WO2016176882A1 - 彩色滤光片及其制作方法、液晶显示面板 - Google Patents

彩色滤光片及其制作方法、液晶显示面板 Download PDF

Info

Publication number
WO2016176882A1
WO2016176882A1 PCT/CN2015/079746 CN2015079746W WO2016176882A1 WO 2016176882 A1 WO2016176882 A1 WO 2016176882A1 CN 2015079746 W CN2015079746 W CN 2015079746W WO 2016176882 A1 WO2016176882 A1 WO 2016176882A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
black matrix
display panel
crystal display
color filter
Prior art date
Application number
PCT/CN2015/079746
Other languages
English (en)
French (fr)
Inventor
崔宏青
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US14/785,997 priority Critical patent/US10133115B2/en
Publication of WO2016176882A1 publication Critical patent/WO2016176882A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133516Methods for their manufacture, e.g. printing, electro-deposition or photolithography
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133519Overcoatings

Definitions

  • the present invention relates to the field of liquid crystal display technology, and in particular to a color filter, a method of fabricating the same, and a liquid crystal display panel.
  • Liquid crystal displays have the advantages of low radiation, small size, and low power consumption. They have gradually replaced traditional cathode ray tube displays and are widely used in flat panel TVs, personal computers, and mobile display panels.
  • the large-view character bias is often controlled by increasing the width of the black matrix. This reduces the aperture ratio of the display panel while also reducing the transmittance of the display panel.
  • an embodiment of the present invention first provides a color filter comprising: a color resist layer, a flat layer, and a first black matrix, wherein the flat layer is coated on On the color resist layer, the first black matrix is located in the flat layer.
  • the first black matrix is formed on the color resist layer by printing or photolithography.
  • the first black matrix is formed by carbonizing the flat layer corresponding to the data line.
  • the color filter further includes a second black matrix formed on the glass substrate, the color resist layer being coated on the second black matrix and the glass substrate on.
  • the color filter further includes a common electrode layer formed on the flat layer.
  • the present invention also provides a liquid crystal display panel comprising the color filter of any of the above.
  • the invention also provides a method for fabricating a color filter, the method comprising:
  • a first black matrix is formed on the color resist layer
  • a flat layer is formed on the first black matrix and the color resist layer.
  • the invention also provides a method for fabricating a color filter, the method comprising:
  • a position in the flat layer corresponding to the data line is carbonized to form a first black matrix in the flat layer.
  • the respective locations of the planar layers are carbonized by means of laser illumination.
  • a second black matrix is also formed on the glass substrate before the color resist layer is formed.
  • the color filter provided by the invention can effectively increase the critical angle at which the color shift occurs, thereby improving the problem of the large-view character bias of the liquid crystal display panel.
  • the color filter provided by the present invention does not need to change the thickness of each layer in the color filter and the width of the black matrix, so that other optical characteristics of the liquid crystal display panel do not change.
  • the width of the black matrix is not increased, the aperture ratio of the liquid crystal display panel is not reduced, and the transmittance of the liquid crystal display panel is not lowered.
  • FIG. 1 is a schematic view showing a critical angle at which a mixed incident light at a point X of a sub-pixel B in a conventional liquid crystal display panel is mixed;
  • FIG. 2 is a schematic view showing a critical angle of color mixing of oblique incident light at a boundary point of adjacent sub-pixels in a conventional liquid crystal display panel;
  • FIG. 3 is a schematic structural view of a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of color mixing of a liquid crystal display panel and light leakage of dark sub-pixels at different tilt angles according to an embodiment of the present invention
  • FIG. 5 is a schematic structural view of a conventional liquid crystal display panel
  • FIG. 6 is a schematic diagram of color mixing of a conventional liquid crystal display panel and light leakage diagram of dark sub-pixels at different tilt angles;
  • FIG. 11 and FIG. 12 respectively show trends of change of chromaticity coordinates Rx and Ry of color filters and existing color filters at different inclination angles according to an embodiment of the present invention
  • FIG. 13 is a schematic structural view of a color filter according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a liquid crystal display panel according to an embodiment of the present invention.
  • 15 is a schematic structural view of a conventional liquid crystal display panel
  • 16 and 17 respectively show trends of variation of chromaticity coordinates Rx and Ry of different color filters at different inclination angles.
  • Fig. 1 schematically shows the structure of two adjacent sub-pixels in a conventional liquid crystal display panel.
  • the liquid crystal display panel includes a liquid crystal cell 101, a flat layer 102, a color resist layer 103, a glass substrate 104, and is formed on the glass substrate 104.
  • Sub-pixel A and sub-pixel B are two adjacent sub-pixels.
  • the color of the color resist layer 103 covered in the sub-pixel A is red
  • the color of the color resist layer 103 covered in the sub-pixel B is green.
  • the glass substrate 104, the color resist layer 103, the black matrix 105, and the flat layer 102 collectively constitute a color filter in the liquid crystal display panel.
  • the active layer a-Si in the a-Si TFT device is a light sensitive material.
  • the channel is located at the top of the TFT device, so in the use of the TFT-LCD, external light is easily directly irradiated onto the a-Si material of the channel, thereby causing deterioration of the state characteristics of the TFT device, affecting the TFT.
  • the black matrix can block the above-mentioned channel, thereby avoiding the external light directly illuminating the a-Si material of the channel.
  • the gap between the two sub-pixels belongs to the area of the non-power-on control, and if the light is leaked, the contrast of the displayed image is seriously degraded.
  • the black matrix disposed between the two sub-pixels can improve the above light leakage phenomenon.
  • the critical angle ⁇ x of the light incident from the point just across the black matrix 105 and obliquely incident on the sub-pixel A can be calculated according to the following expression:
  • T PR represents the thickness of the color resist layer
  • T OC represents the thickness of the flat layer
  • d represents the thickness of the liquid crystal cell
  • T BM represents the thickness of the black matrix.
  • the critical angle ⁇ 0 at which color mixing occurs can be calculated according to the following expression:
  • L BM represents the width of the black matrix
  • the existing method is to increase the width of the black matrix. This method not only sacrifices the aperture ratio of the display panel, but also reduces the transmittance of the display panel.
  • the present invention provides a novel color filter and a liquid crystal display panel including the color filter.
  • the color filter provided by the present invention comprises a color resist layer, a flat layer and a first black matrix, wherein the flat layer is coated on the color resist layer, and the first black matrix is no longer formed like the existing color filter On the glass substrate, it is formed in a flat layer.
  • the effect of increasing the relative height of the black matrix under the condition that the thickness of the black matrix is constant can be achieved, thereby reducing the degree of light leakage of the oblique incident light, thereby improving the dominant role of the liquid crystal display panel.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • FIG. 3 is a schematic structural view of a liquid crystal display panel provided by the embodiment.
  • the liquid crystal display panel provided in this embodiment includes a first glass substrate 301 , a first black matrix 302 , a color resist layer 303 , a flat layer 304 , a liquid crystal cell 305 , and a second glass substrate 306 .
  • the first glass substrate 301, the first black matrix 302, the color resist layer 303, and the flat layer 304 collectively constitute a color filter.
  • a color resist layer 303 is first formed on the first glass substrate 301, then a first black matrix 302 is formed on the color resist layer 303, and finally in the color resist layer 303.
  • a flat layer 304 is formed on the first black matrix 302.
  • the first black matrix 302 is formed on the color resist layer 303 by printing. It should be noted that, in other embodiments of the present invention, the first black matrix 302 may also be formed on the color resist layer 303 by other reasonable means, such as photolithography, etc., and the invention is not limited thereto.
  • the first black matrix 302 does not affect the angle between the adjacent two sub-pixels, and the difference between the sub-pixels does not Increase. It can be seen that the formation of the first black matrix 302 on the color resist layer 303 does not affect the flat alignment of the liquid crystal molecules.
  • the thickness of the color resist layer 303 is 2 ⁇ m
  • the thickness of the first black matrix is 1.2 ⁇ m
  • the thickness of the flat layer ie, the OC layer
  • the thickness of the liquid crystal cell is 3.2 ⁇ m.
  • the width of the sub-pixel is 21 ⁇ m.
  • FIG. 5 is a schematic view showing the structure of a conventional liquid crystal display panel.
  • the first black matrix 302 is formed on the first glass substrate 301.
  • the existing liquid crystal display panel is formed on the first glass substrate 301 after the first black matrix 302 is formed, and then the color resist layer 303 is formed on the first glass substrate 301 and the first black matrix 302, and finally A flat layer 304 is formed on the color resist layer 303.
  • the thickness of each layer in the liquid crystal display panel shown in FIG. 5 is different from that in the liquid crystal display panel shown in FIG.
  • the corresponding layers have the same thickness.
  • the sub-pixel on the left side is the sub-pixel that is lit, and the sub-pixel on the right side is the dark-state sub-pixel.
  • FIG. 6 is a schematic view showing a color mixture obtained by using a conventional liquid crystal display panel and a light leakage diagram of a dark sub-pixel at different tilt angles.
  • dark state sub-pixels may leak light, and at 40 degree tilt angle, dark state sub-pixels may have the largest light leakage.
  • the dark state sub-pixels have different light leakage levels at different tilt angles.
  • the light leakage diagrams of the two color filters at various positions of the dark sub-pixels at the same tilt angle are taken as an example. Further explanation.
  • FIG. 7 to 10 respectively show the dark color sub-pixel of the conventional color filter and the color filter provided by the present embodiment at an inclination angle of 20 degrees, an inclination angle of 40 degrees, an inclination angle of 60 degrees, and an inclination angle of 80 degrees. Schematic diagram of light leakage at various locations. It can be clearly seen from FIG. 7 to FIG. 10 that the dark color sub-pixel light leakage degree of the color filter provided by the embodiment is different than that of the dark color sub-pixel in the existing color filter. The degree is low.
  • FIG. 11 and FIG. 12 respectively show the variation trends of the chromaticity coordinates Rx and Ry of the conventional color filter and the color filter provided by the present embodiment at different inclination angles.
  • the chromaticity coordinates Rx and Ry of the color filter provided by the present embodiment have a tendency to be significantly slower than that of the conventional color filter, which indicates that The color filter provided in this embodiment produces a smaller color shift.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • FIG. 13 is a schematic view showing the structure of a color filter provided in the embodiment.
  • the color filter provided in this embodiment includes a glass substrate 401 , a color resist layer 402 , a flat layer 403 , and a first black matrix 404 .
  • the color resist layer 402 is first formed on the glass substrate 401, then the flat layer 403 is formed on the color resist layer 402, and the first black matrix 404 is formed in the flat layer 403.
  • the first black matrix 404 is formed in the flat layer 403 by carbonizing a position corresponding to the data line in the flat layer 403.
  • the first black matrix 404 is formed by laser scanning the flat layer 403 corresponding to the data line. The laser can remove the H element and the O element in the irradiated flat layer 403 to leave only the C element, thereby converting the irradiation position into black to form the first black matrix 404.
  • the second black matrix 405 may be formed on the glass substrate 401 first, and then the glass substrate 401 and the second black matrix 405 may be formed like the conventional color filter.
  • a color resist layer 402 is formed thereon, and then a flat layer 403 is formed on the color resist layer 402 and a first black matrix 404 is formed in the flat layer 403, and the present invention is not limited thereto.
  • the present invention is not limited thereto. In this way, before the formation of the first black matrix 404, there is no difference between the process of the color filter and the process of the existing color filter, thereby reducing the manufacturing cost caused by the process change. Increase.
  • This embodiment also provides a new liquid crystal display panel, which is shown in FIG. 14 .
  • the liquid crystal display panel includes the color filter and the liquid crystal cell 406 provided in the embodiment.
  • FIG. 15 is a schematic view showing the structure of a conventional liquid crystal display panel.
  • FIG. 16 and FIG. 17 respectively show the chromaticity coordinates Rx and Ry of the conventional color filter, the color filter provided in the first embodiment, and the color filter provided in the embodiment at different inclination angles.
  • Trend As can be seen from FIG. 16 and FIG. 17, the chromaticity coordinates Rx and Ry of the color filter provided by the present embodiment are compared with the conventional color filter and the color filter provided in the first embodiment. There is a tendency to be significantly slower, which means that the color filter provided by the embodiment has a smaller color shift, which further improves the large-view phenomenon of the liquid crystal display panel.
  • the color filter and the liquid crystal display panel are mainly IPS type liquid crystal display panels, and the liquid crystal layer (ie, in the color filter) does not include a corresponding ITO layer (for example, a common electrode layer).
  • the technical solution provided by the present invention is applicable to the IPS liquid crystal display panel.
  • the technical solution provided by the present invention can also be applied to other types of display panels according to actual needs, and the present invention is not limited thereto.
  • the liquid crystal display panel may further be a TN type panel, and the color filter in the panel further includes a common electrode layer, wherein the common electrode layer is formed on the flat surface.
  • the color filter provided by the present invention does not need to change the thickness of each layer in the color filter and the width of the black matrix while effectively increasing the critical angle at which the color shift is generated. Therefore, the other optical characteristics of the liquid crystal display panel do not change. Since the width of the black matrix is not increased, the aperture ratio of the liquid crystal display panel is not reduced, and the transmittance of the liquid crystal display panel is not lowered.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Filters (AREA)

Abstract

彩色滤光片及其制作方法、液晶显示面板,其中,彩色滤光片包括:色阻层(303、402)、平坦层(304、403)和第一黑矩阵(302、404),其中,平坦层(304、403)涂覆在色阻层(303、402)上,第一黑矩阵(302、404)位于平坦层(304、403)中。所述彩色滤光片能够有效增大产生色偏的临界角,从而使得液晶显示面板的大视角色偏现象得以改善。

Description

彩色滤光片及其制作方法、液晶显示面板
相关技术的交叉引用
本申请要求享有2015年05月06日提交的名称为:“彩色滤光片及其制作方法、液晶显示面板”的中国专利申请CN201510227740.3的优先权,其全部内容通过引用并入本文中。
技术领域
本发明涉及液晶显示技术领域,具体地说,涉及彩色滤光片及其制作方法、液晶显示面板。
背景技术
液晶显示器具有低辐射、体积小以及低能耗等优点,其已经逐渐取代传统的阴极射线管显示器而被广泛应用在平板电视、个人电脑以及移动显示面板等产品上。
随着液晶显示器分辨率的提高,单颗亚像素的尺寸也变得越来越小。如图1所示,当由背光源发出的光线以一个较大的倾斜角度入射到亚像素B时,光线会先经过显示区域中的亚像素B,同时会有一部分光线经过液晶分子层后错误地进入到与亚像素B相邻的亚像素A的色阻层。而这也就导致了液晶显示器所显示的颜色发生了混色,从而使得液晶显示器在以大视角观看时所呈现的颜色存在较大偏差,即液晶显示器存在大视角色偏的问题。
现有的液晶显示器中在降低大视角色偏时,为了保持显示面板的其他光学特性不发生变化,往往会通过增大黑矩阵宽幅的方式来控制大视角色偏。而这样则减小了显示面板的开口率,同时还降低了显示面板的穿透率。
发明内容
本发明所要解决的技术问题是为了改善现有的液晶显示面板所存在的大视角色偏现象。为解决上述问题,本发明的一个实施例首先提供了一种彩色滤光片,所述彩色滤光片包括:色阻层、平坦层和第一黑矩阵,其中,所述平坦层涂覆在所述色阻层上,所述第一黑矩阵位于所述平坦层中。
根据本发明的一个实施例,所述第一黑矩阵是通过印刷或光刻的方式形成在所述色阻层上的。
根据本发明的一个实施例,所述第一黑矩阵是通过将数据线所对应的所述平坦层碳化形成的。
根据本发明的一个实施例,所述彩色滤光片还包括第二黑矩阵,所述第二黑矩阵形成在玻璃基板上,所述色阻层涂覆在所述第二黑矩阵和玻璃基板上。
根据本发明的一个实施例,所述彩色滤光片还包括公共电极层,所述公共电极层形成在所述平坦层上。
本发明还提供额一种液晶显示面板,所述液晶显示面板包括如上任一项所述的彩色滤光片。
本发明还提供了一种彩色滤光片的制作方法,所述方法包括:
形成色阻层后,在所述色阻层上形成第一黑矩阵;
在所述第一黑矩阵以及色阻层上形成平坦层。
本发明还提供了一种彩色滤光片的制作方法,所述方法包括:
形成色阻层后,在所述色阻层上形成平坦层;
对所述平坦层中与数据线相对应的位置进行碳化,从而在所述平坦层中形成第一黑矩阵。
根据本发明的一个实施例,利用激光照射的方式对所述平坦层的相应位置进行碳化。
根据本发明的一个实施例,在形成所述色阻层之前,还在玻璃基板上形成第二黑矩阵。
本发明所提供的彩色滤光片能够有效增大产生色偏的临界角,从而使得液晶显示面板的大视角色偏问题得到改善。同时,本发明所提供的彩色滤光片不需要改变彩色滤光片中各层的厚度以及黑矩阵的宽幅,因此液晶显示面板的其他光学特征并不会产生变化。此外,由于黑矩阵宽幅没有增大,因此液晶显示面板的开口率也就不会减小,同时液晶显示面板的穿透率也不会降低。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要的附图做简单的介绍:
图1是现有的液晶显示面板中亚像素B中X点处倾斜入射光线发生混色的临界角的示意图;
图2是现有的液晶显示面板中相邻亚像素交界点处倾斜入射光线发生混色的临界角的示意图;
图3是根据本发明一个实施例的液晶显示面板的结构示意图;
图4是根据本发明一个实施例的液晶显示面板的混色示意图以及在不同倾角下暗态亚像素的漏光示意图;
图5是现有的液晶显示面板的结构示意图;
图6是现有的液晶显示面板的混色示意图以及在不同倾角下暗态亚像素的漏光示意图;
图7~图10分别示出了在20度倾角、40度倾角、60度倾角和80度倾角下,现有的彩色滤光片以及本发明一个实施例所提供的彩色滤光片中暗态亚像素的各个位置处的漏光示意图;
图11和图12分别示出了根据本发明一个实施例的彩色滤光片以及现有的彩色滤光片的色品坐标Rx和Ry在不同倾角下的变化趋势图;
图13是根据本发明一个实施例的彩色滤光片的结构示意图;
图14是根据本发明一个实施例的液晶显示面板的结构示意图;
图15是现有的液晶显示面板的结构示意图;
图16和图17分别示出了不同彩色滤光片的色品坐标Rx和Ry在不同倾角下的变化趋势图。
具体实施方式
以下将结合附图及实施例来详细说明本发明的实施方式,借此对本发明如何应用技术手段来解决技术问题,并达成技术效果的实现过程能充分理解并据以实施。需要说明的是,只要不构成冲突,本发明中的各个实施例以及各实施例中的各个特征可以相互结合,所形成的技术方案均在本发明的保护范围之内。
同时,在以下说明中,出于解释的目的而阐述了许多具体细节,以提供对本发明实施例的彻底理解。然而,对本领域的技术人员来说显而易见的是,本发明可以不用这里的具体细节或者所描述的特定方式来实施。
图1示意性地示出了现有的液晶显示面板中两个相邻的亚像素的结构。该液晶显示面板包括液晶盒101、平坦层102、色阻层103、玻璃基板104以及形成在玻璃基板104上 的黑矩阵105。亚像素A和亚像素B是相邻的两个亚像素。其中,亚像素A中所覆盖的色阻层103的颜色为红色,而亚像素B中所覆盖的色阻层103的颜色为绿色。玻璃基板104、色阻层103、黑矩阵105以及平坦层102共同构成了液晶显示面板中的彩色滤光片。
在TFT-LCD中,a-Si TFT器件中有源层a-Si是一种光敏感材料。在底栅结构器件中沟道位于TFT器件的顶部,因此在TFT-LCD的使用过程中,外界光线容易直接照射到沟道的a-Si材料上,从而引起TFT器件状态特性的恶化,影响TFT的保持特性。而黑矩阵则能够将上述沟道遮挡起来,从而避免了外界光线直接照射到沟道的a-Si材料上。
此外,两个亚像素之间的间隙属于非加电控制的区域,如果漏光的话就会使得所显示的图像的对比度严重下降。而设置在两个亚像素之间的黑矩阵则能够改善上述漏光现象。
对于亚像素B上的某一点X,由该点射入的光线恰好越过黑矩阵105而倾斜射入到亚像素A上的临界角θx可以根据如下表达式计算得到:
Figure PCTCN2015079746-appb-000001
其中,px表示X点距离亚像素A的边界的距离,TPR表示色阻层的厚度,TOC表示平坦层的厚度,d表示液晶盒的厚度,TBM表示黑矩阵的厚度。
而为了避免发生混色现象,就需要使得临界角θx越大越好,因此对于彩色滤光片中隔层的膜厚控制非常重要。一般地,为了达到较大的临界角θx,需要使得黑矩阵的厚度TBM越大越好,同时还需要使得色阻层、平坦层以及液晶盒的厚度尽可能地小。然而改变彩色滤光片各层的厚度将会使得显示面板的光学特性发生改变。
如图2所示,在两个亚像素的交界处,发生混色的临界角θ0可以根据如下表达式计算得到:
Figure PCTCN2015079746-appb-000002
其中,LBM表示黑矩阵的宽幅。
为了降低大视角色偏,并同时保持液晶显示面板的其他光学特征不发生变化,现有的方法是增大黑矩阵的宽幅。而这种方式不仅会牺牲显示面板的开口率,还会降低显示面板的穿透率。
针对现有彩色滤光片的上述缺陷,本发明提供了一种新的彩色滤光片以及包含该彩色滤光片的液晶显示面板。本发明提供的彩色滤光片包括色阻层、平坦层和第一黑矩阵,其中,平坦层涂覆在色阻层上,第一黑矩阵不再像现有的彩色滤光片那样形成在玻璃基板上,而是形成在平坦层中。这样也就可以达到在黑矩阵厚度不变的情况下提高黑矩阵的相对高度的效果,从而减小倾斜入射光线的漏光程度,进而改善液晶显示面板的大视角色偏。
以下通过不同实施例来进一步阐述本发明所提供的彩色滤光片的原理、结构以及优 点。
实施例一:
图3示出了本实施例所提供的液晶显示面板的结构示意图。
如图3所示,本实施例所提供的液晶显示面板包括第一玻璃基板301、第一黑矩阵302、色阻层303、平坦层304、液晶盒305以及第二玻璃基板306。其中,第一玻璃基板301、第一黑矩阵302、色阻层303和平坦层304共同构成了彩色滤光片。
在制作该彩色滤光片的过程中,本实施例中,首先在第一玻璃基板301上形成色阻层303,随后在色阻层303上形成第一黑矩阵302,最后在色阻层303和第一黑矩阵302上形成平坦层304。本实施例中,第一黑矩阵302是通过印刷的方式形成在色阻层303上的。需要说明的是,在本发明的其他实施例中,第一黑矩阵302还可以通过其他合理方式形成在色阻层303上,例如光刻等,本发明不限于此。
由于平坦层304是在第一黑矩阵302形成后涂覆的,因此第一黑矩阵302并不会影响相邻的两个亚像素间的带角,亚像素间的差断也不会因此而增大。由此可知,第一黑矩阵302形成在色阻层303上并不会影响液晶分子的平坦排列。
本实施例所提供的液晶显示面板中,色阻层303的厚度为2μm,第一黑矩阵的厚度为1.2μm,平坦层(即OC层)的厚度为2μm,液晶盒的厚度为3.2μm,亚像素的宽度为21μm。通过模拟,可以得到如图4所示的混色示意图以及在不同倾角下暗态亚像素的漏光示意图。
图5示出了现有的液晶显示面板的结构示意图。对比图3和图5可以看出,现有的显示面板中,第一黑矩阵302是形成在第一玻璃基板301上的。在制造的过程中,现有的液晶显示面板是在第一玻璃基板301上形成第一黑矩阵302后,再在第一玻璃基板301和第一黑矩阵302上形成色阻层303,最后在色阻层303上形成平坦层304。
本实施例中,为了更加清楚地体现本实施例所提供的彩色滤光片以及液晶显示面板的优点,图5所示的液晶显示面板中各层的厚度与图3所示的液晶显示面板中的对应层的厚度相同。在分析的过程中,图3和图5所示的结构所包含的两个亚像素中,左侧的亚像素为被点亮的亚像素,而右侧的亚像素则为暗态亚像素。
图6示出了利用现有的液晶显示面板而得到的混色示意图以及在不同倾角下暗态亚像素的漏光示意图。结合图4和图6可知,本实施例中,在横坐标[24μm,30μm]的位置处,暗态亚像素会出现漏光,而在40度倾角时暗态亚像素的漏光最大。但是,相较于现有的液晶显示面板,本实施例所提供的液晶显示面板中,不同倾角下暗态亚像素的漏光程度均更小。
为了更加清楚地说明本实施例所提供的彩色滤光片以及液晶显示面板的优点,以下分别以上述两种彩色滤光片在相同倾角下暗态亚像素各个位置处的漏光示意图为例来进行进一步说明。
图7~图10分别示出了在20度倾角、40度倾角、60度倾角和80度倾角下,现有的彩色滤光片以及本实施例所提供的彩色滤光片的暗态亚像素的各个位置处的漏光示意图。从图7~图10中可以明显看出,本实施例所提供的彩色滤光片在不同倾角下的暗态亚像素漏光程度都要比现有的彩色滤光片中暗态亚像素的漏光程度低。
图11和图12分别示出了现有的彩色滤光片以及本实施例所提供的彩色滤光片的色品坐标Rx和Ry在不同倾角下的变化趋势。从图11和图12中可以看出,相较于现有的彩色滤光片,本实施例所提供的彩色滤光片的色品坐标Rx和Ry具有明显变缓的趋势,这也就表明本实施例所提供的彩色滤光片所产生的色偏更小。
实施例二:
图13示出了本实施例所提供的彩色滤光片的结构示意图。
如图13所示,本实施例所提供的彩色滤光片包括:玻璃基板401、色阻层402、平坦层403和第一黑矩阵404。其中,在制备该彩色滤光片的过程中,先在玻璃基板401上形成色阻层402,随后在色阻层402上形成平坦层403,再在平坦层403中形成第一黑矩阵404。
本实施例中,通过对平坦层403中与数据线相对应的位置进行碳化,来在平坦层403中形成第一黑矩阵404。具体地,本实施例中,采用激光扫描照射数据线所对应的平坦层403的方式来形成第一黑矩阵404。激光能够将照射到的平坦层403中的H元素和O元素去除从而只留下C元素,从而将照射位置变换为黑色而形成第一黑矩阵404。
需要说明的是,在本发明的其他实施例中,还可以像现有的彩色滤光片那样,先在玻璃基板401上形成第二黑矩阵405,再在玻璃基板401和第二黑矩阵405上形成色阻层402,随后再在色阻层402上形成平坦层403以及在平坦层403中形成第一黑矩阵404,本发明不限于此。这样,在形成第一黑矩阵404前,彩色滤光片的所有工艺制程与现有的彩色滤光片的工艺制程并不会存在差异,因此也就减小了因制程改变而引发的制造成本的增加。
本实施例还提供了一种新的液晶显示面板,其结构示意图如图14所示,该液晶显示面板包含包本实施例所提供的彩色滤光片以及液晶盒406。而图15则示出了现有的液晶显示面板的结构示意图。
结合图14和图15可以看出,当液晶显示面板中各层的厚度相同时,对于经过左侧的 亚像素中某一点Y的光线恰好越过黑矩阵倾斜入射到右侧的亚像素上的临界角来说,相较于现有的液晶显示面板,本实施例所提供的液晶显示面板中该临界角更大。类似地,对于两个相邻的亚像素交界点出发生混色的临界角,相较于现有的液晶显示面板,本实施例所提供的液晶显示面板中该临界角也同样更大。这样,本实施例所提供的彩色滤光片以及液晶显示显示面板中大视角色偏问题也就得以改善。
图16和图17分别示出了现有的彩色滤光片、实施例一所提供的彩色滤光片以及本实施例所提供的彩色滤光片的色品坐标Rx和Ry在不同倾角下的变化趋势。从图16和图17中可以看出,相较于现有的彩色滤光片和实施例一所提供的彩色滤光片,本实施例所提供的彩色滤光片的色品坐标Rx和Ry具有明显变缓的趋势,这也就表明本实施例所提供的彩色滤光片所产生的色偏更小,这也就使得液晶显示面板的大视角色偏现象得以改善。
需要指出的是,上述描述中彩色滤光片以及液晶显示面板主要是IPS型液晶显示面板,其液晶层上方(即彩色滤光片中)并没有包含相应的ITO层(例如公共电极层)。然而,这并不是说本发明所提供的技术方案仅适用于IPS液晶显示面板,根据实际需要,本发明所提供的技术方案还可以应用于其他类型的显示面板中,本发明不限于此。例如,在本发明的一个实施例中,液晶显示面板还可以为TN型面板,该面板中的彩色滤光片还包括公共电极层,其中,公共电极层形成在平坦上。
从上述描述中可以看出,本发明所提供的彩色滤光片在有效增大产生色偏的临界角的前提下同时,并不需要改变彩色滤光片中各层的厚度以及黑矩阵的宽幅,因此液晶显示面板的其他光学特征并不会产生变化。由于黑矩阵宽幅没有增大,因此液晶显示面板的开口率也就不会减小,同时液晶显示面板的穿透率也不会降低。
应该理解的是,本发明所公开的实施例不限于这里所公开的特定结构、处理步骤或材料,而应当延伸到相关领域的普通技术人员所理解的这些特征的等同替代。还应当理解的是,在此使用的术语仅用于描述特定实施例的目的,而并不意味着限制。
说明书中提到的“一个实施例”或“实施例”意指结合实施例描述的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,说明书通篇各个地方出现的短语“一个实施例”或“实施例”并不一定均指同一个实施例。
为了方便,在此使用的多个项目、结构单元和/或组成单元可出现在共同列表中。然而,这些列表应解释为该列表中的每个元素分别识别为单独唯一的成员。因此,在没有反面说明的情况下,该列表中没有一个成员可仅基于它们出现在共同列表中便被解释为相同列表的任何其它成员的实际等同物。另外,在此还可以连同针对各元件的替代一起来参照 本发明的各种实施例和示例。应当理解的是,这些实施例、示例和替代并不解释为彼此的等同物,而被认为是本发明的单独自主的代表。
此外,所描述的特征、结构或特性可以任何其他合适的方式结合到一个或多个实施例中。在上面的描述中,提供一些具体的细节,例如宽度、厚度等,以提供对本发明的实施例的全面理解。然而,相关领域的技术人员将明白,本发明无需上述一个或多个具体的细节便可实现,或者也可采用其它方法、组件、材料等实现。在其它示例中,周知的结构、材料或操作并未详细示出或描述以免模糊本发明的各个方面。
虽然上述示例用于说明本发明在一个或多个应用中的原理,但对于本领域的技术人员来说,在不背离本发明的原理和思想的情况下,明显可以在形式上、用法及实施的细节上作各种修改而不用付出创造性劳动。因此,本发明由所附的权利要求书来限定。

Claims (14)

  1. 一种彩色滤光片,其中,所述彩色滤光片包括:色阻层、平坦层和第一黑矩阵,其中,所述平坦层涂覆在所述色阻层上,所述第一黑矩阵位于所述平坦层中。
  2. 如权利要求1所述的彩色滤光片,其中,所述第一黑矩阵是通过印刷或光刻的方式形成在所述色阻层上的。
  3. 如权利要求1所述的彩色滤光片,其中,所述第一黑矩阵是通过将数据线所对应的所述平坦层碳化形成的。
  4. 如权利要求1所述的彩色滤光片,其中,所述彩色滤光片还包括第二黑矩阵,所述第二黑矩阵形成在玻璃基板上,所述色阻层涂覆在所述第二黑矩阵和玻璃基板上。
  5. 如权利要求1所述的彩色滤光片,其中,所述彩色滤光片还包括公共电极层,所述公共电极层形成在所述平坦层上。
  6. 一种液晶显示面板,其中,所述液晶显示面板包括彩色滤光片,所述彩色滤光片包括:色阻层、平坦层和第一黑矩阵,其中,所述平坦层涂覆在所述色阻层上,所述第一黑矩阵位于所述平坦层中。
  7. 如权利要求6所述的液晶显示面板,其中,所述第一黑矩阵是通过印刷或光刻的方式形成在所述色阻层上的。
  8. 如权利要求6所述的液晶显示面板,其中,所述第一黑矩阵是通过将数据线所对应的所述平坦层碳化形成的。
  9. 如权利要求6所述的液晶显示面板,其中,所述彩色滤光片还包括第二黑矩阵,所述第二黑矩阵形成在玻璃基板上,所述色阻层涂覆在所述第二黑矩阵和玻璃基板上。
  10. 如权利要求6所述的液晶显示面板,其中,所述彩色滤光片还包括公共电极层,所述公共电极层形成在所述平坦层上。
  11. 一种彩色滤光片的制作方法,其中,所述方法包括:
    形成色阻层后,在所述色阻层上形成平坦层;
    对平坦层中与数据线相对应的位置进行碳化,从而在所述平坦层中形成第一黑矩阵。
  12. 如权利要求11所述的方法,其中,利用激光照射的方式对所述平坦层的相应位置进行碳化。
  13. 如权利要求11所述的方法,其中,在形成所述色阻层之前,还在玻璃基板上形成第二黑矩阵。
  14. 如权利要求12所述的方法,其中,在形成所述色阻层之前,还在玻璃基板上形成第二黑矩阵。
PCT/CN2015/079746 2015-05-06 2015-05-25 彩色滤光片及其制作方法、液晶显示面板 WO2016176882A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/785,997 US10133115B2 (en) 2015-05-06 2015-05-25 Color filter and manufacturing method thereof, liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510227740.3 2015-05-06
CN201510227740.3A CN104880848A (zh) 2015-05-06 2015-05-06 彩色滤光片及其制作方法、液晶显示面板

Publications (1)

Publication Number Publication Date
WO2016176882A1 true WO2016176882A1 (zh) 2016-11-10

Family

ID=53948403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079746 WO2016176882A1 (zh) 2015-05-06 2015-05-25 彩色滤光片及其制作方法、液晶显示面板

Country Status (3)

Country Link
US (1) US10133115B2 (zh)
CN (1) CN104880848A (zh)
WO (1) WO2016176882A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093760A (zh) * 2015-09-18 2015-11-25 京东方科技集团股份有限公司 Coa基板及其制备方法、显示装置
CN105467663A (zh) * 2016-01-13 2016-04-06 昆山龙腾光电有限公司 彩色滤光基板和制作方法以及液晶显示面板
CN105867008B (zh) * 2016-06-02 2019-07-09 京东方科技集团股份有限公司 彩膜基板及彩膜基板的制备方法、显示面板
CN106646990A (zh) * 2016-10-21 2017-05-10 京东方科技集团股份有限公司 显示基板、其制备方法及显示装置
CN107221553A (zh) * 2017-06-01 2017-09-29 深圳市华星光电技术有限公司 改善大视角色偏的方法及显示面板
CN109873024A (zh) 2019-04-09 2019-06-11 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN112213880B (zh) * 2019-07-11 2021-11-02 成都辰显光电有限公司 色彩转换组件、显示面板及色彩转换组件的制造方法
CN112289276B (zh) * 2020-11-04 2022-02-22 武汉华星光电技术有限公司 液晶显示面板的穿透率优化方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201750A (ja) * 2000-01-14 2001-07-27 Fujitsu Ltd 液晶表示装置及びその製造方法
US20090161047A1 (en) * 2007-12-20 2009-06-25 Samsung Electronics Co., Ltd. Color filter substrate for liquid crystal display and method for manufacturing the same
CN101825802A (zh) * 2009-03-06 2010-09-08 北京京东方光电科技有限公司 彩膜基板及其制造方法
CN202189163U (zh) * 2011-08-08 2012-04-11 京东方科技集团股份有限公司 彩色滤光片及液晶显示面板
CN102707357A (zh) * 2012-02-29 2012-10-03 京东方科技集团股份有限公司 彩色滤光片及其制造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1005800B (zh) * 1985-08-08 1989-11-15 株式会社日立制作所 生产彩色显像管荧光屏的方法
JP4289924B2 (ja) * 2003-04-07 2009-07-01 大日本印刷株式会社 パターン形成体
KR101384625B1 (ko) * 2006-10-02 2014-04-11 엘지디스플레이 주식회사 액정표시장치용 기판 및 그 제조 방법
CN101581852B (zh) * 2009-06-24 2012-02-08 昆山龙腾光电有限公司 彩色滤光片基板及制作方法和液晶显示面板
CN103941462A (zh) * 2013-12-31 2014-07-23 厦门天马微电子有限公司 一种彩膜基板及其制造方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201750A (ja) * 2000-01-14 2001-07-27 Fujitsu Ltd 液晶表示装置及びその製造方法
US20090161047A1 (en) * 2007-12-20 2009-06-25 Samsung Electronics Co., Ltd. Color filter substrate for liquid crystal display and method for manufacturing the same
CN101825802A (zh) * 2009-03-06 2010-09-08 北京京东方光电科技有限公司 彩膜基板及其制造方法
CN202189163U (zh) * 2011-08-08 2012-04-11 京东方科技集团股份有限公司 彩色滤光片及液晶显示面板
CN102707357A (zh) * 2012-02-29 2012-10-03 京东方科技集团股份有限公司 彩色滤光片及其制造方法

Also Published As

Publication number Publication date
US10133115B2 (en) 2018-11-20
CN104880848A (zh) 2015-09-02
US20170146854A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
US11906857B2 (en) Liquid crystal display device
WO2016176882A1 (zh) 彩色滤光片及其制作方法、液晶显示面板
WO2017008369A1 (zh) Coa型液晶显示面板及其制作方法
US20180321549A1 (en) Color filter substrate and liquid crystal display device
US10295713B2 (en) Color filter substrate, preparing method thereof, and display device
EP2261702A1 (en) Color filter substrate and liquid crystal display device
WO2017035911A1 (zh) Boa型液晶面板
US11036075B2 (en) Color filter substrate and liquid crystal display panel
US20140168585A1 (en) Color filter substrate, manfacturing method for the same, and display device
US20180275466A1 (en) Display panel and lcd panel and lcd apparatus using the same
US20220107528A1 (en) Liquid crystal display panel and manufacturing method thereof
CN106526988B (zh) 显示器阵列基板画素结构及其应用的显示设备
WO2018120022A1 (zh) 彩色滤光片、显示装置及制备彩色滤光片的方法
US20160282680A1 (en) Liquid crystal panels
WO2018157423A1 (zh) Coa阵列基板以及液晶显示面板
WO2020107537A1 (zh) 显示面板及其制造方法和显示装置
KR101222956B1 (ko) 반투과형 액정표시소자
TWI745980B (zh) 畫素結構
WO2017075867A1 (zh) 阵列基板及其制造方法、液晶显示面板
CN102385197B (zh) 液晶显示元件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14785997

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891134

Country of ref document: EP

Kind code of ref document: A1