WO2016166823A1 - Method for producing organic compound modified inorganic filler and organic compound modified inorganic filler - Google Patents

Method for producing organic compound modified inorganic filler and organic compound modified inorganic filler Download PDF

Info

Publication number
WO2016166823A1
WO2016166823A1 PCT/JP2015/061536 JP2015061536W WO2016166823A1 WO 2016166823 A1 WO2016166823 A1 WO 2016166823A1 JP 2015061536 W JP2015061536 W JP 2015061536W WO 2016166823 A1 WO2016166823 A1 WO 2016166823A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic filler
organic compound
temperature
modified
modified inorganic
Prior art date
Application number
PCT/JP2015/061536
Other languages
French (fr)
Japanese (ja)
Inventor
重之 前田
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to PCT/JP2015/061536 priority Critical patent/WO2016166823A1/en
Publication of WO2016166823A1 publication Critical patent/WO2016166823A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates

Definitions

  • the present invention relates to a method for producing an organic compound-modified inorganic filler and an organic compound-modified inorganic filler obtained thereby.
  • various heat radiating members such as sheets and sealing materials have been used in electronic devices and the like.
  • a heat radiating member for example, a resin composition containing an inorganic filler and a resin molded into a desired shape is used. Since the resin composition used for the heat radiating member is required to have high fluidity from the viewpoint of moldability and the like, the inorganic filler blended in the resin composition is also required to have high fluidity.
  • an inorganic filler a method of using inorganic particles surface-treated with an organic compound such as a silane coupling agent has been proposed.
  • Patent Document 1 As a method for surface-treating inorganic particles with an organic compound, there has been proposed a method in which a metal oxide sol is heat-treated under high temperature and high pressure to obtain metal oxide fine particles, followed by contacting with an organic modifier (Patent Document 1). And Patent Document 2).
  • Patent Document 1 the organic modified metal oxide fine particles obtained by bringing the metal modifier sol into contact with an organic modifier after heat treatment generates inorganic particles in the reaction system from the sol, so that the average particle size is 200 nm. Only the following fine particles are produced, and there are cases where it is not suitable for use as an inorganic filler for a heat radiating member as described above in terms of fluidity and strong thixotropy.
  • the present invention has been made in view of such circumstances, and provides a technique for producing an organic compound-modified inorganic filler having an excellent balance between fluidity and thermal conductivity.
  • a method of producing an organic compound-modified inorganic filler in which an inorganic filler is modified with an organic compound in high-temperature and high-pressure water, and the inorganic filler is modified with the organic compound, the inorganic filler and the The organic compound is heated within a period of 10 minutes from a predetermined start temperature to a first temperature, and the inorganic filler is modified with the organic compound, and the inorganic filler has an average of 0.3 ⁇ m or more and 100 ⁇ m or less.
  • a method is provided having a particle size.
  • the time required for raising the temperature of the inorganic filler and the organic compound from a predetermined start temperature to the first temperature is within 10 minutes.
  • the inorganic filler is efficiently modified with the organic compound.
  • an inorganic filler has an average particle diameter of 0.3 micrometer or more and 100 micrometers or less.
  • the first temperature is 200 ° C. or higher and 400 ° C. or lower.
  • the holding time of the first temperature is within 10 minutes.
  • the inorganic filler is composed of at least one selected from silica, zinc oxide, alumina, silicon nitride, aluminum nitride, and boron nitride.
  • the organic compound modified inorganic filler manufactured by the said method is provided.
  • the organic compound-modified inorganic filler is used as a filler for a semiconductor encapsulant.
  • a method for producing an organic compound-modified inorganic filler having an excellent balance between fluidity and thermal conductivity is provided.
  • FIG. 4 is a diagram showing measurement data of FT-IR (diffuse reflection method) of the organic compound-modified inorganic filler produced in Example 1.
  • 4 is a diagram showing measurement data of FT-IR (diffuse reflection method) of an organic compound-modified inorganic filler produced in Example 2.
  • FIG. 6 is a diagram showing measurement data of FT-IR (diffuse reflection method) of an organic compound-modified inorganic filler produced in Comparative Example 1.
  • FIG. 6 is a diagram showing measurement data of FT-IR (diffuse reflection method) of an organic compound-modified inorganic filler produced in Comparative Example 2.
  • FIG. 4 is a diagram showing measurement data of FT-IR (diffuse reflection method) of an organic compound-modified inorganic filler produced in Comparative Example 2.
  • the organic compound-modified inorganic filler of this embodiment can be obtained by modifying an inorganic filler with an organic compound (organic modifier) in high-temperature and high-pressure water.
  • the organic compound-modified inorganic filler is generated by a reaction between the inorganic filler and the organic compound using high-temperature and high-pressure water as a reaction field.
  • the inorganic filler is surface-modified with an organic compound.
  • the high-temperature high-pressure water is, for example, a temperature of 200 ° C. or higher and 400 ° C. or lower, preferably 250 ° C. or higher and 400 ° C. or lower, more preferably 270 ° C. or higher and 400 ° C. or lower, and further preferably 300 ° C. or higher. It means water having a temperature of 400 ° C. or lower and a pressure of 2 MPa to 50 MPa, preferably 2 MPa to 45 MPa.
  • Such high-temperature and high-pressure water is generally sometimes referred to as a supercritical or subcritical state.
  • the organic compound-modified inorganic filler of the present embodiment includes a step of heating the inorganic filler and the organic compound from a predetermined start temperature to the first temperature within a time of 10 minutes and modifying the inorganic filler with the organic compound.
  • the first temperature refers to the temperature at which the modification reaction between the inorganic filler and the organic compound occurs, that is, the temperature of the high-temperature high-pressure water that is the reaction field.
  • the first temperature is 200 ° C. or higher and 400 ° C. or lower, preferably 250 ° C. or higher and 400 ° C. or lower, more preferably 270 ° C. or higher and 400 ° C.
  • the starting temperature refers to the temperature when the inorganic filler and the organic compound are in contact with each other, and is equal to or lower than the first temperature.
  • the starting temperature is, for example, less than 200 ° C. in one embodiment, 150 ° C. or less in another embodiment, 100 ° C. or less in yet another embodiment, and 50 ° C. or less if no preheating is required, More preferably, starting temperature is room temperature, which is economical.
  • the lower limit of the starting temperature is generally preferably 0 ° C.
  • the temperature raising time from the start temperature to the first temperature can be substantially close to zero.
  • the starting temperature may be any temperature as long as it is not higher than the first temperature.
  • the step of raising the temperature from the start temperature to the first temperature is performed within 10 minutes.
  • the time required for the temperature raising step can be adjusted according to the start temperature and the first temperature. If the time required for the temperature raising step is within 10 minutes, the organic compound to be used is not decomposed, so that the modification reaction between the organic compound and the inorganic filler occurs efficiently.
  • the inorganic filler used in the present embodiment has an average particle diameter (d 50 ) of 0.3 ⁇ m or more and 100 ⁇ m or less. Moreover, the average particle diameter of the organic compound modified inorganic filler produced
  • the inorganic filler means fluidity, strength and functionality suitable for forming a molding material, laminate, film, etc., which are required to have high thermal conductivity, preferably for molding a molding material or laminate. It refers to inorganic particles that are generally added to improve the cost and reduce the cost.
  • an organic compound-modified inorganic filler that is particularly excellent in the balance between fluidity and thermal conductivity is used. Can be manufactured.
  • the average particle size (d 50 ) of the inorganic filler and the organic compound-modified inorganic filler was adjusted with an organic compound using a laser diffraction particle size distribution analyzer SALD-7000 (laser wavelength: 405 nm) manufactured by Shimadzu Corporation. It can obtain
  • SALD-7000 laser diffraction particle size distribution analyzer
  • the modification reaction between the inorganic filler and the organic compound is preferably performed within 10 minutes. That is, it is preferable that after the temperature raising step, the first temperature is maintained for 10 minutes at the longest to complete the modification reaction.
  • the holding time of the first temperature is 1 to 10 minutes, preferably 1 to 8 minutes, more preferably 1 to 5 minutes. Further, after holding at the first temperature, the temperature may be further increased to another temperature. Thus, by setting the holding time of the first temperature, it is possible to effectively suppress the decomposition of the organic compound, and to ensure the efficiency of the modification reaction between the organic compound and the inorganic filler.
  • the step of heating the inorganic filler and the organic compound from the starting temperature to the first temperature within 10 minutes and modifying the inorganic filler with the organic compound is performed by a batch method using an autoclave or the like, or a flow equation. It can be carried out in various ways known to those skilled in the art including.
  • the method for producing the organic compound-modified inorganic filler is performed in a batch manner.
  • the inorganic filler and the organic compound may be mixed in advance in a medium such as water outside the reaction vessel or without a medium, or may be mixed in the reaction vessel.
  • This mixture is heated from the temperature at the time of preparation of the mixture (starting temperature) to the reaction temperature (first temperature) in a sealed state using, for example, an autoclave, and is brought to a high temperature and high pressure state.
  • the inorganic filler and the organic compound are brought into contact with each other. In this state, a modification reaction between the inorganic filler and the organic compound occurs.
  • the zeta potential of particles in water and the organic compound have opposite charges in order to increase the reactivity between the inorganic filler and the organic compound.
  • the mixture of the alumina inorganic filler and the organic compound has a pH of 3 to 5 when the organic compound is acidic, such as an organic acid, and a basic mixture such as an amine. It is preferable to adjust the pH to 10-12.
  • the method for producing the organic compound-modified inorganic filler is carried out by a flow method known to those skilled in the art.
  • the inorganic filler and the organic compound are contacted in the flow-type reaction apparatus in the presence of high-temperature high-pressure water, or contacted with other auxiliary materials such as a pH adjuster as necessary.
  • the temperature is raised and a modification reaction occurs.
  • the inorganic filler and the organic compound may be used separately or mixed and dispersed or dissolved in a solvent.
  • the solvent include, but are not limited to, a solvent that dissolves an organic compound such as water and alcohol and is miscible with high-temperature and high-pressure water.
  • the contact method between the inorganic filler and the organic compound is a method in which the inorganic filler, the organic compound and high-temperature high-pressure water are simultaneously contacted.
  • Any conceivable combination such as a method of contacting an organic compound, a method of contacting an inorganic filler and an organic compound in advance at a temperature lower than the first temperature, and then contacting with a high-temperature high-pressure water can be applied.
  • raw materials such as inorganic fillers and organic compounds can be mixed or separately preheated at a temperature lower than the first temperature in a medium such as water.
  • the method for recovering the generated organic compound-modified inorganic filler is a step of washing reaction residues such as unreacted organic compounds, and the organic compound modification generated by solid-liquid separation.
  • a step of taking out the inorganic filler, a step of drying the organic compound-modified inorganic filler, a step of crushing the aggregation, and the like are appropriately performed.
  • the cleaning agent used in the cleaning step is not limited as long as it can clean the unreacted organic compound adhering to the organic compound-modified inorganic filler, such as methanol, ethanol, isopropyl alcohol, etc.
  • Examples include alcohols; ketones such as acetone and methyl ethyl ketone; aromatic solvents such as toluene and xylene. Moreover, you may use an ultrasonic wave for washing
  • the inorganic filler is preferably thermally conductive inorganic particles.
  • the inorganic filler is a group of particle nuclei composed of an inorganic material.
  • the particle nuclei of the inorganic filler are composed of silica (fused silica, crystalline silica), alumina, zinc oxide, silicon nitride, aluminum nitride, and boron nitride. It is preferably composed of any material selected from the group.
  • spherical alumina is preferably used from the viewpoint of improving the fluidity and thermal conductivity of the resin composition for heat radiation member to be added.
  • the organic compound used in this embodiment has one or more functional groups of a carboxyl group, an amino group, and a hydroxyl group, and is chemically bonded to the surface of the particle nucleus composed of the inorganic material via the functional group.
  • a functional group easily reacts with a hydroxyl group or the like present on the surface of a particle nucleus composed of an inorganic material, and an organic compound having such a functional group chemically bonds to a particle nucleus composed of an inorganic material.
  • Cheap Moreover, as an organic compound, what has the hydrophobic part comprised by a 5 or more carbon chain is preferable.
  • the organic compound preferably has 30 or less carbon atoms.
  • the organic compound is a phenol resin
  • the number average molecular weight is preferably 2000 or less and the hydroxyl group equivalent is preferably 70 or more and 250 or less.
  • the organic compound one or more selected from compounds included in groups (i) to (v) can be used.
  • Carboxylic acid and amine (ii) carbon number (in the case of carboxylic acid), which is a monobasic acid having a straight chain or branched chain having 8 or more carbon atoms (excluding carbon in the carboxyl group in the case of carboxylic acid) Is a dibasic acid having 6 or more linear or branched chains (excluding carbon in the carboxyl group) and a single base having a linear or branched chain containing an amine (iii) carbon-carbon double bond Carboxylic acid that is an acid and amine (iv) A carboxylic acid that is a monobasic acid or dibasic acid containing an aromatic ring and an amine (v) an alcohol or phenol compound having 6 or more carbon atoms.
  • the group (i) includes a group ( What is included in iii) and (iv) is not included. Further, the group (ii) does not include what is included in the group (iv).
  • One kind of organic compound may be chemically bonded to one particle nucleus composed of an inorganic material, or two or more kinds of organic compounds may be chemically bonded.
  • group (i) examples include CH 3 — (CH 2 ) n—COOH (n is an integer of 7 to 14) and CH 3 — (CH 2 ) n—NH 2 (n is an integer of 7 to 14).
  • group (i) includes decanoic acid, lauric acid, myristic acid, palmitic acid, decylamine, undecylamine, and tridecylamine.
  • Examples of the group (ii) include HOOC— (CH 2 ) n—COOH (n is an integer of 6 to 12) and NH 2 — (CH 2 ) n—NH 2 (n is an integer of 6 to 12). It is done.
  • Examples of HOOC— (CH 2 ) n —COOH (n is an integer of 6 to 12) include suberic acid and sebacic acid.
  • Examples of the group (iii) include unsaturated fatty acids having 12 to 30 carbon atoms (excluding carbon in the carboxyl group) and aliphatic amines having 12 to 30 carbon atoms.
  • Unsaturated fatty acids include oleic acid and linoleic acid, and aliphatic amines include oleylamine.
  • Examples of the group (iv) include aromatic amines such as phthalic acid, hydroxybenzoic acid, aniline, toluidine, naphthylamine, and aniline resin.
  • Examples of the group (v) include phenols such as phenol, cresol, and naphthol, phenol resins, and those in which the carboxyl groups and amino groups of the groups (i), (ii), and (iii) are replaced with hydroxyl groups.
  • the group (i) (ii) (iii) in which the carboxyl group or amino group is replaced with a hydroxyl group includes CH 3 — (CH 2 ) n—OH (n is an integer of 7 to 14), OH— (CH 2 ) N-OH (n is an integer of 6 to 12), oleyl alcohol, and linoleyl alcohol.
  • the organic compound preferably does not contain a conventionally known coupling agent as a concept.
  • a silanol group like a silane coupling agent interaction with the inorganic filler etc. which are the characteristics of this invention may be small.
  • the degree of the modification reaction between the inorganic filler and the organic compound is determined by TG-DTA (Thermogravimetry-Differential Thermal Analysis; Thermogravimetric / Differential Thermal Analysis), FT-IR (Fourier-Transform Spectral Infrared Spr. This can be confirmed by measuring with conversion-type infrared spectroscopy.
  • the weight reduction rate (after the temperature rise relative to the weight before TG-DTA temperature rise)
  • the number of molecules of the organic compound bonded per 1 nm 2 of the inorganic filler can be determined.
  • the inorganic filler and the organic compound can be compared. It can be confirmed that they are chemically bonded.
  • An example (measurement result at room temperature) in the case of using spherical alumina as the inorganic filler and oleic acid as the organic compound is shown in FIG.
  • a 5 cc tube type autoclave was charged with 100 mg of spherical alumina AO-502 (average particle size 0.6 ⁇ m, specific surface area 7.5 m 2 / g) manufactured by Admatechs Co., Ltd., 2.5 cc of pure water, and 30 mg of oleic acid. was sealed. This was put into a shaking-type heating and stirring apparatus (manufactured by AKICO) and heated from room temperature to 400 ° C. over 5 minutes, and heated for 5 minutes while shaking at 400 ° C. The autoclave internal pressure at this time was 38 MPa. After the heating, the autoclave was rapidly cooled using cold water, and the contents were taken out into a 50 ml centrifuge tube.
  • spherical alumina AO-502 average particle size 0.6 ⁇ m, specific surface area 7.5 m 2 / g
  • AKICO shaking-type heating and stirring apparatus
  • FT-IR measurement data of oleic acid is shown in FIG.
  • FIG. 2 in the oleic acid data, a peak appears at 1711 cm ⁇ 1 . This indicates that oleic acid is dimerized.
  • oleic acid is present as a monomer, a peak appears in the vicinity of 1760 cm ⁇ 1 .
  • the organic compound-modified inorganic filler portions of 1711cm -1, 1760cm -1 no peak around, it can be seen that does not exist in the form of oleic acid.
  • the organic compound-modified inorganic filler there is a peak at 1566 cm ⁇ 1 , which indicates that —COO 2 — is present.
  • the peak of the alkyl chain part is the same in the case of oleic acid and the case of the organic compound modified inorganic filler.
  • the present inventors have found that the peak size near the wave number of 3300 cm ⁇ 1 in the FT-IR (diffuse reflection method) KM (Kubelka-Munk) value is 2926 cm ⁇ 1 indicating CH 2 asymmetric stretching. It was found that the target organic compound-modified inorganic filler was formed when the wavenumber peak size was smaller. The reason for this is not clear, but the peak in the vicinity of a wave number of 3300 cm ⁇ 1 indicates a hydrophilic functional group, and when this is large, it is considered that the hydrophobicity of the organic compound-modified inorganic filler decreases.
  • the organic compound-modified inorganic filler obtained in the present embodiment is blended in a resin composition used for a molding material, a laminated board, a film, or the like, which is required to have high thermal conductivity, and preferably used for the molding material or the laminated board.
  • a resin composition contains, for example, a thermosetting resin.
  • thermosetting resins include epoxy resins, cyanate ester resins, urea (urea) resins, melamine resins, unsaturated polyester resins, bismaleimide resins, polyurethane resins, diallyl phthalate resins, silicone resins, and resins having a benzoxazine ring. Any one or more of them can be used.
  • the resin corresponding to the curing agent is not included in the thermosetting resin.
  • Epoxy resins are monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and their molecular weight and molecular structure are not particularly limited.
  • the epoxy resin include bifunctional or crystalline epoxy resins such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, stilbene type epoxy resin, and hydroquinone type epoxy resin; Novolac type epoxy resins such as cresol novolac type epoxy resin, phenol novolak type epoxy resin, naphthol novolak type epoxy resin; Phenol aralkyl type epoxy resins such as phenylene skeleton-containing phenol aralkyl type epoxy resins, biphenylene skeleton containing phenol aralkyl type epoxy resins, phenylene skeleton containing naphthol aralkyl type epoxy resins; Trifunctional epoxy resins such as triphenolmethane type epoxy resins and alkyl-modified triphenolmethane type epoxy resins; Modified phenol type
  • cyanate ester resin for example, a product obtained by reacting a cyanogen halide and a phenol, a product obtained by prepolymerizing the compound by a method such as heating, or the like can be used.
  • Specific examples include bisphenol type cyanate resins such as novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and tetramethyl bisphenol F type cyanate resin. These can be used alone or in combination of two or more.
  • the resin composition may contain a curing agent, and the curing agent is appropriately selected according to the type of resin.
  • a curing agent for an epoxy resin any curing agent may be used as long as it reacts with the epoxy resin and is known to those skilled in the art.
  • Aliphatic acid anhydrides such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA), trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic dianhydride (BTDA)
  • Acid anhydrides including aromatic acid anhydrides such as: phenolic aralkyl resins such as phenylene skeleton-containing phenol aralkyl resins, biphenylene skeleton-containing phenol aralkyl (ie, biphenyl aralkyl) resins, phenylene skeleton-containing naphthol aralkyl resins, and the like, and Bisphenol compounds such as bisphenol A; Polymercaptan compounds such as polysulfide, thioester, thioether; Isocyanate compounds such as isocyanate prepolymers, blocked isocyanates; Organic acids such as carboxylic
  • Phenol resins preferably used in the present embodiment are monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited.
  • phenol novolak Resin cresol novolac resin
  • dicyclopentadiene-modified phenol resin terpene-modified phenol resin
  • triphenol methane type resin phenol aralkyl resin (having a phenylene skeleton, biphenylene skeleton, etc.) and the like.
  • two or more kinds may be used in combination.
  • the amount of each component is appropriately set according to the purpose of the resin composition.
  • a filler containing an organic compound-modified inorganic filler is added to the entire resin composition.
  • 80 mass% or more and 95 mass% or less is preferable.
  • they are 85 mass% or more and 93 mass% or less.
  • the ratio of the organic compound-modified inorganic filler in the filler is preferably 5 to 30% by mass with respect to the entire filler.
  • filler refers to a material blended in the resin composition for the purpose of improving mechanical strength, and specifically, “organic compound-modified inorganic filler” in the present embodiment. Any of the above-mentioned “inorganic fillers” or both are included.
  • the specific surface area of the organic compound-modified inorganic filler is not particularly limited, but is preferably plus or minus 30% or less, more preferably plus or minus 25% or less, more preferably relative to the specific surface area of the inorganic filler before the surface treatment. Changes by plus or minus 20% or less, for example, the average particle size is 0.3 ⁇ m or more, the maximum particle size range is 0.1 to 1 ⁇ m, and the particle size range that does not include other maximum points is modified with organic compounds. In the case of using an inorganic filler, the specific surface area is preferably 3 (m 2 / g) or more and 12 (m 2 / g) or less.
  • the specific surface area of the organic compound-modified inorganic filler is a value measured by a BET method based on nitrogen adsorption.
  • the filler has a plurality of maximum points of the volume-based particle size distribution, from the viewpoint of balance between cost and performance such as improvement in fluidity of the resin composition, the smallest maximum point is included, and other maximum points are included.
  • the filler having an average particle size within the upper and lower limits of the present application is composed of the organic compound-modified inorganic filler described above.
  • the filler when the filler has a maximum point of the volume-based particle size distribution in each of 0.1 to 1 ⁇ m, 3 to 8 ⁇ m, and 36 to 60 ⁇ m, it includes a maximum point in the range of 0.1 to 1 ⁇ m, A filler having a particle size range not including the maximum point and an average particle size of 0.5 ⁇ m is composed of an organic compound-modified inorganic filler.
  • the viscosity of a resin composition falls by making the range of the particle size containing the smallest maximum point into an organic compound modified inorganic filler, and can improve fluidity
  • the thermosetting resin is preferably 1 to 15% by mass, more preferably 2% to 12% by mass, More preferably, it is 2 to 10% by mass.
  • the curing agent is preferably 0.1 to 5% by mass.
  • the resin composition as described above has excellent fluidity and thermal conductivity.
  • the resin composition is a curing accelerator as necessary; natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate and metal salts thereof, mold release agents such as paraffin Colorants such as carbon black and bengara; flame retardants such as brominated epoxy resins, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate and phosphazene; inorganic ion exchange such as bismuth oxide hydrate Body: Low stress components such as silicone oil and silicone rubber; various additives such as antioxidants may be included. Moreover, it does not interfere with using a silane coupling agent in the range which does not impair the effect of this invention.
  • Example 1 Manufacture of organic compound-modified inorganic filler
  • spherical alumina AO-502 average particle size 0.6 ⁇ m, specific surface area 7.5 m 2 / g
  • oleic acid oleic acid
  • AKICO Corporation a shaking type heating and stirring apparatus
  • the autoclave was rapidly cooled using cold water, and the contents were taken out into a 50 ml centrifuge tube. 20 ml of ethanol was added thereto, and ultrasonic cleaning was performed for 10 minutes for the purpose of washing away unreacted oleic acid. Thereafter, solid-liquid separation was performed using a cooling centrifuge (3700, manufactured by Kubota Corporation) under the conditions of 10,000 G, 20 ° C., and 20 minutes. Further, this washing and solid-liquid separation were repeated twice to wash away unreacted oleic acid. This was redispersed in cyclohexane and dried for 24 hours using a vacuum freeze dryer (VFD-03 manufactured by ASONE Co., Ltd.) to obtain an organic compound-modified inorganic filler. Using the obtained organic compound-modified inorganic filler, a resin composition was produced as follows.
  • Epoxy resin Mitsubishi Chemical YX4000K
  • curing agent Maywa Kasei Co., Ltd., MEH-7500
  • spherical alumina Denki Kagaku Kogyo DAW-45 average particle size 45 ⁇ m
  • DAW-05 manufactured by Denki Kagaku Kogyo Co., Ltd., 25.0 parts by mass
  • curing accelerator shown in the following formula (1)
  • Thermal conductivity of the resin composition Using a low-pressure transfer molding machine, the resin composition is injected and molded under the conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds to produce a test piece (10 ⁇ 10 mm, thickness 1.0 mm). Post-curing was performed at 175 ° C. for 2 hours. The thermal diffusivity of the obtained test piece was measured using a xenon flash analyzer LFA447 manufactured by NETZSCH.
  • the specific gravity of the test piece used for the thermal conductivity measurement was measured using an electronic hydrometer SD-200L manufactured by Alpha Mirage Co., Ltd., and further using a differential scanning calorimeter DSC8230 manufactured by Rigaku Co., Ltd.
  • the specific heat of the test piece used for the measurement of thermal conductivity and specific gravity was measured.
  • the thermal conductivity was calculated using the thermal diffusivity, specific gravity and specific heat measured here.
  • Example 2 A 200 cc autoclave was charged with 3 g of spherical alumina AO-502 (average particle size 0.6 ⁇ m, specific surface area 7.5 m 2 / g) manufactured by Admatechs Co., Ltd., 100 cc of pure water and 1 g of oleic acid, and the autoclave was sealed ( The device is made by Nitto Koatsu Co., Ltd. After sealing, the charged raw material was constantly stirred with a stirring blade, and was heated from room temperature (30 ° C.) to 300 ° C. over 8 minutes using a cast heater, and heated at 300 ° C. for 5 minutes. The autoclave internal pressure at this time was 8 MPa.
  • the product was cooled with air using a cooling fan, and the contents were taken out into a 50 ml centrifuge tube. 20 ml of ethanol was added thereto, and ultrasonic cleaning was performed for 10 minutes for the purpose of washing away unreacted oleic acid. Thereafter, solid-liquid separation was performed using a cooling centrifuge (7700, manufactured by Kubota Corporation) under the conditions of 10,000 G, 20 ° C., and 20 minutes. Further, this washing and solid-liquid separation were repeated twice to wash away unreacted oleic acid. This was dried for 24 hours using a vacuum dryer to obtain an organic compound-modified inorganic filler.
  • a cooling centrifuge 7700, manufactured by Kubota Corporation
  • Comparative Example 1 A mixture of spherical alumina AO-502 (average particle size 0.6 ⁇ m, specific surface area 7.5 m 2 / g) manufactured by Admatechs Co., Ltd., pure water, and oleic acid was added from room temperature (30 ° C.) to 400 over 12 minutes. The same operation as that described in Example 1 was performed except that the temperature was changed to ° C.
  • Comparative Example 2 A mixture of spherical alumina AO-502 (average particle size 0.6 ⁇ m, specific surface area 7.5 m 2 / g) manufactured by Admatechs Co., Ltd., pure water, and oleic acid was added at 376 over 27 minutes from room temperature (30 ° C.). The same operation as that described in Example 2 was performed except that the temperature was set to ° C and the internal pressure of the autoclave was set to 23 MPa.

Abstract

Provided is a method for producing an organic compound modified inorganic filler in which an inorganic filler is modified with an organic compound by modifying the inorganic filler with the organic compound in water at a high temperature and high pressure. This method includes a step of raising the temperature of the inorganic filler and the organic compound from a predetermined starting temperature to a first temperature within ten minutes and modifying the inorganic filler with the organic compound, the inorganic filler having an average particle size of 0.3 to 100 μm.

Description

有機化合物修飾無機フィラーの製造方法および有機化合物修飾無機フィラーMethod for producing organic compound-modified inorganic filler and organic compound-modified inorganic filler
 本発明は、有機化合物修飾無機フィラーの製造方法およびこれにより得られる有機化合物修飾無機フィラーに関する。 The present invention relates to a method for producing an organic compound-modified inorganic filler and an organic compound-modified inorganic filler obtained thereby.
 従来、電子機器等において、シート、封止材等の種々の放熱用部材が使用されている。このような放熱用部材としては、たとえば、無機充填材と樹脂とを含む樹脂組成物を、所望の形状に成形したものが使用されている。放熱用部材に使用される樹脂組成物には、成形性等の観点から高い流動が求められるため、樹脂組成物中に配合される無機充填材にも、高い流動性を有することが求められる。
 このような無機充填材としては、シランカップリング剤等の有機化合物で表面処理された無機粒子を使用する方法が提案されている。
Conventionally, various heat radiating members such as sheets and sealing materials have been used in electronic devices and the like. As such a heat radiating member, for example, a resin composition containing an inorganic filler and a resin molded into a desired shape is used. Since the resin composition used for the heat radiating member is required to have high fluidity from the viewpoint of moldability and the like, the inorganic filler blended in the resin composition is also required to have high fluidity.
As such an inorganic filler, a method of using inorganic particles surface-treated with an organic compound such as a silane coupling agent has been proposed.
 無機粒子を有機化合物で表面処理する方法としては、金属酸化物ゾルを高温高圧下で熱処理して金属酸化物微粒子を得、続いて有機修飾剤を接触させる方法が提案されている(特許文献1および特許文献2)。しかし、金属酸化物ゾルを熱処理した後に、有機修飾剤を接触させることにより得られる有機修飾金属酸化物微粒子は、ゾルから反応系内で無機粒子を生成させるという特徴から、その平均粒子径が200nm以下の微粒子しか生成せず、上記のような放熱用部材用の無機充填材としての使用には、流動性や強いチキソ性等の点で適さない場合があった。 As a method for surface-treating inorganic particles with an organic compound, there has been proposed a method in which a metal oxide sol is heat-treated under high temperature and high pressure to obtain metal oxide fine particles, followed by contacting with an organic modifier (Patent Document 1). And Patent Document 2). However, the organic modified metal oxide fine particles obtained by bringing the metal modifier sol into contact with an organic modifier after heat treatment generates inorganic particles in the reaction system from the sol, so that the average particle size is 200 nm. Only the following fine particles are produced, and there are cases where it is not suitable for use as an inorganic filler for a heat radiating member as described above in terms of fluidity and strong thixotropy.
特開2008-162864号公報JP 2008-162864 A 特開2012-153588号公報JP 2012-153588 A
 本発明は、かかる事情を鑑みてなされたものであり、流動性と熱伝導性のバランスに優れた有機化合物修飾無機フィラーを製造する技術を提供するものである。 The present invention has been made in view of such circumstances, and provides a technique for producing an organic compound-modified inorganic filler having an excellent balance between fluidity and thermal conductivity.
 本発明によれば、高温高圧水中で、無機フィラーを有機化合物で修飾して、前記無機フィラーが前記有機化合物で修飾された有機化合物修飾無機フィラーを製造する方法であって、前記無機フィラーと前記有機化合物を、所定の開始温度から第一の温度まで10分以内で昇温して、前記無機フィラーを前記有機化合物で修飾する工程を含み、前記無機フィラーが、0.3μm以上100μm以下の平均粒径を有する、方法が提供される。 According to the present invention, a method of producing an organic compound-modified inorganic filler in which an inorganic filler is modified with an organic compound in high-temperature and high-pressure water, and the inorganic filler is modified with the organic compound, the inorganic filler and the The organic compound is heated within a period of 10 minutes from a predetermined start temperature to a first temperature, and the inorganic filler is modified with the organic compound, and the inorganic filler has an average of 0.3 μm or more and 100 μm or less. A method is provided having a particle size.
 上記の有機化合物修飾無機フィラーの製造方法において、無機フィラーと有機化合物を、所定の開始温度から第一の温度まで昇温するための所要時間は10分以内である。所定の時間以内で昇温することにより、無機フィラーは有機化合物で効率よく修飾される。また、上記製造方法において、無機フィラーは、0.3μm以上100μm以下の平均粒径を有する。これにより、得られる有機化合物修飾無機フィラーが、0.3μm以上の平均粒径を有するため、電子機器等の半導体封止材や放熱部材用の成形材料等に好適な無機フィラーとして使用することが可能となる。 In the above method for producing an organic compound-modified inorganic filler, the time required for raising the temperature of the inorganic filler and the organic compound from a predetermined start temperature to the first temperature is within 10 minutes. By raising the temperature within a predetermined time, the inorganic filler is efficiently modified with the organic compound. Moreover, in the said manufacturing method, an inorganic filler has an average particle diameter of 0.3 micrometer or more and 100 micrometers or less. Thereby, since the obtained organic compound-modified inorganic filler has an average particle size of 0.3 μm or more, it can be used as an inorganic filler suitable for a semiconductor sealing material such as an electronic device or a molding material for a heat dissipation member. It becomes possible.
 本発明の一実施形態によると、上記方法において、上記第一の温度は200℃以上400℃以下である。 According to an embodiment of the present invention, in the above method, the first temperature is 200 ° C. or higher and 400 ° C. or lower.
 本発明の一実施形態によると、上記方法の上記無機フィラーを上記有機化合物で修飾する工程において、上記第一の温度の保持時間を10分以内とする。
 所定の時間以内で修飾反応を行うことにより、流動性と熱伝導性のバランスに優れた有機化合物修飾無機フィラーを製造することができる。
According to one embodiment of the present invention, in the step of modifying the inorganic filler of the method with the organic compound, the holding time of the first temperature is within 10 minutes.
By performing the modification reaction within a predetermined time, an organic compound-modified inorganic filler having an excellent balance between fluidity and thermal conductivity can be produced.
 本発明の一実施形態によると、上記方法において、上記無機フィラーは、シリカ、酸化亜鉛、アルミナ、窒化珪素、窒化アルミニウム、および窒化ホウ素から選択される少なくとも1つからなる。 According to one embodiment of the present invention, in the method, the inorganic filler is composed of at least one selected from silica, zinc oxide, alumina, silicon nitride, aluminum nitride, and boron nitride.
 また、本発明によれば、上記方法により製造された有機化合物修飾無機フィラーが提供される。
 本発明の一実施形態によると、上記有機化合物修飾無機フィラーは、半導体封止材用の充填材として用いられる。
Moreover, according to this invention, the organic compound modified inorganic filler manufactured by the said method is provided.
According to one embodiment of the present invention, the organic compound-modified inorganic filler is used as a filler for a semiconductor encapsulant.
 本発明によれば、流動性と熱伝導性のバランスに優れた有機化合物修飾無機フィラーを製造する方法が提供される。 According to the present invention, a method for producing an organic compound-modified inorganic filler having an excellent balance between fluidity and thermal conductivity is provided.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
有機化合物修飾無機フィラーのFT-IR(拡散反射法)の測定データを示す図である。It is a figure which shows the measurement data of the FT-IR (diffuse reflection method) of an organic compound modification inorganic filler. 有機化合物のFT-IR(拡散反射法)の測定データを示す図である。It is a figure which shows the measurement data of FT-IR (diffuse reflection method) of an organic compound. 実施例1で作製した有機化合物修飾無機フィラーのFT-IR(拡散反射法)の測定データを示す図である。FIG. 4 is a diagram showing measurement data of FT-IR (diffuse reflection method) of the organic compound-modified inorganic filler produced in Example 1. 実施例2で作製した有機化合物修飾無機フィラーのFT-IR(拡散反射法)の測定データを示す図である。4 is a diagram showing measurement data of FT-IR (diffuse reflection method) of an organic compound-modified inorganic filler produced in Example 2. FIG. 比較例1で作製した有機化合物修飾無機フィラーのFT-IR(拡散反射法)の測定データを示す図である。6 is a diagram showing measurement data of FT-IR (diffuse reflection method) of an organic compound-modified inorganic filler produced in Comparative Example 1. FIG. 比較例2で作製した有機化合物修飾無機フィラーのFT-IR(拡散反射法)の測定データを示す図である。6 is a diagram showing measurement data of FT-IR (diffuse reflection method) of an organic compound-modified inorganic filler produced in Comparative Example 2. FIG.
 本発明による有機化合物修飾無機フィラーの製造方法について、以下、好適な実施形態を示しながら説明する。 Hereinafter, a method for producing an organic compound-modified inorganic filler according to the present invention will be described with reference to preferred embodiments.
 本実施形態の有機化合物修飾無機フィラーは、高温高圧水中で、無機フィラーを有機化合物(有機修飾剤)で修飾することにより得られる。 The organic compound-modified inorganic filler of this embodiment can be obtained by modifying an inorganic filler with an organic compound (organic modifier) in high-temperature and high-pressure water.
 本実施形態において、有機化合物修飾無機フィラーは、高温高圧水中を反応場として、無機フィラーと有機化合物とが反応することにより生成する。具体的には、無機フィラーは有機化合物で表面修飾される。ここで、高温高圧水とは、たとえば温度が200℃以上400℃以下であり、好ましくは250℃以上400℃以下であり、より好ましくは270℃以上400℃以下であり、更に好ましくは300℃以上400℃以下であり、圧力が2MPa以上50MPa以下、好ましくは2MPa以上45MPa以下である水を意味する。このような高温高圧状態の水を、一般的に、超臨界または亜臨界状態という場合もある。 In this embodiment, the organic compound-modified inorganic filler is generated by a reaction between the inorganic filler and the organic compound using high-temperature and high-pressure water as a reaction field. Specifically, the inorganic filler is surface-modified with an organic compound. Here, the high-temperature high-pressure water is, for example, a temperature of 200 ° C. or higher and 400 ° C. or lower, preferably 250 ° C. or higher and 400 ° C. or lower, more preferably 270 ° C. or higher and 400 ° C. or lower, and further preferably 300 ° C. or higher. It means water having a temperature of 400 ° C. or lower and a pressure of 2 MPa to 50 MPa, preferably 2 MPa to 45 MPa. Such high-temperature and high-pressure water is generally sometimes referred to as a supercritical or subcritical state.
 本実施形態の有機化合物修飾無機フィラーは、無機フィラーと有機化合物とを、所定の開始温度から第一の温度まで10分以内の時間で昇温し、この無機フィラーを有機化合物で修飾する工程を含む。
 本実施形態において、第一の温度とは、無機フィラーと有機化合物との修飾反応が生じる温度、すなわち、上記の反応場である高温高圧水の温度をいう。本発明の一実施形態において、この第一の温度は、200℃以上400℃以下であり、好ましくは250℃以上400℃以下であり、より好ましくは270℃以上400℃以下、更に好ましくは300℃以上400℃以下である。第一の温度が上記範囲にあることにより、無機フィラーと有機化合物との修飾反応が効率よく生じる。また、本実施形態において、開始温度とは、無機フィラーおよび有機化合物が接触した時の温度をいい、上記の第一の温度以下である。開始温度は、例えば一実施形態において200℃未満であり、別の実施形態において150℃以下であり、さらに別の実施形態において100℃以下であり、また予熱が必要でない場合は、50℃以下、より好ましくは室温を開始温度とすれば経済的であり、好ましい。また、前記開始温度の下限は一般的には0℃以上が好ましいが、本実施形態では、必要に応じて0℃以下を開始温度とすることも可能である。一方、本実施形態では、反応容器と周囲の熱媒体の接触面積を大きくすることにより、開始温度から第一の温度までの昇温時間を実質的にゼロに近づけることができ、このような開始温度と第一の温度が実質的に同一に近い場合も本発明では好ましい態様であるといえる。すなわち開始温度は、第一の温度以下であれば差し支えない。
The organic compound-modified inorganic filler of the present embodiment includes a step of heating the inorganic filler and the organic compound from a predetermined start temperature to the first temperature within a time of 10 minutes and modifying the inorganic filler with the organic compound. Including.
In the present embodiment, the first temperature refers to the temperature at which the modification reaction between the inorganic filler and the organic compound occurs, that is, the temperature of the high-temperature high-pressure water that is the reaction field. In one embodiment of the present invention, the first temperature is 200 ° C. or higher and 400 ° C. or lower, preferably 250 ° C. or higher and 400 ° C. or lower, more preferably 270 ° C. or higher and 400 ° C. or lower, and further preferably 300 ° C. The temperature is 400 ° C. or lower. When the first temperature is in the above range, the modification reaction between the inorganic filler and the organic compound occurs efficiently. In this embodiment, the starting temperature refers to the temperature when the inorganic filler and the organic compound are in contact with each other, and is equal to or lower than the first temperature. The starting temperature is, for example, less than 200 ° C. in one embodiment, 150 ° C. or less in another embodiment, 100 ° C. or less in yet another embodiment, and 50 ° C. or less if no preheating is required, More preferably, starting temperature is room temperature, which is economical. The lower limit of the starting temperature is generally preferably 0 ° C. or higher, but in this embodiment, 0 ° C. or lower can be set as the starting temperature as necessary. On the other hand, in the present embodiment, by increasing the contact area between the reaction vessel and the surrounding heat medium, the temperature raising time from the start temperature to the first temperature can be substantially close to zero. The case where the temperature and the first temperature are substantially the same is also a preferable embodiment in the present invention. That is, the starting temperature may be any temperature as long as it is not higher than the first temperature.
 上記の開始温度から第一の温度まで昇温する工程は、10分以内の時間で行われる。この昇温工程の所要時間は、開始温度と第一の温度に応じて調整することが可能である。昇温工程の所要時間が10分以内であれば、用いる有機化合物の分解が生じないため、有機化合物と無機フィラーとの修飾反応が効率よく生じる。 The step of raising the temperature from the start temperature to the first temperature is performed within 10 minutes. The time required for the temperature raising step can be adjusted according to the start temperature and the first temperature. If the time required for the temperature raising step is within 10 minutes, the organic compound to be used is not decomposed, so that the modification reaction between the organic compound and the inorganic filler occurs efficiently.
 本実施形態で用いられる無機フィラーは、0.3μm以上100μm以下の平均粒径(d50)を有する。また、本実施形態において生成される有機化合物修飾無機フィラーの平均粒径は、原料の無機フィラーと同じ、0.3μm以上100μm以下となる。
 1つの実施形態では、無機フィラーの平均粒径(d50)は、0.35μm以上100μm以下であり、別の実施形態では、0.4μm以上100μm以下であり、さらに別の実施形態では、0.45μm以上100μm以下である。
 なお、本実施形態において、無機フィラーとは、高い熱伝導を要求される成形材料、積層板、フィルム等の賦形、好ましくは成形材料や積層板の成形に好適な流動性、強度や機能性の向上、およびコスト低減のために一般的に添加される無機粒子をいう。
 本実施形態において、上記範囲の平均粒径を有する無機フィラーを用いて、上記の昇温条件で修飾反応を実施した場合、流動性と熱伝導性のバランスに特に優れた有機化合物修飾無機フィラーを製造することができる。
The inorganic filler used in the present embodiment has an average particle diameter (d 50 ) of 0.3 μm or more and 100 μm or less. Moreover, the average particle diameter of the organic compound modified inorganic filler produced | generated in this embodiment will be 0.3 micrometer or more and 100 micrometers or less same as the inorganic filler of a raw material.
In one embodiment, the average particle size (d 50 ) of the inorganic filler is 0.35 μm or more and 100 μm or less, in another embodiment, 0.4 μm or more and 100 μm or less, and in yet another embodiment, 0. .45 μm or more and 100 μm or less.
In the present embodiment, the inorganic filler means fluidity, strength and functionality suitable for forming a molding material, laminate, film, etc., which are required to have high thermal conductivity, preferably for molding a molding material or laminate. It refers to inorganic particles that are generally added to improve the cost and reduce the cost.
In the present embodiment, when an inorganic filler having an average particle diameter in the above range is used and the modification reaction is carried out under the above temperature rising conditions, an organic compound-modified inorganic filler that is particularly excellent in the balance between fluidity and thermal conductivity is used. Can be manufactured.
 なお、無機フィラーおよび有機化合物修飾無機フィラーの平均粒径(d50)は、(株)島津製作所製のレーザー回折式粒度分布測定装置SALD-7000(レーザー波長:405nm)等を用いて有機化合物修飾無機フィラーの粒度分布を測定することにより求めることができる。 The average particle size (d 50 ) of the inorganic filler and the organic compound-modified inorganic filler was adjusted with an organic compound using a laser diffraction particle size distribution analyzer SALD-7000 (laser wavelength: 405 nm) manufactured by Shimadzu Corporation. It can obtain | require by measuring the particle size distribution of an inorganic filler.
 本実施形態の方法において、無機フィラーと有機化合物との修飾反応は、10分間以内で実施することが好ましい。すなわち、上記の昇温工程の後、第一の温度を、長くとも10分間維持し、修飾反応は完了することが好ましい。あるいは一実施形態において、第一の温度の保持時間は、1~10分、好ましくは1~8分間、より好ましくは1~5分間である。また、第一の温度で保持した後、さらに別の温度まで昇温してもよい。
 このように第一の温度の保持時間を設定することにより、有機化合物の分解を効果的に抑制することができ、有機化合物と無機フィラーとの修飾反応の効率の担保を図ることができる。
In the method of the present embodiment, the modification reaction between the inorganic filler and the organic compound is preferably performed within 10 minutes. That is, it is preferable that after the temperature raising step, the first temperature is maintained for 10 minutes at the longest to complete the modification reaction. Alternatively, in one embodiment, the holding time of the first temperature is 1 to 10 minutes, preferably 1 to 8 minutes, more preferably 1 to 5 minutes. Further, after holding at the first temperature, the temperature may be further increased to another temperature.
Thus, by setting the holding time of the first temperature, it is possible to effectively suppress the decomposition of the organic compound, and to ensure the efficiency of the modification reaction between the organic compound and the inorganic filler.
 本実施形態において、無機フィラーと有機化合物とを開始温度から第一の温度まで10分以内で昇温し、無機フィラーを有機化合物で修飾する工程は、オートクレーブ等を用いるバッチ式、または流通式を含む当業者において公知の種々の様式で実施することができる。 In this embodiment, the step of heating the inorganic filler and the organic compound from the starting temperature to the first temperature within 10 minutes and modifying the inorganic filler with the organic compound is performed by a batch method using an autoclave or the like, or a flow equation. It can be carried out in various ways known to those skilled in the art including.
 一実施形態において、有機化合物修飾無機フィラーの製法方法はバッチ式で行われる。バッチ式の方法において、無機フィラーと有機化合物とは予め反応容器外で水等の媒体中、または媒体なしで混合してもよいし、反応容器中で混合してもよい。この混合物は、混合物の調製時の温度(開始温度)から、たとえばオートクレーブを用いて、密閉状態で、反応温度(第一の温度)まで加温され、高温高圧状態にされ、高温高圧水中で、無機フィラーと有機化合物とが接触する状態とされる。この状態で、無機フィラーと有機化合物との修飾反応が生じる。 In one embodiment, the method for producing the organic compound-modified inorganic filler is performed in a batch manner. In the batch method, the inorganic filler and the organic compound may be mixed in advance in a medium such as water outside the reaction vessel or without a medium, or may be mixed in the reaction vessel. This mixture is heated from the temperature at the time of preparation of the mixture (starting temperature) to the reaction temperature (first temperature) in a sealed state using, for example, an autoclave, and is brought to a high temperature and high pressure state. The inorganic filler and the organic compound are brought into contact with each other. In this state, a modification reaction between the inorganic filler and the organic compound occurs.
 上記のバッチ式反応において、無機フィラーと有機化合物の反応性を高める上で、水中における粒子のゼータ電位と有機化合物が反対の電荷を帯びていることが重要である。例えば、無機フィラーとしてアルミナフィラーを用いる場合、アルミナ無機フィラーと有機化合物との混合物は、有機化合物が有機酸等の酸性の場合、そのpHを3~5に、アミン等の塩基性の場合、そのpHを10~12に調整することが好ましい。 In the above batch reaction, it is important that the zeta potential of particles in water and the organic compound have opposite charges in order to increase the reactivity between the inorganic filler and the organic compound. For example, when an alumina filler is used as the inorganic filler, the mixture of the alumina inorganic filler and the organic compound has a pH of 3 to 5 when the organic compound is acidic, such as an organic acid, and a basic mixture such as an amine. It is preferable to adjust the pH to 10-12.
 一実施形態において、有機化合物修飾無機フィラーの製法方法は当業者に公知の流通式で行われる。流通式の製造方法において、無機フィラーおよび有機化合物は、流通式反応装置中で、高温高圧水存在下、接触されるか、または必要に応じてpH調整剤等のその他の副資材等とともに接触されることにより昇温され、修飾反応が生じる。無機フィラーおよび有機化合物は、各々別個に、または混合して溶媒に分散または溶解された状態で用いてもよい。溶媒としては、水、アルコール等の有機化合物を溶解し、かつ高温高圧水と混和する溶媒が挙げられるが、これに限定されない。無機フィラーと有機化合物との接触方法は、無機フィラーと有機化合物と高温高圧水を同時に接触させる方法、無機フィラーと高温高圧水、有機化合物と高温高圧水を別個に接触させた後、無機フィラーと有機化合物を接触させる方法、無機フィラーと有機化合物を第一の温度よりも低い温度で予め接触させ、その後高温高圧水と接触させる方法など、通常考えられるあらゆる組合せが適用できる。この場合、無機フィラーや有機化合物などの原料を混合し、または別個に水等の媒体中で第一の温度よりも低い温度で予熱しておくこともできる。 In one embodiment, the method for producing the organic compound-modified inorganic filler is carried out by a flow method known to those skilled in the art. In the flow-type manufacturing method, the inorganic filler and the organic compound are contacted in the flow-type reaction apparatus in the presence of high-temperature high-pressure water, or contacted with other auxiliary materials such as a pH adjuster as necessary. As a result, the temperature is raised and a modification reaction occurs. The inorganic filler and the organic compound may be used separately or mixed and dispersed or dissolved in a solvent. Examples of the solvent include, but are not limited to, a solvent that dissolves an organic compound such as water and alcohol and is miscible with high-temperature and high-pressure water. The contact method between the inorganic filler and the organic compound is a method in which the inorganic filler, the organic compound and high-temperature high-pressure water are simultaneously contacted. Any conceivable combination such as a method of contacting an organic compound, a method of contacting an inorganic filler and an organic compound in advance at a temperature lower than the first temperature, and then contacting with a high-temperature high-pressure water can be applied. In this case, raw materials such as inorganic fillers and organic compounds can be mixed or separately preheated at a temperature lower than the first temperature in a medium such as water.
 無機フィラーと有機化合物との修飾反応が終了した後、生成した有機化合物修飾無機フィラーを回収する方法は、未反応の有機化合物等の反応残渣を洗浄する工程、固液分離により生成した有機化合物修飾無機フィラーを取り出す工程、有機化合物修飾無機フィラーを乾燥する工程、凝集を解砕する工程等を含み、これらは適宜行われる。
 上記洗浄工程で使用する洗浄剤としては、有機化合物修飾無機フィラーに付着した未反応の有機化合物を洗浄し得るものであれば、何ら限定されるものではないが、メタノール、エタノール、イソプロピルアルコールなどのアルコール類;アセトン、メチルエチルケトン等のケトン類;トルエン、キシレン等の芳香族系溶媒等が挙げられる。また洗浄には必要に応じて超音波を使用してもよい。さらに固液分離工程では、当業者に公知の濾過、遠心分離等の工程を用いることができる。乾燥工程は、一般的な常圧加熱乾燥、真空乾燥、凍結真空乾燥等の手法を使用できる。
After the modification reaction between the inorganic filler and the organic compound is completed, the method for recovering the generated organic compound-modified inorganic filler is a step of washing reaction residues such as unreacted organic compounds, and the organic compound modification generated by solid-liquid separation. A step of taking out the inorganic filler, a step of drying the organic compound-modified inorganic filler, a step of crushing the aggregation, and the like are appropriately performed.
The cleaning agent used in the cleaning step is not limited as long as it can clean the unreacted organic compound adhering to the organic compound-modified inorganic filler, such as methanol, ethanol, isopropyl alcohol, etc. Examples include alcohols; ketones such as acetone and methyl ethyl ketone; aromatic solvents such as toluene and xylene. Moreover, you may use an ultrasonic wave for washing | cleaning as needed. Further, in the solid-liquid separation step, steps known to those skilled in the art such as filtration and centrifugation can be used. For the drying process, general atmospheric pressure heating drying, vacuum drying, freeze vacuum drying, and the like can be used.
 無機フィラーは、熱伝導性無機粒子であることが好ましい。無機フィラーは、無機材料で構成された粒子核の群であるが、この無機フィラーの粒子核は、シリカ(溶融シリカ、結晶シリカ)、アルミナ、酸化亜鉛、窒化珪素、窒化アルミニウム、窒化ホウ素からなる群から選択されるいずれかの材料で構成されることが好ましい。
 なかでも、添加される放熱用部材用樹脂組成物の流動性および熱伝導性を高める観点から、球状のアルミナが好ましく使用される。
The inorganic filler is preferably thermally conductive inorganic particles. The inorganic filler is a group of particle nuclei composed of an inorganic material. The particle nuclei of the inorganic filler are composed of silica (fused silica, crystalline silica), alumina, zinc oxide, silicon nitride, aluminum nitride, and boron nitride. It is preferably composed of any material selected from the group.
Among these, spherical alumina is preferably used from the viewpoint of improving the fluidity and thermal conductivity of the resin composition for heat radiation member to be added.
 本実施形態で用いられる有機化合物は、カルボキシル基、アミノ基、水酸基のいずれか1以上の官能基を有し、前記官能基を介して、上記無機材料で構成された粒子核の表面に化学結合し得る。このような官能基は、無機材料で構成された粒子核表面に多く存在する水酸基等と反応しやすく、このような官能基を有する有機化合物は、無機材料で構成された粒子核に化学結合しやすい。
 また、有機化合物としては、5以上の炭素鎖で構成される疎水性部分を有するものが好ましい。有機化合物の炭素数は30以下であることが好ましい。また有機化合物がフェノール樹脂の場合には数平均分子量が2000以下、水酸基当量は70以上250以下であることが好ましい。
 たとえば、有機化合物としては、グループ(i)~(v)に含まれる化合物から選択される1種以上を使用することができる。
(i)炭素数(カルボン酸の場合は、カルボキシル基中の炭素を除く)が8以上の直鎖または分岐鎖を有する一塩基酸であるカルボン酸およびアミン
(ii)炭素数(カルボン酸の場合は、カルボキシル基中の炭素を除く)が6以上の直鎖または分岐鎖を有する二塩基酸であるカルボン酸およびアミン
(iii)炭素-炭素二重結合を含む直鎖または分岐鎖を有する一塩基酸であるカルボン酸およびアミン
(iv)芳香環を含む一塩基酸または二塩基酸であるカルボン酸およびアミン
(v)炭素数6以上のアルコールまたはフェノール化合物
 ただし、グループ(i)には、グループ(iii)および(iv)に含まれるものは、含まれない。また、グループ(ii)には、グループ(iv)に含まれるものは、含まれない。
 なお、無機材料で構成された粒子核一つに1種の有機化合物が化学結合してもよく、また、2種以上の有機化合物が化学結合してもよい。
The organic compound used in this embodiment has one or more functional groups of a carboxyl group, an amino group, and a hydroxyl group, and is chemically bonded to the surface of the particle nucleus composed of the inorganic material via the functional group. Can do. Such a functional group easily reacts with a hydroxyl group or the like present on the surface of a particle nucleus composed of an inorganic material, and an organic compound having such a functional group chemically bonds to a particle nucleus composed of an inorganic material. Cheap.
Moreover, as an organic compound, what has the hydrophobic part comprised by a 5 or more carbon chain is preferable. The organic compound preferably has 30 or less carbon atoms. When the organic compound is a phenol resin, the number average molecular weight is preferably 2000 or less and the hydroxyl group equivalent is preferably 70 or more and 250 or less.
For example, as the organic compound, one or more selected from compounds included in groups (i) to (v) can be used.
(I) Carboxylic acid and amine (ii) carbon number (in the case of carboxylic acid), which is a monobasic acid having a straight chain or branched chain having 8 or more carbon atoms (excluding carbon in the carboxyl group in the case of carboxylic acid) Is a dibasic acid having 6 or more linear or branched chains (excluding carbon in the carboxyl group) and a single base having a linear or branched chain containing an amine (iii) carbon-carbon double bond Carboxylic acid that is an acid and amine (iv) A carboxylic acid that is a monobasic acid or dibasic acid containing an aromatic ring and an amine (v) an alcohol or phenol compound having 6 or more carbon atoms. However, the group (i) includes a group ( What is included in iii) and (iv) is not included. Further, the group (ii) does not include what is included in the group (iv).
One kind of organic compound may be chemically bonded to one particle nucleus composed of an inorganic material, or two or more kinds of organic compounds may be chemically bonded.
 このような有機化合物で表面修飾されている無機フィラーを、樹脂組成物に含有させた場合、理由は定かではないが、有機化合物修飾無機フィラーとマトリックス樹脂との界面での流動抵抗が低減され樹脂組成物の流動性をさらに向上させることができる。さらには、上述したような有機化合物で無機フィラーを表面修飾することで、得られる有機化合物修飾無機フィラーとマトリックス樹脂の界面熱抵抗あるいは熱損失を低減することが出来るため、優れた流動性と熱伝導性を両立することができる。 When an inorganic filler surface-modified with such an organic compound is contained in the resin composition, the reason is not clear, but the flow resistance at the interface between the organic compound-modified inorganic filler and the matrix resin is reduced. The fluidity of the composition can be further improved. Furthermore, by modifying the surface of the inorganic filler with the organic compound as described above, it is possible to reduce the interfacial thermal resistance or heat loss between the obtained organic compound-modified inorganic filler and the matrix resin. Both conductivity can be achieved.
 グループ(i)としては、たとえば、CH-(CH)n-COOH(nは7~14の整数)およびCH―(CH)n-NH(nは7~14の整数)が挙げられる。より具体的には、グループ(i)には、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、デシルアミン、ウンデシルアミン、トリデシルアミンが挙げられる。 Examples of the group (i) include CH 3 — (CH 2 ) n—COOH (n is an integer of 7 to 14) and CH 3 — (CH 2 ) n—NH 2 (n is an integer of 7 to 14). Can be mentioned. More specifically, group (i) includes decanoic acid, lauric acid, myristic acid, palmitic acid, decylamine, undecylamine, and tridecylamine.
 グループ(ii)としては、たとえば、HOOC-(CH)n-COOH(nは6~12の整数)およびNH―(CH)n-NH(nは6~12の整数)が挙げられる。HOOC-(CH)n-COOH(nは6~12の整数)としては、スベリン酸、セバシン酸が挙げられる。 Examples of the group (ii) include HOOC— (CH 2 ) n—COOH (n is an integer of 6 to 12) and NH 2 — (CH 2 ) n—NH 2 (n is an integer of 6 to 12). It is done. Examples of HOOC— (CH 2 ) n —COOH (n is an integer of 6 to 12) include suberic acid and sebacic acid.
 グループ(iii)としては、炭素数(カルボキシル基中の炭素を除く)が12以上30以下の不飽和脂肪酸、炭素数が12以上30以下の脂肪族アミンが挙げられる。不飽和脂肪酸には、オレイン酸、リノール酸が含まれ、脂肪族アミンには、オレイルアミンが含まれる。 Examples of the group (iii) include unsaturated fatty acids having 12 to 30 carbon atoms (excluding carbon in the carboxyl group) and aliphatic amines having 12 to 30 carbon atoms. Unsaturated fatty acids include oleic acid and linoleic acid, and aliphatic amines include oleylamine.
 グループ(iv)としては、たとえば、フタル酸、ヒドロキシ安息香酸、アニリン、トルイジン、ナフチルアミン、アニリン樹脂等の芳香族アミン類が挙げられる。 Examples of the group (iv) include aromatic amines such as phthalic acid, hydroxybenzoic acid, aniline, toluidine, naphthylamine, and aniline resin.
 グループ(v)としては、たとえば、フェノール、クレゾール、ナフトール等のフェノール類、フェノール樹脂や前記グループ(i)(ii)(iii)のカルボキシル基やアミノ基が水酸基に置き換わったものが挙げられる。グループ(i)(ii)(iii)のカルボキシル基やアミノ基が水酸基に置き換わったものとしては、CH-(CH)n-OH(nは7~14の整数)、OH-(CH)n-OH(nは6~12の整数)、オレイルアルコール、リノレイルアルコールが挙げられる。 Examples of the group (v) include phenols such as phenol, cresol, and naphthol, phenol resins, and those in which the carboxyl groups and amino groups of the groups (i), (ii), and (iii) are replaced with hydroxyl groups. The group (i) (ii) (iii) in which the carboxyl group or amino group is replaced with a hydroxyl group includes CH 3 — (CH 2 ) n—OH (n is an integer of 7 to 14), OH— (CH 2 ) N-OH (n is an integer of 6 to 12), oleyl alcohol, and linoleyl alcohol.
 ここで、上記有機化合物には、従来公知のカップリング剤を概念としては含まないことが好ましい。シランカップリング剤のようにシラノール基を有するものである場合には、本発明の特徴である無機フィラー等との相互作用が小さい場合がある。 Here, the organic compound preferably does not contain a conventionally known coupling agent as a concept. When it has a silanol group like a silane coupling agent, interaction with the inorganic filler etc. which are the characteristics of this invention may be small.
 無機フィラーと有機化合物との修飾反応の程度は、得られる有機化合物修飾無機フィラーをTG-DTA(Thermogravimetry-Differential Thermal Analysis;熱重量・示差熱分析)、FT-IR(Fourier-Transform Infrared Spectroscopy;フーリエ変換型赤外分光)等で計測することで確認することができる。 The degree of the modification reaction between the inorganic filler and the organic compound is determined by TG-DTA (Thermogravimetry-Differential Thermal Analysis; Thermogravimetric / Differential Thermal Analysis), FT-IR (Fourier-Transform Spectral Infrared Spr. This can be confirmed by measuring with conversion-type infrared spectroscopy.
 TG-DTAで、有機化合物修飾無機フィラーの測定を行うと、TGチャートにおいて有機化合物由来の発熱ピークを観察することができる。これにより、有機化合物と無機フィラーとの結合の有無を確認することができる。なお、無機フィラーと有機化合物とが結合していない場合、TGチャートにおいて重量減少がほとんど見られず、またDTAチャートにおいても発熱ピークは検出されない。
 また、TG-DTA測定により、例えば、有機化合物修飾無機フィラーを200ml/minの空気気流下30℃から500℃まで昇温し、その重量減少率(TG-DTA昇温前の重量に対する昇温後の重量減少率)を測定することにより、無機フィラー1nmあたりに結合した有機化合物の分子数を求めることができる。
When the organic compound-modified inorganic filler is measured with TG-DTA, an exothermic peak derived from the organic compound can be observed on the TG chart. Thereby, the presence or absence of the coupling | bonding of an organic compound and an inorganic filler can be confirmed. When the inorganic filler and the organic compound are not bonded, almost no weight reduction is observed in the TG chart, and no exothermic peak is detected in the DTA chart.
Also, by TG-DTA measurement, for example, the organic compound-modified inorganic filler is heated from 30 ° C. to 500 ° C. in an air stream of 200 ml / min, and the weight reduction rate (after the temperature rise relative to the weight before TG-DTA temperature rise) By measuring the weight reduction rate of the organic compound, the number of molecules of the organic compound bonded per 1 nm 2 of the inorganic filler can be determined.
 また、有機化合物のFT-IR(拡散反射法)の測定データと、有機化合物修飾無機フィラーのFT-IR(拡散反射法)の測定データとを比較することでも、無機フィラーと、有機化合物とが化学結合していることを確認することができる。
 無機フィラーとして球状アルミナを、有機化合物としてオレイン酸を用いた場合の例(室温での測定結果)を図1に示す。
Further, by comparing the FT-IR (diffuse reflection method) measurement data of the organic compound and the FT-IR (diffuse reflection method) measurement data of the organic compound-modified inorganic filler, the inorganic filler and the organic compound can be compared. It can be confirmed that they are chemically bonded.
An example (measurement result at room temperature) in the case of using spherical alumina as the inorganic filler and oleic acid as the organic compound is shown in FIG.
 5cc管型オートクレーブに、(株)アドマテックス製の球状アルミナAO-502(平均粒径0.6μm、比表面積7.5m/g)100mg、純水2.5cc、オレイン酸30mgを仕込み、オートクレーブを密閉した。これを、振とう式加熱撹拌装置((株)AKICO製)に投入し、5分間かけて室温から400℃とし、400℃で振とうさせながら5分間加熱した。この時のオートクレーブ内圧は38MPaとなった。加熱終了後、冷水を用いてオートクレーブを急冷し、内容物を50ml遠沈管に取り出した。これにエタノール20mlを入れ、未反応のオレイン酸を洗い流すことを目的として、10分間超音波洗浄を行った。その後、冷却遠心機((株)久保田製作所製3700)を用いて、10000G、20℃、20分間の条件で固液分離を行った。更に、この洗浄、固液分離を2回繰り返し、未反応のオレイン酸を洗い流した。これをシクロヘキサンに再分散し、真空凍結乾燥機((株)アズワン製VFD-03)を用いて24時間乾燥し、有機化合物修飾無機フィラーを得た。その後、得られた有機化合物修飾無機フィラー1質量部に対して、200質量部のエタノールを添加して、10分間超音波洗浄を行ない、固液分離を行った後、乾燥した。この乾燥後の有機化合物修飾無機フィラーのFT-IR(拡散反射法)を測定した。この測定結果を図1に示す。 A 5 cc tube type autoclave was charged with 100 mg of spherical alumina AO-502 (average particle size 0.6 μm, specific surface area 7.5 m 2 / g) manufactured by Admatechs Co., Ltd., 2.5 cc of pure water, and 30 mg of oleic acid. Was sealed. This was put into a shaking-type heating and stirring apparatus (manufactured by AKICO) and heated from room temperature to 400 ° C. over 5 minutes, and heated for 5 minutes while shaking at 400 ° C. The autoclave internal pressure at this time was 38 MPa. After the heating, the autoclave was rapidly cooled using cold water, and the contents were taken out into a 50 ml centrifuge tube. 20 ml of ethanol was added thereto, and ultrasonic cleaning was performed for 10 minutes for the purpose of washing away unreacted oleic acid. Thereafter, solid-liquid separation was performed using a cooling centrifuge (3700, manufactured by Kubota Corporation) under the conditions of 10,000 G, 20 ° C., and 20 minutes. Further, this washing and solid-liquid separation were repeated twice to wash away unreacted oleic acid. This was redispersed in cyclohexane and dried for 24 hours using a vacuum freeze dryer (VFD-03 manufactured by ASONE Co., Ltd.) to obtain an organic compound-modified inorganic filler. Thereafter, 200 parts by mass of ethanol was added to 1 part by mass of the obtained organic compound-modified inorganic filler, ultrasonic cleaning was performed for 10 minutes, solid-liquid separation was performed, and drying was performed. The FT-IR (diffuse reflection method) of the organic compound-modified inorganic filler after drying was measured. The measurement results are shown in FIG.
 一方、オレイン酸のFT-IRの測定データを図2に示す。図2に示すようにオレイン酸のデータでは、1711cm-1の部分にピークが現れる。これは、オレイン酸が二量体化していることを示している。なお、オレイン酸が単量体で存在する場合には、1760cm-1付近にピークが現れる。
 これに対し、図1に示すように、有機化合物修飾無機フィラーでは、1711cm-1の部分、1760cm-1付近にピークがなく、オレイン酸の状態では存在していないことがわかる。また、有機化合物修飾無機フィラーでは、1566cm-1の部分にピークがあり、これは、-COOが存在していることを示している。
 なお、アルキル鎖部分のピークは、オレイン酸の場合と、有機化合物修飾無機フィラーの場合とで一致している。具体的には、有機化合物修飾無機フィラーおよびオレイン酸のデータには、オレイン酸の=CH伸縮を示す3007cm-1の波数のピーク、CH非対称伸縮を示す2959cm-1の波数のピーク、CH非対称伸縮を示す2926cm-1の波数のピーク、CH対称伸縮を示す2854cm-1の波数の、双方に共通のピークが存在する(図1、図2)。
On the other hand, FT-IR measurement data of oleic acid is shown in FIG. As shown in FIG. 2, in the oleic acid data, a peak appears at 1711 cm −1 . This indicates that oleic acid is dimerized. When oleic acid is present as a monomer, a peak appears in the vicinity of 1760 cm −1 .
In contrast, as shown in FIG. 1, the organic compound-modified inorganic filler, portions of 1711cm -1, 1760cm -1 no peak around, it can be seen that does not exist in the form of oleic acid. In addition, in the organic compound-modified inorganic filler, there is a peak at 1566 cm −1 , which indicates that —COO 2 is present.
In addition, the peak of the alkyl chain part is the same in the case of oleic acid and the case of the organic compound modified inorganic filler. Specifically, the data of the organic compound-modified inorganic fillers and oleic acid, the peak wave number of 3007cm -1 indicating the = CH stretching of oleic acid, CH 3 wavenumber peak 2959cm -1 indicating the asymmetric stretching, CH 2 wavenumber peak 2926cm -1 indicating the asymmetric stretching, the wave number of 2854cm -1 indicating the CH 2 symmetric stretching, common peaks are present in both (Figure 1, Figure 2).
 さらに、本発明者らは、FT-IR(拡散反射法)のK-M(Kubelka-Munk)値において、波数3300cm-1付近のピークの大きさが、CH非対称伸縮を示す2926cm-1の波数のピークの大きさより小さい場合、目的の有機化合物修飾無機フィラーが生成していることを見出した。この理由は明らかではないが、波数3300cm-1付近のピークは親水性の官能基を示し、これが大きい場合、有機化合物修飾無機フィラーの疎水性が低下するためと考えられる。 Furthermore, the present inventors have found that the peak size near the wave number of 3300 cm −1 in the FT-IR (diffuse reflection method) KM (Kubelka-Munk) value is 2926 cm −1 indicating CH 2 asymmetric stretching. It was found that the target organic compound-modified inorganic filler was formed when the wavenumber peak size was smaller. The reason for this is not clear, but the peak in the vicinity of a wave number of 3300 cm −1 indicates a hydrophilic functional group, and when this is large, it is considered that the hydrophobicity of the organic compound-modified inorganic filler decreases.
 本実施形態で得られる有機化合物修飾無機フィラーは、たとえば、高い熱伝導を要求される成形材料、積層板、フィルム等、好ましくは成形材料や積層板に使用される樹脂組成物に配合される。
 このような樹脂組成物は、たとえば、熱硬化性樹脂を含む。熱硬化性樹脂としては、エポキシ樹脂、シアネートエステル樹脂、ユリア(尿素)樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ビスマレイミド樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ベンゾオキサジン環を有する樹脂等のいずれか1種以上を使用できる。
 なお、硬化剤に該当する樹脂は、熱硬化性樹脂には含まない。
The organic compound-modified inorganic filler obtained in the present embodiment is blended in a resin composition used for a molding material, a laminated board, a film, or the like, which is required to have high thermal conductivity, and preferably used for the molding material or the laminated board.
Such a resin composition contains, for example, a thermosetting resin. Examples of thermosetting resins include epoxy resins, cyanate ester resins, urea (urea) resins, melamine resins, unsaturated polyester resins, bismaleimide resins, polyurethane resins, diallyl phthalate resins, silicone resins, and resins having a benzoxazine ring. Any one or more of them can be used.
The resin corresponding to the curing agent is not included in the thermosetting resin.
 エポキシ樹脂は、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではない。
 エポキシ樹脂として、たとえば、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、スチルベン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂等の2官能性または結晶性エポキシ樹脂;
クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;
フェニレン骨格含有フェノールアラルキル型エポキシ樹脂、ビフェニレン骨格含有フェノールアラルキル型エポキシ樹脂、フェニレン骨格含有ナフトールアラルキル型エポキシ樹脂等のフェノールアラルキル型エポキシ樹脂;
トリフェノールメタン型エポキシ樹脂およびアルキル変性トリフェノールメタン型エポキシ樹脂等の3官能型エポキシ樹脂;
ジシクロペンタジエン変性フェノール型エポキシ樹脂、テルペン変性フェノール型エポキシ樹脂等の変性フェノール型エポキシ樹脂;
トリアジン核含有エポキシ樹脂等の複素環含有エポキシ樹脂等が挙げられる。これらは1種類を単独で用いても2種類以上を組み合わせて用いてもよい。
Epoxy resins are monomers, oligomers, and polymers in general having two or more epoxy groups in one molecule, and their molecular weight and molecular structure are not particularly limited.
Examples of the epoxy resin include bifunctional or crystalline epoxy resins such as biphenyl type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, stilbene type epoxy resin, and hydroquinone type epoxy resin;
Novolac type epoxy resins such as cresol novolac type epoxy resin, phenol novolak type epoxy resin, naphthol novolak type epoxy resin;
Phenol aralkyl type epoxy resins such as phenylene skeleton-containing phenol aralkyl type epoxy resins, biphenylene skeleton containing phenol aralkyl type epoxy resins, phenylene skeleton containing naphthol aralkyl type epoxy resins;
Trifunctional epoxy resins such as triphenolmethane type epoxy resins and alkyl-modified triphenolmethane type epoxy resins;
Modified phenol type epoxy resins such as dicyclopentadiene modified phenol type epoxy resin and terpene modified phenol type epoxy resin;
And heterocyclic ring-containing epoxy resins such as triazine nucleus-containing epoxy resins. These may be used alone or in combination of two or more.
 シアネートエステル樹脂としては、たとえば、ハロゲン化シアン化合物とフェノール類とを反応させたものや、これを加熱等の方法でプレポリマー化したもの等を用いることができる。具体的な形態としてはたとえば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等のビスフェノール型シアネート樹脂等を挙げることができる。これらを単独または2種類以上組み合わせて使用することができる。 As the cyanate ester resin, for example, a product obtained by reacting a cyanogen halide and a phenol, a product obtained by prepolymerizing the compound by a method such as heating, or the like can be used. Specific examples include bisphenol type cyanate resins such as novolac type cyanate resin, bisphenol A type cyanate resin, bisphenol E type cyanate resin, and tetramethyl bisphenol F type cyanate resin. These can be used alone or in combination of two or more.
 樹脂組成物は、硬化剤を含んでいてもよく、硬化剤は、樹脂の種類に応じて適宜選択される。
 たとえば、エポキシ樹脂に対する硬化剤としては、エポキシ樹脂と反応して硬化させるものであればよく、当業者に公知のものが使用でき、たとえば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドラジドなどを含むポリアミン化合物;
ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸二無水物(BTDA)などの芳香族酸無水物などを含む酸無水物;フェニレン骨格含有フェノールアラルキル樹脂、ビフェニレン骨格含有フェノールアラルキル(すなわちビフェニルアラルキル)樹脂、フェニレン骨格含有ナフトールアラルキル樹脂等のフェノールアラルキル樹脂などのポリフェノール化合物およびビスフェノールAなどのビスフェノール化合物;
ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;
イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;
カルボン酸含有ポリエステル樹脂などの有機酸類;
ベンジルジメチルアミン(BDMA)、2,4,6-トリジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;
2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;およびBF3錯体などのルイス酸;
ノボラック型フェノール樹脂、レゾール型フェノール樹脂などのフェノール樹脂;
メチロール基含有尿素樹脂のような尿素樹脂;および
メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。
The resin composition may contain a curing agent, and the curing agent is appropriately selected according to the type of resin.
For example, as a curing agent for an epoxy resin, any curing agent may be used as long as it reacts with the epoxy resin and is known to those skilled in the art. For example, diethylenetriamine (DETA), triethylenetetramine (TETA), metaxylene Polyamines including aliphatic polyamines such as diamine (MXDA), aromatic polyamines such as diaminodiphenylmethane (DDM), m-phenylenediamine (MPDA), diaminodiphenylsulfone (DDS), dicyandiamide (DICY), organic acid dihydrazide, etc. Compound;
Aliphatic acid anhydrides such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA), trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), benzophenone tetracarboxylic dianhydride (BTDA) Acid anhydrides including aromatic acid anhydrides such as: phenolic aralkyl resins such as phenylene skeleton-containing phenol aralkyl resins, biphenylene skeleton-containing phenol aralkyl (ie, biphenyl aralkyl) resins, phenylene skeleton-containing naphthol aralkyl resins, and the like, and Bisphenol compounds such as bisphenol A;
Polymercaptan compounds such as polysulfide, thioester, thioether;
Isocyanate compounds such as isocyanate prepolymers, blocked isocyanates;
Organic acids such as carboxylic acid-containing polyester resins;
Tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-tridimethylaminomethylphenol (DMP-30);
Imidazole compounds such as 2-methylimidazole, 2-ethyl-4-methylimidazole (EMI24); and Lewis acids such as BF3 complexes;
Phenolic resins such as novolac type phenolic resin and resol type phenolic resin;
And urea resins such as methylol group-containing urea resins; and melamine resins such as methylol group-containing melamine resins.
 これらの硬化剤の中でも特にフェノール系樹脂を用いることが好ましい。本実施形態で好ましく用いられるフェノール系樹脂は、1分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、たとえばフェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂、フェノールアラルキル樹脂(フェニレン骨格、ビフェニレン骨格等を有する)等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても差し支えない。 Of these curing agents, it is particularly preferable to use a phenolic resin. Phenol resins preferably used in the present embodiment are monomers, oligomers, and polymers in general having two or more phenolic hydroxyl groups in one molecule, and the molecular weight and molecular structure thereof are not particularly limited. For example, phenol novolak Resin, cresol novolac resin, dicyclopentadiene-modified phenol resin, terpene-modified phenol resin, triphenol methane type resin, phenol aralkyl resin (having a phenylene skeleton, biphenylene skeleton, etc.) and the like. However, two or more kinds may be used in combination.
 各成分の配合量は、樹脂組成物の目的に応じて適宜設定されるが、たとえば、封止材に使用される場合には、有機化合物修飾無機フィラーを含む充填材を樹脂組成物全体に対し、80質量%以上、95質量%以下とすることが好ましい。なかでも、85質量%以上、93質量%以下であることが好ましい。
 充填材中の有機化合物修飾無機フィラーの割合は、充填材全体に対して5~30質量%であることが好ましい。5質量%以上とすることで、樹脂組成物の流動性、熱伝導性の向上に寄与するフィラーを一定量確保することができる。また、30質量%以下とすることが、封止材としての機能を奏するため好ましい。
 なお、本明細書中において、「充填材」とは機械的強度の向上等を目的として樹脂組成物に配合される材料を指し、具体的には本実施形態における「有機化合物修飾無機フィラー」と、前述の「無機フィラー」のいずれか、または双方を含むものである。
The amount of each component is appropriately set according to the purpose of the resin composition. For example, when used as a sealing material, a filler containing an organic compound-modified inorganic filler is added to the entire resin composition. 80 mass% or more and 95 mass% or less is preferable. Especially, it is preferable that they are 85 mass% or more and 93 mass% or less.
The ratio of the organic compound-modified inorganic filler in the filler is preferably 5 to 30% by mass with respect to the entire filler. By setting it as 5 mass% or more, a fixed quantity of the filler which contributes to the improvement of the fluidity | liquidity of a resin composition and heat conductivity is securable. Moreover, it is preferable to set it as 30 mass% or less, since there exists a function as a sealing material.
In the present specification, “filler” refers to a material blended in the resin composition for the purpose of improving mechanical strength, and specifically, “organic compound-modified inorganic filler” in the present embodiment. Any of the above-mentioned “inorganic fillers” or both are included.
 また有機化合物修飾無機フィラーの比表面積は、特に限定するものではないが、表面処理前の無機フィラーの比表面積に対し、好ましくはプラスマイナス30%以下、より好ましくはプラスマイナス25%以下、さらに好ましくはプラスマイナス20%以下変化し、例えば平均粒径が0.3μm以上であり、0.1~1μmの範囲にある極大点を含み、他の極大点を含まない粒径の範囲を有機化合物修飾無機フィラーで構成する場合には、比表面積は3(m/g)以上12(m/g)以下となることが好ましい。ここで、有機化合物修飾無機フィラーの比表面積は、窒素吸着によるBET法により測定した値である。
 さらには、充填材が体積基準粒度分布の極大点を複数有する場合、コストと樹脂組成物の流動性向上等の性能とのバランスの観点から、最も小さい極大点を含み、他の極大点を含まない粒径の範囲かつ、平均粒径が本願の上下限の範囲内である充填材を、前述した有機化合物修飾無機フィラーで構成することが好ましい。
 たとえば、充填材が体積基準粒度分布の極大点を0.1~1μm、3~8μm、36~60μmのそれぞれに有する場合には、0.1~1μmの範囲にある極大点を含み、他の極大点を含まない粒径の範囲かつ、平均粒径が0.5μmの充填材を、有機化合物修飾無機フィラーで構成する。
 このように、最も小さい極大点を含む粒径の範囲を有機化合物修飾無機フィラーとすることで、樹脂組成物の粘度が低下して、流動性を確実に高めることができる。
The specific surface area of the organic compound-modified inorganic filler is not particularly limited, but is preferably plus or minus 30% or less, more preferably plus or minus 25% or less, more preferably relative to the specific surface area of the inorganic filler before the surface treatment. Changes by plus or minus 20% or less, for example, the average particle size is 0.3 μm or more, the maximum particle size range is 0.1 to 1 μm, and the particle size range that does not include other maximum points is modified with organic compounds. In the case of using an inorganic filler, the specific surface area is preferably 3 (m 2 / g) or more and 12 (m 2 / g) or less. Here, the specific surface area of the organic compound-modified inorganic filler is a value measured by a BET method based on nitrogen adsorption.
Furthermore, when the filler has a plurality of maximum points of the volume-based particle size distribution, from the viewpoint of balance between cost and performance such as improvement in fluidity of the resin composition, the smallest maximum point is included, and other maximum points are included. Preferably, the filler having an average particle size within the upper and lower limits of the present application is composed of the organic compound-modified inorganic filler described above.
For example, when the filler has a maximum point of the volume-based particle size distribution in each of 0.1 to 1 μm, 3 to 8 μm, and 36 to 60 μm, it includes a maximum point in the range of 0.1 to 1 μm, A filler having a particle size range not including the maximum point and an average particle size of 0.5 μm is composed of an organic compound-modified inorganic filler.
Thus, the viscosity of a resin composition falls by making the range of the particle size containing the smallest maximum point into an organic compound modified inorganic filler, and can improve fluidity | liquidity reliably.
 また、樹脂組成物が封止材に使用される場合には、熱硬化性樹脂は、たとえば、1~15質量%であることが好ましく、2質量%~12質量%であることがより好ましく、2~10質量%であることがさらに好ましい。
 さらには、硬化剤は、0.1~5質量%であることが好ましい。
When the resin composition is used as a sealing material, for example, the thermosetting resin is preferably 1 to 15% by mass, more preferably 2% to 12% by mass, More preferably, it is 2 to 10% by mass.
Further, the curing agent is preferably 0.1 to 5% by mass.
 そして、以上のような樹脂組成物は流動性に優れるとともに熱伝導性にも優れたものとなる。 And the resin composition as described above has excellent fluidity and thermal conductivity.
 なお、樹脂組成物は、必要に応じて硬化促進剤;カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類、パラフィン等の離型剤;カーボンブラック、ベンガラ等の着色剤;臭素化エポキシ樹脂、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、硼酸亜鉛、モリブデン酸亜鉛、フォスファゼン等の難燃剤;酸化ビスマス水和物等の無機イオン交換体;シリコーンオイル、シリコーンゴム等の低応力化成分;酸化防止剤等の各種添加剤を含んでいてもよい。
 また、シランカップリング剤を本願発明の効果を損なわない範囲で使用することは差し支えない。
The resin composition is a curing accelerator as necessary; natural waxes such as carnauba wax, synthetic waxes such as polyethylene wax, higher fatty acids such as stearic acid and zinc stearate and metal salts thereof, mold release agents such as paraffin Colorants such as carbon black and bengara; flame retardants such as brominated epoxy resins, antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, zinc molybdate and phosphazene; inorganic ion exchange such as bismuth oxide hydrate Body: Low stress components such as silicone oil and silicone rubber; various additives such as antioxidants may be included.
Moreover, it does not interfere with using a silane coupling agent in the range which does not impair the effect of this invention.
 なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。 It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within the scope that can achieve the object of the present invention are included in the present invention.
 以下に本発明の具体例について、実施例を参照して説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, specific examples of the present invention will be described with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)
(有機化合物修飾無機フィラーの製造)
 5cc管型オートクレーブに、(株)アドマテックス製の球状アルミナAO-502(平均粒径0.6μm、比表面積7.5m/g)100mg、純水2.5cc、オレイン酸30mgを混合した後、仕込み、オートクレーブを密閉した。これを、振とう式加熱撹拌装置((株)AKICO製)に投入し、室温(30℃)から5分間かけて400℃とし、400℃で振とうさせながら5分間加熱した。この時のオートクレーブ内圧は38MPaとなった。加熱終了後、冷水を用いてオートクレーブを急冷し、内容物を50ml遠沈管に取り出した。これにエタノール20mlを入れ、未反応のオレイン酸を洗い流すことを目的として、10分間超音波洗浄を行った。その後、冷却遠心機((株)久保田製作所製3700)を用いて、10000G、20℃、20分間の条件で固液分離を行った。更に、この洗浄、固液分離を2回繰り返し、未反応のオレイン酸を洗い流した。これをシクロヘキサンに再分散し、真空凍結乾燥機((株)アズワン製VFD-03)を用いて24時間乾燥し、有機化合物修飾無機フィラーを得た。得られた有機化合物修飾無機フィラーを用いて、以下のようにして、樹脂組成物を製造した。
(Example 1)
(Manufacture of organic compound-modified inorganic filler)
After mixing 100 mg of spherical alumina AO-502 (average particle size 0.6 μm, specific surface area 7.5 m 2 / g) manufactured by Admatechs Co., Ltd., 2.5 cc of pure water and 30 mg of oleic acid into a 5 cc tube type autoclave. , Charge and autoclave sealed. This was put into a shaking type heating and stirring apparatus (manufactured by AKICO Corporation), heated from room temperature (30 ° C.) to 400 ° C. over 5 minutes, and heated for 5 minutes while shaking at 400 ° C. The autoclave internal pressure at this time was 38 MPa. After the heating, the autoclave was rapidly cooled using cold water, and the contents were taken out into a 50 ml centrifuge tube. 20 ml of ethanol was added thereto, and ultrasonic cleaning was performed for 10 minutes for the purpose of washing away unreacted oleic acid. Thereafter, solid-liquid separation was performed using a cooling centrifuge (3700, manufactured by Kubota Corporation) under the conditions of 10,000 G, 20 ° C., and 20 minutes. Further, this washing and solid-liquid separation were repeated twice to wash away unreacted oleic acid. This was redispersed in cyclohexane and dried for 24 hours using a vacuum freeze dryer (VFD-03 manufactured by ASONE Co., Ltd.) to obtain an organic compound-modified inorganic filler. Using the obtained organic compound-modified inorganic filler, a resin composition was produced as follows.
(樹脂組成物の製造)
 エポキシ樹脂(三菱化学社製 YX4000K)4.40質量部、硬化剤(明和化成社製、MEH-7500)2.10質量部、球状アルミナ(電気化学工業社製 DAW-45 平均粒径45μm)57.5質量部、球状アルミナ(電気化学工業社製 DAW-05 平均粒径5μm)25.0質量部、上記のようにして得られた有機化合物修飾無機フィラー10質量部、シランカップリング剤(信越化学社製 KBM-573)0.20質量部、硬化促進剤(以下の式(1)に示す)0.3質量部、カルナバワックス0.20質量部、カーボンブラック0.30質量部をミキサーに投入して、2分間常温混合した。その後、二本ロールで約3分間加熱混練し、冷却後粉砕して樹脂組成物を得た。
(Manufacture of resin composition)
Epoxy resin (Mitsubishi Chemical YX4000K) 4.40 parts by mass, curing agent (Maywa Kasei Co., Ltd., MEH-7500) 2.10 parts by mass, spherical alumina (Denki Kagaku Kogyo DAW-45 average particle size 45 μm) 57 .5 parts by mass, spherical alumina (DAW-05 manufactured by Denki Kagaku Kogyo Co., Ltd., 25.0 parts by mass), 10 parts by mass of the organic compound-modified inorganic filler obtained as described above, silane coupling agent (Shin-Etsu) Chemicals KBM-573) 0.20 parts by mass, curing accelerator (shown in the following formula (1)) 0.3 parts by mass, carnauba wax 0.20 parts by mass, carbon black 0.30 parts by mass in a mixer The mixture was added and mixed at room temperature for 2 minutes. Thereafter, the mixture was heated and kneaded with a two-roller for about 3 minutes, cooled and pulverized to obtain a resin composition.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(評価方法)
 有機化合物修飾無機フィラーのFT-IRを測定(室温)し、K-M(Kubelka-Munk)変換したスペクトル(図3)において、CH非対称伸縮に帰属される2926cm-1付近の波数ピークの大きさに対し、3300cm-1付近の波数ピークの大きさを比較した。2926cm-1付近の波数ピークの大きさが、3300cm-1付近の波数ピークの大きさより大きい場合、本願の効果を奏する有機化合物修飾無機フィラーが生成していると判断した。
 なお、後述する実施例、比較例においても、同様の方法で評価を行った。
(Evaluation methods)
FT-IR of organic compound-modified inorganic filler was measured (room temperature), and the spectrum of KM (Kubelka-Munk) conversion (FIG. 3), the wave number peak around 2926 cm −1 attributed to CH 2 asymmetric stretching On the other hand, the magnitude of the wave number peak around 3300 cm −1 was compared. When the size of the wave number peak near 2926 cm −1 was larger than the size of the wave number peak near 3300 cm −1 , it was determined that an organic compound-modified inorganic filler having the effect of the present application was generated.
In the examples and comparative examples to be described later, the evaluation was performed in the same manner.
 (樹脂組成物の熱伝導率)
 低圧トランスファー成形機を用い、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で樹脂組成物を注入成形し、試験片(10×10mm、厚さ1.0mm)を作製し、175℃、2時間で後硬化した。得られた試験片をNETZSCH社製のキセノンフラッシュアナライザーLFA447を用いて熱拡散率を測定した。また、アルファーミラージュ(株)製の電子比重計SD-200Lを用いて、熱伝導率測定に用いた試験片の比重を測定し、更に、(株)リガク製の示差走査熱量計DSC8230を用いて、熱伝導率及び比重測定に用いた試験片の比熱を測定した。ここで測定した熱拡散率、比重及び比熱を用いて、熱伝導率を算出した。
(Thermal conductivity of the resin composition)
Using a low-pressure transfer molding machine, the resin composition is injected and molded under the conditions of a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, and a curing time of 120 seconds to produce a test piece (10 × 10 mm, thickness 1.0 mm). Post-curing was performed at 175 ° C. for 2 hours. The thermal diffusivity of the obtained test piece was measured using a xenon flash analyzer LFA447 manufactured by NETZSCH. In addition, the specific gravity of the test piece used for the thermal conductivity measurement was measured using an electronic hydrometer SD-200L manufactured by Alpha Mirage Co., Ltd., and further using a differential scanning calorimeter DSC8230 manufactured by Rigaku Co., Ltd. The specific heat of the test piece used for the measurement of thermal conductivity and specific gravity was measured. The thermal conductivity was calculated using the thermal diffusivity, specific gravity and specific heat measured here.
 (樹脂組成物のスパイラルフロー)
 低圧トランスファー成形機(コータキ精機株式会社製、KTS-15)を用いて、EMMI-1-66に準じたスパイラルフロー測定用の金型に、金型温度175℃、注入圧力6.9MPa、保圧時間120秒の条件でエポキシ樹脂組成物を注入、硬化させ、流動長を測定した。
(Spiral flow of resin composition)
Using a low-pressure transfer molding machine (KTS-15, manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66, mold temperature 175 ° C., injection pressure 6.9 MPa, holding pressure The epoxy resin composition was injected and cured under the condition of time 120 seconds, and the flow length was measured.
(測定結果)
 (有機化合物修飾無機フィラーのFT-IR測定結果)
 3300cm-1付近の波数ピークの大きさをA(K-M値)とし、CH非対称伸縮に帰属される2926cm-1付近の波数ピークの大きさをB(K-M値)とした場合、AはB以下であった。(図3)。
 (樹脂組成物の熱伝導率)
 上記で得られた樹脂組成物の熱伝導率は、6.5W/m・Kであった。
 (樹脂組成物のスパイラルフロー)
 上記で得られた樹脂組成物のスパイラルフローは、124cmであった。
(Measurement result)
(FT-IR measurement result of organic compound-modified inorganic filler)
When the magnitude of the wave number peak near 3300 cm −1 is A (KM value) and the magnitude of the wave number peak near 2926 cm −1 attributed to CH 2 asymmetric stretching is B (KM value), A was B or less. (Figure 3).
(Thermal conductivity of the resin composition)
The resin composition obtained above had a thermal conductivity of 6.5 W / m · K.
(Spiral flow of resin composition)
The spiral flow of the resin composition obtained above was 124 cm.
(実施例2)
 200ccオートクレーブに、(株)アドマテックス製の球状アルミナAO-502(平均粒径0.6μm、比表面積7.5m/g)3g、純水100cc、オレイン酸1gを仕込み、オートクレーブを密閉した(装置は(株)日東高圧製)。密閉後、仕込んだ原料を撹拌羽根で常時撹拌し、鋳込みヒーターを用いて室温(30℃)から8分間かけて300℃とし、300℃で5分間加熱した。この時のオートクレーブ内圧は8MPaとなった。加熱終了後、冷却ファンを用いて空冷し、内容物を50ml遠沈管に取り出した。これにエタノール20mlを入れ、未反応のオレイン酸を洗い流すことを目的として、10分間超音波洗浄を行った。その後、冷却遠心機((株)久保田製作所製7700)を用いて、10000G、20℃、20分間の条件で固液分離を行った。更に、この洗浄、固液分離を2回繰り返し、未反応のオレイン酸を洗い流した。これを、真空乾燥機を用いて24時間乾燥し、有機化合物修飾無機フィラーを得た。
(Example 2)
A 200 cc autoclave was charged with 3 g of spherical alumina AO-502 (average particle size 0.6 μm, specific surface area 7.5 m 2 / g) manufactured by Admatechs Co., Ltd., 100 cc of pure water and 1 g of oleic acid, and the autoclave was sealed ( The device is made by Nitto Koatsu Co., Ltd. After sealing, the charged raw material was constantly stirred with a stirring blade, and was heated from room temperature (30 ° C.) to 300 ° C. over 8 minutes using a cast heater, and heated at 300 ° C. for 5 minutes. The autoclave internal pressure at this time was 8 MPa. After the heating was completed, the product was cooled with air using a cooling fan, and the contents were taken out into a 50 ml centrifuge tube. 20 ml of ethanol was added thereto, and ultrasonic cleaning was performed for 10 minutes for the purpose of washing away unreacted oleic acid. Thereafter, solid-liquid separation was performed using a cooling centrifuge (7700, manufactured by Kubota Corporation) under the conditions of 10,000 G, 20 ° C., and 20 minutes. Further, this washing and solid-liquid separation were repeated twice to wash away unreacted oleic acid. This was dried for 24 hours using a vacuum dryer to obtain an organic compound-modified inorganic filler.
(測定結果)
 (有機化合物修飾無機フィラーのFT-IR測定結果)
 FT-IRの測定結果を図4に示す。
 3300cm-1付近の波数ピークの大きさをA(K-M値)とし、CH非対称伸縮に帰属される2926cm-1付近の波数ピークの大きさをB(K-M値)とした場合、AはB以下であった。
 (樹脂組成物の熱伝導率)
 上で得られた樹脂組成物の熱伝導率は、6.2W/m・Kであった。
 (樹脂組成物のスパイラルフロー)
 上で得られた樹脂組成物のスパイラルフローは、117cmであった。
(Measurement result)
(FT-IR measurement result of organic compound-modified inorganic filler)
The measurement results of FT-IR are shown in FIG.
When the magnitude of the wave number peak near 3300 cm −1 is A (KM value) and the magnitude of the wave number peak near 2926 cm −1 attributed to CH 2 asymmetric stretching is B (KM value), A was B or less.
(Thermal conductivity of the resin composition)
The resin composition obtained above had a thermal conductivity of 6.2 W / m · K.
(Spiral flow of resin composition)
The spiral flow of the resin composition obtained above was 117 cm.
(比較例1)
 (株)アドマテックス製の球状アルミナAO-502(平均粒径0.6μm、比表面積7.5m/g)、純水、オレイン酸の混合物を、室温(30℃)から12分間かけて400℃とした以外は、実施例1に記載の方法と同様の操作を行った。
(Comparative Example 1)
A mixture of spherical alumina AO-502 (average particle size 0.6 μm, specific surface area 7.5 m 2 / g) manufactured by Admatechs Co., Ltd., pure water, and oleic acid was added from room temperature (30 ° C.) to 400 over 12 minutes. The same operation as that described in Example 1 was performed except that the temperature was changed to ° C.
(測定結果)
 FT-IRの測定結果を図5に示す。
 3300cm-1付近の波数ピークの大きさをA(K-M値)とし、CH非対称伸縮に帰属される2926cm-1付近の波数ピークの大きさをB(K-M値)とした場合、AはBよりも大きかった。
 (樹脂組成物の熱伝導率)
 上で得られた樹脂組成物の熱伝導率は、5.5W/m・Kであった。
 (樹脂組成物のスパイラルフロー)
 上で得られた樹脂組成物のスパイラルフローは、95cmであった。
(Measurement result)
The measurement results of FT-IR are shown in FIG.
When the magnitude of the wave number peak near 3300 cm −1 is A (KM value) and the magnitude of the wave number peak near 2926 cm −1 attributed to CH 2 asymmetric stretching is B (KM value), A was larger than B.
(Thermal conductivity of the resin composition)
The resin composition obtained above had a thermal conductivity of 5.5 W / m · K.
(Spiral flow of resin composition)
The spiral flow of the resin composition obtained above was 95 cm.
(比較例2)
 (株)アドマテックス製の球状アルミナAO-502(平均粒径0.6μm、比表面積7.5m/g)、純水、オレイン酸の混合物を、室温(30℃)から27分間かけて376℃とし、オートクレーブ内圧を23MPaとした以外は、実施例2に記載の方法と同様の操作を行った。
(Comparative Example 2)
A mixture of spherical alumina AO-502 (average particle size 0.6 μm, specific surface area 7.5 m 2 / g) manufactured by Admatechs Co., Ltd., pure water, and oleic acid was added at 376 over 27 minutes from room temperature (30 ° C.). The same operation as that described in Example 2 was performed except that the temperature was set to ° C and the internal pressure of the autoclave was set to 23 MPa.
(測定結果)
 (有機化合物修飾無機フィラーのFT-IR測定結果)
 FT-IRの測定結果を図6に示す。
 3300cm-1付近の波数ピークの大きさをA(K-M値)とし、CH非対称伸縮に帰属される2926cm-1付近の波数ピークの大きさをB(K-M値)とした場合、AはBよりも大きかった。
 (樹脂組成物の熱伝導率)
 上で得られた樹脂組成物の熱伝導率は、5.0W/m・Kであった。
 (樹脂組成物のスパイラルフロー)
 上で得られた樹脂組成物のスパイラルフローは、72cmであった。
(Measurement result)
(FT-IR measurement result of organic compound-modified inorganic filler)
The measurement results of FT-IR are shown in FIG.
When the magnitude of the wave number peak near 3300 cm −1 is A (KM value) and the magnitude of the wave number peak near 2926 cm −1 attributed to CH 2 asymmetric stretching is B (KM value), A was larger than B.
(Thermal conductivity of the resin composition)
The resin composition obtained above had a thermal conductivity of 5.0 W / m · K.
(Spiral flow of resin composition)
The spiral flow of the resin composition obtained above was 72 cm.
 無機フィラーと有機化合物を含む混合物を10分以内で室温から反応温度まで昇温した実施例1および2では、熱伝導率と流動性のバランスに優れた有機化合物修飾無機フィラーを生成することができた。一方、10分より長い時間をかけて昇温した比較例1および2で生成した有機化合物修飾無機フィラーを用いた場合は、実施例のものにくらべ、熱伝導率と流動性のバランスに優れたものが得られなかった。 In Examples 1 and 2 where the mixture containing the inorganic filler and the organic compound was heated from room temperature to the reaction temperature within 10 minutes, an organic compound-modified inorganic filler excellent in the balance between thermal conductivity and fluidity can be produced. It was. On the other hand, when using the organic compound-modified inorganic filler produced in Comparative Examples 1 and 2, which was heated up over a time longer than 10 minutes, it was excellent in the balance between thermal conductivity and fluidity compared to the examples. I couldn't get anything.

Claims (6)

  1.  高温高圧水中で、無機フィラーを有機化合物で修飾して、前記無機フィラーが前記有機化合物で修飾された有機化合物修飾無機フィラーを製造する方法であって、
     前記無機フィラーと前記有機化合物を、所定の開始温度から第一の温度まで10分以内で昇温して、前記無機フィラーを前記有機化合物で修飾する工程を含み、
     前記無機フィラーが、0.3μm以上100μm以下の平均粒径を有する、方法。
    A method of producing an organic compound-modified inorganic filler in which an inorganic filler is modified with an organic compound in high-temperature and high-pressure water, and the inorganic filler is modified with the organic compound,
    The inorganic filler and the organic compound are heated from a predetermined starting temperature to a first temperature within 10 minutes, and the inorganic filler is modified with the organic compound,
    A method in which the inorganic filler has an average particle size of 0.3 μm or more and 100 μm or less.
  2.  前記第一の温度が、200℃以上400℃以下である、請求項1に記載の方法。 The method according to claim 1, wherein the first temperature is 200 ° C. or higher and 400 ° C. or lower.
  3.  前記無機フィラーを前記有機化合物で修飾する工程において、前記第一の温度の保持時間を10分間以内とする、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein in the step of modifying the inorganic filler with the organic compound, the holding time of the first temperature is within 10 minutes.
  4.  前記無機フィラーが、シリカ、酸化亜鉛、アルミナ、窒化珪素、窒化アルミニウム、および窒化ホウ素から選択される少なくとも1つからなる、請求項1~3のいずれかに記載の方法。 The method according to any one of claims 1 to 3, wherein the inorganic filler comprises at least one selected from silica, zinc oxide, alumina, silicon nitride, aluminum nitride, and boron nitride.
  5.  請求項1~4のいずれかに記載の方法により製造された有機化合物修飾無機フィラー。 An organic compound-modified inorganic filler produced by the method according to any one of claims 1 to 4.
  6.  半導体封止材用の充填材として用いられる、請求項5に記載の有機化合物修飾無機フィラー。 The organic compound-modified inorganic filler according to claim 5, which is used as a filler for a semiconductor sealing material.
PCT/JP2015/061536 2015-04-15 2015-04-15 Method for producing organic compound modified inorganic filler and organic compound modified inorganic filler WO2016166823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061536 WO2016166823A1 (en) 2015-04-15 2015-04-15 Method for producing organic compound modified inorganic filler and organic compound modified inorganic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061536 WO2016166823A1 (en) 2015-04-15 2015-04-15 Method for producing organic compound modified inorganic filler and organic compound modified inorganic filler

Publications (1)

Publication Number Publication Date
WO2016166823A1 true WO2016166823A1 (en) 2016-10-20

Family

ID=57125714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061536 WO2016166823A1 (en) 2015-04-15 2015-04-15 Method for producing organic compound modified inorganic filler and organic compound modified inorganic filler

Country Status (1)

Country Link
WO (1) WO2016166823A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518266A (en) * 2005-12-06 2009-05-07 アクゾ ノーベル ナムローゼ フェンノートシャップ Clay containing organic ions to balance charge and nanocomposite material containing the clay
JP2011122030A (en) * 2009-12-09 2011-06-23 Sumitomo Bakelite Co Ltd Epoxy resin composition, semiconductor device using this epoxy resin composition, organically modified inorganic filler, and process for producing epoxy resin composition
WO2014192402A1 (en) * 2013-05-30 2014-12-04 住友ベークライト株式会社 Hydrophobic inorganic particles, resin composition for heat dissipation member, and electronic component device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009518266A (en) * 2005-12-06 2009-05-07 アクゾ ノーベル ナムローゼ フェンノートシャップ Clay containing organic ions to balance charge and nanocomposite material containing the clay
JP2011122030A (en) * 2009-12-09 2011-06-23 Sumitomo Bakelite Co Ltd Epoxy resin composition, semiconductor device using this epoxy resin composition, organically modified inorganic filler, and process for producing epoxy resin composition
WO2014192402A1 (en) * 2013-05-30 2014-12-04 住友ベークライト株式会社 Hydrophobic inorganic particles, resin composition for heat dissipation member, and electronic component device

Similar Documents

Publication Publication Date Title
JP6380387B2 (en) Resin composition for heat dissipation member and electronic component device
JP6380386B2 (en) Resin composition for heat dissipation member and electronic component device
JP6436263B2 (en) Epoxy resin composition and structure
JP6380388B2 (en) Resin composition for heat dissipation member and electronic component device
JP5507984B2 (en) Epoxy resin composition for semiconductor encapsulation, semiconductor device using this epoxy resin composition, and method for producing this epoxy resin composition
TW200533714A (en) Combinations of resin compositions and methods of use thereof
TWI538943B (en) Coated magnesium oxide particles, a method for producing the same, a heat-dissipating filler, and a resin composition
JP6287085B2 (en) Method for producing organic compound-modified inorganic filler
TW201305262A (en) Organic-inorganic hybrid material
JP6950299B2 (en) Resin composition for encapsulant and electronic device using it
JP5905917B2 (en) Method for producing surface-treated particles
JP2021113267A (en) Thermosetting resin composition, electronic apparatus, method for producing thermally conductive material, and method for producing thermosetting resin composition
WO2016166823A1 (en) Method for producing organic compound modified inorganic filler and organic compound modified inorganic filler
TW201637999A (en) Method for manufacturing organic compound-modified inorganic filler and organic compound-modified inorganic filler
JP2021187868A (en) Thermosetting resin composition and electronic device
JP2019196434A (en) Highly thermoconductive curable composition, highly thermoconductive cured film, laminate and power module
JP2021113269A (en) Thermosetting resin composition, electronic apparatus, and method for producing thermosetting resin composition
JPWO2020189711A1 (en) Resin compositions for molding materials, molded bodies and structures
JP2006063193A (en) Epoxy resin composition for sealing semiconductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889161

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP