WO2016177945A1 - Procede de controle de position d'un organe de commande d'embrayage - Google Patents

Procede de controle de position d'un organe de commande d'embrayage Download PDF

Info

Publication number
WO2016177945A1
WO2016177945A1 PCT/FR2016/050746 FR2016050746W WO2016177945A1 WO 2016177945 A1 WO2016177945 A1 WO 2016177945A1 FR 2016050746 W FR2016050746 W FR 2016050746W WO 2016177945 A1 WO2016177945 A1 WO 2016177945A1
Authority
WO
WIPO (PCT)
Prior art keywords
term
ref
clutch
speed
control
Prior art date
Application number
PCT/FR2016/050746
Other languages
English (en)
Inventor
Abdelmalek Maloum
Ludovic MERIENNE
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Publication of WO2016177945A1 publication Critical patent/WO2016177945A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/064Control of electrically or electromagnetically actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1023Electric motor
    • F16D2500/1025Electric motor with threaded transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/108Gear
    • F16D2500/1081Actuation type
    • F16D2500/1085Automatic transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3026Stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3028Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • F16D2500/70412Clutch position change rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/7061Feed-back
    • F16D2500/70615PI control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/7061Feed-back
    • F16D2500/70626PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70673Statistical calculations

Definitions

  • the present invention relates to the control of robotized gearboxes, equipped with at least one clutch for interrupting the transmission of torque between a drive motor and the shifting mechanism of the box.
  • This method is based on sending to the electric motor, a reference voltage, which allows each moment to move the control element from an initial position to a reference position.
  • clutch control can be provided by an electric or hydraulic control system controlled by a computer.
  • FIG. 1 non-restrictively illustrates the irreversible actuating system, consisting of an electric actuating motor 1 and a motion transmission system composed of a set of gears (housed under a casing 2), which transmit the movement of the electric motor on a screw-nut system 3 which converts the rotational movement of the motor 1 into a translation movement of a clutch control cable 4, which "pulls" on a clutch lever (not shown).
  • an assistance spring 6 stores energy at closing the clutch, and restores it by helping to open the clutch.
  • the position of the cable In order to ensure a controlled transmission of the torque of the engine to the gearbox, the position of the cable must be controlled with an accuracy of about 0.1 mm.
  • the peculiarity of such an actuation system is its irreversibility, linked to the high level of friction between the screw and nut. This feature keeps the system in position, in case of failure of the control of the electric motor (voltage drop for example). But it poses a problem of control, because its control is not linear: as long as the electric motor does not provide a level of effort superior to the friction, the system remains immobile, but once this level of effort exceeded, the system can get moving very quickly.
  • the level of friction can reach 70 to 80% of the maximum effort of the electric motor, and can vary according to the wear of the clutch, as indicated by way of example, on the curves of FIG. figure allows to compare the force curves (in Nm) on the stroke of the clutch stop (in millimeters), in the direction of its opening (disengaging) and its closing (clutch) for a clutch in the state nine (curves in dashed lines) and for worn clutch (curves in solid lines). It is found that the maximum additional effort to be provided with a worn clutch is greater in the direction of closure, because it must compensate in addition the wear of the return spring, which facilitates the closing of the clutch in the state new.
  • An object of the present invention is to move the clutch cable in a completely transparent manner to the driver during clutch and clutch operations.
  • the desired accuracy is 0.005 mm. It must be respected, without exceeding the position of the cable, nor know the effort that must exert the electric motor to overcome the friction.
  • control In addition to these mechanical constraints, the control must respect thermal constraints. To ensure the durability of the electrical system, it must in particular avoid overly messy or sudden stresses on the motor 1, responding to repeated voltage jumps or excessive currents.
  • the "licking" phase where the torque of the heat engine is transmitted gradually to the gearbox, must be as transparent as possible, to avoid torque surges. .
  • the movement of the clutch cable must therefore be controlled with an accuracy of 0.005, mainly during the licking phase, and without exceeding.
  • the control must also be as continuous as possible, avoiding strong long current draws, in the engine.
  • the control input is generally a reference voltage of the actuating motor.
  • the known calculation methods for the reference voltage aim to minimize at every moment the difference between the actual position of the control element of the clutch, and the reference position it must reach.
  • they most often generate a discontinuous voltage control, which has the disadvantage of strongly biasing the actuator, at the risk of causing overheating of the electric motor.
  • the desired static precision which is 0.005 mm, to ensure small displacements (of the order of 0.1 mm) without overshooting, to eliminate the main sources of jerking. torque in clutch licking phase, and limit the risk of overheating or breakage of the electrical system.
  • the present invention aims to overcome these difficulties, to control the position of a robotized box clutch.
  • the reference voltage be obtained by integrating a calculated value of its own derivative in time.
  • the derivative of the reference voltage includes a first term of difference between the state and the position setpoint of the control element, a second term of difference between the state and the setpoint of its speed, and a third term of difference between the state and the setpoint of the derivative of its speed.
  • Integrating the first gap term gives a compensation term representing the resistive torque of the system; the integration of the second term of difference gives a proportional term on a position error; the integration of the third term gives a proportional term on a speed error.
  • FIG. 1 represents an electric clutch control system
  • FIG. 2 shows the differences of forces involved on a clutch opening and closing stroke depending on its state
  • Figure 3 shows position curves, control voltage and motor current when closing a clutch.
  • k Coefficient of the voltage induced by the electric motor
  • R Resistance of the armature of the electric motor
  • U ref The reference voltage that we want to apply to the terminals of the electric motor, it is between U min and U max
  • U max (typically, U max will be the voltage of the on-board network);
  • Various sensors measure the position of the cable x, which is between two stops (open and closed position), as well as the speed of a point of the cable of
  • a current sensor is also available to provide a measurement of the armature current of the DC motor.
  • the proposed control strategy aims at moving the clutch cable from an initial position x to a reference position x ref , to satisfy the conditions of a perfect gearshift in the gearbox, while ensuring the holding of the electrical system.
  • the cable displacement control input is the reference voltage of the electric motor U ref which provides this displacement.
  • a proportional type regulator In known controller synthesis methods, for example, a proportional type regulator (PID) is used. In the present case, such a regulator does not prove to be optimal with respect to the orders of magnitude of the system, since the resisting torque that can be compensated can be very large and imposes excessive gains in these conditions. To obtain a more continuous control, the invention proposes to take into consideration an additional physical quantity, such as the derivative of the U ref command. The system can then be written as follows:
  • the main control becomes the derivative of the voltage to be applied to the actuating motor.
  • the reference voltage U ref is then obtained by integrating a calculated value of its own derivative in time. This ensures a greater continuity of the control synthesized by the regulator.
  • the disturbance to compensate is no longer U ref , but its derivative, which has the advantage of reaching zero when stopping moving the clutch.
  • the derivative of the reference voltage U re then preferably includes a first term of difference between the state and the position reference of the control element.
  • first term of deviation gives a compensation term representing the resistive torque of the system
  • the integration of the second term deviation gives a proportional term on a position error
  • the integration of the third term gives a proportional term on a speed error.
  • the reference voltage U re f is then equal to the sum of the first three proportional terms, and a fourth additional term proportional to the current I.
  • Lyapunov's theory makes it possible, for example, to create a regulator that meets these criteria, and that has the additional advantage of having a single adjustment parameter, which considerably simplifies the debugging phase (MAP) of the regulator. This theory is therefore particularly appropriate. However, without departing from the scope of the invention, it is possible to use other efficient calculation methods, provided that all the deviation terms and the proportional terms depend only on a single adjustment parameter.
  • the first term is proportional to the integral of the position difference. It makes it possible to compensate for the resistant torque of the system T d (whether it is in the worn or new state).
  • the second term is proportional to the position error.
  • the third term is proportional to a speed error.
  • the last term termed “feed-forward", serves to increase the current dynamics.
  • the method makes it possible to control the movement of a clutch control element by an irreversible actuation system composed of an electric actuation motor connected by mechanical transmission means to the clutch control element. , by sending to the electric motor a reference voltage U ref , which allows each moment to move the control element, from an initial position x to a reference position x ref .
  • the various steps of calculating the command at time t are for example the following:
  • This integral term serves to compensate for the evolution of the resistive torque of the electric motor. It is essential to separate the compensation from this torque, with the torque necessary for tracking. Since the resistive torque is a function of the position (and not of the speed), it is necessary to integrate the position error to better compensate for this term.
  • the torque required to maintain the speed of the motor can be calculated by the loop on the speed error, as follows: d) We update the errors in position and speed
  • the setting of the parameter ⁇ is obtained by making the orders of magnitude of the terms of the equation of step 5 consistent.
  • the implementation of this command on a clutch system gives the performance illustrated by way of example by the curves of Figure 3.
  • the position of the clutch position is dashed, and the position measured in solid line.
  • the case presented is a case of licking the clutch where it is necessary to regulate as finely as possible the position to ensure the most comfortable passage for the driver.
  • the U ref command applied for this type of displacement is represented on the second graph, for a case of available voltage of 10V. We see the fast transition to 10V to respond quickly to the set point. During the monitoring phase, very little voltage is used and very little current as can be seen in the last graph which avoids the heating of the motor and the power electronics during the licking phase. This can last for several seconds, the regulator obtained meets the objective of limiting the heating of the control device.
  • This calculation uses only one setting parameter. It offers the advantage of always having the right ratio between the evolution of the different terms of the equation.
  • the three control terms taking into account the position and speed errors are thus automatically made coherent, if it is desired to vary the movement dynamics of the actuator. This makes it possible to always ensure the separation of the calculations of the trajectory tracking and compensation terms of the resistive torque.
  • it is desired to increase the movement dynamics of the actuator it is possible for example to increase the value of the parameter A. This increases the dynamics of evolution of the error terms in position and in speed.
  • the dynamics of evolution of the integral term is also increased to the most just, to overcome the fact that, if the actuator moves faster, the resistant torque can also evolve faster.
  • the only criterion remaining to be optimized is the level of current and voltage used during the licking phase.
  • the objective is then to calibrate the term ⁇ as low as possible while checking the fact of always staying in a range of +/- 0.005mm around the setpoint.
  • the objective may be, for example, to never exceed 10A in the engine during licking phases, which can last up to several seconds.
  • An appropriate method is to start by setting the term ⁇ to a high value and then to decrease this value until it is possible to respect the constraint on the current used during the licking phase.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

Procédé de contrôle du déplacement d'un élément de commande d'embrayage (4) par un système d' actionnement irréversible composé d'un moteur électrique d' actionnement (1) relié par des moyens de transmission mécaniques (2, 3) à l'élément de commande d'embrayage, par envoi da moteur électrique d'une tension de référence (Uref), qui permet à chaque instant de déplacer l'élément de commande, d'une position initiale (x) à une position de référence (xref), caractérisé en ce que la tension de référence (Uref) est obtenue par intégration d'une valeur calculée de sa propre dérivée dans le temps.

Description

PROCEDE DE CONTROLE DE POSITION D ' UN ORGANE DE COMMANDE
D ' EMBRAYAGE
La présente invention se rapporte à la commande des boîtes de vitesses robotisées, équipées d'au moins un embrayage permettant d'interrompre la transmission du couple entre un moteur d'entraînement et le mécanisme de changement de vitesses de la boîte.
Plus précisément, elle a pour objet un procédé de contrôle du déplacement d'un élément de commande d'embrayage par un système d' actionnement irréversible composé d'un moteur électrique d' actionnement relié par des moyens de transmission mécaniques, à l'élément de commande d'embrayage.
Ce procédé repose sur l'envoi au moteur électrique, d'une tension de référence, qui permet à chaque instant de déplacer l'élément de commande, d'une position initiale à une position de référence .
Dans les boîtes de vitesses robotisées, la commande de l'embrayage peut être assurée par un système de pilotage électrique ou hydraulique, commandé par un calculateur. La figure 1 illustre de manière non limitative le système d' actionnement irréversible, composé d'un moteur électrique d' actionnement 1 et d'un système de transmission de mouvement composé d'un jeu de pignons (logés sous un carter 2), qui transmettent le mouvement du moteur électrique sur un système de vis-écrou 3 qui transforme le mouvement de rotation du moteur 1 en un mouvement de translation d'un câble de commande d'embrayage 4, qui « tire » sur un levier d'embrayage (non représenté) . Enfin, un ressort d'assistance 6 emmagasine l'énergie à la fermeture de l'embrayage, et la restitue en aidant à l'ouverture de l'embrayage.
Afin d'assurer une transmission maîtrisée du couple du moteur thermique à la boîte de vitesse, la position du câble doit être pilotée avec une précision de l'ordre de 0,1 mm. Or, la particularité d'un tel système d' actionnement est son irréversibilité, liée au niveau de frottement important entre la vis et l'écrou. Cette particularité permet de maintenir le système en position, en cas de coupure du pilotage du moteur électrique (chute de tension par exemple) . Mais elle pose un problème de pilotage, car sa commande n'est pas linéaire : tant que le moteur électrique ne fournit pas un niveau d'effort supérieur au frottement, le système reste immobile, mais une fois ce niveau d'effort dépassé, le système peut se mettre en mouvement très vite.
Le niveau de frottement peut atteindre 70 à 80% de l'effort maximal du moteur électrique, et peut varier en fonction de l'usure de l'embrayage, comme indiqué à titre d'exemple, sur les courbes de la figure 2. Cette figure permet de comparer les courbes d'effort (en Nm) sur la course de la butée d'embrayage (en millimètres), dans le sens de son ouverture (débrayage) et de sa fermeture (embraye) pour un embrayage à l'état neuf (courbes en traits interrompus) et pour embrayage usé (courbes en traits continus) . On constate que l'effort supplémentaire maximum à fournir avec un embrayage usé est plus importante dans le sens de la fermeture, car il faut compenser en plus l'usure du ressort de rappel, qui facilite la fermeture de l'embrayage à l'état neuf.
Lorsqu'on cherche à maîtriser la transmission du couple du moteur thermique à la boîte de vitesses, aucun dépassement de position du câble n'est admissible. Cette exigence rend l'utilisation de techniques de régulation classiques (type PID) , inadaptées pour piloter la position du câble. Un objectif de la présente invention est de déplacer le câble de l'embrayage d'une manière complètement transparente pour le conducteur lors des opérations d'embrayage et de débrayage. La précision recherchée est de 0, 005 mm. Elle doit être respectée, sans dépasser la position du câble, ni connaître l'effort que doit exercer le moteur électrique pour vaincre les frottements.
Outre ces contraintes mécaniques, la commande doit respecter des contraintes thermiques. Pour assurer la pérennité du système électrique, elle doit en particulier éviter des sollicitations trop désordonnées ou brutales du moteur 1, répondant à des sauts de tension répétés, ou au passage de courants trop importants .
Enfin, à la fin de la fermeture de l'embrayage, la phase de « léchage », où le couple du moteur thermique est transmis progressivement à la boite de vitesse, doit être la plus transparente possible, pour éviter les à-coups de couple. Le déplacement du câble de l'embrayage doit donc être piloté avec une précision de 0.005, principalement pendant dans la phase de léchage, et sans dépassement. La commande doit aussi être la plus continue possible, en évitant les forts appels de courant prolongés, dans le moteur.
L'entrée de commande est généralement une tension de référence du moteur d' actionnement . Les méthodes de calcul connues pour la tension de référence, visent à minimiser à chaque instant l'écart entre la position réelle de l'élément de commande de l'embrayage, et la position de référence qu'il doit rejoindre. Toutefois, elles génèrent le plus souvent une commande de tension discontinue, qui présente l'inconvénient de solliciter fortement l' actionneur, au risque d'entraîner des surchauffes du moteur électrique.
En résumé, les principales difficultés à surmonter pour contrôler le déplacement d'un élément de commande tel qu'un câble d'embrayage par un système d' actionnement irréversible composé d'un moteur électrique relié par des moyens de transmission mécanique à la commande d'embrayage, sont :
vaincre les frottements qui sont non linéaires, la précision statique recherchée, qui est de 0,005 mm, assurer des petits déplacements (de l'ordre de 0,1 mm) sans dépassements de position, pour éliminer les principales sources d' à-coups de couple en phase de léchage d'embrayage, et limiter les risques de surchauffe ou de casse du système électrique.
La présente invention vise à pallier ces difficultés, pour contrôler la position d'un embrayage de boîte robotisée. Dans ce but, elle propose que la tension de référence soit obtenue par intégration d'une valeur calculée de sa propre dérivée dans le temps .
De préférence, la dérivée de la tension de référence inclut un premier terme d'écart entre l'état et la consigne de position de l'élément de commande, un deuxième terme d'écart entre l'état et la consigne de sa vitesse, et un troisième terme d'écart entre l'état et la consigne de la dérivée de sa vitesse .
L'intégration du premier terme d'écart donne un terme de compensation représentant le couple résistant du système ; l'intégration du deuxième terme d'écart donne un terme proportionnel sur une erreur de position ; l'intégration du troisième terme donne un terme proportionnel sur une erreur de vitesse .
La présente invention sera mieux comprise à la lecture de la description suivante d'un mode de réalisation non limitatif de celle-ci, en se reportant aux dessins annexés, sur lesquels :
la figure 1 représente un système de pilotage électrique d'embrayage,
la figure 2 met en évidence les écarts d'efforts impliqués sur une course d' ouverture et de fermeture d' embrayage selon son état, et
la figure 3 montre des courbes de position, de tension de commande et de courant moteur lors de la fermeture d'un embrayage.
Un moteur électrique tel que celui qui est illustré par la figure 1 est représenté par les équations suivantes : équation électrique du moteur
Figure imgf000006_0001
équation mécanique de déplacement de
Figure imgf000006_0002
l'embrayage, avec
Figure imgf000006_0003
Td : Couple résistant du moteur électrique (entrée exogène inconnue, considérée comme une perturbation) ;
J : Inertie du moteur électrique;
/ : Courant de l'induit du moteur électrique ;
k : Coefficient de la tension induite par le moteur électrique ; R : Résistance de l'induit du moteur électrique ;
L : Inductance de l'induit du moteur électrique ;
Uref Tension de référence qu'on veut appliquer aux bornes du moteur électrique, elle est comprise entre Umin et Umax
(typiquement, Umaxsera la tension du réseau de bord) ;
Le couple résistant du moteur électrique Td=f(x) est une fonction de la position x du câble de l'embrayage. Il dépend de l'effort appliqué par le système vis-écrou, de l'effort du ressort de rappel, et de l'effort appliqué par le diaphragme de l'embrayage. Cet effort varie également en fonction du degré d'usure de l'embrayage. Différents capteurs mesurent la position du câble x, qui est comprise entre deux butés (position ouverte et fermée) , ainsi que la vitesse d'un point du cable de
Figure imgf000007_0001
l'embrayage. Un capteur de courant est également disponible pour fournir une mesure du courant d'induit, du moteur à courant continu .
La stratégie de commande proposée vise à déplacer le câble de l'embrayage d'une position initiale x à une position de référence xref , pour satisfaire les conditions d'un parfait changement de rapport dans la boîte de vitesses, tout en assurant la tenue du système électrique. L'entrée de commande de déplacement du câble est la tension de référence du moteur électrique Uref qui assure ce déplacement. A partir des deux équations ci-dessus, le système par rapport à la position à réguler peut s'écrire :
Figure imgf000008_0001
Dans les méthodes de synthèse de régulateur connues, on utilise par exemple un régulateur de type proportionnel (PID) . Dans le cas présent, un tel régulateur ne s'avère pas optimal par rapport aux ordres de grandeurs du système, car le couple résistant à compenser peut être très important et impose dans ces conditions des gains trop importants. Pour obtenir une commande plus continue, l'invention propose de prendre en considération une grandeur physique supplémentaire, telle que la dérivée de la commande Uref . Le système peut alors s'écrire de la manière suivante :
Figure imgf000008_0002
Avec un tel système étendu, la commande principale devient la dérivée de la tension à appliquer au moteur d' actionnement . Conformément à l'invention, la tension de référence Uref est alors obtenue par intégration d'une valeur calculée de sa propre dérivée dans le temps. On assure ainsi une plus grande continuité de la commande synthétisée par le régulateur. De plus, la perturbation à compenser n'est plus Uref , mais sa dérivée, qui présente l'avantage de tendre vers zéro lorsqu'on arrête de déplacer l'embrayage. On profite de la propriété de la fonction qui ne peut pas varier à x
Figure imgf000008_0003
constant . Pour utiliser ce système étendu, on choisit de préférence une méthode qui prend en compte les gains sur les écarts entre les états et les consignes sur la position du câble sa
Figure imgf000009_0004
vitesse v - vref. La dérivée de la tension de référence Uref inclut alors de préférence un premier terme d'écart entre l'état et la consigne de position de l'élément de commande un
Figure imgf000009_0003
deuxième terme d'écart entre l'état et la consigne de sa vitesse ( Vref - v) , et un troisième terme d'écart entre l'état et la consigne de la dérivé de sa vitesse L'intégration du
Figure imgf000009_0002
premier terme d'écart donne un terme de compensation représentant le couple résistant du système, l'intégration du deuxième terme d'écart donne un terme proportionnel sur une erreur de position. L'intégration du troisième terme donne un terme proportionnel sur une erreur de vitesse. La tension de référence Uref est alors égale à la somme des trois premiers termes proportionnels, et d'un quatrième terme additionnel proportionnel au courant I.
La théorie de Lyapunov permet par exemple de réaliser un régulateur qui réponde à ces critères, et qui présente en plus l'avantage d'avoir un unique paramètre de réglage, ce qui simplifie considérablement la phase de mise au point (MAP) du régulateur. Cette théorie est donc particulièrement appropriée. Toutefois, sans sortir du cadre de l'invention on peut utiliser d'autres méthodes de calcul performantes, pourvu que tous les termes d'écarts et les termes proportionnels ne dépendent que d'un seul paramètre de réglage.
En nommant λ le paramètre de réglage dans l'équation de Lyapunov, on obtient le régulateur suivant sur la dérivée de la tension de commande, dans lequel des gains sur l'écart de position, de vitesse et d'accélération dépendent du
Figure imgf000009_0001
seul paramètre λ :
Figure imgf000010_0001
Par intégration, on en déduit la commande de tension Uref à appliquer :
Figure imgf000010_0002
Dans cette commande, le premier terme est proportionnel à l'intégrale de l'écart de position. Il permet de compenser le couple résistant du système Td (que celui-ci soit dans l'état usé ou neuf) . Le deuxième terme est proportionnel à l'erreur de position. Le troisième terme est proportionnel à une erreur de vitesse. Le dernier terme, qualifié « feed-forward », sert à augmenter la dynamique de courant.
En résumé, la méthode permet contrôler le déplacement d'un élément de commande d'embrayage par un système d' actionnement irréversible composé d'un moteur électrique d' actionnement relié par des moyens de transmission mécaniques à l'élément de commande d'embrayage, en envoyant au moteur électrique une tension de référence Uref, qui permet à chaque instant de déplacer l'élément de commande, d'une position initiale x à une position de référence xref. Les différentes étapes de calcul de la commande à l'instant t sont par exemple les suivantes :
a) On reçoit l'ensemble des mesures et des consignes : I (t) , x(t), xref(t) et v(t),
b) On calcule la trajectoire de référence en vitesse en dérivant la position de référence, soit xref(t) = xref(t)— xref(t— 1) .
Ce choix de calcul de trajectoire de référence est simple, et présente différents avantages. Tout d'abord lorsque la consigne de position varie brusquement, on a une impulsion de
V]itesse xref(t), ce qui signifie qu'on vise instantanément une forte vitesse qui s'annule immédiatement après, si la consigne de position ne varie pas, en limitant ainsi le risque de dépassement. C'est le cas pendant la première phase de la fermeture de l'embrayage, entre t = 0,1 et t = 0,15 sur la première courbe de la figure 3. Le deuxième avantage apparaît lorsque xref(t) varie faiblement, par exemple dans la phase de léchage d'embrayage qui suit. Dans ce cas, on a une impulsion de vitesse xref(t) qui permet de suivre exactement la trajectoire correspondant à xref(t). Si xref(t) varie de façon linéaire, on a une vitesse cible constante, qui permet de suivre au mieux l'évolution de la consigne de position.
c) On incrémente le terme de commande intégrale :
Figure imgf000011_0001
Ce terme intégral sert à compenser l'évolution du couple résistant du moteur électrique. Il est indispensable de bien séparer la compensation de ce couple, avec le couple nécessaire au suivi de trajectoire. Le couple résistant étant une fonction de la position (et non de la vitesse), il convient d'intégrer l'erreur de position pour compenser au mieux ce terme. Le couple nécessaire au maintien de la vitesse du moteur peut être calculé par la boucle sur l'erreur de vitesse, de la façon suivante : d) On met à jour les erreurs en position et en vitesse
Figure imgf000011_0003
e) On calcule la nouvelle commande à appliquer :
Figure imgf000011_0002
Le réglage du paramètre λ est obtenu par une mise en cohérence des ordres de grandeurs des termes de l'équation de l'étape 5. En réglant à 50 le paramètre λ, 1 ' implémentation de cette commande sur un système d' embrayage donne les performances illustrées à titre d'exemple par les courbes de la figure 3. Sur le premier graphe, la consigne de position de l'embrayage est en trait interrompu, et la position mesurée en trait continu. Le cas présenté est un cas de léchage de l'embrayage où il faut pouvoir réguler le plus finement possible la position pour assurer un passage le plus confortable possible pour le conducteur. On peut voir la réaction rapide de l'actionneur, lorsque la consigne passe brutalement de 0 à 4.5mm pour entamer le léchage puis un suivi à moins de 0.1mm de la consigne, lorsque celle-ci varie autour du point de léchage.
La commande Uref appliquée pour ce type de déplacement est représentée sur le second graphique, pour un cas de tension disponible de 10V. On voit le passage rapide à 10V pour répondre rapidement à l'échelon de consigne. Pendant la phase de suivi, on utilise très peu de tension et très peu de courant comme on peut le voir dans le dernier graphe ce qui évite l' échauffement du moteur et de l'électronique de puissance pendant la phase de léchage. Celle-ci pouvant durer plusieurs secondes, le régulateur obtenu répond à l'objectif de limiter l' échauffement du dispositif de commande.
Ce calcul n'utilise qu'un seul paramètre de réglage. Il offre l'avantage d'avoir toujours le bon ratio entre l'évolution des différents termes de l'équation. Les trois termes de commande prenant en compte les erreurs de position et vitesse sont ainsi mis automatiquement en cohérence, si l'on souhaite faire varier la dynamique de déplacement de l'actionneur. Ceci permet d'assurer toujours la séparation des calculs des termes de suivi de trajectoire et de compensation du couple résistif. Si on souhaite augmenter la dynamique de déplacement de l'actionneur, on peut par exemple augmenter la valeur du paramètre A. On augmente ainsi la dynamique d'évolution des termes d'erreur en position et en vitesse. La dynamique d'évolution du terme intégral est également augmentée au plus juste, pour pallier le fait que, si l'actionneur se déplace plus vite, le couple résistant peut également évoluer plus vite.
En conservant une grande stabilité de régulation sur une large plage de valeur du paramètre λ, on parvient à s'affranchir des contraintes de stabilité pour la calibration du régulateur. Dans ces conditions, le seul critère restant à optimiser est le niveau de courant et de tension utilisé pendant la phase de léchage. L'objectif est alors donc de calibrer le terme λ le plus faible possible tout en vérifiant le fait de rester toujours dans une plage de +/-0.005mm autour de la consigne. L'objectif peut être par exemple de ne jamais dépasser 10A dans le moteur lors des phases de léchage, qui peuvent durer jusqu'à plusieurs secondes. Une méthode appropriée consiste à commencer par régler le terme λ à une valeur élevée, puis à diminuer cette valeur jusqu'à pouvoir respecter la contrainte sur le courant utilisé, pendant la phase de léchage.
En conclusion, la synthèse du régulateur selon la théorie de Lyapunov offre des avantages appréciables pour la mise au point. Toutefois, sans sortir du cadre de l'invention, d'autres théories peuvent être appliquées, dans la mesure où elles permettent de synthétiser un correcteur pour un système étendu à la dérivée de la tension de commande.

Claims

REVENDICATIONS
1. Procédé de contrôle du déplacement d'un élément de commande d'embrayage (4) par un système d' actionnement irréversible composé d'un moteur électrique d' actionnement (1) relié par des moyens de transmission mécaniques (2, 3) à l'élément de commande d'embrayage (4), par envoi au moteur électrique d'une tension de référence qui permet à chaque
Figure imgf000014_0002
instant de déplacer l'élément de commande (4), d'une position initiale (x) à une position de référence (xref) , caractérisé en ce que la tension de référence ( Uref) est obtenue par intégration d'une valeur calculée de sa propre dérivée dans le temps, incluant un premier terme d'écart entre l'état et la consigne de position de l'élément de commande (xref - x) , un deuxième terme d'écart entre l'état et la consigne de sa vitesse ( Vref - v) , et un troisième terme d'écart entre l'état et la consigne de la dérivé de sa vitesse
Figure imgf000014_0001
2. Procédé de contrôle selon la revendication 1, caractérisé en ce que l'intégration du premier terme d'écart donne un terme de compensation représentant le couple résistant du système, l'intégration du deuxième terme d'écart donne un terme proportionnel sur une erreur de position, et l'intégration du troisième terme donne un terme proportionnel sur une erreur de vitesse.
3. Procédé de contrôle selon la revendication 2, caractérisé en ce que la tension de référence (Uref) est égale à la somme des trois premiers termes proportionnels et d'un quatrième terme additionnel proportionnel au courant (J) .
4. Procédé de contrôle selon la revendication 1, 2 ou 3, caractérisé en ce que tous les termes d'écarts et les termes proportionnels ne dépendant que d'un seul paramètre de réglage (λ) .
5. Procédé de contrôle selon l'une des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes : on reçoit l'ensemble des mesures et des consignes de courant, de position de position de référence et de vitesse :
Figure imgf000015_0006
on calcule la trajectoire de référence en vitesse en dérivant la position de référence, soit
Figure imgf000015_0005
Figure imgf000015_0007
on incrémente le terme de commande intégrale :
et
Figure imgf000015_0004
Figure imgf000015_0002
on met à jour les erreurs en position et en vitesse
Figure imgf000015_0003
6. Procédé de contrôle selon la revendication 5, caractérisé en ce qu'il comprend l'étape suivante de calcul de la nouvelle tension de commande (t) à appliquer :
Figure imgf000015_0008
Figure imgf000015_0001
PCT/FR2016/050746 2015-05-05 2016-04-01 Procede de controle de position d'un organe de commande d'embrayage WO2016177945A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1554022 2015-05-05
FR1554022A FR3035936B1 (fr) 2015-05-05 2015-05-05 Procede de controle de position d'un organe de commande d'embrayage

Publications (1)

Publication Number Publication Date
WO2016177945A1 true WO2016177945A1 (fr) 2016-11-10

Family

ID=53674141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050746 WO2016177945A1 (fr) 2015-05-05 2016-04-01 Procede de controle de position d'un organe de commande d'embrayage

Country Status (2)

Country Link
FR (1) FR3035936B1 (fr)
WO (1) WO2016177945A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020182883A1 (fr) * 2019-03-11 2020-09-17 Gkn Automotive Ltd. Procédé de pilotage d'un embrayage à l'aide d'un actionneur
WO2021064449A1 (fr) * 2019-10-01 2021-04-08 Ka Group Ag Dispositif de commande d'embrayage
CN115163696A (zh) * 2022-06-28 2022-10-11 山推工程机械股份有限公司 一种液压离合器活塞运动的滑模控制方法、装置及其***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896354A1 (fr) * 2006-01-19 2007-07-20 Valeo Embrayages Dispositif de commande adaptative d'un actionneur, en particulier d'embrayage ou de boite de vitesses
EP1857704A2 (fr) * 2006-05-20 2007-11-21 LuK Lamellen und Kupplungsbau Beteiligungs KG Procédé et dispositif pour vérifier la fonction d'ouverture automatique d'un actionneur d'embrayage
DE102014203219A1 (de) * 2013-03-18 2014-09-18 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Bestimmung einer Vorsteuerspannung eines Elektromotors in einem hydrostatisch betätigten Kupplungssystem, vorzugsweise in einem automatisierten Schaltgetriebe eines Kraftfahrzeuges

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2896354A1 (fr) * 2006-01-19 2007-07-20 Valeo Embrayages Dispositif de commande adaptative d'un actionneur, en particulier d'embrayage ou de boite de vitesses
EP1857704A2 (fr) * 2006-05-20 2007-11-21 LuK Lamellen und Kupplungsbau Beteiligungs KG Procédé et dispositif pour vérifier la fonction d'ouverture automatique d'un actionneur d'embrayage
DE102014203219A1 (de) * 2013-03-18 2014-09-18 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Bestimmung einer Vorsteuerspannung eines Elektromotors in einem hydrostatisch betätigten Kupplungssystem, vorzugsweise in einem automatisierten Schaltgetriebe eines Kraftfahrzeuges

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020182883A1 (fr) * 2019-03-11 2020-09-17 Gkn Automotive Ltd. Procédé de pilotage d'un embrayage à l'aide d'un actionneur
US11421747B2 (en) 2019-03-11 2022-08-23 Gkn Automotive Ltd. Controlling a clutch by an actuator
WO2021064449A1 (fr) * 2019-10-01 2021-04-08 Ka Group Ag Dispositif de commande d'embrayage
CN115163696A (zh) * 2022-06-28 2022-10-11 山推工程机械股份有限公司 一种液压离合器活塞运动的滑模控制方法、装置及其***
CN115163696B (zh) * 2022-06-28 2024-03-08 山推工程机械股份有限公司 一种液压离合器活塞运动的滑模控制方法、装置及其***

Also Published As

Publication number Publication date
FR3035936B1 (fr) 2018-08-31
FR3035936A1 (fr) 2016-11-11

Similar Documents

Publication Publication Date Title
WO2016177945A1 (fr) Procede de controle de position d'un organe de commande d'embrayage
FR2882541A1 (fr) Procede d'asservissement dans un systeme de freinage de vehicule a freins electriques
FR3016488A1 (fr) Procede et dispositif de commande d'un levier de manœuvre d'un vehicule
FR2993858A1 (fr) Procede de regulation en couple d'un actionneur de gouverne commande en position angulaire d'un aeronef a commande de vol mecanique
FR2896354A1 (fr) Dispositif de commande adaptative d'un actionneur, en particulier d'embrayage ou de boite de vitesses
FR2949219A1 (fr) Dispositif de pilotage d'un vehicule et procede d'assistance motorisee et de controle d'un tel dispositif de pilotage
EP2630034A2 (fr) Système de déplacement motorisé d'un élément mobile, procédé de pilotage d'un tel système et procédé de test d'un tel système
CA2797287C (fr) Actionnement des pales d'une soufflante non carenee
EP1651880B1 (fr) Dispositif adaptatif pilote d' accouplement entre un moteur et une boite de vitesses dans un vehicule automobile
EP0996569A1 (fr) Procede et dispositif d'aide au pilotage des helicopteres par des limitations de puissance des turbomoteurs et/ou du regime rotor
EP2067681B1 (fr) Procédé et dispositif de commande d'un embrayage d'une transmission à boîte de vitesses mécanique pilotée permettant d'éviter les oscillations en phase de rampage
WO2015158973A1 (fr) Procede de controle du deplacement d'un element de commande d'embrayage
WO2010061100A2 (fr) Procede et dispositif de pilotage d'un actionneur mecanique avec mecanisme de progressivite
CA2616185C (fr) Procede et dispositif de pilotage d'un aeronef selon au moins un axe de pilotage
FR2947600A3 (fr) Procede de controle du couple transmis par un coupleur
EP3800367B1 (fr) Limiteur de couple d'actionneur d'aéronef, actionneur, aéronef et procédé associés
FR3142173A1 (fr) Système de commande de vol pour un compensateur de vol à friction, actif et hybride d’un aéronef
FR3142174A1 (fr) Compensateur de vol actif et hybride pour aéronef
EP1623131B2 (fr) Dispositif adaptatif pilote d'accouplement entre un moteur et une boite de vitesses dans un vehicule automobile
EP3227981B1 (fr) Procede de detection d'un blocage d'un rotor d'un moteur entrainant un organe d'actionnement
WO2024110723A1 (fr) Système de commande universel d'un compensateur de vol à voie principale active et voie de secours passive
FR2700808A1 (fr) Procédé et dispositif de commande d'un groupe d'entraînements d'un véhicule.
FR2887948A1 (fr) Actionneur electromecanique pour boite de vitesses robotisee et procede de commande d'un tel actionneur
FR3051865A1 (fr) Procede de calibrage d'un actionneur d'embrayage et actionneur ainsi obtenu
FR3130252A1 (fr) Compensateur de vol pour aéronef

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16729300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16729300

Country of ref document: EP

Kind code of ref document: A1