WO2016182191A1 - Wafer heating apparatus - Google Patents

Wafer heating apparatus Download PDF

Info

Publication number
WO2016182191A1
WO2016182191A1 PCT/KR2016/003046 KR2016003046W WO2016182191A1 WO 2016182191 A1 WO2016182191 A1 WO 2016182191A1 KR 2016003046 W KR2016003046 W KR 2016003046W WO 2016182191 A1 WO2016182191 A1 WO 2016182191A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
heating
wafer
weight
parts
Prior art date
Application number
PCT/KR2016/003046
Other languages
French (fr)
Korean (ko)
Inventor
김윤진
조진우
신권우
박지선
Original Assignee
주식회사 대화알로이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 대화알로이테크 filed Critical 주식회사 대화알로이테크
Publication of WO2016182191A1 publication Critical patent/WO2016182191A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • One embodiment of the present invention relates to a wafer heating apparatus.
  • a spinner facility applied to a photo process during a semiconductor manufacturing process allows a photo resist to be applied to form a pattern required for a wafer.
  • the photoresist is applied by spin coating and then passed through the wafer heating apparatus of the baking equipment so that the applied photoresist is cured by heating to a constant temperature. After exposure using the mask to the cured photoresist, the developer is applied. To develop.
  • the wafer heating apparatus of the baking installation is the structure which hardens by heating the photoresist apply
  • the wafer heating apparatus of the baking facility is generally composed of a chamber 1, a door 1a for intercepting the drawing of the wafer from one side of the chamber 1 and a heat plate 2 provided therein, as shown in FIG. Configuration. At this time, the heat wire is embedded in the heat plate 2 so that the wafer W seated on the upper surface thereof is heated to a predetermined temperature by heat transfer from the heat plate 2.
  • the heat plate 2 is heated to a predetermined temperature, first, the heat plate ( As 2) is heated, this heat is transferred to the wafer W so that the photoresist can be cured.
  • the temperature for heating the wafer W is typically detected by a sensor (not shown) to generate a temperature generated by the heating wire 2a embedded in the heat plate 2 as shown in FIG. 2. To be controlled.
  • the wafer heating in the conventional baking equipment is made by the heat transferred through the heat plate 2 to electrically heat the heating wire (2a) provided in the heat plate 2, so that the wafer before and after performing the heating process ( When loading or unloading W), it is inconvenient to wait until it is naturally cooled, and in particular, there is not only a structural limitation in forming the heating wire 2a on the heat plate 2, but also a central portion of the heat plate 2. Compared to the outer peripheral end side, the temperature is relatively low and there is a difficult problem that uniform wafer heating is not made over the entire surface.
  • Patent Document 1 KR10-0488547 B1
  • One embodiment of the present invention to solve the above problems, to provide a wafer heating apparatus for heating the wafer with a heated gas through a heating means that can be driven with high heat resistance and low voltage and low power.
  • the gas supply pipe for supplying a heated gas to the wafer located inside the chamber; And heating means for heating a gas flowing through the gas supply pipe, wherein the heating means comprises a heat generating paste composition, wherein the heat generating paste composition comprises 3 to 6 weight parts of carbon nanotube particles based on 100 parts by weight of the heat generating paste composition.
  • the resin may be mixed or hexamethylene diisocyanate, polyvinyl acetal and phenolic resin may be mixed.
  • the chamber is provided with a door for intermittent transfer of the wafer on one side, an exhaust port is formed on the bottom surface, the inside of the chamber is placed on the base member member;
  • a gas distribution plate member disposed on the base plate member and having a plurality of gas passage holes penetrating downward;
  • a gas storage tank for storing gas wherein the gas supply pipe may include a cooling gas pipe and a heating gas pipe connecting the gas to flow from the gas storage tank to the gas distribution plate member.
  • Gas flow amount control means provided in each of the cooling gas pipe and the heating gas pipe to adjust a flow amount of gas;
  • gas supply amount adjusting means which is provided in the cooling gas pipe passing through the gas flow amount controlling means and the heating gas pipe passing through the heating means, respectively, to adjust the amount of gas supplied to the gas distribution plate member.
  • the gas distribution plate member may be formed by allowing the gas passage holes having the same diameter to increase in density from the center to the outer periphery at the bottom.
  • the diameter of the gas passage hole may be gradually increased from the bottom center to the outer circumferential side.
  • one or more baffle plates having a plurality of through-holes formed on the plate surface may be spaced apart from each other by a predetermined height in a vertical direction.
  • baffle plates stacked vertically in the gas distribution plate member are arranged so that each through hole is staggered from each other in the vertical direction, and the through holes of the baffle plate positioned at the bottom are also gas passage holes in the bottom surface of the gas distribution plate member. And can be staggered.
  • Gas at room temperature may be supplied to the gas distribution plate member through a cooling gas pipe, and a gas heated at about 150 to 200 ° C. may be supplied through a heating gas pipe.
  • the gas may be an N 2 gas.
  • the mixed binder may be 10 to 150 parts by weight of polyvinyl acetal resin, 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate.
  • the silane coupling agent may further include 0.5 to 5 parts by weight based on 100 parts by weight of the exothermic paste composition.
  • the carbon nanotube particles may be multi-walled carbon nanotube particles.
  • the organic solvent is selected from carbitol acetate, butyl carbitol acetate, DBE (dibasic ester), ethyl carbitol, ethyl carbitol acetate, dipropylene glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol May be two or more mixed solvents.
  • the heating means may include a planar heating element in which the heating paste composition is formed by screen printing, gravure printing, or comma coating on a substrate.
  • the substrate may be a polyimide substrate, fiberglass mat or ceramic glass.
  • the heating means may further include a protective layer coated on an upper surface of the planar heating element and formed of an organic material having a black pigment such as silica or carbon shock.
  • uniform heating on the entire surface of the wafer can be performed at low power.
  • FIG. 1 is a cross-sectional view showing a wafer heating apparatus of a conventional baking apparatus.
  • FIG. 2 is a plan view showing a state in which a heating wire is formed on a conventional heat plate.
  • FIG 3 is a cross-sectional view showing a wafer heating apparatus according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing a gas distribution plate member of the wafer heating apparatus according to the embodiment of the present invention.
  • FIG. 5 is a view showing a schematic view of the gas supply unit of the wafer heating apparatus according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a wafer heating apparatus according to another embodiment of the present invention.
  • FIG. 7 is a view showing a gas distribution plate member of the wafer heating apparatus according to another embodiment of the present invention.
  • FIG. 8 is a view showing a schematic view of the gas supply unit of the wafer heating apparatus according to another embodiment of the present invention.
  • FIG 9 is an image of a specimen of a planar heating element using the heating paste composition of the wafer heating apparatus according to an embodiment of the present invention.
  • FIG 10 is an image of an exothermic stability test of the planar heating element manufactured according to the embodiment and the comparative example of the wafer heating apparatus according to an embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be “connected”, “coupled” or “connected”.
  • FIG 3 is a cross-sectional view showing a wafer heating apparatus according to an embodiment of the present invention
  • Figure 4 is a cross-sectional view showing a gas distribution plate member of the wafer heating apparatus according to an embodiment of the present invention
  • Figure 5 is a present invention 2 is a view illustrating a schematic view of a gas supply unit of a wafer heating apparatus according to an embodiment of the present disclosure.
  • a wafer heating apparatus includes a chamber member 10, a base plate member 20, a gas distribution plate member 30, a gas storage tank 40, and a gas supply pipe ( 50, the gas flow rate control means 60, the heating means 70, and the gas supply amount adjusting means 80 may be included.
  • the chamber member 10 allows the door 11 to be provided at one side so that the wafer W can be loaded or unloaded, and an exhaust port 12 is formed at the bottom thereof so that the reaction gas and floating foreign matters inside the chamber are filled. Allow to be discharged to the outside by pneumatic.
  • the base plate member 20 is configured to safely mount the wafer W loaded through the door 11 in the chamber member 10, and the upper surface on which the wafer W is placed is more than the wafer W. To form larger diameters.
  • the chamber member 10 and the base plate member 20 are much the same as in the conventional bake facility, but the heat plate provided so as to place the wafer in the past is provided with heat generating means on its own. There is a remarkable difference in that the base plate member 20 is provided only as a settling means for simply mounting the wafer W safely.
  • the gas distribution plate member 30 is fixed to the upper surface of the chamber member 10 directly on the base plate member 20 so that the upper surface of the wafer W to be placed on the gas distribution plate member 30 is uniform. In such a configuration that a gas to be heated and cooled is injected, a space for filling a predetermined amount of gas is formed therein, and a gas passage hole 31 through which the gas passes through the bottom is formed at the bottom thereof as shown in FIG. 4.
  • the gas passage holes 31 formed on the bottom surface of the gas distribution plate member 30 can be simply formed to have the same diameter, but the wafer heating and cooling due to the injection of the gas through the gas passage holes 31 are applied to the front surface. It is more desirable to distribute more gas passing holes 31 to the outer peripheral end side than to the center in order to make it uniform throughout. In addition to changing the distribution state of the gas through hole 31 for uniform heating and cooling of the wafer, the distribution is made uniform, while the diameter gradually expands toward the outer peripheral end side rather than the central gas through hole 31. It can form in a structure.
  • the gas distribution plate member 30 may be stacked such that one or more baffle plates 32 are spaced apart by a predetermined height in a vertical direction as shown in FIG. 5.
  • a plurality of through holes 32a are formed in the plate surface of the flat plate 32, and these through holes 32a are distributed in the same manner as the gas through holes 31 in the bottom surface of the gas distribution plate member 30.
  • the through holes 32a of the upper and lower side baffle plates 32, which are stacked on each other, may be alternately formed so as to be staggered from each other in a vertical direction to be separated from each other in a vertical direction.
  • the through hole 32a of the baffle plate 32 and the gas passage hole 31 of the bottom surface of the gas distribution plate member 30 are alternately formed.
  • the gas storage tank 40, the gas supply pipe 50, the gas flow rate controlling means 60, the heating means 70, and the gas supply amount adjusting means 80 are heated and cooled by the gas distribution plate member 30.
  • the gas storage tank 40 is simply a large amount of gas storage container that allows a certain amount of gas for heating and cooling the wafer W to be stored.
  • the gas storage tank 40 uses a gas that does not cause any chemical reaction with the wafer W and the photoresist applied to the upper surface of the wafer W when supplied into the chamber member 10. It is most preferable to use N 2 gas, which is often used as a purge gas of the reaction chamber in semiconductor equipment.
  • the gas flowing out of the gas storage tank 40 flows through the gas supply pipe 50, wherein the gas supply pipe 50 is divided into a cooling gas pipe 51 and a heating gas pipe 52.
  • the heating gas pipe 52 passing through the gas flow rate control means 60 of the gas supply pipe 50 is provided with a heating means 70 so that the gas passing through the heating gas pipe 52 passes through the heating means 70. It is a structure to heat as the temperature of.
  • the gas supply amount is adjusted to adjust the amount of gas supplied to the gas distribution plate member 30 to the cooling gas pipe 51 passing through the gas flow rate control means 60 and the heating gas pipe 52 passing through the heating means 70, respectively.
  • Means 80 are provided.
  • the gas flowing through the cooling gas pipe 51 in the two gas supply pipes 50 maintains a normal temperature condition
  • the gas heated through the heating means 70 of the gas heating pipe 52 is about 150 to 200 ° C.
  • the gas may be heated to about 200 ° C. or more by the heating means 70.
  • the heating means 70 may include a heating paste composition, which will be described later.
  • the heating means 70 may include a planar heating element in which the heating paste composition is formed by screen printing, gravure printing, or comma coating on a substrate.
  • FIG. 6 is a cross-sectional view showing a wafer heating apparatus according to another embodiment of the present invention
  • Figure 7 is a view showing a gas distribution plate member of the wafer heating apparatus according to another embodiment of the present invention
  • Figure 8 is a present invention
  • the wafer heating apparatus according to another embodiment of the present invention, compared with the embodiment of the present invention, the chamber member 10 and the base plate member 20 is made of the same configuration, but The gas distribution plate member 30 differs in that the interior is divided into a plurality of spaces from the center to the radial direction.
  • the plurality of partition walls 32 having ring shapes having different diameters are integrally formed on concentric circles in the gas distribution plate member 30 having an empty space, so that the interior is divided as a plurality of spaces by the partition walls 32. .
  • a plurality of through holes 32a are formed in the plate surface of the flat plate as shown in Figure 8, the center of the upper surface or the lower surface of the plate surface. It is also possible to form a configuration in which a plurality of baffle plates 32 having a plurality of layers of ring-shaped partitions 32b having different diameters integrally formed on the concentric circles are stacked in the vertical direction.
  • the through-holes 32a respectively formed in the baffle plate 32 are arranged to be staggered with each other in the vertical direction, and in particular, the through-holes 32a of the baffle plate 32 positioned at the bottom are gas distribution. It is most preferable to alternate with the gas passage hole 31 in the bottom face of the plate member 30.
  • Another feature of the configuration of this embodiment is the configuration of the gas supply pipe 50 connected to the gas distribution plate member 30 as shown in FIG. That is, the gas supply pipe 50 is divided into the cooling gas pipe 51 and the heating gas pipe 52 from the gas storage tank 40 as shown in FIG. 6.
  • the cooling gas pipe 51 and the heating gas pipe 52 are gas distribution plate members.
  • the end portion 30 is formed of the same number of branch pipes 53 as the number of internal spaces divided in the radial direction of the gas distribution plate member 30, respectively.
  • one cooling gas pipe 51 and a heating gas pipe 52 must be connected to each inner space divided radially from the gas distribution plate member 30, and each cooling gas pipe ( In order to connect the 51 and the heating gas pipe 52, the cooling gas pipe 51 passing through the gas flow rate control means 60 and the heating gas pipe 52 passing through the heating means 70 are respectively connected to the gas distribution plate member 30.
  • the branch pipes 53 divided by the number of radially divided inner spaces are connected so that the end portions of the branch pipes 53 are connected to the inner spaces of the respective gas distribution plate members 30.
  • each branch pipe 53 is provided with a gas supply amount adjusting means 80 to appropriately differentiate and adjust the amount of gas supplied to each internal space.
  • the gas stored in the gas storage tank 40 is most preferably using N 2 gas as in the above-described embodiment, and at this time, the cooling gas pipe among the gas supplied through the two gas supply pipes 50.
  • the gas flowing through the 51 is supplied under conditions of room temperature, and the temperature of the gas supplied through the heating gas pipe 52 heated by the heating means 70 is formed at about 150 to 200 ° C.
  • the gas may be heated to about 200 ° C or more.
  • a gas formed at a predetermined temperature through a gas distribution plate member 30 in a state in which the wafer W is loaded into the chamber member 10 to be safely mounted on the base plate member 20 is provided with a wafer ( By directly and uniformly spraying the upper surface of W), the wafer W is heated or cooled more uniformly and quickly.
  • the gas supply plate adjusting means 80 is appropriately adjusted so that the gas distribution plate member 30 is adjusted.
  • the gas is introduced into the inside), and the gas so injected is uniformly sprayed onto the upper surface of the wafer W through the gas passage hole 31 of the gas distribution plate member 30.
  • the gas supply amount adjusting means 80 of the heating supply pipe 52 is opened or the gas supply amount of the cooling supply pipe 51 is adjusted.
  • the means 80 are finely opened to mix at an appropriate temperature inside the gas distribution plate member 30 and then immediately sprayed onto the wafer W to cure the photoresist applied to the top surface of the wafer W. .
  • the wafer (W) heating is a gas on the heating supply pipe 52 side that flows through the heating means 70 that can control the temperature in accordance with the amount to adjust the gas supply amount adjusting means 80 of each gas supply pipe (50) When the flow rate of the gas is increased, the hot gas can be supplied into the chamber member 10.
  • the time for curing the photoresist is faster, and thus, the process execution time can be further shortened.
  • the flow rate of the gas supplied through the cooling gas pipe 51 is increased rather than the heating gas pipe 52, or the cooling gas pipe 51 is provided. If only gas is supplied through the wafer W, the heated wafer W is forcibly cooled and the unloading cycle of the wafer W can be shortened.
  • the gas passage hole 31 in the gas distribution plate member 30 increases the density of the gas passage hole 31 from the center portion to the outer peripheral end side or causes the diameter of the gas passage hole 31 to become larger.
  • more heat is brought into contact with the outer circumferential end side of the wafer W than the center of the wafer W, thereby curing the photoresist at a substantially uniform speed with the center portion. Make it work.
  • heating rate is maintained uniformly, it is possible to form a good quality pattern through a process such as development in a subsequent process.
  • a plurality of baffle plates 32 are provided inside the gas distribution plate member 30, and the through holes 32a formed in the baffle plates 32 are shifted from each other.
  • the reason is to prevent the gas flowing in through the gas supply pipe 50 from being injected at a too high speed.
  • the baffle plate 32 is too large, the flow resistance of the gas is so great that it is supplied to the wafer W. It is most desirable to have the proper number as this is not desired.
  • the present invention allows the photoresist coating surface of the wafer W to be brought into direct contact with the gas heated to a predetermined temperature, and the heated wafer W is forcibly cooled by direct contact with the cooling gas. Fast process performance and uniform curing of the photoresist are expected.
  • the gas heated and cooled to a predetermined temperature is directly sprayed from the upper portion of the wafer W securely settled in the chamber member 10 and applied to the upper surface of the wafer W.
  • the rapid and uniform curing of the photoresist provided provides a very useful effect that can greatly improve product productivity and product reliability.
  • the exothermic paste composition (hereinafter, exothermic paste composition) according to an embodiment of the present invention may include carbon nanotube particles, carbon nanoparticles, a mixed binder, an organic solvent, and a dispersant.
  • the heating paste composition may be included in the heating means 70.
  • the carbon nanotube particles may be selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, or mixtures thereof.
  • the carbon nanotube particles may be multi wall carbon nanotubes.
  • the diameter may be 5 nm to 30 nm, and the length may be 3 ⁇ m to 40 ⁇ m.
  • the carbon nanoparticles may be, for example, graphite nanoparticles, and the diameter may be 1 ⁇ m to 25 ⁇ m.
  • the mixed binder serves to make the exothermic paste composition have heat resistance even in the temperature range of about 300 ° C., and includes epoxy acrylate or hexamethylene diisocyanate, polyvinyl acetal, and the like.
  • Phenolic resin has a mixed form.
  • the mixed binder may be a mixture of epoxy acrylate, polyvinyl acetal, and phenolic resin, or may be a mixture of hexamethylene diisocyanate, polyvinyl acetal, and phenolic resin.
  • by increasing the heat resistance of the mixed binder even if the heat generated at a high temperature of about 300 °C has the advantage that there is no change in resistance of the material or breakage of the coating film.
  • the phenolic resin means a phenolic compound including phenol and phenol derivatives.
  • the phenol derivative may include p-cresol, o-Guaiacol, Creosol, catechol, 3-methoxy-1,2-benzenediol (3 -methoxy-1,2-Benzenediol), Homocatechol, Vinylguaiacol, Syringol, Iso-eugenol, Methoxyeugenol, o O-Cresol, 3-methyl-1,2-benzenediol, (z) -2-methoxy-4- (1-propenyl) -phenol ( (z) -2-methoxy-4- (1-propenyl) -Phenol), 2, .6-diethoxy-4- (2-propenyl) -phenol (2,6-dimethoxy-4- (2-propenyl) ) -Phenol), 3,4-dimethoxy-Phenol, 4-ethyl-1,3-benzened
  • the mixing ratio of the mixed binder may be a ratio of 10 to 150 parts by weight of polyvinyl acetal resin and 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate. If the content of the phenolic resin is 100 parts by weight or less, the heat resistance characteristics of the heat-paste composition is lowered, and if it exceeds 500 parts by weight, there is a problem that the flexibility is lowered (brittleness increase).
  • the organic solvent is used to disperse the conductive particles and the mixed binder, carbitol acetate, butyl carbotol acetate, dibasic ester, ethyl carbitol, ethyl carbitol acetate, dipropylene It may be a mixed solvent of two or more selected from glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol.
  • the dispersion process can be applied to a variety of commonly used methods, for example through the ultra-sonication (Roll mill), bead mill (Bead mill) or ball mill (Ball mill) process Can be done.
  • Roll mill ultra-sonication
  • Bead mill bead mill
  • Ball mill ball mill
  • the dispersant is to make the dispersion more smoothly, and a conventional dispersant used in the art such as BYK, an amphoteric surfactant such as Triton X-100, SDS and the like and a ionic surfactant may be used.
  • a conventional dispersant used in the art such as BYK
  • an amphoteric surfactant such as Triton X-100, SDS and the like
  • a ionic surfactant may be used.
  • the exothermic paste composition according to an embodiment of the present invention may further include 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the exothermic paste composition.
  • the silane coupling agent functions as an adhesion promoter to promote adhesion between the resins in the formulation of the exothermic paste composition.
  • the silane coupling agent may be an epoxy containing silane or a merceto containing silane.
  • Examples of such silane coupling agents include epoxy and include 2- (3,4 epoxy cyclohexyl) -ethyltrimethoxysilane, 3-glycidoxytrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, containing amine groups, N-2 (aminoethyl) 3-amitopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane , N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropy
  • the present invention further provides a planar heating element which is formed by screen printing, gravure printing (or roll-to-roll gravure printing) or comma coating (or roll-to-roll comma coating) of a heating paste composition according to the embodiments of the present invention described above on a substrate. do.
  • the substrate is polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, cellulose ester, nylon, polypropylene, polyacrylolintril, polysulfone, polyester sulfone, polyvinylidene fluoride , Glass, glass fiber (matte), ceramic, SUS, copper or aluminum substrate, etc. may be used, but is not limited to those listed above.
  • the substrate may be appropriately selected depending on the application field of the heating element or the use temperature.
  • the planar heating element prints the drying paste composition according to the embodiments of the present invention on the substrate in a desired pattern through screen printing or gravure printing, and after drying and curing, the printing and drying / It can be formed by forming an electrode by curing. Alternatively, after printing and drying / curing the silver paste or the conductive paste, the heating paste composition according to the embodiments of the present invention may be formed by screen printing or gravure printing.
  • the surface heating element may further include a protective layer coated on the upper surface.
  • the protective layer may be formed of silica (SiO2).
  • SiO2 silica
  • the heating element has an advantage of maintaining flexibility even if coated on the heating surface.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 CNT particles 4 5 6 4 5 6 CNP Particles 8 9 15 - - - Mixed binder 20 15 22 - - - Ethyl cellulose - - - 10 12 14 Organic solvent 63 67 52 82 79 76 Dispersant (BYK) 5 4 5 4 4 4 4
  • CNT particles and CNP particles were added to a carbitol acetate solvent according to the composition of [Table 1]
  • BYK dispersant was added, and dispersion A was prepared by sonication for 60 minutes. It was. Thereafter, a mixed binder was added to the carbitol acetate solvent and then a master batch was prepared through mechanical stirring. Next, the dispersion A and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll-mill process to prepare an exothermic paste composition.
  • CNT particles were added to the carbitol acetate solvent according to the composition of [Table 1], BYK dispersant was added, and a dispersion was prepared by sonication for 60 minutes. Thereafter, ethyl cellulose was added to the carbitol acetate solvent to prepare a master batch through mechanical stirring. Next, the dispersion B and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll mill to prepare an exothermic paste composition.
  • 9 is an image of a planar heating element specimen prepared using the heating paste composition according to the present invention.
  • 9A is a planar heating element formed by screen-printing a heating paste composition on a polyimide substrate.
  • 9B is a planar heating element formed by screen printing a heating paste composition on a glass fiber mat.
  • 9C and 9D are images when the protective layer is coated on the planar heating element of FIG. 9A (FIG. 9C is a black protective layer coating and FIG. 9D is a green protective layer coating).
  • planar heating element sample (example) and the planar heating element samples prepared according to the comparative example as shown in FIG. 9A was measured.
  • the applied voltage / current is indicated in [Table 2]).
  • planar heating element corresponding to the above Examples and Comparative Examples was heated up to 40 ° C., 100 ° C. and 200 ° C., respectively, and the DC voltage when the temperature was reached and The current was measured.
  • Figure 10 shows the image of the heat stability test appearance of the planar heating element samples prepared according to the Examples and Comparative Examples, the test results are summarized in the following [Table 2].
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Comparative Example 3 Specific resistance ( ⁇ 10 ⁇ 2 ⁇ cm 1.9 2.55 2.96 9.73 8.52 6.23 40 °C reach DC drive voltage / current 5V / 0.2A 6V / 0.2A 7V / 0.2A 20V / 0.3A 16V / 0.2A 12V / 0.2A 100 °C reach DC driving voltage / current 9V / 0.5A 12V / 0.4A 14 V / 0.5 A 48V / 0.7A 40V / 0.7A 26V / 0.6A 200 °C reach DC drive voltage / current 20V / 0.6A 24V / 0.7A 24V / 1.0A - - - Heat stability (day) 20 days or more 20 days or more 20 days or more Bad Bad Bad Bad
  • the specific resistance was measured that the planar heating element corresponding to the embodiments is smaller than the planar heating element corresponding to the comparative examples, accordingly driving voltage / current required to reach each temperature is also embodiments
  • the planar heating element corresponding to was smaller than the planar heating element corresponding to the comparative examples. That is, it was confirmed that the planar heating element corresponding to the embodiments can be driven at a lower voltage and lower power than the comparative example.
  • planar heating elements according to Examples 1 to 3 the stability was maintained for 20 days even under an exothermic driving at 200 ° C. (no separate protective layer), whereas in Comparative Examples 1 to 3, the exothermic driving at 200 ° C. was performed. Poor phenomena were observed to swell the surface of the heating portion within time. That is, it was confirmed that the planar heating element corresponding to the embodiments can be stably driven even at a high temperature of 200 ° C. or more than the comparative example.
  • the present invention further provides a portable heating heater including the planar heating element and a power supply unit for supplying power to the planar heating element.
  • the power supply unit may include a lead electrode coated on the left and right sides of the planar heating element and a power connection electrode attached to the lead electrode.
  • the power connection electrode may be directly connected to the planar heating element.
  • the lead electrode or the electrode for power connection may be formed using silver paste, copper paste, copper tape, or the like.
  • the portable heating heater according to the present invention has a form in which the planar heating element is attached, embedded or mounted on the inner or outer surface of the body, and has a power supply for driving the planar heating element.
  • the portable heating heater may be used for an inner seat for a baby carriage, a heating sock, a heating shoe, a heating hat, a portable heating mat, a portable cooking utensil, a vehicle heating sheet, and the like.
  • planar heating element employed in the portable heating heater according to the present invention can be driven as a secondary battery capable of charging and discharging, such as a lithium ion battery, a lithium polymer battery because it can be driven at a low voltage and low power as described above, The portability is enhanced and the use time can be greatly increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Resistance Heating (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

The present invention relates to a wafer heating apparatus comprising: a gas supply pipe for supplying heated gas to a wafer positioned inside a chamber; and a heating unit for heating gas flowing in the gas supply pipe, wherein the heating unit comprises a heating paste composition; wherein the heating paste composition contains, on the basis of 100 parts by weight of the heating paste composition, 3-6 parts by weight of carbon nanotube particles, 0.5-30 parts by weight of carbon nanoparticles, 10-30 parts by weight of a mixed binder, 29-83 parts by weight of an organic solvent, and 0.5-5 parts by weight of a dispersant; and wherein the mixed binder is a mixture of epoxy acrylate, a polyvinyl acetal, and a phenol-based resin, or a mixture of hexamethylene diisocyanate, a polyvinyl acetal, and a phenol-based resin.

Description

웨이퍼 히팅장치Wafer Heating Equipment
본 발명의 일 실시예는 웨이퍼 히팅장치에 관한 것이다.One embodiment of the present invention relates to a wafer heating apparatus.
일반적으로 반도체를 제조하는 공정 중 포토 공정에 적용되고 있는 스피너 설비에서는 웨이퍼에 필요로 하는 패턴을 형성시키기 위해서 포토 레지스트(photo resist)가 도포되도록 하고 있다. 포토 레지스트를 스핀 코팅에 의해 도포한 다음 베이크 설비의 웨이퍼 히팅장치를 통과하면서 도포된 포토 레지스트가 일정한 온도로 가열되면서 경화되도록 하고, 이렇게 경화된 포토 레지스트에 마스크를 이용하여 노광을 수행한 후 현상액을 이용하여 현상을 하도록 하고 있다.In general, a spinner facility applied to a photo process during a semiconductor manufacturing process allows a photo resist to be applied to form a pattern required for a wafer. The photoresist is applied by spin coating and then passed through the wafer heating apparatus of the baking equipment so that the applied photoresist is cured by heating to a constant temperature. After exposure using the mask to the cured photoresist, the developer is applied. To develop.
이렇게 웨이퍼에 도포된 포토 레지스트를 소정의 온도로 가열하여 경화시키도록 하는 구성이 베이크 설비의 웨이퍼 히팅장치이다.The wafer heating apparatus of the baking installation is the structure which hardens by heating the photoresist apply | coated to the wafer to predetermined | prescribed temperature in this way.
이러한 베이크 설비의 웨이퍼 히팅장치는 통상 도 1에서와 같이 크게 챔버(1)와 이 챔버(1)의 일측에서 웨이퍼의 인출입을 단속하는 도어(1a)와 내부에 구비되는 히트 플레이트(2)로 이루어지는 구성이다. 이때 히트 플레이트(2)에는 열선이 내장되게 함으로써 그 상부면에 안착되는 웨이퍼(W)가 히트 플레이트(2)로부터 열전달에 의해서 소정의 온도로 가열되도록 하고 있다.The wafer heating apparatus of the baking facility is generally composed of a chamber 1, a door 1a for intercepting the drawing of the wafer from one side of the chamber 1 and a heat plate 2 provided therein, as shown in FIG. Configuration. At this time, the heat wire is embedded in the heat plate 2 so that the wafer W seated on the upper surface thereof is heated to a predetermined temperature by heat transfer from the heat plate 2.
즉, 상부면으로 포토 레지스트가 도포된 웨이퍼(W)를 챔버(1)의 내부로 로딩하여 히트 플레이트(2)에 안착시킨 다음 히트 플레이트(2)를 소정의 온도로 가열하게 되면 우선 히트 플레이트(2)가 가열되면서 이 열기가 웨이퍼(W)에 전달되어 포토 레지스트가 경화될 수 있도록 하는 것이다.That is, when the wafer W coated with the photoresist on the upper surface is loaded into the chamber 1 to be seated on the heat plate 2, and then the heat plate 2 is heated to a predetermined temperature, first, the heat plate ( As 2) is heated, this heat is transferred to the wafer W so that the photoresist can be cured.
이러한 구성에서 웨이퍼(W)를 가열하는 온도는 통상 도 2에서와 같이 히트 플레이트(2)에 내장시킨 열선(2a)에서 발생되는 온도를 센서(미도시)를 통해 감지하여 컨트롤러(미도시)에 의해서 제어되도록 하고 있다.In such a configuration, the temperature for heating the wafer W is typically detected by a sensor (not shown) to generate a temperature generated by the heating wire 2a embedded in the heat plate 2 as shown in FIG. 2. To be controlled.
하지만 이러한 종전의 베이크 설비에서의 웨이퍼 히팅은 히트 플레이트(2)에 구비되는 열선(2a)을 전기적으로 히팅되도록 하여 히트 플레이트(2)를 통해 전달되는 열에 의해서 이루어지게 되므로 히팅 공정의 수행 전후로 웨이퍼(W)를 로딩 또는 언로딩하고자 할 때에는 자연적으로 냉각이 될 때까지 기다려야 하는 불편함이 있고, 특히 히트 플레이트(2)에의 열선(2a) 형성에 구조적 제약이 있을 뿐만 아니라 히트 플레이트(2)의 중심부에 비해 외주연 단부측은 상대적으로 온도가 낮게 형성되면서 전면에 걸쳐 균일한 웨이퍼 가열이 이루어지지 않게 되는 난해한 문제가 있다.However, the wafer heating in the conventional baking equipment is made by the heat transferred through the heat plate 2 to electrically heat the heating wire (2a) provided in the heat plate 2, so that the wafer before and after performing the heating process ( When loading or unloading W), it is inconvenient to wait until it is naturally cooled, and in particular, there is not only a structural limitation in forming the heating wire 2a on the heat plate 2, but also a central portion of the heat plate 2. Compared to the outer peripheral end side, the temperature is relatively low and there is a difficult problem that uniform wafer heating is not made over the entire surface.
이와 같은 문제점을 해결하고자, 대한민국 등록특허 "베이크 설비의 웨이퍼 히팅장치(등록번호 제10-0488547호)"가 개시된바 있다. 그러나, 상기 등록특허에서 가스를 가열하기 위한 보다 효율적인 가열수단이 요구되고 있다.In order to solve such a problem, the Republic of Korea Patent "wafer heating apparatus for baking equipment (registration number 10-0488547)" has been disclosed. However, there is a need in the patent for more efficient heating means for heating gas.
(특허문헌 1) KR10-0488547 B1(Patent Document 1) KR10-0488547 B1
본 발명의 일 실시예는 상기한 문제점을 해결하고자, 고내열성이며 저전압 및 저전력으로 구동 가능한 가열수단을 통해 가열된 가스로 웨이퍼를 가열하는 웨이퍼 히팅장치를 제공하고자 한다.One embodiment of the present invention to solve the above problems, to provide a wafer heating apparatus for heating the wafer with a heated gas through a heating means that can be driven with high heat resistance and low voltage and low power.
본 발명의 일 실시예에 따른 웨이퍼 히팅장치는, 챔버 내부에 위치하는 웨이퍼에 가열된 가스를 공급하는 가스 공급관; 및 상기 가스 공급관을 유동하는 가스를 가열하는 가열수단을 포함하며, 상기 가열수단은 발열 페이스트 조성물을 포함하며, 상기 발열 페이스트 조성물은, 발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부 및 분산제 0.5 내지 5중량부를 포함하며, 상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되거나 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합될 수 있다.Wafer heating apparatus according to an embodiment of the present invention, the gas supply pipe for supplying a heated gas to the wafer located inside the chamber; And heating means for heating a gas flowing through the gas supply pipe, wherein the heating means comprises a heat generating paste composition, wherein the heat generating paste composition comprises 3 to 6 weight parts of carbon nanotube particles based on 100 parts by weight of the heat generating paste composition. Part, 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, 29 to 83 parts by weight of an organic solvent, and 0.5 to 5 parts by weight of a dispersant, wherein the mixed binder is epoxy acrylate, polyvinyl acetal and phenolic The resin may be mixed or hexamethylene diisocyanate, polyvinyl acetal and phenolic resin may be mixed.
상기 챔버는 일측에 웨이퍼의 이송을 단속하는 도어가 구비되고, 바닥면에는 배기구가 형성되며, 상기 챔버 내부에는 웨이퍼가 안치되는 안치판 부재; 상기 안치판 부재의 상부에 구비되며, 하향 관통되는 복수의 가스 통과 구멍을 구비하는 가스 분배판 부재; 및 가스를 저장하는 가스 저장 탱크를 더 포함하며, 상기 가스 공급관은, 상기 가스 저장 탱크로부터 상기 가스 분배판 부재로 가스가 유동되도록 연결하는 냉각 가스관과 가열 가스관을 포함할 수 있다.The chamber is provided with a door for intermittent transfer of the wafer on one side, an exhaust port is formed on the bottom surface, the inside of the chamber is placed on the base member member; A gas distribution plate member disposed on the base plate member and having a plurality of gas passage holes penetrating downward; And a gas storage tank for storing gas, wherein the gas supply pipe may include a cooling gas pipe and a heating gas pipe connecting the gas to flow from the gas storage tank to the gas distribution plate member.
상기 냉각 가스관과 상기 가열 가스관에 각각 구비되어 가스의 유동량을 조절하는 가스 유동량 제어수단; 및 상기 가스 유동량 제어수단을 통과한 냉각 가스관과 상기 가열수단을 통과한 가열 가스관에 각각 구비되어 상기 가스 분배판 부재로 공급되는 가스량을 조절하는 가스 공급량 조절수단을 더 포함할 수 있다.Gas flow amount control means provided in each of the cooling gas pipe and the heating gas pipe to adjust a flow amount of gas; And gas supply amount adjusting means which is provided in the cooling gas pipe passing through the gas flow amount controlling means and the heating gas pipe passing through the heating means, respectively, to adjust the amount of gas supplied to the gas distribution plate member.
상기 가스 분배판 부재는 저면에 동일한 직경의 가스 통과 구멍이 중앙으로부터 외주연부로 점차 밀도가 증가되게 하여 형성될 수 있다.The gas distribution plate member may be formed by allowing the gas passage holes having the same diameter to increase in density from the center to the outer periphery at the bottom.
상기 가스 분배판 부재에는 저면 중앙에서부터 외주연부측으로 점차 가스 통과 구멍의 직경이 보다 크게 확장되도록 할 수 있다.In the gas distribution plate member, the diameter of the gas passage hole may be gradually increased from the bottom center to the outer circumferential side.
상기 가스 분배판 부재의 내부에는 판면에 다수의 관통홀을 형성한 배플 플레이트가 수직의 방향으로 소정의 높이를 이격하여 하나 이상이 적층되도록 할 수 있다.Inside the gas distribution plate member, one or more baffle plates having a plurality of through-holes formed on the plate surface may be spaced apart from each other by a predetermined height in a vertical direction.
상기 가스 분배판 부재에서 수직으로 적층되는 상기 배플 플레이트는 각 관통홀이 수직의 방향으로 서로 엇갈리게 위치되도록 하고, 맨 하측에 위치되는 상기 배플 플레이트의 관통홀 또한 상기 가스 분배판 부재 저면의 가스 통과 구멍과는 엇갈리게 형성되도록 할 수 있다.The baffle plates stacked vertically in the gas distribution plate member are arranged so that each through hole is staggered from each other in the vertical direction, and the through holes of the baffle plate positioned at the bottom are also gas passage holes in the bottom surface of the gas distribution plate member. And can be staggered.
상기 가스 분배판 부재에는 냉각 가스관을 통해서 상온의 가스가 공급되고, 가열 가스관을 통해서는 약 150∼200℃로 가열된 가스가 공급될 수 있다.Gas at room temperature may be supplied to the gas distribution plate member through a cooling gas pipe, and a gas heated at about 150 to 200 ° C. may be supplied through a heating gas pipe.
상기 가스는 N2가스일 수 있다.The gas may be an N 2 gas.
상기 혼합 바인더는 에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈 수지 10 내지 150 중량부, 페놀계수지 100 내지 500 중량부가 혼합될 수 있다.The mixed binder may be 10 to 150 parts by weight of polyvinyl acetal resin, 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate.
발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함할 수 있다.The silane coupling agent may further include 0.5 to 5 parts by weight based on 100 parts by weight of the exothermic paste composition.
상기 탄소나노튜브 입자는 다중벽 탄소나노튜브 입자일 수 있다.The carbon nanotube particles may be multi-walled carbon nanotube particles.
상기 유기 용매는 카비톨 아세테이트, 부틸 카비톨 아세테이트, DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올 및 옥탄올 중에서 선택되는 2 이상의 혼합 용매일 수 있다.The organic solvent is selected from carbitol acetate, butyl carbitol acetate, DBE (dibasic ester), ethyl carbitol, ethyl carbitol acetate, dipropylene glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol May be two or more mixed solvents.
상기 가열수단은, 상기 발열 페이스트 조성물이 기판 상에 스크린 인쇄, 그라비아 인쇄 또는 콤마코팅되어 형성되는 면상 발열체를 포함할 수 있다.The heating means may include a planar heating element in which the heating paste composition is formed by screen printing, gravure printing, or comma coating on a substrate.
상기 기판은 폴리이미드 기판, 유리섬유 매트 또는 세라믹 유리일 수 있다.The substrate may be a polyimide substrate, fiberglass mat or ceramic glass.
상기 가열수단은, 상기 면상 발열체의 상부면에 코팅되는 것으로 실리카 또는 카본븍랙과 같은 흑색 안료를 구비하는 유기물로 형서되는 보호층을 더 포함할 수 있다.The heating means may further include a protective layer coated on an upper surface of the planar heating element and formed of an organic material having a black pigment such as silica or carbon shock.
본 발명을 통해, 웨이퍼 전면에 대한 균일한 가열을 저전력으로 수행할 수 있다.Through the present invention, uniform heating on the entire surface of the wafer can be performed at low power.
도 1은 종래의 베이크 설비의 웨이퍼 히팅장치를 도시하는 단면도이다. 1 is a cross-sectional view showing a wafer heating apparatus of a conventional baking apparatus.
도 2는 종래의 히트 플레이트에 열선을 형성한 모습을 도시하는 평면도이다.2 is a plan view showing a state in which a heating wire is formed on a conventional heat plate.
도 3은 본 발명의 일 실시예에 따른 웨이퍼 히팅장치를 도시하는 단면도이다.3 is a cross-sectional view showing a wafer heating apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 웨이퍼 히팅장치의 가스 분배판 부재를 도시하는 단면도이다.4 is a cross-sectional view showing a gas distribution plate member of the wafer heating apparatus according to the embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 웨이퍼 히팅장치의 가스 공급부의 개략적인 모습을 도시하는 도면이다.5 is a view showing a schematic view of the gas supply unit of the wafer heating apparatus according to an embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따른 웨이퍼 히팅장치를 도시하는 단면도이다.6 is a cross-sectional view showing a wafer heating apparatus according to another embodiment of the present invention.
도 7은 본 발명의 다른 실시예에 따른 웨이퍼 히팅장치의 가스 분배판 부재를 도시하는 도면이다.7 is a view showing a gas distribution plate member of the wafer heating apparatus according to another embodiment of the present invention.
도 8은 본 발명의 다른 실시예에 따른 웨이퍼 히팅장치의 가스 공급부의 개략적인 모습을 도시하는 도면이다.8 is a view showing a schematic view of the gas supply unit of the wafer heating apparatus according to another embodiment of the present invention.
도 9은 본 발명의 일 실시예에 따른 웨이퍼 히팅장치의 발열 페이스트 조성물을 이용한 면상 발열체의 시편의 이미지이다.9 is an image of a specimen of a planar heating element using the heating paste composition of the wafer heating apparatus according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 웨이퍼 히팅장치의 실시예 및 비교예에 따라 제조된 면상 발열체의 발열 안정성 시험 모습의 이미지이다.10 is an image of an exothermic stability test of the planar heating element manufactured according to the embodiment and the comparative example of the wafer heating apparatus according to an embodiment of the present invention.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시 예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다. Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present invention, when it is determined that a detailed description of a related well-known configuration or function interferes with the understanding of the embodiments of the present invention, the detailed description thereof will be omitted.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In addition, in describing the components of the embodiments of the present disclosure, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being "connected", "coupled" or "connected" to another component, that component may be directly connected or connected to that other component, but between components It will be understood that may be "connected", "coupled" or "connected".
이하에서는 본 발명의 일 실시예에 따른 웨이퍼 히팅장치를 도면을 통해 상세히 설명한다.Hereinafter, a wafer heating apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 3은 본 발명의 일 실시예에 따른 웨이퍼 히팅장치를 도시하는 단면도이고, 도 4는 본 발명의 일 실시예에 따른 웨이퍼 히팅장치의 가스 분배판 부재를 도시하는 단면도이고, 도 5는 본 발명의 일 실시예에 따른 웨이퍼 히팅장치의 가스 공급부의 개략적인 모습을 도시하는 도면이다.3 is a cross-sectional view showing a wafer heating apparatus according to an embodiment of the present invention, Figure 4 is a cross-sectional view showing a gas distribution plate member of the wafer heating apparatus according to an embodiment of the present invention, Figure 5 is a present invention 2 is a view illustrating a schematic view of a gas supply unit of a wafer heating apparatus according to an embodiment of the present disclosure.
도 3을 참조하면, 본 발명의 일 실시예에 따른 웨이퍼 히팅장치는, 챔버 부재(10)와 안치판 부재(20)와 가스 분배판 부재(30)와 가스 저장 탱크(40)와 가스 공급관(50)과 가스 유동량 제어수단(60)과 가열수단(70)과 가스 공급량 조절수단(80)을 포함할 수 있다.Referring to FIG. 3, a wafer heating apparatus according to an embodiment of the present invention includes a chamber member 10, a base plate member 20, a gas distribution plate member 30, a gas storage tank 40, and a gas supply pipe ( 50, the gas flow rate control means 60, the heating means 70, and the gas supply amount adjusting means 80 may be included.
챔버 부재(10)는 일측으로 도어(11)가 구비되도록 하여 웨이퍼(W)가 로딩 또는 언로딩할 수 있도록 하고, 바닥면으로는 배기구(12)를 형성하여 내부의 반응 가스 및 부유 이물질들이 진공압에 의해서 외부로 배출되도록 한다.The chamber member 10 allows the door 11 to be provided at one side so that the wafer W can be loaded or unloaded, and an exhaust port 12 is formed at the bottom thereof so that the reaction gas and floating foreign matters inside the chamber are filled. Allow to be discharged to the outside by pneumatic.
안치판 부재(20)는 챔버 부재(10)의 내부에서 도어(11)를 통해 로딩된 웨이퍼(W)를 안전하게 얹혀지도록 하는 구성으로서, 웨이퍼(W)가 얹혀지는 상부면은 웨이퍼(W)보다는 더욱 큰 직경으로 형성되도록 한다. The base plate member 20 is configured to safely mount the wafer W loaded through the door 11 in the chamber member 10, and the upper surface on which the wafer W is placed is more than the wafer W. To form larger diameters.
이와 같은 챔버 부재(10)와 안치판 부재(20)는 종전의 베이크 설비에서와 대동 소이한 바 다만 종전에 웨이퍼를 안치시키도록 구비한 히트 플레이트가 그 자체에 발열 수단이 구비되도록 하는데 반해 본 발명에서는 안치판 부재(20)가 단순히 웨이퍼(W)를 안전하게 얹혀지도록 하는 안치수단으로서만 구비되도록 하는데 두드러진 차이가 있다.The chamber member 10 and the base plate member 20 are much the same as in the conventional bake facility, but the heat plate provided so as to place the wafer in the past is provided with heat generating means on its own. There is a remarkable difference in that the base plate member 20 is provided only as a settling means for simply mounting the wafer W safely.
가스 분배판 부재(30)는 안치판 부재(20)의 직상부에서 챔버 부재(10)의 상부면에 고정되어 가스 분배판 부재(30)에 얹혀지게 되는 웨이퍼(W)의 상부면을 균일하게 가열 및 냉각할 가스가 분사되도록 하는 구성으로, 내부에는 소정량의 가스가 채워질 수 있도록 하는 공간을 형성하고, 저면에는 도 4에서와 같이 하향 관통되도록 한 가스 통과 구멍(31)이 형성되도록 한다.The gas distribution plate member 30 is fixed to the upper surface of the chamber member 10 directly on the base plate member 20 so that the upper surface of the wafer W to be placed on the gas distribution plate member 30 is uniform. In such a configuration that a gas to be heated and cooled is injected, a space for filling a predetermined amount of gas is formed therein, and a gas passage hole 31 through which the gas passes through the bottom is formed at the bottom thereof as shown in FIG. 4.
이러한 가스 분배판 부재(30)의 저면에 형성하는 가스 통과 구멍(31)은 단순히 동일한 직경으로서 형성되게 할 수가 있으나 이 가스 통과 구멍(31)을 통한 가스의 분사에 의한 웨이퍼 가열 및 냉각이 전면에 걸쳐 균일하게 이루어지도록 하기 위해서는 중앙보다는 외주연 단부측으로 보다 많은 수의 가스 통과 구멍(31)이 분포되도록 하는 것이 보다 바람직하다. 또한 웨이퍼의 균일한 가열 및 냉각을 위해 가스 통과 구멍(31)의 분포 상태 를 변경하는 외에도 분포는 균일하게 이루어지도록 하면서 중앙의 가스 통과 구멍(31)보다는 외주연 단부측으로 가면서 점차 직경이 확장되도록 하는 구성으로 형성할 수가 있다. The gas passage holes 31 formed on the bottom surface of the gas distribution plate member 30 can be simply formed to have the same diameter, but the wafer heating and cooling due to the injection of the gas through the gas passage holes 31 are applied to the front surface. It is more desirable to distribute more gas passing holes 31 to the outer peripheral end side than to the center in order to make it uniform throughout. In addition to changing the distribution state of the gas through hole 31 for uniform heating and cooling of the wafer, the distribution is made uniform, while the diameter gradually expands toward the outer peripheral end side rather than the central gas through hole 31. It can form in a structure.
특히, 가스 분배판 부재(30)는 내부에 도 5에서와 같이 하나 이상의 배플 플레이트(32)가 수직의 방향으로 소정의 높이가 이격되도록 하여 적층되게 할 수도 있다. 이때의 배플 플레이트(32)에는 평판의 판면에 다수의 관통홀(32a)이 형성되도록 하되 이들 관통홀(32a)은 가스 분배판 부재(30) 저면의 가스 통과 구멍(31)과 같은 방식으로 분포 상태 또는 직경을 달리하는 형상으로 형성되게 할 수가 있으며, 단지 상호 적층되는 상하부측 배플 플레이트(32)의 관통홀(32a)은 수직의 방향으로 서로 동심원상에서 벗어나도록 엇갈리게 형성되도록 하면서 맨 하측에 위치되는 배플 플레이트(32)의 관통홀(32a)과 가스 분배판 부재(30) 저면의 가스 통과 구멍(31)과도 서로 엇갈리게 형성되도록 하는 것이 가장 바람직하다.In particular, the gas distribution plate member 30 may be stacked such that one or more baffle plates 32 are spaced apart by a predetermined height in a vertical direction as shown in FIG. 5. In this case, a plurality of through holes 32a are formed in the plate surface of the flat plate 32, and these through holes 32a are distributed in the same manner as the gas through holes 31 in the bottom surface of the gas distribution plate member 30. The through holes 32a of the upper and lower side baffle plates 32, which are stacked on each other, may be alternately formed so as to be staggered from each other in a vertical direction to be separated from each other in a vertical direction. Most preferably, the through hole 32a of the baffle plate 32 and the gas passage hole 31 of the bottom surface of the gas distribution plate member 30 are alternately formed.
한편, 가스 저장 탱크(40)와 가스 공급관(50)과 가스 유동량 제어수단(60)과 히팅 수단(70) 및 가스 공급량 조절수단(80)은 가스 분배판 부재(30)로 가열 및 냉각 가스가 공급되도록 하는 가스 공급부로서, 가스 저장 탱크(40)는 단순히 웨이퍼(W)를 가열 및 냉각하기 위한 가스를 일정량 저장되도록 하는 대량의 가스 저장 용기이다.Meanwhile, the gas storage tank 40, the gas supply pipe 50, the gas flow rate controlling means 60, the heating means 70, and the gas supply amount adjusting means 80 are heated and cooled by the gas distribution plate member 30. As a gas supply to be supplied, the gas storage tank 40 is simply a large amount of gas storage container that allows a certain amount of gas for heating and cooling the wafer W to be stored.
가스 저장 탱크(40)에는 챔버 부재(10)의 내부로 공급 시 웨이퍼(W) 및 웨이퍼(W)의 상부면에 도포된 포토 레지스트와는 어떠한 화학적 반응도 유발하지 않는 가스를 사용하도록 하며, 이러한 가스로서는 흔히 반도체 설비에서 반응 챔버의 퍼지 가스로 사용하는 N2가스를 사용하는 것이 가장 바람직하다.The gas storage tank 40 uses a gas that does not cause any chemical reaction with the wafer W and the photoresist applied to the upper surface of the wafer W when supplied into the chamber member 10. It is most preferable to use N 2 gas, which is often used as a purge gas of the reaction chamber in semiconductor equipment.
가스 저장 탱크(40)로부터 유출되는 가스는 가스 공급관(50)을 통해서 유동하게 되는데 이때 가스 공급관(50)은 냉각 가스관(51)과 가열 가스관(52)으로 나누어진다.The gas flowing out of the gas storage tank 40 flows through the gas supply pipe 50, wherein the gas supply pipe 50 is divided into a cooling gas pipe 51 and a heating gas pipe 52.
가스 공급관(50)의 냉각 가스관(51)과 가열 가스관(52)으로 나누어 유동하게 되는 가스는 냉각 가스관(51)과 가열 가스관(52)에 구비되는 가스 유동량 제어수단(60)을 통과하면서 일정량이 안정적으로 흐르도록 한다.The gas which is divided into the cooling gas pipe 51 and the heating gas pipe 52 of the gas supply pipe 50 and flows through the gas flow amount control means 60 provided in the cooling gas pipe 51 and the heating gas pipe 52, and a predetermined amount Allow it to flow stably.
이러한 가스 공급관(50) 중 가스 유동량 제어수단(60)을 지난 가열 가스관(52)에는 가열수단(70)이 구비되도록 하여 상기 가열수단(70)을 지나면서 가열 가스관(52)을 지나는 가스를 소정의 온도로서 가열하도록 하는 구성이다.The heating gas pipe 52 passing through the gas flow rate control means 60 of the gas supply pipe 50 is provided with a heating means 70 so that the gas passing through the heating gas pipe 52 passes through the heating means 70. It is a structure to heat as the temperature of.
그리고 가스 유동량 제어수단(60)을 지난 냉각 가스관(51)과 가열수단(70)을 지난 가열 가스관(52)에는 각각 가스 분배판 부재(30)로 공급되는 가스의 량을 조절할 수 있도록 가스 공급량 조절수단(80)이 구비되도록 한다.The gas supply amount is adjusted to adjust the amount of gas supplied to the gas distribution plate member 30 to the cooling gas pipe 51 passing through the gas flow rate control means 60 and the heating gas pipe 52 passing through the heating means 70, respectively. Means 80 are provided.
한편 2개의 가스 공급관(50)에서 냉각 가스관(51)을 유동하는 가스는 통상 상온의 조건을 유지하고, 가스 가열관(52)의 가열수단(70)을 통해 가열되는 가스는 약 150∼200℃로서 가열되도록 한다. 특히 웨이퍼(W)를 가열하는 공정 시간을 보다 단축되도록 하기 위해서 가열수단(70)에 의해 약 200℃ 이상으로 가스를 가열되게 할 수도 있다. 가열수단(70)은 발열 페이스트 조성물을 포함할 수 있으며, 이에 대하여는 후술한다. 또한, 가열수단(70)은, 상기 발열 페이스트 조성물이 기판 상에 스크린 인쇄, 그라비아 인쇄 또는 콤마코팅되어 형성되는 면상 발열체를 포함할 수 있다.On the other hand, the gas flowing through the cooling gas pipe 51 in the two gas supply pipes 50 maintains a normal temperature condition, and the gas heated through the heating means 70 of the gas heating pipe 52 is about 150 to 200 ° C. To be heated. In particular, in order to shorten the process time for heating the wafer W, the gas may be heated to about 200 ° C. or more by the heating means 70. The heating means 70 may include a heating paste composition, which will be described later. In addition, the heating means 70 may include a planar heating element in which the heating paste composition is formed by screen printing, gravure printing, or comma coating on a substrate.
이하에서는 본 발명의 다른 실시예에 따른 웨이퍼 히팅장치를 도면을 통해 상세히 설명한다.Hereinafter, a wafer heating apparatus according to another embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 6은 본 발명의 다른 실시예에 따른 웨이퍼 히팅장치를 도시하는 단면도이고, 도 7은 본 발명의 다른 실시예에 따른 웨이퍼 히팅장치의 가스 분배판 부재를 도시하는 도면이고, 도 8은 본 발명의 다른 실시예에 따른 웨이퍼 히팅장치의 가스 공급부의 개략적인 모습을 도시하는 도면이다.6 is a cross-sectional view showing a wafer heating apparatus according to another embodiment of the present invention, Figure 7 is a view showing a gas distribution plate member of the wafer heating apparatus according to another embodiment of the present invention, Figure 8 is a present invention FIG. Is a view showing a schematic view of a gas supply unit of a wafer heating apparatus according to another embodiment of FIG.
도 6 내지 도 8을 참조하면, 본 발명의 다른 실시예에 따른 웨이퍼 히팅장치는, 본 발명의 일 실시예와 비교하여 챔버 부재(10)와 안치판 부재(20)는 동일한 구성으로 이루어지면서 다만 가스 분배판 부재(30)는 내부가 중앙으로부터 반경 방향으로 복수의 공간으로서 나누어지도록 하는데 차이가 있다.6 to 8, the wafer heating apparatus according to another embodiment of the present invention, compared with the embodiment of the present invention, the chamber member 10 and the base plate member 20 is made of the same configuration, but The gas distribution plate member 30 differs in that the interior is divided into a plurality of spaces from the center to the radial direction.
즉, 내부가 빈 가스 분배판 부재(30)에는 직경이 다른 링형상인 복수의 격벽(32)들을 동심원상에 일체로 형성되도록 함으로써 이들 격벽(32)들에 의해 내부가 복수의 공간으로서 나누어지도록 한다.That is, the plurality of partition walls 32 having ring shapes having different diameters are integrally formed on concentric circles in the gas distribution plate member 30 having an empty space, so that the interior is divided as a plurality of spaces by the partition walls 32. .
이렇게 복수로 나누어지는 가스 분배판 부재(30)의 내부 공간에서 저면으로는 하향 관통되게 형성되도록 한 가스 통과 구멍(31)이 전기한 실시예에서와 같이 외주연부측으로 보다 많은 수가 형성되도록 하거나 보다 큰 직경을 갖는 형상으로 형성되도록 한다.The gas passage holes 31, which are formed so as to penetrate downwardly to the bottom in the inner space of the gas distribution plate member 30 divided into a plurality, are formed to have a larger or larger number on the outer circumferential side as in the foregoing embodiment. It is to be formed into a shape having a diameter.
한편, 반경 방향으로 복수의 공간이 구비되도록 하는 가스 분배판 부재(30)에는 도 8에서와 같이 평판의 판면에 다수의 관통홀(32a)을 형성하고, 판면의 상부면 또는 하부면으로는 중심으로부터 동심원상에 서로 다른 직경의 링형상인 격벽(32b)을 일체로 복수층으로 형성되도록 한 배플 플레이트(32)가 수직의 방향으로 다수 적층되게 하는 구성으로도 형성이 가능하다.On the other hand, in the gas distribution plate member 30 to be provided with a plurality of spaces in the radial direction, a plurality of through holes 32a are formed in the plate surface of the flat plate as shown in Figure 8, the center of the upper surface or the lower surface of the plate surface It is also possible to form a configuration in which a plurality of baffle plates 32 having a plurality of layers of ring-shaped partitions 32b having different diameters integrally formed on the concentric circles are stacked in the vertical direction.
이때, 배플 플레이트(32)에 각각 형성되는 관통홀(32a)들 끼리는 수직의 방향으로 서로 엇갈리게 위치되어 형성되도록 하고, 특히 맨 하측에 위치되는 배플 플레이트(32)의 관통홀(32a)은 가스 분배판 부재(30) 저면의 가스 통과 구멍(31)과 엇갈리게 형성되도록 하는 것이 가장 바람직하다.At this time, the through-holes 32a respectively formed in the baffle plate 32 are arranged to be staggered with each other in the vertical direction, and in particular, the through-holes 32a of the baffle plate 32 positioned at the bottom are gas distribution. It is most preferable to alternate with the gas passage hole 31 in the bottom face of the plate member 30.
이와 같은 실시예의 구성 중 또 다른 특징은 도 7에서와 같이 가스 분배판 부재(30)에 연결되는 가스 공급관(50)의 구성에 있다. 즉 가스 공급관(50)은 도 6에서와 같이 가스 저장 탱크(40)로부터 냉각 가스관(51)과 가열 가스관(52)으로 나누어지는데 이러한 냉각 가스관(51)과 가열 가스관(52)은 가스 분배판 부재(30)측 끝단부가 각각 가스 분배판 부재(30)의 반경 방향으로 나누어지는 내부 공간의 수에 동일한 수의 분기관(53)으로 이루어지도록 하는 것이다.Another feature of the configuration of this embodiment is the configuration of the gas supply pipe 50 connected to the gas distribution plate member 30 as shown in FIG. That is, the gas supply pipe 50 is divided into the cooling gas pipe 51 and the heating gas pipe 52 from the gas storage tank 40 as shown in FIG. 6. The cooling gas pipe 51 and the heating gas pipe 52 are gas distribution plate members. The end portion 30 is formed of the same number of branch pipes 53 as the number of internal spaces divided in the radial direction of the gas distribution plate member 30, respectively.
즉, 가스 분배판 부재(30)에서 반경 방향으로 나누어지는 각 내부 공간에는 각각 하나의 냉각 가스관(51)과 가열 가스관(52)이 연결되어야만 하고, 이렇게 복수개로 형성되는 내부 공간으로 각각 냉각 가스관(51)과 가열 가스관(52)이 연결되도록 하기 위해 가스 유동량 제어수단(60)을 지난 냉각 가스관(51)과 가열수단(70)을 지난 가열 가스관(52)으로 각각 가스 분배판 부재(30)에 반경 방향으로 나누어진 내부 공간의 갯수로 나누어지는 분기관(53)이 연결되도록 하여 이 분기관(53)의 끝단부가 각 가스 분배판 부재(30)의 내부 공간으로 연결되도록 한다.That is, one cooling gas pipe 51 and a heating gas pipe 52 must be connected to each inner space divided radially from the gas distribution plate member 30, and each cooling gas pipe ( In order to connect the 51 and the heating gas pipe 52, the cooling gas pipe 51 passing through the gas flow rate control means 60 and the heating gas pipe 52 passing through the heating means 70 are respectively connected to the gas distribution plate member 30. The branch pipes 53 divided by the number of radially divided inner spaces are connected so that the end portions of the branch pipes 53 are connected to the inner spaces of the respective gas distribution plate members 30.
이때, 각 분기관(53)에는 가스 공급량 조절수단(80)이 구비되면서 각 내부 공간으로 공급되는 가스의 양을 적절히 차별화해서 조절하게 되는 것이다.At this time, each branch pipe 53 is provided with a gas supply amount adjusting means 80 to appropriately differentiate and adjust the amount of gas supplied to each internal space.
이와 같은 구성에서 가스 저장 탱크(40)에 저장되는 가스는 전기한 일실시예에서와 마찬가지로 N2가스를 사용하는 것이 가장 바람직하며, 이때 2개의 가스 공급관(50)을 통해 공급되는 가스 중 냉각 가스관(51)을 통해 유동하는 가스는 상온의 조건으로 공급되고, 가열수단(70)에 의해 가열되는 가열 가스관(52)을 통해 공급되는 가스의 온도는 약 150∼200℃로 형성되도록 한다.In such a configuration, the gas stored in the gas storage tank 40 is most preferably using N 2 gas as in the above-described embodiment, and at this time, the cooling gas pipe among the gas supplied through the two gas supply pipes 50. The gas flowing through the 51 is supplied under conditions of room temperature, and the temperature of the gas supplied through the heating gas pipe 52 heated by the heating means 70 is formed at about 150 to 200 ° C.
특히, 웨이퍼(W)를 가열하는 공정 시간을 단축시키기 위해서 약 200℃ 이상으로 가스를 가열되게 할 수도 있다.In particular, in order to shorten the process time for heating the wafer W, the gas may be heated to about 200 ° C or more.
이와 같은 구성에 따른 본 발명의 작용 및 그 효과에 대해서 설명하면 다음과 같다.Referring to the operation and effects of the present invention according to such a configuration as follows.
본 발명은 챔버 부재(10)의 내부로 웨이퍼(W)를 로딩시켜 안치판 부재(20)에 안전하게 얹혀지게 한 상태에서 가스 분배판 부재(30)를 통해 소정의 온도로 형성한 가스를 웨이퍼(W)의 상부면으로 직접 균일하게 분사되게 함으로써 보다 균일하고 신속하게 웨이퍼(W)를 가열 또는 냉각이 되도록 하는 것이다.According to the present invention, a gas formed at a predetermined temperature through a gas distribution plate member 30 in a state in which the wafer W is loaded into the chamber member 10 to be safely mounted on the base plate member 20 is provided with a wafer ( By directly and uniformly spraying the upper surface of W), the wafer W is heated or cooled more uniformly and quickly.
이를 위해 우선 가스 유동량 제어수단(60)을 적당하게 세팅시켜 놓은 상태에서 안치판 부재(20)에 웨이퍼(W)가 로딩되도록 하면 가스 공급량 조절수단(80)을 적절히 조절하여 가스 분배판 부재(30)의 내부로 가스가 유입되도록 하고, 이렇게 유입된 가스는 가스 분배판 부재(30)의 가스 통과 구멍(31)을 통해 웨이퍼(W)의 상부면으로 균일하게 분사되도록 한다.To this end, if the wafer W is loaded on the base plate member 20 while the gas flow rate control means 60 is properly set, the gas supply plate adjusting means 80 is appropriately adjusted so that the gas distribution plate member 30 is adjusted. The gas is introduced into the inside), and the gas so injected is uniformly sprayed onto the upper surface of the wafer W through the gas passage hole 31 of the gas distribution plate member 30.
따라서 챔버 부재(10)의 내부로 로딩된 웨이퍼(W)의 상부면을 가열하기 위해서는 가열 공급관(52)측 가스 공급량 조절수단(80)만을 개방시키거나 이와 함께 냉각 공급관(51)측 가스 공급량 조절수단(80)을 미세하게 개방시켜 가스 분배판 부재(30)의 내부에서 적정한 온도로 혼합되도록 한 다음 즉시 웨이퍼(W)에 분사되면서 웨이퍼(W) 상부면에 도포된 포토 레지스트를 경화시키도록 한다.Therefore, in order to heat the upper surface of the wafer W loaded into the chamber member 10, only the gas supply amount adjusting means 80 of the heating supply pipe 52 is opened or the gas supply amount of the cooling supply pipe 51 is adjusted. The means 80 are finely opened to mix at an appropriate temperature inside the gas distribution plate member 30 and then immediately sprayed onto the wafer W to cure the photoresist applied to the top surface of the wafer W. .
이러한 웨이퍼(W) 가열은 각 가스 공급관(50)의 가스 공급량 조절수단(80)을 조절하는 양에 따라 온도를 제어할 수가 있는 바 가열수단(70)을 통해 유동하는 가열 공급관(52)측 가스의 공급 유량을 증가시키게 되면 보다 고온의 가스를 챔버 부재(10)의 내부로 공급할 수가 있게 된다.The wafer (W) heating is a gas on the heating supply pipe 52 side that flows through the heating means 70 that can control the temperature in accordance with the amount to adjust the gas supply amount adjusting means 80 of each gas supply pipe (50) When the flow rate of the gas is increased, the hot gas can be supplied into the chamber member 10.
이렇게 직접 가열된 가스를 웨이퍼(W)의 포토 레지스트 도포면에 분사하게 되면 포토 레지스트를 경화시키는 시간이 보다 빨라지게 되므로 공정 수행 시간을 더욱 단축시킬 수가 있게 된다.When the directly heated gas is injected onto the photoresist coating surface of the wafer W, the time for curing the photoresist is faster, and thus, the process execution time can be further shortened.
한편, 반대로 포토 레지스트가 경화되고 난 직후 웨이퍼(W)를 언로딩시키고자 하는 경우에는 가열 가스관(52)보다는 냉각 가스관(51)을 통해 공급되는 가스의 공급 유량을 늘리거나 이 냉각 가스관(51)을 통해서만 가스가 공급되도록 하면 가열된 상태인 웨이퍼(W)가 강제적으로 냉각되면서 웨이퍼(W)의 언로딩 주기를 단축시킬 수가 있게 된다.On the other hand, when the wafer W is to be unloaded immediately after the photoresist is cured, the flow rate of the gas supplied through the cooling gas pipe 51 is increased rather than the heating gas pipe 52, or the cooling gas pipe 51 is provided. If only gas is supplied through the wafer W, the heated wafer W is forcibly cooled and the unloading cycle of the wafer W can be shortened.
또한, 가스 분배판 부재(30)에서 가스 통과 구멍(31)은 중심 부위에서 외주연 단부측으로 가스 통과 구멍(31)의 밀도를 증가시키거나 가스 통과 구멍(31)의 직경이 점차 더 커지게 하는 방식으로 가스 통과 구멍(31)이 형성되도록 하여 웨이퍼(W)를 가열하고자 할 때에는 웨이퍼(W)의 센터보다는 외주연 단부측으로 보다 많은 열이 접촉되면서 중앙 부위와 거의 균일한 속도로 포토 레지스트를 경화시킬 수 있도록 한다.In addition, the gas passage hole 31 in the gas distribution plate member 30 increases the density of the gas passage hole 31 from the center portion to the outer peripheral end side or causes the diameter of the gas passage hole 31 to become larger. In order to heat the wafer W by forming the gas passage hole 31 in a manner, more heat is brought into contact with the outer circumferential end side of the wafer W than the center of the wafer W, thereby curing the photoresist at a substantially uniform speed with the center portion. Make it work.
가열 속도를 균일하게 유지시키게 되면 후속 공정에서 현상 등의 공정을 통해 양질의 패턴을 형성할 수가 있게 된다.If the heating rate is maintained uniformly, it is possible to form a good quality pattern through a process such as development in a subsequent process.
한편 본 발명의 실시예들에서 가스 분배판 부재(30)의 내부로 복수의 배플 플레이트(32)를 구비하고, 이들 배플 플레이트(32)에 형성되는 관통홀(32a)을 서로 어긋어나 형성되도록 하는 이유는 가스 공급관(50)을 통해 내부로 유입되는 가스가 너무 빠른 속도로 분사되지 않도록 하기 위한 것인 바 반대로 배플 플레이트(32)가 지나치게 많은 경우에는 가스의 유동 저항이 심해 웨이퍼(W)에의 공급이 원할치 못하게 되므로 적정한 갯수로서 구비되도록 하는 것이 가장 바람직하다.Meanwhile, in the embodiments of the present invention, a plurality of baffle plates 32 are provided inside the gas distribution plate member 30, and the through holes 32a formed in the baffle plates 32 are shifted from each other. The reason is to prevent the gas flowing in through the gas supply pipe 50 from being injected at a too high speed. On the contrary, when the baffle plate 32 is too large, the flow resistance of the gas is so great that it is supplied to the wafer W. It is most desirable to have the proper number as this is not desired.
이와 같이 본 발명은 웨이퍼(W)의 포토 레지스트 도포면에 직접적으로 소정의 온도로 가열시킨 가스가 접촉되게 함과 동시에 가열된 웨이퍼(W)를 냉각 가스의 직접적인 접촉에 의해 강제적으로 냉각시키도록 함으로써 보다 빠른 공정 수행과 포토 레지스트의 균일한 경화가 기대된다.As described above, the present invention allows the photoresist coating surface of the wafer W to be brought into direct contact with the gas heated to a predetermined temperature, and the heated wafer W is forcibly cooled by direct contact with the cooling gas. Fast process performance and uniform curing of the photoresist are expected.
한편, 상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다는 바람직한 실시예의 예시로서 해석되어야 한다. On the other hand, while many matters have been described in detail in the above description, they should be construed as illustrative of preferred embodiments rather than to limit the scope of the invention.
따라서, 본 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.Therefore, the scope of the present invention should not be defined by the described embodiments, but should be determined by the technical spirit described in the claims.
상술한 바와 같이 본 발명에 의하면 챔버 부재(10)의 내부에서 안전하게 안치되어 있는 웨이퍼(W)의 직상부로부터 소정의 온도로 가열 및 냉각시킨 가스를 직접 분사하여 웨이퍼(W)의 상부면으로 도포된 포토 레지스트를 신속하면서 균일하게 경화시킴으로써 제품 생산성과 제품의 대한 신뢰성을 대폭 향상시킬 수 있도록 하는 매우 유용한 효과를 제공한다.As described above, according to the present invention, the gas heated and cooled to a predetermined temperature is directly sprayed from the upper portion of the wafer W securely settled in the chamber member 10 and applied to the upper surface of the wafer W. The rapid and uniform curing of the photoresist provided provides a very useful effect that can greatly improve product productivity and product reliability.
한편, 본 발명의 일 실시예에 따른 발열 페이스트 조성물(이하, 발열 페이스트 조성물)은 탄소나노튜브 입자, 탄소나노입자, 혼합 바인더, 유기 용매 및 분산제를 포함할 수 있다. 상기 발열 페이스트 조성물이 가열수단(70)에 포함될 수 있음은 살핀 바와 같다.Meanwhile, the exothermic paste composition (hereinafter, exothermic paste composition) according to an embodiment of the present invention may include carbon nanotube particles, carbon nanoparticles, a mixed binder, an organic solvent, and a dispersant. As the salping paste, the heating paste composition may be included in the heating means 70.
구체적으로 발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30 중량부, 혼합 바인더 10 내지 30 중량부, 유기 용매 29 내지 83 중량부, 분산제 0.5 내지 5 중량부를 포함한다.Specifically, 3 to 6 parts by weight of carbon nanotube particles, 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, 29 to 83 parts by weight of an organic solvent, and 0.5 to 5 parts by weight of a dispersant based on 100 parts by weight of the exothermic paste composition. Contains wealth.
상기 탄소나노튜브 입자는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 또는 이들의 혼합물로부터 선택될 수 있다. 예컨대 상기 탄소나노튜브 입자는 다중벽 탄소나노튜브(multi wall carbon nanotube)일 수 있다. 상기 탄소나노튜브 입자가 다중벽 탄소나노튜브일 때, 직경은 5nm 내지 30nm 일 수 있고, 길이는 3㎛ 내지 40㎛일 수 있다.The carbon nanotube particles may be selected from single-walled carbon nanotubes, double-walled carbon nanotubes, multi-walled carbon nanotubes, or mixtures thereof. For example, the carbon nanotube particles may be multi wall carbon nanotubes. When the carbon nanotube particles are multi-walled carbon nanotubes, the diameter may be 5 nm to 30 nm, and the length may be 3 μm to 40 μm.
상기 탄소나노입자는 예컨대 그라파이트 나노입자일 수 있으며, 직경은 1㎛ 내지 25㎛일 수 있다.The carbon nanoparticles may be, for example, graphite nanoparticles, and the diameter may be 1 μm to 25 μm.
혼합 바인더는 발열 페이스트 조성물이 300℃ 가량의 온도 범위에서도 내열성을 가질 수 있도록 하는 기능을 하는 것으로, 에폭시 아크릴레이트(Epocy acrylate) 또는 헥사메틸렌 디이소시아네이트(Hexamethylene diisocyanate), 폴리비닐 아세탈(Polyvinyl acetal) 및 페놀계 수지(Phenol resin)가 혼합된 형태를 갖는다. 예컨대 상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합된 형태일 수 있고, 또는 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합된 형태일 수도 있다. 본 발명에서는 혼합 바인더의 내열성을 높임으로써, 300℃ 가량의 고온으로 발열시키는 경우에도 물질의 저항 변화나 도막의 파손이 없다는 장점을 갖는다.The mixed binder serves to make the exothermic paste composition have heat resistance even in the temperature range of about 300 ° C., and includes epoxy acrylate or hexamethylene diisocyanate, polyvinyl acetal, and the like. Phenolic resin has a mixed form. For example, the mixed binder may be a mixture of epoxy acrylate, polyvinyl acetal, and phenolic resin, or may be a mixture of hexamethylene diisocyanate, polyvinyl acetal, and phenolic resin. In the present invention, by increasing the heat resistance of the mixed binder, even if the heat generated at a high temperature of about 300 ℃ has the advantage that there is no change in resistance of the material or breakage of the coating film.
여기에서 페놀계 수지는 폐놀 및 페놀 유도체를 포함하는 페놀계 화합물을 의미한다. 예컨대 상기 페놀 유도체는 p-크레졸(p-Cresol), o-구아야콜(o-Guaiacol), 크레오졸(Creosol), 카테콜(Catechol), 3-메톡시-1,2-벤젠디올(3-methoxy-1,2-Benzenediol), 호모카테콜(Homocatechol), 비닐구아야콜(vinylguaiacol), 시링콜(Syringol), 이소-유제놀(Iso-eugenol), 메톡시 유제놀(Methoxyeugenol), o-크레졸(o-Cresol), 3-메틸-1,2-벤젠디올(3-methoxy-1,2-Benzenediol), (z)-2-메톡시-4-(1-프로페닐)-페놀((z)-2-methoxy-4-(1-propenyl)-Phenol), 2,.6-디에톡시-4-(2-프로페닐)-페놀(2,6-dimethoxy-4-(2-propenyl)-Phenol), 3,4-디메톡시-페놀(3,4-dimethoxy-Phenol), 4-에틸-1,3-벤젠디올(4ethyl-1,3-Benzenediol), 레졸 페놀(Resole phenol), 4-메틸-1,2-벤젠디올(4-methyl-1,2-Benzenediol), 1,2,4-벤젠트리올(1,2,4-Benzenetriol), 2-메톡시-6-메틸페놀(2-Methoxy-6-methylphenol), 2-메톡시-4-비닐페놀(2-Methoxy-4-vinylphenol) 또는4-에틸-2-메톡시-페놀(4-ethyl-2-methoxy-Phenol) 등이 있으며, 이에 한정되는 것은 아니다.Herein, the phenolic resin means a phenolic compound including phenol and phenol derivatives. For example, the phenol derivative may include p-cresol, o-Guaiacol, Creosol, catechol, 3-methoxy-1,2-benzenediol (3 -methoxy-1,2-Benzenediol), Homocatechol, Vinylguaiacol, Syringol, Iso-eugenol, Methoxyeugenol, o O-Cresol, 3-methyl-1,2-benzenediol, (z) -2-methoxy-4- (1-propenyl) -phenol ( (z) -2-methoxy-4- (1-propenyl) -Phenol), 2, .6-diethoxy-4- (2-propenyl) -phenol (2,6-dimethoxy-4- (2-propenyl) ) -Phenol), 3,4-dimethoxy-Phenol, 4-ethyl-1,3-benzenediol, Resol phenol, 4-methyl-1,2-benzenediol (4-methyl-1,2-Benzenediol), 1,2,4-benzenetriol (1,2,4-Benzenetriol), 2-methoxy-6-methylphenol (2-Methoxy-6-methylphenol), 2-Methoxy-4-vinylphenol or 4-ethyl-2-methoxy-phenol (4-ethyl-2-methoxy-Phenol) Such as Information that is not.
상기 혼합 바인더의 혼합 비율은 에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈수지 10 내지 150 중량부, 페놀계 수지 100 내지 500 중량부의 비율일 수 있다. 페놀계 수지의 함량이 100 중량부 이하인 경우 발열 페이스트 조성물의 내열 특성이 저하되며, 500 중량부를 초과하는 경우에는 유연성이 저하되는 문제가 있다(취성 증가).The mixing ratio of the mixed binder may be a ratio of 10 to 150 parts by weight of polyvinyl acetal resin and 100 to 500 parts by weight of phenolic resin based on 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate. If the content of the phenolic resin is 100 parts by weight or less, the heat resistance characteristics of the heat-paste composition is lowered, and if it exceeds 500 parts by weight, there is a problem that the flexibility is lowered (brittleness increase).
유기 용매는 상기 전도성 입자 및 혼합 바인더를 분산시키기 위한 것으로, 카비톨 아세테이트(Carbitol acetate), 부틸 카비톨아세테이트(Butyl carbotol acetate), DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올(Butanol) 및 옥탄올(Octanol) 중에서 선택되는 2 이상의 혼합 용매일 수 있다.The organic solvent is used to disperse the conductive particles and the mixed binder, carbitol acetate, butyl carbotol acetate, dibasic ester, ethyl carbitol, ethyl carbitol acetate, dipropylene It may be a mixed solvent of two or more selected from glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol.
한편, 분산을 위한 공정은 통상적으로 사용되는 다양한 방법들이 적용될 수 있으며, 예를 들면 초음파처리(Ultra-sonication),롤밀(Roll mill), 비드밀(Bead mill) 또는 볼밀(Ball mill) 과정을 통해 이루어질 수 있다.On the other hand, the dispersion process can be applied to a variety of commonly used methods, for example through the ultra-sonication (Roll mill), bead mill (Bead mill) or ball mill (Ball mill) process Can be done.
분산제는 상기 분산을 보다 원활하게 하기 위한 것으로, BYK류와 같이 당업계에서 이용되는 통상의 분산제, Triton X-100과 같은 양쪽성 계면활성제, SDS등과 가은 이온성 계면활성제를 이용할 수 있다.The dispersant is to make the dispersion more smoothly, and a conventional dispersant used in the art such as BYK, an amphoteric surfactant such as Triton X-100, SDS and the like and a ionic surfactant may be used.
본 발명의 일 실시예에 따른 발열 페이스트 조성물은 발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함할 수 있다.The exothermic paste composition according to an embodiment of the present invention may further include 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the exothermic paste composition.
실란커플링제는 발열 페이스트 조성물의 배합시에 수지들간에 접착력을 증진시키는 접착증진제 기능을 한다. 실란 커플링제는 에폭시 함유 실란 또는 머켑토 함유 실란일 수 있다. 이러한 실란 커플링제의 예로는 에폭시가 함유된 것으로 2-(3,4 에폭시 사이클로헥실)-에틸트리메톡시실란, 3-글리시독시트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필트리에톡시실란이 있고, 아민기가 함유된 것으로 N-2(아미노에틸)3-아미토프로필메틸디메톡시실란, N-2(아미노에틸)3-아미노프로필트리메톡시실란, N-2(아미노에틸)3-아미노프로필트리메톡시실란, 3-아미노프로필트리에톡시실란, 3-아미노프로필트리에톡시실, 3-트리에톡시실리-N-(1,2-디메틸뷰틸리덴)프로필아민, N-페닐-3-아미노프로필트리메톡시실란이 있으며, 머켑토가 함유된 것으로 3-머켑토프로필메틸디메톡시실란, 3-머켑토프로필트리에톡시실란, 이소시아네이트가 함유된 3-이소시아네이트프로필트리에톡시실란 등이 있으며, 상기 나열한 것으로 한정되지 않는다.The silane coupling agent functions as an adhesion promoter to promote adhesion between the resins in the formulation of the exothermic paste composition. The silane coupling agent may be an epoxy containing silane or a merceto containing silane. Examples of such silane coupling agents include epoxy and include 2- (3,4 epoxy cyclohexyl) -ethyltrimethoxysilane, 3-glycidoxytrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropyltriethoxysilane, containing amine groups, N-2 (aminoethyl) 3-amitopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane , N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropyltriethoxysil, 3-triethoxysil-N- (1,2-dimethyl Butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, containing merceto, 3-mercetopropylmethyldimethoxysilane, 3-mercetopropyltriethoxysilane, isocyanate Contained 3-isocyanatepropyltriethoxysilane and the like and are limited to those listed above. No.
본 발명은 상술한 본 발명의 실시예들에 따른 발열 페이스트 조성물을 기판 상에 스크린 인쇄, 그라비아 인쇄(내지 롤투롤 그라비아 인쇄) 또는 콤마코팅(내지 롤투롤 콤마코팅)하여 형성되는 면상 발열체를 추가적으로 제공한다.The present invention further provides a planar heating element which is formed by screen printing, gravure printing (or roll-to-roll gravure printing) or comma coating (or roll-to-roll comma coating) of a heating paste composition according to the embodiments of the present invention described above on a substrate. do.
여기에서 상기 기판은 폴리카보네이트, 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 플리이미드, 셀룰로스 에스텔, 나일론, 폴리프로필렌, 폴리아크릴로린트릴, 폴리술폰, 폴리에스테르술폰, 폴리비닐리덴플롤라이드, 유리, 유리섬유(매트), 세라믹, SUS, 구리 또는 알루미늄 기판 등이 사용될 수 있으며, 상기 나열된 것들로 한정되는 것은 아니다. 상기 기판은 발열체의 응용 분야나 사용온도에 따라 적절히 선택될 수 있다.Wherein the substrate is polycarbonate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, cellulose ester, nylon, polypropylene, polyacrylolintril, polysulfone, polyester sulfone, polyvinylidene fluoride , Glass, glass fiber (matte), ceramic, SUS, copper or aluminum substrate, etc. may be used, but is not limited to those listed above. The substrate may be appropriately selected depending on the application field of the heating element or the use temperature.
면상 발열체는 상기 기판 상에 본 발명의 실시예들에 따른 발열 페이스트 조성물을 스크린 인쇄 또는 그라비아 인쇄를 통해 원하는 패턴으로 인쇄하고, 건조 및 경화한 후에, 상부에 은 페이스트 또는 도전성 페이스트를 인쇄 및 건조/경화 시킴으로써 전극을 형성함으로써 형성될 수 있다. 또는 은 페이스트 또는 도전성 페이스트를 인쇄 및 건조/경화한 후에 상부에 본 발명의 실시예들에 따른 발열 페이스트 조성물을 스크린 인쇄 또는 그라비아 인쇄함으로써 형성하는 것도 가능하다.The planar heating element prints the drying paste composition according to the embodiments of the present invention on the substrate in a desired pattern through screen printing or gravure printing, and after drying and curing, the printing and drying / It can be formed by forming an electrode by curing. Alternatively, after printing and drying / curing the silver paste or the conductive paste, the heating paste composition according to the embodiments of the present invention may be formed by screen printing or gravure printing.
한편, 상기 면상 발열체는 상부면에 코팅되는 보호층을 더 포함할 수 있다. 상기 보호층은 실리카(SiO₂)로 형성될 수 있다. 보호층이 실리카로 형성되는 경우에는 발열면에 코팅되더라도 발열체가 유연성을 유지할 수 있는 장점을 갖는다.On the other hand, the surface heating element may further include a protective layer coated on the upper surface. The protective layer may be formed of silica (SiO₂). When the protective layer is formed of silica, the heating element has an advantage of maintaining flexibility even if coated on the heating surface.
이하, 본 발명에 따른 후막 형성용 발열 페이스트 조성물 및 이를 이용한 면상 발열체를 시험예를 통하여 상세히 설명한다. 하기 시험예는 본 발명을 설명하기 위한 예시일 뿐, 본 발명이 하기 시험예에 의해 한정되는 것은 아니다.Hereinafter, the heat generating paste composition for forming a thick film and the planar heating element using the same according to the present invention will be described in detail. The following test examples are only examples for explaining the present invention, and the present invention is not limited by the following test examples.
시험예Test Example
(1) 실시예 및 비교예의 준비(1) Preparation of Examples and Comparative Examples
하기 [표 1]과 같이 실시예(3종류) 및 비교예(3종류)를 준비하였다. [표 1]에 표기된 조성비는 중량%로 기재된 것임을 밝혀둔다.As shown in [Table 1], examples (three types) and comparative examples (three types) were prepared. Note that the composition ratios shown in Table 1 are described in weight percent.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3
CNT 입자CNT particles 44 55 66 44 55 66
CNP 입자CNP Particles 88 99 1515 -- -- --
혼합 바인더 Mixed binder 2020 1515 2222 -- -- --
에틸셀룰로오스Ethyl cellulose -- -- -- 1010 1212 1414
유기용매Organic solvent 6363 6767 5252 8282 7979 7676
분산제(BYK)Dispersant (BYK) 55 44 55 44 44 44
실시예들의 경우 CNT 입자와, CNP 입자(실시예 1 내지 3)를 [표 1]의 조성에 따라 카비톨아세테이트 용매에 첨가하고 BYK 분산제를 첨가한 후, 60분간 초음파 처리를 통해 분산액 A를 제조하였다. 이후, 혼합 바인더를 카비톨아세테이트 용매에 첨가한 후 기계적 교반을 통해 마스터 배치를 제조하였다. 다음으로 상기 분산액 A 및 마스터배치를 기계적 교반을 통해 1차 혼련한 후에 3-롤-밀 과정을 거쳐 2차 혼련함으로써 발열 페이스트 조성물을 제조하였다.In the case of Examples, CNT particles and CNP particles (Examples 1 to 3) were added to a carbitol acetate solvent according to the composition of [Table 1], BYK dispersant was added, and dispersion A was prepared by sonication for 60 minutes. It was. Thereafter, a mixed binder was added to the carbitol acetate solvent and then a master batch was prepared through mechanical stirring. Next, the dispersion A and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll-mill process to prepare an exothermic paste composition.
비교예들의 경우 CNT 입자를 [표 1]의 조성에 따라 카비톨아세테이트 용매에 첨가하고 BYK 분산제를 첨가한 후, 60분간 초음파 처리를 통해 분산액을 제조하였다. 이후, 에틸셀룰로오스를 카비톨아세테이트 용매에 첨가한 후 기계적 교반을 통해 마스터 배치를 제조하였다. 다음으로 상기 분산액 B 및 마스터배치를 기계적 교반을 통해 1차 혼련한 후에 3-롤-밀 과정을 거쳐 2차 혼련함으로써 발열페이스트 조성물을 제조하였다.For the comparative examples, CNT particles were added to the carbitol acetate solvent according to the composition of [Table 1], BYK dispersant was added, and a dispersion was prepared by sonication for 60 minutes. Thereafter, ethyl cellulose was added to the carbitol acetate solvent to prepare a master batch through mechanical stirring. Next, the dispersion B and the masterbatch were first kneaded through mechanical stirring, followed by a second kneading process through a 3-roll mill to prepare an exothermic paste composition.
(2) 면상발열체 특성 평가(2) Evaluation of Planar Heating Elements
실시예 및 비교예에 따른 발열 페이스트 조성물을 10×10cm 크기로 폴리이미드 기판 위에 스크린 인쇄하고 경화한 후에, 상부 양단에는 은 페이스트 전극을 인쇄하고 경화하여 면상 발열체 샘플을 제조하였다.After heating and curing the exothermic paste compositions according to Examples and Comparative Examples on a polyimide substrate with a size of 10 × 10 cm, silver paste electrodes were printed and cured on both upper ends to prepare a planar heating element sample.
관련하여 도 9은 본 발명에 따른 발열 페이스트 조성물을 이용하여 제작한 면상 발열체 시편의 이미지이다. 도 9a는 폴리이미드 기판 위에 발열 페이스트 조성물이 스크린 인쇄되어 형성된 면상 발열체이다. 도 9b는 유리섬유 매트 위에 발열 페이스트 조성물이 스크린 인쇄되어 형성된 면상 발열체이다. 도 9c 및 도 9d는 도 9a의 면상 발열체 상부에 보호층을 코팅한 경우의 이미지이다.(도 9c는 검은색 보호층 코팅, 도 9d는 녹색 보호층 코팅).9 is an image of a planar heating element specimen prepared using the heating paste composition according to the present invention. 9A is a planar heating element formed by screen-printing a heating paste composition on a polyimide substrate. 9B is a planar heating element formed by screen printing a heating paste composition on a glass fiber mat. 9C and 9D are images when the protective layer is coated on the planar heating element of FIG. 9A (FIG. 9C is a black protective layer coating and FIG. 9D is a green protective layer coating).
도 9a에 나타난 것과 같은 면상 발열체 샘플(실시예) 및 상기 비교예에 따라 제조된 면상 발열체 샘플들의 비저항을 측정하였다인가되는 전압/전류는 [표 2]에 표기됨). 또한, 인가되는 전압/전류에 따른 승온 효과를 확인하기 위해 상기 실시예 및 비교예에 해당하는 면상 발열체를 각각 40℃, 100℃ 및 200℃까지 승온시키고, 상기 온도에 도달하였을 때의 DC 전압 및 전류를 측정하였다.The specific resistance of the planar heating element sample (example) and the planar heating element samples prepared according to the comparative example as shown in FIG. 9A was measured. The applied voltage / current is indicated in [Table 2]). In addition, in order to confirm the temperature increase effect according to the applied voltage / current, the planar heating element corresponding to the above Examples and Comparative Examples was heated up to 40 ° C., 100 ° C. and 200 ° C., respectively, and the DC voltage when the temperature was reached and The current was measured.
또한, 각 샘플들에 대하여 200℃에서의 발열안정성을 테스트하였다. 관련하여, 도 10에서는 실시예 및 비교예에 따라 제조된 면상 발열체 샘플들의 발열안정성 시험 모습의 이미지를 나타내었으며, 시험결과는 하기 [표 2]에 정리하였다.In addition, exothermic stability at 200 ° C. was tested for each sample. In this regard, Figure 10 shows the image of the heat stability test appearance of the planar heating element samples prepared according to the Examples and Comparative Examples, the test results are summarized in the following [Table 2].
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3
비저항(×10ˇ²ΩcmSpecific resistance (× 10ˇ²Ωcm 1.91.9 2.552.55 2.962.96 9.739.73 8.528.52 6.236.23
40℃ 도달 DC 구동 전압/전류40 ℃ reach DC drive voltage / current 5V/0.2A5V / 0.2A 6V/0.2A6V / 0.2A 7V/0.2A7V / 0.2A 20V/0.3A20V / 0.3A 16V/0.2A16V / 0.2A 12V/0.2A12V / 0.2A
100℃ 도달 DC 구동 전압/전류100 ℃ reach DC driving voltage / current 9V/0.5A9V / 0.5A 12V/0.4A12V / 0.4A 14V/0.5A14 V / 0.5 A 48V/0.7A48V / 0.7A 40V/0.7A40V / 0.7A 26V/0.6A26V / 0.6A
200℃ 도달 DC 구동 전압/전류200 ℃ reach DC drive voltage / current 20V/0.6A20V / 0.6A 24V/0.7A24V / 0.7A 24V/1.0A24V / 1.0A -- -- --
발열안정성(day)Heat stability (day) 20일 이상20 days or more 20일 이상20 days or more 20일 이상20 days or more 불량Bad 불량Bad 불량Bad
상기 [표 2]를 참조하며, 비저항은 실시예들에 해당하는 면상 발열체가 비교예들에 해당하는 면상 발열체보다 작게 측정되었으며, 이에 따라 각 온도 에 도달하기 위해 필요한 구동 전압/전류 역시 실시예들에 해당하는 면상 발열체가 비교예들에 해당하는 면상 발열체보다 작게 측정되었다. 즉 실시예들에 해당하는 면상 발열체가 비교예보다 저전압 및 저전력으로 구동 가능함을 확인할 수 있었다.Referring to the above [Table 2], the specific resistance was measured that the planar heating element corresponding to the embodiments is smaller than the planar heating element corresponding to the comparative examples, accordingly driving voltage / current required to reach each temperature is also embodiments The planar heating element corresponding to was smaller than the planar heating element corresponding to the comparative examples. That is, it was confirmed that the planar heating element corresponding to the embodiments can be driven at a lower voltage and lower power than the comparative example.
또한, 실시예 1 내지 3에 따른 면상 발열체에서는 200℃의 발열 구동하에서도 20일간 안정성이 유지되는 것으로 나타나는 반면에(별도의 보호층없음), 비교예 1 내지 3에서는 200℃의 발열 구동시 2시간 이내에 발열부 표면이 부풀어 오르는 불량 현상이 관찰되었다. 즉 실시예들에 해당하는 면상 발열체가 비교예보다 200℃이상의 고온에서도 안정적으로 구동 가능함을 확인할 수 있었다.In addition, in the planar heating elements according to Examples 1 to 3, the stability was maintained for 20 days even under an exothermic driving at 200 ° C. (no separate protective layer), whereas in Comparative Examples 1 to 3, the exothermic driving at 200 ° C. was performed. Poor phenomena were observed to swell the surface of the heating portion within time. That is, it was confirmed that the planar heating element corresponding to the embodiments can be stably driven even at a high temperature of 200 ° C. or more than the comparative example.
본 발명은 상술한 면상 발열체와, 상기 면상 발열체에 전력을 공급하는 전력공급부를 포함하는 휴대용 발열히터를 추가적으로 제공한다.The present invention further provides a portable heating heater including the planar heating element and a power supply unit for supplying power to the planar heating element.
여기에서 전력공급부란 면상 발열체의 좌우측에 도포 형서되는 리드 전극과, 상기 리드 전극에 부착 형성되는 전원접속용 전극을 포함할 수 있다. 경우에 따라서는 상기 전원접속용 전극이 면상 발열체에 직접 연결될 수 있다. 상기리드 전극 또는 전원접속용 전극은 은 페이스트, 구리 페이스트, 구리 테이프 등을 이용하여 형성할 수 있다.The power supply unit may include a lead electrode coated on the left and right sides of the planar heating element and a power connection electrode attached to the lead electrode. In some cases, the power connection electrode may be directly connected to the planar heating element. The lead electrode or the electrode for power connection may be formed using silver paste, copper paste, copper tape, or the like.
본 발명에 따른 휴대용 발열 히터는 상기 면상 발열체가 몸체 내부 또는 외면에 부착, 매립 또는 장착되고, 상기 면상 발열체의 구동을 위한 전력공급부를 구비하는 형태를 갖는다. 이러한 휴대용 발열 히터는 유모차용 이너 시트, 발열 양말, 발열 신발, 발열 모자, 휴대용 발열 매트, 휴대용 조리 기구, 차량용 발열 시트 등에 이용될 수 있다.The portable heating heater according to the present invention has a form in which the planar heating element is attached, embedded or mounted on the inner or outer surface of the body, and has a power supply for driving the planar heating element. The portable heating heater may be used for an inner seat for a baby carriage, a heating sock, a heating shoe, a heating hat, a portable heating mat, a portable cooking utensil, a vehicle heating sheet, and the like.
특히 본 발명에 따른 휴대용 발열 히터에 채용되는 면상 발열체는 상기에서 설명한 바와 같이 저전압 및 저전력으로 구동이 가능하므로 리튬이온 배터리, 리튬 폴리머 배터리 등의 충방전이 가능한 2차 전지로 구동할 수 있는 바, 휴대성이 증진되고 사용시간을 크게 늘릴 수 있다는 장점이 있다.In particular, the planar heating element employed in the portable heating heater according to the present invention can be driven as a secondary battery capable of charging and discharging, such as a lithium ion battery, a lithium polymer battery because it can be driven at a low voltage and low power as described above, The portability is enhanced and the use time can be greatly increased.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성 요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다. 또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. In the above description, all elements constituting the embodiments of the present invention are described as being combined or operating in combination, but the present invention is not necessarily limited to the embodiments. In other words, within the scope of the present invention, all of the components may be selectively operated in combination with one or more. In addition, the terms "comprise", "comprise" or "having" described above mean that the corresponding component may be inherent unless specifically stated otherwise, and thus excludes other components. It should be construed that it may further include other components instead. All terms, including technical and scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms used generally, such as terms defined in a dictionary, should be interpreted to coincide with the contextual meaning of the related art, and shall not be interpreted in an ideal or excessively formal sense unless explicitly defined in the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (16)

  1. 챔버 내부에 위치하는 웨이퍼에 가열된 가스를 공급하는 가스 공급관; 및A gas supply pipe supplying a heated gas to a wafer located inside the chamber; And
    상기 가스 공급관을 유동하는 가스를 가열하는 가열수단을 포함하며,And heating means for heating a gas flowing through the gas supply pipe,
    상기 가열수단은 발열 페이스트 조성물을 포함하며,The heating means comprises a heating paste composition,
    상기 발열 페이스트 조성물은, 발열 페이스트 조성물 100 중량부에 대하여 탄소나노튜브 입자 3 내지 6중량부, 탄소나노입자 0.5 내지 30중량부, 혼합 바인더 10 내지 30중량부, 유기 용매 29 내지 83 중량부 및 분산제 0.5 내지 5중량부를 포함하며, The exothermic paste composition may include 3 to 6 parts by weight of carbon nanotube particles, 0.5 to 30 parts by weight of carbon nanoparticles, 10 to 30 parts by weight of a mixed binder, 29 to 83 parts by weight of an organic solvent, and a dispersant based on 100 parts by weight of the heat paste composition. 0.5 to 5 parts by weight,
    상기 혼합 바인더는 에폭시 아크릴레이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되거나 헥사메틸렌 디이소시아네이트, 폴리비닐 아세탈 및 페놀계 수지가 혼합되는 웨이퍼 히팅장치.The mixed binder is a wafer heating apparatus in which epoxy acrylate, polyvinyl acetal and phenolic resin are mixed or hexamethylene diisocyanate, polyvinyl acetal and phenolic resin are mixed.
  2. 제1항에 있어서,The method of claim 1,
    상기 챔버는 일측에 웨이퍼의 이송을 단속하는 도어가 구비되고, 바닥면에는 배기구가 형성되며,The chamber is provided with a door to control the transfer of the wafer on one side, the exhaust surface is formed on the bottom surface,
    상기 챔버 내부에는 웨이퍼가 안치되는 안치판 부재;A base plate member in which a wafer is placed in the chamber;
    상기 안치판 부재의 상부에 구비되며, 하향 관통되는 복수의 가스 통과 구멍을 구비하는 가스 분배판 부재; 및A gas distribution plate member disposed on the base plate member and having a plurality of gas passage holes penetrating downward; And
    가스를 저장하는 가스 저장 탱크를 더 포함하며,Further comprising a gas storage tank for storing gas,
    상기 가스 공급관은, 상기 가스 저장 탱크로부터 상기 가스 분배판 부재로 가스가 유동되도록 연결하는 냉각 가스관과 가열 가스관을 포함하는 웨이퍼 히팅장치.The gas supply pipe, the wafer heating apparatus comprising a cooling gas pipe and a heating gas pipe for connecting the gas flow from the gas storage tank to the gas distribution plate member.
  3. 제2항에 있어서,The method of claim 2,
    상기 냉각 가스관과 상기 가열 가스관에 각각 구비되어 가스의 유동량을 조절하는 가스 유동량 제어수단; 및 Gas flow amount control means provided in each of the cooling gas pipe and the heating gas pipe to adjust a flow amount of gas; And
    상기 가스 유동량 제어수단을 통과한 냉각 가스관과 상기 가열수단을 통과한 가열 가스관에 각각 구비되어 상기 가스 분배판 부재로 공급되는 가스량을 조절하는 가스 공급량 조절수단을 더 포함하는 웨이퍼 히팅장치.And a gas supply amount adjusting means which is provided in each of the cooling gas pipe passing through the gas flow amount controlling means and the heating gas pipe passing through the heating means to adjust the amount of gas supplied to the gas distribution plate member.
  4. 제3항에 있어서, The method of claim 3,
    상기 가스 분배판 부재는 저면에 동일한 직경의 가스 통과 구멍이 중앙으로부터 외주연부로 점차 밀도가 증가되게 하여 형성되도록 하는 웨이퍼 히팅장치.And the gas distribution plate member is formed such that a gas passage hole having the same diameter is formed in the bottom surface such that the density gradually increases from the center to the outer peripheral portion.
  5. 제3항에 있어서, The method of claim 3,
    상기 가스 분배판 부재에는 저면 중앙에서부터 외주연부측으로 점차 가스 통과 구멍의 직경이 보다 크게 확장되도록 하는 웨이퍼 히팅장치.Wafer heating apparatus for the gas distribution plate member so that the diameter of the gas passage hole is gradually increased from the bottom center to the outer peripheral side.
  6. 제3항에 있어서, The method of claim 3,
    상기 가스 분배판 부재의 내부에는 판면에 다수의 관통홀을 형성한 배플 플레이트가 수직의 방향으로 소정의 높이를 이격하여 하나 이상이 적층되도록 하는 웨이퍼 히팅장치.And a baffle plate having a plurality of through holes formed in the plate surface of the gas distribution plate member so that at least one of the baffle plates is stacked at a predetermined height in a vertical direction.
  7. 제6항에 있어서, The method of claim 6,
    상기 가스 분배판 부재에서 수직으로 적층되는 상기 배플 플레이트는 각 관통홀이 수직의 방향으로 서로 엇갈리게 위치되도록 하고, 맨 하측에 위치되는 상기 배플 플레이트의 관통홀 또한 상기 가스 분배판 부재 저면의 가스 통과 구멍과는 엇갈리게 형성되도록 하는 웨이퍼 히팅장치.The baffle plates stacked vertically in the gas distribution plate member are arranged so that each through hole is staggered from each other in the vertical direction, and the through holes of the baffle plate positioned at the bottom are also gas passage holes in the bottom surface of the gas distribution plate member. Wafer heating apparatus to be formed to be staggered with.
  8. 제3항에 있어서, The method of claim 3,
    상기 가스 분배판 부재에는 냉각 가스관을 통해서 상온의 가스가 공급되고, 가열 가스관을 통해서는 약 150∼200℃로 가열된 가스가 공급되는 웨이퍼 히팅장치.The gas distribution plate member is supplied with the gas at room temperature through the cooling gas pipe, the gas heated to about 150 ~ 200 ℃ through the heating gas pipe is supplied.
  9. 제3항에 있어서, The method of claim 3,
    상기 가스는 N2가스인 웨이퍼 히팅장치.The gas is a wafer heating apparatus N 2 gas.
  10. 제1항에 있어서,The method of claim 1,
    상기 혼합 바인더는 에폭시 아크릴레이트 또는 헥사메틸렌 디이소시아네이트 100 중량부에 대하여 폴리비닐 아세탈 수지 10 내지 150 중량부, 페놀계수지 100 내지 500 중량부가 혼합되는 웨이퍼 히팅장치.The mixed binder is a wafer heating apparatus in which 10 to 150 parts by weight of polyvinyl acetal resin and 100 to 500 parts by weight of phenolic resin are mixed with respect to 100 parts by weight of epoxy acrylate or hexamethylene diisocyanate.
  11. 제1항에 있어서,The method of claim 1,
    발열 페이스트 조성물 100 중량부에 대하여 실란 커플링제 0.5 내지 5 중량부를 더 포함하는 웨이퍼 히팅장치.Wafer heating apparatus further comprises 0.5 to 5 parts by weight of the silane coupling agent based on 100 parts by weight of the exothermic paste composition.
  12. 제1항에 있어서,The method of claim 1,
    상기 탄소나노튜브 입자는 다중벽 탄소나노튜브 입자인 웨이퍼 히팅장치.The carbon nanotube particles are multi-walled carbon nanotube particles wafer heating apparatus.
  13. 제1항에 있어서,The method of claim 1,
    상기 유기 용매는 카비톨 아세테이트, 부틸 카비톨 아세테이트, DBE(dibasic ester), 에틸카비톨, 에틸카비톨아세테이트, 디프로필렌글리콜메틸에테르, 셀로솔브아세테이트, 부틸셀로솔브아세테이트, 부탄올 및 옥탄올 중에서 선택되는 2 이상의 혼합 용매인 웨이퍼 히팅장치.The organic solvent is selected from carbitol acetate, butyl carbitol acetate, DBE (dibasic ester), ethyl carbitol, ethyl carbitol acetate, dipropylene glycol methyl ether, cellosolve acetate, butyl cellosolve acetate, butanol and octanol Wafer heating apparatus is a mixed solvent of two or more.
  14. 제1항에 있어서,The method of claim 1,
    상기 가열수단은, 상기 발열 페이스트 조성물이 기판 상에 스크린 인쇄, 그라비아 인쇄 또는 콤마코팅되어 형성되는 면상 발열체를 포함하는 웨이퍼 히팅장치.The heating means is a wafer heating apparatus comprising a planar heating element is formed by screen printing, gravure printing or comma coating the heating paste composition on a substrate.
  15. 제14항에 있어서,The method of claim 14,
    상기 기판은 폴리이미드 기판, 유리섬유 매트 또는 세라믹 유리인 웨이퍼 히팅장치.The substrate is a wafer heating apparatus is a polyimide substrate, glass fiber mat or ceramic glass.
  16. 제14항에 있어서,The method of claim 14,
    상기 가열수단은, 상기 면상 발열체의 상부면에 코팅되는 것으로 실리카 또는 카본븍랙과 같은 흑색 안료를 구비하는 유기물로 형서되는 보호층을 더 포함하는 웨이퍼 히팅장치.The heating means is a wafer heating apparatus which is coated on the upper surface of the planar heating element further comprises a protective layer in the form of an organic material having a black pigment, such as silica or carbon black rack.
PCT/KR2016/003046 2015-05-14 2016-03-25 Wafer heating apparatus WO2016182191A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0067163 2015-05-14
KR1020150067163A KR101734129B1 (en) 2015-05-14 2015-05-14 Apparatus for heating wafer

Publications (1)

Publication Number Publication Date
WO2016182191A1 true WO2016182191A1 (en) 2016-11-17

Family

ID=57248099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003046 WO2016182191A1 (en) 2015-05-14 2016-03-25 Wafer heating apparatus

Country Status (2)

Country Link
KR (1) KR101734129B1 (en)
WO (1) WO2016182191A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669553B (en) * 2022-03-18 2023-07-04 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Gas bath device and design method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050024816A (en) * 2003-09-04 2005-03-11 삼성전자주식회사 Apparatus for heating wafer on bake equipment
JP2005340439A (en) * 2004-05-26 2005-12-08 Kyocera Corp Heater, wafer heating device, and manufacturing method thereof
KR20090010252U (en) * 2008-04-04 2009-10-08 주식회사 엑사이엔씨 Heater using paste composition
US20130084690A1 (en) * 2009-10-16 2013-04-04 Nuflare Technology, Inc. Manufacturing apparatus and method for semiconductor device
KR20130125920A (en) * 2012-05-10 2013-11-20 아로 주식회사 Transparent heating substrate using carbon nano tube and method of manufacturing the substrate
KR101524642B1 (en) * 2014-03-13 2015-06-04 전자부품연구원 Heating paste composition for forming thick film and portable low power heater using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050024816A (en) * 2003-09-04 2005-03-11 삼성전자주식회사 Apparatus for heating wafer on bake equipment
JP2005340439A (en) * 2004-05-26 2005-12-08 Kyocera Corp Heater, wafer heating device, and manufacturing method thereof
KR20090010252U (en) * 2008-04-04 2009-10-08 주식회사 엑사이엔씨 Heater using paste composition
US20130084690A1 (en) * 2009-10-16 2013-04-04 Nuflare Technology, Inc. Manufacturing apparatus and method for semiconductor device
KR20130125920A (en) * 2012-05-10 2013-11-20 아로 주식회사 Transparent heating substrate using carbon nano tube and method of manufacturing the substrate
KR101524642B1 (en) * 2014-03-13 2015-06-04 전자부품연구원 Heating paste composition for forming thick film and portable low power heater using the same

Also Published As

Publication number Publication date
KR101734129B1 (en) 2017-05-11
KR20160133934A (en) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016182199A1 (en) Battery pre-heating apparatus for hybrid vehicle and control method therefor
WO2016182196A1 (en) Heating apparatus for semiconductor vacuum line using sheet heater
WO2016186314A1 (en) Pot for vehicle
KR101572803B1 (en) Heating unit and heating module using heating paste composition
US20050191493A1 (en) Electrically conductive coatings with high thermal oxidative stability and low thermal conduction
KR101524642B1 (en) Heating paste composition for forming thick film and portable low power heater using the same
WO2013187675A1 (en) Carbon nanotube coating film and carbon nanotube solution composition for forming the carbon nanotube coating film
WO2016186313A1 (en) Heating element fabric having heating paste composition, and heating steering wheel using same
WO2016186311A1 (en) Thermal mat
WO2016182198A1 (en) Heating device for electric vehicle and method for controlling same
WO2016182191A1 (en) Wafer heating apparatus
WO2018062622A1 (en) Gas diffusion layer comprising porous carbonaceous film layer for fuel cell
WO2016186315A1 (en) Drying device
WO2017200272A1 (en) Method for producing resin composition for inkjet
WO2015174697A1 (en) Heating paste composition, and sheet heating element, heating roller, heating unit and heating module using same
WO2016182192A1 (en) Glass heating apparatus and heating method
WO2016182194A1 (en) Display manufacturing apparatus
WO2023080350A1 (en) Method for cooling semiconductor component, and heat dissipation film for semiconductor component
EP1327666A1 (en) Polyimide resin composition and, polyimide product formed into film and intermediate transfer belt comprising the same
KR101572802B1 (en) Heating paste composition and panel heater and heating roller using the same
WO2015122641A1 (en) Heating paste composition, surface type heating element using same, and potable low-power heater
KR101642701B1 (en) Dish washer
WO2022114852A1 (en) Polyimide film for graphite sheet, manufacturing method therefor, and graphite sheet manufactured therefrom
WO2011016675A2 (en) Dispersion method of carbon nanotube, dispersion apparatus of carbon nanotube, and carbon nanotube dispersion obtained thereby
WO2019172493A1 (en) Conductive composition for electromagnetic shielding, electromagnetic shielding layer formed of same, circuit board laminate including same, and method for forming electromagnetic shielding layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792837

Country of ref document: EP

Kind code of ref document: A1