WO2016171301A1 - 레이저 증폭장치 - Google Patents

레이저 증폭장치 Download PDF

Info

Publication number
WO2016171301A1
WO2016171301A1 PCT/KR2015/004143 KR2015004143W WO2016171301A1 WO 2016171301 A1 WO2016171301 A1 WO 2016171301A1 KR 2015004143 W KR2015004143 W KR 2015004143W WO 2016171301 A1 WO2016171301 A1 WO 2016171301A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
amplification medium
amplification
medium
irradiated
Prior art date
Application number
PCT/KR2015/004143
Other languages
English (en)
French (fr)
Inventor
유태준
정지훈
김정묵
조세례요한
Original Assignee
한동대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한동대학교 산학협력단 filed Critical 한동대학교 산학협력단
Priority to US15/568,792 priority Critical patent/US20180175580A1/en
Priority to CN201580079175.9A priority patent/CN107851956A/zh
Publication of WO2016171301A1 publication Critical patent/WO2016171301A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0085Modulating the output, i.e. the laser beam is modulated outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/061Crystal lasers or glass lasers with elliptical or circular cross-section and elongated shape, e.g. rod
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control

Definitions

  • the present invention relates to a laser amplifier, and more particularly, to a laser amplifier capable of high power by canceling the distortion of the laser to be amplified.
  • these lasers have recently been actively developed in the research fields such as spectroscopy, nano-imaging, particle acceleration and fusion, as well as in industrial fields such as 3D printing, lighting, communication, and performance, and welding, cutting, and surface modification. It is becoming.
  • FIG. 1 is a diagram schematically illustrating a structure of a double-pass laser amplifier currently used.
  • a pair of rod-shaped laser amplification mediums 20 are spaced apart from each other, and a polarization reflection mirror 30 is provided at a front side thereof, and a polarization conversion plate at a rear side thereof. 50 is provided, and a reflective mirror 40 is provided on the rear side of the polarization conversion plate 50.
  • a 90 ° quartz rotator 60 may be provided between the pair of laser amplification media 20.
  • the polarization direction may be converted while passing through the polarization conversion plate 50 after the laser is reciprocated and before being reflected by the reflection mirror 40.
  • the laser beam is converted to the polarization direction while passing through the polarization conversion plate 50 is reflected without passing through the polarization reflecting mirror 30, the reflected laser is reflected on the target through a separately provided back reflection mirror (70) Can be irradiated or with other devices.
  • heat may be generated as the laser passes through the laser amplification medium 20, and thermal polarization distortion effects may be generated due to the heat, and a polarized radiation of the transmitted laser beam may be unevenly distorted, thereby generating a countercurrent beam. .
  • the 90 ° quartz rotator 60 may be provided between the two laser amplification media to offset the distortion of the laser irradiated on both sides.
  • the 90 ° quartz rotator 60 has the same shape and symmetry of the laser beams irradiated on both sides thereof so that the distortion canceling effect may be perfect, due to the thermal lens effect caused by heat in the laser amplification medium 20.
  • the size of the laser beam may be gradually asymmetric in size, and in this case, as shown in FIG. 1, a part of the laser reflected by the reflecting mirror 40 and transmitted through the laser amplifying medium 20 may be the reflective reflecting mirror ( 30) there is a problem that can not be reflected but transmitted through the reverse flow (Lr).
  • both sides of the laser amplification medium 22 have inclined or curved surfaces, aberration may occur in the laser, and concave optical surfaces may cause damage to the optical system due to surface reflection of the laser, thereby increasing the burden on the design. It may be.
  • the present invention is to solve the above problems, it is an object to provide a laser amplification apparatus capable of achieving a higher output by minimizing the distortion phenomenon and the reverse flow phenomenon of the laser beam as a simple configuration as possible.
  • a first amplification medium for amplifying the laser beam transmitted A second amplifying medium arranged to be spaced apart from the first amplifying medium to amplify a laser beam transmitted therethrough;
  • An annular lens unit provided at the front side of the first amplification medium and configured to present a laser irradiated with the first amplification medium to cancel a thermal lens effect generated in the first amplification medium and the second amplification medium;
  • a first polarized light transmission mirror which is provided to be inclined with respect to the laser beam irradiated to the front end of the first amplification medium, and transmits a laser vibrating in a specific direction of the irradiated light and reflects a laser vibrating in another direction;
  • a polarization conversion plate provided at a rear side of the second amplification medium to change a vibration direction of the laser beam passing through the second amplification medium; It is provided on the rear side of the polarization conversion plate, there is provided a laser
  • the first reflecting mirror may form a convex reflective surface such that the reflected laser is reflected in the same path as that of the irradiated laser.
  • the first reflection mirror may form a convex reflective surface such that any point of the cross section of the laser irradiated to the reflective surface and the reflective surface are perpendicular to each other.
  • the lens unit may have a beam diameter of the laser beam when the laser contacts the first amplification medium, corresponding to a diameter of the laser beam that contracts until it reaches the reflective mirror through the first and second amplification media.
  • the laser can be diffused to widen.
  • the annular lens unit may be provided by a combination of a convex lens and a concave lens.
  • the annular lens unit may be provided as a combination of convex lenses.
  • It may further include a quartz rotator provided between the first amplification medium and the second amplification medium, the distortion of the laser irradiated on both sides to cancel each other.
  • the display apparatus may further include a second reflecting mirror which re-reflects the laser reflected by the first polarization transmitting mirror.
  • the laser amplification apparatus of the present invention has the following effects.
  • the lens part is provided, and the laser beam passes through the first amplification medium and the second amplification medium and compensates by pre-diffusion as the beam width is narrowed, so that the lens effect due to the heat of the laser beam can be presented. Distortion and backflow can be minimized.
  • the reflecting mirror is formed as a curved surface rather than a plane, and the reflecting surface is perpendicular to any point of the laser cross section irradiated to the reflecting mirror, the laser can be reflected as the same path as the path irradiated to the reflecting mirror 90 ° Since the shape and diameter of the laser beam can be perfectly symmetrical on both sides of the quartz rotator, the reverse flow phenomenon of the laser beam can be minimized, resulting in higher output of the laser.
  • 1 is a view showing an example of a conventional laser amplifier
  • FIG. 2 is a view showing another example of a conventional laser amplifier
  • FIG. 3 is a view showing another example of a conventional laser amplifier
  • FIG. 4 is a view showing a laser amplifying apparatus according to an embodiment of the present invention.
  • FIG. 5 is a view showing a laser amplification apparatus according to another embodiment of the present invention.
  • FIG. 6 is a graph illustrating a change in beam radius according to a distance of a laser amplified by the laser amplifier of FIG. 1;
  • FIG. 7 is a graph illustrating a change in beam radius according to a distance of a laser amplified by the laser amplifier according to FIG. 4;
  • FIG. 8 is a graph comparing the distance between the focus of the laser amplified by the laser amplification apparatus according to an embodiment of the present invention when the distance between the amplification medium is 10cm;
  • FIG. 9 is a graph comparing the distance between the focus of the laser amplified by the laser amplification apparatus according to an embodiment of the present invention when the distance between the amplification medium is 30cm;
  • FIG. 10 is a view simulating the shape and the ratio of the laser beam amplified and output in the conventional laser amplification apparatus and the laser amplification apparatus according to the present invention, and the shape and ratio of the countercurrent beam;
  • 11 is a graph showing a loss ratio according to changes in operating conditions of the conventional laser amplifier and the laser amplifier according to the present embodiment.
  • the laser amplifier includes a first amplification medium 112, a second amplification medium 114, a lens unit 160, a first polarization transmission mirror 120, The polarizing plate 140, the first reflecting mirror 130, the quartz rotator 150, and the second reflecting mirror 170 may be included.
  • the laser amplifier 100 of the present embodiment is a device for amplifying the irradiated laser
  • a laser oscillator (not shown) for irradiating a laser to the laser amplification apparatus 100 may be provided separately.
  • the first polarization transmission mirror 120 may be provided to transmit the laser of the polarized light oscillating in a specific direction of the laser to be irradiated, and to reflect the laser of polarized light oscillating in the other direction.
  • the first polarized light transmission mirror 120 transmits P polarized light and reflects polarized light in another direction.
  • the first polarized light transmission mirror 120 may be formed to form an inclination with the angle at which the laser is irradiated.
  • the laser oscillated by the laser oscillator may be a laser of P polarization.
  • the present invention is not limited to the type of transmission polarization of the first polarization transmission mirror 120 and the type of polarization of the laser oscillating in the laser oscillator (not shown).
  • the first amplification medium 112 and the second amplification medium 114 are provided on the rear side of the first polarization transmission mirror 120, and the laser beam passing through the first polarization transmission mirror 120 is transmitted. It may be Nd: YAG rod (Rod) for amplifying the laser beam transmitted, it may be provided spaced apart from each other on the irradiation path of the laser.
  • the polarization converting plate 140 is provided on the rear side of the second amplifying medium 114 to convert the vibration direction of the transmitted laser beam, and may be a ⁇ / 4 plate.
  • the first reflection mirror 130 is a component that reflects the laser irradiated on the rear side of the polarization conversion plate 140 toward the first amplification medium 112 and the second amplification medium 114.
  • the reflective surface 132 on which the laser is reflected may be formed to have a convex shape.
  • a 90 ° quartz rotator 150 may be provided between the first amplification medium 112 and the second amplification medium 114.
  • the 90 ° quartz rotator 150 is a component that cancels the polarization distortion due to heat generated in the first amplification medium 112 and the second amplification medium 114 on both sides so that there is no beam flowing back.
  • the laser beam transmitted through the first polarization transmission mirror 120 may be amplified while passing through the first amplification medium 112 and the second amplification medium 114.
  • the amplified laser may be reflected by the first reflection mirror 130 and amplified while passing through the first amplification medium 112 and the second amplification medium 114.
  • the polarization conversion plate 140 provided between the first reflection mirror 130 and the second amplification medium 114 passes, and the laser passes through the polarization conversion plate 140 twice and the polarization direction This can change in different directions.
  • the laser reflected by the first reflection mirror 130 and transmitted through the second amplification medium 114 and the first amplification medium 112 meets the first polarization transmission mirror 120.
  • a second reflection mirror 170 may be provided to reflect the reflected laser back to a necessary place.
  • first amplification medium 112 and the second amplification medium 114 may be heated while the laser passes through the first amplification medium 112 and the second amplification medium 114, thereby causing a thermal lens effect. May be generated.
  • the laser beam is gradually focused by the thermal lens effect while passing through the first amplification medium 112 and the second amplification medium 114 so that the beam diameter may be narrowed.
  • the lens 160 is provided on the front side of the first polarized light transmission mirror 120 to be narrowed by the thermal lens effect of the first and second amplification media 112 and 114. It can spread so that the diameter of the laser beam is extended by the diameter of the losing beam.
  • the annular lens unit 160 may be formed in a Galileo form including a convex lens and a concave lens, and may be provided between the first polarized light transmitting mirror 120 and a laser oscillator (not shown).
  • the present invention is not limited thereto, and as shown in FIG. 5, the at least one lens unit 160 may be formed in a Kepler shape made of a combination of convex lenses.
  • the laser lens 160 when the laser lens 160 is first incident on the first amplifying medium 112, the laser lens 160 may use the first amplifying medium 112 and the second amplifying medium 114.
  • the light may be incident on the first amplification medium 112 while being diffused by a diameter of a beam that is focused and narrowed while passing back and forth.
  • the laser beam is focused while passing through the first and second amplification medium 112 and 114, the diameter of the beam narrows depending on the output of the laser, so that the lens portion 160 ) May be provided so that the distance between each convex lens and concave lens can be adjusted to adjust the amount of diffusion of the laser beam.
  • the laser is focused while passing through the first amplification medium 112 and the second amplification medium 114, the beam after passing through the second amplification medium 114 Can be focused in the direction of decreasing diameter.
  • the first reflecting mirror 130 is formed to be convex so that any point of the cross section of the laser beam L 'irradiated to the reflecting surface 132 and the reflecting surface 132 are perpendicular to each other.
  • the laser L 'reflected from the reflective surface 132 of the first reflection mirror 130 may be reflected while forming the same path as the path irradiated to the reflective surface.
  • the laser beam L 'focused in a direction in which the diameter of the beam decreases is reflected by the convex reflection surface 132 of the first reflection mirror 130 and is the same as the angle and path irradiated onto the reflection surface 132. It can be reflected in the direction of diffusion while forming the angle and path.
  • FIG. 6 is a graph showing a change in the diameter of a laser beam amplified by a conventional laser amplifier.
  • the length of the amplification medium 20 is about 10 cm, and the interval between the amplification medium 20 is about 10 cm.
  • the laser beam incident on the first amplification medium 20 has a radius of 6 mm, and the diameter of the beam is narrowed by the thermal lens effect while passing through each amplification medium 20. After passing through all the amplification medium 20 after the reflection in the) can be reduced to a radius of about 4.4mm.
  • FIG. 7 is a graph showing a change in the diameter of the laser beam amplified by the laser amplifier 100 of this embodiment.
  • first amplification medium 112 and the second amplification medium 114 have a length of about 10 cm, and the distance between the first amplification medium 112 and the second amplification medium 114 is about 10 cm. Installed.
  • the laser beam irradiated to the laser amplifier 100 has a beam diameter diffused by the annular lens unit 160 to be incident on the first amplification medium 112.
  • the light is diffused to about 5.95 mm and focused while passing through the first amplification medium 112 and the second amplification medium 114, and is then reflected by the first reflection mirror 130 to be diffused again. And may be focused again while passing through the second amplification medium 114.
  • the change amount of the diameter of the laser beam is so small that it does not appear significantly in the graph, and the scale of the corresponding part is enlarged separately.
  • the diameter change of the laser beams on both sides of the quartz rotator 150 is the same, and the diameters of the laser beams touching the both sides of the quartz rotator 150 are the same, distortion that passes through the quartz rotator 150 is obtained.
  • the laser beam can be eliminated.
  • FIG. 8 shows the interval between the first amplification medium 112 and the second amplification medium 114 about 10 cm, and FIG. 8 illustrates the distance between the first amplification medium 112 and the second amplification medium 114. When about 30 cm is shown.
  • the laser L amplified by the conventional laser amplifier 10 is After finally passing through the first amplification medium 112, it can be seen that the focus is formed by proceeding about 89 cm.
  • the laser L 'amplified by the laser amplifying apparatus 100 of the present embodiment may be focused at a point about 4.3 m after the last passage through the first amplification medium 112.
  • the difference from the prior art is so great that the laser L 'amplified by the laser amplifying apparatus 100 of the present embodiment does not indicate the point where the focal point is focused, and when the diameter is reduced by the slope shown in the graph. It can be seen that the point where the diameter of the laser beam L 'is minimized is approximately 4.3m.
  • the laser L 'amplified by the laser amplifying apparatus 100 of the present embodiment is focused at a farther distance than in the prior art, which is to design a post-processing apparatus for later handling the amplified laser.
  • the effect of having more spatial margin can be exhibited.
  • the space in which the after-treatment device which handles the amplified laser may be located may be too narrow.
  • a lens is used to diffuse the amplified laser again. Such a configuration is required, such that a component such as a lens may reflect the laser, and considering that the laser is amplified, the risk of damage to the peripheral equipment or the lens may also occur.
  • the laser L amplified by the conventional laser amplifying apparatus 10 is described.
  • the focus is made by proceeding about 75 cm after the last passage through the first amplification medium 112. This can be seen that the interval between the first amplification medium 112 and the second amplification medium 114 is shorter than when the gap is 10cm.
  • the radius of the laser beam L emitted from the first amplification medium 112 is also 3.4 mm, compared with when the distance between the first amplification medium 112 and the second amplification medium 114 is 10 cm. It can be seen that even narrower, if the radius of the laser beam (L) is narrowed there is a risk that the energy density is increased to cause damage to the amplification medium.
  • the laser L 'amplified by the laser amplifying apparatus 100 of the present embodiment is focused after about 4.3 m after the last passage of the first amplification medium 112, and this focus is achieved. It can be seen that the diameter of the laser beam L 'amplified by the laser amplifier 100 in the example is independent of the distance between the first amplification medium 112 and the second amplification medium 114.
  • the laser amplifier 100 of the present embodiment it is possible to freely design the interval between the first amplification medium 112 and the second amplification medium 114, and accordingly the first amplification medium 112 and the second amplification medium. There is an effect that can ensure a sufficient space for the maintenance of the various components provided between (114).
  • FIG. 10 is a diagram simulating the shape and the ratio of the laser beam amplified and output in the conventional laser amplification apparatus and the laser amplification apparatus according to the present embodiment, and the shape and the ratio of the beam flowing back.
  • the laser beam flowing backward reaches 1.58% of the total output laser beam, and the normal output laser beam showed 98.42%.
  • the laser beam flowing backward among the laser beams amplified by the laser amplifier of the present embodiment is 6.22 ⁇ 10 ⁇ 6 % of the total output laser beam, and it can be seen that the laser beam is significantly reduced compared with the conventional art. Accordingly, it can be seen that the laser beam normally output is also 99.99% or more, and almost all of the beams are normally output, and the shape is also closer to that of the conventional form.
  • 11 is a graph showing a loss ratio according to changes in operating conditions of the conventional laser amplifier and the laser amplifier according to the present embodiment.
  • the operating condition is the ratio of the amplification medium and the heat generation amount of the amplification medium
  • the loss ratio may be the ratio of the beam flowing back.
  • the loss ratio increases rapidly as the heat generation amount of the amplification medium increases, whereas the laser amplifier of this embodiment loses heat even if the heat generation amount increases. It can be seen that it remains stable regardless of.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)

Abstract

본 발명은 증폭되는 레이저의 왜곡을 상쇄함으로써 고출력이 가능한 레이저 증폭장치에 관한 것으로서, 본 발명의 일 실시예에 따르면, 투과되는 레이저를 증폭시키는 제1증폭매질; 상기 제1증폭매질과 이격되어 배치되어 투과되는 레이저를 증폭시키는 제2증폭매질; 상기 제1증폭매질의 전측에 구비되며, 상기 제1증폭매질 및 제2증폭매질에서 발생되는 열렌즈 효과를 상쇄하고자 상기 제1증폭매질로 조사되는 레이저를 선보상하는 선보상 렌즈부; 상기 제1증폭매질의 전단에 조사되는 레이저에 대해서 경사지게 구비되며, 조사되는 빛 중 특정방향으로 진동하는 레이저는 투과시키고, 다른 방향으로 진동하는 레이저는 반사시키는 제1편광 투과미러; 상기 제2증폭매질의 후측에 구비되어 상기 제2증폭매질을 투과한 레이저의 진동방향을 변화시키는 편광변환판; 상기 편광변환판의 후측에 구비되며, 레이저를 반사시키는 제1반사미러를 포함하는 레이저 증폭장치가 제공된다.

Description

레이저 증폭장치
본 발명은 레이저 증폭장치에 관한 것으로서, 보다 상세하게는 증폭되는 레이저의 왜곡을 상쇄함으로써 고출력이 가능한 레이저 증폭장치에 관한 것이다.
최근 산업 및 연구현장에서 레이저를 이용한 분야에 대한 연구가 활발하게 진행되고 있다.
특히, 이러한 레이저는 최근 들어 분광학, 나노 이미징, 입자가속, 핵융합 등의 연구분야를 비롯하여, 3D 프린팅, 조명, 통신, 공연 등의 생활현장과 용접, 절단, 표면 개질 등의 산업현장에서 활발하게 개발되고 있다.
한편, 산업용 레이저는 그 출력의 고성능화가 당면한 과제로서, 현재는 발진된 레이저를 증폭매질층을 통과시키면서 증폭시켜 그 출력을 향상시키는 방법이 사용되고 있다.
도 1은 현재 사용되고 있는 2중경로 레이저 증폭기(Double-Pass Laser Amplifier)의 구조를 개략적으로 도시한 도면이다.
도 1에 도시된 2중경로 레이저 증폭기(10)는, 로드 형태의 레이저 증폭매질(20) 한 쌍이 이격되어 배치되며, 그 전측에 편광반사미러(30)가 구비되고, 후측에 편광전환판(50)이 구비되며, 상기 편광전환판(50) 후측에 반사미러(40)가 구비된다.
그리고, 한 쌍의 레이저 증폭매질(20)의 사이에 90°쿼츠 로테이터(60: Quartz Rotator)가 구비될 수 있다.
따라서, 외부에서 발진된 레이저가 편광반사미러(30)를 통과하면서 특정방향으로 진동하는 레이저만 투과되며, 투과된 레이저가 한 쌍의 증폭매질(20)을 통과하면서 증폭된 후, 반사미러(40)를 통해 반사되면서 상기 한 쌍의 증폭매질(20)을 다시 통과하면서 다시 증폭된다.
이 때, 레이저가 왕복되면서 상기 반사미러(40)에 의해 반사되기 전 후에 편광전환판(50)을 투과하면서 편광방향이 변환될 수 있다.
그리고, 상기 편광전환판(50)을 투과하면서 편광방향이 변환된 레이저는 상기 편광반사미러(30)를 통과하지 못하고 반사되며, 반사된 레이저는 별도로 구비된 재반사미러(70)를 통해 타겟에 조사되거나 또는 다른 장치로 조사될 수 있다.
한편, 상기 레이저 증폭매질(20)에 레이저가 통과되면서 열이 발생할 수 있으며, 이러한 열로 인해 열적 편광 왜곡효과가 발생하여 투과되는 레이저빔의 편광 방햐이 불균일하게 왜곡되면서 역류하는 빔이 생성될 수 있다.
따라서, 상기 90°쿼츠 로테이터(60)가 양 레이저 증폭매질의 사이에 구비되어 양측에 조사되는 레이저의 왜곡을 상쇄하도록 구비될 수 있다.
그런데, 상기 90°쿼츠 로테이터(60)는 그 양 면에 조사되는 레이저 빔의 형상이 동일하고 대칭이 되어야 왜곡상쇄효과가 완벽할 수 있는데, 레이저 증폭매질(20) 내의 열에 의한 열 렌즈효과로 인해 레이저 빔이 크기가 점진적으로 비대칭으로 변할 수 있고, 이러한 경우 도 1에 도시된 바와 같이, 상기 반사미러(40)에서 반사되어 레이저 증폭매질(20)을 투과한 레이저중 일부가 상기 변광반사미러(30)에서 반사되지 아니하고 투과되어 역류(Lr)할 수 있는 문제가 있다.
한편, 도 2에 도시된 바와 같이, 레이저 증폭 매질(20)의 사이에 렌즈 셋트(80)를 두는 구조도 제시되고 있으나, 이러한 구조는 레이저 증폭장치 내부에서 초점(f)이 맺히므로, 고출력을 달성하고자 하는 경우 초점(f)이 맺히는 부분에서 스파크가 발생하여 안정성이 떨어질 수 있어 이를 방지하기 위한 별도의 진공튜브(미도시)등의 추가적인 구성이 필요하며, 또한 레이저가 렌즈를 거치면서 렌즈의 표면에서 반사될 수 있어 설계상의 부담이 커질 수 있다.
또 한편, 도 3에 도시된 바와 같이, 레이저 증폭매질(22)의 양 면을 경사 또는 굴곡지게 형성하는 구조도 제시되고 있다. 이러한 구조의 경우 레이저 증폭장치 내부에서 초점이 맺히는 부분이 없으므로 진공튜브가 필요치 않고 렌즈군이 필요없거나 최소화되어 있어 반사면수 또한 최소화될 수 있다.
그러나, 레이저 증폭매질(22)의 양 면에 경사 또는 굴곡면이 있으므로 레이저에 수차가 발생할 수 있고, 오목한 광학 면에 의해 레이저의 표면반사에 의한 광학계 손상을 야기할 수 있어 설계상에 부담이 커질 수도 있다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 최대한 간단한 구성으로서 레이저 빔의 왜곡현상 및 역류현상을 최소화 하여 보다 고출력의 달성이 가능한 레이저 증폭장치를 제공하는 것이 과제이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않는 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 과제를 해결하기 위하여, 본 발명의 일 실시예에 따르면, 투과되는 레이저를 증폭시키는 제1증폭매질; 상기 제1증폭매질과 이격되어 배치되어 투과되는 레이저를 증폭시키는 제2증폭매질; 상기 제1증폭매질의 전측에 구비되며, 상기 제1증폭매질 및 제2증폭매질에서 발생되는 열렌즈 효과를 상쇄하고자 상기 제1증폭매질로 조사되는 레이저를 선보상하는 선보상 렌즈부; 상기 제1증폭매질의 전단에 조사되는 레이저에 대해서 경사지게 구비되며, 조사되는 빛 중 특정방향으로 진동하는 레이저는 투과시키고, 다른 방향으로 진동하는 레이저는 반사시키는 제1편광 투과미러; 상기 제2증폭매질의 후측에 구비되어 상기 제2증폭매질을 투과한 레이저의 진동방향을 변화시키는 편광변환판; 상기 편광변환판의 후측에 구비되며, 레이저를 반사시키는 제1반사미러를 포함하는 레이저 증폭장치가 제공된다.
상기 제1반사미러는, 반사되는 레이저가 조사된 경로와 동일한 경로로 반사되도록 볼록한 반사면을 형성할 수 있다.
상기 제1반사미러는, 상기 반사면에 조사되는 레이저의 단면의 임의의 지점과 상기 반사면이 수직을 이루도록 볼록한 반사면을 형성할 수 있다.
상기 선보상 렌즈부는, 상기 제1증폭매질과 제2증폭매질을 거쳐 상기 반사미러에 닿을 때까지 수축되는 레이저 빔 직경에 해당하는 만큼, 상기 레이저가 상기 제1증폭매질에 닿을 때 레이저의 빔 직경이 넓어지도록 레이저를 확산시킬 수 있다.
상기 선보상 렌즈부는, 볼록렌즈와 오목렌즈의 조합으로 구비될 수 있다.
상기 선보상 렌즈부는, 볼록렌즈의 조합으로 구비될 수 있다.
상기 제1증폭매질과 제2증폭매질의 사이에 구비되며, 양 면에 조사되는 레이저의 왜곡이 서로 상쇄되도록 하는 쿼츠 로테이터를 더 포함할 수 있다.
상기 제1편광투과미러에서 반사된 레이저를 재 반사하는 제2반사미러를 더 포함할 수 있다.
본 발명의 레이저 증폭장치에 따르면 다음과 같은 효과가 있다.
첫째, 선보상 렌즈부가 구비되어, 레이저가 제1증폭매질과 제2증폭매질을 거치면서 그 빔 폭이 좁아지는 만큼 미리 확산시켜 보상하므로 레이저 빔의 열에 의한 렌즈 효과를 선보상할 수 있어 레이저 빔의 왜곡 및 역류현상을 최소화 할 수 있다.
둘째, 반사미러가 평면이 아닌 곡면으로 형성되어 반사미러에 조사되는 레이저 단면의 임의의 지점과 반사면이 수직을 이루게 되므로 레이저가 반사미러에 조사되는 경로와 똑 같은 경로로서 반사될 수 있어 90°쿼츠 로테이터의 양 면에서 레이저 빔의 형상 및 직경이 완벽하게 대칭을 이룰 수 있어 레이저 빔의 역류현상을 최소화 할 수 있어 레이저의 출력을 보다 고출력화 할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
아래에서 설명하는 본 출원의 바람직한 실시예의 상세한 설명뿐만 아니라 위에서 설명한 요약은 첨부된 도면과 관련해서 읽을 때에 더 잘 이해될 수 있을 것이다. 본 발명을 예시하기 위한 목적으로 도면에는 바람직한 실시예들이 도시되어 있다. 그러나, 본 출원은 도시된 정확한 배치와 수단에 한정되는 것이 아님을 이해해야 한다.
도 1은 종래의 레이저 증폭장치의 일 예를 도시한 도면;
도 2는 종래의 레이저 증폭장치의 다른 예를 도시한 도면;
도 3은 종래의 레이저 증폭장치의 또 다른 예를 도시한 도면;
도 4는 본 발명의 일 실시예에 따른 레이저 증폭장치를 도시한 도면;
도 5는 본 발명의 다른 실시예에 따른 레이저 증폭장치를 도시한 도면;
도 6은 도 1의 레이저 증폭장치에 의해 증폭되는 레이저의 거리에 따른 빔 반경의 변화를 도시한 그래프;
도 7은 도 4에 따른 레이저 증폭장치에 의해 증폭되는 레이저의 거리에 따른 빔 반경의 변화를 도시한 그래프;
도 8은 증폭매질의 간격이 10cm일 때 종래와 본 발명의 일 실시예에 따른 레이저 증폭장치에 의해 증폭된 레이저의 초점이 맺히는 거리를 비교한 그래프;
도 9는 증폭매질의 간격이 30cm일 때 종래와 본 발명의 일 실시예에 따른 레이저 증폭장치에 의해 증폭된 레이저의 초점이 맺히는 거리를 비교한 그래프;
도 10은 종래의 레이저 증폭장치와 본 발명에 따른 레이저 증폭장치에서 증폭되어 출력되는 레이저 빔의 형상과 비율 및 역류하는 빔의 형상과 비율을 시뮬레이션한 도면; 그리고,
도 11은 종래의 레이저 증폭장치와 본 실시예에 따른 레이저 증폭장치의 동작조건의 변화에 따른 손실율을 나타낸 그래프 이다.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.
본 실시예에 따른 레이저 증폭장치는 도 4에 도시된 바와 같이, 제1증폭매질(112), 제2증폭매질(114), 선보상 렌즈부(160), 제1편광 투과미러(120), 편광변환판(140), 제1반사미러(130), 쿼츠 로테이터(150) 및 제2반사미러(170)를 포함할 수 있다.
한편, 본 실시예의 레이저 증폭장치(100)는 조사된 레이저를 증폭시키는 장치로서, 상기 레이저 증폭장치(100)에 레이저를 조사하는 레이저 발진기(미도시)가 별도로 구비될 수 있다.
상기 제1편광 투과미러(120)는 조사되는 레이저 중 특정방향으로 진동하는 편광의 레이저는 투과시키고, 다른 방향으로 진동하는 편광의 레이저는 반사시키도록 구비될 수 있다.
본 실시예의 설명에서는 상기 제1편광 투과미러(120)는 P편광은 투과시키고, 다른 방향의 편광은 반사시키는 것으로 예를 들어 설명하기로 한다.
또한, 상기 제1편광 투과미러(120)는 레이저가 조사되는 각도와 경사를 이루도록 형성될 수 있다.
한편, 상기 레이저 발진기(미도시)가 발진하는 레이저는 P편광의 레이저일 수 있다. 물론, 본 발명은 제1편광 투과미러(120)의 투과편광의 종류 및 레이저 발진기(미도시)에서 발진하는 레이저의 편광종류에 한정되지 아니한다.
그리고, 상기 제1증폭매질(112)과 제2증폭매질(114)은 상기 제1편광 투과미러(120)의 후측에 구비되고, 상기 제1편광 투과미러(120)를 통과한 레이저가 투과되면서 투과되는 레이저를 증폭시키는 Nd:YAG 로드(Rod)일 수 있으며, 레이저의 조사 경로상에 상호 이격되어 구비될 수 있다.
상기 편광변환판(140)은 상기 제2증폭매질(114)의 후측에 구비되어 투과되는 레이저의 진동방향을 변환시키는 구성요소로서, λ/4 플레이트 일 수 있다.
그리고, 상기 제1반사미러(130)는 상기 편광변환판(140)의 후측에 구비되어 조사되는 레이저를 상기 제1증폭매질(112)과 제2증폭매질(114) 측으로 다시 반사시키는 구성요소로서, 레이저가 반사되는 반사면(132)이 볼록한 형상을 가지도록 형성될 수 있다.
그리고, 상기 제1증폭매질(112)과 제2증폭매질(114)의 사이에는 90° 쿼츠 로테이터(150: Quartz Rotator)가 구비될 수 있다.
상기 90° 쿼츠 로테이터(150)는 역류하는 빔이 없도록 양 측에 놓인 제1증폭매질(112)과 제2증폭매질(114)에서 발생하는 열에 의한 편광왜곡을 서로 상쇄시키는 구성요소이다.
따라서, 상기 레이저 발진기(미도시)에서 발진된 레이저가 상기 제1편광 투과미러(120)를 투과하면서 특정방향으로 진동하는 성분(P편광)의 레이저만 투과될 수 있다.
상기 제1편광 투과미러(120)를 투과한 레이저는 상기 제1증폭매질(112)과 제2증폭매질(114)을 투과하면서 증폭될 수 있다.
그리고, 증폭된 레이저는 상기 제1반사미러(130)에서 반사되어 다시 제1증폭매질(112)과 제2증폭매질(114)을 통과하면서 증폭될 수 있다.
이 때, 제1반사미러(130)와 제2증폭매질(114)의 사이에 구비된 편광변환판(140)을 통과하게 되고, 레이저는 상기 편광변환판(140)을 두 번 통과하면서 편광방향이 다른 방향으로 변할 수 있다.
한편, 상기 제1반사미러(130)에서 반사되어 제2증폭매질(114)과 제1증폭매질(112)을 투과한 레이저는 상기 제1편광 투과미러(120)를 만나게 되는데, 이 때, 레이저는 상기 편광변환판(140)을 통과하면서 편광의 방향이 변한 상태이므로 제1편광 투과미러(120)를 투과하지 못하고 반사될 수 있다.
그리고, 상기 반사되는 레이저를 필요한 곳으로 다시 반사시키는 제2반사미러(170)가 구비될 수 있다.
한편, 레이저가 상기 제1증폭매질(112) 및 제2증폭매질(114)을 통과하면서 상기 제1증폭매질(112) 및 제2증폭매질(114)이 가열될 수 있으며, 이로 인해 열 렌즈 효과가 발생될 수 있다.
따라서, 상기 레이저는 상기 제1증폭매질(112) 및 제2증폭매질(114)을 통과하면서 열렌즈 효과에 의해 점점 집속되어 빔 직경이 좁아질 수 있다.
그러므로, 본 실시예에서는 상기 제1편광 투과미러(120)의 전측에 선보상 렌즈부(160)를 구비하여 제1증폭매질(112) 및 제2증폭매질(114)의 열렌즈 효과에 의해 좁아지는 빔의 직경만큼 레이저 빔의 직경이 확장되도록 확산시킬 수 있다.
상기와 같은 선보상 렌즈부(160)는 볼록렌즈 및 오목렌즈를 포함하는 갈릴레오 형태로 이루어질 수 있으며, 상기 제1편광 투과미러(120)와 레이저 발진기(미도시)의 사이에 구비될 수 있다.
물론, 본 발명은 이에 한정되지 아니하며, 도 5에 도시된 바와 가이,상기 선보상 렌즈부(160)는 볼록렌즈의 조합으로 이루어지는 케플러 형태로 이루어질 수도 있다.
따라서, 상기와 같은 선보상 렌즈부(160)가 상기 레이저가 제1증폭매질(112)에 최초 입사될 때의 직경이 상기 레이저가 제1증폭매질(112) 및 제2증폭매질(114)을 왕복 통과하면서 집속되어 좁아지는 빔의 직경만큼 확산된 상태로 상기 제1증폭매질(112)에 입사되도록 할 수 있다.
이 때, 상기 레이저가 제1증폭매질(112) 및 제2증폭매질(114)을 통과하면서 집속되어 빔의 직경이 좁아지는 양은 상기 레이저의 출력에 따라 달라질 수 있으므로, 상기 선보상 렌즈부(160)는 상기 레이저 빔의 확산되는 양을 조절할 수 있도록 각 볼록렌즈 및 오목렌즈의 사이의 거리가 조절될 수 있도록 구비될 수 있다.
한편, 상기 선보상 렌즈부(160)에도 불구하고 상기 레이저가 제1증폭매질(112)과 제2증폭매질(114)을 통과하면서 집속되어 상기 제2증폭매질(114)을 통과한 후에는 빔의 직경이 줄어드는 방향으로 집속될 수 있다.
이 때, 상기 제1반사미러(130)가 그 반사면(132)에 조사되는 레이저 빔(L')의 단면 임의의 지점과 상기 반사면(132)이 수직을 이루도록 볼록하게 형성되므로, 상기 제1반사미러(130)의 반사면(132)에서 반사되는 레이저(L')가 상기 반사면에 조사되는 경로와 동일한 경로를 이루면서 반사될 수 있다.
즉, 빔의 직경이 줄어드는 방향으로 집속되는 레이저 빔(L')이 상기 제1반사미러(130)의 볼록한 반사면(132)에서 반사되면서 상기 반사면(132)에 조사되는 각도 및 경로와 동일한 각도 및 경로를 이루면서 확산되는 방향으로 반사될 수 있다.
도 6은 종래의 레이저 증폭장치에 의해 증폭되는 레이저 빔의 직경의 변화를 도시한 그래프이다.
증폭매질(20)의 길이는 약 10cm이며, 증폭매질(20)간의 간격은 약 10cm로 설치하였다.
도 6에 도시된 바와 같이, 최초 증폭매질(20)에 입사된 레이저빔은 6mm의 반경을 가지며, 각 증폭매질(20)을 투과하면서 열렌즈 효과에 의해 빔의 직경이 좁아져 반사미러(40)에서 반사된 후 모든 증폭매질(20)을 투과한 후에는 4.4mm정도의 반경으로 축소될 수 있다.
도 7은 본 실시예의 레이저 증폭장치(100)에 의해 증폭되는 레이저 빔의 직경의 변화를 도시한 그래프이다.
종래와 유사하게, 제1증폭매질(112)과 제2증폭매질(114)은 약 10cm의 길이를 가지고 있으며, 제1증폭매질(112)과 제2증폭매질(114)의 간격은 약 10cm로 설치하였다.
도 7에 도시된 바와 같이, 본 실시예에 따른 레이저 증폭장치(100)에 조사되는 레이저는 빔 직경이 상기 선보상 렌즈부(160)에 의해 확산되어 상기 제1증폭매질(112)에 입사할 때에는 5.95mm정도로 확산되었다가 제1증폭매질(112), 제2증폭매질(114)을 거치면서 집속된 후, 제1반사미러(130)에서 반사되어 다시 확산되고, 제1증폭매질(112) 및 제2증폭매질(114)을 거치면서 다시 집속될 수 있다.
이 때, 레이저가 최초 조사되어 제1증폭매질(112) 및 제2증폭매질(114)을 통과하여 제1반사미러(130)에 닿을 때까지의 레이저 빔의 직경의 변화와 상기 제1반사미러(130)에서 반사된 후 제1증폭매질(112) 및 제2증폭매질(114)을 통과하는 레이저 빔의 직경의 변화가 동일한 것을 알 수 있다.
도 7에서는 레이저 빔의 직경의 변화량이 너무 적어 그래프에서 유의미하게 나타나지 아니하여 별도로 해당부분의 척도를 확대하여 도시하였다.
따라서, 상기 쿼츠 로테이터(150)를 중심으로 양 측의 레이저 빔의 직경 변화가 동일하며, 상기 쿼츠 로테이터(150)의 양 측면에 닿는 레이저 빔의 직경이 동일하므로 쿼츠 로테이터(150)를 투과하는 왜곡된 레이저 빔이 제거될 수 있다.
도 8 및 도 9는 상기 제1증폭매질(112)과 제2증폭매질(114)의 사이 간격의 변화에 따른 종래와 본 실시예의 레이저 증폭장치에 의해 증폭되는 레이저의 빔 직경의 변화를 도시한 그래프이다.
도 8은 상기 제1증폭매질(112)과 제2증폭매질(114)의 간격이 약 10cm일 때 이며, 도 8은 상기 제1증폭매질(112)과 제2증폭매질(114)의 간격이 약 30cm일 때를 도시하였다.
도 8에 도시된 바와 같이, 상기 제1증폭매질(112)과 제2증폭매질(114)의 간격이 약 10cm일 때, 종래의 레이저 증폭장치(10)에 의해 증폭되는 레이저(L)는 상기 제1증폭매질(112)을 마지막으로 통과한 후 약 89cm를 진행하여 초점이 맺히는 것을 알 수 있다.
이에 비하여, 본 실시예의 레이저 증폭장치(100)에 의해 증폭되는 레이저(L')는 제1증폭매질(112)을 마지막으로 통과한 후 약 4.3m를 진행한 지점에서 초점이 맺힐 수 있다.
그래프에서는 종래와의 차이가 너무 크게나 본 실시예의 레이저 증폭장치(100)에 의해 증폭된 레이저(L')가 초점이 맺히는 지점을 표시하지는 아니하였으며, 그래프에 도시된 기울기로 직경이 줄어들었을 때 그 레이저 빔(L')의 직경이 최소화 되는 지점이 대략 4.3m임을 알 수 있다.
즉, 본 실시예의 레이저 증폭장치(100)에 의해 증폭되는 레이저(L')가 종래에 비하여 보다 먼 거리에서 초점이 맺히는 것을 알 수 있으며, 이는 증폭된 레이저를 추후 취급하는 후처리 장치를 설계하는데 보다 공간적인 여유를 가질 수 있는 효과를 발휘할 수 있다.
종래와 같이 증폭된 레이저의 초점이 맺히는 거리가 너무 짧게 되면 증폭된 레이저를 추후 취급하는 후처리 장치가 위치될 수 있는 공간이 너무 협소할 수 있으며, 이를 해결하기 위해서는 증폭된 레이저를 다시 확산시키는 렌즈 등의 구성이 필요한데, 이러한 렌즈등의 구성물이 레이저를 반사시킬 수 있으며, 레이저가 증폭된 상태임을 고려하면 주변 장비나 렌즈의 소손 위험도 발생할 수 있다.
또한, 도 9에 도시된 바와 같이, 제1증폭매질(112)과 제2증폭매질(114)의 간격이 약 30cm일 때를 살펴보면, 종래의 레이저 증폭장치(10)에 의해 증폭되는 레이저(L)는 상기 제1증폭매질(112)을 마지막으로 통과한 후 약 75cm를 진행하여 초점이 맺히는 것을 알 수 있다. 이는 제1증폭매질(112)과 제2증폭매질(114)의 간격이 10cm일 때와 비교하여 더욱 짧아진 것을 알 수 있다.
이에 더하여, 상기 제1증폭매질(112)에서 방출되는 레이저 빔(L)의 반경 또한 3.4mm로서, 제1증폭매질(112)과 제2증폭매질(114)의 간격이 10cm일 때와 비교하여 더욱 좁아진 것을 볼 수 있는데, 이렇게 레이저 빔(L)의 반경이 좁아지게 되면 에너지의 밀도가 높아져 증폭매질의 손상이 야기될 수 있는 위험도 있다.
이에 반하여, 본 실시예의 레이저 증폭장치(100)에 의해 증폭되는 레이저(L')는 제1증폭매질(112)을 마지막으로 통과한 후 약 4.3m를 진행한 뒤 초점이 맺히며, 이는 본 실시예의 레이저 증폭장치(100)에 의해 증폭되는 레이저 빔(L')의 직경은 제1증폭매질(112)과 제2증폭매질(114)의 간격에 무관함을 알 수 있다.
따라서, 본 실시예의 레이저 증폭장치(100)에 따르면 제1증폭매질(112)과 제2증폭매질(114)의 간격을 자유롭게 설계할 수 있으며 그에 따라 제1증폭매질(112)과 제2증폭매질(114) 사이에 구비된 각종 구성요소의 유지보수에 필요한 공간을 충분히 확보할 수 있는 효과가 있다.
도 10은 종래의 레이저 증폭장치와 본 실시예에 따른 레이저 증폭장치에서 증폭되어 출력되는 레이저 빔의 형상과 비율 및 역류하는 빔의 형상과 비율을 시뮬레이션한 도면이다.
종래의 레이저 증폭장치에서 증폭된 레이저 빔 중 역류하는 레이저 빔은 전체 출력되는 레이저 빔의 1.58%에 달하며, 정상적으로 출력되는 레이저 빔은 98.42%를 나타내었다.
이에 비하여, 본 실시예의 레이저 증폭장치에서 증폭된 레이저 빔 중 역류하는 레이저 빔은 전체 출력되는 레이저 빔의 6.22X10-6%로서, 종래에 비하여 현저하게 줄어듦을 알 수 있다. 이에 따라 정상적으로 출력되는 레이저 빔 또한 99.99% 이상으로서 출력되는 빔의 거의 대부분이 정상적으로 출력됨을 알 수 있으며, 그 형상 또한 종래에 비하여 보다 완벽에 가까운 형태를 나타냄을 알 수 있다.
따라서, 레이저 빔을 보다 크게 증폭하여도 역류하는 빔이 거의 없어 출력효율을 높일 수 있음은 물론, 장비의 손상위험을 최소화 시킬 수 있는 효과가 있다.
도 11은 종래의 레이저 증폭장치와 본 실시예에 따른 레이저 증폭장치의 동작조건의 변화에 따른 손실율을 나타낸 그래프이다.
그래프에서 동작조건은 증폭매질의 증폭량과 열 발생량의 비율이며, 손실율은 역류하는 빔의 비율일 수 있다.
도 11의 그래프에서 알 수 있는 바와 같이, 종래의 레이저 증폭장치는 증폭매질의 열 발생량이 증가할수록 손실율이 급격하게 증가하는데 반하여, 본 실시예의 레이저 증폭장치는 열 발생량이 증가하여도 손실율은 열 발생량과는 무관하게 안정적으로 유지됨을 알 수 있다.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화 될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.

Claims (8)

  1. 투과되는 레이저를 증폭시키는 제1증폭매질;
    상기 제1증폭매질과 이격되어 배치되어 투과되는 레이저를 증폭시키는 제2증폭매질;
    상기 제1증폭매질의 전측에 구비되며, 상기 제1증폭매질 및 제2증폭매질에서 발생되는 열렌즈 효과를 상쇄하고자 상기 제1증폭매질로 조사되는 레이저를 선보상하는 선보상 렌즈부;
    상기 제1증폭매질의 전단에 조사되는 레이저에 대해서 경사지게 구비되며, 조사되는 빛 중 특정방향으로 진동하는 레이저는 투과시키고, 다른 방향으로 진동하는 레이저는 반사시키는 제1편광 투과미러;
    상기 제2증폭매질의 후측에 구비되어 투과되는 레이저의 진동방향을 변화시키는 편광변환판;
    상기 편광변환판의 후측에 구비되며, 레이저를 반사시키는 제1반사미러;
    를 포함하는 레이저 증폭장치.
  2. 제1항에 있어서,
    상기 제1반사미러는,
    반사되는 레이저가 조사된 경로와 동일한 경로로 반사되도록 볼록한 반사면을 형성하는 레이저 증폭장치.
  3. 제2항에 있어서,
    상기 제1반사미러는,
    상기 반사면에 조사되는 레이저의 단면의 임의의 지점과 상기 반사면이 수직을 이루도록 볼록한 반사면을 형성하는 레이저 증폭장치.
  4. 제1항에 있어서,
    상기 선보상 렌즈부는,
    상기 제1증폭매질과 제2증폭매질을 거쳐 상기 반사미러에 닿을 때까지 수축되는 레이저 빔 직경에 해당하는 만큼,
    상기 레이저가 상기 제1증폭매질에 닿을 때 레이저의 빔 직경이 넓어지도록 레이저를 확산시키는 레이저 증폭장치.
  5. 제4항에 있어서,
    상기 선보상 렌즈부는, 볼록렌즈와 오목렌즈의 조합으로 구비되는 레이저 증폭장치.
  6. 제4항에 있어서,
    상기 선보상 렌즈부는, 볼록렌즈의 조합으로 구비되는 레이저 증폭장치.
  7. 제1항에 있어서,
    상기 제1증폭매질과 제2증폭매질의 사이에 구비되며, 양 면에 조사되는 레이저의 왜곡이 서로 상쇄되도록 하는 쿼츠 로테이터를 더 포함하는 레이저 증폭장치.
  8. 제1항에 있어서,
    상기 제1편광투과미러에서 반사된 레이저를 재 반사하는 제2반사미러를 더 포함하는 레이저 증폭장치.
PCT/KR2015/004143 2015-04-24 2015-04-27 레이저 증폭장치 WO2016171301A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/568,792 US20180175580A1 (en) 2015-04-24 2015-04-27 Laser amplification device
CN201580079175.9A CN107851956A (zh) 2015-04-24 2015-04-27 激光放大器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0057885 2015-04-24
KR1020150057885A KR101750821B1 (ko) 2015-04-24 2015-04-24 레이저 증폭장치

Publications (1)

Publication Number Publication Date
WO2016171301A1 true WO2016171301A1 (ko) 2016-10-27

Family

ID=57143235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/004143 WO2016171301A1 (ko) 2015-04-24 2015-04-27 레이저 증폭장치

Country Status (4)

Country Link
US (1) US20180175580A1 (ko)
KR (1) KR101750821B1 (ko)
CN (1) CN107851956A (ko)
WO (1) WO2016171301A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309913A1 (en) 2016-10-17 2018-04-18 Universität Stuttgart Radiation field amplifier system
EP3309914A1 (en) * 2016-10-17 2018-04-18 Universität Stuttgart Radiation field amplifier system
KR101898632B1 (ko) * 2017-04-19 2018-09-13 주식회사 이오테크닉스 레이저 증폭 장치
KR102091104B1 (ko) * 2018-07-24 2020-03-23 학교법인 한동대학교 자연 증폭 방출 억제용 포화 흡수체를 가지는 고체 레이저 장치
KR20240051528A (ko) 2022-10-13 2024-04-22 레이저닉스 주식회사 레이저 증폭매질 냉각장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270781A (ja) * 1997-03-27 1998-10-09 Sony Corp レーザ光発生方法及びその装置
JP2000174369A (ja) * 1993-07-28 2000-06-23 Mitsubishi Electric Corp 往復型光増幅器
JP2001168429A (ja) * 1999-12-03 2001-06-22 Mitsubishi Electric Corp 固体レーザ発振器
JP2009290030A (ja) * 2008-05-29 2009-12-10 Chiba Univ 光増幅器及びそれを用いた光増幅システム
KR20100135772A (ko) * 2008-03-31 2010-12-27 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 다중-패스 광 전력 증폭기

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8912765D0 (en) * 1989-06-02 1989-07-19 Lumonics Ltd A laser
US5535049A (en) * 1994-05-11 1996-07-09 The Regents Of The University Of California Phase and birefringence aberration correction
KR100269028B1 (ko) 1998-04-21 2000-10-16 정명세 반일체 고리형 공진기를 이용한 단방향 발진 레이저 장치
JP2003008121A (ja) 2001-06-21 2003-01-10 Mitsubishi Electric Corp 固体レーザ発振器
DE10328306A1 (de) * 2003-06-23 2005-01-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anordnung zur Kompensation der Spannungsdoppelbrechung sowie Aufbau mit solchen Anordnungen
FR2899390B1 (fr) * 2006-03-31 2008-05-30 Thales Sa Dispositif de compensation de la lentille thermique dans une cavite regenerative femtoseconde haute cadence
US10328306B2 (en) * 2016-11-03 2019-06-25 Ronald J. Meetin Information-presentation structure with impact-sensitive color change and overlying protection or/and surface color control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174369A (ja) * 1993-07-28 2000-06-23 Mitsubishi Electric Corp 往復型光増幅器
JPH10270781A (ja) * 1997-03-27 1998-10-09 Sony Corp レーザ光発生方法及びその装置
JP2001168429A (ja) * 1999-12-03 2001-06-22 Mitsubishi Electric Corp 固体レーザ発振器
KR20100135772A (ko) * 2008-03-31 2010-12-27 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 다중-패스 광 전력 증폭기
JP2009290030A (ja) * 2008-05-29 2009-12-10 Chiba Univ 光増幅器及びそれを用いた光増幅システム

Also Published As

Publication number Publication date
KR101750821B1 (ko) 2017-07-11
KR20160126606A (ko) 2016-11-02
CN107851956A (zh) 2018-03-27
US20180175580A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
WO2016171301A1 (ko) 레이저 증폭장치
CN102053319B (zh) 光源装置
JPH04500565A (ja) 積分空洞による線形光源
US20070110354A1 (en) Method and apparatus for optical isolation in high power fiber-optic systems
WO2010061684A1 (ja) 照明装置および投写型映像表示装置
US7167312B2 (en) Beam shaping optics and module for a diode laser arrangement
WO2015064957A1 (en) Dual optical-comb femtosecond optical fiber laser
WO2011126184A1 (en) High-energy laser system intercepting a target and method thereof
WO2020226266A1 (ko) 피부 치료용 레이저 장치
JPH03140912A (ja) 反射軽減集成装置
JPS633288B2 (ko)
JPS60130934A (ja) 光アイソレ−タ
JP3826726B2 (ja) 光出力装置の保護装置並びにそれを用いた光伝送システム及び光出力装置の保護方法
KR20130093538A (ko) 자유 빔 광섬유간 커플링 장치
JPS59160113A (ja) 撮像装置を用いた光フアイバ融着接続方法
WO2019132442A1 (ko) 라인빔 형성장치
WO2013159456A1 (zh) 一种带光反馈的激光模组结构
WO2013141578A1 (ko) 플라즈마를 이용한 극자외선 발생장치
WO2017188775A1 (ko) 레이저 빔 장치 및 이를 갖는 레이저 빔 핸드피스
US8251519B2 (en) Light integration apparatus for use in a projection device
JPH0527146A (ja) 光機能装置
JPH0327056B2 (ko)
JP3584277B2 (ja) 照明光学系、アライメント光学系及び投影露光装置
WO2021049867A1 (ko) 반사 방식의 나선형 위상 플레이트 및 이를 포함하는 라게르-가우시안 빔 생성 장치
WO2012069017A1 (zh) 激光器防反射装置以及包含该装置的激光设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889967

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15568792

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889967

Country of ref document: EP

Kind code of ref document: A1