agent is one or more of sodium borohydride, ethylene glycol, glucose or citric acid
  • the molar ratio of the reducing agent to the silver salt is from 1 to 10:1.
  • the obtained reaction product is subjected to ultrasonic treatment.
  • the sonication time is from 10 min to 60 min. .
  • the present invention firstly obtains nano-silver-loaded graphene by liquid phase in-situ synthesis method, and then adds it to a viscose solution for spinning to obtain a viscose added with nano silver and graphene.
  • the viscose fiber has good properties of far infrared, anti-UV, anti-static, anti-radiation, antibacterial and antibacterial.
  • the degree of improvement of antibacterial and anti-radiation properties is not obvious; while the nano-silver is loaded on the graphene sheet and added to the viscose fiber, the far-infrared, antibacterial and anti-radiation properties of the viscose fiber can be effectively improved.
  • the nano silver is loaded on the improved
  • the addition of the graphene prepared by the Hummers method to the viscose fiber can effectively improve the far-infrared, antibacterial and anti-radiation properties of the viscose fiber; while the graphene prepared by the specific method has less defects, and the nanometer After the silver is loaded in situ, it can be added to the viscose fiber to significantly improve the far-infrared, antibacterial and anti-radiation properties of the viscose fiber.
  • the experimental results show that compared with the non-added viscose fiber, the far-infrared temperature rise performance of the multifunctional viscose fiber prepared by the invention is improved by more than 100%, the ultraviolet protection coefficient is increased by more than 70%, and the antibacterial property can reach 99.9%. , increased by more than 100%, while the far-infrared temperature rise performance of the viscose fiber prepared by other methods is less than 50%, the ultraviolet protection coefficient is increased by less than 40%, and the antibacterial performance is improved by less than 50%.
  • Example 1 is a Raman spectrum of graphene obtained in Example 1 of the present invention.
  • Example 2 is a transmission electron micrograph of graphene obtained in Example 1 of the present invention.
  • Example 3 is a transmission electron micrograph of graphene obtained in Example 1 of the present invention.
  • Figure 4 is a scanning electron micrograph of graphene not loaded with nanosilver
  • Figure 5 is a scanning electron micrograph of graphene loaded with nano-silver
  • Figure 6 is a scanning electron micrograph of graphene loaded with nanosilver.
  • the invention provides a multifunctional viscose fiber comprising: viscose fiber, graphene and nano silver, Wherein, the nano silver is supported in situ on the graphene sheet layer.
  • the invention adopts graphene as a carrier, and firstly adds nano silver in situ and then adds to the viscose fiber, which can significantly improve the far infrared, ultraviolet, radiation, antistatic, antibacterial and antibacterial properties of the viscose fiber.
  • the graphene of the present invention is not particularly limited, and the improved grapher method prepared by the Hummers method can be used.
  • the graphene used in the present invention is preferably prepared by the following method:
  • the mass of the hydrogen peroxide or sodium hypochlorite is preferably from 1% to 10% by mass of the porous cellulose, more preferably 2% to 8%.
  • the bleaching temperature of the hydrogen peroxide or sodium hypochlorite bleaching is preferably from 60 ° C to 130 ° C, more preferably from 80 ° C to 100 ° C; the bleaching time of the hydrogen peroxide or sodium hypochlorite bleaching is preferably from 1 h to 10 h, more preferably 2 h. ⁇ 8h.
  • the activation temperature is preferably from 20 ° C to 180 ° C, more preferably from 50 ° C to 150 ° C, most preferably 80 ° C ⁇ 140 ° C.
  • the mixing time is preferably from 2 h to 10 h, more preferably from 5 h to 7 h.
  • the second intermediate product is carbonized at 600 ° C - 1400 ° C, and after the post-treatment step, the active porous graphene is obtained.
  • the carbonization time is from 2 h to 12 h, preferably from 4 h to 8 h.
  • the cellulose is porous cellulose.
  • the method for preparing the porous cellulose comprises the steps of: A) hydrolyzing biomass resources in an acid to obtain lignocellulose, the biomass resources including one or more of plant and agricultural and forestry waste;
  • the lignocellulose is treated to obtain porous cellulose, and the treatment includes acid treatment, salt treatment or organic solvent treatment.
  • the hydrolysis temperature is preferably from 90 ° C to 180 ° C, more preferably from 120 ° C to 150 ° C.
  • the hydrolysis time is preferably from 2 h to 10 h, more preferably from 2 h to 8 h, and most preferably from 3 h to 6 h.
  • the hydrolyzed acid is preferably one or more of sulfuric acid, nitric acid, hydrochloric acid, formic acid, sulfurous acid, phosphoric acid and acetic acid, more preferably sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid or acetic acid, most preferably Sulfuric acid, nitric acid or hydrochloric acid.
  • the amount of the acid in the hydrolysis is preferably from 3% by weight to 20% by weight of the biomass resource, more preferably from 5% by weight to 15% by weight, most preferably from 8% by weight to 12% by weight.
  • the salt treatment method is preferably an acidic sulfite treatment or an alkaline sulfite treatment.
  • the pH during the treatment of the acidic sulfurous acid method is preferably from 1 to 7, more preferably from 2 to 5, most preferably from 3 to 4.
  • the temperature of the acidic sulfite treatment is preferably from 70 ° C to 180 ° C, more preferably from 90 ° C to 150 ° C, and most preferably from 100 ° C to 120 ° C.
  • the acid sulfite treatment time is preferably from 1 h to 6 h, more preferably from 2 h to 5 h, and most preferably from 3 h to 4 h.
  • the acid in the acidic sulfite treatment is preferably sulfuric acid.
  • the amount of the acid used in the acidic sulfite treatment is preferably from 4% by weight to 30% by weight, more preferably from 8% by weight to 25% by weight, most preferably from 10% by weight to 20% by weight of the lignocellulose.
  • the concentration by weight of the acid in the acidic sulfite treatment preferably has a liquid-solid ratio of (2 to 20):1, more preferably (4 to 16):1, and most preferably (8 to). 12): 1.
  • the sulfite in the acidic sulfite treatment is preferably calcium sulfite, magnesium sulfite, sodium sulfite or ammonium sulfite, more preferably magnesium sulfite or sodium sulfite.
  • the amount of sulfite used in the acidic sulfite treatment process of the present invention is not particularly limited, and the amount of sulfite in the sulfite pulping process well known to those skilled in the art may be used.
  • the pH during the alkaline sulfite treatment is preferably from 7 to 14, more preferably from 8 to 13, most preferably from 9 to 12.
  • the temperature of the alkaline sulfite treatment is preferably from 70 ° C to 180 ° C, more preferably from 90 ° C to 150 ° C, and most preferably from 100 ° C to 120 ° C.
  • the time of the alkaline sulfite treatment is preferably from 1 h to 6 h, more preferably from 2 h to 5 h, and most preferably from 3 h to 4 h.
  • the base in the alkaline sulfite treatment is preferably calcium hydroxide, sodium hydroxide, ammonium hydroxide or magnesium hydroxide, more preferably sodium hydroxide or magnesium hydroxide.
  • the amount of the base used in the alkaline sulfite treatment is preferably from 4% by weight to 30% by weight, more preferably from 8% by weight to 25% by weight, most preferably from 10% by weight to 20% by weight of the lignocellulose. .
  • the weight percentage concentration of the base in the alkaline sulfite treatment is preferably such that the liquid-solid ratio is (2 to 20): 1, more preferably (4 to 16): 1, most preferably (8). ⁇ 12): 1.
  • the sulfite in the alkaline sulfite treatment is preferably calcium sulfite, magnesium sulfite, sodium sulfite or ammonium sulfite, more preferably magnesium sulfite or sodium sulfite.
  • the amount of sulfite used in the alkaline sulfite treatment process of the present invention is not particularly limited, and the amount of sulfite in the sulfite pulping process well known to those skilled in the art may be used.
  • the biomass resource in the step A) is agricultural and forestry waste.
  • the agricultural and forestry waste includes one or more of corn stalk, corn cob, sorghum, beet pulp, bagasse, furfural residue, xylose residue, wood chips, cotton stalks and reeds.
  • the agricultural and forestry waste is a corn cob.
  • the acid in the step A) includes one or more of sulfuric acid, nitric acid, hydrochloric acid, formic acid, sulfurous acid, phosphoric acid and acetic acid.
  • the amount of the acid in the step A) is from 3 wt% to 20 wt% of the biomass resource.
  • the temperature of the hydrolysis in the step A) is from 90 ° C to 180 ° C;
  • the hydrolysis time in the step A) is from 10 min to 10 h.
  • the method of salt treatment in the step B) is an acidic sulfite treatment or an alkaline sulfite treatment.
  • the pH during the acidic sulfite treatment is from 1 to 7.
  • the amount of the acid in the acidic sulfite treatment process is 4% by weight to 30% by weight of the lignocellulose;
  • the weight percent concentration of the acid in the acidic sulfite treatment is such that the liquid to solid ratio is (2-20):1.
  • the acidic sulfite treatment temperature is 70 ° C ⁇ 180 ° C;
  • the acid sulfite treatment time is from 1 h to 6 h.
  • the pH in the alkaline sulfite treatment process is 7 to 14;
  • the amount of alkali used in the alkaline sulfite treatment is 4% by weight to 30% by weight of the lignocellulose;
  • the weight percent concentration of the base in the alkaline sulfite treatment is such that the liquid to solid ratio is (2-20):1.
  • the alkaline sulfite treatment temperature is 70 ° C ⁇ 180 ° C;
  • the alkaline sulfite treatment time is from 1 h to 6 h.
  • the mass ratio of activator to cellulose in the step 2) is (0.05 to 0.9):1.
  • the activator in the step 2) is nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, iron chloride, ferrous chloride, iron nitrate, iron sulfate, ferrous sulfate, iron acetate, cobalt chloride, cobalt nitrate.
  • cobalt sulfate, cobalt acetate, manganese chloride, manganese nitrate, manganese sulfate or manganese acetate is nickel chloride, nickel nitrate, nickel sulfate, nickel acetate, iron chloride, ferrous chloride, iron nitrate, iron sulfate, ferrous sulfate, iron acetate, cobalt chloride, cobalt nitrate.
  • the protective gas in the step 3) is selected from one or more of nitrogen and an inert gas.
  • the cellulose mentioned in the present invention is preferably corncob cellulose, which has short corncob cellulose fibers and is more dispersible.
  • the cross-density between fiber and fiber is small, and its activity is enhanced by bleaching it with hydrogen peroxide or sodium hypochlorite.
  • the temperature does not need to be changed greatly by nitrogen gas, and it is at 600 ° C.
  • Active biomass graphene was obtained at -1400 °C.
  • the prepared active biomass graphene has better electrical conductivity and good dispersion performance in solution.
  • the experimental results show that the active biomass graphene prepared by the method provided by the invention has a conductivity of up to 40,000 S/m.
  • the graphene prepared by the above method was subjected to transmission electron microscopy test, and the test result was that the sheet layer was thin, and the layer of 3-7 layers of biomass graphene was below 10 layers.
  • the Raman spectroscopy of the biomass graphene prepared by the above method was carried out, and the result was that the Sp 2 hybridization degree was high.
  • the conductivity of the biomass graphene prepared by the above method was tested by using a conductivity tester, and the test result was that the conductivity was up to 40,000 S/m. Therefore, the active porous graphene prepared by the above method has a thin sheet and a high degree of Sp 2 hybridization.
  • the nano silver is supported in situ in the graphene prepared by the above method, preferably on the surface of the graphene sheet.
  • the nano silver can be uniformly distributed in the graphene sheet structure by in-situ loading, and the nano silver particle size is controllable and uniform.
  • the nano silver preferably accounts for 2% by weight to 50% by weight of the graphene, more preferably 5% by weight to 20% by weight.
  • the particle diameter of the nanosilver is preferably less than 50 nm.
  • the graphene preferably accounts for 0.01% by weight to 5% by weight, more preferably 0.1% by weight to 3% by weight of the viscose fiber.
  • the viscose fiber may be corncob cellulose, reed cellulose, bamboo cellulose, corn stover cellulose, cotton stem cellulose, wood pulp cellulose, or xylose residue.
  • the silver nanoparticles are completely supported on the surface of the graphene sheet layer, and covalent bonding occurs, so that the prepared graphene solution supporting the nano silver particles does not need to pass the subsequent filtration dehydration step, and remains
  • the stable dispersion of the nanosilver-loaded graphene solution can be directly mixed with the viscose solution.
  • the present invention adds nano-silver-loaded graphene to the viscose fiber without affecting the wearing comfort of the viscose fiber and the subsequent color matching and color matching process.
  • the multifunctional viscose fiber provided by the invention has good far infrared function and can be used for far infrared fabric or clothing to increase the temperature of the human body surface.
  • the multifunctional viscose fiber provided by the invention has good antibacterial and deodorizing functions, and can be used for preparing bacteriostatic masks, underwear, deodorant socks, bandages and gauze.
  • the multifunctional viscose fiber provided by the invention has good functions of anti-UV, anti-static, anti-radiation, etc., and can be used for preparing anti-UV, anti-static and radiation-proof fabrics, garments and the like.
  • the invention also provides a preparation method of multifunctional viscose fiber, comprising:
  • graphene dispersion After graphene was obtained by the method described above, it was dispersed in water to obtain a graphene dispersion. Specifically, the graphene dispersion can be obtained by the following method:
  • the graphene is ultrasonically dispersed in water, and then centrifuged or left to be layered, and the supernatant is a stably dispersed graphene colloidal solution.
  • the ultrasonic dispersion time is from 10 min to 120 min, more preferably from 30 min to 100 min.
  • the conditions of the centrifugation are from 1000 rpm to 4000 rpm, more preferably from 1500 rpm to 3500 rpm, and the centrifugation time is from 2 minutes to 30 minutes, more preferably from 5 to 10 minutes.
  • the time of the standing treatment is preferably from 20 h to 30 h, more preferably 24 h.
  • the mass ratio of the graphene to water is preferably from 0.01 to 5:100, more preferably from 0.1 to 3.5:100.
  • the obtained uniform graphene dispersion solution is mixed with a stabilizer to stably disperse graphene and prevent agglomeration of the graphene colloidal solution.
  • the stabilizer is a surfactant, including but not limited to a Tween-based surfactant, a sulfonate-based surfactant or a sulfate-based surfactant, etc., preferably dodecylbenzenesulfonic acid Sodium (SDBS), sodium dodecyl sulfate (SDS) or Tween 80.
  • SDBS dodecylbenzenesulfonic acid Sodium
  • SDS sodium dodecyl sulfate
  • Tween 80 Tween 80.
  • the amount of the stabilizer added in the present invention is not particularly limited, so that the graphene colloidal solution can be stably dispersed.
  • the silver salt is dissolved in the graphene dispersion, and a reducing agent is added to carry out a reduction reaction to obtain a nanosilver-loaded graphene solution.
  • the silver salt is preferably silver nitrate.
  • the silver salt is preferably dissolved in the graphene dispersion under stirring, silver nitrate The amount added is from 1% by weight to 50% by weight of the graphene, more preferably from 5% by weight to 30% by weight.
  • the reducing agent is preferably sodium borohydride, ethylene glycol, glucose or citric acid, more preferably sodium borohydride.
  • the molar ratio of the reducing agent to the silver salt is preferably from 1 to 10:1, more preferably from 2 to 8:1; and the reaction is preferably stirred at room temperature.
  • the reaction time is preferably from 30 min to 120 min, more preferably from 50 min to 100 min.
  • the obtained reaction product is sonicated to obtain a nanosilver-loaded graphene solution.
  • the time of the sonication is preferably from 10 min to 60 min, more preferably from 20 min to 50 min.
  • the nano-silver-loaded graphene solution After the nano-silver-loaded graphene solution is obtained, it is uniformly mixed with the viscose liquid, and after spinning, a multi-functional viscose fiber can be obtained.
  • the proportion of graphene in the viscose fiber is preferably from 0.1 to 5%, more preferably from 0.1 to 3%.
  • the nano-silver-loaded graphene dispersion is preferably slowly added to the viscose solution, and rapidly stirred and mixed to sufficiently mix the nano-silver-loaded graphene dispersion.
  • the viscose liquid is a viscose liquid well known in the prior art, and the preparation method comprises the steps of impregnation, pressing, pulverizing, aging, yellowing, dissolving, aging, filtering, defoaming, etc. .
  • the pulp is impregnated with a sodium hydroxide aqueous solution having a concentration of about 18% to convert the cellulose into alkali cellulose, the hemicellulose is eluted, the degree of polymerization is partially decreased, and the excess alkali liquid is removed by a pressing step; the bulk alkali cellulose After being pulverized on a pulverizer, it becomes a loose floc, and the uniformity of chemical reaction is improved by the increase in surface area. Alkali cellulose undergoes oxidative cleavage under the action of oxygen to lower the average degree of polymerization. This step is called aging.
  • the alkali cellulose is reacted with carbon disulfide to form a cellulose sulfonate, which is called sulfonation, which further weakens the hydrogen bond between the macromolecules. Due to the hydrophilicity of the sulfonic acid group, the cellulose is in the dilute alkali solution. The solubility performance is greatly improved.
  • the solid cellulose sulfonate is dissolved in a dilute alkali solution, which is a viscose solution.
  • the nanosilver-loaded graphene dispersion is added as described above, and then spun according to a method well known to those skilled in the art to obtain a multi-functional viscose fiber.
  • the newly formed viscose liquid is not easy to be formed due to high viscosity and salt value.
  • After adding the nano-silver-loaded graphene dispersion it needs to be placed at a certain temperature for a certain period of time, that is, ripening, so that the cellulose sulfonic acid in the viscose
  • the sodium is gradually hydrolyzed and saponified, the degree of esterification is lowered, and the stability of the viscosity to the electrolyte is also changed. Defoaming and filtration are carried out after ripening to remove bubbles and impurities, and then spinning can be carried out according to a method well known to those skilled in the art.
  • the invention has no limitation on the source of the pulp, and may be corncob cellulose, reed cellulose, bamboo. Cellulose, corn stover cellulose, cotton stem cellulose, wood pulp cellulose, or cellulose raw material prepared from waste residue such as xylose residue and bagasse.
  • the silver nanoparticles are completely supported on the surface of the graphene sheet layer, and covalent bonding occurs, so that the prepared graphene solution supporting the nano silver particles does not need to pass the subsequent filtration dehydration step, and remains
  • the stable dispersion of the nanosilver-loaded graphene solution can be directly mixed with the viscose solution.
  • the multifunctional viscose fiber provided by the invention has good far-infrared function, anti-ultraviolet, anti-static, anti-radiation, antibacterial and antibacterial functions, and can be used for preparing far-infrared fabrics or clothes, antibacterial masks, underwear and deodorant socks. , bandages, gauze, anti-UV, anti-static clothing, radiation protection clothing.
  • the multifunctional viscose fiber provided by the present invention and a preparation method thereof will be further described below in conjunction with the examples.
  • the corn cob was hydrolyzed in sulfuric acid at 120 ° C for 30 min to obtain lignocellulose, the mass of the sulfuric acid being 3% of the mass of the corn cob;
  • the lignocellulose was subjected to an acidic sulfite treatment at 70 ° C for 1 h to obtain a porous cellulose.
  • the pH of the acidic sulfite treatment was 1, the acid was sulfuric acid, and the sulfite was Magnesium sulfate, the mass of the sulfuric acid is 4% of the mass of the lignocellulose, the liquid-solid ratio is 2:1;
  • the porous cellulose was subjected to hydrogen peroxide bleaching, the mass of the hydrogen peroxide being 5% by mass of the porous cellulose, the bleaching temperature of the hydrogen peroxide bleaching being 100 ° C, and the bleaching time being 5 h.
  • the bleached porous cellulose and the nickel chloride were stirred at 20 ° C for 2 hours for activation treatment, the mass ratio of the nickel chloride to the porous cellulose was 0.1:1; and the obtained activated treatment product was at 70 ° C Drying down to obtain a product having a water content of less than 10% by weight;
  • the product was placed in a carbonization furnace, and a nitrogen gas was introduced into the carbonization furnace as a shielding gas at a gas permeation amount of 200 mL/min, and the temperature was raised to 800 ° C, and after being kept for 6 hours, it was cooled to 60 ° C or lower;
  • the cooled product was washed in an aqueous solution of sodium hydroxide having a mass concentration of 3% at 60 ° C for 4 hours to obtain a first washed product; at 70 ° C, the first washed product was at a mass concentration of 4
  • the aqueous solution of hydrochloric acid was washed for 4 hours to obtain a second washed product; the second washed product was washed with distilled water until neutral and dried to obtain biomass graphene.
  • FIG. 1 is a Raman spectrum of graphene obtained in Example 1 of the present invention, and FIG. 1 shows that the method provided in Example 1 of the present invention is prepared.
  • the obtained graphene Sp 2 is highly hybridized.
  • the graphene prepared in the first embodiment of the present invention was subjected to transmission electron microscopy.
  • the test results are shown in FIG. 2 to FIG. 3, and FIG. 2 to FIG. 3 are transmission electron micrographs of graphene obtained in Example 1 of the present invention, which are shown in FIG.
  • the graphene prepared by the method provided in the first embodiment of the present invention has a thin layer, and below 10 layers, it is a biomass graphene.
  • the above graphene colloidal solution was again ultrasonically dispersed in water for 100 min to obtain a graphene dispersion; under stirring, 0.02 mol/L of silver nitrate was added to the graphene dispersion, and 0.2 mol/L was slowly added after being stirred and dissolved in the dark.
  • the sodium borohydride solution is reacted at room temperature for 100 min; wherein the mass ratio of silver nitrate to graphene is 1:10, and the molar ratio of sodium borohydride to silver nitrate is 10:1;
  • the reactant obtained after the reaction was sonicated for 30 min to obtain a nanosilver-loaded graphene solution.
  • the sulfonated corncob cellulose is dissolved in a dilute sodium hydroxide solution, and the above-mentioned nano-silver-loaded graphene solution is added, and 8% of the viscose solution is prepared after being matured, and stirred under high-speed stirring for 1 hour, graphite.
  • the ene is 0.1% of corncob cellulose. Filtration, defoaming, and then spinning, desulfurization, water washing, drying, to prepare a multi-functional viscose fiber.
  • the composition of the coagulation bath is: sulfuric acid 105g/L, sodium sulfate 200g/L, and zinc sulfate 12g/L.
  • FIG. 4 is a scanning electron micrograph of graphene not loaded with nano-silver
  • FIG. 5 and FIG. 6 are graphite loaded with nano-silver. Scanning electron micrographs of the alkene, as seen from FIG. 4, FIG. 5 and FIG. 6, in the method provided by the present invention, the nano silver has a uniform particle size and a uniform distribution of the load and the surface of the graphene.
  • the preparation of the multifunctional viscose fiber was carried out in accordance with the method and procedure disclosed in Example 2, except that corn stover cellulose was used instead of corncob cellulose.
  • the preparation of the multifunctional viscose fiber was carried out in accordance with the method and procedure disclosed in Example 2, except that the mass ratio of silver nitrate to graphene was 1:100.
  • the preparation of the multifunctional viscose fiber was carried out in accordance with the method and procedure disclosed in Example 2, except that the mass ratio of silver nitrate to graphene was 1:2.
  • the preparation of the multifunctional viscose fiber was carried out in accordance with the method and procedure disclosed in Example 2, except that the graphene was 0.05% of corncob cellulose.
  • the preparation of the multifunctional viscose fiber was carried out in accordance with the method and procedure disclosed in Example 2, except that the graphene was 5% of corncob cellulose.
  • the preparation of the multifunctional viscose fiber was carried out in accordance with the method and procedure disclosed in Example 2, except that the nanosilver-loaded graphene solution was prepared as follows:
  • the preparation of the multifunctional viscose fiber was carried out in accordance with the method and procedure disclosed in Example 8, except that 80 mL of a 0.05 M aqueous NaBH 4 solution was slowly added dropwise.
  • the preparation of the multifunctional viscose fiber was carried out in accordance with the method and procedure disclosed in Example 8, except that 5 mL of a 0.2 M solution of ethylene glycol was slowly added dropwise.
  • the sulfonated corncob cellulose is dissolved in a dilute sodium hydroxide solution, and 8% of the viscose solution is prepared after being matured, stirred under high-speed stirring for 1 hour, filtered, defoamed, and then subjected to spinning, desulfurization, Washed and dried to prepare viscose fibers.
  • the composition of the coagulation bath is: sulfuric acid 105g/L, sodium sulfate 200g/L, and zinc sulfate 12g/L.
  • the graphene prepared in Example 1 was ultrasonically dispersed in water for 100 min to obtain a graphene dispersion
  • the sulfonated corncob cellulose is dissolved in a dilute sodium hydroxide solution, and the above graphene dispersion is added, and 8% of the viscose solution is prepared after being matured, and stirred under high-speed stirring for 1 hour, and the graphene is corn. 0.1% of core cellulose. Filtration, defoaming, and then spinning, desulfurization, water washing, drying, to obtain viscose fibers.
  • the composition of the coagulation bath is: sulfuric acid 105g/L, sodium sulfate 200g/L, and zinc sulfate 12g/L.
  • the sulfonated corncob cellulose is dissolved in a dilute sodium hydroxide solution, and the above nano silver dispersion is added, and 8% of the viscose is prepared after being matured, and stirred under high-speed stirring for 1 hour, and the nano silver is corn. 0.1% of core cellulose. Filtration, defoaming, and then spinning, desulfurization, water washing, drying, to obtain viscose fibers.
  • the composition of the coagulation bath is: sulfuric acid 105g/L, sodium sulfate 200g/L, and zinc sulfate 12g/L.
  • the graphene prepared in Example 1 was ultrasonically dispersed in water for 100 min to obtain a graphene dispersion
  • the sulfonated corncob cellulose is dissolved in a dilute sodium hydroxide solution, and the above nano silver dispersion and graphene dispersion are added, and 8% of the viscose solution is prepared after being matured, and stirred under high speed stirring for 1 hour.
  • the nano silver is 0.1% of corncob cellulose
  • the graphene dispersion is 0.1% of corncob cellulose. Filtration, defoaming, and then spinning, desulfurization, water washing, drying, to obtain viscose fibers.
  • the composition of the coagulation bath is: sulfuric acid 105g/L, sodium sulfate 200g/L, and zinc sulfate 12g/L.
  • the sulfonated corncob cellulose is dissolved in a dilute sodium hydroxide solution, and the above nano silver dispersion and graphene dispersion are added, and 8% of the viscose solution is prepared after being matured, and stirred under high speed stirring for 1 hour.
  • the nano silver is 0.1% of corncob cellulose
  • the graphene dispersion is 0.1% of corncob cellulose. Filtration, defoaming, and then spinning, desulfurization, water washing, drying, to obtain viscose fibers.
  • the composition of the coagulation bath is: sulfuric acid 105g/L, sodium sulfate 200g/L, and zinc sulfate 12g/L.
  • the reactant obtained after the reaction was sonicated for 30 min to obtain a nanosilver-loaded graphene solution.
  • the sulfonated corncob cellulose is dissolved in a dilute sodium hydroxide solution, and the above-mentioned nano-silver-loaded graphene dispersion is added, and 8% of the viscose solution is prepared after being cooked, and stirred under high-speed stirring for 1 hour.
  • the graphene dispersion was 0.1% of corncob cellulose. Filtration, defoaming, and then spinning, desulfurization, water washing, drying, to obtain viscose fibers.
  • the composition of the coagulation bath is: sulfuric acid 105g/L, sodium sulfate 200g/L, and zinc sulfate 12g/L.
  • the reactant obtained after the reaction was sonicated for 30 min to obtain a nano-silver-loaded graphene oxide solution.
  • the sulfonated corncob cellulose is dissolved in a dilute sodium hydroxide solution, and the above-mentioned nano-silver-loaded graphene oxide dispersion is added, and 8% of the viscose solution is prepared after being matured, and stirred under high-speed stirring for 1 hour.
  • the graphene oxide dispersion is 0.1% of corncob cellulose. Filtration, defoaming, and then spinning, desulfurization, water washing, drying, to obtain viscose fibers.
  • the composition of the coagulation bath is: sulfuric acid 105g/L, sodium sulfate 200g/L, and zinc sulfate 12g/L.
  • the viscose fibers prepared in Examples 2 to 11 and Comparative Examples 1 to 6 were tested for performance.
  • the test methods were as follows:
  • the far-infrared function test is based on CAS 115-2005 "Health-care functional textiles" and GBT 7287-2008 infrared radiation heater test method; anti-UV performance evaluation according to GBT 18830-2002; electrostatic performance evaluation according to GB/T 12703.1-2008; antibacterial and Antibacterial performance evaluation based on GB/T 20944.3-2008.
  • Table 1 shows the performance test results of the viscose fibers prepared in the examples and comparative examples of the present invention.
  • the multi-functional viscose fiber provided by the invention has a great improvement in far-infrared performance, anti-ultraviolet radiation performance, anti-static property, antibacterial and antibacterial performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Artificial Filaments (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

一种多功能粘胶纤维,包括:粘胶纤维、石墨烯和纳米银,其中,所述纳米银原位负载于所述石墨烯片层上。一种多功能粘胶纤维的制备方法,其特征在于,包括:a)将石墨烯分散于水溶液中,得到石墨烯分散液;b)将银盐溶解于所述石墨烯分散液中,加入还原剂进行还原反应后,得到负载纳米银的石墨烯分散溶液;c)将所述负载纳米银的石墨烯分散溶液与粘胶液混合均匀,经过纺丝后得到多功能粘胶纤维。实验结果表明,相比未添加负载纳米银石墨烯的粘胶纤维,该多功能粘胶纤维的远红外温升性能提高100%以上,紫外防护系数提高了70%以上,抑菌性能达到99.9%,提高了100%以上。

Description

[根据细则37.2由ISA制定的发明名称] 多功能粘胶纤维及其制备方法
本申请要求于2015年5月22日提交中国专利局、申请号为201510267761.8、发明名称为“一种多功能粘胶纤维及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于粘胶纤维技术领域,尤其涉及一种多功能粘胶纤维及其制备方法。
背景技术
粘胶纤维主要是以来源于棉短绒、木材、植物秸秆的纤维素,经过酸解、碱解和漂白等一系列工艺制备而成的高纯度的纤维素溶解浆为原料,然后在经过一系列的碱浸渍、压榨、老化、黄化、溶解、过滤、纺丝、后处理等工段制备而成。普通的粘胶纤维与棉纤维性能类似,穿着舒适,具有良好的吸湿性、可染性,其具有其他化学纤维无法比拟的优点。随着消费者对衣物等材料的功能性要求的越来越高,如远红外、抗紫外、防辐射、防静电、抗菌、抑菌等,多功能粘胶纤维成为目前研究热点之一。
目前,现有技术公开了多种多功能粘胶纤维,如申请号为200510104907.3的中国专利文献公开了一种含银抗菌粘胶纤维及其制备方法,包括混粕、制胶、纺丝、集束、切断、精炼、烘干和打包步骤,并在制胶或纺丝过程中,添加纳米颗粒大小为50~65nm的纳米银胶体溶液,该方法获得的粘胶纤维具有较强的抑菌、杀菌和一定的防静电等功能,但是,该制备方法纳米银粒子的不能很好的解决其在制胶和纺丝过程中的团聚现象,影响了纳米银粒子的作用效果。并且,该方法直接添加纳米银胶体溶液,得到的粘胶纤维虽然具有抑菌性能,但其他性能,如远红外、防辐射等并不突出。因此,发明人考虑制备一种具有良 好远红外、抗紫外、防辐射、防静电、抑菌和抗菌等功能的多功能粘胶纤维。
发明内容
有鉴于此,本发明的目的在于提供一种多功能粘胶纤维及其制备方法,本发明提供的多功能粘胶纤维中纳米粒子分布均匀,且具有良好的远红外、抗紫外、防辐射、防静电、抑菌和抗菌等性能。
本发明提供了一种多功能粘胶纤维,包括:粘胶纤维、石墨烯和纳米银,其中,所述纳米银原位负载于所述石墨烯片层上。
优选的,所述石墨烯按照以下方法制备:
用双氧水或次氯酸钠对纤维素进行漂白处理,得到第一中间产物;
用活化剂对所述第一中间产物进行活化,得到第二中间产物,所述活化剂为镍盐、铁盐、钴盐或锰盐的一种或多种;
在保护性气体的条件下,将所述第二中间产物在600~1400℃下进行炭化处理,经过后处理步骤后得到石墨烯。
优选的,所述纳米银占所述石墨烯的1wt%~50wt%;
所述石墨烯占所述粘胶纤维的0.01wt%~10wt%。
优选的,所述纳米银占所述石墨烯的2wt%~30wt%;
所述石墨烯占所述粘胶纤维的0.1wt%~5wt%
优选的,所述纤维素为多孔纤维素;
所述活化剂为氯化镍、硝酸镍、硫酸镍、乙酸镍、氯化铁、氯化亚铁、硝酸铁、硫酸铁、硫酸亚铁、乙酸铁、氯化钴、硝酸钴、硫酸钴、乙酸钴、氯化锰、硝酸锰、硫酸锰和乙酸锰中的一种或几种。
本发明还提供了一种多功能粘胶纤维的制备方法,其特征在于,包括:
a)将石墨烯分散于水溶液中,得到石墨烯分散液;
b)将银盐溶解于所述石墨烯分散液中,加入还原剂进行还原反应后,得到负载纳米银的石墨烯溶液;
c)将所述负载纳米银的石墨烯溶液与粘胶液混合均匀,进行纺丝后得到多功能粘胶纤维。
优选的,所述石墨烯按照以下方法制备:
用双氧水或次氯酸钠对纤维素进行漂白处理,得到第一中间产物;
用活化剂对所述第一中间产物进行活化,得到第二中间产物,所述活化剂为镍盐、铁盐、钴盐或锰盐的一种或多种;
在保护性气体的条件下,将所述第二中间产物在600~1400℃下进行炭化处理,经过后处理后得到石墨烯。
优选的,所述步骤a)具体包括:
a1)将石墨烯超声分散于水中,离心或静置后得到均一的石墨烯分散溶液;
a2)将所述均一的石墨烯分散溶液与稳定剂混合,得到稳定的石墨烯分散液。
优选的,所述步骤a2)中,所述稳定剂为羧甲基纤维素钠、聚乙烯醇、吐温80、十二烷基硫酸钠或十二烷基苯磺酸钠的一种或多种。
优选的,所述步骤b)中,所述银盐为硝酸银,所述还原剂为硼氢化钠、乙二醇、葡萄糖或柠檬酸的一种或多种;
所述还原剂与银盐的摩尔比为1~10:1。
优选的,所述步骤b)中加入还原剂进行还原反应后,将得到的反应产物进行超声处理。
优选的,所述超声处理的时间为10min~60min。。
与现有技术相比,本发明首先采用液相原位合成的方法获得负载纳米银的石墨烯,然后将其添加于粘胶液中进行纺丝,获得添加有纳米银和石墨烯的粘胶纤维,该粘胶纤维具有良好的远红外、抗紫外、防静电、防辐射、抗菌和抑菌等性能。
申请人在研究过程中发现,只添加石墨烯获得的粘胶纤维的抗菌性能和防辐射性能虽有提高,但提高程度不明显;只添加纳米银获得的粘胶纤维对纳米银粒子的分散程度要求较高,且粘胶纤维的远红外温升性能、抗紫外性能和防辐射性能提高也不明显;同时添加纳米银和改进的Hummers法制备的石墨烯得到的粘胶纤维,其远红外性能、抗菌性能和防辐射性能提高程度也不明显;而将纳米银负载于石墨烯片层上再添加到粘胶纤维中时能够有效提高粘胶纤维的远红外性能、抗菌性能和防辐射性能,其中,同时将纳米银负载于改进的 Hummers法制备的石墨烯中再添加到粘胶纤维中能有效提高粘胶纤维的远红外性能、抗菌性能和防辐射性能;而采用特定方法制备的片层缺陷较少的石墨烯,并将纳米银原位负载后,再添加到粘胶纤维中能够显著提高粘胶纤维的远红外性能、抗菌性能和防辐射性能。实验结果表明,相比未添加的粘胶纤维,本发明制备的多功能粘胶纤维的远红外温升性能提高了100%以上,紫外防护系数提高了70%以上,抑菌性能可达99.9%,提高了100%以上,而其他方法制备的粘胶纤维的远红外温升性能提高不到50%,紫外防护系数提高不到40%,抑菌性能提高不到50%。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例1得到的石墨烯的拉曼光谱;
图2为本发明实施例1得到的石墨烯的透射电镜图片;
图3为本发明实施例1得到的石墨烯的透射电镜图片;
图4是未负载纳米银的石墨烯的扫描电镜照片;
图5是负载纳米银的石墨烯的扫描电镜照片;
图6是负载纳米银的石墨烯的扫描电镜照片。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种多功能粘胶纤维,包括:粘胶纤维、石墨烯和纳米银, 其中,所述纳米银原位负载于所述石墨烯片层上。
本发明以石墨烯为载体,首先原位负载纳米银后再添加到粘胶纤维中,能够显著提高粘胶纤维的远红外、抗紫外、防辐射、防静电、抗菌和抑菌等性能。
本发明对所述石墨烯没有特殊限制,改进的Hummers法制备的石墨烯等均可。
为了获得性能更好的粘胶纤维,本发明采用的石墨烯优选按照以下方法制备:
1)、用双氧水或次氯酸钠对纤维素进行漂白处理,得到第一中间产物;在本发明中,所述双氧水或次氯酸钠的质量优选为所述多孔纤维素质量的1%~10%,更优选为2%~8%。在本发明中,所述双氧水或次氯酸钠漂白的漂白温度优选为60℃~130℃,更优选为80℃~100℃;所述双氧水或次氯酸钠漂白的漂白时间优选为1h~10h,更优选为2h~8h。
2)、用活化剂对第一中间产物进行活化,得到第二中间产物;在本发明中,所述活化的温度优选为20℃~180℃,更优选为50℃~150℃,最优选为80℃~140℃。在本发明中,所述混合的时间优选为2h~10h,更优选为5h~7h。
3)、在保护性气体的条件下,将所述第二中间产物在600℃-1400℃进行炭化处理,经过后处理步骤后得到活性多孔石墨烯。本发明中,炭化时间为2h-12h,优选4h-8h。
所述纤维素为多孔纤维素。
所述多孔纤维素的制备方法包括以下步骤:A)、将生物质资源在酸中进行水解,得到木质纤维素,所述生物质资源包括植物和农林废弃物中的一种或几种;B)、对所述木质纤维素进行处理,得到多孔纤维素,所述处理包括酸处理、盐处理或有机溶剂处理。在本发明中,所述水解的温度优选为90℃~180℃,更优选为120℃~150℃。在本发明中,所述水解的时间优选为2h~10h,更优选为2h~8h,最优选为3h~6h。在本发明中,所述水解的酸优选为硫酸、硝酸、盐酸、甲酸、亚硫酸、磷酸和醋酸中的一种或几种,更优选为硫酸、硝酸、盐酸、磷酸或醋酸,最优选为硫酸、硝酸或盐酸。在本发明中,所述水解中酸的用量优选为所述生物质资源的3wt%~20wt%,更优选为5wt%~15wt%,最优选为8wt%~12wt%。
在本发明中,所述盐处理的方法优选为酸性亚硫酸盐法处理或碱性亚硫酸盐法处理。在本发明中,所述酸性亚硫酸法处理过程中的pH值优选为1~7,更优选为2~5,最优选为3~4。在本发明中,所述酸性亚硫酸盐法处理的温度优选为70℃~180℃,更优选为90℃~150℃,最优选为100℃~120℃。在本发明中,所述酸性亚硫酸盐法处理的时间优选为1h~6h,更优选为2h~5h,最优选为3h~4h。
在本发明中,所述酸性亚硫酸盐法处理中的酸优选为硫酸。在本发明中,所述酸性亚硫酸盐法处理过程中酸的用量优选为所述木质纤维素的4wt%~30wt%,更优选为8wt%~25wt%,最优选为10wt%~20wt%。在本发明中,所述酸性亚硫酸盐法处理中酸的重量百分比浓度优选使液固比为(2~20):1,更优选为(4~16):1,最优选为(8~12):1。
在本发明中,所述酸性亚硫酸盐法处理中的亚硫酸盐优选为亚硫酸钙、亚硫酸镁、亚硫酸钠或亚硫酸铵,更优选为亚硫酸镁或亚硫酸钠。本发明对所述酸性亚硫酸盐法处理过程中亚硫酸盐的用量没有特殊的限制,采用本领域技术人员熟知的亚硫酸盐法制浆过程中亚硫酸盐的用量即可。
在本发明中,所述碱性亚硫酸法处理过程中的pH值优选为7~14,更优选为8~13,最优选为9~12。在本发明中,所述碱性亚硫酸盐法处理的温度优选为70℃~180℃,更优选为90℃~150℃,最优选为100℃~120℃。在本发明中,所述碱性亚硫酸盐法处理的时间优选为1h~6h,更优选为2h~5h,最优选为3h~4h。
在本发明中,所述碱性亚硫酸盐法处理中的碱优选为氢氧化钙、氢氧化钠、氢氧化铵或氢氧化镁,更优选为氢氧化钠或氢氧化镁。在本发明中,所述碱性亚硫酸盐法处理过程中碱的用量优选为所述木质纤维素的4wt%~30wt%,更优选为8wt%~25wt%,最优选为10wt%~20wt%。在本发明中,所述碱性亚硫酸盐法处理中碱的重量百分比浓度优选使液固比为(2~20):1,更优选为(4~16):1,最优选为(8~12):1。
在本发明中,所述碱性亚硫酸盐法处理中的亚硫酸盐优选为亚硫酸钙、亚硫酸镁、亚硫酸钠或亚硫酸铵,更优选为亚硫酸镁或亚硫酸钠。本发明对所述碱性亚硫酸盐法处理过程中亚硫酸盐的用量没有特殊的限制,采用本领域技术人员熟知的亚硫酸盐法制浆过程中亚硫酸盐的用量即可。
所述步骤A)中的生物质资源为农林废弃物。
所述农林废弃物包括玉米杆、玉米芯、高粱杆、甜菜渣、甘蔗渣、糠醛渣、木糖渣、木屑、棉秆和芦苇中的一种或几种。
所述农林废弃物为玉米芯。
所述步骤A)中的酸包括硫酸、硝酸、盐酸、甲酸、亚硫酸、磷酸和醋酸中的一种或几种。
所述步骤A)中酸的用量为所述生物质资源的3wt%~20wt%。
所述步骤A)中水解的温度为90℃~180℃;
所述步骤A)中水解的时间为10min~10h。
所述步骤B)中盐处理的方法为酸性亚硫酸盐法处理或碱性亚硫酸盐法处理。
所述酸性亚硫酸盐法处理过程中的pH值为1~7。
所述酸性亚硫酸盐法处理过程中酸的用量为所述木质纤维素的4wt%~30wt%;
所述酸性亚硫酸盐法处理中酸的重量百分浓度使液固比为(2~20):1。
所述酸性亚硫酸盐法处理的温度为70℃~180℃;
所述酸性亚硫酸盐法处理的时间为1h~6h。
所述碱性亚硫酸盐法处理过程中的pH值为7~14;
所述碱性亚硫酸盐法处理过程中碱的用量为所述木质纤维素的4wt%~30wt%;
所述碱性亚硫酸盐法处理中碱的重量百分浓度使液固比为(2~20):1。
所述碱性亚硫酸盐法处理的温度为70℃~180℃;
所述碱性亚硫酸盐法处理的时间为1h~6h。
所述步骤2)中活化剂和纤维素的质量比为(0.05~0.9):1。
所述步骤2)中活化剂为氯化镍、硝酸镍、硫酸镍、乙酸镍、氯化铁、氯化亚铁、硝酸铁、硫酸铁、硫酸亚铁、乙酸铁、氯化钴、硝酸钴、硫酸钴、乙酸钴、氯化锰、硝酸锰、硫酸锰或乙酸锰中的一种或多种。
所述步骤3)中的保护性气体选自氮气和惰性气体中的一种或几种。
本发明提到的纤维素优选玉米芯纤维素,玉米芯纤维素纤维短,分散性较 好,纤维与纤维之间交叉密度小,通过用双氧水或次氯酸钠对其漂白后,增强了其活性,在金属活化剂的催化下,通过氮气保护,温度不需要大幅度的变化,且在600℃-1400℃得到了具有活性的生物质石墨烯。制备得到的活性生物质石墨烯具有较好的导电性能,且在溶液中的分散性能好。实验结果表明,本发明提供的方法制备得到的活性生物质石墨烯的导电性能最高可达40000S/m。
对采用上述方法制备得到的石墨烯进行透射电镜测试,测试结果为,其片层较薄,在10层以下,3-7层的生物质石墨烯。对采用上述方法制备得到的生物质石墨烯进行拉曼光谱测试,测试结果为,其Sp2杂化程度高。采用导电性能测试仪,测试采用上述方法制备得到的生物质石墨烯的导电性能,测试结果为,其导电性能最高可达40000S/m。因此,采用上述方法制备得到的活性多孔石墨烯的片层薄,Sp2杂化程度高。
本发明提供的多功能粘胶纤维中,纳米银原位负载在上述方法制备的石墨烯中,优选负载在石墨烯片层表面。通过原位负载纳米银能够均匀地分布于石墨烯片层结构中,且纳米银粒子粒径可控且均一。在本发明中,所述纳米银优选占所述石墨烯的2wt%~50wt%,更优选5wt%~20wt%。在本发明中,所述纳米银的粒径优选小于50nm。
本发明提供的多功能粘胶纤维中,石墨烯优选占所述粘胶纤维的0.01wt%~5wt%,更优选0.1wt%~3wt%。
本发明提供的多功能粘胶纤维中,粘胶纤维可以是玉米芯纤维素、芦苇纤维素、竹子纤维素、玉米秸秆纤维素、棉花杆纤维素、木浆纤维素,或者是以木糖渣、甘蔗渣等废渣制备的纤维素原料中的一种或者几种。本发明对此并无特殊限制。
本发明提供的多功能粘胶纤维中,银纳米粒子完全负载在石墨烯片层的表面,并且发生共价结合,因此制备的负载纳米银粒子的石墨烯溶液无需通过后续的过滤脱水步骤,保持负载纳米银的石墨烯溶液的稳定分散,可以直接进行与粘胶液混合。另外,本发明将负载纳米银的石墨烯添加到粘胶纤维中,不影响粘胶纤维穿着的舒适性以及后续的调色、配色工艺。
本发明提供的多功能粘胶纤维具有良好的远红外功能,可以用于远红外织物或者衣物,用以提高人体表面的温度。
本发明提供的多功能粘胶纤维具有良好的抗菌防臭等功能,可以用于制备抑菌口罩,内衣,防臭袜子,绷带,纱布。
本发明提供的多功能粘胶纤维具有良好的抗紫外、防静电、防辐射等功能,可以用于制备抗紫外、防静电和防辐射织物、服装等。
本发明还提供了一种多功能粘胶纤维的制备方法,包括:
a)将石墨烯分散于水溶液中,得到石墨烯分散液;
b)将银盐溶解于所述石墨烯分散液中,加入还原剂进行还原反应后,得到负载纳米银的石墨烯溶液;
c)将所述负载纳米银的石墨烯溶液与粘胶液混合均匀,进行纺丝后得到多功能粘胶纤维。
按照上文所述的方法制得石墨烯后,将其分散于水中,得到石墨烯分散液。具体而言,可以按照以下方法获得石墨烯分散液:
a1)将石墨烯超声分散于水中,离心或静置后得到均一的石墨烯分散溶液;
a2)将所述均一的石墨烯分散溶液与稳定剂混合,得到稳定的石墨烯分散液。
首先将石墨烯超声分散于水中,然后将其离心或者静置后分层,其上清液为稳定分散的石墨烯胶体溶液。本发明中,所述超声分散的时间为10min~120min,更优选为30min~100min。所述离心处理的条件为1000rpm~4000rpm,更优选为1500rpm~3500rpm,所述离心处理的时间为2min~30min,更优选为5-10min。所述静置处理的时间优选为20h~30h,更优选为24h。所述石墨烯和水的质量比优选为0.01~5:100,更优选为0.1~3.5:100。
将得到的均一的石墨烯分散溶液与稳定剂混合,使石墨烯稳定分散,防止石墨烯胶体溶液的团聚。在本发明中,所述稳定剂为表面活性剂,包括但不限于吐温类表面活性剂、磺酸盐类表面活性剂或硫酸盐类表面活性剂等,优选为十二烷基苯磺酸钠(SDBS)、十二烷基硫酸钠(SDS)或吐温80等。本发明对所述稳定剂的添加量没有特殊限制,使石墨烯胶体溶液保持稳定分散即可。
得到石墨烯分散液后,将银盐溶解于所述石墨烯分散液中,加入还原剂进行还原反应后,得到负载纳米银的石墨烯溶液。在本发明中,所述银盐优选为硝酸银。本发明优选将银盐在搅拌的条件下溶解于石墨烯分散液中,硝酸银的 添加量为石墨烯的1wt%~50wt%,更优选为5wt%~30wt%。所述还原剂优选为硼氢化钠、乙二醇、葡萄糖或柠檬酸,更优选为硼氢化钠。本发明优选在搅拌的条件下加入还原剂;所述还原剂和银盐的摩尔比优选为1~10:1,更优选为2~8:1;所述反应优选为在室温下搅拌反应,反应时间优选为30min~120min,更优选为50min~100min。
反应完毕后,将得到的反应产物超声处理,即可得到负载纳米银的石墨烯溶液。所述超声处理的时间优选为10min~60min,更优选为20min~50min。
得到负载纳米银的石墨烯溶液后,将其与粘胶液混合均匀,进行纺丝后即可得到多功能粘胶纤维。在本发明中,石墨烯在粘胶纤维中所占的比例优选为0.1‰-5%,更优选为0.1%~3%。本发明优选将负载纳米银的石墨烯分散液缓慢加入粘胶液中,快速搅拌混合,使负载纳米银的石墨烯分散液充分混合。
在本发明中,粘胶液是现有技术熟知的粘胶液,其制备方法是以浆粕为原料,经过浸渍、压榨、粉碎、老化、黄化、溶解、熟成、过滤、脱泡等工序。浆粕经浓度为18%左右的氢氧化钠水溶液浸渍,使纤维素转化为碱纤维素,半纤维素溶出,聚合度部分下降,再经压榨步骤除去多余的碱液;块状的碱纤维素在粉碎机上粉碎后变为疏松状的絮状体,由于表面积增大使以后的化学反应均匀性提高。碱纤维素在氧的作用下发生氧化裂解使平均聚合度下降,这个步骤称之为老化。老化后将碱纤维素与二硫化碳反应生成纤维素磺酸酯,称之为磺化,使大分子间的氢键进一步削弱,由于磺酸基团的亲水性,使纤维素在稀碱液中的溶解性能大为提高。将固体纤维素磺酸酯溶解在稀碱液中,即为粘胶液。
得到粘胶液后,按照上述方法加入负载纳米银的石墨烯分散液,然后按照本领域技术人员熟知的方法进行纺丝,获得多功能粘胶纤维。刚制成的粘胶液因粘度和盐值较高不易成形,加入负载纳米银的石墨烯分散液后也需要在一定温度下放置一定的时间,即为熟成,使粘胶中纤维素磺酸钠逐渐水解和皂化,酯化度降低,粘度对电解质作用的稳定性也随之发生改变。在熟成之后进行脱泡和过滤,以除去气泡和杂质,然后按照本领域技术人员熟知的方法进行纺丝即可。
本发明对浆粕的来源没有限制,可以是玉米芯纤维素、芦苇纤维素、竹子 纤维素、玉米秸秆纤维素、棉花杆纤维素、木浆纤维素,或者是以木糖渣、甘蔗渣等废渣制备的纤维素原料。
本发明提供的多功能粘胶纤维中,银纳米粒子完全负载在石墨烯片层的表面,并且发生共价结合,因此制备的负载纳米银粒子的石墨烯溶液无需通过后续的过滤脱水步骤,保持负载纳米银的石墨烯溶液的稳定分散,可以直接进行与粘胶液混合。
本发明提供的多功能粘胶纤维具有良好的远红外功能、抗紫外、防静电、防辐射、抗菌和抑菌等功能,可以用于制备远红外织物或衣物、抑菌口罩,内衣,防臭袜子、绷带、纱布,抗紫外、防静电服装,防辐射服装等。
以下结合实施例对本发明提供的多功能粘胶纤维及其制备方法进行进一步说明。
实施例1
在120℃下,将玉米芯在硫酸中进行30min的水解,得到木质纤维素,所述硫酸的质量为所述玉米芯质量的3%;
在70℃下,对所述木质纤维素进行1h的酸性亚硫酸盐法处理,得到多孔纤维素,所述酸性亚硫酸盐法处理过程中的pH值为1,酸为硫酸,亚硫酸盐为亚硫酸镁,所述硫酸的质量为所述木质纤维素质量的4%,液固比为2:1;
将所述多孔纤维素进行双氧水漂白,所述双氧水的质量为所述多孔纤维素质量的5%,所述双氧水漂白的漂白温度为100℃,漂白时间为5h。
将漂白后的多孔纤维素与氯化镍在20℃下搅拌2小时进行活化处理,所述氯化镍和多孔纤维素的质量比为0.1:1;将得到的活化处理后的产物在70℃下干燥,得到含水量低于10wt%的产物;
将上述产物置于炭化炉中,以200mL/min的气体通入量向所述碳化炉中通入氮气作为保护气,升温至800℃,保温6小时后,冷却至60℃以下;
在60℃下,将上述冷却后的产物在质量浓度为3%的氢氧化钠水溶液中洗涤4小时,得到第一洗涤产物;在70℃下,将所述第一洗涤产物在质量浓度为4%的盐酸水溶液中洗涤4小时,得到第二洗涤产物;将所述第二洗涤产物用蒸馏水洗涤至中性后干燥,得到生物质石墨烯。
将得到的石墨烯进行拉曼光谱测试,测试结果如图1所示,图1为本发明实 施例1得到的石墨烯的拉曼光谱,由图1可知,本发明实施例1提供的方法制备得到的石墨烯Sp2杂化程度高。对本发明实施例1制备得到的石墨烯进行透射电镜测试,测试结果如图2~图3所示,图2~图3为本发明实施例1得到的石墨烯的透射电镜图片,由图2~图3可以看出,本发明实施例1提供的方法制备得到的石墨烯的片层较薄,在10层以下,为生物质石墨烯。
实施例2
将1g实施例1制备的石墨烯在100g水中超声分散100min,以2000rpm的速度离心5min,取上清液后加入SDS得到石墨烯胶体溶液;将石墨烯胶体溶液再次在水中超声分散100min,得到石墨烯胶体溶液;
将上述石墨烯胶体溶液再次在水中超声分散100min,得到石墨烯分散液;搅拌的条件下向石墨烯分散液中加入0.02mol/L的硝酸银,避光搅拌溶解后缓慢加入0.2mol/L的硼氢化钠溶液,室温下反应100min;其中,硝酸银和石墨烯的质量比为1:10,硼氢化钠和硝酸银的摩尔比为10:1;
将反应后得到的反应物超声处理30min,得到负载纳米银的石墨烯溶液。
将磺化后的玉米芯纤维素溶解在稀氢氧化钠溶液中,并加入上述负载纳米银的石墨烯溶液,熟成后制备得到8%的粘胶液,在高速搅拌的条件下搅拌1h,石墨烯为玉米芯纤维素的0.1%。过滤、脱泡,然后经过纺丝、脱硫、水洗、干燥,制备得到多功能粘胶纤维。其中凝固浴组成:硫酸105g/L,硫酸钠200g/L,硫酸锌12g/L。
将得到的负载纳米银的石墨烯溶液抽滤,收集滤液,洗涤至滤液中没有阴离子时真空60℃烘干,得到负载纳米银的石墨烯。对所述负载纳米银的石墨烯进行电镜扫描,结果参见图4、图5和图6,图4是未负载纳米银的石墨烯的扫描电镜照片,图5和图6是负载纳米银的石墨烯的扫描电镜照片,由图4、图5和图6可知,本发明提供的方法中,纳米银粒径均一、分布均匀的负载与石墨烯表面。
实施例3
按照实施例2公开的方法和步骤进行多功能粘胶纤维的制备,区别在于,采用玉米秸秆纤维素代替玉米芯纤维素。
实施例4
按照实施例2公开的方法和步骤进行多功能粘胶纤维的制备,区别在于,硝酸银和石墨烯的质量比为1:100。
实施例5
按照实施例2公开的方法和步骤进行多功能粘胶纤维的制备,区别在于,硝酸银和石墨烯的质量比为1:2。
实施例6
按照实施例2公开的方法和步骤进行多功能粘胶纤维的制备,区别在于,石墨烯为玉米芯纤维素的0.05%。
实施例7
按照实施例2公开的方法和步骤进行多功能粘胶纤维的制备,区别在于,石墨烯为玉米芯纤维素的5%。
实施例8
按照实施例2公开的方法和步骤进行多功能粘胶纤维的制备,区别在于,负载纳米银的石墨烯溶液按照以下方法制备:
100ml浓度为0.02M的AgNO3水溶液中加入0.3g实施例1制备的石墨烯,超声分散3次后,在快速搅拌的条件下,缓慢滴加19mL浓度为0.2M的NaBH4水溶液,然后继续搅拌2h至还原反应完成。
实施例9
按照实施例8公开的方法和步骤进行多功能粘胶纤维的制备,区别在于,缓慢滴加80mL浓度为0.05M的NaBH4水溶液。
实施例10
按照实施例8公开的方法和步骤进行多功能粘胶纤维的制备,区别在于,缓慢滴加5mL浓度为0.2M的乙二醇溶液。
比较例1
将磺化后的玉米芯纤维素溶解在稀氢氧化钠溶液中,熟成后制备得到8%的粘胶液,在高速搅拌的条件下搅拌1h,过滤、脱泡,然后经过纺丝、脱硫、水洗、干燥,制备得到粘胶纤维。其中凝固浴组成:硫酸105g/L,硫酸钠200g/L,硫酸锌12g/L。
比较例2
将实施例1制备的石墨烯在水中超声分散100min,得到石墨烯分散液;
将磺化后的玉米芯纤维素溶解在稀氢氧化钠溶液中,并加入上述石墨烯分散液,熟成后制备得到8%的粘胶液,在高速搅拌的条件下搅拌1h,石墨烯为玉米芯纤维素的0.1%。过滤、脱泡,然后经过纺丝、脱硫、水洗、干燥,制备得到粘胶纤维。其中凝固浴组成:硫酸105g/L,硫酸钠200g/L,硫酸锌12g/L。
比较例3
将纳米银在水中超声分散100min,得到纳米银分散液;
将磺化后的玉米芯纤维素溶解在稀氢氧化钠溶液中,并加入上述纳米银分散液,熟成后制备得到8%的粘胶液,在高速搅拌的条件下搅拌1h,纳米银为玉米芯纤维素的0.1%。过滤、脱泡,然后经过纺丝、脱硫、水洗、干燥,制备得到粘胶纤维。其中凝固浴组成:硫酸105g/L,硫酸钠200g/L,硫酸锌12g/L。
比较例4
将实施例1制备的石墨烯在水中超声分散100min,得到石墨烯分散液;
将纳米银在水中超声分散100min,得到纳米银分散液;
将磺化后的玉米芯纤维素溶解在稀氢氧化钠溶液中,并加入上述纳米银分散液和石墨烯分散液,熟成后制备得到8%的粘胶液,在高速搅拌的条件下搅拌1h,纳米银为玉米芯纤维素的0.1%,石墨烯分散液为玉米芯纤维素的0.1%。过滤、脱泡,然后经过纺丝、脱硫、水洗、干燥,制备得到粘胶纤维。其中凝固浴组成:硫酸105g/L,硫酸钠200g/L,硫酸锌12g/L。
比较例5
以石墨粉为原料,采用改进的Hummers法制备石墨烯;将所述石墨烯在水中超声分散100min,得到石墨烯分散液;
将纳米银在水中超声分散100min,得到纳米银分散液;
将磺化后的玉米芯纤维素溶解在稀氢氧化钠溶液中,并加入上述纳米银分散液和石墨烯分散液,熟成后制备得到8%的粘胶液,在高速搅拌的条件下搅拌1h,纳米银为玉米芯纤维素的0.1%,石墨烯分散液为玉米芯纤维素的0.1%。过滤、脱泡,然后经过纺丝、脱硫、水洗、干燥,制备得到粘胶纤维。其中凝固浴组成:硫酸105g/L,硫酸钠200g/L,硫酸锌12g/L。
实施例11
以石墨粉为原料,采用改进的Hummers法制备石墨烯;将所述石墨烯在水中超声分散100min,得到石墨烯分散液;
搅拌的条件下向石墨烯分散液中加入0.02mol/L的硝酸银,避光搅拌溶解后缓慢加入0.2mol/L的硼氢化钠溶液,室温下反应100min;其中,硝酸银和石墨烯的质量比为1:10,硼氢化钠和硝酸银的摩尔比为10:1;
将反应后得到的反应物超声处理30min,得到负载纳米银的石墨烯溶液。
将磺化后的玉米芯纤维素溶解在稀氢氧化钠溶液中,并加入上述负载纳米银的石墨烯分散液,熟成后制备得到8%的粘胶液,在高速搅拌的条件下搅拌1h,石墨烯分散液为玉米芯纤维素的0.1%。过滤、脱泡,然后经过纺丝、脱硫、水洗、干燥,制备得到粘胶纤维。其中凝固浴组成:硫酸105g/L,硫酸钠200g/L,硫酸锌12g/L。
比较例6
以石墨粉为原料,采用改进的Hummers法制备氧化石墨烯;将所述氧化石墨烯在水中超声分散100min,得到氧化石墨烯分散液;
搅拌的条件下向氧化石墨烯分散液中加入0.02mol/L的硝酸银,避光搅拌溶解后缓慢加入0.2mol/L的硼氢化钠溶液,室温下反应100min;其中,硝酸银和氧化石墨烯的质量比为1:10,硼氢化钠和硝酸银的摩尔比为10:1;
将反应后得到的反应物超声处理30min,得到负载纳米银的氧化石墨烯溶液。
将磺化后的玉米芯纤维素溶解在稀氢氧化钠溶液中,并加入上述负载纳米银的氧化石墨烯分散液,熟成后制备得到8%的粘胶液,在高速搅拌的条件下搅拌1h,氧化石墨烯分散液为玉米芯纤维素的0.1%。过滤、脱泡,然后经过纺丝、脱硫、水洗、干燥,制备得到粘胶纤维。其中凝固浴组成:硫酸105g/L,硫酸钠200g/L,硫酸锌12g/L。
应用例
对实施例2~11、比较例1~6制备的粘胶纤维进行性能测试,测试方法如下:
其中远红外功能测试依据CAS 115-2005《保健功能纺织品》和GBT 7287-2008红外辐射加热器试验方法;抗紫外性能评定依据GBT 18830-2002;静电性能评定依据GB/T 12703.1-2008;抗菌和抑菌性能评价依据GB/T  20944.3-2008。
结果参见表1,表1为本发明实施例及比较例制备的粘胶纤维的性能测试结果。
表1本发明实施例及比较例制备的粘胶纤维的性能测试结果
Figure PCTCN2016081120-appb-000001
由表1可知,本发明提供的多功能粘胶纤维在远红外性能、抗紫外辐射性能、防静电性能、抗菌和抑菌性能等方面具有较大的提高。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种多功能粘胶纤维,包括:粘胶纤维、石墨烯和纳米银,其中,所述纳米银原位负载于所述石墨烯片层上。
  2. 根据权利要求1所述的多功能粘胶纤维,其特征在于,所述石墨烯按照以下方法制备:
    用双氧水或次氯酸钠对纤维素进行漂白处理,得到第一中间产物;
    用活化剂对所述第一中间产物进行活化,得到第二中间产物,所述活化剂为镍盐、铁盐、钴盐或锰盐的一种或多种;
    在保护性气体的条件下,将所述第二中间产物在600~1400℃下进行炭化处理,经过后处理后得到石墨烯。
  3. 根据权利要求1所述的多功能粘胶纤维,其特征在于,所述纳米银占所述石墨烯的1wt%~50wt%;
    所述石墨烯占所述粘胶纤维的0.01wt%~10wt%。
  4. 根据权利要求3所述的多功能粘胶纤维,其特征在于,所述纳米银占所述石墨烯的2wt%~30wt%;
    所述石墨烯占所述粘胶纤维的0.1wt%~5wt%。
  5. 根据权利要求1所述的多功能粘胶纤维,其特征在于,所述纤维素为多孔纤维素;
    所述活化剂为氯化镍、硝酸镍、硫酸镍、乙酸镍、氯化铁、氯化亚铁、硝酸铁、硫酸铁、硫酸亚铁、乙酸铁、氯化钴、硝酸钴、硫酸钴、乙酸钴、氯化锰、硝酸锰、硫酸锰和乙酸锰中的一种或几种。
  6. 一种多功能粘胶纤维的制备方法,其特征在于,包括:
    a)将石墨烯分散于水溶液中,得到石墨烯分散液;
    b)将银盐溶解于所述石墨烯分散液中,加入还原剂进行还原反应后,得到负载纳米银的石墨烯溶液;
    c)将所述负载纳米银的石墨烯溶液与粘胶液混合均匀,进行纺丝后得到多功能粘胶纤维。
  7. 根据权利要求6所述的制备方法,其特征在于,所述步骤a)具体包 括:
    a1)将石墨烯超声分散于水溶液中,离心或静置后得到均一的石墨烯分散溶液;
    a2)将所述均一的石墨烯分散溶液与稳定剂混合,得到稳定的石墨烯分散液。
  8. 根据权利要求7所述的制备方法,其特征在于,所述步骤a2)中,所述稳定剂为羧甲基纤维素钠、聚乙烯醇、吐温80、十二烷基硫酸钠或十二烷基苯磺酸钠中的一种或多种。
  9. 根据权利要求6所述的制备方法,其特征在于,所述步骤b)中,所述银盐为硝酸银,所述还原剂为硼氢化钠、乙二醇、葡萄糖或柠檬酸的一种或多种;
    所述还原剂与银盐的摩尔比为1~10:1。
  10. 根据权利要求6所述的制备方法,其特征在于,所述步骤b)中加入还原剂进行还原反应后,将得到的反应产物进行超声处理。
PCT/CN2016/081120 2015-05-22 2016-05-05 多功能粘胶纤维及其制备方法 WO2016188310A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16799199.1A EP3299499B1 (en) 2015-05-22 2016-05-05 Multifunctional viscose fibre and preparation method therefor
KR1020177037008A KR101951138B1 (ko) 2015-05-22 2016-05-05 다기능 비스코스 섬유 및 그 제조방법
US15/576,158 US10544520B2 (en) 2015-05-22 2016-05-05 Multifunctional viscose fiber and preparation method therefor
JP2017560548A JP6516876B2 (ja) 2015-05-22 2016-05-05 多機能ビスコース繊維及びその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510267761.8A CN104831389B (zh) 2015-05-22 2015-05-22 一种多功能粘胶纤维及其制备方法
CN201510267761.8 2015-05-22

Publications (1)

Publication Number Publication Date
WO2016188310A1 true WO2016188310A1 (zh) 2016-12-01

Family

ID=53809573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081120 WO2016188310A1 (zh) 2015-05-22 2016-05-05 多功能粘胶纤维及其制备方法

Country Status (6)

Country Link
US (1) US10544520B2 (zh)
EP (1) EP3299499B1 (zh)
JP (1) JP6516876B2 (zh)
KR (1) KR101951138B1 (zh)
CN (1) CN104831389B (zh)
WO (1) WO2016188310A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544520B2 (en) 2015-05-22 2020-01-28 Jinan Shengquan Group Share Holding Co., Ltd. Multifunctional viscose fiber and preparation method therefor
JP2020514570A (ja) * 2017-03-15 2020-05-21 山東聖泉新材料股▲フン▼有限公司 改質繊維製品、調製方法及びその使用
CN112342634A (zh) * 2020-11-25 2021-02-09 赛得利(九江)纤维有限公司 一种抗菌型纳米纤维素纤维的制备方法
CN112680811A (zh) * 2019-10-17 2021-04-20 中国石油化工股份有限公司 一种石墨烯/聚丙烯腈复合纤维及其纺丝原液和制备方法
CN113123159A (zh) * 2021-04-09 2021-07-16 陕西科技大学 一种纤维素纳米纤丝悬浮液及其制备方法
CN113638070A (zh) * 2021-08-06 2021-11-12 南通强生石墨烯科技有限公司 一种石墨烯抗病毒粘胶纤维及其制备方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017063434A1 (zh) 2015-10-15 2017-04-20 济南圣泉集团股份有限公司 一种含碳纳米结构的复合物、使用其的高分子材料及制备方法
KR101960619B1 (ko) 2015-10-27 2019-07-15 지난 셩취엔 그룹 쉐어 홀딩 코., 엘티디. 그래핀을 포함하는 복합 폴리우레탄 폼, 그 제조방법 및 용도
AU2016345040B2 (en) 2015-10-27 2019-07-18 Jinan Shengquan Group Share Holding Co., Ltd. Composite polyester material, composite polyester fibre, preparation method therefor and use thereof
CN105525377B (zh) 2015-11-26 2018-08-17 济南圣泉集团股份有限公司 一种功能性再生纤维素纤维及其制备方法和应用
JP6853249B2 (ja) 2015-11-20 2021-03-31 済南聖泉集団股▲ふん▼有限公司Jinan Shengquan Group Share Holding Co., Ltd グラフェンを含む変性ラテックス及びその調製方法と使用
KR102033268B1 (ko) * 2015-11-20 2019-10-16 지난 셩취엔 그룹 쉐어 홀딩 코., 엘티디. 기능성 재생 셀룰로오스 섬유 및 그 제조방법과 응용
CN105266238B (zh) * 2015-11-25 2017-08-11 常州纳美生物科技有限公司 一种基于氧化石墨烯的绿色抗菌防霾口罩及其制备方法
CN105603554B (zh) * 2016-01-18 2017-10-31 恒天海龙(潍坊)新材料有限责任公司 一种石墨烯功能化纤维素纤维及其制备方法
CN106467985B (zh) * 2016-03-04 2019-08-06 济南圣泉集团股份有限公司 一种冰爽再生纤维素纤维及其制备方法和纺织品
CN106012148A (zh) * 2016-07-15 2016-10-12 义乌市麻尚生针织品有限公司 一种棉麻保温变色纤维混纺纱线的制备方法
CN106192063A (zh) * 2016-07-21 2016-12-07 山传雷 一种石墨烯粘胶纤维及其制备方法
CN106850906B (zh) * 2016-07-21 2019-10-08 济南圣泉集团股份有限公司 生物质石墨烯在无线通讯设备壳体中的应用
CN106435811A (zh) * 2016-09-09 2017-02-22 泉州信和石墨烯研究院有限公司 一种石墨烯抗菌除臭运动鞋及其制备方法
CN106723389B (zh) * 2016-11-29 2018-06-01 东莞市广信知识产权服务有限公司 一种长效磁疗保暖内衣的制备方法
CN106579573B (zh) * 2016-11-29 2018-05-04 东莞市广信知识产权服务有限公司 一种长效抗菌保暖内衣及其制备方法
CN107190395A (zh) * 2017-06-08 2017-09-22 江苏田园新材料股份有限公司 一种汽车座椅面料及其处理工艺
CN107584618A (zh) * 2017-07-20 2018-01-16 广德县泉村竹制品有限公司 一种环保低成本竹席制备方法
CN108113800B (zh) * 2017-12-20 2021-08-10 健尔康医疗科技股份有限公司 弹力绷带
CN108239884A (zh) * 2018-02-24 2018-07-03 璧典附 一种基于石墨烯/纳米银的羽毛材料及其制备方法
CN109402815B (zh) * 2018-10-29 2019-08-30 福建祥业生物工程技术有限公司 石墨烯复合纤维纱线及其制备方法和应用
CN111778577A (zh) * 2019-04-03 2020-10-16 上海水星家用纺织品股份有限公司 一种纳米铂金粘胶纤维的制备方法
CN110438796A (zh) * 2019-07-10 2019-11-12 陈婷婷 一种具有生物抗菌性能棉布的制备方法
CN110339717A (zh) * 2019-07-17 2019-10-18 安徽智泓净化科技股份有限公司 基于粘胶纤维衬底的抗菌反渗透膜
CN110946148A (zh) * 2019-11-29 2020-04-03 陕西速源节能科技有限公司 一种环保型抗菌剂的制备方法
CN111118644B (zh) * 2019-12-24 2022-09-06 广州市中诚新型材料科技有限公司 一种石墨烯多功能腈纶纤维及其制备方法
CN111155186B (zh) * 2019-12-24 2022-10-28 广州市中诚新型材料科技有限公司 一种石墨烯多功能粘胶纤维及其制备方法
CN111329135A (zh) * 2020-02-12 2020-06-26 佛山轻子精密测控技术有限公司 一种复合纳米抗菌纤维的内裤面料及其制备方法
CN111808401A (zh) * 2020-06-10 2020-10-23 安徽银龙泵阀股份有限公司 一种耐腐蚀磁力泵隔离套制备方法
CN112320791A (zh) * 2020-11-18 2021-02-05 上海市质量监督检验技术研究院 一种石墨烯再生纤维素纤维中石墨烯颗粒的提取方法
CN112609469B (zh) * 2020-12-17 2022-06-07 广东金发科技有限公司 一种石墨烯熔喷无纺布及其制备方法
KR102484745B1 (ko) * 2021-04-12 2023-01-04 강원대학교산학협력단 카본 닷-셀룰로오스 나노섬유 복합체, 이를 포함하는 나노종이 및 이의 제조방법
CN113832567A (zh) * 2021-06-28 2021-12-24 中国人民解放军北部战区总医院 一种用于骨质疏松的保健服装
CN113604923A (zh) * 2021-08-23 2021-11-05 武汉纺织大学 石墨烯/银复合弹性包芯纱及其制备方法与应用
ES2952015B2 (es) * 2022-03-18 2024-03-06 Ancor Tecnologica Canaria S L Tratamiento biocida y fotoluminiscente de la fibra de viscosa inmediatamente despues del anadido de disulfuro de carbono en el proceso de conversion de la celulosa en viscosa (xantacion)
CN114672894B (zh) * 2022-04-21 2023-09-22 浙江锦事达化纤有限公司 一种抗菌锦纶丝及其制备工艺
CN114808174B (zh) * 2022-06-24 2022-09-27 山东天纤新材料有限公司 一种含橙和茶活性成分的粘胶纤维及其制备方法
CN115961368B (zh) * 2022-11-30 2023-09-12 新乡化纤股份有限公司 一种离子液法菌草再生纤维素纤维及其制备方法
CN116180296B (zh) * 2023-01-04 2023-11-03 江苏瑞洋安泰新材料科技有限公司 一种抗菌面料及其制备方法
CN116427051A (zh) * 2023-05-05 2023-07-14 东华大学 氧化石墨烯负载氧化亚铜抗菌纤维及其制备方法和应用
CN116856089B (zh) * 2023-08-11 2023-12-26 广州宝恒纺织科技有限公司 一种抗菌粘胶复合纱线及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376814A (zh) * 2002-04-29 2002-10-30 上海弘康科技发展有限公司 一种载银电气石多功能纤维及其制造方法
CN1779004A (zh) * 2004-11-26 2006-05-31 新乡化纤股份有限公司 一种抗菌粘胶纤维及其生产方法
CN102614871A (zh) * 2012-03-05 2012-08-01 天津大学 一种液相法制备石墨烯/银纳米粒子复合材料的方法
CN104328523A (zh) * 2014-11-20 2015-02-04 济南圣泉集团股份有限公司 包含石墨烯的粘胶纤维及其制备方法
WO2015042583A2 (en) * 2013-09-23 2015-03-26 Anand Srinivasan Systems, devices, & methods for microbial detection & identification, and antimicrobial susceptibility testing
CN104831389A (zh) * 2015-05-22 2015-08-12 济南圣泉集团股份有限公司 一种多功能粘胶纤维及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936124B (zh) * 2005-09-22 2011-04-20 河北吉藁化纤有限责任公司 含银抗菌粘胶纤维及其的制备方法
KR101822349B1 (ko) * 2009-03-16 2018-03-08 보르벡크 머터리얼스 코포레이션 중합체 섬유 및 이로부터 제조된 물품
CN102337602A (zh) * 2010-07-16 2012-02-01 周刚 一种抗菌纤维及纤维制品制备方法
KR20120077772A (ko) * 2010-12-31 2012-07-10 주식회사 효성 그래핀-폴리아미드 전도성 복합섬유 및 그 제조방법
KR20130033794A (ko) * 2011-09-27 2013-04-04 한국전자통신연구원 필터 제조 방법 및 이에 의해 제조된 필터
KR101432541B1 (ko) * 2012-07-13 2014-08-25 한국과학기술연구원 그라핀 탄소섬유 조성물 및 탄소섬유의 제조방법
FR2997097B1 (fr) * 2012-10-22 2015-04-10 Arkema France Procede de fabrication d'une fibre de carbone, materiau precurseur utilise par le procede et fibre de carbone obtenue.
KR101450731B1 (ko) * 2013-04-02 2014-10-16 국립대학법인 울산과학기술대학교 산학협력단 바이 메탈 환원형 산화 그래핀 나노 분말 및 그 제조 방법
CN103966690B (zh) * 2014-04-30 2015-12-30 四川大学 氧化银抗菌粘胶纤维及其原位反应的制备方法
CN104353842A (zh) * 2014-10-22 2015-02-18 苏州正业昌智能科技有限公司 一种纳米银-石墨烯复合材料的制备方法
CN104399998A (zh) * 2014-10-22 2015-03-11 苏州正业昌智能科技有限公司 一种石墨烯/纳米银复合材料的制备方法
CN104326523A (zh) 2014-10-22 2015-02-04 陕西华陆化工环保有限公司 降解饮用水氯化消毒副产物的方法
AU2016345040B2 (en) 2015-10-27 2019-07-18 Jinan Shengquan Group Share Holding Co., Ltd. Composite polyester material, composite polyester fibre, preparation method therefor and use thereof
CN105266238B (zh) 2015-11-25 2017-08-11 常州纳美生物科技有限公司 一种基于氧化石墨烯的绿色抗菌防霾口罩及其制备方法
CN105603554B (zh) 2016-01-18 2017-10-31 恒天海龙(潍坊)新材料有限责任公司 一种石墨烯功能化纤维素纤维及其制备方法
CN106012148A (zh) 2016-07-15 2016-10-12 义乌市麻尚生针织品有限公司 一种棉麻保温变色纤维混纺纱线的制备方法
CN106192063A (zh) 2016-07-21 2016-12-07 山传雷 一种石墨烯粘胶纤维及其制备方法
CN106579573B (zh) 2016-11-29 2018-05-04 东莞市广信知识产权服务有限公司 一种长效抗菌保暖内衣及其制备方法
CN106723389B (zh) 2016-11-29 2018-06-01 东莞市广信知识产权服务有限公司 一种长效磁疗保暖内衣的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1376814A (zh) * 2002-04-29 2002-10-30 上海弘康科技发展有限公司 一种载银电气石多功能纤维及其制造方法
CN1779004A (zh) * 2004-11-26 2006-05-31 新乡化纤股份有限公司 一种抗菌粘胶纤维及其生产方法
CN102614871A (zh) * 2012-03-05 2012-08-01 天津大学 一种液相法制备石墨烯/银纳米粒子复合材料的方法
WO2015042583A2 (en) * 2013-09-23 2015-03-26 Anand Srinivasan Systems, devices, & methods for microbial detection & identification, and antimicrobial susceptibility testing
CN104328523A (zh) * 2014-11-20 2015-02-04 济南圣泉集团股份有限公司 包含石墨烯的粘胶纤维及其制备方法
CN104831389A (zh) * 2015-05-22 2015-08-12 济南圣泉集团股份有限公司 一种多功能粘胶纤维及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3299499A4 *
SOON, W.C. ET AL.: "A graphene oxide facilitated a highly porous and effective antibacterial", CELLULOSE., vol. 21, 29 August 2014 (2014-08-29), pages 4261 - 4270, XP055331981 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10544520B2 (en) 2015-05-22 2020-01-28 Jinan Shengquan Group Share Holding Co., Ltd. Multifunctional viscose fiber and preparation method therefor
JP2020514570A (ja) * 2017-03-15 2020-05-21 山東聖泉新材料股▲フン▼有限公司 改質繊維製品、調製方法及びその使用
CN112680811A (zh) * 2019-10-17 2021-04-20 中国石油化工股份有限公司 一种石墨烯/聚丙烯腈复合纤维及其纺丝原液和制备方法
CN112680811B (zh) * 2019-10-17 2024-02-27 中国石油化工股份有限公司 一种石墨烯/聚丙烯腈复合纤维及其纺丝原液和制备方法
CN112342634A (zh) * 2020-11-25 2021-02-09 赛得利(九江)纤维有限公司 一种抗菌型纳米纤维素纤维的制备方法
CN112342634B (zh) * 2020-11-25 2022-12-16 赛得利(九江)纤维有限公司 一种抗菌型纳米纤维素纤维的制备方法
CN113123159A (zh) * 2021-04-09 2021-07-16 陕西科技大学 一种纤维素纳米纤丝悬浮液及其制备方法
CN113123159B (zh) * 2021-04-09 2022-11-22 陕西科技大学 一种纤维素纳米纤丝悬浮液及其制备方法
CN113638070A (zh) * 2021-08-06 2021-11-12 南通强生石墨烯科技有限公司 一种石墨烯抗病毒粘胶纤维及其制备方法

Also Published As

Publication number Publication date
US10544520B2 (en) 2020-01-28
CN104831389A (zh) 2015-08-12
US20180209071A1 (en) 2018-07-26
KR101951138B1 (ko) 2019-02-21
KR20180010256A (ko) 2018-01-30
JP6516876B2 (ja) 2019-05-22
EP3299499A4 (en) 2018-12-05
JP2018514661A (ja) 2018-06-07
EP3299499B1 (en) 2021-07-07
CN104831389B (zh) 2017-04-19
EP3299499A1 (en) 2018-03-28

Similar Documents

Publication Publication Date Title
WO2016188310A1 (zh) 多功能粘胶纤维及其制备方法
RU2689580C2 (ru) Графенсодержащее вискозное волокно и способ его получения
KR101935697B1 (ko) 탄소 나노 구조를 가지는 복합물, 그를 사용하는 고분자 재료 및 제조방법
CN109402815B (zh) 石墨烯复合纤维纱线及其制备方法和应用
CN111155186B (zh) 一种石墨烯多功能粘胶纤维及其制备方法
WO2017084622A1 (zh) 改性纤维及其制备方法
JP6663991B2 (ja) 機能性再生セルロース繊維及びその調製方法と使用
CN105970302B (zh) 一种基于生物酶处理技术的竹原纤维的生产工艺
CN112111807A (zh) 具有皮芯结构的导电多功能纤维及其制备方法
CN111893754A (zh) 异形结构边缘的石墨烯纳米片抗菌抗病毒面料
CN104878465A (zh) 一种碳纳米管再生竹纤维及其生产方法
WO2017084621A1 (zh) 一种功能性合成材料及其制备方法、制品
CN108277548B (zh) 一种石墨烯涤纶阻燃纤维及其制备方法
CN105177746A (zh) 一种抗菌Lyocell纤维及其制备方法
CN109680394A (zh) 一种保暖面料
CN106381541B (zh) 一种浒苔碳纳米材料再生纤维素共混纤维的制备方法
JP7009762B2 (ja) 多孔体および多孔体の製造方法
Rahman Production of functional textile filaments from chemically modified cellulose fibers
CN117661147A (zh) 一种纳米纤维素基自融合光热相变复合纤维及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16799199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560548

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15576158

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177037008

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016799199

Country of ref document: EP