WO2016187918A1 - 一种量子点背光模组 - Google Patents

一种量子点背光模组 Download PDF

Info

Publication number
WO2016187918A1
WO2016187918A1 PCT/CN2015/082062 CN2015082062W WO2016187918A1 WO 2016187918 A1 WO2016187918 A1 WO 2016187918A1 CN 2015082062 W CN2015082062 W CN 2015082062W WO 2016187918 A1 WO2016187918 A1 WO 2016187918A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
light
layer
backlight module
guide plate
Prior art date
Application number
PCT/CN2015/082062
Other languages
English (en)
French (fr)
Inventor
程艳
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US14/786,049 priority Critical patent/US9897737B2/en
Publication of WO2016187918A1 publication Critical patent/WO2016187918A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0026Wavelength selective element, sheet or layer, e.g. filter or grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a quantum dot backlight module.
  • the color gamut level of mainstream liquid crystal display devices including flat panel display devices is only about 72%, and the color gamut level of some liquid crystal display devices is even lower.
  • quantum dot backlight technology came into being. Quantum dot backlight technology can increase the color gamut level of display devices to 100%, greatly enriching the performance of display devices.
  • the quantum dot backlight technology of the two structures often used in the prior art has great drawbacks.
  • One of the structures is a backlight module using a quantum dot glass tube.
  • the backlight module of the structure increases the distance of the blue light source from the light guide plate, and the scale of the quantum dot increases, resulting in insufficient coupling angle of the light guide plate to the light source. The extraction efficiency of the light guide plate is lowered.
  • Another structure is a backlight module using a quantum dot film.
  • the backlight module of this structure directly increases the light loss due to the use of too much scattering. Therefore, it is necessary to improve the existing backlight module to improve its light extraction efficiency.
  • the present invention provides a quantum dot backlight module for solving the problem of low light extraction efficiency of the backlight module in the prior art.
  • a quantum dot backlight module including:
  • a quantum dot layer that is excited by light emitted by the light source to emit fluorescence
  • a light guide plate that directs fluorescence emitted by the quantum dot layer to a desired direction
  • the quantum dot layer is disposed on a light incident side of the light guide plate, and a colloid layer is disposed between the light source and the quantum dot layer, so that the light source is closely coupled with the quantum dot layer, and further The light source, the quantum dot layer, and the light guide plate are assembled into one body.
  • the light incident side of the light guide plate is provided with an opening, and the quantum dot layer is disposed in the opening, so that the light guide plate and the quantum dot layer are assembled into one body.
  • a light effect gain dielectric layer is disposed on a side of the exiting surface of the quantum dot layer, and the light effect gain dielectric layer does not adsorb the fluorescence emitted by the quantum dot layer.
  • the refractive index of the light effect gain dielectric layer is between the refractive index of the air and the refractive index of the light guiding material of the light guide plate.
  • the dielectric material used in the light effect gain medium layer comprises a modified polycarbonate poly, a modified dimethyl siloxane resin or a poly methacrylic resin.
  • the colloid layer is made of a viscous colloidal material.
  • the refractive index of the colloidal material is between the refractive index of air and the refractive index of the quantum dot material in the quantum dot layer.
  • the initial state of the colloid layer is a condensed state, which is cured to form a solid colloid layer such that the quantum dot layer is tightly bonded to the light source.
  • the light incident side of the light guide plate is disposed on a side of the light guide plate.
  • the light incident side of the light guide plate is disposed below the light guide plate.
  • the invention changes the light transmission mode of the light source into the light guide plate, thereby reducing the light energy loss and improving the luminous efficiency of the backlight module.
  • FIG. 1 is a schematic cross-sectional view of a quantum dot backlight module in accordance with an embodiment of the present invention
  • Figure 2 is a plan view of Figure 1;
  • FIG. 3 is a schematic diagram of light conduction during operation of the quantum dot backlight module of FIG. 1.
  • FIG. 3 is a schematic diagram of light conduction during operation of the quantum dot backlight module of FIG. 1.
  • FIG. 1 is a schematic cross-sectional view of a quantum dot backlight module according to an embodiment of the present invention
  • FIG. 2 is a top view of FIG. 1. The present invention will be described in detail below with reference to FIGS. 1 and 2.
  • the backlight module includes a light source 1 , a quantum dot layer 3 , and a light guide plate 5 .
  • the light source 1 is used to excite the quantum dots in the quantum dot layer 3 to emit fluorescence.
  • the light source 1 can be an LED chip, a cold cathode fluorescent tube, or the like. In the present invention, an LED chip will be described as an example. As shown in FIG. 2, an LED strip composed of a plurality of LED chips serves as the light source 1.
  • the quantum dots in the quantum dot layer 3 When excited by the light emitted by the light source 1, the quantum dots in the quantum dot layer 3 emit spectra.
  • the photoelectric properties of quantum dots are related to the size and shape of quantum dots. Therefore, the emission spectrum of quantum dots can be changed by changing the size and shape of quantum dots.
  • the quantum dot layer 3 is excited by the conventional light source to emit fluorescence, which can effectively improve the gamut level of the backlight module, thereby improving the illuminance of the light source. effectiveness.
  • the light guide plate 5 is used to change the direction in which light is conducted inside. Specifically, the fluorescence emitted from the quantum dot layer 3 is guided to a desired direction by the light guide plate 5, and then emitted to the light guide plate 5.
  • the quantum dot layer 3 is disposed on the light incident side of the light guide plate 5 such that the quantum dot layer 3 and the light guide plate 5 are combined.
  • a colloid layer 2 is disposed between the light source 1 and the quantum dot layer 3, and the colloid layer 2 is such that the light source 1 and the quantum dot layer 3 are closely combined, thereby assembling the light source 1, the quantum dot layer 3 and the light guide plate 5 to form Backlight module.
  • the colloid layer 2 is made of a viscous colloidal material, and the refractive index of the colloidal material is required to be between the refractive index of the air and the refractive index of the quantum dot material in the quantum dot layer 3. between.
  • an opening is provided on the light incident side of the light guide plate 5, and the quantum dot layer 3 is disposed in the opening, so that the light guide plate 5 and the quantum dot layer 3 are integrally assembled.
  • a light source separately provided, a quantum dot layer encapsulated in a glass tube, and a light guide plate are generally assembled by a bracket to form a backlight module, specifically, between the light source and the glass tube, and the glass tube
  • a bracket for connection is provided between the light guide plate and the light guide plate.
  • the light emitted by the light source needs to pass through the air layer at the support between the light source and the glass tube to reach the quantum dot layer, and the fluorescence emitted by the quantum dot layer needs to pass through the bracket between the glass tube and the light guide plate.
  • the air layer can reach the light guide plate.
  • the light emitted from the light source 1 passes through the colloid layer 2 to reach the quantum dot layer 3.
  • the colloid layer 2 can be as thin as possible as needed, thus reducing the distance between the light source 1 and the quantum dot layer 3, thereby reducing the loss of light energy.
  • the colloid layer 2 is made of a viscous material, and the light source 1 and the quantum dot layer 3 are closely attached together while satisfying the reduction of the light propagation distance.
  • the initial state of the colloid layer 2 is a condensed state.
  • the curing treatment forms a solid colloid layer to tightly bond the quantum dot layer 3 with the light source 1.
  • a heat curing or ultraviolet curing treatment method is usually employed, and the curing process is an irreversible process.
  • the colloidal material in the initial state is condensed, and then solidified to form a solid colloid layer to combine the quantum dot layer 3 and the light source 1 to facilitate the close combination of the two.
  • the quantum dot layer 3 is disposed in the opening of the light guide plate 5, that is, the quantum dot layer 3 is encapsulated in the light guide plate 5 except for the portion in contact with the colloid layer 2.
  • the quantum dot layer 3 can be prevented from chemically reacting with the air, affecting the properties of the quantum dot layer, and the quantum dot layer can be prevented from being scratched, thereby improving the reliability of the quantum dot layer.
  • Encapsulating the quantum dot layer on the light incident side of the light guide plate 5 also prevents its positional movement and stabilizes the fluorescence emitted therefrom.
  • the quantum dot layer 3 is disposed in the opening of the light guide plate 5, and the fluorescence emitted by the quantum dot layer 3 does not pass through the air layer to reach the light guide plate 5, thereby reducing the distance between the quantum dot layer 3 and the light guide plate 5, thereby reducing the light. Can lose.
  • the quantum dot layer 3 in the opening of the light guide plate 5, and integrating the quantum dot layer 3 and the light source 1 through the colloid layer 2, the light source 1, the quantum dot layer 3, and the light guide plate are integrally assembled.
  • the loss of light at the interface is determined by the direction of incidence of the light and the refractive index of the incident medium and the refractive index of the exit medium.
  • the light-emitting efficiency can be effectively improved only by reducing the influence of the interface and reducing the refractive index difference between the incident medium and the exit medium.
  • the LED chip will be described as the light source 1.
  • the backlight module When the backlight module is operated, light emitted by a plurality of LED chips reaches the colloid layer 2 through the luminescent layer, and is refracted at the interface between the luminescent layer and the colloid layer 2.
  • the incident angle is defined as the angle ⁇
  • the refraction angle is defined as the angle ⁇
  • the critical angle at which total reflection occurs is defined as the angle ⁇ .
  • the angle ⁇ 90°
  • the angle ⁇ is equal to the angle ⁇ ; when the angle ⁇ >the angle ⁇ , the portion of the light is totally reflected and is reflected to the inside of the light-emitting diode light source 1.
  • the refractive index of the material of the light-emitting layer defining the light source of the LED chip is N1
  • the angle ⁇ 90°
  • part of the light that cannot be refracted by the total reflection at the interface between the light source and the air can be refracted at the interface between the LED light source and the colloidal layer 2, and then enters the colloid layer 2, thereby reaching the quantum dot layer 3, thereby reducing the optics.
  • the loss improves the luminous efficiency of the backlight module.
  • the refractive index of the colloid layer 2 is smaller than the refractive index of the air, and is smaller than the refractive index of the quantum dot layer 3 to avoid total reflection at the interface between the colloid layer 2 and the quantum dot layer 3, so that the light source 1 emits The light energy excites the quantum dots of the quantum dot layer 3 as much as possible.
  • the colloidal layer 2 ensures the refractive index, the greater the light transmittance The better.
  • a light effect gain dielectric layer 4 provided with no adsorption to the fluorescence emitted from the quantum dot layer 3 is attached to the exit surface side of the quantum dot layer 3, as shown in FIGS. 1 and 2. Shown in .
  • the light-efficiency gain medium layer 4 does not adsorb the transmitted light, and the air layer reaches the inside of the light guide plate 5 through the air layer, thereby reducing the scattering and absorption of the air layer, and reducing the loss of light.
  • the refractive index of the light effect gain dielectric layer 4 is between the refractive index of the air and the refractive index of the light guiding material of the light guide plate 5 to prevent the fluorescence emitted by the quantum dot layer 4 from reaching the light.
  • the light transmittance of the light-effect-enhancing medium layer 4 should be set as large as possible. In general, the light transmittance can be set to be greater than 85% under the condition that the light-effect-enhancing dielectric layer 4 satisfies the refractive index.
  • the dielectric material used in the efficacy gain dielectric layer 4 comprises a modified polycarbonate poly, a modified dimethyl siloxane resin or a poly methacrylic resin.
  • These dielectric materials are excellent in mechanical resistance, heat resistance, weather resistance, and high in optical transmittance, and therefore are suitable for forming the light effect gain dielectric layer 4.
  • the material for fabricating the light effect gain dielectric layer 4 herein is not limited to the dielectric materials described above.
  • the light incident side of the light guide plate 5 is disposed on the side of the light guide plate 5, that is, the incident light enters the light guide plate from the side of the light guide plate 5, as shown in FIG. 1 and FIG. Structure of the light guide plate.
  • the light incident side of the light guide plate 5 is disposed below the light guide plate 5, that is, the incident light enters the light guide plate from below the light guide plate 5.
  • the backlight module of the present invention can be used for both of the light guide plates of the structure.
  • FIG. 3 is a schematic diagram showing the conduction of light during operation of the backlight module of FIGS. 1 and 2.
  • the light source 1 emits blue light as an example for description.
  • the blue light emitted by the light source 1 passes through the colloid layer 2 and reaches the quantum dot layer 3, and the blue light excites the quantum dots in the quantum dot layer 3.
  • Quantum dots are excited to emit red or green light, and quantum dots emit red or green light depending on the shape and size of the quantum dots.
  • the quantum dots are excited to emit blue or green light, which is mixed with the blue light emitted by the light source to form white light.
  • the white light reaches the inside of the light guide plate 5 through the light effect gain medium layer 4 which does not adsorb light. In this process, due to the presence of the colloid layer 2 and the optical effect gain medium layer 4, the loss of light energy can be reduced, and the luminous efficiency of the backlight module can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种量子点背光模组,该背光模组包括:光源(1);量子点层(3),其受光源(1)发出的光激发后射出荧光;导光板(5),其用于将量子点层(3)射出的荧光导向所需的方向,其中,量子点层(3)设置于导光板(5)的入光侧,在光源(1)与量子点层(3)之间设置有胶体层(2),以使得光源(1)与量子点层(3)紧密结合,进而使得光源(1)、量子点层(3)和导光板(5)组装为一体。通过改变量子点背光模组的结构,改变了光源(1)进入导光板(5)的光传导方式,从而减小了光能损失,提高了背光模组的发光效率。

Description

一种量子点背光模组
相关技术的交叉引用
本申请要求享有2015年5月26日提交的名称为“一种量子点背光模组”的中国专利申请CN201510274965.4的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及显示技术领域,具体地说,涉及一种量子点背光模组。
背景技术
目前,包括平板显示设备的主流液晶显示器件的色域水平仅在72%左右,有的液晶显示器件的色域水平甚至更低。为提高色域水平,量子点背光源技术应运而生。量子点背光源技术能够将显示器件的色域水平提高至100%,极大地丰富了显示器件的表现能力。
但是,现有技术中经常采用的两种结构的量子点背光源技术均存在很大缺点。其中的一种结构为采用量子点玻璃管的背光模组,这种结构的背光模组使得蓝光光源离导光板的距离增加,量子点条的尺度加大,导致导光板对光源的耦合角度不够,导光板的萃取效率下降。另一种结构为采用量子点薄膜的背光模组,这种结构的背光模组因使用了太多的散射,直接增加了光损。因此,有必要对现有的背光源模组进行改进,以提高其出光效率。
发明内容
为解决以上问题,本发明提供了一种量子点背光模组,用以解决现有技术中的背光模组出光效率低的问题。
根据本发明的一个实施例,提供了一种量子点背光模组,包括:
光源;
量子点层,其受所述光源发出的光激发后射出荧光;
导光板,其将所述量子点层射出的荧光导向所需的方向,
其中,所述量子点层设置于所述导光板的入光侧,在所述光源与所述量子点层之间设置有胶体层,以使得所述光源与所述量子点层紧密结合,进而使得所述光源、所述量子点层和所述导光板组装为一体。
根据本发明的一个实施例,所述导光板的入光侧设置有开口,所述量子点层设置于所述开口内,从而使得所述导光板和所述量子点层组装为一体。
根据本发明的一个实施例,在所述量子点层的出射光面一侧贴合设置有光效增益介质层,所述光效增益介质层对所述量子点层射出的荧光不产生吸附作用。
根据本发明的一个实施例,所述光效增益介质层的折射率介于空气的折射率和所述导光板的导光材料的折射率之间。
根据本发明的一个实施例,所述光效增益介质层采用的介质材料包括改性聚碳酸酯聚、改性二甲基硅氧烷树脂或聚甲基丙烯酸树脂。
根据本发明的一个实施例,所述胶体层采用具有粘性的胶体材料制成。
根据本发明的一个实施例,所述胶体材料的折射率介于空气的折射率和所述量子点层中的量子点材料的折射率之间。
根据本发明的一个实施例,所述胶体层的初始状态为凝露态,经固化处理形成固态的胶体层以使得所述量子点层与所述光源紧密结合。
根据本发明的一个实施例,所述导光板的入光侧设置于所述导光板的侧面。
根据本发明的一个实施例,所述导光板的入光侧设置于所述导光板的下方。
本发明通过改变量子点背光模组的结构,改变了光源进入导光板的光传导方式,从而减小了光能损失,提高了背光模组的发光效率。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例共同用于解释本发明,并不构成对本发明的限制。在附图中:
图1是根据本发明的一个实施例的量子点背光模组的截面示意图;
图2是图1的俯视图;以及
图3是图1中的量子点背光模组工作时的光线传导示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合附图对本发明作进一步地详细说明。
如图1所示为根据本发明的一个实施例的量子点背光模组的截面示意图,图2为图1的俯视图,以下参考图1和图2来对本发明进行详细说明。
如图1和图2所示,该背光模组包括光源1、量子点层3及导光板5。其中,光源1用来激发量子点层3中的量子点发出荧光。通常,该光源1可以采用LED芯片或冷阴极荧光灯管等,在本发明中以LED芯片为例进行说明。如图2所示,由多个LED芯片组成的LED灯条作为光源1。
当受到光源1发出的光的激发时,量子点层3中的量子点发射光谱。量子点的光电特性与量子点的尺寸和形状有关,因此,通过改变量子点的尺寸和形状即可以改变量子点的发射光谱。相较于直接将传统的LED光源或冷阴极荧光光源发出的光传导到发光板5,量子点层3受传统光源激发发射荧光,可以有效提高背光模组的色域水平,进而提高光源的发光效率。
导光板5用于改变光在其内部的传导方向。具体的,量子点层3射出的荧光通过导光板5导向所需的方向后,再射出导光板5。
在本发明的一个实施例中,量子点层3设置于导光板5的入光侧,以使得量子点层3与导光板5组合在一起。并且,光源1与量子点层3之间设置有一胶体层2,该胶体层2使得光源1与量子点层3紧密结合,进而将光源1、量子点层3和导光板5组装在一起以形成背光模组。
在本发明的一个实施例中,该胶体层2采用具有粘性的胶体材料制成,并且要求该胶体材料的折射率介于空气的折射率和量子点层3中的量子点材料的折射率之间。在本发明的一个实施例中,在导光板5的入光侧设置有开口,量子点层3设置于该开口内,这样就将导光板5和量子点层3组装为一体。
在现有技术中,一般将各自独立设置的光源、封装于玻璃管中的量子点层和导光板通过支架组装为一体以形成背光模组,具体的,在光源和玻璃管之间、玻璃管和导光板之间均设置有连接用的支架。在该种结构的背光模组中,光源发出的光需经过光源和玻璃管之间支架处的空气层才能到达量子点层,量子点层射出的荧光需经过玻璃管和导光板之间支架处的空气层才能到达导光板。
但是,在本发明中,光源1发出的光经过胶体层2到达量子点层3。在实际应用中,该胶体层2可以根据需要设置的尽可能薄,这样就减小了光源1与量子点层3之间的距离,进而减少了光能损失。同时,该胶体层2采用粘性材料制成,在满足缩小光传播距离的同时,将光源1与量子点层3紧密地贴合在一起。
在本发明的一个实施例中,在形成该胶体层2时,胶体层2的初始状态为凝露态,经 固化处理形成固态的胶体层以使得量子点层3与光源1紧密结合。通常可采用受热固化或紫外线固化处理方法,并且该固化过程为不可逆过程。采用初始状态为凝露状态的胶体材料,再经过固化处理形成固态胶体层来将量子点层3和光源1结合在一体,有利于实现两者的紧密结合。
另外,在本发明中,量子点层3设置于导光板5的开口内,即该量子点层3除与胶体层2接触的部分外,其余均封装于导光板5内。这样,就可以避免量子点层3与空气发生化学反应,影响量子点层的性质,还可以防止量子点层被刮伤,进而提高量子点层的可靠性。将量子点层封装于导光板5的入光侧,还可以防止其位置移动,稳定其发射的荧光。将量子点层3设置于导光板5的开口内,量子点层3发出的荧光不用经过空气层到达导光板5,减小了量子点层3与导光板5之间的距离,进而减少了光能损失。这样,通过将量子点层3设置于导光板5的开口内,并将量子点层3和光源1通过胶体层2组合在一体,进而将光源1、量子点层3和导光板组装为一体。
当光从一种介质进入另外一种介质的时候,不仅会发生折射,还会在两种媒质的界面发生全反射。根据菲涅尔方程,光在界面上的损失决定于光的入射方向以及入射介质的折射率和出射介质的折射率。在无法改变光的入射方向情况下,只有通过减弱界面的影响,减少入射介质与出射介质之间的折射率差值,才能有效的提高出光效率。
将LED芯片作为光源1来进行说明。当背光模组运行时,若干LED芯片发出的光经发光层到达胶体层2,进而在发光层和胶体层2的交界面发生折射。此时将其入射角定义为角θ,折射角定义为角α,发生全反射时的临界角定义为角β。当角α=90°时,角θ与角β相等;当角θ>角β,该部分光线发生全反射,进而被反射至发光二极管光源1的内部。
根据光的折射定律,定义LED芯片光源的发光层材料的折射率为N1,胶体层2的折射率为N2,故N1Sinθ=N2Sinα。当发生全反射时,角α=90°,且角θ与角β相等,故N1Sinβ=N2,即Sinβ=N2/N1。由于胶体层2的折射率N2较空气的折射率大,故LED芯片光源发出的光线入射到胶体层2中时,其发生全反射的临界角β较直接入射到空气中的临界角大。如此,原本在光源和空气的交界面因全反射而无法折射出去的部分光线可在发光二极管光源和胶体2层的交界面折射后进入胶体层2,进而到达量子点层3,从而减少了光学损失,提高了背光模组的发光效率。
胶体层2的折射率在满足大于空气折射率的同时,还要小于量子点层3的折射率,以避免在胶体层2和量子点层3之间的界面上发生全反射,使得光源1发出的光能尽可能多的激发量子点层3的量子点。同时,在胶体层2保证折射率要求的条件下,其透光性越大 越好。
在本发明的一个实施例中,在量子点层3的出射光面一侧贴合设置有对量子点层3射出的荧光不产生吸附作用的光效增益介质层4,如图1和图2中所示。此处,光效增益介质层4对透过的光不产生吸附作用,相对于现有技术通过空气层到达导光板5内部,减少了空气层的散射及吸收,可以减少光的损失。
在本发明的一个实施例中,该光效增益介质层4的折射率介于空气的折射率和导光板5的导光材料的折射率之间,以避免量子点层4发出的荧光到达光效增益介质层4与导光板5中的导光材料的界面时发生全反射,从而尽可能的减少光传导损失,增加光传播距离。由于量子点层3发出的荧光需透过该光效增效介质层4到达导光板5内部,所以应将该光效增效介质层4的透光率设置的尽可能大。在一般情况下,在光效增强介质层4满足折射率的条件下,可将其透光率设置为大于85%。
在本发明的一个实施例中,光效增益介质层4采用的介质材料包括改性聚碳酸酯聚、改性二甲基硅氧烷树脂或聚甲基丙烯酸树脂。这些介质材料的耐机械性、耐热性、耐候性优异,并且具有较高的光学透过性,因此,适用于形成光效增益介质层4。当然,此处制作光效增益介质层4的材料不限于以上所述的介质材料。
在本发明的一个实施例中,导光板5的入光侧设置于导光板5的侧面,即入射光从导光板5的侧面进入导光板中,如图1和图2所示即为该种结构的导光板。在本发明的另一个实施例中,导光板5的入光侧设置于导光板5的下方,即入射光从导光板5的下方进入导光板中。这两种结构的导光板均可以采用本发明的背光模组。
如图3所示为图1和图2中的背光模组工作时光的传导示意图。如图3所示,以光源1发出蓝光为例进行说明。光源1发出的蓝光经胶体层2后到达量子点层3,蓝光激发量子点层3中的量子点。量子点受激发发射红光或绿光,量子点发射红光或绿光与量子点的形状和尺寸有关。量子点受激发发射的蓝光或绿光,与光源发出的蓝光混合形成白光。该白光透过对光不产生吸附作用的光效增益介质层4到达导光板5内部。在该过程中,由于胶体层2和光效增益介质层4的存在,可以减少光能损失,提高背光模组的发光效率。
虽然本发明所公开的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所公开的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (19)

  1. 一种量子点背光模组,包括:
    光源;
    量子点层,其受所述光源发出的光激发后射出荧光;
    导光板,其将所述量子点层射出的荧光导向所需的方向,
    其中,所述量子点层设置于所述导光板的入光侧,在所述光源与所述量子点层之间设置有胶体层,以使得所述光源与所述量子点层紧密结合,进而使得所述光源、所述量子点层和所述导光板组装为一体。
  2. 根据权利要求1所述的背光模组,其中,所述导光板的入光侧设置有开口,所述量子点层设置于所述开口内,从而使得所述导光板和所述量子点层组装为一体。
  3. 根据权利要求2所述的背光模组,其中,在所述量子点层的出射光面一侧贴合设置有光效增益介质层,所述光效增益介质层对所述量子点层射出的荧光不产生吸附作用。
  4. 根据权利要求3所述的背光模组,其中,所述光效增益介质层的折射率介于空气的折射率和所述导光板的导光材料的折射率之间。
  5. 根据权利要求4所述的背光模组,其中,所述光效增益介质层采用的介质材料包括改性聚碳酸酯聚、改性二甲基硅氧烷树脂或聚甲基丙烯酸树脂。
  6. 根据权利要求1所述的背光模组,其中,所述胶体层采用具有粘性的胶体材料制成。
  7. 根据权利要求6所述的背光模组,其中,所述胶体材料的折射率介于空气的折射率和所述量子点层中的量子点材料的折射率之间。
  8. 根据权利要求7所述的背光模组,其中,所述胶体层的初始状态为凝露态,经固化处理形成固态的胶体层以使得所述量子点层与所述光源紧密结合。
  9. 根据权利要求1所述的背光模组,其中,所述导光板的入光侧设置于所述导光板的侧面。
  10. 根据权利要求1所述的背光模组,其中,所述导光板的入光侧设置于所述导光板的下方。
  11. 根据权利要求2所述的背光模组,其中,所述胶体层采用具有粘性的胶体材料制成。
  12. 根据权利要求11所述的背光模组,其中,所述胶体材料的折射率介于空气的折射率和所述量子点层中的量子点材料的折射率之间。
  13. 根据权利要求12所述的背光模组,其中,所述胶体层的初始状态为凝露态,经 固化处理形成固态的胶体层以使得所述量子点层与所述光源紧密结合。
  14. 根据权利要求3所述的背光模组,其中,所述胶体层采用具有粘性的胶体材料制成。
  15. 根据权利要求14所述的背光模组,其中,所述胶体材料的折射率介于空气的折射率和所述量子点层中的量子点材料的折射率之间。
  16. 根据权利要求15所述的背光模组,其中,所述胶体层的初始状态为凝露态,经固化处理形成固态的胶体层以使得所述量子点层与所述光源紧密结合。
  17. 根据权利要求4所述的背光模组,其中,所述胶体层采用具有粘性的胶体材料制成。
  18. 根据权利要求17所述的背光模组,其中,所述胶体材料的折射率介于空气的折射率和所述量子点层中的量子点材料的折射率之间。
  19. 根据权利要求18所述的背光模组,其中,所述胶体层的初始状态为凝露态,经固化处理形成固态的胶体层以使得所述量子点层与所述光源紧密结合。
PCT/CN2015/082062 2015-05-26 2015-06-23 一种量子点背光模组 WO2016187918A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/786,049 US9897737B2 (en) 2015-05-26 2015-06-23 Quantum dot backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510274965.4A CN104849910A (zh) 2015-05-26 2015-05-26 一种量子点背光模组
CN201510274965.4 2015-05-26

Publications (1)

Publication Number Publication Date
WO2016187918A1 true WO2016187918A1 (zh) 2016-12-01

Family

ID=53849669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082062 WO2016187918A1 (zh) 2015-05-26 2015-06-23 一种量子点背光模组

Country Status (3)

Country Link
US (1) US9897737B2 (zh)
CN (1) CN104849910A (zh)
WO (1) WO2016187918A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10276756B2 (en) * 2017-04-28 2019-04-30 Shenzhen China Star Optoelectronics Technology Co., Ltd LED display panel
KR102433161B1 (ko) * 2017-08-18 2022-08-17 삼성디스플레이 주식회사 광학 부재 및 이를 포함하는 표시 장치
CN107632458A (zh) * 2017-09-18 2018-01-26 合肥惠科金扬科技有限公司 一种背光模组
CN107621726A (zh) * 2017-09-18 2018-01-23 合肥惠科金扬科技有限公司 一种背光模组的光学膜片组件的加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481562B2 (en) * 2004-11-18 2009-01-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Device and method for providing illuminating light using quantum dots
KR101091348B1 (ko) * 2010-07-09 2011-12-07 엘지이노텍 주식회사 퀀텀 도트를 이용한 도광판과 그의 제조 방법, 및 백라이트 유닛
CN104048221A (zh) * 2014-06-30 2014-09-17 纳晶科技股份有限公司 背光模组
KR101489390B1 (ko) * 2009-12-15 2015-02-03 엘지이노텍 주식회사 양자점을 이용한 백라이트 유닛
CN104613387A (zh) * 2015-02-28 2015-05-13 合肥京东方光电科技有限公司 一种背光模组及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201593727U (zh) * 2009-11-16 2010-09-29 华映光电股份有限公司 侧边入光式背光模块
TWI447450B (zh) * 2011-11-30 2014-08-01 Au Optronics Corp 導光板結構、背光模組及其製造方法
US20140334181A1 (en) * 2013-05-08 2014-11-13 Shenzhen China Star Optoelectronics Technology Co., Ltd Backlight unit of display device and white led
CN103487857A (zh) * 2013-10-11 2014-01-01 张家港康得新光电材料有限公司 量子点薄膜及背光模组
CN104241507B (zh) * 2014-09-18 2017-12-01 广东晶科电子股份有限公司 广色域led发光器件及其背光组件
CN104633551A (zh) * 2015-03-03 2015-05-20 深圳市华星光电技术有限公司 白光led、背光模块及液晶显示装置
CN104865631B (zh) * 2015-05-19 2018-03-13 武汉华星光电技术有限公司 导光板、背光模组及显示器
TWI544257B (zh) * 2015-05-25 2016-08-01 鴻海精密工業股份有限公司 背光模組、導光板結構及顯示裝置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481562B2 (en) * 2004-11-18 2009-01-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Device and method for providing illuminating light using quantum dots
KR101489390B1 (ko) * 2009-12-15 2015-02-03 엘지이노텍 주식회사 양자점을 이용한 백라이트 유닛
KR101091348B1 (ko) * 2010-07-09 2011-12-07 엘지이노텍 주식회사 퀀텀 도트를 이용한 도광판과 그의 제조 방법, 및 백라이트 유닛
CN104048221A (zh) * 2014-06-30 2014-09-17 纳晶科技股份有限公司 背光模组
CN104613387A (zh) * 2015-02-28 2015-05-13 合肥京东方光电科技有限公司 一种背光模组及显示装置

Also Published As

Publication number Publication date
US20170146718A1 (en) 2017-05-25
CN104849910A (zh) 2015-08-19
US9897737B2 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
JP6243376B2 (ja) 表示装置
JP5654676B2 (ja) 表示装置
JP5576414B2 (ja) 表示装置
JP5543518B2 (ja) 表示装置
KR101660163B1 (ko) 광 변환 부재, 이를 포함하는 백라이트 유닛 및 디스플레이 장치
TWI463200B (zh) 顯示裝置
US9513426B2 (en) Light down conversion film and display backlight unit using the same
US10690834B2 (en) Backlight device and manufacturing method thereof
KR101210066B1 (ko) 광 변환 부재 및 이를 포함하는 표시장치
US20080173889A1 (en) Light emitting diode chip package
WO2016187918A1 (zh) 一种量子点背光模组
WO2016197424A1 (zh) 背光模组及显示装置
WO2019140768A1 (zh) 一种背光源
JP6401994B2 (ja) 液晶表示装置
EP2223353B1 (en) Side-emitting, light emitting device with hybrid, top scattering-reflector
TWI621898B (zh) 光學構件及具有其之顯示裝置
US20140286037A1 (en) Solid State Lighting Device
US10386561B2 (en) Display device and method for manufacturing the same
US20200218004A1 (en) Backlight unit and a display including the same
US8471281B2 (en) Side emitting device with hybrid top reflector
JP2013258121A (ja) 発光装置、および表示装置
WO2017020381A1 (zh) 背光模组及背光模组的制备方法
CN105867023A (zh) 侧入式背光模组和液晶显示装置
KR101942531B1 (ko) 표시장치
KR101294427B1 (ko) 광학 부재 및 이를 포함하는 표시장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14786049

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892999

Country of ref document: EP

Kind code of ref document: A1