WO2016163232A1 - Curable resin composition for interlayer filling - Google Patents

Curable resin composition for interlayer filling Download PDF

Info

Publication number
WO2016163232A1
WO2016163232A1 PCT/JP2016/059141 JP2016059141W WO2016163232A1 WO 2016163232 A1 WO2016163232 A1 WO 2016163232A1 JP 2016059141 W JP2016059141 W JP 2016059141W WO 2016163232 A1 WO2016163232 A1 WO 2016163232A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
active energy
urethane
energy ray
Prior art date
Application number
PCT/JP2016/059141
Other languages
French (fr)
Japanese (ja)
Inventor
相模貴雄
山下亮
Original Assignee
ダイセル・オルネクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイセル・オルネクス株式会社 filed Critical ダイセル・オルネクス株式会社
Priority to CN201680019420.1A priority Critical patent/CN107406563B/en
Priority to KR1020177030264A priority patent/KR102418173B1/en
Publication of WO2016163232A1 publication Critical patent/WO2016163232A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09J175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks

Definitions

  • the present invention has an active energy ray-curable composition that can be used as an interlayer filler for transparent substrates for displays such as personal computers, televisions, and mobile phones, and a cured product layer of the active energy ray-curable composition. It relates to a laminate.
  • This application claims the priority of Japanese Patent Application No. 2015-0778067 for which it applied to Japan on April 6, 2015, and uses the content here.
  • ⁇ Displays used in personal computers, car navigation systems, TVs, mobile phones, etc., display images with light from the backlight.
  • Various transparent substrates such as glass substrates such as glass plates and plastic substrates such as plastic films, including color filters, are used for displays, and the effects of light scattering and absorption of these transparent substrates are used.
  • the amount of light output from the light source to the outside of the display is reduced. If this decrease width becomes large, the screen becomes dark and the visibility decreases. In order to improve the visibility, it is possible to increase the antireflection property of the display surface layer or increase the amount of light from the light source.
  • Performance required for the resin used between layers of transparent substrates such as glass substrates and plastic substrates is not only high adhesion to transparent substrates, but also high deformation resistance and high flexibility, as well as high transparency
  • the transmittance at 400 nm is required to be 95% or more. Further, it is necessary that resistance at high temperatures, specifically, no change in shape at 95 ° C. or no change in hue. Aiming at a resin having such performance, urethane (meth) acrylates using an olefin skeleton and compositions containing these have been proposed in the following prior art documents.
  • Japanese Patent No. 1041553 Japanese Patent No. 2582575 JP 2002-069138 A JP 2002-309185 A JP 2003-155455 A JP 2010-144000 A JP 2010-254890 A JP 2010-254891 A JP 2010-265402 A JP 2011-116965 A
  • urethane (meth) acrylates described in these prior documents and compositions containing them cannot be produced on a large scale because of the increased viscosity during the synthesis of urethane (meth) acrylate, and the reaction
  • the resulting urethane (meth) acrylate and these compositions become cloudy at low temperatures, resulting in poor transparency, and the cured coating changes shape at high temperatures. Therefore, it was insufficient as an interlayer filler for a transparent substrate for display.
  • thinning of the base material is required, and further reduction in curing shrinkage of the active energy ray curable composition used as an interlayer filler is required. Yes.
  • durability under high temperature is required. In this case, adhesion retention between the cured interlayer filler and the substrate is required.
  • the object of the present invention is to cure the active energy ray that can produce the target component without increasing the viscosity when producing the component of the active energy ray curable composition, and with fewer by-products.
  • An active energy ray-curable composition that can be used as an interlayer filler even if it is a thin base material for smartphones and tablets due to its low curing shrinkage.
  • the cured product of the active energy ray-curable composition exhibits high-temperature heat resistance in addition to high flexibility and high transparency, and an active energy ray-curable composition having high adhesion retention with a substrate, and the active energy It is providing the laminated body which has a hardened
  • the present invention relates to a polyolefin polyol (A) having a polyolefin skeleton, an aliphatic alcohol (B) having three or more hydroxyl groups and a molecular weight of 100 or more and less than 800, an aliphatic diisocyanate (C), Is subjected to a urethanation reaction to form a urethane isocyanate prepolymer containing an isocyanate group, and then the urethane isocyanate prepolymer, a (meth) acrylate (D) having a hydroxyl group, and an alcohol (E) having one hydroxyl group.
  • A polyolefin polyol
  • B aliphatic alcohol
  • C aliphatic diisocyanate
  • Urethane (meth) acrylate (X) obtained by reacting with An active energy ray-curable composition
  • An active energy ray-curable composition comprising a monofunctional (meth) acrylate (Y) and a photopolymerization initiator (Z)
  • the polyolefin-based polyol (A) having a polyolefin skeleton is at least one selected from the group consisting of polybutadienes having hydroxyl groups at both ends, polyisoprene, and polyols obtained by hydrogenating these, and the weight average molecular weight is 2, 000 to 10,000
  • an active energy ray-curable composition having a (meth) acryloyl group concentration of urethane (meth) acrylate (X) of 0.05 or more and less than 0.20 mol / kg.
  • the reaction is continued until the isocyanate group concentration in the reaction liquid when forming the urethane isocyanate prepolymer containing the isocyanate group is equal to or lower than the remaining isocyanate group concentration when all of the hydroxyl groups subjected to the reaction are urethanized. It is preferable to make it.
  • cured material layer of the said active energy ray curable composition is provided between the 1st transparent base material chosen from glass and a plastics, and the 2nd transparent base material chosen from glass and a plastics.
  • the laminated body which has is also demonstrated.
  • the said laminated body apply
  • a laminate obtained by attaching a transparent substrate and then irradiating active energy rays to cure the active energy ray-curable composition to form a cured product layer will also be described.
  • a urethane isocyanate prepolymer containing an isocyanate group After reacting to form a urethane isocyanate prepolymer containing an isocyanate group, the urethane isocyanate prepolymer, a (meth) acrylate (D) having a hydroxyl group, and an alcohol (E) having one hydroxyl group
  • Urethane (meth) acrylate (X) obtained by An active energy ray-curable composition comprising a monofunctional (meth) acrylate (Y) and a photopolymerization initiator (Z),
  • the polyolefin-based polyol (A) having a polyolefin skeleton is at least one selected from the group consisting of polybutadienes having hydroxyl groups at both ends, polyisoprene, and polyols obtained by hydrogenating these, and the weight average molecular weight is 2, 000 to 10,000
  • An active energy ray-curable composition having a (meth) acryloyl group concentration of urethane (meth) acrylate (X) of 0.05 or more and less than 0.20 mol / kg.
  • Mw weight average molecular weight
  • the alcohol (B) is at least one selected from the group consisting of trimethylolpropane, pentaerythritol, glycerin, and modified compounds thereof. Composition.
  • the amount of the alcohol (B) used is, for example, 0.01 to 3% by weight, preferably 0.1 to 3% by weight with respect to the total amount of urethane (meth) acrylate-containing product obtained (100% by weight).
  • the active energy ray-curable composition according to any one of [1] to [3], which is 1% by weight, more preferably 0.3 to 0.6% by weight.
  • the diisocyanate (C) is at least one selected from the group consisting of alicyclic diisocyanates, linear or branched aliphatic diisocyanates, and diisocyanate compounds obtained by hydrogenating aromatic isocyanates.
  • the active energy ray-curable composition according to any one of [1] to [4].
  • the (meth) acrylate (D) has one (meth) acryloyl group such as 2-hydroxyethyl (meth) acrylate, 2-hydroxynormalpropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
  • [1] to [5] which are (meth) acrylates having two or more (meth) acryloyl groups such as (meth) acrylate having a hydroxyl group or pentaallythritol triacrylate and further having a hydroxyl group.
  • the active energy ray-curable composition according to any one of the above.
  • the alcohol (E) is an aliphatic or alicyclic primary alcohol having 3 or more carbon atoms, and the molecular weight thereof is in the range of 70 to 400.
  • the use concentration of (meth) acrylate (Y) is, for example, 20 to 60% by weight, preferably 20 to 40% with respect to the total amount of urethane (meth) acrylate-containing product (100% by weight) obtained.
  • the active energy ray-curable composition according to any one of [1] to [7], which is wt%.
  • a resin layer is formed by applying any one of the active energy ray-curable compositions according to any one of [1] to [9] on a first transparent substrate, and the resin layer The laminated body obtained by making a 2nd transparent base material adhere on it, and then irradiating an active energy ray, hardening the said active energy ray curable composition, and forming a hardened
  • the active energy ray-curable composition of the present invention is not intended to increase the viscosity during the production of the urethane (meth) acrylate (X), which is a component, and the by-product of the by-product is small, and is intended. Urethane (meth) acrylate can be produced.
  • the active energy ray-curable composition (before curing) of the present invention does not deteriorate the appearance of the resin due to white turbidity at low temperatures.
  • the active energy ray-curable composition of the present invention has good wettability with a glass substrate or a plastic substrate, high flexibility, high heat resistance, and low cure shrinkage, so that it is a smartphone or tablet.
  • the active energy ray curable composition of this invention is used as an interlayer filler, the adhesiveness retention of the hardened
  • the active energy ray-curable composition of the present invention is filled between transparent substrates of displays used in personal computers, car navigation systems, televisions, mobile phones (smartphones), tablets, etc. It is useful in that it can prevent light scattering in the layer and can obtain a laminate that hardly undergoes a hue change or a shape change during a heat resistance test.
  • the urethane (meth) acrylate (X) used in the present invention is a urethanization reaction of a polyolefin polyol (A) having a specific polyolefin skeleton, a specific aliphatic alcohol (B), and an aliphatic diisocyanate (C). After forming a urethane isocyanate prepolymer containing an isocyanate group, the urethane isocyanate prepolymer, a (meth) acrylate (D) having a hydroxyl group, and an alcohol (E) having one hydroxyl group are reacted. Can be manufactured.
  • monofunctional (meth) acrylate (Y) may be used as a compatibilizing agent when forming a urethane isocyanate prepolymer containing an isocyanate group. good.
  • the urethane (meth) acrylate (X) is simply “urethane (meth) acrylate (X)” or “(X)”, and the polyolefin polyol (A) having a polyolefin skeleton is simply “polyol (A)” or “(A)” and an aliphatic alcohol (B) having three or more hydroxyl groups and a molecular weight of 100 to less than 800 are simply referred to as “alcohol (B)” or “(B)” and an aliphatic diisocyanate ( C) is simply “diisocyanate (C)” or “(C)” and (meth) acrylate (D) having a hydroxyl group is simply “(meth) acrylate (D)” or “(D)” and one hydroxyl group Alcohol (E) having the following is simply “alcohol (E)” or “(E)” and “urethane isocyanate prepolymer containing isocyanate groups” is simply “
  • a method for producing the urethane (meth) acrylate (X) of the present invention for example, “a method in which (A), (B), (C), (D), and (E) are mixed and reacted” or “( C), (D) and (E) are polymerized, and compared with conventional methods such as “method of reacting the polymer with (A) and (B)”, preventing increase in viscosity, resin appearance, and by-products There is an effect that the suppression, transparency of the cured product, heat resistance and the like are remarkably improved.
  • urethane (meth) acrylate formed by “a method in which (A), (B), (C), (D) and (E) are mixed and reacted” is highly viscous, Stirring becomes difficult.
  • the urethanization reaction proceeds non-uniformly, not only is there a high possibility that gelation will occur partially, but urethane (meth) acrylate (by-product) that does not contain polyol (A) in the skeleton is generated and transmitted. It causes a decrease in rate and flexibility.
  • various urethane (meth) acrylates are produced, quality control becomes difficult when used as an active energy ray-curable composition.
  • Examples of the urethane isocyanate prepolymer forming method (synthesis method) in the method for producing urethane (meth) acrylate (X) of the present invention include the following methods 1 to 3.
  • [Method 1] A method in which polyol (A), alcohol (B), and diisocyanate (C) are mixed and reacted.
  • [Method 2] A method of reacting the diisocyanate (C) while adding the polyol (A) and the alcohol (B) dropwise.
  • Methodhod 3 A method of reacting the diisocyanate (C) dropwise into the polyol (A) and the alcohol (B).
  • urethane (meth) acrylate obtained by reacting (meth) acrylate (D) and alcohol (E) has a low acrylic density, so the cured product has a sufficient crosslinking density. Cannot be obtained.
  • [Method 1] and [Method 2] are particularly preferably used in order to obtain the desired urethane isocyanate prepolymer in good yield.
  • the polyol (A) and the alcohol (B) are first charged in the reactor and stirred until uniform, and then the diisocyanate (C) is charged and made uniform. This makes it possible to keep the viscosity of the reaction solution low. Thereafter, a method of starting urethanization by adding a urethanization catalyst after raising the temperature as necessary while stirring is desirable. The temperature may be increased as necessary after adding the urethanization catalyst.
  • the urethanization catalyst When the urethanization catalyst is added before the polyol (A), alcohol (B) and isocyanate (C) are uniformly stirred, the urethane prepolymer obtained is gelled by the urethanation reaction proceeding non-uniformly. Problems arise. Furthermore, the reaction may be terminated with unreacted diisocyanate (C) remaining in the system. In this case, the transmittance at 400 nm is lowered due to the by-product obtained by the reaction between the (meth) acrylate (D) and alcohol (E) to be reacted later and the remaining diisocyanate (C), which is not preferable.
  • the content of such by-products is preferably less than 7% by weight with respect to the target urethane isocyanate prepolymer. If it is 7% by weight or more, the transmittance at 400 nm is lowered.
  • Method 1 is industrial in that the polyol (A) having a high viscosity and the alcohol (B) that may be a solid may be charged directly into the reactor, and the urethane (meth) acrylate (X) can be produced in one pot. Is excellent.
  • (meth) acrylate (Y) may be used as a compatibilizing agent.
  • the polyol (A) and the alcohol (B) are charged into the reactor together with the (meth) acrylate (Y) and stirred until uniform, and then the diisocyanate (C) is charged and made uniform.
  • the viscosity of the reaction solution can be further reduced.
  • a method of starting urethanization by adding a urethanization catalyst after raising the temperature as necessary while stirring is desirable. The temperature may be increased as necessary after adding the urethanization catalyst.
  • a urethane isocyanate prepolymer is synthesized (formed) by reaction with polyol (A), alcohol (B) and diisocyanate (C)
  • the reaction is continued until all hydroxyl groups in the reaction solution are urethanized. It is preferable to carry out. That is, it is preferable to carry out the reaction until the isocyanate group concentration in the reaction liquid at the time of forming the urethane isocyanate prepolymer is equal to or lower than the remaining isocyanate group concentration when all the hydroxyl groups subjected to the reaction are urethaned.
  • the end point of the reaction is the measurement of the isocyanate group concentration in the reaction solution, and all of the hydroxyl groups charged into the system were below the isocyanate group concentration when urethane was converted, the isocyanate group concentration no longer changed, etc. Can be confirmed.
  • the molar ratio of the hydroxyl group (total amount) of the polyol (A) and the alcohol (B) and the isocyanate group of the diisocyanate (C) is not particularly limited. 1 to 2.0 mol, preferably 1.1 to 1.4 mol, more preferably 1.17 to 1.38 mol can be used.
  • the reaction is performed so that the number of moles of hydroxyl group of (meth) acrylate (D) having a hydroxyl group is excessive with respect to the number of moles of isocyanate group of the urethane isocyanate prepolymer, and The reaction must be continued until the residual isocyanate group concentration in the reaction solution reaches 0.05% by weight or less.
  • the total number of moles of hydroxyl groups of (meth) acrylate (D) and alcohol (E) having a hydroxyl group is 1.0 to 1 with respect to 1 mole of the isocyanate group of the urethane isocyanate prepolymer. 0.1 mol, preferably 1.0 to 1.05 mol.
  • This reaction is preferably performed in the presence of a polymerization inhibitor such as dibutylhydroxytoluene, hydroquinone, hydroquinone monomethyl ether, or phenothiazine for the purpose of preventing polymerization.
  • a polymerization inhibitor such as dibutylhydroxytoluene, hydroquinone, hydroquinone monomethyl ether, or phenothiazine for the purpose of preventing polymerization.
  • the addition amount of these polymerization inhibitors is preferably 1 to 10,000 ppm (weight basis), more preferably 100 to 1000 ppm, and still more preferably 400 to 1000 ppm with respect to the urethane (meth) acrylate (X) to be produced. If the addition amount of the polymerization inhibitor is less than 1 ppm relative to the urethane (meth) acrylate (X), a sufficient polymerization inhibition effect may not be obtained. If it exceeds 10000 ppm, the physical properties of the product may be adversely affected. There is.
  • ⁇ Atmosphere> In the manufacturing method of urethane (meth) acrylate (X) of this invention, it is preferable to carry out in molecular oxygen containing gas atmosphere.
  • the oxygen concentration is appropriately selected in consideration of safety.
  • a catalyst may be used in order to obtain a sufficient reaction rate.
  • the catalyst dibutyltin dilaurate, tin octylate, tin chloride or the like can be used, but dibutyltin dilaurate is preferable from the viewpoint of reaction rate.
  • the amount of these catalysts added is usually 1 to 3000 ppm (weight basis), preferably 50 to 1000 ppm, based on the urethane (meth) acrylate (X) to be produced. When the addition amount of the catalyst is less than 1 ppm, a sufficient reaction rate may not be obtained. When the addition amount is more than 3000 ppm, there is a risk of adversely affecting various physical properties of the product such as a decrease in light resistance.
  • the urethane (meth) acrylate (X) of the present invention can be produced in the presence of a known volatile organic solvent.
  • the volatile organic solvent can be distilled off under reduced pressure after the production of urethane (meth) acrylate (X).
  • the volatile organic solvent remaining in the composition can be applied to a transparent substrate and then removed by drying.
  • a volatile organic solvent means the organic solvent whose boiling point does not exceed 200 degreeC.
  • the active energy ray-curable composition of the present invention may or may not contain the organic solvent used in the production of urethane (meth) acrylate (X). It should be noted that it is preferable not to use any volatile organic solvent in the sealed curing system from the production of urethane (meth) acrylate (X) to the preparation of the active energy ray curable composition. In this case, it is preferable that the active energy ray-curable composition of the present invention does not contain a volatile organic solvent.
  • “not contained” means that the proportion of the entire active energy ray-curable composition is 1% by weight or less, preferably 0.5% by weight or less. More preferably, it is 1% by weight or less.
  • reaction temperature In the method for producing urethane (meth) acrylate (X) of the present invention, the reaction is preferably carried out at a temperature of 130 ° C. or less, more preferably 40 to 130 ° C. When the temperature is lower than 40 ° C., a practically sufficient reaction rate may not be obtained. When the temperature is higher than 130 ° C., the double bond portion may be cross-linked by radical polymerization due to heat, and a gelled product may be generated.
  • the isocyanate group concentration in the reaction solution is the remaining isocyanate group concentration when all of the hydroxyl groups subjected to the reaction are urethanated. It is preferable to make it react until it becomes the following, and to form a urethane isocyanate prepolymer.
  • the residual isocyanate group concentration can be analyzed by gas chromatography, titration method or the like.
  • the isocyanate group concentration in the reaction solution when forming urethane (meth) acrylate (X) from the urethane isocyanate prepolymer is usually carried out until the residual isocyanate group is 0.1% by weight or less.
  • the residual isocyanate group concentration is analyzed by gas chromatography, titration method or the like.
  • a part of the terminal (meth) acryloyl group may be modified to an alkoxy group.
  • wettability with a substrate can be adjusted.
  • the (meth) acryloyl group concentration of urethane (meth) acrylate (X) (hereinafter sometimes simply referred to as “(meth) acryloyl group concentration”) can be calculated by applying the following formula. .
  • the number of (meth) acryloyl groups in (meth) acrylate (D) is “1” for 2-hydroxyethyl acrylate, and the number of (meth) acryloyl groups for pentaerythritol triacrylate is “3”.
  • the necessary (meth) acryloyl group concentration is 0.05 or more and less than 0.20 mol / kg, preferably 0.06 to 0.16 mol / kg or less.
  • the (meth) acryloyl group concentration is less than 0.05 mol / kg, there is a risk of insufficient curing even when irradiated with active energy rays, and the initial adhesion to the substrate is reduced due to a decrease in cohesive strength. This is not preferable.
  • the (meth) acryloyl group concentration is 0.20 mol / kg or more, the heat resistance of the cured product is lowered, which is not preferable.
  • the cured product is tested under the conditions of 95 ° C. and 1000 hours, the hardness of the coating film is increased, the adhesion with the substrate is decreased, and the shrinkage of the curing is caused. It is a problem that causes the coating shape to change.
  • Alcohol (E) is reacted with urethane isocyanate prepolymer to make the desired proportion of the end of urethane isocyanate prepolymer an alkoxy group, and then (meth) acrylate (D) is reacted to the remaining isocyanate group.
  • the urethane isocyanate prepolymer is reacted with (meth) acrylate (D) to make the desired proportion of the end of the urethane isocyanate prepolymer a (meth) acryloyl group, and then reacted with alcohol (E) to remain.
  • a method of introducing an alkoxy group into an isocyanate group (3) A method in which (meth) acrylate (D) and alcohol (E) are simultaneously reacted with a urethane isocyanate prepolymer to introduce a desired proportion of alkoxy groups and (meth) acryloyl groups at the ends of the urethane isocyanate prepolymer. . (4) A method combining the methods (1) to (3).
  • the polyolefin-based polyol (A) having a polyolefin skeleton is not particularly limited as long as it is a polyol having a polyolefin skeleton and having two or more hydroxyl groups, but polybutadiene, polyisoprene having hydroxyl groups at both ends, and hydrogen
  • the polyol is at least one selected from the group consisting of a modified polyol and has a weight average molecular weight of 2,000 to 10,000.
  • the weight average molecular weight (Mw) of the polyolefin-based polyol (A) having a polyolefin skeleton may be in the range of 2,000 to 10,000, but is preferably 2,000 to 6,000.
  • the weight average molecular weight (Mw) is a value in terms of polystyrene as measured by GPC. If the Mw is less than 2,000, the resin Tg after urethane (meth) acrylate conversion is increased, the flexibility is lowered, the resin appearance is deteriorated, and the by-products are sometimes increased. On the other hand, when Mw exceeds 10,000, the crosslinking density becomes too small, which may cause deterioration in curability and change in shape at high temperature.
  • the crosslink density can be increased by adding a polyfunctional (meth) acrylate, but if a polyfunctional monomer is added as will be described later, it causes a poor appearance under an environmental test.
  • polyol (A) As the polyol (A), a commercially available product may be used. For example, “Epol” manufactured by Idemitsu Kosan Co., Ltd., “GI-2000”, “GI-3000”, “G-3000” manufactured by Nippon Soda Co., Ltd., etc. Examples thereof include “KRASOL HLBH P3000”, “KRASOL LBH-P2000”, and the like.
  • the polyol (A) may be used in combination of two or more depending on the purpose.
  • the aliphatic alcohol (B) having three or more hydroxyl groups is not particularly limited as long as it is an aliphatic alcohol having a molecular weight of 100 or more and less than 800.
  • a molecular weight of 800 or more is not preferable because the compatibility with the polyol (A) is deteriorated.
  • Specific examples include trimethylolpropane, pentaerythritol, glycerin, and modified compounds thereof.
  • the modifying compound include PPG-modified pentaerythritol and PPG-modified glycerin.
  • the resulting urethane (meth) acrylate (A) since the alcohol (B) has a plurality of (three or more) hydroxyl groups, the resulting urethane (meth) acrylate (A) has a branched structure, resulting in an increase in crosslink density. According to such urethane (meth) acrylate, it becomes possible to lower the (meth) acryloyl group concentration in urethane (meth) acrylate, which adversely affects the weather resistance and heat resistance of the cured product. It is possible to maintain the hardness.
  • the amount of alcohol (B) used is not particularly limited, but is, for example, 0.01 to 3% by weight with respect to the total amount of urethane (meth) acrylate-containing product obtained (100% by weight), preferably 0. It is 1 to 1% by weight, and more preferably 0.3 to 0.6% by weight.
  • it is less than 0.01% by weight, the heat resistance after heating of the cured product containing urethane (meth) acrylate to be obtained (see change in coating film hardness) is deteriorated.
  • it exceeds 3% by weight the molecular weight becomes too large during synthesis, which may cause gelation.
  • alcohol (B) Commercially available products may be used as the alcohol (B).
  • TMP Trimethylolpropane
  • Sanix HD-250 polypropylene glycol modified product of glycerin
  • 2 or more types of alcohol (B) may be used together according to the purpose.
  • the diisocyanate (C) include at least one selected from the group consisting of alicyclic diisocyanates, linear or branched aliphatic diisocyanates, and diisocyanate compounds obtained by hydrogenating aromatic isocyanates. . Although it does not restrict
  • the aliphatic diisocyanate is not particularly limited.
  • a linear aliphatic diisocyanate such as hexamethylene diisocyanate
  • a branched chain such as 2,2,4-trimethylhexamethylene diisocyanate and 2,4,4-trimethylhexamethylene diisocyanate.
  • chain aliphatic diisocyanates Although it does not restrict
  • diisocyanate (C) Commercially available products may be used as the diisocyanate (C).
  • VESTANAT IPDI isophorone diisocyanate
  • TMDI 2,2,4-trimethylhexamethylene diisocyanate
  • HDI Hexamethylene diisocyanate
  • Diisocyanate (C) may be used in combination of two or more depending on the purpose.
  • the hydroxyl group-containing (meth) acrylate (D) is not particularly limited, and examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxynormalpropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like.
  • a (meth) acrylate having two (meth) acryloyl groups, further having two or more (meth) acryloyl groups such as (meth) acrylate having a hydroxyl group and pentaacrylitol triacrylate, and further having a hydroxyl group.
  • (meth) acrylate (D) may use 2 or more types together according to the objective.
  • Alcohol (E) having one hydroxyl group examples include aliphatic or alicyclic primary alcohols having 3 or more carbon atoms, and the molecular weight thereof is preferably in the range of 70 to 400.
  • the alcohol has less than 3 carbon atoms or a molecular weight of less than 70, it is not preferred because it may volatilize during the synthesis of urethane (meth) acrylate.
  • the molecular weight exceeds 400, the reactivity with the isocyanate group is lowered, and the synthesis time may be prolonged, which is not preferable.
  • the alcohol which has an aromatic ring is unpreferable since the hue of the urethane (meth) acrylate (X) obtained may become high, or a weather resistance may be inferior.
  • Two or more alcohols may be used in combination depending on the purpose.
  • alcohol (E) examples include 1-butanol, 1-heptanol, 1-hexanol, normal octyl alcohol, 2-ethylhexyl alcohol, cyclohexane methanol, capryl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol (cetanol). , Stearyl alcohol and mixtures thereof. Of these, 2-ethylhexyl alcohol is preferred from the viewpoints of boiling point, price, and availability.
  • the active energy ray-curable composition of the present invention can accurately adjust the viscosity and adjust the Tg of the cured coating film when producing urethane (meth) acrylate.
  • the effect of preventing the increase in viscosity, the appearance of the resin, the suppression of by-products, the transparency of the cured product, the heat resistance and the like is achieved.
  • Monofunctional (meth) acrylate refers to (monofunctional) (meth) acrylate having one acryloyl group in the molecule.
  • (meth) acrylate (Y) may be used as a compatibilizing agent when forming the urethane isocyanate prepolymer.
  • raw materials for example, polyol (A), alcohol (B), diisocyanate (C), etc.
  • the viscosity of the reaction solution may increase. At this time, it also acts as a so-called diluent that alleviates the increase in viscosity.
  • the use concentration of (meth) acrylate (Y) is not particularly limited, but is, for example, 20 to 60% by weight, preferably 20% with respect to the total amount of urethane (meth) acrylate-containing product (100% by weight) obtained. ⁇ 40% by weight. If it is less than 20% by weight, the viscosity of the urethane (meth) acrylate obtained is increased, handling becomes difficult, and gelation may occur. On the other hand, when it exceeds 60% by weight, when applied, the viscosity is too low and the wettability with the transparent substrate is deteriorated, which may reduce the flexibility and heat resistance of the urethane (meth) acrylate.
  • Such (meth) acrylate (Y) is not particularly limited, but is preferably a monofunctional (meth) acrylate that is not a polyether acrylate (PO-modified product, EO-modified product, etc.) from the viewpoint of heat resistance, Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, glycerin mono (meth) acrylate, glycidyl (meth) acrylate, dicyclopentenyl (meth) acrylate, n-butyl (meth) acrylate, ⁇ -carboxyethyl (Meth) acrylate, isobornyl (meth) acrylate, octyl / decyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, is
  • the (meth) acrylate (Y) may be a commercially available product.
  • the product name “ ⁇ -CEA” manufactured by Daicel Ornex Co., Ltd., ⁇ -carboxyethyl acrylate
  • the product name “IBOA” Disicel Ornex, isobornyl acrylate
  • product name "ODA-N” Disicel Ornex, octyl / decyl acrylate
  • product name "NOA” manufactured by Osaka Organic Chemicals, compound name: normal octyl acrylate
  • (meth) acrylate (Y) may use 2 or more types together according to the objective.
  • the photopolymerization initiator (Z) of the present invention varies depending on the type of active energy ray and the type of urethane (meth) acrylate (X), and is not particularly limited, but is a known photoradical polymerization initiator or photocationic polymerization initiation.
  • the amount of the photopolymerization initiator used is not particularly limited, but is, for example, 1 to 20 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the active energy ray-curable composition. If the amount is less than 1 part by weight, there is a risk of causing poor curing. Conversely, if the amount of the photopolymerization initiator used is large, an odor derived from the photopolymerization initiator may remain from the cured coating film.
  • 2 or more types of photoinitiators (Z) may be used together according to the objective.
  • the active energy ray-curable composition of the present invention can be variously used as necessary.
  • Additives can be blended. Examples of such additives include fillers, dyes and pigments, leveling agents, ultraviolet absorbers, light stabilizers, antifoaming agents, dispersants, and thixotropic agents.
  • the addition amount of these additives is not particularly limited, but is, for example, 0 to 10 parts by weight, preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the active energy ray-curable composition.
  • the laminate of the present invention comprises a cured product layer of the active energy ray-curable composition between a first transparent substrate selected from glass and plastic and a second transparent substrate selected from glass and plastic.
  • the active energy ray-curable composition is applied onto the first transparent substrate to form a resin layer, and the second transparent substrate is adhered onto the resin layer.
  • an active energy ray such as an ultraviolet ray or an electron beam
  • the active energy ray-curable composition is cured in a very short time to form a cured product layer to obtain a laminate.
  • FIG. 1 shows an embodiment of the laminate.
  • plastic base materials such as a transparent plastic film other than glass base materials, such as a transparent glass plate, can be used.
  • An existing transparent material can be used as the plastic substrate, and is not particularly limited.
  • polyolefin resin such as polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polyethylene terephthalate
  • polyester resins such as polyethylene naphthalate and polybutylene terephthalate, acrylic resins, and polycarbonate resins.
  • polycarbonate resin and acrylic resin are particularly preferably used.
  • the application method is not particularly limited and spraying is performed.
  • a method, an airless spray method, an air spray method, a roll coat method, a bar coat method, a gravure method, or the like can be used.
  • the roll coat method is most preferably used from the viewpoints of aesthetics, cost, workability, and the like.
  • the application may be a so-called in-line coating method performed during the manufacturing process of a plastic film or the like, or a so-called off-line coating method in which coating is performed in a separate process on an already manufactured transparent substrate. From the viewpoint of production efficiency, off-line coating is preferred. In addition, it is preferable to use a cartridge in order to prevent bubbles from being generated.
  • the thickness of the coating film of the present invention is preferably 50 to 300 ⁇ m, more preferably 50 to 200 ⁇ m.
  • the layer thickness exceeds 300 ⁇ m, the amount of the resin composition to be applied becomes large, so that the cost may increase or the uniformity of the film thickness may decrease.
  • it is less than 50 micrometers the softness
  • the light source for performing ultraviolet irradiation is not particularly limited, and for example, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like is used.
  • the irradiation time varies depending on the type of the light source, the distance between the light source and the coating surface, and other conditions, but is several tens of seconds at most, and usually several seconds.
  • an irradiation source with a lamp output of about 80 to 300 W / cm is used.
  • the physical property measurement method, test method, and evaluation method are shown below.
  • Weight average molecular weight The weight average molecular weight was determined by GPC (gel permeation gas chromatography) method based on standard polystyrene under the following measurement conditions.
  • the transmittance was measured using only a micro glass as a reference, and evaluated according to the following criteria.
  • a glass laminate (test piece A) shown in FIG. 3 was prepared as follows. First, 0.200 g of the active energy ray-curable composition was accurately weighed on the center of a glass plate (thickness 1 mm, 5 cm square). Furthermore, the glass plate of the same shape was covered from the top, the resin layer was extended circularly (4 cm diameter), and the glass laminated body was obtained. Thereafter, a glass laminate (test piece A) having a cured resin composition layer is irradiated from the glass surface of one side of the glass laminate using a high-pressure mercury lamp (made by Eye Graphics Co., Ltd.) under the following conditions. Got.
  • a high-pressure mercury lamp made by Eye Graphics Co., Ltd.
  • test plate (Storage under heat-resistant conditions) Using a small environmental tester (product name SH-641, manufactured by Espec Corp.), the test plate (glass laminate, after curing) was stored at a temperature of 95 ° C. for 1000 hours.
  • APHA is measured using a spectroscopic color meter (product name: Spectro Color Meter SE2000, manufactured by Nippon Denshoku Industries Co., Ltd.) by measuring APHA of the glass laminate before and after storage under heat-resistant conditions, and evaluated according to the following criteria: did.
  • a spectroscopic color meter product name: Spectro Color Meter SE2000, manufactured by Nippon Denshoku Industries Co., Ltd.
  • a hardness was measured according to JIS K 6253.
  • the load at the time of measurement was 500 g, and the load drop rate was 9 mm / s.
  • the test piece B was stored for 1000 hours at a temperature of 95 ° C. If the numerical value of hardness before and after storage was less than ⁇ 20%, “ ⁇ ” was entered in the column “Change in coating film hardness” of “Heat resistance”. On the other hand, when the numerical value of the coating film hardness is ⁇ 20% or more, “x” is described.
  • the “value of hardness” can be calculated by dividing the hardness of the test piece B after storage by the hardness of the test piece B before storage.
  • the isocyanate group concentration was measured as follows. In addition, the measurement was performed under stirring with a stirrer in a 100 mL glass flask.
  • TMP trimethylolpropane, trifunctional alcohol, molecular weight: 134, white solid
  • product name “trimethylolpropane (TMP)” (manufactured by Mitsubishi Gas Chemical Company) “HD-402” (Compound name: PPG-modified pentaerythritol, trifunctional alcohol, hydroxyl value: 561 mg KOH / g, molecular weight: 400); product name: “Sanix HD-402” (manufactured by Mitsubishi Gas Chemical) “GP-250” (compound name: PPG-modified glycerin, trifunctional alcohol, hydroxyl value: 672 mg KOH / g, molecular weight: 250); product name “Sanniks GP-250” (manufactured by Mitsubishi Gas Chemical Company) “PCL308” (compound name: polycaprolactone-modified alcohol, trifunctional alcohol, hydroxyl value: 193 mg KOH / g, molecular
  • IPDI compound name isophorone diisocyanate
  • VESTANAT IPDI manufactured by Evonik
  • HDI compound name: hexamethylene diisocyanate
  • HDI manufactured by Nippon Polyurethane Co., Ltd.
  • TMDI compound name 2,2,4-trimethylhexamethylene diisocyanate
  • TMDI manufactured by Evonik
  • the completion of the reaction is that the isocyanate group concentration in the reaction solution is equal to or less than the residual isocyanate group concentration (hereinafter referred to as “theoretical end-point isocyanate group concentration”) when all of the hydroxyl groups subjected to the reaction are urethanized. That was confirmed.
  • the molar ratio of HLBH-P3000, TMP, IPDI, HEA, 2-EH used in the above reaction was 4.0: 0.6: 5.9: 1.02: 1.0.
  • Example 3 / X-3> Synthesis except that 262.6 g of GI-2000 was used as the polyol (A), 33.1 g of IPDI as the diisocyanate (C), and 129.3 g of NOA (30% by weight) as the (meth) acrylate (Y).
  • the molar ratio of GI2000, TMP, IPDI, HEA and 2-EH used in the above reaction was 6.0: 0.6: 7.9: 1.02: 1.0.
  • the active energy ray-curable composition containing the urethane (meth) acrylate (X) of the present invention has a good appearance of the resin before curing, and is filled with air between the films. Light scattering at the film interface can be prevented. Further, it was found that the cured product has the performance that the hue change, shape change, and coating film hardness do not change even when subjected to high heat for a long time.
  • Comparative Example 1 the active energy ray-curable composition in the case of not using alcohol (B) showed a large change in coating film hardness in the heat resistance (tablet) test. Further, as shown in Comparative Example 2, when the (meth) acryloyl group concentration in the urethane (meth) acrylate is 0.2 mol / kg, the change in the coating film hardness increases in the heat resistance (tablet) test due to curing shrinkage. It was. Furthermore, as shown in Comparative Example 3, when PCL308 was used as the alcohol (B), the compatibility with other components deteriorated, resulting in white turbidity, which could not be used as an active energy ray-curable composition. . As shown in Comparative Examples 4 and 5, when polypropylene glycol having excellent transparency was used as the polyol, it was found that the cured product had a drawback of liquefaction in the heat resistance test.
  • the active energy ray-curable composition of the present invention is not intended to increase the viscosity during the production of the urethane (meth) acrylate (X), which is a component, and the by-product of the by-product is small, and is intended. Urethane (meth) acrylate (X) can be produced.
  • the active energy ray-curable composition (before curing) of the present invention does not deteriorate the appearance of the resin due to white turbidity at low temperatures.
  • the active energy ray-curable composition of the present invention has good wettability with a glass substrate or a plastic substrate, high flexibility, high heat resistance, and low cure shrinkage, so that it is a smartphone or tablet.
  • the active energy ray curable composition of this invention can be used as an interlayer filler.
  • cured material and a base material is favorable.
  • the cured product of the active energy ray-curable composition of the present invention has high transparency and is less likely to be deformed or deteriorated in hue even at high temperatures.
  • the active energy ray-curable composition of the present invention is filled between transparent substrates of displays used in personal computers, car navigation systems, televisions, mobile phones (smartphones), tablets, etc. It is useful in that it can prevent light scattering in the layer and can obtain a laminate that hardly undergoes a hue change or a shape change during a heat resistance test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Laminated Bodies (AREA)
  • Sealing Material Composition (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is an active energy ray curable composition which has excellent wettability on plastics and glass, while being free from appearance change such as discoloration and deformation even under high temperature high humidity conditions, and which is suitable for interlayer filling. This active energy ray curable composition is characterized by containing a specific urethane (meth)acrylate (X), a monofunctional (meth)acrylate (Y), and a photopolymerization initiator (Z). A cured product layer is formed from an active energy ray curable composition according to the present invention, and the cured product layer 1 is able to be used as a filler between transparent bases 2, 3 in a liquid crystal television set, a display of an electronic paper, and a display part of a personal computer or a mobile phone as shown in Fig. 1.

Description

層間充填用硬化性樹脂組成物Curable resin composition for interlayer filling
 本発明は、パソコン、テレビ、携帯電話等のディスプレイ用透明基材の層間充填剤として使用することができる活性エネルギー線硬化性組成物、及び該活性エネルギー線硬化性組成物の硬化物層を有する積層体に関する。本願は、2015年4月6日に日本に出願した、特願2015-078067号の優先権を主張し、その内容をここに援用する。 The present invention has an active energy ray-curable composition that can be used as an interlayer filler for transparent substrates for displays such as personal computers, televisions, and mobile phones, and a cured product layer of the active energy ray-curable composition. It relates to a laminate. This application claims the priority of Japanese Patent Application No. 2015-0778067 for which it applied to Japan on April 6, 2015, and uses the content here.
 パソコン、カーナビ、テレビ、携帯電話等に用いられているディスプレイは、バックライトからの光で画像を映し出している。ディスプレイには、カラーフィルターを含め、ガラス板等のガラス基材やプラスチックフィルム等のプラスチック基材等の様々な透明基材が使用されており、これらの透明基材の光散乱や吸収の影響で、光源からディスプレイ外部へ出力される光量が減少する。この減少幅が大きくなれば、画面が暗くなり、視認性が低下することになる。視認性を上げるため、ディスプレイ表面層の反射防止性を高めたり、光源からの光量を強くしたりする等して対応している。 ¡Displays used in personal computers, car navigation systems, TVs, mobile phones, etc., display images with light from the backlight. Various transparent substrates such as glass substrates such as glass plates and plastic substrates such as plastic films, including color filters, are used for displays, and the effects of light scattering and absorption of these transparent substrates are used. The amount of light output from the light source to the outside of the display is reduced. If this decrease width becomes large, the screen becomes dark and the visibility decreases. In order to improve the visibility, it is possible to increase the antireflection property of the display surface layer or increase the amount of light from the light source.
 その一環としてガラス基材やプラスチック基材等の透明基材間の空気層を樹脂層に変える方法がある。空気層を樹脂層に変更することで、空気とガラス基材やプラスチック基材との界面における光散乱を防止できるため、出力される光量の低下を防ぐことが可能になる。 As part of this, there is a method of changing the air layer between transparent substrates such as a glass substrate and a plastic substrate into a resin layer. By changing the air layer to the resin layer, it is possible to prevent light scattering at the interface between the air and the glass base material or plastic base material.
 ガラス基材やプラスチック基材等の透明基材の層間に使用される樹脂に求められる性能としては、透明基材との密着性はもとより、高い耐変形性、高い柔軟性に加え、高い透明性、特に400nmにおける透過率が95%以上であることが求められる。また、高温下における耐性、具体的には95℃での形状変化がないことや色相変化がないことが必要である。このような性能の樹脂を目指して、オレフィン骨格を用いたウレタン(メタ)アクリレートや、これらを含む組成物が以下に示す先行文献に提案されている。 Performance required for the resin used between layers of transparent substrates such as glass substrates and plastic substrates is not only high adhesion to transparent substrates, but also high deformation resistance and high flexibility, as well as high transparency In particular, the transmittance at 400 nm is required to be 95% or more. Further, it is necessary that resistance at high temperatures, specifically, no change in shape at 95 ° C. or no change in hue. Aiming at a resin having such performance, urethane (meth) acrylates using an olefin skeleton and compositions containing these have been proposed in the following prior art documents.
特許1041553号公報Japanese Patent No. 1041553 特許2582575号公報Japanese Patent No. 2582575 特開2002-069138号公報JP 2002-069138 A 特開2002-309185号公報JP 2002-309185 A 特開2003-155455号公報JP 2003-155455 A 特開2010-144000号公報JP 2010-144000 A 特開2010-254890号公報JP 2010-254890 A 特開2010-254891号公報JP 2010-254891 A 特開2010-265402号公報JP 2010-265402 A 特開2011-116965号公報JP 2011-116965 A
 しかしながら、これらの先行文献に記載されているウレタン(メタ)アクリレートや、これらを含む組成物は、ウレタン(メタ)アクリレートの合成の際粘度が高くなるために大スケールでは製造ができないことや、反応が不均一になるため得られるウレタン(メタ)アクリレートやこれらの組成物が低温下で白濁することで透明性が低下すること、硬化塗膜が高温下で形状変化すること等の欠点を有しており、ディスプレイ用透明基材の層間充填剤としては不十分であった。また、スマートフォン、タブレット用の基材に代表される様に、基材の薄膜化が求められており、層間充填剤として用いる活性エネルギー線硬化性組成物の硬化収縮性のさらなる低減が求められている。さらに、使用環境の汎用化に伴って、高温下での耐久性が求められており、この場合、硬化後の層間充填剤と基材との密着保持性が求められる。 However, urethane (meth) acrylates described in these prior documents and compositions containing them cannot be produced on a large scale because of the increased viscosity during the synthesis of urethane (meth) acrylate, and the reaction The resulting urethane (meth) acrylate and these compositions become cloudy at low temperatures, resulting in poor transparency, and the cured coating changes shape at high temperatures. Therefore, it was insufficient as an interlayer filler for a transparent substrate for display. In addition, as typified by base materials for smartphones and tablets, thinning of the base material is required, and further reduction in curing shrinkage of the active energy ray curable composition used as an interlayer filler is required. Yes. Furthermore, with the generalization of the use environment, durability under high temperature is required. In this case, adhesion retention between the cured interlayer filler and the substrate is required.
 従って、本発明の目的は、活性エネルギー線硬化性組成物の含有成分を製造する際に高粘度化することなく、副生物の副生も少なく、目的成分を製造することができる活性エネルギー線硬化性組成物であって、硬化収縮性が低いためにスマートフォンやタブレット用の薄い基材であっても層間充填剤として用いることができる活性エネルギー線硬化性組成物を提供することである。また、活性エネルギー線硬化性組成物の硬化物が高柔軟性、高透明性に加え、高温耐熱性を示し、基材との密着保持性が高い活性エネルギー線硬化性組成物、及び該活性エネルギー線硬化性組成物の硬化物層を有する積層体を提供することである。 Accordingly, the object of the present invention is to cure the active energy ray that can produce the target component without increasing the viscosity when producing the component of the active energy ray curable composition, and with fewer by-products. An active energy ray-curable composition that can be used as an interlayer filler even if it is a thin base material for smartphones and tablets due to its low curing shrinkage. Moreover, the cured product of the active energy ray-curable composition exhibits high-temperature heat resistance in addition to high flexibility and high transparency, and an active energy ray-curable composition having high adhesion retention with a substrate, and the active energy It is providing the laminated body which has a hardened | cured material layer of a wire curable composition.
 本発明者は、前記目的を達成するために鋭意検討した結果、特定のポリオレフィン骨格を有するポリオレフィン系ポリオールを含有するウレタン(メタ)アクリレート(X)、単官能(メタ)アクリレート(Y)、光重合開始剤(Z)を含む活性エネルギー線硬化性組成物が、ガラス基材やプラスチック基材の層間充填用硬化性樹脂組成物として有用であることを見出した。 As a result of intensive studies to achieve the above object, the present inventor has obtained urethane (meth) acrylate (X), monofunctional (meth) acrylate (Y), photopolymerization containing a polyolefin-based polyol having a specific polyolefin skeleton. It has been found that an active energy ray-curable composition containing an initiator (Z) is useful as a curable resin composition for interlayer filling of glass substrates and plastic substrates.
 すなわち、本発明は、ポリオレフィン骨格を有するポリオレフィン系ポリオール(A)と、3つ以上の水酸基を有し、分子量が100以上800未満である脂肪族アルコール(B)と、脂肪族ジイソシアネート(C)とをウレタン化反応させて、イソシアネート基を含有するウレタンイソシアネートプレポリマーを形成した後、前記のウレタンイソシアネートプレポリマーと、水酸基を有する(メタ)アクリレート(D)と、1つの水酸基を有するアルコール(E)とを反応させて得られるウレタン(メタ)アクリレート(X)、
 単官能(メタ)アクリレート(Y)、並びに
 光重合開始剤(Z)を含む活性エネルギー線硬化性組成物であって、
 ポリオレフィン骨格を有するポリオレフィン系ポリオール(A)が、両末端に水酸基を有するポリブタジエン、ポリイソプレン、及びこれらを水素化したポリオールからなる群より選択された少なくとも一つであり、その重量平均分子量が2,000~10,000であり、
 ウレタン(メタ)アクリレート(X)の(メタ)アクリロイル基濃度が0.05以上、0.20mol/kg未満である活性エネルギー線硬化性組成物を提供する。
That is, the present invention relates to a polyolefin polyol (A) having a polyolefin skeleton, an aliphatic alcohol (B) having three or more hydroxyl groups and a molecular weight of 100 or more and less than 800, an aliphatic diisocyanate (C), Is subjected to a urethanation reaction to form a urethane isocyanate prepolymer containing an isocyanate group, and then the urethane isocyanate prepolymer, a (meth) acrylate (D) having a hydroxyl group, and an alcohol (E) having one hydroxyl group. Urethane (meth) acrylate (X) obtained by reacting with
An active energy ray-curable composition comprising a monofunctional (meth) acrylate (Y) and a photopolymerization initiator (Z),
The polyolefin-based polyol (A) having a polyolefin skeleton is at least one selected from the group consisting of polybutadienes having hydroxyl groups at both ends, polyisoprene, and polyols obtained by hydrogenating these, and the weight average molecular weight is 2, 000 to 10,000,
Provided is an active energy ray-curable composition having a (meth) acryloyl group concentration of urethane (meth) acrylate (X) of 0.05 or more and less than 0.20 mol / kg.
 また、前記のイソシアネート基を含有するウレタンイソシアネートプレポリマーを形成する際の反応液中のイソシアネート基濃度が、反応に供した水酸基の全てがウレタン化した場合に残存するイソシアネート基濃度以下となるまで反応させることが好ましい。 Further, the reaction is continued until the isocyanate group concentration in the reaction liquid when forming the urethane isocyanate prepolymer containing the isocyanate group is equal to or lower than the remaining isocyanate group concentration when all of the hydroxyl groups subjected to the reaction are urethanized. It is preferable to make it.
 なお、本発明では、ガラス及びプラスチックから選ばれる第一の透明基材と、ガラス及びプラスチックから選ばれる第二の透明基材との間に前記の活性エネルギー線硬化性組成物の硬化物層を有する積層体についても説明する。 In addition, in this invention, the hardened | cured material layer of the said active energy ray curable composition is provided between the 1st transparent base material chosen from glass and a plastics, and the 2nd transparent base material chosen from glass and a plastics. The laminated body which has is also demonstrated.
 さらに、本発明では、前記積層体が、第一の透明基材の上に前記のいずれかの活性エネルギー線硬化性組成物を塗布して樹脂層を形成し、前記樹脂層上に第二の透明基材を付着させ、その後活性エネルギー線を照射して、前記活性エネルギー線硬化性組成物を硬化させて硬化物層を形成することにより得られる積層体についても説明する。 Furthermore, in this invention, the said laminated body apply | coats one of the said active energy ray curable compositions on a 1st transparent base material, forms a resin layer, and a 2nd on the said resin layer A laminate obtained by attaching a transparent substrate and then irradiating active energy rays to cure the active energy ray-curable composition to form a cured product layer will also be described.
 すなわち、本発明は以下に関する。
[1] ポリオレフィン骨格を有するポリオレフィン系ポリオール(A)と、3つ以上の水酸基を有し、分子量が100以上800未満である脂肪族アルコール(B)と、脂肪族ジイソシアネート(C)とをウレタン化反応させて、イソシアネート基を含有するウレタンイソシアネートプレポリマーを形成した後、前記のウレタンイソシアネートプレポリマーと、水酸基を有する(メタ)アクリレート(D)と、1つの水酸基を有するアルコール(E)とを反応させて得られるウレタン(メタ)アクリレート(X)、
 単官能(メタ)アクリレート(Y)、並びに
 光重合開始剤(Z)を含む活性エネルギー線硬化性組成物であって、
 ポリオレフィン骨格を有するポリオレフィン系ポリオール(A)が、両末端に水酸基を有するポリブタジエン、ポリイソプレン、及びこれらを水素化したポリオールからなる群より選択された少なくとも一つであり、その重量平均分子量が2,000~10,000であり、
 ウレタン(メタ)アクリレート(X)の(メタ)アクリロイル基濃度が0.05以上、0.20mol/kg未満である活性エネルギー線硬化性組成物。
[2] ポリオール(A)の重量平均分子量(Mw)が2,000~6,000である[1]に記載の活性エネルギー線硬化性組成物。
[3] アルコール(B)が、トリメチロールプロパン、ペンタエリスリトール、グリセリン、及びそれらの変性化合物からなる群より選択される少なくとも一つである[1]又は[2]に記載の活性エネルギー線硬化性組成物。
[4] アルコール(B)の使用量が、得られるウレタン(メタ)アクリレート含有物全体量(100重量%)に対して、例えば、0.01~3重量%であり、好ましくは0.1~1重量%であり、さらに好ましくは0.3~0.6重量%である[1]~[3]の何れか一つに記載の活性エネルギー線硬化性組成物。
[5] ジイソシアネート(C)が、脂環式ジイソシアネート、直鎖状又は分岐鎖状脂肪族ジイソシアネート、及び芳香族のイソシアネート類を水添して得られるジイソシアネート化合物からなる群より選択される少なくとも1つである[1]~[4]の何れか一つに記載の活性エネルギー線硬化性組成物。
[6] (メタ)アクリレート(D)が、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシノルマルプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の1つの(メタ)アクリロイル基を有し、さらに水酸基を有する(メタ)アクリレート、又はペンタアリスリトールトリアクリレート等の2つ以上の(メタ)アクリロイル基を有し、さらに水酸基を有する(メタ)アクリレートである[1]~[5]の何れか一つに記載の活性エネルギー線硬化性組成物。
[7] アルコール(E)が、炭素数3以上の脂肪族又は脂環式の1級アルコールであり、その分子量が70から400の範囲にある[1]~[6]の何れか一つに記載の活性エネルギー線硬化性組成物。
[8] (メタ)アクリレート(Y)の使用濃度が、得られるウレタン(メタ)アクリレート含有物全体量(100重量%)に対して、例えば、20~60重量%であり、好ましくは20~40重量%である[1]~[7]の何れか一つに記載の活性エネルギー線硬化性組成物。
[9] 前記のイソシアネート基を含有するウレタンイソシアネートプレポリマーを形成する際の反応液中のイソシアネート基濃度が、反応に供した水酸基の全てがウレタン化した場合に残存するイソシアネート基濃度以下となるまで反応させることを特徴とする[1]~[8]の何れか一つに記載の活性エネルギー線硬化性組成物。
[10] ガラス及びプラスチックから選ばれる第一の透明基材と、ガラス及びプラスチックから選ばれる第二の透明基材との間に[1]~[9]の何れか一つに記載の活性エネルギー線硬化性組成物の硬化物層を有する積層体。
[11] 第一の透明基材の上に[1]~[9]の何れか一つに記載のいずれかの活性エネルギー線硬化性組成物を塗布して樹脂層を形成し、前記樹脂層上に第二の透明基材を付着させ、その後活性エネルギー線を照射して、前記活性エネルギー線硬化性組成物を硬化させて硬化物層を形成することにより得られる積層体。
That is, the present invention relates to the following.
[1] A urethanization of a polyolefin-based polyol (A) having a polyolefin skeleton, an aliphatic alcohol (B) having three or more hydroxyl groups and a molecular weight of 100 to less than 800, and an aliphatic diisocyanate (C) After reacting to form a urethane isocyanate prepolymer containing an isocyanate group, the urethane isocyanate prepolymer, a (meth) acrylate (D) having a hydroxyl group, and an alcohol (E) having one hydroxyl group are reacted. Urethane (meth) acrylate (X) obtained by
An active energy ray-curable composition comprising a monofunctional (meth) acrylate (Y) and a photopolymerization initiator (Z),
The polyolefin-based polyol (A) having a polyolefin skeleton is at least one selected from the group consisting of polybutadienes having hydroxyl groups at both ends, polyisoprene, and polyols obtained by hydrogenating these, and the weight average molecular weight is 2, 000 to 10,000,
An active energy ray-curable composition having a (meth) acryloyl group concentration of urethane (meth) acrylate (X) of 0.05 or more and less than 0.20 mol / kg.
[2] The active energy ray-curable composition according to [1], wherein the polyol (A) has a weight average molecular weight (Mw) of 2,000 to 6,000.
[3] The active energy ray-curable property according to [1] or [2], wherein the alcohol (B) is at least one selected from the group consisting of trimethylolpropane, pentaerythritol, glycerin, and modified compounds thereof. Composition.
[4] The amount of the alcohol (B) used is, for example, 0.01 to 3% by weight, preferably 0.1 to 3% by weight with respect to the total amount of urethane (meth) acrylate-containing product obtained (100% by weight). The active energy ray-curable composition according to any one of [1] to [3], which is 1% by weight, more preferably 0.3 to 0.6% by weight.
[5] The diisocyanate (C) is at least one selected from the group consisting of alicyclic diisocyanates, linear or branched aliphatic diisocyanates, and diisocyanate compounds obtained by hydrogenating aromatic isocyanates. The active energy ray-curable composition according to any one of [1] to [4].
[6] The (meth) acrylate (D) has one (meth) acryloyl group such as 2-hydroxyethyl (meth) acrylate, 2-hydroxynormalpropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like. [1] to [5] which are (meth) acrylates having two or more (meth) acryloyl groups such as (meth) acrylate having a hydroxyl group or pentaallythritol triacrylate and further having a hydroxyl group. The active energy ray-curable composition according to any one of the above.
[7] In any one of [1] to [6], the alcohol (E) is an aliphatic or alicyclic primary alcohol having 3 or more carbon atoms, and the molecular weight thereof is in the range of 70 to 400. The active energy ray-curable composition described.
[8] The use concentration of (meth) acrylate (Y) is, for example, 20 to 60% by weight, preferably 20 to 40% with respect to the total amount of urethane (meth) acrylate-containing product (100% by weight) obtained. The active energy ray-curable composition according to any one of [1] to [7], which is wt%.
[9] Until the isocyanate group concentration in the reaction liquid when forming the urethane isocyanate prepolymer containing the isocyanate group is equal to or less than the isocyanate group concentration remaining when all of the hydroxyl groups subjected to the reaction are urethanized. The active energy ray-curable composition according to any one of [1] to [8], which is reacted.
[10] The active energy according to any one of [1] to [9] between a first transparent substrate selected from glass and plastic and a second transparent substrate selected from glass and plastic A laminate having a cured product layer of a linear curable composition.
[11] A resin layer is formed by applying any one of the active energy ray-curable compositions according to any one of [1] to [9] on a first transparent substrate, and the resin layer The laminated body obtained by making a 2nd transparent base material adhere on it, and then irradiating an active energy ray, hardening the said active energy ray curable composition, and forming a hardened | cured material layer.
 本発明の活性エネルギー線硬化性組成物は、含有成分であるウレタン(メタ)アクリレート(X)の製造の際、高粘度化することがなく、且つ、副生物の副生も少なく、目的とするウレタン(メタ)アクリレートを製造することができる。その結果、本発明の活性エネルギー線硬化性組成物(硬化前)は、低温下での白濁による樹脂の外観悪化がない。また、本発明の活性エネルギー線硬化性組成物は、ガラス基材やプラスチック基材との濡れ性が良く、高い柔軟性、そして高耐熱性を有し、硬化収縮性が低いためにスマートフォンやタブレット用の薄い基材であっても層間充填剤として用いることができる。また、本発明の活性エネルギー線硬化性組成物を層間充填剤として用いた場合、その硬化物と基材との密着保持性が良好である。さらに、本発明の活性エネルギー線硬化性組成物の硬化物は透明性が高く、高温下でも変形や色相劣化が少ない。 The active energy ray-curable composition of the present invention is not intended to increase the viscosity during the production of the urethane (meth) acrylate (X), which is a component, and the by-product of the by-product is small, and is intended. Urethane (meth) acrylate can be produced. As a result, the active energy ray-curable composition (before curing) of the present invention does not deteriorate the appearance of the resin due to white turbidity at low temperatures. In addition, the active energy ray-curable composition of the present invention has good wettability with a glass substrate or a plastic substrate, high flexibility, high heat resistance, and low cure shrinkage, so that it is a smartphone or tablet. Even a thin base material can be used as an interlayer filler. Moreover, when the active energy ray curable composition of this invention is used as an interlayer filler, the adhesiveness retention of the hardened | cured material and a base material is favorable. Furthermore, the cured product of the active energy ray-curable composition of the present invention has high transparency and is less likely to be deformed or deteriorated in hue even at high temperatures.
 また、本発明の活性エネルギー線硬化性組成物をパソコン、カーナビ、テレビ、携帯電話(スマートフォン)、タブレット等に用いられているディスプレイの透明基材間に充填することで、空気と透明基材界面における光散乱を防止でき、さらに耐熱性試験中に色相変化や形状変化を起こしにくい積層体が得られる点で有用である。 In addition, the active energy ray-curable composition of the present invention is filled between transparent substrates of displays used in personal computers, car navigation systems, televisions, mobile phones (smartphones), tablets, etc. It is useful in that it can prevent light scattering in the layer and can obtain a laminate that hardly undergoes a hue change or a shape change during a heat resistance test.
本発明の積層体の一態様を示す概略図である。It is the schematic which shows the one aspect | mode of the laminated body of this invention. 本実施例で用いたガラス積層体の態様を示す概略図である。It is the schematic which shows the aspect of the glass laminated body used by the present Example. 本実施例で用いたガラス積層体の態様を示す概略図である。図中の(A)はガラス積層体を上から見た図であり、(B)はガラス積層体を横から見た図である。It is the schematic which shows the aspect of the glass laminated body used by the present Example. (A) in a figure is the figure which looked at the glass laminated body from the top, (B) is the figure which looked at the glass laminated body from the side.
<ウレタン(メタ)アクリレート(X)とその製造方法>
 本発明において使用するウレタン(メタ)アクリレート(X)は、特定のポリオレフィン骨格を有するポリオレフィン系ポリオール(A)と、特定の脂肪族アルコール(B)と、脂肪族ジイソシアネート(C)とをウレタン化反応させて、イソシアネート基を含有するウレタンイソシアネートプレポリマーを形成した後、前記のウレタンイソシアネートプレポリマーと、水酸基を有する(メタ)アクリレート(D)と、1つの水酸基を有するアルコール(E)とを反応させて製造することができる。なお、本発明のウレタン(メタ)アクリレート(X)の製造方法において、イソシアネート基を含有するウレタンイソシアネートプレポリマーを形成する際に、単官能(メタ)アクリレート(Y)を相溶化剤として用いても良い。
<Urethane (meth) acrylate (X) and production method thereof>
The urethane (meth) acrylate (X) used in the present invention is a urethanization reaction of a polyolefin polyol (A) having a specific polyolefin skeleton, a specific aliphatic alcohol (B), and an aliphatic diisocyanate (C). After forming a urethane isocyanate prepolymer containing an isocyanate group, the urethane isocyanate prepolymer, a (meth) acrylate (D) having a hydroxyl group, and an alcohol (E) having one hydroxyl group are reacted. Can be manufactured. In the method for producing urethane (meth) acrylate (X) of the present invention, monofunctional (meth) acrylate (Y) may be used as a compatibilizing agent when forming a urethane isocyanate prepolymer containing an isocyanate group. good.
 なお、前記ウレタン(メタ)アクリレート(X)を単に「ウレタン(メタ)アクリレート(X)」又は「(X)」と、ポリオレフィン骨格を有するポリオレフィン系ポリオール(A)を単に「ポリオール(A)」又は「(A)」と、3つ以上の水酸基を有し、分子量が100以上800未満である脂肪族アルコール(B)を単に「アルコール(B)」又は「(B)」と、脂肪族ジイソシアネート(C)を単に「ジイソシアネート(C)」又は「(C)」と、水酸基を有する(メタ)アクリレート(D)を単に「(メタ)アクリレート(D)」又は「(D)」と、1つの水酸基を有するアルコール(E)を単に「アルコール(E)」又は「(E)」と、「イソシアネート基を含有するウレタンイソシアネートプレポリマー」を単に「ウレタンイソシアネートプレポリマー」と、単官能(メタ)アクリレート(Y)を単に「(メタ)アクリレート(Y)」又は「(Y)」と称することがある。なお、後述の光重合開始剤(Z)を単に「(Z)」と称することがある。 The urethane (meth) acrylate (X) is simply “urethane (meth) acrylate (X)” or “(X)”, and the polyolefin polyol (A) having a polyolefin skeleton is simply “polyol (A)” or “(A)” and an aliphatic alcohol (B) having three or more hydroxyl groups and a molecular weight of 100 to less than 800 are simply referred to as “alcohol (B)” or “(B)” and an aliphatic diisocyanate ( C) is simply “diisocyanate (C)” or “(C)” and (meth) acrylate (D) having a hydroxyl group is simply “(meth) acrylate (D)” or “(D)” and one hydroxyl group Alcohol (E) having the following is simply “alcohol (E)” or “(E)” and “urethane isocyanate prepolymer containing isocyanate groups” is simply “urethane: And Socia Prepolymer "monofunctional (meth) acrylate (Y) may be referred to simply as" (meth) acrylate (Y) "or" (Y) ". The photopolymerization initiator (Z) described later may be simply referred to as “(Z)”.
 本発明のウレタン(メタ)アクリレート(X)の製造方法では、例えば「(A)、(B)、(C)、(D)、及び(E)を一括混合して反応させる方法」や「(C)、(D)及び(E)をポリマー化させた後、該ポリマーと(A)及び(B)を反応させる方法」等の従来の方法に比べて、粘度増加防止、樹脂外観、副生物抑制、硬化物の透明性、耐熱性等が顕著に向上するという効果を奏する。 In the method for producing the urethane (meth) acrylate (X) of the present invention, for example, “a method in which (A), (B), (C), (D), and (E) are mixed and reacted” or “( C), (D) and (E) are polymerized, and compared with conventional methods such as “method of reacting the polymer with (A) and (B)”, preventing increase in viscosity, resin appearance, and by-products There is an effect that the suppression, transparency of the cured product, heat resistance and the like are remarkably improved.
 具体的には、「(A)、(B)、(C)、(D)及び(E)を一括混合して反応させる方法」により形成されたウレタン(メタ)アクリレートは高粘度となるため、攪拌が困難となる。また、ウレタン化反応が不均一に進行するため、部分的にゲル化が生じる可能性が高いだけでなく、ポリオール(A)を骨格に含まないウレタン(メタ)アクリレート(副産物)が生成し、透過率の低下、柔軟性の低下を引き起こす。また、種々のウレタン(メタ)アクリレートが生成するため、活性エネルギー線硬化性組成物として使用する際、品質の管理が難しくなる。 Specifically, since the urethane (meth) acrylate formed by “a method in which (A), (B), (C), (D) and (E) are mixed and reacted” is highly viscous, Stirring becomes difficult. In addition, since the urethanization reaction proceeds non-uniformly, not only is there a high possibility that gelation will occur partially, but urethane (meth) acrylate (by-product) that does not contain polyol (A) in the skeleton is generated and transmitted. It causes a decrease in rate and flexibility. Moreover, since various urethane (meth) acrylates are produced, quality control becomes difficult when used as an active energy ray-curable composition.
 また、「(C)、(D)及び(E)をポリマー化させた後、該ポリマーと(A)及び(B)を反応させる方法」で反応させた場合、ジイソシアネート(C)のイソシアネート基全てが(メタ)アクリレート(D)やアルコール(E)の水酸基と反応したウレタン(メタ)アクリレート(副産物)が生成する。この副生物はポリオール(A)骨格を含んでいないことから、結晶性を示すことや、400nmでの透過率が低下すること、さらにはゲル化を生じる可能性も高い。 In addition, when “(C), (D) and (E) are polymerized and then reacted with the polymer and (A) and (B)”, all the isocyanate groups of diisocyanate (C) are reacted. However, urethane (meth) acrylate (by-product) is reacted with the hydroxyl group of (meth) acrylate (D) or alcohol (E). Since this by-product does not contain the polyol (A) skeleton, it has a high possibility of exhibiting crystallinity, a decrease in transmittance at 400 nm, and further gelation.
 本発明のウレタン(メタ)アクリレート(X)の製造方法におけるウレタンイソシアネートプレポリマーの形成方法(合成方法)としては、次の方法1~3が挙げられる。
[方法1]ポリオール(A)、アルコール(B)、及びジイソシアネート(C)を一括混合して反応させる方法。
[方法2]ジイソシアネート(C)の中にポリオール(A)、アルコール(B)を滴下しながら反応させる方法。
[方法3]ポリオール(A)及びアルコール(B)の中にジイソシアネート(C)を滴下しながら反応させる方法。
Examples of the urethane isocyanate prepolymer forming method (synthesis method) in the method for producing urethane (meth) acrylate (X) of the present invention include the following methods 1 to 3.
[Method 1] A method in which polyol (A), alcohol (B), and diisocyanate (C) are mixed and reacted.
[Method 2] A method of reacting the diisocyanate (C) while adding the polyol (A) and the alcohol (B) dropwise.
[Method 3] A method of reacting the diisocyanate (C) dropwise into the polyol (A) and the alcohol (B).
 以下に[方法3]について説明するが、説明の簡素化のため、アルコール(B)については言及しない。 [Method 3] will be described below, but alcohol (B) will not be mentioned for the sake of simplicity.
 [方法3]の場合、大量のポリオール(A)の中にジイソシアネート(C)を滴下しながら反応させるため、ジイソシアネート(C)の両側のイソシアネート基が2モルのポリオール(A)の水酸基とウレタン化し、模式的に書くとA-C-A型の両末端が水酸基のジオールが副生し、さらに、これに2モルのジイソシアネート(C)が反応し、模式的に書くと、C-A-C-A-C型の両末端がイソシアネート基の化合物が副生し、さらに同様な反応が繰り返され、模式的に書くと以下の構造の化合物が大量に副生する場合がある。
C-[A-C]n-A-C (n=1以上の整数)
In the case of [Method 3], since the diisocyanate (C) is reacted dropwise into a large amount of the polyol (A), the isocyanate groups on both sides of the diisocyanate (C) are urethanated with 2 mol of the hydroxyl group of the polyol (A). When schematically written, a diol having hydroxyl groups at both ends of the ACA type is by-produced, and further, 2 mol of diisocyanate (C) reacts with this, and when written schematically, CAC A compound having both isocyanate groups at the both ends of the -AC type is by-produced, and the same reaction is repeated. When schematically written, a large amount of a compound having the following structure may be by-produced.
C- [AC] n -AC (n = 1 or greater integer)
 このような副生物が大量に副生すると、(メタ)アクリレート(D)、アルコール(E)を反応させて得られるウレタン(メタ)アクリレートは、アクリル密度が低いため、硬化物は十分な架橋密度が得られない。 When such by-products are by-produced in large quantities, urethane (meth) acrylate obtained by reacting (meth) acrylate (D) and alcohol (E) has a low acrylic density, so the cured product has a sufficient crosslinking density. Cannot be obtained.
 従って、目的とするウレタンイソシアネートプレポリマーを収率良く得るためには、[方法1]、[方法2]が特に好ましく用いられる。 Therefore, [Method 1] and [Method 2] are particularly preferably used in order to obtain the desired urethane isocyanate prepolymer in good yield.
[方法1]の場合、初めにポリオール(A)とアルコール(B)とを反応器に仕込み、均一になるまで攪拌した後、ジイソシアネート(C)を仕込んで均一にする。このことにより、反応液の粘度を低く押さえることが可能である。その後、攪拌をしながら必要に応じて昇温後、ウレタン化触媒を投入してウレタン化を開始する方法が望ましい。ウレタン化触媒を投入後に必要に応じて昇温しても良い。 In the case of [Method 1], the polyol (A) and the alcohol (B) are first charged in the reactor and stirred until uniform, and then the diisocyanate (C) is charged and made uniform. This makes it possible to keep the viscosity of the reaction solution low. Thereafter, a method of starting urethanization by adding a urethanization catalyst after raising the temperature as necessary while stirring is desirable. The temperature may be increased as necessary after adding the urethanization catalyst.
 ポリオール(A)、アルコール(B)及びイソシアネート(C)を均一に攪拌する前にウレタン化触媒を投入した場合、ウレタン化反応が不均一に進行することによって、得られるウレタンプレポリマーがゲル化するなどの問題が生じる。さらに、未反応のジイソシアネート(C)が系中に残存した状態で反応が終結する場合がある。この場合、後に反応させる(メタ)アクリレート(D)及びアルコール(E)と、残存したジイソシアネート(C)とが反応することで得られる副生物により、400nmでの透過率が低下するため好ましくない。 When the urethanization catalyst is added before the polyol (A), alcohol (B) and isocyanate (C) are uniformly stirred, the urethane prepolymer obtained is gelled by the urethanation reaction proceeding non-uniformly. Problems arise. Furthermore, the reaction may be terminated with unreacted diisocyanate (C) remaining in the system. In this case, the transmittance at 400 nm is lowered due to the by-product obtained by the reaction between the (meth) acrylate (D) and alcohol (E) to be reacted later and the remaining diisocyanate (C), which is not preferable.
 このような副生物の含有量は、目的とするウレタンイソシアネートプレポリマーに対して7重量%未満であることが好ましい。7重量%以上であると400nmでの透過率が低下する。 The content of such by-products is preferably less than 7% by weight with respect to the target urethane isocyanate prepolymer. If it is 7% by weight or more, the transmittance at 400 nm is lowered.
 [方法1]は、高粘度であるポリオール(A)や固体の場合があるアルコール(B)をそのまま反応器に仕込める点、ワンポットでウレタン(メタ)アクリレート(X)が製造できる点で工業的に優れている。 [Method 1] is industrial in that the polyol (A) having a high viscosity and the alcohol (B) that may be a solid may be charged directly into the reactor, and the urethane (meth) acrylate (X) can be produced in one pot. Is excellent.
 なお、[方法1]において、(メタ)アクリレート(Y)を相溶化剤として用いても良い。この場合、ポリオール(A)及びアルコール(B)を(メタ)アクリレート(Y)と供に反応器に仕込み、均一になるまで攪拌した後、ジイソシアネート(C)を仕込んで均一にする。このことにより、反応液の粘度がさらに低く押さえられる。その後、攪拌をしながら必要に応じて昇温後、ウレタン化触媒を投入してウレタン化を開始する方法が望ましい。ウレタン化触媒を投入後に必要に応じて昇温しても良い。 In [Method 1], (meth) acrylate (Y) may be used as a compatibilizing agent. In this case, the polyol (A) and the alcohol (B) are charged into the reactor together with the (meth) acrylate (Y) and stirred until uniform, and then the diisocyanate (C) is charged and made uniform. As a result, the viscosity of the reaction solution can be further reduced. Thereafter, a method of starting urethanization by adding a urethanization catalyst after raising the temperature as necessary while stirring is desirable. The temperature may be increased as necessary after adding the urethanization catalyst.
 [方法2]の場合、反応器にジイソシアネート(C)、ウレタン化触媒、及び必要により(メタ)アクリレート(Y)の一部を仕込み均一になるまで攪拌する。攪拌をしながら必要に応じて昇温し、ポリオール(A)及びアルコール(B)と(メタ)アクリレート(Y)との均一混合液を滴下しながら反応させる。 In the case of [Method 2], a diisocyanate (C), a urethanization catalyst, and, if necessary, a part of (meth) acrylate (Y) are charged into a reactor and stirred until uniform. While stirring, the temperature is raised as necessary, and the reaction is carried out while dropping a uniform mixed solution of polyol (A) and alcohol (B) and (meth) acrylate (Y).
 [方法2]は、高粘度であるポリオール(A)、及び固体の場合があるアルコール(B)と(メタ)アクリレート(Y)との均一混合液を別途調製し、これを反応器に滴下する手間がかかるが、[方法3]で述べた下記副生物の生成が最も少ない点で好ましい。
  C-[A-C]n-A-C (n=1以上の整数)
In [Method 2], a polyol (A) having a high viscosity and an alcohol (B), which may be solid, and a (meth) acrylate (Y) are separately prepared, and this is dropped into a reactor. Although time-consuming, it is preferable in that the following by-product described in [Method 3] is the least generated.
C- [AC] n -AC (n = 1 or greater integer)
 なお、いずれの方法でも、ポリオール(A)、アルコール(B)及びジイソシアネート(C)との反応によりウレタンイソシアネートプレポリマーを合成(形成)する際、反応液中の全ての水酸基がウレタン化するまで反応を行うことが好ましい。つまり、ウレタンイソシアネートプレポリマーを形成する際の反応液中のイソシアネート基濃度が、反応に供した水酸基の全てがウレタン化した場合に残存するイソシアネート基濃度以下となるまで反応させることが好ましい。 In any method, when a urethane isocyanate prepolymer is synthesized (formed) by reaction with polyol (A), alcohol (B) and diisocyanate (C), the reaction is continued until all hydroxyl groups in the reaction solution are urethanized. It is preferable to carry out. That is, it is preferable to carry out the reaction until the isocyanate group concentration in the reaction liquid at the time of forming the urethane isocyanate prepolymer is equal to or lower than the remaining isocyanate group concentration when all the hydroxyl groups subjected to the reaction are urethaned.
 反応の終点は、反応液中のイソシアネート基濃度を測定し、系内に仕込んだ水酸基の全てがウレタン化した時のイソシアネート基濃度以下となったことや、イソシアネート基濃度が変化しなくなったこと等により確認できる。 The end point of the reaction is the measurement of the isocyanate group concentration in the reaction solution, and all of the hydroxyl groups charged into the system were below the isocyanate group concentration when urethane was converted, the isocyanate group concentration no longer changed, etc. Can be confirmed.
 上記観点から、ポリオール(A)及びアルコール(B)の水酸基(合計量)とジイソシアネート(C)のイソシアネート基のモル比は特に限定されないが、例えば、水酸基1モルに対して、イソシアネート基を1.1~2.0モル、好ましくは1.1~1.4モル、さらに好ましくは1.17~1.38モルを用いることができる。 From the above viewpoint, the molar ratio of the hydroxyl group (total amount) of the polyol (A) and the alcohol (B) and the isocyanate group of the diisocyanate (C) is not particularly limited. 1 to 2.0 mol, preferably 1.1 to 1.4 mol, more preferably 1.17 to 1.38 mol can be used.
 また、ウレタンイソシアネートプレポリマーと(メタ)アクリレート(D)、アルコール(E)とを反応させて、目的とするウレタン(メタ)アクリレート(X)を合成する際、反応液中に未反応のイソシアネート基が多量に残存すると、ゲル化が起こったり、塗膜の硬化不良となったりするなどの不具合が生じる可能性がある。 In addition, when the urethane isocyanate prepolymer, (meth) acrylate (D), and alcohol (E) are reacted to synthesize the target urethane (meth) acrylate (X), unreacted isocyanate groups in the reaction solution. If a large amount of remains, problems such as gelation or poor curing of the coating film may occur.
 これらの不具合を避けるため、前記反応において、ウレタンイソシアネートプレポリマーのイソシアネート基のモル数に対して、水酸基を有する(メタ)アクリレート(D)の水酸基のモル数が過剰となるように反応させ、かつ、反応液中の残存イソシアネート基濃度が0.05重量%以下に達するまで反応を継続する必要がある。なお、前記反応において、ウレタンイソシアネートプレポリマーのイソシアネート基のモル数1モルに対して、水酸基を有する(メタ)アクリレート(D)及びアルコール(E)の水酸基の合計モル数は、1.0~1.1モル、好ましくは1.0~1.05モルとすることができる。 In order to avoid these problems, in the above reaction, the reaction is performed so that the number of moles of hydroxyl group of (meth) acrylate (D) having a hydroxyl group is excessive with respect to the number of moles of isocyanate group of the urethane isocyanate prepolymer, and The reaction must be continued until the residual isocyanate group concentration in the reaction solution reaches 0.05% by weight or less. In the above reaction, the total number of moles of hydroxyl groups of (meth) acrylate (D) and alcohol (E) having a hydroxyl group is 1.0 to 1 with respect to 1 mole of the isocyanate group of the urethane isocyanate prepolymer. 0.1 mol, preferably 1.0 to 1.05 mol.
<重合禁止剤>
 本反応は、重合を防止する目的で、ジブチルヒドロキシトルエン、ヒドロキノン、ヒドロキノンモノメチルエーテル、フェノチアジン等の重合禁止剤存在下で行うことが好ましい。これらの重合禁止剤の添加量は、生成するウレタン(メタ)アクリレート(X)に対して、1~10000ppm(重量基準)が好ましく、より好ましくは100~1000ppm、さらに好ましくは400~1000ppmである。重合禁止剤の添加量がウレタン(メタ)アクリレート(X)に対して1ppm未満であると十分な重合禁止効果が得られないことがあり、10000ppmを超えると生成物の諸物性に悪影響を及ぼす恐れがある。
<Polymerization inhibitor>
This reaction is preferably performed in the presence of a polymerization inhibitor such as dibutylhydroxytoluene, hydroquinone, hydroquinone monomethyl ether, or phenothiazine for the purpose of preventing polymerization. The addition amount of these polymerization inhibitors is preferably 1 to 10,000 ppm (weight basis), more preferably 100 to 1000 ppm, and still more preferably 400 to 1000 ppm with respect to the urethane (meth) acrylate (X) to be produced. If the addition amount of the polymerization inhibitor is less than 1 ppm relative to the urethane (meth) acrylate (X), a sufficient polymerization inhibition effect may not be obtained. If it exceeds 10000 ppm, the physical properties of the product may be adversely affected. There is.
<雰囲気>
 本発明のウレタン(メタ)アクリレート(X)の製造方法においては、分子状酸素含有ガス雰囲気下で行うことが好ましい。酸素濃度は安全面を考慮して適宜選択される。
<Atmosphere>
In the manufacturing method of urethane (meth) acrylate (X) of this invention, it is preferable to carry out in molecular oxygen containing gas atmosphere. The oxygen concentration is appropriately selected in consideration of safety.
<触媒>
 本発明のウレタン(メタ)アクリレート(X)の製造方法においては、十分な反応速度を得るために、触媒を用いて行ってもよい。触媒としては、ジブチルスズジラウレート、オクチル酸スズ、塩化スズ等を用いることができるが、反応速度面からジブチルスズジラウレートが好ましい。これらの触媒の添加量は通常、生成するウレタン(メタ)アクリレート(X)に対して、1~3000ppm(重量基準)、好ましくは50~1000ppmである。触媒添加量が1ppmより少ない場合には十分な反応速度が得られないことがあり、3000ppmより多く加えると耐光性の低下等、生成物の諸物性に悪影響を及ぼす恐れがある。
<Catalyst>
In the method for producing the urethane (meth) acrylate (X) of the present invention, a catalyst may be used in order to obtain a sufficient reaction rate. As the catalyst, dibutyltin dilaurate, tin octylate, tin chloride or the like can be used, but dibutyltin dilaurate is preferable from the viewpoint of reaction rate. The amount of these catalysts added is usually 1 to 3000 ppm (weight basis), preferably 50 to 1000 ppm, based on the urethane (meth) acrylate (X) to be produced. When the addition amount of the catalyst is less than 1 ppm, a sufficient reaction rate may not be obtained. When the addition amount is more than 3000 ppm, there is a risk of adversely affecting various physical properties of the product such as a decrease in light resistance.
<溶剤>
 本発明のウレタン(メタ)アクリレート(X)の製造は、公知の揮発性の有機溶剤の存在下で行うことができる。揮発性の有機溶剤はウレタン(メタ)アクリレート(X)製造後、減圧により留去することができる。また、本発明の活性エネルギー線硬化性組成物において、組成物中に残った揮発性の有機溶剤を透明基材に塗布した後、乾燥により除去することもできる。なお、揮発性の有機溶剤とは、沸点が200℃を超えない有機溶剤を意味する。
<Solvent>
The urethane (meth) acrylate (X) of the present invention can be produced in the presence of a known volatile organic solvent. The volatile organic solvent can be distilled off under reduced pressure after the production of urethane (meth) acrylate (X). Moreover, in the active energy ray-curable composition of the present invention, the volatile organic solvent remaining in the composition can be applied to a transparent substrate and then removed by drying. In addition, a volatile organic solvent means the organic solvent whose boiling point does not exceed 200 degreeC.
 本発明の活性エネルギー線硬化性組成物には、ウレタン(メタ)アクリレート(X)の製造において用いた有機溶剤が含まれていても良いし、含まれていなくても良い。なお、密閉状態での硬化系においては、ウレタン(メタ)アクリレート(X)の製造から活性エネルギー線硬化性組成物の調整まで、一切揮発性の有機溶剤を使用しないことが好ましい。この場合、本願発明の活性エネルギー線硬化性組成物には、揮発性の有機溶剤が含まれていないことが好ましい。ここで、「含まれていない」とは、活性エネルギー線硬化性組成物全体に占める割合が1重量%以下であることを意味するが、0.5重量%以下であることが好ましく、0.1重量%以下であることがより好ましい。 The active energy ray-curable composition of the present invention may or may not contain the organic solvent used in the production of urethane (meth) acrylate (X). It should be noted that it is preferable not to use any volatile organic solvent in the sealed curing system from the production of urethane (meth) acrylate (X) to the preparation of the active energy ray curable composition. In this case, it is preferable that the active energy ray-curable composition of the present invention does not contain a volatile organic solvent. Here, “not contained” means that the proportion of the entire active energy ray-curable composition is 1% by weight or less, preferably 0.5% by weight or less. More preferably, it is 1% by weight or less.
<反応温度>
 本発明のウレタン(メタ)アクリレート(X)の製造方法においては、反応は温度130℃以下で行うことが好ましく、特に40~130℃であることがより好ましい。40℃より低いと実用上十分な反応速度が得られないことがあり、130℃より高いと熱によるラジカル重合によって二重結合部が架橋し、ゲル化物が生じることがある。
<Reaction temperature>
In the method for producing urethane (meth) acrylate (X) of the present invention, the reaction is preferably carried out at a temperature of 130 ° C. or less, more preferably 40 to 130 ° C. When the temperature is lower than 40 ° C., a practically sufficient reaction rate may not be obtained. When the temperature is higher than 130 ° C., the double bond portion may be cross-linked by radical polymerization due to heat, and a gelled product may be generated.
<その他の反応条件>
 上述の通り、イソシアネート基を含有するウレタンイソシアネートプレポリマーを製造(形成)する際は、その反応液中のイソシアネート基濃度が、反応に供した水酸基の全てがウレタン化した場合に残存するイソシアネート基濃度以下となるまで反応させてウレタンイソシアネートプレポリマーを形成させることが好ましい。なお、残存イソシアネート基濃度はガスクロマトグラフィー、滴定法等で分析することができる。
<Other reaction conditions>
As described above, when producing (forming) a urethane isocyanate prepolymer containing an isocyanate group, the isocyanate group concentration in the reaction solution is the remaining isocyanate group concentration when all of the hydroxyl groups subjected to the reaction are urethanated. It is preferable to make it react until it becomes the following, and to form a urethane isocyanate prepolymer. The residual isocyanate group concentration can be analyzed by gas chromatography, titration method or the like.
 前記のウレタンイソシアネートプレポリマーから、ウレタン(メタ)アクリレート(X)を形成する際の反応液中のイソシアネート基濃度は、通常、残存イソシアネート基が0.1重量%以下になるまで行う。残存イソシアネート基濃度はガスクロマトグラフィー、滴定法等で分析する。 The isocyanate group concentration in the reaction solution when forming urethane (meth) acrylate (X) from the urethane isocyanate prepolymer is usually carried out until the residual isocyanate group is 0.1% by weight or less. The residual isocyanate group concentration is analyzed by gas chromatography, titration method or the like.
 なお、ウレタン(メタ)アクリレート(X)の(メタ)アクリロイル基濃度の調整のため、末端(メタ)アクリロイル基の一部をアルコキシ基に変性してもよい。アルコキシ基に変性することにより、例えば、基材との濡れ性を調整することができる。 In addition, in order to adjust the (meth) acryloyl group concentration of urethane (meth) acrylate (X), a part of the terminal (meth) acryloyl group may be modified to an alkoxy group. By modifying to an alkoxy group, for example, wettability with a substrate can be adjusted.
 本発明において、ウレタン(メタ)アクリレート(X)の(メタ)アクリロイル基濃度(以下では単に「(メタ)アクリロイル基濃度」と称することがある)は、下記式を適用して算出することができる。 In the present invention, the (meth) acryloyl group concentration of urethane (meth) acrylate (X) (hereinafter sometimes simply referred to as “(meth) acryloyl group concentration”) can be calculated by applying the following formula. .
[(メタ)アクリロイル基濃度の計算式]
 「(メタ)アクリロイル基濃度(mol/kg)」=「(メタ)アクリレート(D)の重量(g)」×「(メタ)アクリレート(D)分子中の(メタ)アクリロイル基数」÷「(メタ)アクリレート(D)の分子量」×1,000÷「生成するウレタン(メタ)アクリレート(X)の重量(g)」
[Calculation formula of (meth) acryloyl group concentration]
“(Meth) acryloyl group concentration (mol / kg)” = “weight of (meth) acrylate (D) (g)” × “(meth) acryloyl group number in (meth) acrylate (D) molecule” ÷ “(meta ) Molecular weight of acrylate (D) ”× 1,000 ÷“ weight of urethane (meth) acrylate (X) to be produced (g) ”
 なお、(メタ)アクリレート(D)の(メタ)アクリロイル基数は例えば、2-ヒドロキシエチルアクリレートなら(メタ)アクリロイル基数は「1」になるし、ペンタエリスリトールトリアクリレートなら(メタ)アクリロイル基数は「3」となる。 For example, the number of (meth) acryloyl groups in (meth) acrylate (D) is “1” for 2-hydroxyethyl acrylate, and the number of (meth) acryloyl groups for pentaerythritol triacrylate is “3”. "
 本発明において、必要な(メタ)アクリロイル基濃度は0.05以上、0.20mol/kg未満であり、好ましくは0.06~0.16mol/kg以下である。 In the present invention, the necessary (meth) acryloyl group concentration is 0.05 or more and less than 0.20 mol / kg, preferably 0.06 to 0.16 mol / kg or less.
 (メタ)アクリロイル基濃度が0.05mol/kg未満になると、活性エネルギー線を照射しても硬化が不充分になる恐れがあるし、また凝集力低下によって、基材との初期密着性が低下するので好ましくない。また、(メタ)アクリロイル基濃度が0.20mol/kg以上になると、硬化物の耐熱耐久性が低下するので好ましくない。この耐熱耐久性の低下を具体的に述べると、硬化物を95℃、1000時間の条件で試験すると、塗膜硬度の上昇を引き起こし、基材との密着性が低下するのと、硬化収縮を引き起こし、塗膜の形状が変化する不具合のことである。 When the (meth) acryloyl group concentration is less than 0.05 mol / kg, there is a risk of insufficient curing even when irradiated with active energy rays, and the initial adhesion to the substrate is reduced due to a decrease in cohesive strength. This is not preferable. On the other hand, if the (meth) acryloyl group concentration is 0.20 mol / kg or more, the heat resistance of the cured product is lowered, which is not preferable. Specifically speaking, when the cured product is tested under the conditions of 95 ° C. and 1000 hours, the hardness of the coating film is increased, the adhesion with the substrate is decreased, and the shrinkage of the curing is caused. It is a problem that causes the coating shape to change.
 耐熱性を向上させるにはウレタン(メタ)アクリレート(X)の(メタ)アクリロイル基濃度を下げて、硬化収縮を小さくさせることが有効であるが、塗膜硬度の低下を伴うことになり、基材との密着性が低下するという不都合が生じる。 In order to improve the heat resistance, it is effective to lower the (meth) acryloyl group concentration of urethane (meth) acrylate (X) to reduce curing shrinkage, but this results in a decrease in coating film hardness. There arises an inconvenience that the adhesion to the material is lowered.
 末端(メタ)アクリロイル基の一部をアルコキシ基にする方法としては、ウレタンイソシアネートプレポリマーに(メタ)アクリレート(D)を反応させるのに加え、ウレタンイソシアネートプレポリマーにアルコール(E)を反応させる方法等が挙げられる。 As a method of converting a part of the terminal (meth) acryloyl group to an alkoxy group, in addition to reacting the urethane isocyanate prepolymer with (meth) acrylate (D), reacting the urethane isocyanate prepolymer with alcohol (E) Etc.
 具体的には、例えば、次の方法があげられる。
(1)ウレタンイソシアネートプレポリマーにアルコール(E)を反応させて、ウレタンイソシアネートプレポリマーの末端の所望する割合をアルコキシ基とした後、(メタ)アクリレート(D)を反応させて、残るイソシアネート基へ(メタ)アクリロイル基を導入する方法。
(2)ウレタンイソシアネートプレポリマーに(メタ)アクリレート(D)を反応させて、ウレタンイソシアネートプレポリマーの末端の所望する割合を(メタ)アクリロイル基とした後、アルコール(E)を反応させて、残るイソシアネート基へアルコキシ基を導入する方法。
(3)ウレタンイソシアネートプレポリマーに、(メタ)アクリレート(D)とアルコール(E)とを同時に反応させ、ウレタンイソシアネートプレポリマーの末端に所望する割合のアルコキシ基と(メタ)アクリロイル基を導入する方法。
(4)上記(1)~(3)の方法を組み合わせる方法。
Specifically, the following method is mentioned, for example.
(1) Alcohol (E) is reacted with urethane isocyanate prepolymer to make the desired proportion of the end of urethane isocyanate prepolymer an alkoxy group, and then (meth) acrylate (D) is reacted to the remaining isocyanate group. A method of introducing a (meth) acryloyl group.
(2) The urethane isocyanate prepolymer is reacted with (meth) acrylate (D) to make the desired proportion of the end of the urethane isocyanate prepolymer a (meth) acryloyl group, and then reacted with alcohol (E) to remain. A method of introducing an alkoxy group into an isocyanate group.
(3) A method in which (meth) acrylate (D) and alcohol (E) are simultaneously reacted with a urethane isocyanate prepolymer to introduce a desired proportion of alkoxy groups and (meth) acryloyl groups at the ends of the urethane isocyanate prepolymer. .
(4) A method combining the methods (1) to (3).
<ポリオレフィン骨格を有するポリオレフィン系ポリオール(A)>
 ポリオレフィン骨格を有するポリオレフィン系ポリオール(A)は、ポリオレフィン骨格を有し、且つ、2以上の水酸基を有するポリオールであれば特に限定されないが、両末端に水酸基を有するポリブタジエン、ポリイソプレン、及びこれらを水素化したポリオールからなる群より選択された少なくとも一つであって、その重量平均分子量が2,000~10,000のポリオールであることが好ましい。
<Polyolefin polyol (A) having a polyolefin skeleton>
The polyolefin-based polyol (A) having a polyolefin skeleton is not particularly limited as long as it is a polyol having a polyolefin skeleton and having two or more hydroxyl groups, but polybutadiene, polyisoprene having hydroxyl groups at both ends, and hydrogen Preferably, the polyol is at least one selected from the group consisting of a modified polyol and has a weight average molecular weight of 2,000 to 10,000.
 ポリオレフィン骨格を有するポリオレフィン系ポリオール(A)の重量平均分子量(Mw)は、2,000~10,000の範囲であれば良いが、好ましくは2,000~6,000である。なお、重量平均分子量(Mw)は、GPCの測定によるポリスチレン換算の値である。Mwが2,000未満であるとウレタン(メタ)アクリレート化後の樹脂Tgが高くなり、柔軟性が低下し、樹脂外観が悪化し、副生成物も増大する場合がある。一方、Mwが10,000を超えると架橋密度が小さくなりすぎて硬化性の悪化、高温下の形状変化を引き起こす場合がある。架橋密度は多官能(メタ)アクリレートの添加により上げることができるが、後述するように多官能モノマーを配合すると環境試験下での外観不良を引き起こす要因となる。 The weight average molecular weight (Mw) of the polyolefin-based polyol (A) having a polyolefin skeleton may be in the range of 2,000 to 10,000, but is preferably 2,000 to 6,000. The weight average molecular weight (Mw) is a value in terms of polystyrene as measured by GPC. If the Mw is less than 2,000, the resin Tg after urethane (meth) acrylate conversion is increased, the flexibility is lowered, the resin appearance is deteriorated, and the by-products are sometimes increased. On the other hand, when Mw exceeds 10,000, the crosslinking density becomes too small, which may cause deterioration in curability and change in shape at high temperature. The crosslink density can be increased by adding a polyfunctional (meth) acrylate, but if a polyfunctional monomer is added as will be described later, it causes a poor appearance under an environmental test.
 ポリオール(A)としては市販品を用いてもよく、例えば、出光興産社製「エポール」、日本曹達社製「GI-2000」、「GI-3000」、「G-3000」等、長瀬産業社製「KRASOL HLBH P3000」、「KRASOL LBH-P2000」等が挙げられる。なお、ポリオール(A)は目的に応じて2種以上を併用しても良い。 As the polyol (A), a commercially available product may be used. For example, “Epol” manufactured by Idemitsu Kosan Co., Ltd., “GI-2000”, “GI-3000”, “G-3000” manufactured by Nippon Soda Co., Ltd., etc. Examples thereof include “KRASOL HLBH P3000”, “KRASOL LBH-P2000”, and the like. The polyol (A) may be used in combination of two or more depending on the purpose.
<3つ以上の水酸基を有し、分子量が100以上800未満である脂肪族アルコール(B)>
 3つ以上の水酸基を有する脂肪族アルコール(B)は分子量が100以上800未満の脂肪族アルコールであれば特に限定されない。分子量が800以上になるとポリオール(A)との相溶性が悪くなるため好ましくない。具体的には、例えば、トリメチロールプロパン、ペンタエリスリトール、グリセリン、及びそれらの変性化合物等が挙げられる。なお、前記の変性化合物としては、例えば、PPG変性ペンタエリスリトールやPPG変性グリセリン等が挙げられる。
<Fatty alcohol (B) having three or more hydroxyl groups and having a molecular weight of 100 or more and less than 800>
The aliphatic alcohol (B) having three or more hydroxyl groups is not particularly limited as long as it is an aliphatic alcohol having a molecular weight of 100 or more and less than 800. A molecular weight of 800 or more is not preferable because the compatibility with the polyol (A) is deteriorated. Specific examples include trimethylolpropane, pentaerythritol, glycerin, and modified compounds thereof. Examples of the modifying compound include PPG-modified pentaerythritol and PPG-modified glycerin.
 本発明では、アルコール(B)が複数(3つ以上)の水酸基を有するため、得られるウレタン(メタ)アクリレート(A)が分岐状構造を有することとなり、結果的に架橋密度が上昇する。この様なウレタン(メタ)アクリレートによると、硬化物の耐候性、耐熱性に悪影響を与えるウレタン(メタ)アクリレート中の(メタ)アクリロイル基濃度を下げることが可能となるため、硬化物の塗膜硬度を維持することが可能である。 In the present invention, since the alcohol (B) has a plurality of (three or more) hydroxyl groups, the resulting urethane (meth) acrylate (A) has a branched structure, resulting in an increase in crosslink density. According to such urethane (meth) acrylate, it becomes possible to lower the (meth) acryloyl group concentration in urethane (meth) acrylate, which adversely affects the weather resistance and heat resistance of the cured product. It is possible to maintain the hardness.
 アルコール(B)の使用量は、特に限定されないが、得られるウレタン(メタ)アクリレート含有物全体量(100重量%)に対して、例えば、0.01~3重量%であり、好ましくは0.1~1重量%であり、さらに好ましくは0.3~0.6重量%である。0.01重量%未満である場合、得られるウレタン(メタ)アクリレートを含む硬化物の加熱後の耐熱性(塗膜硬度の変化を参照)が悪くなる。一方、3重量%を超えると、合成中に分子量が大きくなりすぎて、ゲル化を引き起こす可能性があるので、好ましく無い。 The amount of alcohol (B) used is not particularly limited, but is, for example, 0.01 to 3% by weight with respect to the total amount of urethane (meth) acrylate-containing product obtained (100% by weight), preferably 0. It is 1 to 1% by weight, and more preferably 0.3 to 0.6% by weight. When it is less than 0.01% by weight, the heat resistance after heating of the cured product containing urethane (meth) acrylate to be obtained (see change in coating film hardness) is deteriorated. On the other hand, if it exceeds 3% by weight, the molecular weight becomes too large during synthesis, which may cause gelation.
 アルコール(B)としては市販品を用いてもよく、例えば、三菱ガス化学社製「トリメチロールプロパン(TMP)」、三洋化成社製「サンニックスHD-402(ペンタエリスリトールのポリプロピレングリコール変性物)」、「サンニックスHD-250(グリセリンのポリプロピレングリコール変性物)」等が挙げられるが、この限りではない。なお、アルコール(B)は目的に応じて2種以上を併用しても良い。 Commercially available products may be used as the alcohol (B). For example, “Trimethylolpropane (TMP)” manufactured by Mitsubishi Gas Chemical Company, Inc. , “Sanix HD-250 (polypropylene glycol modified product of glycerin)” and the like, but not limited thereto. In addition, 2 or more types of alcohol (B) may be used together according to the purpose.
<脂肪族ジイソシアネート(C)>
 ジイソシアネート(C)としては、脂環式ジイソシアネート、直鎖状又は分岐鎖状脂肪族ジイソシアネート、及び芳香族のイソシアネート類を水添して得られるジイソシアネート化合物からなる群より選択される少なくとも1つが挙げられる。前記脂環式ジイソシアネートとしては、特に制限されないが、例えば、イソホロンジイソシアネート等が挙げられる。前記脂肪族ジイソシアネートとしては、特に制限されないが、例えば、ヘキサメチレンジイソシアネート等の直鎖状脂肪族ジイソシアネート;2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の分岐鎖状脂肪族ジイソシアネートが挙げられる。前記芳香族のイソシアネート類を水添して得られるジイソシアネート化合物としては、特に制限されないが、例えば、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等が挙げられる。
<Aliphatic diisocyanate (C)>
Examples of the diisocyanate (C) include at least one selected from the group consisting of alicyclic diisocyanates, linear or branched aliphatic diisocyanates, and diisocyanate compounds obtained by hydrogenating aromatic isocyanates. . Although it does not restrict | limit especially as said alicyclic diisocyanate, For example, isophorone diisocyanate etc. are mentioned. The aliphatic diisocyanate is not particularly limited. For example, a linear aliphatic diisocyanate such as hexamethylene diisocyanate; a branched chain such as 2,2,4-trimethylhexamethylene diisocyanate and 2,4,4-trimethylhexamethylene diisocyanate. Examples include chain aliphatic diisocyanates. Although it does not restrict | limit especially as a diisocyanate compound obtained by hydrogenating the said aromatic isocyanate, For example, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, etc. are mentioned.
 ジイソシアネート(C)としては市販品を用いてもよく、例えば、エボニック社製「VESTANAT IPDI(イソホロンジイソシアネート)」、「TMDI(2,2,4-トリメチルヘキサメチレンジイソシアネート)」、東ソー社製「HDI(ヘキサメチレンジイソシアネート)」等が挙げられる。なお、ジイソシアネート(C)は目的に応じて2種以上を併用しても良い。 Commercially available products may be used as the diisocyanate (C). For example, “VESTANAT IPDI (isophorone diisocyanate)”, “TMDI (2,2,4-trimethylhexamethylene diisocyanate)” manufactured by Evonik, “HDI ( Hexamethylene diisocyanate) "and the like. Diisocyanate (C) may be used in combination of two or more depending on the purpose.
<水酸基を有する(メタ)アクリレート(D)>
 水酸基を有する(メタ)アクリレート(D)としては、特に制限されないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシノルマルプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の1つの(メタ)アクリロイル基を有し、さらに水酸基を有する(メタ)アクリレートや、ペンタアリスリトールトリアクリレート等の2つ以上の(メタ)アクリロイル基を有し、さらに水酸基を有する(メタ)アクリレートを使用することができる。なお、(メタ)アクリレート(D)は目的に応じて2種以上を併用しても良い。
<(Meth) acrylate having hydroxyl group (D)>
The hydroxyl group-containing (meth) acrylate (D) is not particularly limited, and examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxynormalpropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate and the like. A (meth) acrylate having two (meth) acryloyl groups, further having two or more (meth) acryloyl groups such as (meth) acrylate having a hydroxyl group and pentaacrylitol triacrylate, and further having a hydroxyl group. Can be used. In addition, (meth) acrylate (D) may use 2 or more types together according to the objective.
<1つの水酸基を有するアルコール(E)>
 1つの水酸基を有するアルコール(E)としては、例えば、炭素数3以上の脂肪族又は脂環式の1級アルコール等が挙げられ、その分子量は70から400の範囲にあることが好ましい。アルコールの炭素数が3未満あるいは分子量が70未満の場合、ウレタン(メタ)アクリレートの合成中に揮発する恐れがあるため好ましくない。また、分子量が400を超えると、イソシアネート基との反応性が低下し、合成時間が長くなる恐れがあるため好ましくない。また、芳香環を有するアルコールは、得られるウレタン(メタ)アクリレート(X)の色相が高くなることや、耐候性が劣る可能性があるため好ましくない。なお、アルコールは目的に応じて2種以上を併用しても良い。
<Alcohol (E) having one hydroxyl group>
Examples of the alcohol (E) having one hydroxyl group include aliphatic or alicyclic primary alcohols having 3 or more carbon atoms, and the molecular weight thereof is preferably in the range of 70 to 400. When the alcohol has less than 3 carbon atoms or a molecular weight of less than 70, it is not preferred because it may volatilize during the synthesis of urethane (meth) acrylate. On the other hand, if the molecular weight exceeds 400, the reactivity with the isocyanate group is lowered, and the synthesis time may be prolonged, which is not preferable. Moreover, the alcohol which has an aromatic ring is unpreferable since the hue of the urethane (meth) acrylate (X) obtained may become high, or a weather resistance may be inferior. Two or more alcohols may be used in combination depending on the purpose.
 アルコール(E)としては、具体的には、1-ブタノール、1-ヘプタノール、1-ヘキサノール、ノルマルオクチルアルコール、2-エチルヘキシルアルコール、シクロヘキサンメタノール、カプリルアルコール、ラウリルアルコール、ミリスチルアルコール、セチルアルコール(セタノール)、ステアリルアルコールやこれらの混合物があげられる。なかでも、2-エチルヘキシルアルコールが沸点、価格、入手容易性の観点から好ましい。 Specific examples of the alcohol (E) include 1-butanol, 1-heptanol, 1-hexanol, normal octyl alcohol, 2-ethylhexyl alcohol, cyclohexane methanol, capryl alcohol, lauryl alcohol, myristyl alcohol, cetyl alcohol (cetanol). , Stearyl alcohol and mixtures thereof. Of these, 2-ethylhexyl alcohol is preferred from the viewpoints of boiling point, price, and availability.
<単官能(メタ)アクリレート(Y)>
 本発明の活性エネルギー線硬化性組成物は、単官能(メタ)アクリレート(Y)を含有することにより、ウレタン(メタ)アクリレートを製造する上で粘度の調整及び硬化塗膜のTgの調整が的確に行われ、粘度増加防止、樹脂外観、副生物抑制、硬化物の透明性、耐熱性等が向上するという効果を奏する。なお、単官能(メタ)アクリレートとは、分子中にアクリロイル基を1つ有する(単官能の)(メタ)アクリレートを指す。
<Monofunctional (meth) acrylate (Y)>
By containing the monofunctional (meth) acrylate (Y), the active energy ray-curable composition of the present invention can accurately adjust the viscosity and adjust the Tg of the cured coating film when producing urethane (meth) acrylate. The effect of preventing the increase in viscosity, the appearance of the resin, the suppression of by-products, the transparency of the cured product, the heat resistance and the like is achieved. Monofunctional (meth) acrylate refers to (monofunctional) (meth) acrylate having one acryloyl group in the molecule.
 なお、上述の通り、ウレタンイソシアネートプレポリマーを形成する際に、(メタ)アクリレート(Y)を相溶化剤として用いても良い。(メタ)アクリレート(Y)を相溶化剤として用いることで、原材料(例えばポリオール(A)、アルコール(B)、及びジイソシアネート(C)等)を相溶化することができる。また、ウレタンイソシアネートプレポリマーの形成させる際に、反応液の粘度が上昇する場合があるが、その際に粘度上昇を緩和する、いわゆる希釈剤としても作用する。さらに、相溶化剤(希釈剤)としてウレタンイソシアネートプレポリマーの形成の際に用いることで、改めて(メタ)アクリレート(Y)をウレタンイソシアネートプレポリマーに加えるとする作業を省くことができるため、作業効率が向上する。 As described above, (meth) acrylate (Y) may be used as a compatibilizing agent when forming the urethane isocyanate prepolymer. By using (meth) acrylate (Y) as a compatibilizing agent, raw materials (for example, polyol (A), alcohol (B), diisocyanate (C), etc.) can be compatibilized. In addition, when the urethane isocyanate prepolymer is formed, the viscosity of the reaction solution may increase. At this time, it also acts as a so-called diluent that alleviates the increase in viscosity. Furthermore, by using it as a compatibilizing agent (diluent) when forming a urethane isocyanate prepolymer, the work of adding (meth) acrylate (Y) to the urethane isocyanate prepolymer can be omitted. Will improve.
 (メタ)アクリレート(Y)の使用濃度は、特に限定されないが、得られるウレタン(メタ)アクリレート含有物全体量(100重量%)に対して、例えば、20~60重量%であり、好ましくは20~40重量%である。20重量%未満であれば得られるウレタン(メタ)アクリレートの粘度が高くなり、取り扱いが難しくなり、ゲル化を生じる場合がある。一方、60重量%を超えると塗布する際、粘度が低すぎて透明基材との濡れ性が悪化し、ウレタン(メタ)アクリレートの柔軟性、耐熱性を低下させる恐れがある。 The use concentration of (meth) acrylate (Y) is not particularly limited, but is, for example, 20 to 60% by weight, preferably 20% with respect to the total amount of urethane (meth) acrylate-containing product (100% by weight) obtained. ~ 40% by weight. If it is less than 20% by weight, the viscosity of the urethane (meth) acrylate obtained is increased, handling becomes difficult, and gelation may occur. On the other hand, when it exceeds 60% by weight, when applied, the viscosity is too low and the wettability with the transparent substrate is deteriorated, which may reduce the flexibility and heat resistance of the urethane (meth) acrylate.
 このような(メタ)アクリレート(Y)としては、特に限定されないが、ポリエーテル系アクリレート(PO変性品、EO変性品等)でない単官能(メタ)アクリレートであることが耐熱性の観点から好ましく、具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、グリシジル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、n-ブチル(メタ)アクリレート、β-カルボキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、オクチル/デシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチルアクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、n-ステアリル(メタ)アクリレート、シクリヘキシル(メタ)アクリレート、その他アルキル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられるが、n-オクチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、オクチル/デシル(メタ)アクリレートが特に好ましい。 Such (meth) acrylate (Y) is not particularly limited, but is preferably a monofunctional (meth) acrylate that is not a polyether acrylate (PO-modified product, EO-modified product, etc.) from the viewpoint of heat resistance, Specifically, methyl (meth) acrylate, ethyl (meth) acrylate, glycerin mono (meth) acrylate, glycidyl (meth) acrylate, dicyclopentenyl (meth) acrylate, n-butyl (meth) acrylate, β-carboxyethyl (Meth) acrylate, isobornyl (meth) acrylate, octyl / decyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl acrylate, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, isodecyl (meth) acrylate n-lauryl (meth) acrylate, n-stearyl (meth) acrylate, cyclhexyl (meth) acrylate, other alkyl (meth) acrylates, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxy Examples include butyl (meth) acrylate, and n-octyl (meth) acrylate, isobornyl (meth) acrylate, and octyl / decyl (meth) acrylate are particularly preferable.
 上記の(メタ)アクリレート(Y)は、市販品を用いてもよく、例えば、製品名「β-CEA」(ダイセル・オルネクス社製、β-カルボキシエチルアクリレート)、製品名「IBOA」(ダイセル・オルネクス社製、イソボルニルアクリレート)、製品名「ODA-N」(ダイセル・オルネクス社製、オクチル/デシルアクリレート)、製品名「NOA」(大阪有機化学社製、化合物名 ノルマルオクチルアクリレート)等が市場から入手可能である。なお、(メタ)アクリレート(Y)は目的に応じて2種以上を併用しても良い。 The (meth) acrylate (Y) may be a commercially available product. For example, the product name “β-CEA” (manufactured by Daicel Ornex Co., Ltd., β-carboxyethyl acrylate), the product name “IBOA” (Daicel Ornex, isobornyl acrylate), product name "ODA-N" (Daicel Ornex, octyl / decyl acrylate), product name "NOA" (manufactured by Osaka Organic Chemicals, compound name: normal octyl acrylate), etc. Available from the market. In addition, (meth) acrylate (Y) may use 2 or more types together according to the objective.
<光重合開始剤(Z)>
 本発明の光重合開始剤(Z)は、活性エネルギー線の種類や、ウレタン(メタ)アクリレート(X)の種類によっても異なり、特に限定されないが、公知の光ラジカル重合開始剤や光カチオン重合開始剤を用いることができ、特に限定されないが、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4'-メチルジフェニルサルファイド、3,3'-ジメチル-4-メトキシベンゾフェノン、チオキサンソン、2-クロルチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソン、2,4,6-トリメチルベンゾイルジフェニルホスフインオキサイド、メチルフェニルグリオキシレート、ベンジル、カンファーキノン等が挙げられる。
<Photopolymerization initiator (Z)>
The photopolymerization initiator (Z) of the present invention varies depending on the type of active energy ray and the type of urethane (meth) acrylate (X), and is not particularly limited, but is a known photoradical polymerization initiator or photocationic polymerization initiation. For example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-Hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy -2-propyl) ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane 1, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin phenyl ether, benzyldimethyl ketal, benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated Benzophenone, 4-benzoyl-4'-methyldiphenyl sulfide, 3,3'-dimethyl-4-methoxybenzophenone, thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropyl Thioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone, 2,4,6- Examples include trimethylbenzoyldiphenylphosphine oxide, methylphenylglyoxylate, benzyl, camphorquinone and the like.
 光重合開始剤の使用量は、特に限定されないが、例えば、活性エネルギー線硬化性組成物100重量部に対して1~20重量部、好ましくは1~5重量部である。1重量部よりも少ないと硬化不良を引き起こす恐れがあり、逆に光重合開始剤の使用量が多いと硬化後の塗膜から光重合開始剤由来の臭気が残存することがある。なお、光重合開始剤(Z)は目的に応じて2種以上を併用しても良い。 The amount of the photopolymerization initiator used is not particularly limited, but is, for example, 1 to 20 parts by weight, preferably 1 to 5 parts by weight with respect to 100 parts by weight of the active energy ray-curable composition. If the amount is less than 1 part by weight, there is a risk of causing poor curing. Conversely, if the amount of the photopolymerization initiator used is large, an odor derived from the photopolymerization initiator may remain from the cured coating film. In addition, 2 or more types of photoinitiators (Z) may be used together according to the objective.
<添加剤>
 本発明の活性エネルギー線硬化性組成物は、前記のウレタン(メタ)アクリレート(X)、単官能(メタ)アクリレート(Y)、及び光重合開始剤(Z)以外にも、必要に応じて種々の添加剤を配合することができる。このような添加剤としては、例えば、フィラー、染顔料、レベリング剤、紫外線吸収剤、光安定剤、消泡剤、分散剤、チクソトロピー性付与剤等が挙げられる。これらの添加物の添加量は、特に限定されないが、活性エネルギー線硬化性組成物100重量部に対して、例えば0~10重量部であり、好ましくは0.05~5重量部である。
<Additives>
In addition to the urethane (meth) acrylate (X), monofunctional (meth) acrylate (Y), and photopolymerization initiator (Z), the active energy ray-curable composition of the present invention can be variously used as necessary. Additives can be blended. Examples of such additives include fillers, dyes and pigments, leveling agents, ultraviolet absorbers, light stabilizers, antifoaming agents, dispersants, and thixotropic agents. The addition amount of these additives is not particularly limited, but is, for example, 0 to 10 parts by weight, preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the active energy ray-curable composition.
<積層体>
 本発明の積層体は、ガラス及びプラスチックから選ばれる第一の透明基材と、ガラス及びプラスチックから選ばれる第二の透明基材との間に前記活性エネルギー線硬化性組成物の硬化物層を有する積層体であれば良く、特に限定されない。好ましくは、第一の透明基材の上に前記活性エネルギー線硬化性組成物を塗布して樹脂層を形成し、前記樹脂層上に第二の透明基材を付着させ、この後、透明基材越しに、例えば、紫外線又は電子線等の活性エネルギー線を照射することにより、極めて短時間で前記活性エネルギー線硬化性組成物を硬化させて、硬化物層を形成させて積層体を得ることができる。図1に、前記積層体の一態様を示す。
<Laminated body>
The laminate of the present invention comprises a cured product layer of the active energy ray-curable composition between a first transparent substrate selected from glass and plastic and a second transparent substrate selected from glass and plastic. There is no particular limitation as long as it has a laminate. Preferably, the active energy ray-curable composition is applied onto the first transparent substrate to form a resin layer, and the second transparent substrate is adhered onto the resin layer. For example, by irradiating an active energy ray such as an ultraviolet ray or an electron beam through the material, the active energy ray-curable composition is cured in a very short time to form a cured product layer to obtain a laminate. Can do. FIG. 1 shows an embodiment of the laminate.
<透明基材>
 本発明に用いられる透明基材としては、透明ガラス板等のガラス基材の他に透明プラスチックフィルム等のプラスチック基材を使用することが出来る。
<Transparent substrate>
As a transparent base material used for this invention, plastic base materials, such as a transparent plastic film other than glass base materials, such as a transparent glass plate, can be used.
 プラスチック基材としては、既存の透明素材を用いることが可能であり、特に限定されないが、例えば、ポリエチレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体等のポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、アクリル樹脂、ポリカーボネート樹脂等が例示される。中でも、特に好ましくは、ポリカーボネート樹脂、アクリル樹脂が好ましく用いられる。 An existing transparent material can be used as the plastic substrate, and is not particularly limited. For example, polyolefin resin such as polyethylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, polyethylene terephthalate, Examples thereof include polyester resins such as polyethylene naphthalate and polybutylene terephthalate, acrylic resins, and polycarbonate resins. Of these, polycarbonate resin and acrylic resin are particularly preferably used.
<透明基材への塗布・注入・硬化方法>
 本発明の活性エネルギー線硬化性組成物を透明基材(例えば、ガラス板等のガラス基材やプラスチックフィルム等のプラスチック基材等)に塗布する場合、塗布方法としては、特に限定されず、吹き付け法、エアレススプレー法、エアスプレー法、ロールコート法、バーコート法、グラビア法等を用いることが可能である。中でも、ロールコート法が美観性、コスト、作業性等の観点から最も好ましく用いられる。なお、塗布は、プラスチックフィルム等の製造工程中で行う、いわゆるインラインコート法でもよいし、既に製造された透明基材に別工程で塗布を行う、いわゆるオフラインコート法でもよい。生産効率の観点から、オフラインコートが好ましい。また、注入する場合は気泡の発生を防ぐため、カートリッジの使用が好ましい。
<Method of coating / injecting / curing on transparent substrate>
When applying the active energy ray-curable composition of the present invention to a transparent substrate (for example, a glass substrate such as a glass plate or a plastic substrate such as a plastic film), the application method is not particularly limited and spraying is performed. A method, an airless spray method, an air spray method, a roll coat method, a bar coat method, a gravure method, or the like can be used. Among these, the roll coat method is most preferably used from the viewpoints of aesthetics, cost, workability, and the like. The application may be a so-called in-line coating method performed during the manufacturing process of a plastic film or the like, or a so-called off-line coating method in which coating is performed in a separate process on an already manufactured transparent substrate. From the viewpoint of production efficiency, off-line coating is preferred. In addition, it is preferable to use a cartridge in order to prevent bubbles from being generated.
 本発明の塗工膜の厚みは、50~300μmが好ましく、より好ましくは50~200μmである。層厚みが300μmを超える場合には、塗布する樹脂組成物の量が多量となるため、コストが高くなったり、膜厚の均一性が低下したりする場合がある。また、50μm未満である場合には、硬化性樹脂の柔軟特性を発揮できない。 The thickness of the coating film of the present invention is preferably 50 to 300 μm, more preferably 50 to 200 μm. When the layer thickness exceeds 300 μm, the amount of the resin composition to be applied becomes large, so that the cost may increase or the uniformity of the film thickness may decrease. Moreover, when it is less than 50 micrometers, the softness | flexibility characteristic of curable resin cannot be exhibited.
<照射>
 紫外線照射を行う時の光源としては、特に限定されないが、例えば、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、キセノン灯、メタルハライド灯等が用いられる。照射時間は、光源の種類、光源と塗布面との距離、その他の条件により異なるが、長くとも数十秒であり、通常は数秒である。通常、ランプ出力80~300W/cm程度の照射源が用いられる。電子線照射の場合は、50~1000KeVの範囲のエネルギーを持つ電子線を用い、2~5Mradの照射量とすることが好ましい。活性エネルギー線照射後は、必要に応じて加熱を行って硬化の促進を図ってもよい。
<Irradiation>
The light source for performing ultraviolet irradiation is not particularly limited, and for example, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like is used. The irradiation time varies depending on the type of the light source, the distance between the light source and the coating surface, and other conditions, but is several tens of seconds at most, and usually several seconds. Usually, an irradiation source with a lamp output of about 80 to 300 W / cm is used. In the case of electron beam irradiation, it is preferable to use an electron beam having an energy in the range of 50 to 1000 KeV and to give an irradiation amount of 2 to 5 Mrad. After irradiation with active energy rays, curing may be promoted by heating as necessary.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
<物性の測定方法、試験方法、評価方法>
 物性の測定方法、試験方法、評価方法を以下に示す。
(重量平均分子量)
 重量平均分子量はGPC(ゲルパーミエーション・ガスクロマトグラフィー)法により、下記の測定条件で、標準ポリスチレンを基準にして求めた。
使用機器  : TOSO HLC-8220GPC
ポンプ   : DP-8020
検出器   : RI-8020
カラムの種類: Super HZM-M, Super HZ4000, Super HZ3000, Super HZ2000
溶剤    : テトラヒドロフラン
相流量   : 1mL/分
カラム内圧力: 5.0MPa
カラム温度 : 40℃
試料注入量 : 10μL
試料濃度  : 0.2mg/mL
<Measuring method of physical properties, testing method, evaluation method>
The physical property measurement method, test method, and evaluation method are shown below.
(Weight average molecular weight)
The weight average molecular weight was determined by GPC (gel permeation gas chromatography) method based on standard polystyrene under the following measurement conditions.
Equipment used: TOSO HLC-8220GPC
Pump: DP-8020
Detector: RI-8020
Column type: Super HZM-M, Super HZ4000, Super HZ3000, Super HZ2000
Solvent: Tetrahydrofuran phase flow rate: 1 mL / min In-column pressure: 5.0 MPa
Column temperature: 40 ° C
Sample injection volume: 10 μL
Sample concentration: 0.2 mg / mL
[硬化前樹脂組成物の外観試験(樹脂外観)]
 硬化前の樹脂組成物の外観を確認した。樹脂組成物を-30℃(マイナス30℃)で1時間保管し、結晶化等による白濁、着色の有無を目視により、以下の基準で評価した。
[Appearance test of resin composition before curing (resin appearance)]
The appearance of the resin composition before curing was confirmed. The resin composition was stored at −30 ° C. (minus 30 ° C.) for 1 hour, and the presence or absence of white turbidity or coloring due to crystallization or the like was visually evaluated according to the following criteria.
 具体的には、目視により白濁、着色のいずれも認定できない場合には、結果は良好(クリアー)であるとして、表1の「樹脂外観」の欄に「○」を記載した。一方、目視により白濁、着色のいずれかが認定された場合には、結果は不良(外観不良)であるとして、表1の「樹脂外観」の欄に「×」を記載した。 Specifically, when neither white turbidity nor coloring can be recognized by visual inspection, the result is good (clear), and “◯” is described in the “resin appearance” column of Table 1. On the other hand, when any one of white turbidity and coloring was visually confirmed, “x” was entered in the column of “resin appearance” in Table 1, assuming that the result was defective (exterior appearance).
[硬化物の透明性の評価(透明性)]
 図2に示したように、マイクログラス(寸法:1.0×76×26mm)上に、シリコンラバーで方形の枠を作り(内寸:1.0×40×10mm)、その枠の中に活性エネルギー線硬化性組成物を1.0g滴下した。70℃で加温し、表面が平滑になったところで、下記条件で紫外線照射した。
[Evaluation of transparency of cured product (transparency)]
As shown in FIG. 2, a square frame is made with silicon rubber on a microglass (dimension: 1.0 × 76 × 26 mm) (inner dimension: 1.0 × 40 × 10 mm), 1.0 g of the active energy ray-curable composition was dropped. When the surface was smoothened by heating at 70 ° C., ultraviolet irradiation was performed under the following conditions.
(紫外線照射条件)
照射強度  :120W/cm
照射距離  :10cm
コンベア速度:5m/分
照射回数  :2回
(UV irradiation conditions)
Irradiation intensity: 120 W / cm
Irradiation distance: 10cm
Conveyor speed: 5 m / min Irradiation frequency: 2 times
 分光光度計(製品名UV-VISIBLE SPECTROPHOTO METER、島津製作所社製)を用いて、マイクロガラスだけのものをリファレンスとして透過率を測定し、以下の基準で評価した。 Using a spectrophotometer (product name UV-VISIBLE SPECTROPHOTO METER, manufactured by Shimadzu Corporation), the transmittance was measured using only a micro glass as a reference, and evaluated according to the following criteria.
 400nmにおける透過率が95%以上であった場合、透過率は良好であるとして、「透明性(400nmでの透過率)」の欄に「○」を記載した。一方、400nmにおける透過率が95%未満の場合には、透過率は不良であるとして、表1の「透明性(400nmでの透過率)」の欄に「×」を記載した。 When the transmittance at 400 nm was 95% or more, “○” was described in the column of “Transparency (Transmittance at 400 nm)”, assuming that the transmittance was good. On the other hand, when the transmittance at 400 nm is less than 95%, the transmittance is regarded as poor, and “X” is described in the column of “Transparency (Transmittance at 400 nm)” in Table 1.
[硬化物の耐熱性の評価(色相変化)]
 図3に示したガラス積層体(試験片A)を以下の耐熱条件下で保管し、試験片AのAPHA(色相)及び形状の変化を観察した。なお、図3の(A)はガラス積層体を上から見た図であり、同図の(B)はガラス積層体を横から見た図である。
[Evaluation of heat resistance of cured product (change in hue)]
The glass laminate (test piece A) shown in FIG. 3 was stored under the following heat resistance conditions, and the APHA (hue) and shape change of the test piece A were observed. In addition, (A) of FIG. 3 is the figure which looked at the glass laminated body from the top, (B) of the figure is the figure which looked at the glass laminated body from the side.
(試験片Aの作成)
 図3に示したガラス積層体(試験片A)を次のようにして作成した。まず、ガラス板(厚さ1mm、5cm四方)の中心に活性エネルギー線硬化性組成物0.200gを正確に秤量してのせた。さらにその上から同形状のガラス板を被せ、樹脂層を円状(4cm径)に広げ、ガラス積層体を得た。その後、該ガラス積層体の片方のガラス面から高圧水銀灯(アイグラフィックス社製)を用いて、下記の条件で紫外線照射を行い、樹脂組成物硬化物層を有するガラス積層体(試験片A)を得た。
(Preparation of specimen A)
A glass laminate (test piece A) shown in FIG. 3 was prepared as follows. First, 0.200 g of the active energy ray-curable composition was accurately weighed on the center of a glass plate (thickness 1 mm, 5 cm square). Furthermore, the glass plate of the same shape was covered from the top, the resin layer was extended circularly (4 cm diameter), and the glass laminated body was obtained. Thereafter, a glass laminate (test piece A) having a cured resin composition layer is irradiated from the glass surface of one side of the glass laminate using a high-pressure mercury lamp (made by Eye Graphics Co., Ltd.) under the following conditions. Got.
(紫外線照射条件)
照射強度  :120W/cm
照射距離  :10cm
コンベア速度:5m/分
照射回数  :8回(両面各4回)
(UV irradiation conditions)
Irradiation intensity: 120 W / cm
Irradiation distance: 10cm
Conveyor speed: 5 m / min Irradiation frequency: 8 times (4 times on both sides)
(耐熱条件下での保管)
 小型環境試験器(製品名SH-641、エスペック社製)を用い、温度95℃の条件で1000時間、試験板(ガラス積層体、硬化後)を保管した。
(Storage under heat-resistant conditions)
Using a small environmental tester (product name SH-641, manufactured by Espec Corp.), the test plate (glass laminate, after curing) was stored at a temperature of 95 ° C. for 1000 hours.
(APHAの測定)
 APHAの測定は、分光式色彩計(製品名Spectro Color Meter SE2000、日本電色工業社製)を用いて、耐熱条件下での保管前後のガラス積層体のAPHAを測定し、以下の基準で評価した。
(Measurement of APHA)
APHA is measured using a spectroscopic color meter (product name: Spectro Color Meter SE2000, manufactured by Nippon Denshoku Industries Co., Ltd.) by measuring APHA of the glass laminate before and after storage under heat-resistant conditions, and evaluated according to the following criteria: did.
 耐熱条件下での保管前後のAPHAの増加が15未満の場合、色相の観点から耐熱性は極めて良好であるとして、表1の「耐熱性」の「色相変化」の欄に「◎」を記載した。また、耐熱条件下での保管前後のAPHAの増加が15以上50未満の場合、色相の観点から耐熱性は良好であるとして、表1の「耐熱性」の「色相変化」の欄に「○」を記載した。一方、耐熱条件下での保管前後のAPHAの増加が50以上の場合、色相の観点から耐熱性は不良であるとして、表1の「耐熱性」の「色相変化」の欄に「×」を記載した。 If the increase in APHA before and after storage under heat-resistant conditions is less than 15, the heat resistance is very good from the viewpoint of hue, and "◎" is entered in the "Hue change" column of "Heat resistance" in Table 1. did. In addition, when the increase in APHA before and after storage under heat resistant conditions is 15 or more and less than 50, it is assumed that the heat resistance is good from the viewpoint of hue, and in the “Hue change” column of “Heat resistance” in Table 1, “○ Was described. On the other hand, if the increase in APHA before and after storage under heat resistant conditions is 50 or more, the heat resistance is poor from the viewpoint of hue, and “X” is entered in the “Hue change” column of “Heat resistance” in Table 1. Described.
[硬化物の耐熱性の評価(形状変化)]
 耐熱条件下での保管後の試験片Aの形状変化の有無を目視により測定し、以下の基準で評価した。
[Evaluation of heat resistance of cured products (shape change)]
The presence or absence of a change in the shape of the test piece A after storage under heat resistant conditions was measured visually and evaluated according to the following criteria.
 具体的には、目視により形状変化(そり、シワの発生、柄図板のズレ等の何らかの形状変化)が認定できない場合には、結果は良好であるとして、表1の「耐熱性」の「形状変化」の欄に「○」を記載した。一方、目視により形状変化が認定された場合には、結果は不良であるとして、表1の「耐熱性」の「形状変化」の欄に「×」を記載した。 Specifically, when the shape change (any shape change such as warpage, wrinkle generation, pattern board displacement, etc.) cannot be recognized visually, the result is good and the “heat resistance” in Table 1 “◯” is described in the “shape change” column. On the other hand, when the shape change was recognized visually, the result was determined to be defective, and “x” was entered in the “shape change” column of “heat resistance” in Table 1.
[硬化物の耐熱性の評価(塗膜硬度の変化)]
 ガラス(寸法:2×100×200mm)板上に、シリコンラバーで正方形の枠を作り(内寸:7×40×40mm)、その枠の中に予め加温しておいた活性エネルギー線硬化性組成物をなるべく気泡が発生しないようにゆっくりと投入した。なお、気泡が目立つ時は80℃のオーブンに入れることで、気泡を抜いた。その後、80℃で加温し、表面が平滑になったところで、下記の条件で紫外線照射を行い、さらに塗膜を裏返しにして、同様の条件で紫外線を照射し、試験片B(タブレット)を得た。
[Evaluation of heat resistance of cured product (change in coating film hardness)]
A square frame made of silicon rubber on a glass (dimension: 2 × 100 × 200 mm) plate (internal dimension: 7 × 40 × 40 mm), and active energy ray curable in advance in the frame. The composition was slowly added so as not to generate bubbles as much as possible. When air bubbles were conspicuous, they were removed by putting them in an oven at 80 ° C. Then, it heated at 80 degreeC, and when the surface became smooth, ultraviolet irradiation was performed on the following conditions, and also the coating film was turned inside out and ultraviolet rays were irradiated on the same conditions, and test piece B (tablet) was carried out. Obtained.
(紫外線照射条件)
照射強度  : 120W/cm
照射距離  : 10cm
コンベア速度: 3.5m/分
照射回数  : 5回
(UV irradiation conditions)
Irradiation intensity: 120 W / cm
Irradiation distance: 10cm
Conveyor speed: 3.5m / min Irradiation frequency: 5 times
 自動定圧荷重器(GS-610、(株)テクロック社製)を用い、JIS K 6253に準拠し、A硬度を測定した。なお、測定時の荷重は500g、荷重降下速度は9mm/sとした。その後、試験片Bを、温度95℃の条件で1000時間保管した。保管前後で硬度の数値が±20%未満であれば、「耐熱性」の「塗膜硬度の変化」の欄に「○」を記載した。一方、塗膜硬度の数値が±20%以上であれば、「×」を記載した。なお、前記の「硬度の数値」は、保管後の試験片Bの硬度を、保管前の試験片Bの硬度で除することで計算することができる。 Using an automatic constant pressure loader (GS-610, manufactured by Teclock Co., Ltd.), A hardness was measured according to JIS K 6253. The load at the time of measurement was 500 g, and the load drop rate was 9 mm / s. Thereafter, the test piece B was stored for 1000 hours at a temperature of 95 ° C. If the numerical value of hardness before and after storage was less than ± 20%, “◯” was entered in the column “Change in coating film hardness” of “Heat resistance”. On the other hand, when the numerical value of the coating film hardness is ± 20% or more, “x” is described. The “value of hardness” can be calculated by dividing the hardness of the test piece B after storage by the hardness of the test piece B before storage.
<合成例>
 ウレタン(メタ)アクリレート(X)の合成例、実施例について、以下に説明する。
<Synthesis example>
Synthesis examples and examples of urethane (meth) acrylate (X) will be described below.
(イソシアネート基濃度の測定)
 イソシアネート基濃度は、以下のように測定した。なお、測定は100mLのガラスフラスコでスターラーによる攪拌の下で行った。
(Measurement of isocyanate group concentration)
The isocyanate group concentration was measured as follows. In addition, the measurement was performed under stirring with a stirrer in a 100 mL glass flask.
(ブランク値の測定)
 15mLのTHFに、ジブチルアミンのTHF溶液(0.1N)15mLを加え、さらにブロモフェノールブルー(1%メタノール希釈液)を3滴加えて加えて青色に着色させた後、規定度が0.1NであるHCl水溶液で滴定した。変色がみられた時点のHCl水溶液の滴定量をVb(mL)とした。
(Blank value measurement)
To 15 mL of THF, add 15 mL of dibutylamine in THF (0.1 N), add 3 drops of bromophenol blue (1% methanol dilution), and add blue color. Titration with an aqueous HCl solution. The titration amount of the aqueous HCl solution when the color change was observed was defined as V b (mL).
(実測イソシアネート基濃度の測定)
 サンプルをWs(g)秤量し、15mLのTHFに溶解させ、ジブチルアミンのTHF溶液(0.1N)を15mL加えた。溶液化したことを確認した後、ブロモフェノールブルー(1%メタノール希釈液)を3滴加えて青色に着色させた後、規定度が0.1NであるHCl水溶液で滴定した。変色がみられた時点のHCl水溶液の滴定量をVs(mL)とした。
 以下の計算式により、サンプル中のイソシアネート基濃度を算出した。
 イソシアネート基濃度(重量%)=(Vb-Vs)×1.005×0.42÷Ws
(Measurement of measured isocyanate group concentration)
The sample was weighed W s (g), dissolved in 15 mL of THF, and 15 mL of a dibutylamine THF solution (0.1 N) was added. After confirming that the solution was formed, 3 drops of bromophenol blue (diluted in 1% methanol) was added to give a blue color, followed by titration with an aqueous HCl solution having a normality of 0.1N. The titer of the aqueous HCl solution when the color change was observed was defined as V s (mL).
The isocyanate group concentration in the sample was calculated by the following calculation formula.
Isocyanate group concentration (% by weight) = (V b −V s ) × 1.005 × 0.42 ÷ W s
 以下に合成例、比較合成例で用いた(A)~(E)、(Y)、(Z)を説明する (A) to (E), (Y), (Z) used in the synthesis examples and comparative synthesis examples are described below.
[ポリオール(A)]
 「P3000」(化合物名 水素化ポリブタジエングリコール,水酸基価0.56 Phth meq/g(無水フタル酸換算)、不揮発分99.98%、推定重量平均分子量3571);製品名「KRASOL HLBH P3000」(日本曹達社製)
 「P2000」(化合物名 ポリブタジエングリコール,水酸基価49.71mgKOH/g、推定重量平均分子量2257);製品名「KRASOL LBH P2000」(日本曹達社製)
 「エポール」(化合物名 水酸基末端液状ポリオレフィン:末端に水酸基を有するポリイソプレン系ポリオールを水添したもの、水酸基価0.92mol/kg、臭素価5.9g/100g、不揮発分99.5重量%以上、推定重量平均分子量2174);製品名「エポール」(出光興産社製)
 「GI-2000」(化合物名 水素化1,2-ポリブタジエングリコール,水酸基価48.3mgKOH/g、ヨウ素価9.0g/100g、水添率97.6%、推定重量平均分子量2323);製品名「NISSO PB GI-2000」(日本曹達社製)
 「GI-3000」(化合物名 水素化1,2-ポリブタジエングリコール,水酸基価28.3mgKOH/g、ヨウ素価15.6g/100g、揮発分0.11%、推定重量平均分子量3965);製品名「NISSO PB GI-3000」(日本曹達社製)
 「G-3000」(化合物名 1,2-ポリブタジエングリコール,水酸基価31.0mgKOH/g、推定重量平均分子量3619);製品名「NISSO PB G-3000」(日本曹達社製)
 「PP4000」(化合物名 ポリプロピレングリコール,水酸基価26.9mgKOH/g、推定重量平均分子量4171);製品名「ニューポールPP4000」(三洋化成工業社製)
[Polyol (A)]
"P3000" (compound name hydrogenated polybutadiene glycol, hydroxyl value 0.56 Phth meq / g (phthalic anhydride equivalent), non-volatile content 99.98%, estimated weight average molecular weight 3571); product name "KRASOL HLBH P3000" (Japan) Soda Co., Ltd.)
“P2000” (compound name polybutadiene glycol, hydroxyl value 49.71 mg KOH / g, estimated weight average molecular weight 2257); product name “KRASOL LBH P2000” (manufactured by Nippon Soda Co., Ltd.)
“Epol” (compound name: hydroxyl-terminated liquid polyolefin: hydrogenated polyisoprene-based polyol having a hydroxyl group at the end, hydroxyl value 0.92 mol / kg, bromine value 5.9 g / 100 g, nonvolatile content 99.5% by weight or more , Estimated weight average molecular weight 2174); product name "Epol" (manufactured by Idemitsu Kosan Co., Ltd.)
“GI-2000” (compound name: hydrogenated 1,2-polybutadiene glycol, hydroxyl value 48.3 mg KOH / g, iodine value 9.0 g / 100 g, hydrogenation rate 97.6%, estimated weight average molecular weight 2323); "NISSO PB GI-2000" (manufactured by Nippon Soda Co., Ltd.)
“GI-3000” (compound name hydrogenated 1,2-polybutadiene glycol, hydroxyl value 28.3 mg KOH / g, iodine value 15.6 g / 100 g, volatile content 0.11%, estimated weight average molecular weight 3965); NISSO PB GI-3000 "(Nippon Soda Co., Ltd.)
“G-3000” (compound name 1,2-polybutadiene glycol, hydroxyl value 31.0 mg KOH / g, estimated weight average molecular weight 3619); product name “NISSO PB G-3000” (manufactured by Nippon Soda Co., Ltd.)
“PP4000” (compound name: polypropylene glycol, hydroxyl value: 26.9 mg KOH / g, estimated weight average molecular weight: 4171); product name: “New Pole PP4000” (manufactured by Sanyo Chemical Industries)
[アルコール(B)]
 「TMP」(化合物名 トリメチロールプロパン,3官能アルコール、分子量134、白色固体);製品名「トリメチロールプロパン(TMP)」(三菱ガス化学社製)
 「HD-402」(化合物名 PPG変性のペンタエリスリトール,3官能アルコール、水酸基価561mgKOH/g、分子量400);製品名「サンニックスHD-402」(三菱ガス化学社製)
 「GP-250」(化合物名 PPG変性のグリセリン,3官能アルコール、水酸基価672mgKOH/g、分子量250);製品名「サンニックスGP-250」(三菱ガス化学社製)
 「PCL308」(化合物名 ポリカプロラクトン変性アルコール,3官能アルコール、水酸基価193mgKOH/g、分子量870);製品名「プラクセルPCL308」(ダイセル(株)製)
[Alcohol (B)]
“TMP” (compound name: trimethylolpropane, trifunctional alcohol, molecular weight: 134, white solid); product name “trimethylolpropane (TMP)” (manufactured by Mitsubishi Gas Chemical Company)
“HD-402” (Compound name: PPG-modified pentaerythritol, trifunctional alcohol, hydroxyl value: 561 mg KOH / g, molecular weight: 400); product name: “Sanix HD-402” (manufactured by Mitsubishi Gas Chemical)
“GP-250” (compound name: PPG-modified glycerin, trifunctional alcohol, hydroxyl value: 672 mg KOH / g, molecular weight: 250); product name “Sanniks GP-250” (manufactured by Mitsubishi Gas Chemical Company)
“PCL308” (compound name: polycaprolactone-modified alcohol, trifunctional alcohol, hydroxyl value: 193 mg KOH / g, molecular weight: 870); product name “Placcel PCL308” (manufactured by Daicel Corporation)
[ジイソシアネート(C)]
 「IPDI」(化合物名 イソホロンジイソシアネート);製品名「VESTANAT IPDI」(エボニック社製)
 「HDI」(化合物名 ヘキサメチレンジイソシアネート);製品名「HDI」(日本ポリウレタン社製)
 「TMDI」(化合物名 2,2,4-トリメチルヘキサメチレンジイソシアネート);製品名「TMDI」(エボニック社製)
[Diisocyanate (C)]
“IPDI” (compound name isophorone diisocyanate); product name “VESTANAT IPDI” (manufactured by Evonik)
“HDI” (compound name: hexamethylene diisocyanate); product name “HDI” (manufactured by Nippon Polyurethane Co., Ltd.)
“TMDI” ( compound name 2,2,4-trimethylhexamethylene diisocyanate); product name “TMDI” (manufactured by Evonik)
[(メタ)アクリレート(D)]
 「HEA」(化合物名 2-ヒドロキシエチルアクリレート);製品名「β-HEA アクリル酸2-ヒドロキシエチル」(日本触媒社製)
[(Meth) acrylate (D)]
“HEA” (compound name 2-hydroxyethyl acrylate); product name “β-HEA 2-hydroxyethyl acrylate” (manufactured by Nippon Shokubai Co., Ltd.)
[アルコール(E)]
 「2-EH」;2-エチルヘキシルアルコール(三協化学社製)
[Alcohol (E)]
“2-EH”; 2-ethylhexyl alcohol (manufactured by Sankyo Chemical Co., Ltd.)
[(メタ)アクリレート(Y)]
 「NOA」(化合物名 ノルマルオクチルアクリレート);製品名「NOAA」(大阪有機化学社製)
[(Meth) acrylate (Y)]
“NOA” (compound name normal octyl acrylate); product name “NOAA” (manufactured by Osaka Organic Chemical Co., Ltd.)
[光重合開始剤(Z)]
 Irg184(化合物名 1-ヒドロキシシクロヘキシルフェニルケトン);製品名「Irg184」(BASFジャパン(株)社製)
[Photopolymerization initiator (Z)]
Irg184 (compound name 1-hydroxycyclohexyl phenyl ketone); product name “Irg184” (manufactured by BASF Japan Ltd.)
 以下に、合成例、比較合成例を記載するが、濃度表記の「ppm」、「重量%」、「重量%分」は、特別な記載がない限り、(理論的に)得られるウレタン(メタ)アクリレート含有物全体に対する濃度である。 Synthesis examples and comparative synthesis examples are described below. The concentration notation “ppm”, “% by weight”, and “% by weight” are (theoretical) urethane (meta) unless otherwise specified. ) Concentration relative to the entire acrylate-containing material.
<合成例1/X-1>
 温度計、攪拌装置を備えたセパラブルフラスコに、ポリオール(A)として、269.1gのP3000,アルコール(B)として1.5gのTMP、800ppmのジブチルヒドロキシトルエン(BHT)、(メタ)アクリレート(Y)として128.5gのNOA(30重量%分)を充填した。内温を70℃として1時間攪拌し、系内を均一化させた後に再び50℃に冷却し、ジイソシアネート(C)として24.7gのIPDIを投入した。系内を均一化させた後、300ppmのジブチルスズジラウレート(DBTDL)を加えた。反応温度で1時間攪拌させた後、70℃まで昇温し、反応を継続した。
<Synthesis Example 1 / X-1>
In a separable flask equipped with a thermometer and a stirrer, 269.1 g of P3000 as polyol (A), 1.5 g of TMP as alcohol (B), 800 ppm of dibutylhydroxytoluene (BHT), (meth) acrylate ( Y) was charged with 128.5 g of NOA (30% by weight). The mixture was stirred for 1 hour at an internal temperature of 70 ° C., homogenized the system, and then cooled again to 50 ° C., and 24.7 g of IPDI was added as diisocyanate (C). After homogenizing the system, 300 ppm of dibutyltin dilaurate (DBTDL) was added. After stirring at the reaction temperature for 1 hour, the temperature was raised to 70 ° C. and the reaction was continued.
 なお、反応が完結したことは、反応液中のイソシアネート基濃度が、反応に供した水酸基の全てがウレタン化した時の残存イソシアネート基濃度(以下、「理論終点イソシアネート基濃度」という)以下となったことで確認した。 In addition, the completion of the reaction is that the isocyanate group concentration in the reaction solution is equal to or less than the residual isocyanate group concentration (hereinafter referred to as “theoretical end-point isocyanate group concentration”) when all of the hydroxyl groups subjected to the reaction are urethanized. That was confirmed.
 本例では、反応液中のイソシアネート基濃度が理論終点イソシアネート基濃度(0.37重量%)以下であることを確認した後、次の操作へ移行した。 In this example, after confirming that the isocyanate group concentration in the reaction solution was equal to or lower than the theoretical end-point isocyanate group concentration (0.37 wt%), the procedure shifted to the next operation.
 その後、アルコール(E)として、2.4gの2-EHを投入した。さらに70℃で2時間攪拌した後、(メタ)アクリレート(D)として2.2gの2-ヒドロキシエチルアクリレートを投入し、イソシアネート基濃度が0.05重量%以下になったことを確認して反応を終了させ、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-1)を得た。 Thereafter, 2.4 g of 2-EH was added as alcohol (E). After further stirring at 70 ° C. for 2 hours, 2.2 g of 2-hydroxyethyl acrylate was added as (meth) acrylate (D), and the reaction was confirmed after confirming that the isocyanate group concentration was 0.05% by weight or less. Then, active energy ray-curable urethane (meth) acrylate-containing product (X-1) was obtained.
 なお、上記反応に用いたHLBH-P3000、TMP、IPDI、HEA、2-EHのモル比は、4.0:0.6:5.9:1.02:1.0であった。 The molar ratio of HLBH-P3000, TMP, IPDI, HEA, 2-EH used in the above reaction was 4.0: 0.6: 5.9: 1.02: 1.0.
<合成例2/X-2>
 ポリオール(A)として245.7gのエポール、ジイソシアネート(C)として33.1gのIPDI、(メタ)アクリレート(Y)として122.1gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-2)を得た。
 なお、上記反応に用いたエポール、TMP、IPDI、HEA、2-EHのモル比は、6.0:0.6:7.9:1.02:1.0であった。
<Synthesis Example 2 / X-2>
Synthesis Example 1 except that 245.7 g of epole was used as the polyol (A), 33.1 g of IPDI as the diisocyanate (C), and 122.1 g of NOA (30% by weight) as the (meth) acrylate (Y). In the same manner as above, an active energy ray-curable urethane (meth) acrylate-containing product (X-2) was obtained.
The molar ratio of Epaul, TMP, IPDI, HEA, 2-EH used in the above reaction was 6.0: 0.6: 7.9: 1.02: 1.0.
<合成例3/X-3>
 ポリオール(A)として262.6gのGI-2000、ジイソシアネート(C)として33.1gのIPDI、(メタ)アクリレート(Y)として129.3gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-3)を得た。
 なお、上記反応に用いたGI2000、TMP、IPDI、HEA、2-EHのモル比は6.0:0.6:7.9:1.02:1.0であった。
<Synthesis Example 3 / X-3>
Synthesis except that 262.6 g of GI-2000 was used as the polyol (A), 33.1 g of IPDI as the diisocyanate (C), and 129.3 g of NOA (30% by weight) as the (meth) acrylate (Y). In the same manner as in Example 1, an active energy ray-curable urethane (meth) acrylate-containing product (X-3) was obtained.
The molar ratio of GI2000, TMP, IPDI, HEA and 2-EH used in the above reaction was 6.0: 0.6: 7.9: 1.02: 1.0.
<合成例4/X-4>
 ポリオール(A)として298.8gのGI-3000、(メタ)アクリレート(Y)として141.3gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-4)を得た。
 なお、GI3000、TMP、IPDI、HEA、2-EHのモル比は4.0:0.6:5.9:1.02:1.0であった。
<Synthesis Example 4 / X-4>
Active energy ray curing was carried out in the same manner as in Synthesis Example 1, except that 298.8 g of GI-3000 was used as the polyol (A) and 141.3 g of NOA (30% by weight) was used as the (meth) acrylate (Y). -Containing urethane (meth) acrylate-containing product (X-4) was obtained.
The molar ratio of GI3000, TMP, IPDI, HEA, and 2-EH was 4.0: 0.6: 5.9: 1.02: 1.0.
<合成例5/X-5>
 ポリオール(A)として272.7gのG3000、(メタ)アクリレート(Y)として130.1gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-5)を得た。
 なお、上記反応に用いたG3000、TMP、IPDI、HEA、2-EHのモル比は4.0:0.6:5.9:1.02:1.0であった。
<Synthesis Example 5 / X-5>
Active energy ray-curable urethane in the same manner as in Synthesis Example 1 except that 272.7 g of G3000 was used as the polyol (A) and 130.1 g of NOA (30% by weight) was used as the (meth) acrylate (Y). A (meth) acrylate-containing product (X-5) was obtained.
The molar ratio of G3000, TMP, IPDI, HEA and 2-EH used in the above reaction was 4.0: 0.6: 5.9: 1.02: 1.0.
<合成例6/X-6>
 ポリオール(A)として170.1gのP2000、(メタ)アクリレート(Y)として86.1gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-6)を得た。
 なお、上記反応に用いたP2000、TMP、IPDI、HEA、2-EHのモル比は4.0:0.6:5.9:1.02:1.0であった。
<Synthesis Example 6 / X-6>
Active energy ray-curable urethane as in Synthesis Example 1 except that 170.1 g of P2000 was used as the polyol (A) and 86.1 g of NOA (30% by weight) was used as the (meth) acrylate (Y). A (meth) acrylate-containing product (X-6) was obtained.
The molar ratio of P2000, TMP, IPDI, HEA, 2-EH used in the above reaction was 4.0: 0.6: 5.9: 1.02: 1.0.
<合成例7/X-7>
 ポリオール(A)として148.0gのP3000、アルコール(B)として0.75gのTMP、ジイソシアネート(C)として15.3gのIPDI、(メタ)アクリレート(D)として3.17gのHEA、アルコール(E)として1.32gの2-EHを使用し、(メタ)アクリレート(Y)として48.2gのNOA(20重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-7)を得た。
 なお、上記反応に用いたP3000、TMP、IPDI、HEA、2-EHのモル比は2.2:0.3:3.65:1.47:0.55であった。
<Synthesis Example 7 / X-7>
148.0 g P3000 as polyol (A), 0.75 g TMP as alcohol (B), 15.3 g IPDI as diisocyanate (C), 3.17 g HEA as (meth) acrylate (D), alcohol (E ) Using 1.32 g of 2-EH and 48.2 g of NOA (20 wt%) as (meth) acrylate (Y). -Containing urethane (meth) acrylate-containing product (X-7) was obtained.
The molar ratio of P3000, TMP, IPDI, HEA and 2-EH used in the above reaction was 2.2: 0.3: 3.65: 1.47: 0.55.
<合成例8/X-8>
 ジイソシアネート(C)として19.1gのHDI、(メタ)アクリレート(Y)として126.1gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-8)を得た。
 なお、上記反応に用いたP3000、TMP、HDI、HEA、2-EHのモル比は4.0:0.6:5.9:1.02:1.0であった。
<Synthesis Example 8 / X-8>
Active energy ray-curable urethane in the same manner as in Synthesis Example 1 except that 19.1 g of HDI was used as diisocyanate (C) and 126.1 g of NOA (30% by weight) was used as (meth) acrylate (Y). A (meth) acrylate-containing product (X-8) was obtained.
The molar ratio of P3000, TMP, HDI, HEA and 2-EH used in the above reaction was 4.0: 0.6: 5.9: 1.02: 1.0.
<合成例9/X-9>
 ジイソシアネート(C)として23.4gのTMDI、(メタ)アクリレート(Y)として128.0gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X9)を得た。
 なお、上記反応に用いたP3000、TMP、TMDI、HEA、2-EHのモル比は4.0:0.6:5.9:1.02:1.0であった。
<Synthesis Example 9 / X-9>
Active energy ray-curable urethane as in Synthesis Example 1 except that 23.4 g of TMDI was used as the diisocyanate (C) and 128.0 g of NOA (30% by weight) was used as the (meth) acrylate (Y). A (meth) acrylate-containing material (X9) was obtained.
The molar ratio of P3000, TMP, TMDI, HEA, and 2-EH used in the above reaction was 4.0: 0.6: 5.9: 1.02: 1.0.
<合成例10/X-10>
 ポリオール(A)として298.8gのGI-3000、アルコール(B)として2.24gのHD402、ジイソシアネート(C)として23.4gのIPDI、(メタ)アクリレート(Y)として141.0gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-10)を得た。
 なお、上記反応に用いたGI-3000、HD402、IPDI、HEA、2-EHのモル比は4.0:0.3:5.6:1.02:1.0であった。
<Synthesis Example 10 / X-10>
298.8 g GI-3000 as polyol (A), 2.24 g HD402 as alcohol (B), 23.4 g IPDI as diisocyanate (C), 141.0 g NOA (30) as (meth) acrylate (Y) The active energy ray-curable urethane (meth) acrylate-containing material (X-10) was obtained in the same manner as in Synthesis Example 1 except that (% by weight) was used.
The molar ratio of GI-3000, HD402, IPDI, HEA, 2-EH used in the above reaction was 4.0: 0.3: 5.6: 1.02: 1.0.
<合成例11/X-11>
 ポリオール(A)として298.8gのGI-3000、アルコール(B)として1.40gのGP250、ジイソシアネート(C)として22.8gのIPDI、(メタ)アクリレート(Y)として140.4gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-11)を得た。
 なお、上記反応に用いたGI-3000、GP250、IPDI、HEA、2-EHのモル比は4.0:0.3:5.45:1.02:1.0であった。
<Synthesis Example 11 / X-11>
298.8 g GI-3000 as polyol (A), 1.40 g GP250 as alcohol (B), 22.8 g IPDI as diisocyanate (C), 140.4 g NOA (30) as (meth) acrylate (Y) The active energy ray-curable urethane (meth) acrylate-containing material (X-11) was obtained in the same manner as in Synthesis Example 1 except that (% by weight) was used.
The molar ratio of GI-3000, GP250, IPDI, HEA, 2-EH used in the above reaction was 4.0: 0.3: 5.45: 1.02: 1.0.
<合成例12/X-12>
 ポリオール(A)として298.8gのGI-3000、アルコール(B)として2.50gのTMP、ジイソシアネート(C)として27.2gのIPDI、(メタ)アクリレート(Y)として142.8gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-12)を得た。
 なお、上記反応に用いたGI-3000、TMP、IPDI、HEA、2-EHのモル比は4.0:1.0:6.5:1.02:1.0であった。
<Synthesis Example 12 / X-12>
298.8 g GI-3000 as polyol (A), 2.50 g TMP as alcohol (B), 27.2 g IPDI as diisocyanate (C), 142.8 g NOA (30) as (meth) acrylate (Y) The active energy ray-curable urethane (meth) acrylate-containing material (X-12) was obtained in the same manner as in Synthesis Example 1 except that (% by weight) was used.
The molar ratio of GI-3000, TMP, IPDI, HEA and 2-EH used in the above reaction was 4.0: 1.0: 6.5: 1.02: 1.0.
<合成例13/X-13>
 活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-1)に、NOA濃度が60%になるようにNOAをさらに128.5g加え、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-13)とした。
<Synthesis Example 13 / X-13>
128.5 g of NOA was further added to the active energy ray-curable urethane (meth) acrylate-containing material (X-1) so that the NOA concentration was 60%, and the active energy ray-curable urethane (meth) acrylate-containing material (X -13).
<合成例14/X-14>
 ポリオール(A)として242.5gのGI-2000、アルコール(B)として8.7gのGP250、ジイソシアネート(C)として40.2gのTMDI、(メタ)アクリレート(D)として4.12gのHEA、アルコール(E)として4.46gの2-EH、(メタ)アクリレート(Y)として200gのNOA(40重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-14)を得た。
 なお、上記反応に用いたGI-2000、GP250、TMDI、HEA、2-EHのモル比は3.0:1.0:5.5:1.02:1.0であった。
<Synthesis Example 14 / X-14>
242.5 g GI-2000 as polyol (A), 8.7 g GP250 as alcohol (B), 40.2 g TMDI as diisocyanate (C), 4.12 g HEA as alcohol (meth) acrylate (D), alcohol The active energy ray-curable urethane (E) was used in the same manner as in Synthesis Example 1 except that 4.46 g of 2-EH was used as (E) and 200 g of NOA (40 wt%) was used as (meth) acrylate (Y). A (meth) acrylate-containing product (X-14) was obtained.
The molar ratio of GI-2000, GP250, TMDI, HEA, 2-EH used in the above reaction was 3.0: 1.0: 5.5: 1.02: 1.0.
<比較合成例1/CA-1>
 ポリオール(A)として148.0gのP3000、ジイソシアネート(C)として13.4gのIPDI、(メタ)アクリレートとして3.17gのHEA、アルコール(E)として1.32gの2-EH、(メタ)アクリレート(Y)として71.1gのNOA(30重量%分)を使用し、アルコール(B)を用いないこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(CA-1)を得た。
 なお、上記反応に用いたP3000、IPDI、HEA、2-EHのモル比は2.2:3.2:1.47:0.55であった。
<Comparative Synthesis Example 1 / CA-1>
148.0 g of P3000 as polyol (A), 13.4 g of IPDI as diisocyanate (C), 3.17 g of HEA as (meth) acrylate, 1.32 g of 2-EH as alcohol (E), (meth) acrylate (Y) Active energy ray-curable urethane (meth) acrylate-containing product (similar to Synthesis Example 1) except that 71.1 g of NOA (30% by weight) is used and alcohol (B) is not used ( CA-1) was obtained.
The molar ratio of P3000, IPDI, HEA, and 2-EH used in the above reaction was 2.2: 3.2: 1.47: 0.55.
<比較合成例2/CA-2>
 ポリオール(A)として148.0gのP3000、アルコール(B)として0.75gのTMP、ジイソシアネート(C)として15.3gのIPDI、(メタ)アクリレート(D)として3.93gのHEA、アルコール(E)として0.48gの2-EH、(メタ)アクリレート(Y)として72.2gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(CA-2)を得た。
 なお、上記反応に用いたP3000、TMP、IPDI、HEA、2-EHのモル比は2.2:0.3:3.65:1.82:0.2であった。
<Comparative Synthesis Example 2 / CA-2>
148.0 g of P3000 as polyol (A), 0.75 g of TMP as alcohol (B), 15.3 g of IPDI as diisocyanate (C), 3.93 g of HEA as alcohol (meth) acrylate (D), alcohol (E ), 0.48 g of 2-EH and 72.2 g of NOA (30 wt%) as (meth) acrylate (Y) were used in the same manner as in Synthesis Example 1 except that active energy ray-curable urethane ( A (meth) acrylate-containing product (CA-2) was obtained.
The molar ratio of P3000, TMP, IPDI, HEA and 2-EH used in the above reaction was 2.2: 0.3: 3.65: 1.82: 0.2.
<比較合成例3/CA-3>
 アルコール(B)として1.62gのPCL308、ジイソシアネート(C)として21.6gのIPDI、(メタ)アクリレート(Y)として127.2gのNOA(30重量%分)を使用したこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(CA-3)を得た。
 なお、上記反応に用いたP3000、PCL308、IPDI、HEA、2-EHのモル比は4.0:0.1:5.15:1.02:1.0であった。
<Comparative Synthesis Example 3 / CA-3>
Synthesis Example 1 except that 1.62 g of PCL308 was used as the alcohol (B), 21.6 g of IPDI as the diisocyanate (C), and 127.2 g of NOA (30% by weight) as the (meth) acrylate (Y). In the same manner as above, an active energy ray-curable urethane (meth) acrylate-containing product (CA-3) was obtained.
The molar ratio of P3000, PCL308, IPDI, HEA and 2-EH used in the above reaction was 4.0: 0.1: 5.15: 1.02: 1.0.
<比較合成例4/CA-4>
 ポリオール(A)として314.3gのPP4000、アルコール(B)として1.50gのTMP、ジイソシアネート(C)として24.7gのIPDI、(メタ)アクリレート(D)として4.36gのHEA、(メタ)アクリレート(Y)として147.8gのNOA(30重量%分)を使用し、アルコール(E)を使用しなかったこと以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(CA-4)を得た。
 なお、上記反応に用いたPP4000、TMP、IPDI、HEAのモル比は4.0:0.6:5.9:2.02であった。
<Comparative Synthesis Example 4 / CA-4>
314.3 g PP4000 as polyol (A), 1.50 g TMP as alcohol (B), 24.7 g IPDI as diisocyanate (C), 4.36 g HEA as (meth) acrylate (D), (meth) The active energy ray-curable urethane (meth) acrylate was used in the same manner as in Synthesis Example 1 except that 147.8 g of NOA (30% by weight) was used as the acrylate (Y) and no alcohol (E) was used. The content (CA-4) was obtained.
The molar ratio of PP4000, TMP, IPDI, and HEA used in the above reaction was 4.0: 0.6: 5.9: 2.02.
<比較合成例5/CA-5>
 ポリオール(A)として273.2gのPP4000、アルコール(B)として1.30gのTMP、ジイソシアネート(C)として21.4gのIPDI、(メタ)アクリレート(D)として1.90gのHEA、を使用し、アルコール(E)として2.10gの2EH、(メタ)アクリレート(Y)として128.5gのNOA(30重量%分)を使用した以外は合成例1と同様にして、活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(CA-5)を得た。
 なお、上記反応に用いたPP4000、TMP、IPDI、HEA、2-EHのモル比は4.0:0.6:5.9:1.02:1.0であった。
<Comparative Synthesis Example 5 / CA-5>
273.2 g of PP4000 as polyol (A), 1.30 g of TMP as alcohol (B), 21.4 g of IPDI as diisocyanate (C), 1.90 g of HEA as (meth) acrylate (D) Active energy ray-curable urethane as in Synthesis Example 1 except that 2.10 g of 2EH was used as the alcohol (E) and 128.5 g of NOA (30% by weight) was used as the (meth) acrylate (Y). A (meth) acrylate-containing product (CA-5) was obtained.
The molar ratio of PP4000, TMP, IPDI, HEA, 2-EH used in the above reaction was 4.0: 0.6: 5.9: 1.02: 1.0.
(活性エネルギー線硬化性組成物の調製)
 100重量部の活性エネルギー線硬化性ウレタン(メタ)アクリレート含有物(X-1)~(X-14)、(CA-1)~(CA-5)のそれぞれに、光重合開始剤として3重量部のIrg184を加えて活性エネルギー線硬化性組成物とした。
(Preparation of active energy ray-curable composition)
Each of 100 parts by weight of active energy ray-curable urethane (meth) acrylate-containing material (X-1) to (X-14), (CA-1) to (CA-5) is 3% as a photopolymerization initiator. Part of Irg184 was added to obtain an active energy ray-curable composition.
<試験結果>
 表1に記載の配合による活性エネルギー線硬化性組成物について、前記の各試験、評価を行った。上述のように、試験、評価の結果を表1に記載した。なお、表1では、活性エネルギー線硬化性組成物を、単に「硬化前組成物」と称する。
<Test results>
About the active energy ray curable composition by the mixing | blending of Table 1, each said test and evaluation were performed. As described above, the test and evaluation results are shown in Table 1. In Table 1, the active energy ray-curable composition is simply referred to as “pre-curing composition”.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例に示したように、本発明のウレタン(メタ)アクリレート(X)を含む活性エネルギー線硬化性組成物は、硬化前の樹脂の外観が良好であり、フィルム間に充填することで空気とフィルム界面における光散乱を防止できる。さらに、その硬化物は、長時間、高熱に付したとしても色相変化や形状変化、並びに塗膜硬度が変化しないとする性能を有することがわかった。 As shown in the examples, the active energy ray-curable composition containing the urethane (meth) acrylate (X) of the present invention has a good appearance of the resin before curing, and is filled with air between the films. Light scattering at the film interface can be prevented. Further, it was found that the cured product has the performance that the hue change, shape change, and coating film hardness do not change even when subjected to high heat for a long time.
 これに対して、比較例1に示される通り、アルコール(B)を使用しない場合の活性エネルギー線硬化性組成物は、耐熱性(タブレット)試験で塗膜硬度の変化が大きくなった。また、比較例2に示される通り、ウレタン(メタ)アクリレート中の(メタ)アクリロイル基濃度を0.2mol/kgとすると、硬化収縮により耐熱性(タブレット)試験で塗膜硬度の変化が大きくなった。さらに、比較例3に示される通り、アルコール(B)としてPCL308を使った場合、他成分との相溶性が悪化することにより白濁を生じ、活性エネルギー線硬化性組成物として用いることができなかった。そして、比較例4及び5に示される通り、ポリオールとして透明性に優れるポリプロピレングリコールを用いたところ、耐熱試験で硬化物の液状化する欠点を有することがわかった。 On the other hand, as shown in Comparative Example 1, the active energy ray-curable composition in the case of not using alcohol (B) showed a large change in coating film hardness in the heat resistance (tablet) test. Further, as shown in Comparative Example 2, when the (meth) acryloyl group concentration in the urethane (meth) acrylate is 0.2 mol / kg, the change in the coating film hardness increases in the heat resistance (tablet) test due to curing shrinkage. It was. Furthermore, as shown in Comparative Example 3, when PCL308 was used as the alcohol (B), the compatibility with other components deteriorated, resulting in white turbidity, which could not be used as an active energy ray-curable composition. . As shown in Comparative Examples 4 and 5, when polypropylene glycol having excellent transparency was used as the polyol, it was found that the cured product had a drawback of liquefaction in the heat resistance test.
 本発明の活性エネルギー線硬化性組成物は、含有成分であるウレタン(メタ)アクリレート(X)の製造の際、高粘度化することがなく、且つ、副生物の副生も少なく、目的とするウレタン(メタ)アクリレート(X)を製造することができる。その結果、本発明の活性エネルギー線硬化性組成物(硬化前)は、低温下での白濁による樹脂の外観悪化がない。また、本発明の活性エネルギー線硬化性組成物は、ガラス基材やプラスチック基材との濡れ性が良く、高い柔軟性、そして高耐熱性を有し、硬化収縮性が低いためにスマートフォンやタブレット用の薄い基材であっても層間充填剤として用いることができる。また、本発明の活性エネルギー線硬化性組成物を層間充填剤として用いた場合、その硬化物と基材との密着保持性が良好である。さらに、本発明の活性エネルギー線硬化性組成物の硬化物は透明性が高く、高温下でも変形や色相劣化が少ない。また、本発明の活性エネルギー線硬化性組成物をパソコン、カーナビ、テレビ、携帯電話(スマートフォン)、タブレット等に用いられているディスプレイの透明基材間に充填することで、空気と透明基材界面における光散乱を防止でき、さらに耐熱性試験中に色相変化や形状変化を起こしにくい積層体が得られる点で有用である。 The active energy ray-curable composition of the present invention is not intended to increase the viscosity during the production of the urethane (meth) acrylate (X), which is a component, and the by-product of the by-product is small, and is intended. Urethane (meth) acrylate (X) can be produced. As a result, the active energy ray-curable composition (before curing) of the present invention does not deteriorate the appearance of the resin due to white turbidity at low temperatures. In addition, the active energy ray-curable composition of the present invention has good wettability with a glass substrate or a plastic substrate, high flexibility, high heat resistance, and low cure shrinkage, so that it is a smartphone or tablet. Even a thin base material can be used as an interlayer filler. Moreover, when the active energy ray curable composition of this invention is used as an interlayer filler, the adhesiveness retention of the hardened | cured material and a base material is favorable. Furthermore, the cured product of the active energy ray-curable composition of the present invention has high transparency and is less likely to be deformed or deteriorated in hue even at high temperatures. In addition, the active energy ray-curable composition of the present invention is filled between transparent substrates of displays used in personal computers, car navigation systems, televisions, mobile phones (smartphones), tablets, etc. It is useful in that it can prevent light scattering in the layer and can obtain a laminate that hardly undergoes a hue change or a shape change during a heat resistance test.
  1   活性エネルギー線硬化性組成物の硬化物層
  2   透明基材
  3   透明基材
  4   シリコンラバー
 11   樹脂
 21   マイクログラス
 31   樹脂
 41   ガラス板
DESCRIPTION OF SYMBOLS 1 Hardened | cured material layer of active energy ray curable composition 2 Transparent base material 3 Transparent base material 4 Silicon rubber 11 Resin 21 Micro glass 31 Resin 41 Glass plate

Claims (4)

  1.  ポリオレフィン骨格を有するポリオレフィン系ポリオール(A)と、3つ以上の水酸基を有し、分子量が100以上800未満である脂肪族アルコール(B)と、脂肪族ジイソシアネート(C)とをウレタン化反応させて、イソシアネート基を含有するウレタンイソシアネートプレポリマーを形成した後、前記のウレタンイソシアネートプレポリマーと、水酸基を有する(メタ)アクリレート(D)と、1つの水酸基を有するアルコール(E)とを反応させて得られるウレタン(メタ)アクリレート(X)、
     単官能(メタ)アクリレート(Y)、並びに
     光重合開始剤(Z)を含む活性エネルギー線硬化性組成物であって、
     ポリオレフィン骨格を有するポリオレフィン系ポリオール(A)が、両末端に水酸基を有するポリブタジエン、ポリイソプレン、及びこれらを水素化したポリオールからなる群より選択された少なくとも一つであり、その重量平均分子量が2,000~10,000であり、
     ウレタン(メタ)アクリレート(X)の(メタ)アクリロイル基濃度が0.05以上、0.20mol/kg未満である活性エネルギー線硬化性組成物。
    A urethanization reaction between a polyolefin-based polyol (A) having a polyolefin skeleton, an aliphatic alcohol (B) having 3 or more hydroxyl groups and a molecular weight of 100 to less than 800, and an aliphatic diisocyanate (C) After forming a urethane isocyanate prepolymer containing an isocyanate group, the urethane isocyanate prepolymer, a (meth) acrylate (D) having a hydroxyl group, and an alcohol (E) having one hydroxyl group are reacted. Urethane (meth) acrylate (X),
    An active energy ray-curable composition comprising a monofunctional (meth) acrylate (Y) and a photopolymerization initiator (Z),
    The polyolefin-based polyol (A) having a polyolefin skeleton is at least one selected from the group consisting of polybutadienes having hydroxyl groups at both ends, polyisoprene, and polyols obtained by hydrogenating these, and the weight average molecular weight is 2, 000 to 10,000,
    An active energy ray-curable composition having a (meth) acryloyl group concentration of urethane (meth) acrylate (X) of 0.05 or more and less than 0.20 mol / kg.
  2.  前記のイソシアネート基を含有するウレタンイソシアネートプレポリマーを形成する際の反応液中のイソシアネート基濃度が、反応に供した水酸基の全てがウレタン化した場合に残存するイソシアネート基濃度以下となるまで反応させることを特徴とする請求項1に記載の活性エネルギー線硬化性組成物。 The reaction is performed until the isocyanate group concentration in the reaction liquid when forming the urethane isocyanate prepolymer containing the isocyanate group is equal to or lower than the remaining isocyanate group concentration when all of the hydroxyl groups subjected to the reaction are urethanized. The active energy ray-curable composition according to claim 1.
  3.  ガラス及びプラスチックから選ばれる第一の透明基材と、ガラス及びプラスチックから選ばれる第二の透明基材との間に請求項1又は2に記載の活性エネルギー線硬化性組成物の硬化物層を有する積層体。 A cured product layer of the active energy ray-curable composition according to claim 1 or 2, between a first transparent substrate selected from glass and plastic and a second transparent substrate selected from glass and plastic. Laminate having.
  4.  第一の透明基材の上に請求項1又は2に記載のいずれかの活性エネルギー線硬化性組成物を塗布して樹脂層を形成し、前記樹脂層上に第二の透明基材を付着させ、その後活性エネルギー線を照射して、前記活性エネルギー線硬化性組成物を硬化させて硬化物層を形成することにより得られる積層体。 A resin layer is formed by applying the active energy ray-curable composition according to claim 1 or 2 on a first transparent substrate, and a second transparent substrate is attached on the resin layer. And then irradiating an active energy ray to cure the active energy ray-curable composition to form a cured product layer.
PCT/JP2016/059141 2015-04-06 2016-03-23 Curable resin composition for interlayer filling WO2016163232A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680019420.1A CN107406563B (en) 2015-04-06 2016-03-23 Curable resin composition for interlayer filling
KR1020177030264A KR102418173B1 (en) 2015-04-06 2016-03-23 Curable resin composition for interlayer filling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-078067 2015-04-06
JP2015078067A JP6527003B2 (en) 2015-04-06 2015-04-06 Interlayer filling curable resin composition

Publications (1)

Publication Number Publication Date
WO2016163232A1 true WO2016163232A1 (en) 2016-10-13

Family

ID=57071857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059141 WO2016163232A1 (en) 2015-04-06 2016-03-23 Curable resin composition for interlayer filling

Country Status (5)

Country Link
JP (1) JP6527003B2 (en)
KR (1) KR102418173B1 (en)
CN (1) CN107406563B (en)
TW (1) TWI667312B (en)
WO (1) WO2016163232A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6899225B2 (en) * 2017-01-30 2021-07-07 ダイセル・オルネクス株式会社 Active energy ray-curable composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199072A (en) * 1984-03-24 1985-10-08 Nippon Soda Co Ltd Composition for coating and method of coating with it
JP2003155455A (en) * 2001-11-19 2003-05-30 Nippon Synthetic Chem Ind Co Ltd:The Active-energy-ray-curable pressure-sensitive adhesive composition
JP2014065902A (en) * 2012-09-07 2014-04-17 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray curing resin composition and coating agent
JP2014065903A (en) * 2012-09-07 2014-04-17 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray curing resin composition and coating agent
JP2016056321A (en) * 2014-09-12 2016-04-21 日本化薬株式会社 Resin composition

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582575Y2 (en) 1992-09-30 1998-10-08 セイレイ工業株式会社 Grain sorting equipment
JP3459328B2 (en) 1996-07-26 2003-10-20 日本政策投資銀行 Thermoelectric semiconductor and method for manufacturing the same
JP2002069138A (en) 2000-08-28 2002-03-08 Nippon Synthetic Chem Ind Co Ltd:The Ultraviolet ray curing type resin composition and use thereof
JP4868654B2 (en) 2001-04-13 2012-02-01 日本合成化学工業株式会社 Active energy ray-curable pressure-sensitive adhesive composition and method for producing the composition
JP2005317523A (en) * 2004-03-29 2005-11-10 Toray Ind Inc Ultraviolet curing type resin compositionfor electrode protection, and plasma display panel
JP2010144000A (en) 2008-12-17 2010-07-01 Hitachi Chem Co Ltd Photocurable resin composition, photocurable moistureproof sealing material for use in electronic paper, electronic paper, and method for manufacturing the same
JP5561511B2 (en) 2009-04-28 2014-07-30 日立化成株式会社 Photo-curable resin composition, photo-curable moisture-proof insulating paint, electronic component using the same, and flat panel display
JP2010254890A (en) 2009-04-28 2010-11-11 Hitachi Chem Co Ltd Photocurable resin composition, photocurable moisture-proof insulation coating, electronic part, and flat panel display, using the same
JP2010265402A (en) 2009-05-15 2010-11-25 Hitachi Chem Co Ltd Light and heat curing combined use-type resin composition, light and heat curing combined use-type moisture-proof sealing material for electronic paper, electronic paper, and method for producing the electronic paper
JP2011116965A (en) 2009-11-09 2011-06-16 Nippon Soda Co Ltd Terminal modified (hydrogenation) polybutadiene
JP5859926B2 (en) * 2011-11-25 2016-02-16 ダイセル・オルネクス株式会社 Active energy ray curable composition for interlayer filling
JP6292997B2 (en) * 2013-06-24 2018-03-14 出光興産株式会社 Urethane resin and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60199072A (en) * 1984-03-24 1985-10-08 Nippon Soda Co Ltd Composition for coating and method of coating with it
JP2003155455A (en) * 2001-11-19 2003-05-30 Nippon Synthetic Chem Ind Co Ltd:The Active-energy-ray-curable pressure-sensitive adhesive composition
JP2014065902A (en) * 2012-09-07 2014-04-17 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray curing resin composition and coating agent
JP2014065903A (en) * 2012-09-07 2014-04-17 Nippon Synthetic Chem Ind Co Ltd:The Active energy ray curing resin composition and coating agent
JP2016056321A (en) * 2014-09-12 2016-04-21 日本化薬株式会社 Resin composition

Also Published As

Publication number Publication date
CN107406563A (en) 2017-11-28
JP6527003B2 (en) 2019-06-05
CN107406563B (en) 2020-04-21
KR102418173B1 (en) 2022-07-08
TW201708484A (en) 2017-03-01
JP2016196615A (en) 2016-11-24
TWI667312B (en) 2019-08-01
KR20170134507A (en) 2017-12-06

Similar Documents

Publication Publication Date Title
JP5859926B2 (en) Active energy ray curable composition for interlayer filling
EP3628717B1 (en) Adhesive, laminate, packaging material for battery casing, battery case, and method for manufacturing battery case
WO2020054582A1 (en) Urethane (meth)acrylate, active energy ray-curable composition containing same, and cured product of said composition
JP5516829B2 (en) Method for producing cured coating film, optical film, and method for producing thin film molded body
JP2011157497A (en) Active energy ray-curable composition
JP4404183B2 (en) Active energy ray-curable pressure-sensitive adhesive composition
WO2016121706A1 (en) Photosensitive resin composition and cured product thereof
JP6899225B2 (en) Active energy ray-curable composition
JP6755986B2 (en) Energy ray curable resin composition and vibration damping sheet
WO2016163232A1 (en) Curable resin composition for interlayer filling
WO2017110990A1 (en) Active energy ray-curable resin composition, adhesive and coating agent each using same, and urethane (meth)acrylate compound
JP2020084093A (en) Highly safe urethane acrylate and method for producing the same
JP7257815B2 (en) Urethane (meth)acrylate, active energy ray-curable composition containing the same, and cured product thereof
KR20240021744A (en) Curable composition, active energy ray curable composition, and active energy ray curable coating composition
TW201841964A (en) Active energy ray-curable resin composition and coating agent
JP5132946B2 (en) Active energy ray-curable resin composition for mold printing and molded article
JP7461239B2 (en) Urethane (meth)acrylate composition, active energy ray-curable composition, and cured product thereof
KR20200090153A (en) Active energy ray-curable resin composition and coating agent
JP2023076850A (en) Curable resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177030264

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16776401

Country of ref document: EP

Kind code of ref document: A1