WO2016171157A1 - Photoelectric conversion device - Google Patents

Photoelectric conversion device Download PDF

Info

Publication number
WO2016171157A1
WO2016171157A1 PCT/JP2016/062471 JP2016062471W WO2016171157A1 WO 2016171157 A1 WO2016171157 A1 WO 2016171157A1 JP 2016062471 W JP2016062471 W JP 2016062471W WO 2016171157 A1 WO2016171157 A1 WO 2016171157A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
layer
photoelectric conversion
conversion device
electrode
Prior art date
Application number
PCT/JP2016/062471
Other languages
French (fr)
Japanese (ja)
Inventor
順次 荒浪
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2016171157A1 publication Critical patent/WO2016171157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoelectric conversion device including a compound semiconductor layer.
  • Such a photoelectric conversion device has a configuration in which a plurality of photoelectric conversion cells are arranged side by side in a plane.
  • Each photoelectric conversion cell includes a lower electrode such as a metal electrode on a substrate such as glass, a light absorption layer including a metal chalcogenide such as CIGS, and a buffer layer including indium sulfide heterojunction to the light absorption layer.
  • the upper electrode such as a transparent electrode or a metal electrode is laminated in this order.
  • the plurality of photoelectric conversion cells are electrically connected in series by electrically connecting the upper electrode of one adjacent photoelectric conversion cell and the lower electrode of the other photoelectric conversion cell by a connecting conductor. Yes.
  • the photoelectric conversion device includes an electrode layer, a first semiconductor layer, a second semiconductor layer, and an intermediate layer.
  • the first semiconductor layer is located on the electrode layer.
  • the first semiconductor layer is p-type or i-type and mainly contains a chalcopyrite compound or a perovskite compound.
  • the second semiconductor layer is n-type and is located on the first semiconductor layer.
  • the intermediate layer is located at the interface between the first semiconductor layer and the second semiconductor layer, and is an n-type semiconductor layer mainly containing silicon.
  • FIG. 1 is a perspective view showing the photoelectric conversion device according to the first embodiment, and FIG. 2 is a sectional view thereof.
  • the photoelectric conversion device 11 includes a plurality of photoelectric conversion cells 10 on a substrate 1. These photoelectric conversion cells 10 are arranged with a space P3 therebetween, and the adjacent photoelectric conversion cells 10 are electrically connected to each other. In FIG. 1, only two photoelectric conversion cells 10 are shown for convenience of illustration. However, in an actual photoelectric conversion device 11, a large number of photoelectric conversion cells are arranged in the horizontal direction of the drawing or in a direction perpendicular thereto. The cells 10 may be arranged in a plane (two-dimensionally).
  • the + Z direction in the figure is described as the upper side.
  • the + Z direction is not necessarily the upper side and may be the lower side.
  • the plurality of electrode layers 2 include electrode layers 2a to 2c arranged with a spacing P1 in one direction.
  • a first semiconductor layer 3, an intermediate layer 5a, and a second semiconductor layer 5 are sequentially stacked from the electrode layer 2a through the substrate 1 to the electrode layer 2b.
  • the connection conductor 7 is provided along or through the side surfaces of the first semiconductor layer 3 and the intermediate layer 5a.
  • the connection conductor 7 electrically connects the second semiconductor layer 5 and the electrode layer 2b.
  • the electrode layer 2, the first semiconductor layer 3, the intermediate layer 5 a, and the second semiconductor layer 5 constitute one photoelectric conversion cell 10, and adjacent photoelectric conversion cells 10 are connected in series via the connection conductor 7. As a result, a high-output photoelectric conversion device 11 is obtained.
  • the photoelectric conversion apparatus 11 in this embodiment assumes what light injects into the 1st semiconductor layer 3 from the 2nd semiconductor layer 5 side, it is not limited to this, The electrode layer 2 side The light may be incident on the first semiconductor layer 3.
  • the substrate 1 is for supporting the photoelectric conversion cell 10.
  • Examples of the material used for the substrate 1 include glass, ceramics, resin, and metal.
  • the electrode layer 2 (electrode layers 2a, 2b, 2c) is a conductor such as Mo, Al, Ti, or Au provided on the substrate 1.
  • the electrode layer 2 is formed to a thickness of about 0.2 ⁇ m to 1 ⁇ m using a known thin film forming method such as sputtering or vapor deposition.
  • the first semiconductor layer 3 is a semiconductor layer that functions to absorb light and generate carriers (electrons and holes), and is a so-called light absorption layer.
  • the first semiconductor layer 3 is a p-type or i-type semiconductor layer having a thickness of about 1 ⁇ m to 3 ⁇ m, for example.
  • the first semiconductor layer 3 mainly contains a chalcopyrite compound or mainly contains a perovskite compound. “Containing mainly chalcopyrite compounds” means containing at least 70 mol% of chalcopyrite compounds.
  • the phrase “mainly containing a perovskite compound” means containing 70 mol% or more of a perovskite compound.
  • the chalcopyrite compound is a compound having a chalcopyrite structure, and examples thereof include I-III-VI group compounds.
  • the group I-III-VI compound is a compound of a group 11 element (also referred to as a group IB element), a group 13 element (also referred to as a group III-B element), and a group 16 element.
  • Examples of the I-III-VI group compounds include CuInSe 2 (also referred to as copper indium diselenide, CIS), Cu (In, Ga) Se 2 (also referred to as copper indium diselenide / gallium, CIGS), Cu ( In, Ga) (Se, S) 2 (also referred to as diselene / copper indium / gallium / CIGSS).
  • the first semiconductor layer 3 may be composed of a multi-component compound semiconductor thin film such as copper indium selenide / gallium having a thin film of selenite / copper indium sulfide / gallium layer as a surface layer.
  • a multi-component compound semiconductor thin film such as copper indium selenide / gallium having a thin film of selenite / copper indium sulfide / gallium layer as a surface layer.
  • the perovskite compound is a compound having a perovskite structure, and examples thereof include organic-inorganic composite materials such as CH 3 NH 3 PbX 3 (X is a halogen element).
  • the organic-inorganic composite material is a material in which an organic component and an inorganic component are combined at the molecular level.
  • a structure containing no organic substance such as APbX 3 (A is an alkali metal element such as Cs and X is a halogen element) is also included in the perovskite compound.
  • a perovskite compound containing Pb and having X composed of a halogen element is preferably used.
  • the halogen element represented by X may include two or more elements, and an organic substance such as CH 3 NH 3 and an alkali metal such as Cs may also include two or more elements. .
  • an organic substance such as CH 3 NH 3 and an alkali metal such as Cs may also include two or more elements.
  • the first semiconductor layer 3 can be formed by a so-called vacuum process such as a sputtering method or an evaporation method, or can be formed by a process called a coating method or a printing method.
  • a process referred to as a coating method or a printing method is a process in which a complex solution of constituent elements of the first semiconductor layer 3 is applied on the intermediate layer 3a or the electrode layer 2, and then drying and heat treatment are performed.
  • the second semiconductor layer 5 is an n-type semiconductor layer having a thickness of about 0.05 to 3.0 ⁇ m, for example.
  • the second semiconductor layer 5 is for extracting the carriers generated in the first semiconductor layer 3 satisfactorily.
  • the electrical resistivity of the second semiconductor layer 5 is 1 ⁇ ⁇ cm or less, and the sheet resistance May be 50 ⁇ / ⁇ or less.
  • the second semiconductor layer 5 includes, for example, a metal oxide such as ZnO, In 2 O 3 , or SnO 2 , and includes Al, B, Ga, In, Sn, F, and the like in order to reduce the electrical resistivity. Any of these elements may be included. Specific examples of the metal oxide semiconductor containing such an element include, for example, AZO (Aluminum Zinc Oxide), BZO (Boron Zinc Oxide), GZO (Gallium Zinc Oxide), IZO (Indium Zinc Oxide), ITO ( Indium Tin Oxide) and FTO (Fluorine tin Oxide).
  • the first semiconductor layer 5 is formed by a sputtering method, a vapor deposition method, a CVD method, or the like.
  • the second semiconductor layer 5 may be a single layer or a laminate of two or more layers.
  • the second semiconductor layer is composed of two or more layers, at least one of the plurality of layers may be n-type. That is, the second semiconductor layer may be a stacked body of an n-type semiconductor layer and an i-type semiconductor layer, or may be a stacked body of an n-type semiconductor layer. Further, the second semiconductor layer 5 may be a stacked body of semiconductor layers having different electric resistivity, and in that case, it is possible to effectively reduce the occurrence of leakage current due to the semiconductor layer having a high electric resistivity. .
  • the intermediate layer 5 a is located at the interface between the first semiconductor layer 3 and the second semiconductor layer 5. That is, the first semiconductor layer 3 is electrically connected to the second semiconductor layer 5 via the intermediate layer 5a.
  • the intermediate layer 5a is an n-type semiconductor layer mainly containing silicon and has a thickness of about 30 to 2000 nm.
  • the intermediate layer 5a is an n-type semiconductor layer mainly containing silicon, the dopant concentration can be well controlled, and the carriers separated by charge in the first semiconductor layer 3 that is a chalcopyrite compound are used.
  • the intermediate layer 5a can enhance the effect of drawing a carrier by applying a strong electric field. As a result, carrier recombination can be reduced and conversion efficiency can be increased.
  • Examples of the intermediate layer 5a include a semiconductor mainly containing silicon (Si) doped with phosphorus (P) or the like. Note that “mainly containing Si” means containing 70 mol% or more of Si.
  • the intermediate layer 5a is formed by using a deposition method such as a vapor deposition method, a sputtering method, a sol-gel method, a screen printing method, a coating method, a plating method, a spray coating method, an inkjet coating method, a CVD method, a plasma CVD method, or a PVD method. can do.
  • the intermediate layer 3a may be formed into a desired pattern shape by combining a photolithography method, a lift-off method, a coating method using a dispenser, or a pattern forming method such as laser scribing.
  • a collector electrode 8 may be further formed on the second semiconductor layer 5.
  • the collecting electrode 8 is for taking out the carriers generated in the first semiconductor layer 3 more satisfactorily.
  • the collector electrode 8 is formed in a linear shape from one end of the photoelectric conversion cell 10 to the connection conductor 7.
  • the current generated in the first semiconductor layer 3 is collected by the current collecting electrode 8 through the first semiconductor layer 5, and the adjacent photoelectric conversion cell 10 is successfully energized through the connection conductor 7. .
  • the collecting electrode 8 may have a width of 50 to 400 ⁇ m from the viewpoint of increasing the light transmittance to the first semiconductor layer 3 and having good conductivity.
  • the current collecting electrode 8 may have a plurality of branched portions.
  • the current collecting electrode 8 is formed, for example, by printing a metal paste in which a metal powder such as Ag is dispersed in a resin binder or the like in a pattern and curing it.
  • connection conductor 7 is a conductor provided in a groove P2 that divides the first semiconductor layer 3, the intermediate layer 5a, and the second semiconductor layer 5.
  • the connection conductor 7 can be made of metal, conductive paste, or the like.
  • the collector electrode 8 is extended to form the connection conductor 7, but the present invention is not limited to this.
  • the second semiconductor layer 5 may be stretched.
  • FIG. 3 is a perspective view of the photoelectric conversion layer 21 of the second embodiment
  • FIG. 4 is a cross-sectional view thereof.
  • the same components as those of the photoelectric conversion device 11 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • Each photoelectric conversion cell 20 in the photoelectric conversion device 21 of the second embodiment further includes a buffer layer 4 at the interface between the first semiconductor layer 3 and the intermediate layer 5a.
  • the buffer layer 4 is a layer having a carrier density lower than that of the intermediate layer 5a.
  • the buffer layer 4 can satisfactorily fill defects on the surface of the first semiconductor layer 3, and further enhance the effect of extracting carriers by the intermediate layer 5a while further reducing carrier recombination. Can do. Further, when the intermediate layer 5 a is formed by a physical thin film forming method such as sputtering, damage to the first semiconductor layer 3 can be mitigated by the buffer layer 4, and the surface of the first semiconductor layer 3 can be reduced. It is possible to more effectively reduce the occurrence of defects.
  • the carrier density of the buffer layer 4 is about 1 ⁇ 10 10 to 1 ⁇ 10 16 cm ⁇ 3
  • the carrier density of the intermediate layer 5a May be about 1 ⁇ 10 20 to 1 ⁇ 10 22 cm ⁇ 3 .
  • the buffer layer 4 is a semiconductor layer or an insulating layer heterojunction with the first semiconductor layer 3 and has a thickness of 5 to 200 nm.
  • a metal sulfide such as CdS, ZnS, or In 2 S 3 is used.
  • the buffer layer 4 may be a mixed crystal containing at least one of a metal oxide and a metal hydroxide in addition to such a metal sulfide.
  • the buffer layer 4 is formed by, for example, a solution deposition method (CBD method), an ALD method, or an MOCVD method.
  • an n-type organic semiconductor may be used as the buffer layer 4.
  • an organic semiconductor include fullerene derivatives such as phenyl-C 61 -butyric acid methyl ester (PCBM) and fullerene C60.
  • PCBM phenyl-C 61 -butyric acid methyl ester
  • the buffer layer 4 can be formed by dissolving PCBM or the like in an organic solvent, applying this solution onto the first semiconductor layer 3, and then drying.
  • the buffer layer 4 may be formed by evaporating fullerene C60 or the like on the first semiconductor layer 3.
  • a protective layer is further provided on the buffer layer 4.
  • a buffer layer may be stacked.
  • the protective buffer layer include molybdenum oxide and tungsten oxide.
  • Such a protective buffer layer can be formed by sputtering or vapor deposition.
  • FIG. 5 is a perspective view of the photoelectric conversion layer 31 of the third embodiment
  • FIG. 6 is a cross-sectional view thereof.
  • the same components as those of the photoelectric conversion device 11 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • Each photoelectric conversion cell 30 in the photoelectric conversion device 31 of the third embodiment further includes a lower layer 6 at the interface between the electrode layer 2 and the first semiconductor layer 3. That is, the first semiconductor layer 3 is electrically connected to the electrode layer 2 via the lower layer 6.
  • the lower layer 6 is a p-type semiconductor having a crystal structure different from that of the first semiconductor layer 3, and has a carrier density higher than that of the first semiconductor layer 3.
  • the lower layer 6 has a thickness of about 30 to 2000 nm.
  • the carrier density of the first semiconductor layer 3 may be, for example, about 1 ⁇ 10 16 to 9 ⁇ 10 17 cm ⁇ 3 or less so as not to reveal recombination due to defects.
  • the lower layer 6 has a carrier density higher than that of the first semiconductor layer 3, for example, 1 ⁇ 10 18 to 9 ⁇ 10 18 cm ⁇ 3. It can be easily pulled out.
  • a p-type semiconductor having a crystal structure different from that of the first semiconductor layer 3 may be used from the viewpoint of easy control of the dopant.
  • Examples of the lower layer 6 include a semiconductor mainly containing silicon (Si) doped with other elements such as boron (B). Note that “mainly containing Si” means containing 70 mol% or more of Si. Further, as the other lower layer 6, a compound semiconductor such as zinc selenide having a carrier density of 1 ⁇ 10 18 to 9 ⁇ 10 18 cm ⁇ 3 and easily bonded to the first semiconductor layer 3 may be used. Good.
  • the first semiconductor layer 3 is a perovskite compound
  • a hole transport layer or the like can be used as the lower layer 6.
  • the hole transport layer include an organic hole transport layer obtained by adding a dopant such as Li-TFSI or F4-TCNQ to poly-3-hexylthiophene, or an inorganic hole transport layer such as nickel oxide.
  • the lower layer 6 is produced using a deposition method such as a vapor deposition method, a sputtering method, a sol-gel method, a screen printing method, a coating method, a plating method, a spray coating method, an inkjet coating method, a CVD method, a plasma CVD method, or a PVD method. can do. If necessary, the lower layer 6 may be formed into a desired pattern shape by combining a photolithography method, a lift-off method, a coating method using a dispenser, or a pattern forming method such as laser scribing.
  • a deposition method such as a vapor deposition method, a sputtering method, a sol-gel method, a screen printing method, a coating method, a plating method, a spray coating method, an inkjet coating method, a CVD method, a plasma CVD method, or a PVD method. can do.
  • the lower layer 6 may be formed into a desired pattern shape by combining
  • electrode layer 3 first semiconductor layer 4: buffer layer 5: second semiconductor layer 5a: intermediate layer 6: lower layer 11, 21, 31: photoelectric conversion device

Abstract

A photoelectric conversion device according to one embodiment of the present invention comprises an electrode layer, a first semiconductor layer, a second semiconductor layer, and an intermediate layer. The first semiconductor layer is disposed on the electrode layer. The first semiconductor layer is a p-type or i-type semiconductor layer comprising primarily a chalcopyrite compound or a perovskite compound. The second semiconductor layer is an n-type semiconductor layer and is disposed on the first semiconductor layer. The intermediate layer is positioned at the interface of the first semiconductor layer and second semiconductor layer and is an n-type semiconductor layer comprising primarily silicon.

Description

光電変換装置Photoelectric conversion device
 本発明は、化合物半導体層を具備する光電変換装置に関する。 The present invention relates to a photoelectric conversion device including a compound semiconductor layer.
 太陽光発電等に使用される光電変換装置として、カルコパイライト系化合物から成る半導体層を光吸収層として用いたものがある(特開2003-282909号公報参照)。このような光電変換装置は、複数の光電変換セルが平面的に並設された構成を有する。各光電変換セルは、ガラス等の基板の上に、金属電極等の下部電極と、CIGSなどの金属カルコゲナイドを含む光吸収層と、この光吸収層にヘテロ接合した、硫化インジウムを含むバッファ層と、透明電極や金属電極等の上部電極とが、この順に積層されて構成されている。また、複数の光電変換セルは、隣り合う一方の光電変換セルの上部電極と他方の光電変換セルの下部電極とが接続導体によって電気的に接続されることで、電気的に直列に接続されている。 As a photoelectric conversion device used for solar power generation or the like, there is one using a semiconductor layer made of a chalcopyrite compound as a light absorption layer (see Japanese Patent Application Laid-Open No. 2003-282909). Such a photoelectric conversion device has a configuration in which a plurality of photoelectric conversion cells are arranged side by side in a plane. Each photoelectric conversion cell includes a lower electrode such as a metal electrode on a substrate such as glass, a light absorption layer including a metal chalcogenide such as CIGS, and a buffer layer including indium sulfide heterojunction to the light absorption layer. The upper electrode such as a transparent electrode or a metal electrode is laminated in this order. In addition, the plurality of photoelectric conversion cells are electrically connected in series by electrically connecting the upper electrode of one adjacent photoelectric conversion cell and the lower electrode of the other photoelectric conversion cell by a connecting conductor. Yes.
 本発明の一態様に係る光電変換装置は、電極層と、第1の半導体層と、第2の半導体層と、中間層とを具備する。第1の半導体層は、電極層上に位置している。第1の半導体層は、p型またはi型であり、カルコパイライト系化合物またはペロブスカイト系化合物を主として含んでいる。第2の半導体層は、n型であり、第1の半導体層上に位置している。中間層は、第1の半導体層および第2の半導体層の界面に位置しており、シリコンを主として含むn型の半導体層である。 The photoelectric conversion device according to one embodiment of the present invention includes an electrode layer, a first semiconductor layer, a second semiconductor layer, and an intermediate layer. The first semiconductor layer is located on the electrode layer. The first semiconductor layer is p-type or i-type and mainly contains a chalcopyrite compound or a perovskite compound. The second semiconductor layer is n-type and is located on the first semiconductor layer. The intermediate layer is located at the interface between the first semiconductor layer and the second semiconductor layer, and is an n-type semiconductor layer mainly containing silicon.
第1実施形態の光電変換装置を示す斜視図である。It is a perspective view which shows the photoelectric conversion apparatus of 1st Embodiment. 図1の光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus of FIG. 第2実施形態の光電変換装置を示す斜視図である。It is a perspective view which shows the photoelectric conversion apparatus of 2nd Embodiment. 図3の光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus of FIG. 第3実施形態の光電変換装置を示す斜視図である。It is a perspective view which shows the photoelectric conversion apparatus of 3rd Embodiment. 図5の光電変換装置の断面図である。It is sectional drawing of the photoelectric conversion apparatus of FIG.
 以下に本開示の光電変換装置の実施形態について、図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the photoelectric conversion device of the present disclosure will be described in detail with reference to the drawings.
 <第1実施形態の光電変換装置>
 図1は、第1実施形態に係る光電変換装置を示す斜視図であり、図2はその断面図である。光電変換装置11は、基板1上に複数の光電変換セル10を具備している。これらの光電変換セル10は、互いに間隔P3をあけて並んでおり、隣接する光電変換セル10同士が互いに電気的に接続されている。なお、図1においては図示の都合上、2つの光電変換セル10のみを示しているが、実際の光電変換装置11においては、図面左右方向、あるいはさらにこれに垂直な方向に、多数の光電変換セル10が平面的に(二次元的に)配設されていてもよい。
<Photoelectric Conversion Device of First Embodiment>
FIG. 1 is a perspective view showing the photoelectric conversion device according to the first embodiment, and FIG. 2 is a sectional view thereof. The photoelectric conversion device 11 includes a plurality of photoelectric conversion cells 10 on a substrate 1. These photoelectric conversion cells 10 are arranged with a space P3 therebetween, and the adjacent photoelectric conversion cells 10 are electrically connected to each other. In FIG. 1, only two photoelectric conversion cells 10 are shown for convenience of illustration. However, in an actual photoelectric conversion device 11, a large number of photoelectric conversion cells are arranged in the horizontal direction of the drawing or in a direction perpendicular thereto. The cells 10 may be arranged in a plane (two-dimensionally).
 図1、図2において、基板1上に複数の電極層2が平面配置されている。なお、以下の説明においては、図の+Z方向を上側として説明するが、光電変換装置11の使用においては、必ずしも+Z方向が上側である必要はなく、下側であってもよい。 1 and 2, a plurality of electrode layers 2 are arranged in a plane on a substrate 1. In the following description, the + Z direction in the figure is described as the upper side. However, in the use of the photoelectric conversion device 11, the + Z direction is not necessarily the upper side and may be the lower side.
 図1、図2において、複数の電極層2は、一方向に間隔P1をあけて並べられた電極層2a~2cを具備している。この電極層2a上から基板1上を経て電極層2b上にかけて、第1の半導体層3、中間層5aおよび第2の半導体層5が順に積層されている。さらに、電極層2b上において、接続導体7が、第1の半導体層3および中間層5aの側面に沿って、またはこれらを貫通して設けられている。この接続導体7は、第2の半導体層5と電極層2bとを電気的に接続している。これら電極層2、第1の半導体層3、中間層5aおよび第2の半導体層5によって、1つの光電変換セル10が構成され、隣接する光電変換セル10同士が接続導体7を介して直列接続されることによって、高出力の光電変換装置11となる。なお、本実施形態における光電変換装置11は、第2の半導体層5側から第1の半導体層3へ光が入射されるものを想定しているが、これに限定されず、電極層2側から第1の半導体層3へ光が入射されるものであってもよい。 1 and 2, the plurality of electrode layers 2 include electrode layers 2a to 2c arranged with a spacing P1 in one direction. A first semiconductor layer 3, an intermediate layer 5a, and a second semiconductor layer 5 are sequentially stacked from the electrode layer 2a through the substrate 1 to the electrode layer 2b. Further, on the electrode layer 2b, the connection conductor 7 is provided along or through the side surfaces of the first semiconductor layer 3 and the intermediate layer 5a. The connection conductor 7 electrically connects the second semiconductor layer 5 and the electrode layer 2b. The electrode layer 2, the first semiconductor layer 3, the intermediate layer 5 a, and the second semiconductor layer 5 constitute one photoelectric conversion cell 10, and adjacent photoelectric conversion cells 10 are connected in series via the connection conductor 7. As a result, a high-output photoelectric conversion device 11 is obtained. In addition, although the photoelectric conversion apparatus 11 in this embodiment assumes what light injects into the 1st semiconductor layer 3 from the 2nd semiconductor layer 5 side, it is not limited to this, The electrode layer 2 side The light may be incident on the first semiconductor layer 3.
 基板1は、光電変換セル10を支持するためのものである。基板1に用いられる材料としては、例えば、ガラス、セラミックス、樹脂および金属等が挙げられる。基板1としては、例えば、厚さ1~3mm程度の青板ガラス(ソーダライムガラス)を用いることができる。 The substrate 1 is for supporting the photoelectric conversion cell 10. Examples of the material used for the substrate 1 include glass, ceramics, resin, and metal. As the substrate 1, for example, blue plate glass (soda lime glass) having a thickness of about 1 to 3 mm can be used.
 電極層2(電極層2a、2b、2c)は、基板1上に設けられた、Mo、Al、TiまたはAu等の導電体である。電極層2は、スパッタリング法または蒸着法などの公知の薄膜形成手法を用いて、0.2μm~1μm程度の厚みに形成される。 The electrode layer 2 ( electrode layers 2a, 2b, 2c) is a conductor such as Mo, Al, Ti, or Au provided on the substrate 1. The electrode layer 2 is formed to a thickness of about 0.2 μm to 1 μm using a known thin film forming method such as sputtering or vapor deposition.
 第1の半導体層3は、光を吸収してキャリア(電子および正孔)を発生させる機能をする半導体層であり、いわゆる光吸収層である。第1の半導体層3は、例えば1μm~3μm程度の厚みのp型またはi型の半導体層である。また、第1の半導体層3は、カルコパイライト系化合物を主として含んでいるか、あるいはペロブスカイト系化合物を主として含んでいる。カルコパイライト系化合物を主として含むとは、カルコパイライト系化合物を70mol%以上含むことをいう。また、ペロブスカイト系化合物を主として含むとは、ペロブスカイト系化合物を70mol%以上含むことをいう。 The first semiconductor layer 3 is a semiconductor layer that functions to absorb light and generate carriers (electrons and holes), and is a so-called light absorption layer. The first semiconductor layer 3 is a p-type or i-type semiconductor layer having a thickness of about 1 μm to 3 μm, for example. Further, the first semiconductor layer 3 mainly contains a chalcopyrite compound or mainly contains a perovskite compound. “Containing mainly chalcopyrite compounds” means containing at least 70 mol% of chalcopyrite compounds. The phrase “mainly containing a perovskite compound” means containing 70 mol% or more of a perovskite compound.
 カルコパイライト系化合物とは、カルコパイライト構造を有する化合物であり、例えば、I-III-VI族化合物が挙げられる。I-III-VI族化合物とは、11族元素(I-B族元素ともいう)と13族元素(III-B族元素ともいう)と16族元素との化合物である。I-III-VI族化合物としては、例えば、CuInSe(二セレン化銅インジウム、CISともいう)、Cu(In,Ga)Se(二セレン化銅インジウム・ガリウム、CIGSともいう)、Cu(In,Ga)(Se,S)(二セレン・イオウ化銅インジウム・ガリウム、CIGSSともいう)が挙げられる。あるいは、第1の半導体層3は、薄膜の二セレン・イオウ化銅インジウム・ガリウム層を表面層として有する二セレン化銅インジウム・ガリウム等の多元化合物半導体薄膜にて構成されていてもよい。 The chalcopyrite compound is a compound having a chalcopyrite structure, and examples thereof include I-III-VI group compounds. The group I-III-VI compound is a compound of a group 11 element (also referred to as a group IB element), a group 13 element (also referred to as a group III-B element), and a group 16 element. Examples of the I-III-VI group compounds include CuInSe 2 (also referred to as copper indium diselenide, CIS), Cu (In, Ga) Se 2 (also referred to as copper indium diselenide / gallium, CIGS), Cu ( In, Ga) (Se, S) 2 (also referred to as diselene / copper indium / gallium / CIGSS). Alternatively, the first semiconductor layer 3 may be composed of a multi-component compound semiconductor thin film such as copper indium selenide / gallium having a thin film of selenite / copper indium sulfide / gallium layer as a surface layer.
 ペロブスカイト系化合物とは、ペロブスカイト構造を有する化合物であり、例えばCHNHPbX(Xはハロゲン元素である)等の有機無機複合材料が挙げられる。なお、有機無機複合材料とは、分子レベルで有機成分と無機成分とが複合された材料である。また、APbX(AはCsなどのアルカリ金属元素、Xはハロゲン元素である)のような有機物を含まない構造も、ペロブスカイト系化合物には含まれる。本開示に含まれる材料としては、Pbを含み、ハロゲン元素でXが構成されているペロブスカイト系化合物が好適に用いられる。さらには、Xで表したハロゲン元素は、2種類以上の元素が含まれても良く、CHNHなどの有機物や、Csなどのアルカリ金属も、2種類以上の元素が含まれても良い。このように材料を多く混ぜることで、所望のバンドギャップや、耐熱性、耐電圧性が得られるようになり、タンデム化に適したペロブスカイト系太陽電池や、プロセスの自由度が高い、かつ長期信頼性に優れた太陽電池を得ることができるようになる。 The perovskite compound is a compound having a perovskite structure, and examples thereof include organic-inorganic composite materials such as CH 3 NH 3 PbX 3 (X is a halogen element). The organic-inorganic composite material is a material in which an organic component and an inorganic component are combined at the molecular level. In addition, a structure containing no organic substance such as APbX 3 (A is an alkali metal element such as Cs and X is a halogen element) is also included in the perovskite compound. As a material included in the present disclosure, a perovskite compound containing Pb and having X composed of a halogen element is preferably used. Furthermore, the halogen element represented by X may include two or more elements, and an organic substance such as CH 3 NH 3 and an alkali metal such as Cs may also include two or more elements. . By mixing a lot of materials like this, the desired band gap, heat resistance, and voltage resistance can be obtained, and perovskite solar cells suitable for tandemization, high degree of process freedom, and long-term reliability A solar cell with excellent properties can be obtained.
 第1の半導体層3は、スパッタリング法または蒸着法などのいわゆる真空プロセスによって形成可能であるほか、いわゆる塗布法あるいは印刷法と称されるプロセスによって形成することもできる。塗布法あるいは印刷法と称されるプロセスは、第1の半導体層3の構成元素の錯体溶液を中間層3aまたは電極層2の上に塗布し、その後、乾燥・熱処理を行うプロセスである。 The first semiconductor layer 3 can be formed by a so-called vacuum process such as a sputtering method or an evaporation method, or can be formed by a process called a coating method or a printing method. A process referred to as a coating method or a printing method is a process in which a complex solution of constituent elements of the first semiconductor layer 3 is applied on the intermediate layer 3a or the electrode layer 2, and then drying and heat treatment are performed.
 第2の半導体層5は、例えば0.05~3.0μm程度の厚みのn型の半導体層である。第2の半導体層5は、第1の半導体層3で生じたキャリアを良好に取り出すためのものであり、例えば、第2の半導体層5の電気抵抗率は1Ω・cm以下であり、シート抵抗は50Ω/□以下であってもよい。 The second semiconductor layer 5 is an n-type semiconductor layer having a thickness of about 0.05 to 3.0 μm, for example. The second semiconductor layer 5 is for extracting the carriers generated in the first semiconductor layer 3 satisfactorily. For example, the electrical resistivity of the second semiconductor layer 5 is 1 Ω · cm or less, and the sheet resistance May be 50Ω / □ or less.
 第2の半導体層5は、例えば、ZnOやIn、SnO等の金属酸化物を含み、電気抵抗率を低くするために、Al、B、Ga、In、SnおよびF等のうちの何れかの元素が含まれても良い。このような元素が含まれた金属酸化物半導体の具体例としては、例えば、AZO(Aluminum Zinc Oxide)、BZO(Boron Zinc Oxide)、GZO(Gallium Zinc Oxide)、IZO(Indium Zinc Oxide)、ITO(Indium Tin Oxide)、FTO(Fluorine tin Oxide)等がある。第1の半導体層5は、スパッタリング法、蒸着法またはCVD法等で形成される。 The second semiconductor layer 5 includes, for example, a metal oxide such as ZnO, In 2 O 3 , or SnO 2 , and includes Al, B, Ga, In, Sn, F, and the like in order to reduce the electrical resistivity. Any of these elements may be included. Specific examples of the metal oxide semiconductor containing such an element include, for example, AZO (Aluminum Zinc Oxide), BZO (Boron Zinc Oxide), GZO (Gallium Zinc Oxide), IZO (Indium Zinc Oxide), ITO ( Indium Tin Oxide) and FTO (Fluorine tin Oxide). The first semiconductor layer 5 is formed by a sputtering method, a vapor deposition method, a CVD method, or the like.
 また、第2の半導体層5は1層だけでもよく、2層以上の積層体であってもよい。第2の半導体層が2層以上の複数層から成る場合、その複数層のうちの少なくとも1層がn型であればよい。つまり、第2の半導体層は、n型の半導体層とi型の半導体層の積層体であってもよく、n型の半導体層の積層体であってもよい。また、第2の半導体層5は、電気抵抗率の異なる半導体層の積層体であってもよく、その場合、電気抵抗率の高い半導体層によってリーク電流が生じるのを有効に低減することができる。 Further, the second semiconductor layer 5 may be a single layer or a laminate of two or more layers. When the second semiconductor layer is composed of two or more layers, at least one of the plurality of layers may be n-type. That is, the second semiconductor layer may be a stacked body of an n-type semiconductor layer and an i-type semiconductor layer, or may be a stacked body of an n-type semiconductor layer. Further, the second semiconductor layer 5 may be a stacked body of semiconductor layers having different electric resistivity, and in that case, it is possible to effectively reduce the occurrence of leakage current due to the semiconductor layer having a high electric resistivity. .
 中間層5aは、第1の半導体層3と第2の半導体層5との界面に位置している。つまり、第1の半導体層3は中間層5aを介して第2の半導体層5と電気的に接続されている。中間層5aはシリコンを主として含むn型の半導体層であり、30~2000nm程度の厚みを有する。 The intermediate layer 5 a is located at the interface between the first semiconductor layer 3 and the second semiconductor layer 5. That is, the first semiconductor layer 3 is electrically connected to the second semiconductor layer 5 via the intermediate layer 5a. The intermediate layer 5a is an n-type semiconductor layer mainly containing silicon and has a thickness of about 30 to 2000 nm.
 このような構成によって、第1の半導体層3の光電変換によって生じたキャリアの再結合を低減し、光電変換装置11の光電変換効率を向上させることができる。つまり、中間層5aがシリコンを主として含むn型の半導体層であることによって、ドーパント濃度を良好に制御することが可能となり、カルコパイライト系化合物である第1の半導体層3で電荷分離したキャリアに対し、中間層5aによって強い電界をかけてキャリアを引き抜く効果を強めることができる。その結果、キャリアの再結合を低減して変換効率を高めることができる。 With such a configuration, recombination of carriers generated by photoelectric conversion of the first semiconductor layer 3 can be reduced, and the photoelectric conversion efficiency of the photoelectric conversion device 11 can be improved. That is, since the intermediate layer 5a is an n-type semiconductor layer mainly containing silicon, the dopant concentration can be well controlled, and the carriers separated by charge in the first semiconductor layer 3 that is a chalcopyrite compound are used. On the other hand, the intermediate layer 5a can enhance the effect of drawing a carrier by applying a strong electric field. As a result, carrier recombination can be reduced and conversion efficiency can be increased.
 このような中間層5aとしては、リン(P)等をドーピングしたシリコン(Si)を主として含む半導体等が挙げられる。なお、Siを主として含むとは、Siを70mol%以上含むことをいう。 Examples of the intermediate layer 5a include a semiconductor mainly containing silicon (Si) doped with phosphorus (P) or the like. Note that “mainly containing Si” means containing 70 mol% or more of Si.
 中間層5aは、蒸着法、スパッタリング法、ゾルゲル法、スクリーン印刷法、塗布法、めっき法、スプレー塗布法、インクジェット塗布法、CVD法、プラズマCVD法またはPVD法等の成膜方法を用いて作製することができる。また、必要に応じて、フォトリソグラフィー法、リフトオフ法、ディスペンサーを用いた塗布法またはレーザスクライブ等のパターン形成法を組み合わせることによって、中間層3aを所望のパターン形状にしてもよい。 The intermediate layer 5a is formed by using a deposition method such as a vapor deposition method, a sputtering method, a sol-gel method, a screen printing method, a coating method, a plating method, a spray coating method, an inkjet coating method, a CVD method, a plasma CVD method, or a PVD method. can do. If necessary, the intermediate layer 3a may be formed into a desired pattern shape by combining a photolithography method, a lift-off method, a coating method using a dispenser, or a pattern forming method such as laser scribing.
 また、図1、図2に示すように、第2の半導体層5上にさらに集電電極8が形成されていてもよい。集電電極8は、第1の半導体層3で生じたキャリアをさらに良好に取り出すためのものである。集電電極8は、例えば、図1に示すように、光電変換セル10の一端から接続導体7にかけて線状に形成されている。これにより、第1の半導体層3で生じた電流が第1の半導体層5を介して集電電極8に集電され、接続導体7を介して隣接する光電変換セル10に良好に通電される。 Further, as shown in FIGS. 1 and 2, a collector electrode 8 may be further formed on the second semiconductor layer 5. The collecting electrode 8 is for taking out the carriers generated in the first semiconductor layer 3 more satisfactorily. For example, as shown in FIG. 1, the collector electrode 8 is formed in a linear shape from one end of the photoelectric conversion cell 10 to the connection conductor 7. As a result, the current generated in the first semiconductor layer 3 is collected by the current collecting electrode 8 through the first semiconductor layer 5, and the adjacent photoelectric conversion cell 10 is successfully energized through the connection conductor 7. .
 集電電極8は、第1の半導体層3への光透過率を高めるとともに良好な導電性を有するという観点から、50~400μmの幅を有していてもよい。また、集電電極8は、枝分かれした複数の分岐部を有していてもよい。 The collecting electrode 8 may have a width of 50 to 400 μm from the viewpoint of increasing the light transmittance to the first semiconductor layer 3 and having good conductivity. The current collecting electrode 8 may have a plurality of branched portions.
 集電電極8は、例えば、Ag等の金属粉を樹脂バインダー等に分散させた金属ペーストがパターン状に印刷され、これが硬化されることによって形成される。 The current collecting electrode 8 is formed, for example, by printing a metal paste in which a metal powder such as Ag is dispersed in a resin binder or the like in a pattern and curing it.
 図1、図2において、接続導体7は、第1の半導体層3、中間層5aおよび第2の半導体層5を分断する溝P2内に設けられた導体である。接続導体7は、金属や導電ペースト等が用いられ得る。図1、図2においては、集電電極8を延伸して接続導体7が形成されているが、これに限定されない。例えば、第2の半導体層5が延伸したものであってもよい。 1 and 2, the connection conductor 7 is a conductor provided in a groove P2 that divides the first semiconductor layer 3, the intermediate layer 5a, and the second semiconductor layer 5. The connection conductor 7 can be made of metal, conductive paste, or the like. In FIG. 1 and FIG. 2, the collector electrode 8 is extended to form the connection conductor 7, but the present invention is not limited to this. For example, the second semiconductor layer 5 may be stretched.
 なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良などが可能である。以下に種々の変形例を示す。 It should be noted that the present invention is not limited to the above-described embodiment, and various changes and improvements can be made without departing from the gist of the present invention. Various modifications are shown below.
 <第2実施形態の光電変換装置>
 図3は、第2実施形態の光電変換層21の斜視図であり、図4はその断面図である。第2実施形態の光電変換装置21において、第1実施形態の光電変換装置11と同じ構成のものには同じ符号を付しており、詳細な説明は省略する。
<Photoelectric Conversion Device of Second Embodiment>
FIG. 3 is a perspective view of the photoelectric conversion layer 21 of the second embodiment, and FIG. 4 is a cross-sectional view thereof. In the photoelectric conversion device 21 of the second embodiment, the same components as those of the photoelectric conversion device 11 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 第2実施形態の光電変換装置21における各光電変換セル20は、第1の半導体層3と中間層5aとの界面にバッファ層4をさらに具備している。このバッファ層4は、中間層5aよりもキャリア密度が低い層である。 Each photoelectric conversion cell 20 in the photoelectric conversion device 21 of the second embodiment further includes a buffer layer 4 at the interface between the first semiconductor layer 3 and the intermediate layer 5a. The buffer layer 4 is a layer having a carrier density lower than that of the intermediate layer 5a.
 このような構成によって、バッファ層4が第1の半導体層3の表面の欠陥を良好に埋めることができ、キャリアの再結合をより低減しながら、中間層5aによってキャリアを引き抜く効果をさらに強めることができる。また、中間層5aをスパッタリング法等の物理的薄膜形成方法で形成する際に、第1の半導体層3へのダメージをバッファ層4で緩和することができ、第1の半導体層3の表面に欠陥が生じるのをより有効に低減できる。 With such a configuration, the buffer layer 4 can satisfactorily fill defects on the surface of the first semiconductor layer 3, and further enhance the effect of extracting carriers by the intermediate layer 5a while further reducing carrier recombination. Can do. Further, when the intermediate layer 5 a is formed by a physical thin film forming method such as sputtering, damage to the first semiconductor layer 3 can be mitigated by the buffer layer 4, and the surface of the first semiconductor layer 3 can be reduced. It is possible to more effectively reduce the occurrence of defects.
 第1の半導体層3からのキャリアの引き抜きをより良好にするという観点からは、バッファ層4のキャリア密度は1×1010~1×1016cm-3程度であり、中間層5aのキャリア密度は1×1020~1×1022cm-3程度であってもよい。 From the standpoint of improving carrier extraction from the first semiconductor layer 3, the carrier density of the buffer layer 4 is about 1 × 10 10 to 1 × 10 16 cm −3 , and the carrier density of the intermediate layer 5a May be about 1 × 10 20 to 1 × 10 22 cm −3 .
 バッファ層4は、第1の半導体層3にヘテロ接合された半導体層または絶縁層であり、5~200nmの厚みを有している。バッファ層4としては、例えば、CdS、ZnSまたはIn等の金属硫化物が用いられる。なお、バッファ層4は、このような金属硫化物に加えて、金属酸化物および金属水酸化物の少なくとも一方を含む混晶であってもよい。バッファ層4は、例えば溶液析出法(CBD法)、ALD法またはMOCVD法などで形成される。 The buffer layer 4 is a semiconductor layer or an insulating layer heterojunction with the first semiconductor layer 3 and has a thickness of 5 to 200 nm. As the buffer layer 4, for example, a metal sulfide such as CdS, ZnS, or In 2 S 3 is used. The buffer layer 4 may be a mixed crystal containing at least one of a metal oxide and a metal hydroxide in addition to such a metal sulfide. The buffer layer 4 is formed by, for example, a solution deposition method (CBD method), an ALD method, or an MOCVD method.
 また、第1の半導体層3がペロブスカイト系化合物を主として含む場合には、バッファ層4として、n型の有機半導体を用いてもよい。このような有機半導体としては、フェニル-C61-酪酸メチルエステル(PCBM)およびフラーレンC60等のフラーレン誘導体等が挙げられる。バッファ層4として有機半導体を用いる場合、例えば、PCBM等を有機溶剤に溶解させ、この溶液を第1の半導体層3上に塗布した後、乾燥することによってバッファ層4を形成できる。もしくは、フラーレンC60等を第1の半導体層3上に蒸着することによってバッファ層4を形成してもよい。また、第1の半導体層3またはバッファ層4に対して、中間層5aまたは第2の半導体層5を形成する際のプロセスの影響を受けにくくするため、バッファ層4の上に、さらに保護用バッファ層を積層しても良い。この保護用バッファ層としては、酸化モリブデンおよび酸化タングステンなどが挙げられる。このような保護用バッファ層はスパッタリング法や蒸着法等で形成することができる。 In the case where the first semiconductor layer 3 mainly contains a perovskite compound, an n-type organic semiconductor may be used as the buffer layer 4. Examples of such an organic semiconductor include fullerene derivatives such as phenyl-C 61 -butyric acid methyl ester (PCBM) and fullerene C60. When an organic semiconductor is used as the buffer layer 4, for example, the buffer layer 4 can be formed by dissolving PCBM or the like in an organic solvent, applying this solution onto the first semiconductor layer 3, and then drying. Alternatively, the buffer layer 4 may be formed by evaporating fullerene C60 or the like on the first semiconductor layer 3. Further, in order to make the first semiconductor layer 3 or the buffer layer 4 less susceptible to the process of forming the intermediate layer 5a or the second semiconductor layer 5, a protective layer is further provided on the buffer layer 4. A buffer layer may be stacked. Examples of the protective buffer layer include molybdenum oxide and tungsten oxide. Such a protective buffer layer can be formed by sputtering or vapor deposition.
 <第3実施形態の光電変換装置>
 図5は、第3実施形態の光電変換層31の斜視図であり、図6はその断面図である。第3実施形態の光電変換装置31において、第1実施形態の光電変換装置11と同じ構成のものには同じ符号を付しており、詳細な説明は省略する。
<Photoelectric Conversion Device of Third Embodiment>
FIG. 5 is a perspective view of the photoelectric conversion layer 31 of the third embodiment, and FIG. 6 is a cross-sectional view thereof. In the photoelectric conversion device 31 of the third embodiment, the same components as those of the photoelectric conversion device 11 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 第3実施形態の光電変換装置31における各光電変換セル30は、電極層2と第1の半導体層3との界面に下部層6をさらに具備している。つまり、第1の半導体層3は下部層6を介して電極層2と電気的に接続されている。この下部層6は、第1の半導体層3とは異なる結晶構造を有するp型の半導体であり、第1の半導体層3よりもキャリア密度が高い。また、下部層6は30~2000nm程度の厚みを有する。 Each photoelectric conversion cell 30 in the photoelectric conversion device 31 of the third embodiment further includes a lower layer 6 at the interface between the electrode layer 2 and the first semiconductor layer 3. That is, the first semiconductor layer 3 is electrically connected to the electrode layer 2 via the lower layer 6. The lower layer 6 is a p-type semiconductor having a crystal structure different from that of the first semiconductor layer 3, and has a carrier density higher than that of the first semiconductor layer 3. The lower layer 6 has a thickness of about 30 to 2000 nm.
 このような構成によって、第1の半導体層3の光電変換によって生じたキャリアの再結合を低減し、光電変換装置11の光電変換効率をさらに向上させることができる。つまり、第1の半導体層3で電荷分離したキャリアに対し、下部層6によって中間層5aとは反対側からも強い電界をかけてキャリアを引き抜く効果を強めることができる。その結果、キャリアの再結合を低減して変換効率を高めることができる。 With such a configuration, recombination of carriers generated by photoelectric conversion of the first semiconductor layer 3 can be reduced, and the photoelectric conversion efficiency of the photoelectric conversion device 11 can be further improved. That is, it is possible to enhance the effect of extracting carriers by applying a strong electric field from the side opposite to the intermediate layer 5a to the carrier separated from the charge in the first semiconductor layer 3 by the lower layer 6. As a result, carrier recombination can be reduced and conversion efficiency can be increased.
 ここで、カルコパイライト系化合物およびペロブスカイト系化合物はドーパントの制御が難しく、欠陥の少ない状態でキャリア密度を所望の濃度に制御するのが難しい。そのため、第1の半導体層3のキャリア密度は、欠陥による再結合を顕在化させないように例えば1×1016~9×1017cm-3程度以下としてもよい。そして、下部層6は、第1の半導体層3よりもキャリア密度が例えば1×1018~9×1018cm-3と高くなっているので、電荷分離したキャリアを第1の半導体層3から引き抜き易くすることができる。このような中間層3aとしては、ドーパントの制御が容易であるという観点からは、第1の半導体層3とは異なる結晶構造を有するp型の半導体が用いられてもよい。 Here, chalcopyrite compounds and perovskite compounds are difficult to control the dopant, and it is difficult to control the carrier density to a desired concentration with few defects. Therefore, the carrier density of the first semiconductor layer 3 may be, for example, about 1 × 10 16 to 9 × 10 17 cm −3 or less so as not to reveal recombination due to defects. The lower layer 6 has a carrier density higher than that of the first semiconductor layer 3, for example, 1 × 10 18 to 9 × 10 18 cm −3. It can be easily pulled out. As such an intermediate layer 3a, a p-type semiconductor having a crystal structure different from that of the first semiconductor layer 3 may be used from the viewpoint of easy control of the dopant.
 このような下部層6としては、ホウ素(B)等の他の元素をドーピングしたシリコン(Si)を主として含む半導体等が挙げられる。なお、Siを主として含むとは、Siを70mol%以上含むことをいう。また、他の下部層6としては、キャリア密度が1×1018~9×1018cm-3である、第1の半導体層3と接合し易いセレン化亜鉛等の化合物半導体などを用いてもよい。 Examples of the lower layer 6 include a semiconductor mainly containing silicon (Si) doped with other elements such as boron (B). Note that “mainly containing Si” means containing 70 mol% or more of Si. Further, as the other lower layer 6, a compound semiconductor such as zinc selenide having a carrier density of 1 × 10 18 to 9 × 10 18 cm −3 and easily bonded to the first semiconductor layer 3 may be used. Good.
 なお、第1の半導体層3がペロブスカイト系化合物である場合、下部層6として、ホール輸送層などを用いることもできる。ホール輸送層としては、ポリ-3-ヘキシルチオフェンにLi-TFSI、F4-TCNQなどのドーパントを添加した有機系ホール輸送層、あるいは、酸化ニッケル等の無機系ホール輸送層が挙げられる。 When the first semiconductor layer 3 is a perovskite compound, a hole transport layer or the like can be used as the lower layer 6. Examples of the hole transport layer include an organic hole transport layer obtained by adding a dopant such as Li-TFSI or F4-TCNQ to poly-3-hexylthiophene, or an inorganic hole transport layer such as nickel oxide.
 下部層6は、蒸着法、スパッタリング法、ゾルゲル法、スクリーン印刷法、塗布法、めっき法、スプレー塗布法、インクジェット塗布法、CVD法、プラズマCVD法またはPVD法等の成膜方法を用いて作製することができる。また、必要に応じて、フォトリソグラフィー法、リフトオフ法、ディスペンサーを用いた塗布法またはレーザスクライブ等のパターン形成法を組み合わせることによって、下部層6を所望のパターン形状にしてもよい。 The lower layer 6 is produced using a deposition method such as a vapor deposition method, a sputtering method, a sol-gel method, a screen printing method, a coating method, a plating method, a spray coating method, an inkjet coating method, a CVD method, a plasma CVD method, or a PVD method. can do. If necessary, the lower layer 6 may be formed into a desired pattern shape by combining a photolithography method, a lift-off method, a coating method using a dispenser, or a pattern forming method such as laser scribing.
 2、2a、2b、2c:電極層
 3:第1の半導体層
 4:バッファ層
 5:第2の半導体層
 5a:中間層
 6:下部層
 11、21、31:光電変換装置
2, 2a, 2b, 2c: electrode layer 3: first semiconductor layer 4: buffer layer 5: second semiconductor layer 5a: intermediate layer 6: lower layer 11, 21, 31: photoelectric conversion device

Claims (6)

  1.  電極層と、
    該電極層上に位置する、カルコパイライト系化合物またはペロブスカイト系化合物を主として含む、p型またはi型の第1の半導体層と、
    該第1の半導体層上に位置するn型の第2の半導体層と、
    前記第1の半導体層および前記第2の半導体層の界面に位置しており、シリコンを主として含むn型の中間層を具備する光電変換装置。
    An electrode layer;
    A p-type or i-type first semiconductor layer mainly comprising a chalcopyrite compound or a perovskite compound located on the electrode layer;
    An n-type second semiconductor layer located on the first semiconductor layer;
    A photoelectric conversion device comprising an n-type intermediate layer mainly including silicon, which is located at an interface between the first semiconductor layer and the second semiconductor layer.
  2.  前記第1の半導体層および前記中間層の界面に前記中間層よりもキャリア密度が低いバッファ層をさらに具備する、請求項1に記載の光電変換装置。 The photoelectric conversion device according to claim 1, further comprising a buffer layer having a carrier density lower than that of the intermediate layer at an interface between the first semiconductor layer and the intermediate layer.
  3.  前記バッファ層のキャリア密度が1×1010~1×1016cm-3であり、前記中間層のキャリア密度が1×1020~1×1022cm-3である、請求項2に記載の光電変換装置。 The carrier density of the buffer layer is 1 × 10 10 to 1 × 10 16 cm −3 , and the carrier density of the intermediate layer is 1 × 10 20 to 1 × 10 22 cm −3 . Photoelectric conversion device.
  4.  前記バッファ層は金属硫化物を含んでいる、請求項2または3に記載の光電変換装置。 The photoelectric conversion device according to claim 2 or 3, wherein the buffer layer includes a metal sulfide.
  5.  前記電極層および前記第1の半導体層の界面に、前記第1の半導体層とは異なる結晶構造であり、前記第1の半導体層よりもキャリア密度の高いp型の下部層をさらに具備する、請求項1乃至4のいずれかに記載の光電変換装置。 A p-type lower layer having a crystal structure different from that of the first semiconductor layer and having a carrier density higher than that of the first semiconductor layer at the interface between the electrode layer and the first semiconductor layer; The photoelectric conversion device according to claim 1.
  6.  前記第1の半導体層のキャリア密度が1×1016~9×1017cm-3であり、前記下部層のキャリア密度が1×1018~9×1018cm-3である、請求項5に記載の光電変換装置。 6. The carrier density of the first semiconductor layer is 1 × 10 16 to 9 × 10 17 cm −3 , and the carrier density of the lower layer is 1 × 10 18 to 9 × 10 18 cm −3. The photoelectric conversion device described in 1.
PCT/JP2016/062471 2015-04-24 2016-04-20 Photoelectric conversion device WO2016171157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-088909 2015-04-24
JP2015088909 2015-04-24

Publications (1)

Publication Number Publication Date
WO2016171157A1 true WO2016171157A1 (en) 2016-10-27

Family

ID=57144570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062471 WO2016171157A1 (en) 2015-04-24 2016-04-20 Photoelectric conversion device

Country Status (1)

Country Link
WO (1) WO2016171157A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067914A (en) * 2017-09-29 2019-04-25 積水化学工業株式会社 Manufacturing method of solar battery and the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888379A (en) * 1994-09-16 1996-04-02 Asahi Chem Ind Co Ltd Chalcopyrite type compound thin film solar battery
WO2011108685A1 (en) * 2010-03-05 2011-09-09 株式会社 東芝 Compound thin-film solar cell and method for producing same
JP2012174759A (en) * 2011-02-18 2012-09-10 Fujifilm Corp Compound semiconductor layer manufacturing method and photoelectric conversion element
JP2012204482A (en) * 2011-03-24 2012-10-22 Kyocera Corp Photoelectric conversion device
JP2013098191A (en) * 2011-10-28 2013-05-20 Kyocera Corp Photoelectric conversion device
WO2015016114A1 (en) * 2013-07-31 2015-02-05 富士フイルム株式会社 Photoelectric conversion element and solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888379A (en) * 1994-09-16 1996-04-02 Asahi Chem Ind Co Ltd Chalcopyrite type compound thin film solar battery
WO2011108685A1 (en) * 2010-03-05 2011-09-09 株式会社 東芝 Compound thin-film solar cell and method for producing same
JP2012174759A (en) * 2011-02-18 2012-09-10 Fujifilm Corp Compound semiconductor layer manufacturing method and photoelectric conversion element
JP2012204482A (en) * 2011-03-24 2012-10-22 Kyocera Corp Photoelectric conversion device
JP2013098191A (en) * 2011-10-28 2013-05-20 Kyocera Corp Photoelectric conversion device
WO2015016114A1 (en) * 2013-07-31 2015-02-05 富士フイルム株式会社 Photoelectric conversion element and solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019067914A (en) * 2017-09-29 2019-04-25 積水化学工業株式会社 Manufacturing method of solar battery and the same

Similar Documents

Publication Publication Date Title
US20160284882A1 (en) Solar Cell
JP5576489B2 (en) Photovoltaic power generation apparatus and manufacturing method thereof
KR20110047726A (en) Solar cell and mehtod of fabricating the same
US20120174977A1 (en) Solar Power Generation Apparatus and Manufacturing Method Thereof
JP2013510426A (en) Solar cell and manufacturing method thereof
US9379266B2 (en) Solar cell module and method of fabricating the same
KR101283072B1 (en) Solar cell apparatus and method of fabricating the same
WO2016152857A1 (en) Photoelectric conversion device
KR101114169B1 (en) Solar cell apparatus
KR101210046B1 (en) Solar cell and method of fabricating the same
JP5624153B2 (en) Solar cell and manufacturing method thereof
WO2016171157A1 (en) Photoelectric conversion device
JP6258884B2 (en) Photoelectric conversion device
JP5977166B2 (en) Photoelectric conversion element
KR101338549B1 (en) Solar cell and method of fabricating the same
KR101231284B1 (en) Solar cell and method of fabircating the same
JP2016171186A (en) Photoelectric conversion device
JP6346058B2 (en) Photoelectric conversion device
JP2016122743A (en) Photoelectric conversion device
JP2016157805A (en) Photoelectric conversion device
JP2016157808A (en) Photoelectric conversion device
JP2015153950A (en) Method for manufacturing photoelectric conversion device
JP2016111310A (en) Photoelectric conversion device
KR101349432B1 (en) Photovoltaic apparatus and method of fabricating the same
KR101417321B1 (en) Solar cell and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP