WO2016171490A1 - 용액혼합법으로 제조된 그래핀 옥사이드를 이용한 가스차단막 및 이의 제조방법 - Google Patents

용액혼합법으로 제조된 그래핀 옥사이드를 이용한 가스차단막 및 이의 제조방법 Download PDF

Info

Publication number
WO2016171490A1
WO2016171490A1 PCT/KR2016/004159 KR2016004159W WO2016171490A1 WO 2016171490 A1 WO2016171490 A1 WO 2016171490A1 KR 2016004159 W KR2016004159 W KR 2016004159W WO 2016171490 A1 WO2016171490 A1 WO 2016171490A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
graphene oxide
solution
barrier membrane
present
Prior art date
Application number
PCT/KR2016/004159
Other languages
English (en)
French (fr)
Inventor
이중희
김남훈
라마 칸타 라익
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2016171490A1 publication Critical patent/WO2016171490A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a gas barrier membrane prepared by a solution mixing method and a method of manufacturing the same, and more particularly, a gas barrier membrane having improved gas barrier properties by including graphene oxide having an interlocking laminated structure manufactured by a solution mixing method and its It relates to a manufacturing method.
  • graphene oxide Graphene oxide
  • reduced graphene oxide rGO, reduced graphene oxide
  • the reduced graphene oxide sheet has a property of forming agglomerates in a liquid phase and most organic solvents, it is difficult to form a reduced graphene oxide based coating.
  • the inventors of the present invention found that the formation of graphene oxide having a laminated structure interlocked with each other improves the gas barrier property, thereby completing the gas barrier layer according to the present invention.
  • the present invention has been devised to solve the above problems, and an object of the present invention is to provide a gas barrier film having improved gas barrier properties and a method of manufacturing the same by including graphene oxide having a laminated structure engaged with each other.
  • the present invention provides a gas barrier membrane comprising a graphene oxide and a polyvinyl alcohol binder resin in a weight ratio of 50 to 99: 1 to 50.
  • hydrogen gas permeability when the thickness of the gas barrier membrane is 0.5 ⁇ m ⁇ 500 ⁇ m, hydrogen gas permeability may be 0.01 ⁇ 100 cc / m 2 atm day.
  • Another aspect of the present invention is a step of preparing a graphene oxide solution by dissolving the graphene oxide in water; Step 2 to increase the concentration by vacuum filtration of the graphene oxide solution; Preparing a mixed solution by mixing the polyvinyl alcohol solution with the graphene oxide having increased concentration; And applying a mixed solution prepared in step 3 to produce a gas barrier membrane. 4.
  • the concentration of the graphene oxide solution of the first step is 0.1 to 5 mg / ml, the concentration can be increased 1.5 to 20 times by vacuum filtration of graphene oxide in the second step. .
  • the graphene oxide and the polyvinyl alcohol solution in the third step may be mixed in a weight ratio of 50 ⁇ 99: 1 ⁇ 50.
  • the mixed solution in the step 4 may be applied using one method selected from the group consisting of spin coating method, spray coating method and dip coating method.
  • the gas barrier membrane according to the present invention can improve gas barrier properties by reducing gas permeability and transmission coefficient by up to 95 times or more.
  • FIG. 1 is a schematic view showing a method of manufacturing a gas barrier film according to an embodiment of the present invention.
  • Example 2 is a spectrum showing the FTIR results of Example 1 and Comparative Examples 2 to 3 of the present invention.
  • Example 3 is a graph showing the WAXS pattern of Example 1 and Comparative Examples 1 and 2 according to the present invention.
  • Figure 4 (a) and (b) is a field scanning electron microscope image of the cross-sectional view of Example 1 and Example 2 according to the present invention, (c) and (d) is Example 1 and according to the present invention Field emission scanning electron microscope image of the surface of Example 2.
  • FIG. 5 is a field emission scanning electron microscope image of a cross section of Comparative Example 2.
  • FIG. 6 is a field emission scanning electron microscope image of a cross section of Comparative Example 3.
  • Example 7 is a graph showing the coating film thickness of Example 1 and Comparative Examples 2 to 3.
  • Graphene oxide (GO, Graphene oxide) and reduced graphene oxide (rGO, reduced graphene oxide) (rGO) can be prepared in large quantities for the production of nanocomposites with improved gas barrier properties, the reduced graphene oxide sheet is a liquid and Since there is a property of forming agglomerates in most organic solvents, there is a problem that it is difficult to form a reduced graphene oxide based coating.
  • graphene oxide has a problem of less gas barrier properties than reduced graphene oxide because of many defects, but is easy to coat on a polymer substrate.
  • the present invention provides a gas barrier membrane comprising a graphene oxide and a polyvinyl alcohol binder resin in a weight ratio of 50 to 99: 1 to 50.
  • the gas barrier membrane may block hydrogen gas and oxygen gas, and the gas barrier membrane may be improved as the thickness of the gas barrier membrane increases, and thus the gas barrier membrane may be applied to a substrate, a hydrogen storage tank, and used for various purposes and uses.
  • the present invention will be described in more detail by component.
  • the gas barrier membrane according to the present invention includes graphene oxide and polyvinyl alcohol binder resin in a weight ratio of 50 to 99: 1 to 50.
  • the graphene oxide may be formed in a layered structure interlocked with each other to improve gas barrier properties, and polyvinyl alcohol is added to serve as a binder resin.
  • the graphene oxide and the polyvinyl alcohol solution may be mixed in a weight ratio of 50 to 99: 1 to 50, and more preferably in a weight ratio of 80 to 99: 1 to 20.
  • the graphene oxide and the polyvinyl alcohol solution are mixed at a weight ratio of less than 50:50, gas barrier properties are difficult to be sufficiently improved, and when mixed at a weight ratio of 99: 1, it is difficult to form a coating layer. have.
  • hydrogen gas permeability when the thickness of the gas barrier membrane according to the present invention is 0.5 ⁇ m ⁇ 500 ⁇ m, hydrogen gas permeability may be 0.01 ⁇ 100 cc / m 2 atm day.
  • the hydrogen gas permeability when the thickness of the coating film is 0.5 ⁇ m to 3 ⁇ m, the hydrogen gas permeability may be 1 to 25 cc / m 2 atm day, and when the thickness of the gas barrier film is 0.5 ⁇ m to 2 ⁇ m, the hydrogen gas permeability is 1 to It may be 15 cc / m 2 atm day, more preferably, when the thickness of the coating film is 0.5 ⁇ m ⁇ 1 ⁇ m, hydrogen gas permeability may be 1 ⁇ 10 cc / m 2 atm day.
  • the transmission coefficient of hydrogen gas may be 0.1 ⁇ 2.5 cc mm / m 2 atm day.
  • the transmission coefficient may be 0.1 ⁇ 2 cc mm / m 2 atm day, more preferably, when the thickness of the gas barrier membrane is 0.5 ⁇ m ⁇ 1 ⁇ m,
  • the modulus may be between 0.1 and 1 cc mm / m 2 atm day.
  • the gas barrier membrane according to the present invention has an oxygen gas permeability of 0.1 to 1 cc / m 2 atm day and a transmission coefficient when the thickness of the substrate is 100 ⁇ m to 120 ⁇ m, and the thickness of the gas barrier membrane is 0.5 ⁇ m to 1 ⁇ m. May be 0.01 to 0.1 cc mm / m 2 atm day.
  • Gas barrier membrane according to the invention can be prepared by the following manufacturing method.
  • the present invention is a step of preparing a graphene oxide solution by dissolving the graphene oxide in water; Step 2 to increase the concentration by vacuum filtration of the graphene oxide solution; Preparing a mixed solution by mixing the polyvinyl alcohol solution with the graphene oxide having increased concentration; And forming a gas barrier layer by coating the mixed solution prepared in step 3 on the substrate to form a gas barrier layer, thereby forming graphene oxide having a laminated structure interlocked with each other. It provides a gas barrier membrane and a method for manufacturing the same improved gas barrier properties.
  • the present invention will be described in more detail step by step.
  • the first step is to prepare a graphene oxide solution by dissolving the graphene oxide in water, wherein the graphene oxide solution is at this time, the graphene oxide solution of The concentration may be 0.1-5 mg / ml.
  • the graphene oxide may be prepared using a Hummer's method or a modified Hummer's method as a known method, but is not particularly limited thereto.
  • a Hummer's method or a modified Hummer's method as a known method, but is not particularly limited thereto.
  • the second step is to increase the concentration by vacuum filtration of the graphene oxide solution.
  • Graphene oxide has fewer gas barrier properties than reduced graphene oxide because of many defects, but has an advantage of easy coating on a polymer substrate. Therefore, the graphene oxide with the increased concentration as described above is formed in a layered structure interlocked with each other in the solution to improve the gas barrier properties can be produced a gas barrier film excellent in gas barrier properties.
  • the concentration of 1.5 to 20 times by vacuum filtration of graphene oxide in the second step preferably 5 to 10 times, and more preferably 8 to 10 times.
  • concentration is increased to less than 1.5 times, there is a problem that it is difficult to form a layered structure, when the concentration is increased by more than 20 times, graphene oxide may aggregate to form agglomeration, and become a gel state rather than a solution. There is this.
  • the third step is to prepare a mixed solution by mixing the polyvinyl alcohol solution to the graphene oxide having increased concentration, the polyvinyl alcohol solution is a graphene oxide It can serve as a binder for fixing.
  • the graphene oxide and the polyvinyl alcohol solution in the third step may be mixed in a weight ratio of 50 to 99: 1 to 50, more preferably 80 to 99: 1 to 20 by weight ratio.
  • the graphene oxide and the polyvinyl alcohol solution are mixed at a weight ratio of less than 50:50, gas barrier properties are difficult to be sufficiently improved, and when mixed at a weight ratio of 99: 1, it is difficult to form a coating layer. have.
  • the fourth step is to prepare a gas barrier membrane by applying the mixed solution prepared in step 3, wherein the mixed solution prepared in step 3 is a substrate or a tank for storing hydrogen It is possible to improve the gas barrier properties by applying to the surface, such as to form a coating film.
  • the substrate may be any commercially available polymer substrate, and is not particularly limited.
  • the substrate is a polyethylene substrate, polypropylene, polyethylene terephthalate, polyethylene terephthalate glycol, polycarbonate, polystyrene, polyamide, poly It may include at least one substrate selected from the group consisting of butylene terephthalate, polymethyl pentene, polyvinyl chloride, nylon and copolymers thereof, more preferably polyethylene substrate, polypropylene, polyethylene terephthalate, nylon And one or more substrates selected from the group consisting of copolymers thereof.
  • the coating film may control the thickness of the coating film by adjusting the volume of the mixed solution to be applied, it is preferable to apply 0.5 ⁇ 3 ml per unit area (cm 2 ), more preferably per unit area (cm 2 ) It is recommended to apply 1.5 to 3 ml.
  • a coating film of 0.5 ⁇ m ⁇ 3 ⁇ m thick When applied as described above may be prepared a coating film of 0.5 ⁇ m ⁇ 3 ⁇ m thick.
  • the mixed solution in the step 4 may be used any method as long as it is a commercial method for applying to the substrate, preferably one method selected from the group consisting of spin coating method, spray coating method and dip coating method It can apply
  • Graphene oxide was prepared using a modified human method. 100 mL of graphene oxide at a concentration of 1 mg / mL was concentrated to 8 mg / ml using a vacuum filter. A polyvinyl alcohol (PVA, sigma aldrich) solution was mixed with the concentrated graphene oxide solution at a weight ratio of 8: 2 to prepare a GO / PVA mixed solution.
  • PVA polyvinyl alcohol
  • a gas barrier film was prepared in the same manner as in Example 1, except that 6 ml of the GO / PVA mixed solution was coated on a substrate to form a coating film having a thickness of 1.56 ⁇ m.
  • a gas barrier film was prepared in the same manner as in Example 1 except that 9 ml of the GO / PVA mixed solution was coated on a substrate to form a coating film having a thickness of 2.56 ⁇ m.
  • PET polyethylene terephthalate
  • the gas barrier membrane was manufactured by the method.
  • a gas barrier film was prepared in the same manner as in Example 1 except that the PVA was applied by a spin coating method.
  • Example 1 and Comparative Examples 2 to 3 prepared according to the present invention was measured by Fourier transform infrared spectroscopy (FTIR) to measure the interaction between the graphene side and polyvinyl alcohol, the results are shown in FIG.
  • FTIR Fourier transform infrared spectroscopy
  • the PVA has a broad peak at 3445 cm ⁇ 1 , which is manifested by the intermolecular interaction of the —OH group bound to the H-group, while the peak at 3410 cm ⁇ 1 for graphene oxide for the same bond Appears.
  • the GO / PVA nanocomposite has a peak at 3432 cm ⁇ 1 , unlike the peaks of GO and PVA, respectively, and the width of the peak is also relatively narrow.
  • PVA has a peak for unhydrated ester groups at 1730 cm -1
  • GO has a peak at 1718 cm -1 for COOH groups.
  • GO / PVA nanocomposites can be seen that has a peak at 1724 cm -1 .
  • the intermolecular H-bonds between the GO sheet or PVA chain disappears and new bonds are formed in the GO and PVA molecules.
  • GO had a peak at 1622 cm ⁇ 1 for unoxidized graphite or inserted water molecules, which shifted to 1634 cm ⁇ 1 in the GO / PVA complex.
  • GO sheets are known to exhibit a highly ordered structure with a space between two layers that are highly adjacent.
  • the GO / PVA composite can be seen that the diffraction peak shifts to a lower angle than when measured by the GO sheet alone, and it can be inferred that the space between the GO sheets is expanded by introducing PVA into the space between the GO sheets. have.
  • Comparative Examples 2 to 3 it was confirmed that the coating film is formed in a thin thickness compared to Example 1. This is because the density of the PVA is smaller than the GO, so that the PVA penetrates into the GO, and therefore, in Comparative Example 3 in which only the PVA is coated, the coating film is formed in a relatively thin thickness compared to Comparative Example 2 in which only the GO is coated.
  • Example 1 0.82 110.82 21 2.32
  • Example 2 1.56 111.56 14 1.56
  • Example 3 2.56 112.56 5 0.56 Comparative Example 1 - 110 122 13.42 Comparative Example 2 0.52 110.52 69 7.62 Comparative Example 3 0.280 110.28 110 12.40
  • Example 1 0.82 110.82 0.78 0.086 Comparative Example 1 - 110 21.2 2.23
  • the gas barrier film is 0.5 ⁇ m to 3 ⁇ m
  • the hydrogen gas permeability is 1 to 25 cc / m 2 atm day
  • the transmission coefficient is It can be seen that 0.1 ⁇ 2.5 cc mm / m 2 atm day.
  • the thickness of the gas barrier membrane may be 0.5 to 3 ⁇ m, preferably 1 to 3 ⁇ m, more preferably 2 to 3 ⁇ m. It can be seen that the hydrogen permeability and the coefficient of permeability decrease according to the thickness of the coating film. When the thickness of the coating film is 2.56 ⁇ m, it was confirmed that the hydrogen transmittance is reduced by 96% compared to Comparative Example 1 without the coating film, it was confirmed that the transmission coefficient is also reduced to 95%.
  • the thickness of the substrate is 100 ⁇ m ⁇ 120 ⁇ m
  • the thickness of the coating film is 0.5 ⁇ m ⁇ 1 ⁇ m
  • the oxygen gas permeability is 0.1 ⁇ 1 cc / m 2 atm day
  • the transmission coefficient is 0.01 ⁇ 0.1 cc mm / m 2 atm day
  • the gas barrier membrane according to the present invention was confirmed that the hydrogen gas and oxygen gas blocking ability is remarkably excellent.

Abstract

본 발명은 용액혼합법으로 제조된 가스차단막 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 용액혼합법으로 제조되고 서로 맞물린 적층 구조를 갖는 그래핀 옥사이드를 포함함으로써 기체차단 특성이 향상된 가스차단막 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 그래핀 옥사이드를 용액공정으로 제조하는 1단계; 상기 용액공정으로 제조된 그래핀 옥사이드를 진공여과하여 농도를 증가시키는 2단계; 상기 농도가 증가된 그래핀 옥사이드에 폴리비닐알코올 용액을 혼합하여 혼합용액을 제조하는 3단계; 및 상기 3단계에서 제조된 혼합용액을 기판 상에 도포하여 가스차단막을 제조하는 4단계;를 포함하는 것을 특징으로 하는 가스차단막의 제조방법을 제공한다.

Description

용액혼합법으로 제조된 그래핀 옥사이드를 이용한 가스차단막 및 이의 제조방법
본 발명은 용액혼합법으로 제조된 가스차단막 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 용액혼합법으로 제조되는 서로 맞물린 적층 구조를 갖는 그래핀 옥사이드를 포함함으로써 기체차단 특성이 향상된 가스차단막 및 이의 제조방법에 관한 것이다.
현시대의 주요한 난제 중 하나는 종래의 천연에너지원을 대체할 수 있는 수소와 같은 대체 에너지원을 발명하는 것이다. 수소 에너지를 유용하기 위하여, 수소의 고가열성 특성 및 중량 대비 부피비가 높은 점 등으로 인하여 수소 가스의 안전한 저장을 위한 연구가 주요 이슈로 부각되고 있다.
현재까지는, 고압의 중금속 탱크가 수소의 저장 및 운송을 위하여 이용되고 있다. 그러나 이로 인해 더 많은 에너지가 이용되고 있고, 비용 또한 증가하는 문제점이 있다. 따라서 상기와 같은 문제점을 해결하기 위하여 수소를 저장하기 위한 경량의 탱크를 제조하는 것에 대한 필요성이 대두되고 있다.
이러한 문제들은 고분자를 통해 해결될 수 있는데, 수소 가스를 저장하기 위한 탱크는 고분자성 물질이 수소 가스의 높은 차단특성을 나타내어야 한다. 그러나 상용의 고분자가 가지는 수소 차단 특성은 수소 가스의 투과를 충분히 방지할 정도로 우수하지 않은 문제점이 있다. 그러므로, 단일 고분자 차단막의 수소 차단 특성을 향상시키기 위한 노력이 요구되고 있다. 이러한 목적은 불투과성 필러를 이용하여 고분자 나노복합체를 제조함으로써 해결될 수 있고, 산업적 공학적 용도를 위한이에 대한 다양한 연구가 진행되고 있다.
최근, 그래핀의 가스 차단 특성을 높이기 위하여 그래핀을 고분자매트릭스와 결합하는 방식이나 그래핀을 고분자 기판 상에 표면 코팅하는 방식으로 그래핀 및 고분자 나노복합체에 대한 연구가 활발히 진행되고 있다. 그래핀은 이차원 탄소나노물질로서, 높은 종횡비(aspect ratio)를 가지고, 우수한 기계적 강도 및 전기전도도를 가지는 특성이 있다. 분자단위의 실험 및 연구에 따르면, 그래핀은 모든 가스 분자를 차단할 수 있다. 그러나 불투과성 그래핀은 결함이 없다. 화학적 기상 증착법(CVD, chemical vapor deposition) 및 물리적으로 박리되어 제조된 그래핀은 결함은 적으나 복합체를 제조하기 위해서는 현저히 많은 양이 필요하고, 종래의 방법으로는 이에 필요한 정도의 양을 제조하기는 어려운 문제점이 있다.
한편, 그래핀 옥사이드(GO, Graphene oxide) 및 환원된 그래핀 옥사이드(rGO, reduced graphene oxide)은 나노복합체를 제조하기 위해 대량으로 제조될 수 있다. 환원된 그래핀 옥사이드 시트는 액상 및 대부분의 유기 용매에서 덩어리를 형성하는 특성이 있으므로, 환원된 그래핀 옥사이드 기반의 코팅을 형성시키기 어려운 문제점이 있다.
이에, 본 발명의 발명자들은 서로 맞물린 적층 구조를 갖는 그래핀 옥사이드를 형성하면 기체 차단 특성이 향상되는 것을 알게되어 본 발명에 따른 가스차단막을 완성하였다.
본 발명은 상기와 같은 문제점을 안출하기 위하여 고안된 것으로서, 본 발명의 목적은 서로 맞물린 적층 구조를 갖는 그래핀 옥사이드를 포함함으로써 기체차단 특성이 향상된 가스차단막 및 이의 제조방법을 제공하는 데 있다.
이에, 본 발명은 그래핀 옥사이드 및 폴리비닐알코올 바인더 수지를 50 ~ 99: 1 ~ 50의 중량비로 포함하는 가스차단막을 제공한다.
본 발명의 바람직한 일실시예에 있어서, 상기 가스차단막의 두께가 0.5 ㎛ ~ 500 ㎛일 때, 수소가스 투과도가 0.01 ~ 100 cc/m2 atm day일 수 있다.
본 발명의 다른 태양은 그래핀 옥사이드를 물에 녹여 그래핀옥사이드 용액을 제조하는 1단계; 상기 그래핀 옥사이드 용액을 진공여과하여 농도를 증가시키는 2단계; 상기 농도가 증가된 그래핀 옥사이드에 폴리비닐알코올 용액을 혼합하여 혼합용액을 제조하는 3단계; 및 상기 3단계에서 제조된 혼합용액을 도포하여 가스차단막을 제조하는 4단계;를 포함하는 것을 특징으로 하는 가스차단막의 제조방법을 제공한다.
본 발명의 바람직한 일실시예에 있어서, 상기 1단계의 그래핀 옥사이드 용액의 농도는 0.1 ~ 5 mg/ml이고, 상기 2단계에서 그래핀 옥사이드를 진공여과하여 농도를 1.5 ~ 20배 증가시킬 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 3단계에서 그래핀 옥사이드와 폴리비닐알코올 용액은 50 ~ 99:1 ~ 50의 중량비로 혼합될 수 있다.
본 발명의 바람직한 일실시예에 있어서, 상기 4단계에서 혼합용액을 스핀 코팅법, 스프레이 코팅법 및 딥 코팅법으로 이루어진 군으로부터 선택되는 1종의 방법을 이용하여 도포할 수 있다.
본 발명에 따르면, 그래핀 옥사이드를 폴리비닐알콜 고분자 바인더 내에 서로 맞물린 적층 구조를 가지도록 형성하여 기판상에 코팅함으로써 가스차단막을 제조하면 기체 차단 특성을 향상시킬 수 있고, 보다 상세하게는 코팅되지 않은 기판에 비해 본 발명에 따른 가스차단막은 가스투과도 및 투과계수가 최대 95배 이상 감소하여 기체차단 특성을 향상시킬 수 있다.
도 1은 본 발명의 바람직한 일실시예에 따른 가스차단막의 제조방법을 나타낸 개략도이다.
도 2는 본 발명의 실시예 1 및 비교예 2 ~ 3의 FTIR 결과를 나타낸 스펙트럼이다.
도 3은 본 발명에 따른 실시예 1 및 비교예1 ~ 2의 WAXS 패턴을 나타낸 그래프이다.
도 4(a) 및 (b)는 본 발명에 따른 실시예 1 및 실시예 2의 단면을 관찰한 전계방사주사전자현미경 이미지이고, (c) 및 (d)는 본 발명에 따른 실시예 1 및 실시예 2의 표면을 관찰한 전계방사주사전자현미경 이미지이다.
도 5는 비교예 2의 단면을 관찰한 전계방사주사전자현미경 이미지이다.
도 6은 비교예 3의 단면을 관찰한 전계방사주사전자현미경 이미지이다.
도 7은 실시예 1 및 비교예 2 ~ 3의 코팅막 두께를 나타낸 그래프이다.
도 8은 코팅용액의 양에 따른 코팅막의 질량을 나타낸 그래프이다.
도 9는 본 발명에 따른 실시예 1 ~ 3 및 비교예 1의 수소가스투과도 및 투과계수를 나타낸 그래프이다.
그래핀 옥사이드(GO, Graphene oxide) 및 환원된 그래핀 옥사이드(rGO, reduced graphene oxide)는 가스차단특성이 향상된 나노복합체를 제조하기 위한 대량으로 제조될 수 있으나, 환원된 그래핀 옥사이드 시트는 액상 및 대부분의 유기 용매에서 덩어리를 형성하는 특성이 있으므로, 환원된 그래핀 옥사이드 기반의 코팅을 형성시키기 어려운 문제점이 있다. 그러나, 그래핀 옥사이드는 결함이 많기 때문에 환원된 그래핀 옥사이드에 비하여 기체 차단 특성이 적은 문제점이 있으나, 고분자 기판상에 코팅하기에 용이하다.
이에, 본 발명은 그래핀 옥사이드 및 폴리비닐알코올 바인더 수지를 50 ~ 99: 1 ~ 50의 중량비로 포함하는 가스차단막을 제공한다. 상기 가스차단막은 수소 가스 및 산소가스 등을 차단할 수 있고, 상기 가스차단막의 두께가 증가함에 따라 가스차단능이 향상될 수 있어, 기판, 수소저장탱크 등에 적용되어 다양한 목적 및 용도로 사용될 수 있다. 이하, 본 발명을 구성요소별로 보다 상세하게 설명한다.
본 발명에 따른 가스차단막은 그래핀 옥사이드 및 폴리비닐알코올 바인더 수지를 50 ~ 99: 1 ~ 50의 중량비로 포함한다. 상기 그래핀 옥사이드는 서로 맞물린 층상구조로 형성됨으로써 기체 차단 특성이 향상될 수 있고, 폴리비닐알코올은 바인더 수지 역할을 하기 위하여 첨가된다.
이때, 그래핀 옥사이드와 폴리비닐알코올 용액은 50 ~ 99: 1 ~ 50의 중량비로 혼합될 수 있고, 보다 바람직하게는 80 ~ 99: 1 ~ 20의 중량비로 혼합되는 것이 좋다. 상기 그래핀 옥사이드와 폴리비닐알코올 용액이 50:50의 중량비 미만으로 혼합되는 경우 가스차단 특성이 충분히 향상되기 어려운 문제점이 있고, 99:1의 중량비를 초과하여 혼합되는 경우 코팅층을 형성하기 어려운 문제점이 있다.
이때, 본 발명에 따른 가스차단막의 두께가 0.5 ㎛ ~ 500 ㎛일 때, 수소 가스 투과도가 0.01 ~ 100 cc/m2 atm day일 수 있다. 바람직하게는 코팅막의 두께가 0.5 ㎛ ~ 3 ㎛일 때 수소가스 투과도가 1 ~ 25 cc/m2 atm day일 수 있고, 가스차단막의 두께가 0.5 ㎛ ~ 2 ㎛일 때, 수소 가스투과도가 1 ~ 15 cc/m2 atm day일 수 있으며, 더욱 바람직하게는 코팅막의 두께가 0.5 ㎛ ~ 1 ㎛일 때, 수소 가스 투과도가 1 ~ 10 cc/m2 atm day일 수 있다.
또한, 본 발명에 따른 가스차단막의 두께가 0.5 ㎛ ~ 3 ㎛ 일 때, 수소가스의 투과계수가 0.1 ~ 2.5 cc mm/m2 atm day일 수 있다. 바람직하게는 코팅막의 두께가 0.5 ㎛ ~ 2 ㎛ 일 때, 투과계수가 0.1 ~ 2 cc mm/m2 atm day일 수 있고, 더욱 바람직하게는 가스차단막의 두께가 0.5 ㎛ ~ 1 ㎛ 일 때, 투과계수가 0.1 ~ 1 cc mm/m2 atm day일 수 있다.
나아가, 본 발명에 따른 가스차단막은 기판의 두께가 100 ㎛ ~ 120 ㎛이고, 가스차단막의 두께가 0.5 ㎛ ~ 1 ㎛일 때, 산소가스 투과도가 0.1 ~ 1 cc/m2 atm day 이고, 투과계수가 0.01 ~ 0.1 cc mm/m2 atm day 일 수 있다.
본 발명에 따른 가스차단막은 하기의 제조방법으로 제조될 수 있다. 본 발명은 그래핀 옥사이드를 물에 녹여 그래핀옥사이드 용액을 제조하는 1단계; 상기 그래핀 옥사이드 용액을 진공여과하여 농도를 증가시키는 2단계; 상기 농도가 증가된 그래핀 옥사이드에 폴리비닐알코올 용액을 혼합하여 혼합용액을 제조하는 3단계; 및 상기 3단계에서 제조된 혼합용액을 기판 상에 도포하여 가스차단막을 제조하는 4단계;를 포함하는 것을 특징으로 하는 가스차단막의 제조방법을 제공함으로써, 서로 맞물린 적층 구조를 갖는 그래핀 옥사이드를 형성하면 기체 차단 특성이 향상된 가스차단막 및 이의 제조방법을 제공한다. 이하, 본 발명을 단계별로 보다 상세하게 설명한다.
본 발명에 따른 가스차단막의 제조방법에 있어서, 상기 1단계는 그래핀 옥사이드를 물에 녹여 그래핀옥사이드 용액을 제조하는 단계로서, 상기 그래핀 옥사이드 용액은 이때, 상기 1단계의 그래핀 옥사이드 용액의 농도는 0.1 ~ 5 mg/ml일 수 있다.
또한, 상기 그래핀 옥사이드는 공지된 방법으로서 휴머스 방법(Hummer's method) 또는 수정된 휴머스 방법(modified Hummer's method)을 이용하여 제조할 수 있으나, 이에 특별히 한정되는 것은 아니다. 상기와 같은 방법을 통해 그래핀 옥사이드를 제조하는 경우 산화-환원을 통해 적은 비용으로 대량의 그래핀을 얻을 수 있다.
본 발명에 따른 가스차단막의 제조방법에 있어서, 상기 2단계는 상기 그래핀 옥사이드 용액을 진공여과하여 농도를 증가시키는 단계이다. 그래핀 옥사이드는 결함이 많기 때문에 환원된 그래핀 옥사이드에 비하여 기체 차단 특성이 적으나, 고분자 기판상에 코팅하기에 용이한 장점이 있다. 따라서, 상기와 같이 농도가 증가된 그래핀 옥사이드는 용액 내에서 서로 맞물린 층상구조로 형성됨으로써 기체 차단 특성이 향상되어 기체 차단 특성이 우수한 가스차단막을 제조할 수 있다.
이때, 상기 2단계에서 그래핀 옥사이드를 진공여과하여 농도를 1.5 ~ 20 배 증가시키는 것이 좋고, 바람직하게는 5 ~ 10배 증가시키는 것이 좋고, 더욱 바람직하게는 8 ~ 10배 증가시키는 것이 좋다. 농도가 1.5배 미만으로 증가되는 경우, 층상구조를 형성하기 어려운 문제점이 있고, 농도가 20배를 초과하여 증가되는 경우 그래핀 옥사이드가 뭉쳐서 덩어리를 형성할 수 있고, 용액이 아닌 겔 상태가 되는 문제점이 있다.
본 발명에 따른 가스차단막의 제조방법에 있어서, 상기 3단계는 상기 농도가 증가된 그래핀 옥사이드에 폴리비닐알코올 용액을 혼합하여 혼합용액을 제조하는 단계로서, 상기 폴리비닐알코올 용액은 그래핀 옥사이드를 고정하기 위한 바인더의 역할을 할 수 있다.
이때, 상기 3단계에서 그래핀 옥사이드와 폴리비닐알코올 용액은 50 ~ 99 : 1 ~ 50의 중량비로 혼합될 수 있고, 보다 바람직하게는 80 ~ 99 : 1 ~ 20의 중량비로 혼합되는 것이 좋다. 상기 그래핀 옥사이드와 폴리비닐알코올 용액이 50:50의 중량비 미만으로 혼합되는 경우 가스차단 특성이 충분히 향상되기 어려운 문제점이 있고, 99:1의 중량비를 초과하여 혼합되는 경우 코팅층을 형성하기 어려운 문제점이 있다.
본 발명에 따른 가스차단막의 제조방법에 있어서, 상기 4단계는 상기 3단계에서 제조된 혼합용액을 도포하여 가스차단막을 제조하는 단계로서, 상기 3단계에서 제조된 혼합용액은 기판 또는 수소저장용 탱크 등의 표면에 도포되어 코팅막을 형성함으로써 가스 차단 특성을 향상시킬 수 있다.
이때, 상기 기판은 상용의 고분자 기판이라면 어느 것이든 사용 가능하고 특별히 한정되지 않으나, 바람직하게는 폴리에틸렌 기판, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리에틸렌 테레프탈레이트 글리콜, 폴리카르보네이트, 폴리스티렌, 폴리아미드, 폴리부틸렌 테레프탈레이트, 폴리메틸 펜텐, 폴리비닐 클로라이드, 나일론 및 이들의 공중합체로 이루어진 군으로부터 선택되는 1종 이상의 기판을 포함할 수 있고, 더욱 바람직하게는 폴리에틸렌 기판, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 나일론 및 이들의 공중합체로 이루어진 군으로부터 선택되는 1종 이상의 기판을 포함할 수 있다.
이때, 상기 코팅막은 도포할 혼합 용액의 용량을 조절하여 코팅막의 두께를 제어할 수 있고, 단위 면적당(cm2) 0.5 ~ 3 ml를 도포하는 것이 바람직하며, 더욱 바람직하게는 단위 면적당(cm2) 1.5~ 3 ml를 도포하는 것이 좋다. 상기와 같이 도포되는 경우 0.5 ㎛ ~ 3 ㎛ 두께의 코팅막이 제조될 수 있다.
또한, 상기 4단계에서 혼합용액은 기판에 도포하기 위한 상용의 방법이라면 어느 방법이든 사용 가능하고, 바람직하게는 스핀 코팅법, 스프레이 코팅법 및 딥 코팅법으로 이루어진 군으로부터 선택되는 1종의 방법을 이용하여 도포할 수 있고, 더욱 바람직하게는 스핀 코팅법을 사용하는 것이 좋다.
이하, 본 발명을 하기 실시예들을 통해 보다 상세하게 설명한다. 이때, 하기 실시예들은 본 발명을 보다 상세하게 설명하기 위해 예시적으로 제시된 것일 뿐, 본 발명의 권리범위가 하기 실시예들에 의해 한정되는 것은 아니다.
[ 실시예 ]
실시예 1. 가스차단막의 제조 1
수정된 휴머스 방법을 이용하여 그래핀 옥사이드를 제조하였다. 1 mg/mL 농도의 그래핀 옥사이드 100 mL를 진공여과장치를 이용하여 8 mg/ml 농도로 농축하였다. 상기 농축된 그래핀 옥사이드 용액에 폴리비닐알코올(PVA, sigma aldrich) 용액을 8:2의 중량비로 혼합하여 GO/PVA 혼합 용액을 제조하였다.
110 ㎛ 두께의 폴리에틸렌테레프탈레이트(PET)기판의 상부 일면을 플라즈마 처리한 후, 상기 GO/PVA 혼합용액 3 ml를 스핀코팅법으로 도포하여 0.82 ㎛의 코팅막을 형성하여 가스차단막을 제조하였다.
실시예 2. 가스차단막의 제조 2
GO/PVA 혼합용액 6 ml를 기판상에 도포하여 1.56 ㎛ 두께의 코팅막을 형성한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 가스차단막을 제조하였다.
실시예 3. 가스차단막의 제조 3
GO/PVA 혼합용액 9 ml를 기판상에 도포하여 2.56 ㎛ 두께의 코팅막을 형성한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 가스차단막을 제조하였다.
비교예 1. 가스차단막의 제조
110 ㎛ 두께의 폴리에틸렌테레프탈레이트(PET)기판을 가스차단막으로 이용하였다.
비교예 2. 가스차단막의 제조
110 ㎛의 폴리에틸렌테레프탈레이트(PET)기판의 상부 일면을 플라즈마 처리한 후, 8 mg/ml 농도로 농축된 그래핀 옥사이드(GO)을 스핀코팅법으로 도포한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 가스차단막을 제조하였다.
비교예 3. 가스차단막의 제조
110 ㎛의 폴리에틸렌테레프탈레이트(PET)기판의 상부 일면을 플라즈마 처리한 후, PVA를 스핀코팅법으로 도포한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 가스차단막을 제조하였다.
실험예 1. 그래핀 옥사이드 PVA 사이의 상호작용 관찰
본 발명에 따라 제조된 실시예 1 및 비교예 2 ~ 비교예 3을 FTIR(Fourier transform infrared spectroscopy)로 그래핀 사이드 및 폴리비닐알코올 간의 상호결합을 측정하였고, 그 결과를 도 2에 나타내었다.
도 2에 나타낸 바와 같이, PVA는 3445 cm-1에서 넓은 피크를 가지고, 이는 H-기와 결합한 -OH 기의 분자간 상호작용에 의해 나타나며, 반면 동일한 결합에 대해서 그래핀 옥사이드에서는 3410 cm-1에서 피크가 나타난다. 또한, GO/PVA 나노복합체는 GO 및 PVA 각각의 피크에서와는 달리 3432 cm-1에서 피크를 가지고, 피크의 폭도 상대적으로 좁은 것을 확인할 수 있다. 또한, -C=O 결합에 대해서, PVA는 1730 cm-1에서 수화되지 않은 에스테르기에 대하여 피크를 가지고, GO는 COOH 기에 대해서 1718 cm-1에서 피크를 가진다. 한편, GO/PVA 나노복합체는 1724 cm-1에서 피크를 가지는 것을 확인할 수 있다. 이를 통해, GO/PVA 나노복합체의 경우, GO 시트 또는 PVA 체인 사이의 분자간 H-결합은 사라지고 GO 및 PVA 분자 내에 새로운 결합이 형성되는 것을 알 수 있다.
또한, GO는 산화되지 않은 그래파이트 또는 삽입된 물분자에 대해서 1622 cm-1에서 피크를 가지고, 이는 GO/PVA 복합체에서 1634 cm-1로 이동하였다. 이를 통해, GO/PVA 나노복합체의 경우, GO 시트 또는 PVA 체인 사이의 분자간 결합은 사라지고 GO 및 PVA 분자 내에 새로운 결합이 형성되는 것을 알 수 있다.
실험예 2. GO/ PVA 가스차단막의 결합구조 관찰
본 발명에 따른 GO/PVA 나노복합체의 결합구조를 조사하기 위하여, 실시예 1, 비교예 2 ~3의 시료를 WAXS(wide angle X-ray scattering)을 수행하였고, 그 결과를 도 3에 나타내었다.
GO 시트는 고인접한 두개의 층 간에 공간을 가지며, 고도로 정렬된 구조를 나타내는 것으로 알려진다.
GO 시트는 2θ=10°에서 뾰족한 피크를 가지는 것을 확인할 수 있고, 이를 통해 GO 시트가 서로 인접한 층상구조를 가지는 것을 알 수 있다. 또한, PVA는 피크를 가지지 않으며, GO/PVA 복합체는 2θ=8.58°에서 피크를 가지는 것을 확인할 수 있었다.
GO/PVA 복합체는 GO 시트 단독으로 측정하였을 경우에 비해 회절 피크가 낮은 앵글로 이동하는 것을 확인할 수 있고, GO 시트 사이의 공간으로 PVA가 도입되어 GO 시트 사이의 공간이 확장되기 때문인 것으로 유추할 수 있다.
실험예 3. GO/ PVA 가스차단막의 미세구조 관찰
본 발명에 따른 GO/PVA 나노복합체의 미세구조를 조사하기 위하여, 실시예 1 ~ 3의 시료를 전계방사주사전자현미경(FESEM, field emission scanning electron microscopy)을 이용하여 관찰하였고, 그 결과를 도 4 ~ 8에 나타내었다.
도 4(a) 및 4(b)에 나타낸 바와 같이, 실시예 1 및 실시예 2의 GO/PVA 코팅막 층이 균일한 두께로 형성된 것을 확인할 수 있고, 코팅막의 두께가 코팅 용액의 양에 따라 비례하여 증가하는 것을 확인할 수 있다.
또한, 도 5 ~ 7에 나타낸 바와 같이, 비교예 2 ~ 3은 실시예 1에 비해 얇은 두께로 코팅막이 형성되는 것을 확인할 수 있었다. 이는, PVA의 밀도는 GO에 비해 작기 때문에 PVA가 GO로 침투하게 되므로, GO만을 코팅한 비교예 2에 비해 PVA만을 코팅한 비교예3의 경우 상대적으로 얇은 두께로 코팅막이 형성되기 때문이다.
또한, 도 8에 나타낸 바와 같이, 코팅막의 질량도 코팅용액의 양에 따라 비례하여 증가하는 것을 확인할 수 있다.
실험예 4. 가스차단막의 가스차단능 측정
본 발명에 따른 GO/PVA 나노복합체의 가스차단능에 대하여 알아보기 위하여, 본 발명에 따른 실시예 1 ~ 3 및 비교예 1 ~ 3의 수소투과율 및 투과계수를 25℃, 100 kPa에서 측정하였고, 그 결과를 하기 표 1 및 도 9에 나타내었다. 또한, 본 발명에 따른 실시예 1 및 비교예 1의 산소투과율 및 투과계수를 측정하였고, 그 결과를 하기 표 2에 나타내었다.
구분 코팅막 두께(㎛) 가스차단막 두께(㎛) 수소투과율(cc/m2 atm day) 투과계수(cc.mm./m2 atm day)
실시예 1 0.82 110.82 21 2.32
실시예 2 1.56 111.56 14 1.56
실시예 3 2.56 112.56 5 0.56
비교예 1 - 110 122 13.42
비교예 2 0.52 110.52 69 7.62
비교예 3 0.280 110.28 110 12.40
구분 코팅막 두께(㎛) 가스차단막 두께(㎛) 산소투과율(cc/m2 atm day) 투과계수(cc.mm./m2 atm day)
실시예 1 0.82 110.82 0.78 0.086
비교예 1 - 110 21.2 2.23
표 1 및 도 4에 따르면, 기판의 두께가 100 ㎛ ~ 120 ㎛이고, 가스차단막의 두께가 0.5 ㎛ ~ 3 ㎛일 때, 수소가스투과도가 1 ~ 25 cc/m2 atm day 이고, 투과계수가 0.1 ~ 2.5 cc mm/m2 atm day인 것을 확인할 수 있다.
이때, 상기 가스차단막의 두께는 0.5 ~ 3 ㎛일 수 있고, 바람직하게는 1 ~ 3 ㎛ 일 수 있고, 더욱 바람직하게는 2 ~ 3 ㎛인 것이 좋다. 상기 코팅막의 두께에 따라 수소투과율 및 투과계수가 감소하는 것을 확인할 수 있다. 상기 코팅막의 두께가 2.56 ㎛인 경우, 코팅막이 없는 비교예 1에 비해 96%까지 수소투과율이 감소하는 것을 확인할 수 있었고, 투과계수도 95%까지 감소하는 것을 확인할 수 있었다.
또한, 표 2에 따르면, 기판의 두께가 100 ㎛ ~ 120 ㎛이고, 코팅막의 두께가 0.5 ㎛ ~ 1 ㎛일 때, 산소가스투과도가 0.1 ~ 1 cc/m2 atm day 이고, 투과계수가 0.01 ~ 0.1 cc mm/m2 atm day인 것을 확인할 수 있어, 코팅막이 형성되지 않은 비교예 1보다 산소차단능이 현저히 우수한 것을 확인할 수 있다.
따라서, 본 발명에 따른 가스차단막은 수소가스 및 산소가스 차단능이 현저히 우수한 것을 확인할 수 있었다.

Claims (6)

  1. 그래핀 옥사이드(Graphene oxide) 및 폴리비닐알코올 바인더 수지를 50 ~ 99: 1 ~ 50의 중량비로 포함하는 가스차단막.
  2. 제 1 항에 있어서,
    상기 가스차단막의 두께가 0.5 ㎛ ~ 500 ㎛일 때, 수소가스 투과도가 0.01 ~ 100 cc/m2 atm day인 것을 특징으로 하는 가스차단막.
  3. 그래핀 옥사이드를 물에 녹여 그래핀옥사이드 용액을 제조하는 1단계;
    상기 그래핀 옥사이드 용액을 진공여과하여 농도를 증가시키는 2단계;
    상기 농도가 증가된 그래핀 옥사이드에 폴리비닐알코올 용액을 혼합하여 혼합용액을 제조하는 3단계; 및
    상기 3단계에서 제조된 혼합용액을 도포하여 가스차단막을 제조하는 4단계;를 포함하는 것을 특징으로 하는 가스차단막의 제조방법.
  4. 제3항에 있어서,
    상기 1단계의 그래핀 옥사이드 용액의 농도는 0.1 ~ 5 mg/ml이고, 상기 2단계에서 그래핀 옥사이드를 진공여과하여 농도를 1.5 ~ 20 배 증가시키는 것을 특징으로 하는 가스차단막의 제조방법.
  5. 제3항에 있어서,
    상기 3단계에서 그래핀 옥사이드와 폴리비닐알코올 용액은 50 ~ 99: 1 ~ 50의 중량비로 혼합되는 것을 특징으로 하는 가스차단막의 제조방법.
  6. 제3항에 있어서,
    상기 4단계에서 혼합용액을 스핀 코팅법, 스프레이 코팅법 및 딥 코팅법으로 이루어진 군으로부터 선택되는 1종의 방법을 이용하여 도포하는 것을 특징으로 하는 가스차단막의 제조방법.
PCT/KR2016/004159 2015-04-23 2016-04-21 용액혼합법으로 제조된 그래핀 옥사이드를 이용한 가스차단막 및 이의 제조방법 WO2016171490A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150057257A KR101670030B1 (ko) 2015-04-23 2015-04-23 용액혼합법으로 제조된 그래핀 옥사이드를 이용한 가스차단막 및 이의 제조방법
KR10-2015-0057257 2015-04-23

Publications (1)

Publication Number Publication Date
WO2016171490A1 true WO2016171490A1 (ko) 2016-10-27

Family

ID=57143455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004159 WO2016171490A1 (ko) 2015-04-23 2016-04-21 용액혼합법으로 제조된 그래핀 옥사이드를 이용한 가스차단막 및 이의 제조방법

Country Status (2)

Country Link
KR (1) KR101670030B1 (ko)
WO (1) WO2016171490A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455576A (zh) * 2022-01-24 2022-05-10 南方电网科学研究院有限责任公司 一种高灵敏检测压力变化的石墨烯复合材料的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102299648B1 (ko) * 2020-01-02 2021-09-08 한국과학기술원 산화 그래핀 콜로이드 분산액의 진공 프린팅과 전사 프린팅을 통한 방열 필름 제조 방법 및 이를 이용하여 제조된 방열 필름

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101524350B1 (ko) * 2013-05-06 2015-06-05 전북대학교산학협력단 수동/능동 하이브리드 차단층을 포함하는 수소투과 차단막

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIM, HYE MIN ET AL.: "Transparent and High Gas Barrier Films based on Poly(Vinyl Alcohol)/Graphene Oxide Composites", THIN SOLID FILMS, vol. 519, no. 22, 2011, pages 7766 - 7771, XP028271756 *
LAYER, RAMA K. ET AL.: "Layer-structured Graphene Oxide/Polyvinyl Alcohol Nanocomposites: Dramatic Enhancement of Hydrogen Gas Barrier Properties", JOURNAL OF MATERIALS CHEMISTRY A, vol. 2, no. 31, 2014, pages 12158 - 12161, XP055324667 *
PARK, MIN UK: "Preparation of Graphene Oxide/Polyvinyl Alcohol Composites for Hydrogen Gas Barrier Application.", GRADUATE SCHOOL OF CHONBUK NATIONAL UNIVERSITY, MASTER'S THESIS IN ENGINEERING, 23 February 2015 (2015-02-23), pages 1 - 51 *
SU , Y. ET AL.: "Impermeable Barrier Films and Protective Coatings based on Reduced Graphene Oxide", NATURE COMMUNICATIONS, vol. 5, no. 4843, 2014, pages 1 - 5, XP055194553 *
TANG, YU PAN ET AL.: "Ree-standing Graphene Oxide Thin Films Assembled by a Pressurized Ultrafiltration Method for Dehydration of Ethanol", JOURNAL OF MEMBRANE SCIENCE, vol. 458, 2014, pages 199 - 208, XP055324675 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455576A (zh) * 2022-01-24 2022-05-10 南方电网科学研究院有限责任公司 一种高灵敏检测压力变化的石墨烯复合材料的制备方法
CN114455576B (zh) * 2022-01-24 2023-11-10 南方电网科学研究院有限责任公司 一种高灵敏检测压力变化的石墨烯复合材料的制备方法

Also Published As

Publication number Publication date
KR101670030B1 (ko) 2016-10-27

Similar Documents

Publication Publication Date Title
Chen et al. Non-covalently functionalized graphene oxide-based coating to enhance thermal stability and flame retardancy of PVA film
Yang et al. Vacuum-assisted assembly of ZIF-8@ GO composite membranes on ceramic tube with enhanced organic solvent nanofiltration performance
Cui et al. Excellent energy storage density and efficiency in blend polymer-based composites by design of core-shell structured inorganic fibers and sandwich structured films
Wu et al. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability
Chen et al. Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films
EP2737996B1 (en) Laminated body, gas barrier film, and method for producing laminated body and gas barrier film
Layek et al. Layer-structured graphene oxide/polyvinyl alcohol nanocomposites: dramatic enhancement of hydrogen gas barrier properties
Lin et al. Bionics inspired modified two-dimensional MXene composite membrane for high-throughput dye separation
CN103732393B (zh) 层叠体、阻气膜、层叠体的制造方法及层叠体制造装置
US20110256376A1 (en) Composite graphene oxide-polymer laminate and method
KR101450963B1 (ko) 적층 배리어 필름
KR102464398B1 (ko) 그래핀 분산액 및 그래핀-고분자 복합체 제조방법, 및 이를 이용한 배리어 필름 제조방법
KR102284405B1 (ko) 적층체, 배리어 필름 및 이들의 제조 방법
WO2016171490A1 (ko) 용액혼합법으로 제조된 그래핀 옥사이드를 이용한 가스차단막 및 이의 제조방법
WO2019182356A1 (ko) 고강도 그래핀 복합섬유 및 이의 제조방법
KR101742955B1 (ko) 배리어 필름 제조방법 및 배리어 필름
Cho et al. Sacrificial graphene oxide interlayer for highly permeable ceramic thin film composite membranes
KR102602632B1 (ko) 그래핀 옥사이드 섬유 및 이의 제조방법
Liang et al. Exclusive and fast water channels in zwitterionic graphene oxide membrane for efficient water–ethanol separation
Keshebo et al. Simultaneous exfoliation and functionalization of hexagonal boron nitride in the aqueous phase for the synthesis of high-performance wastewater treatment membrane
Lai et al. Composite of cyclic olefin copolymer with low graphene content for transparent water-vapor-barrier films
Ebina Development of Clay‐Based Films
KR20170080487A (ko) 접착제를 사용하지 않는 다층구조의 수분 및 기체 고차단성 유연필름 및 그 제조방법
Pan et al. Large‐Scale Production of Rectorite Nanosheets and Their Co‐Assembly with Aramid Nanofibers for High‐Performance Electrical Insulating Nanopapers
Du et al. Hybrid membranes with 2D vertical continuous channels from layered double hydroxides array for high-efficiency ethanol dehydration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783423

Country of ref document: EP

Kind code of ref document: A1