WO2016161935A1 - 一种空间光调制器调制数据的方法及投影*** - Google Patents

一种空间光调制器调制数据的方法及投影*** Download PDF

Info

Publication number
WO2016161935A1
WO2016161935A1 PCT/CN2016/078562 CN2016078562W WO2016161935A1 WO 2016161935 A1 WO2016161935 A1 WO 2016161935A1 CN 2016078562 W CN2016078562 W CN 2016078562W WO 2016161935 A1 WO2016161935 A1 WO 2016161935A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
bit
segment
laser
segments
Prior art date
Application number
PCT/CN2016/078562
Other languages
English (en)
French (fr)
Inventor
郭祖强
胡飞
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2016161935A1 publication Critical patent/WO2016161935A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the invention relates to a method for displaying data processing, in particular to a method and a projection system for modulating data by a spatial light modulator.
  • the spatial light modulator Digital Micromirror DMD
  • DMD has the characteristics of fast response, and can realize color projection display with time-switched primary color light, thereby making a monolithic DMD.
  • the projection system has become a more mature technology.
  • the monolithic DMD projection system is widely used in the low-end and mid-end markets because of its simple structure and low cost.
  • US Patent No. 7,547,114 B2 provides a method for a semiconductor laser to excite different fluorescent pink segments on a color wheel to form different primary colors of light, which has the advantages of high light efficiency and small optical expansion, so it is rapidly developed and is an ideal choice for projector light sources. .
  • the red light phosphor or the orange phosphor which generates red light has low excitation efficiency, and the fluorescence generated at the same time needs to be filtered with the corresponding filter to filter out the short-wavelength light to make the red light. More pure, this results in a very low red fluorescence efficiency. Therefore, for the system, the red light brightness has a lower proportion of the overall brightness, that is, the Red content is lower. At the same time, there is a gap between color coordinates and gamut standards such as REC.709 or DCI.
  • the light source system can be improved.
  • the fluorescence efficiency, brightness, and color coordinates are improved, and the speckle of the laser is also within an acceptable range. This is a feasible method.
  • Program For this reason, by mixing orange fluorescence and red laser light in time series, it is possible to efficiently utilize red laser light and orange fluorescent light emission, thereby saving cost.
  • the corresponding DMD control device becomes an important part of the projection system.
  • the four-segment color wheel corresponds to four primary colors
  • the red laser and the orange fluorescent light become two primary colors
  • the red light of the system is provided by the red laser.
  • the speckle phenomenon is very serious, and the original intention of combining the laser and the fluorescent timing is lost. Therefore, how to realize a control method for laser and fluorescence timing combining light to fuse two colors of light, thereby improving display brightness and reducing speckle, becomes the most critical problem affecting whether the light source can be applied to an actual projection system. .
  • the present invention provides a method for modulating data by a spatial light modulator, comprising the following steps:
  • At least one primary color light to be modulated comprising a first light and a second light, a first sub-bit segment of at least one bit segment of the modulation unit modulating the first light, a second sub-bit region The segment modulates the second light.
  • the first light is a laser
  • the second light is fluorescent
  • the light intensity of the primary color light to be modulated is constant, and the least significant bit of the data to be modulated in one frame is set as the first bit segment, the bit weight is set to 1, and the corresponding modulation duration is set to t, nth
  • the bit weight of the bit segment is 2 n-1
  • the modulation period of the nth bit segment is 2 n-1 t.
  • segment segments are equally divided into an even number of sub-bit segments, and the modulation durations of the bit segments are equally distributed on the respective sub-bit segments.
  • the number of sub-bit segments divided by the bit segment with higher bit weight is more than the number of sub-segments divided by the bit segment with lower bit weight.
  • the least significant bit of the data to be modulated of one frame is set as the first bit segment, the bit weight is 1, and the corresponding modulation duration is t, and the light intensity of the primary color light to be modulated is set as follows: m The intensity of the mth bit in the lower segment is 2 m-1 p, p is the intensity of the primary color corresponding to the first segment, and the modulation duration from the second segment in the m lower segments is Set to 2t, the modulation durations of the bit segments are equally distributed on the respective sub-bit segments; the light intensity of the primary color corresponding to each segment in the k high-order segments is 8p, and p is the corresponding corresponding to the first segment.
  • the base light intensity value, the k-th high-order modulation duration in the k upper-order segments is 2 kn/2 t; in the above m lower-order segments, m takes an integer between 1 and n/2, and k high-order regions
  • the value of k in the segment is an integer between n/2 and n, and the high and low segments are divided by the bit weight corresponding to the bit segment.
  • segment segments are equally divided into an even number of sub-bit segments, and the modulation durations of the bit segments are equally distributed on the respective sub-bit segments.
  • the step of setting the intensity of the primary color light to be modulated further comprises: generating a light source of the primary color light comprising m+1 groups, m low-level segments configured with m groups of light sources, and m group light sources being turned on according to each The intensity of the segments is combined to achieve the corresponding intensity of each segment; the k upper segments share a set of light sources, and the corresponding light intensity of each segment is achieved according to the modulation duration values in the k upper segments.
  • each group of light sources includes a first light emitting component that emits laser light and a second light emitting component that emits fluorescence; the first light emitting component is turned on in the first sub-bit segment of the at least one bit segment, and the second sub-bit segment is turned on. a second lighting assembly.
  • the method for modulating the data to be modulated on the first bit segment is: transmitting a second illuminating component of the second component color while the first illuminating component that emits the laser light is turned off turn on.
  • the laser is modulated in a first half of the first bit segment, and the fluorescence is modulated in a second half of the first bit segment.
  • a sum of a brightness of the laser light and a brightness of the fluorescent light is equal to a brightness of the primary color light
  • a color coordinate of the laser light mixed with the fluorescent light is equal to a color coordinate of the primary color light
  • the light source emitting the laser and the fluorescent light comprises a light emitting component and a color wheel
  • the light emitting component comprises a first light emitting component and the second light emitting component
  • the color wheel is provided with at least one phosphor and a scattering a segment, the light emitted by the first emitting element passes through the scattering segment to form a laser, and the second illuminating element emits light through the phosphor and is converted into fluorescence.
  • the first light-emitting element is a red laser
  • the laser is a red laser
  • the second light-emitting element is excitation light
  • the phosphor is an orange phosphor
  • the fluorescence is an excitation light through an orange phosphor. Converted orange fluorescence.
  • the first illuminating element is a green laser
  • the laser is a green laser
  • the second illuminating element is a blue laser
  • the phosphor is a green phosphor
  • the fluorescence is a blue laser emitted by a blue laser. Green fluorescence after green phosphor conversion.
  • the color coordinates of the laser and the fluorescent mixture are the same as the color coordinates of the corresponding primary color light in the data to be modulated, and the brightness of the laser and the fluorescent mixture is the same as the brightness of the corresponding primary light in the data to be modulated. .
  • the present invention further divides the bit segment into smaller sub-bit segments by dividing the data frame to be modulated into bit segments, and respectively loading laser and fluorescence in each sub-bit segment of each different bit segment. In this way, the two color lights are combined in time series, which improves the display brightness and also reduces the speckle.
  • Another aspect of the present invention provides a projection system in which a spatial light modulator modulates data to be projected by the above method to obtain a projection system having a high light utilization efficiency.
  • FIG. 1 is a schematic diagram of processing data according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of opening and closing of a light source when the least significant bit is processed according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of processing data according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of processing data according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic diagram of light source opening and closing when the least significant bit is processed according to Embodiment 3 of the present invention.
  • Figure 6 is a view showing a projection system of Embodiment 4 of the present invention.
  • Figure 7 is a structural diagram of a color wheel of a projection system according to Embodiment 4 of the present invention.
  • the monochrome image modulation period of each frame of the data to be modulated in the protection scheme of the present invention is divided into 8 bit segments.
  • the division of the bit segment is expressed by how many bits of binary data can be expressed by the gray value of each pixel.
  • a pixel with 256 gray values can be expressed in 8-bit binary, assuming that the image is transmitted at a rate of 60 frames per second.
  • Three kinds of primary color light are selected, and one of them is exemplified below. At least one primary color light includes two components of color light, and one frame of monochrome data has a duration of 5555.6 microseconds.
  • the present embodiment is red.
  • the primary color light is red laser R and orange fluorescent O, respectively (of course, other primary light, for example, green laser and green fluorescent light, and the present embodiment is not limited to the segments.
  • the modulation color on the following will be expressed by R for red laser and O for orange fluorescence.
  • Bit weights are assigned to 8 bit segments of a frame of data to be modulated, and bit weights given in order from bit low to high are 2 0 , 2 1 , 2 2 , 2 3 , 2 4 , 2 5 , 2 6 2 7 , the bit weight value given by each segment corresponds to the 8-bit gray value, and the gray scale of 1 to 255 can be realized.
  • the red laser and the orange fluorescent light can be combined in time series. Further subdividing, when each segment is divided into sub-bit segments, it is preferable that each bit segment is divided into 2 a uniform sub-bit segments (0 ⁇ a ⁇ n ⁇ integer).
  • the bit weight of the first section 20 is the least significant bit than the remaining seven segments are each divided into two sub-bit section of the same, according to need may be modulated in accordance with Other ways to divide sub-bit segments.
  • the red laser light R and the orange fluorescent light O are constant in intensity
  • the red laser light R is modulated in the first sub-bit segment of each bit segment
  • the orange fluorescent light O is modulated in the second sub-bit segment of the bit segment. Since the light intensity is constant, the gray value on each segment is only related to the modulation duration of the bit segment, so the modulation time corresponding to the weight of each segment bit is allocated according to the bit weight, assuming the least significant bit is the first bit region.
  • modulation segment length t the modulation time you segment followed by: 2 0 t, 2 1 t , 2 2 t, 2 3 t, 2 4 t, 2 5 t, 2 6 t, 2 7 t
  • the modulation period of the first sub-bit segment and the second sub-bit segment of the eighth bit segment are both 64t, and so on.
  • the red laser R and the orange fluorescent O are respectively provided with a red laser and a color wheel.
  • the color wheel is provided with an orange phosphor segment and a scattering segment.
  • the excitation source excites the orange phosphor to generate orange fluorescence O, and the red laser emits red laser.
  • a red laser R is formed after the segment, and the sum of the luminances of the preferred red laser R and the orange fluorescent O is equal to the luminance of the red primary light, and the mixed color of the red laser R and the orange fluorescent O is equal to the color coordinate of the red primary light.
  • the excitation light is preferably a 445 nm blue laser.
  • the red laser R and the orange fluorescent O are provided by the color wheel, the light source structure is simple, and the advantages of the red laser R and the orange fluorescent O are complementary, and the image brightness is high and the speckle is small.
  • the least significant bit segment ie the first segment
  • R light occupies half of the time (t/2).
  • O light accounts for half of the time (t/2).
  • the red laser is turned off and the blue laser is turned on, and the light source is required to be quite high. Therefore, the method of FIG. 2 can be adopted. When the red laser starts to be turned off, the blue laser is turned on, and the two overlap in the t period to achieve the mixed light. The effect is that the switching time of the light source is required to be reduced, which is easier to implement.
  • This embodiment differs from the first embodiment only in that, in addition to the first embodiment, in order to increase the frequency of optical switching, the flicker effect is prevented from being received by the human eye for a long period of time (the Flicker effect refers to a person).
  • the eye receives a phenomenon of flicker caused by a long interval of light and dark light signals.
  • the bit segment is evenly divided, and the bit segment with a higher weight value is divided into more sub-bit segments, such as As shown in FIG.
  • the 8th bit segment having a weight value of 2 7 is equally divided into 8 copies, and R light and O light are each allocated 4 copies, and the modulation duration on each sub bit segment is 16 t; the bit weight is 2 6
  • the 7th segment is divided into 4 parts on average, and R light and O light are allocated 2 copies each, and the modulation duration on each sub-bit segment is also 16t.
  • the switching frequency of R light and O light is added. Large, avoiding the flicker effect.
  • the main idea is to reduce the modulation time ratio of the bit segment with significant bit weight by using a relatively large light intensity, and increase the time segment ratio of the bit segment value comparison, so that the least significant bit can be made more abundant.
  • the time is modulated to accommodate the opening and closing time of the laser.
  • the projection system of the present embodiment is also selected by using a projection system of 8-bit gray value.
  • the eight bit segments are divided into two groups according to the bit weight, as shown in FIG. 4, the first group is The four bit segments with smaller bit weights are the least significant bit with a bit weight value of 2 0 , that is, the first bit segment, the second bit segment with a bit weight value of 2 1 , and the bit weight value is 2 2 .
  • the third bit segment and the fourth bit segment with bit weights of 2 3 ; the second group is 4 bit segments with larger bit weights, respectively, the bit weight value is 2 4 ie the fifth bit segment, bit weight The sixth bit segment having a value of 2 5 , the seventh bit segment having a bit weight value of 2 6 and the eighth bit segment having a bit weight value of 27 .
  • the light intensity of each bit segment of the first group is configured as: the light intensity of the first segment is p, the light intensity of the second segment is 2p, the light intensity of the third segment is 4p, and the light intensity of the fourth segment is 8p; each bit of the first group
  • the modulation duration of the segment is 2t, and t is the modulation duration of the least significant segment.
  • the intensity of each bit segment of the second group is configured to be 8p
  • the modulation time is configured as follows: the modulation period of the fifth bit segment is 2t, the modulation duration of the sixth bit segment is 4t, and the modulation of the seventh bit segment The duration is 8t, and the modulation period of the eighth segment is 16t.
  • the second bit segment to the eighth bit segment are each divided into 2 sub-bit segments, and the modulation duration allocated to each sub-bit segment of the eighth bit segment is 8t, then Each sub-bit segment of the seventh bit segment is assigned a modulation duration of 4t, ... each sub-bit segment of the fourth bit segment is assigned a modulation duration of t, and so on.
  • the intensity configuration of the first group of four bit segments is implemented by combining four sets of light sources, specifically each group of light sources includes a first light emitting component that emits laser light and a second light emitting component that emits fluorescence, wherein three sets of light sources L1
  • the intensity of the laser light and the fluorescence emitted by the first light-emitting component and the second light-emitting component of L2 and L3 are both p
  • the intensity of the laser light and the fluorescence emitted by the first light-emitting component and the second light-emitting component of the fourth group light source L4 are both 2p; in the first segment, the light source group L1 is turned on, the second segment light source group L2 is turned on, and the third segment light source groups L2 and L3 are simultaneously turned on, and the fourth segment light source group L2 is turned on.
  • L3 and L4 are turned on at the same time.
  • the first bit segment and the second segment segment share a set of light sources, and the first bit segment and the second bit segment can be satisfied by controlling the lighting time of the first lighting component and the second lighting component. .
  • the second set of 4 bit segments shares a set of light sources, as well as a first illumination assembly for emitting laser light and a second illumination assembly for emitting fluorescence, each having an intensity of 8 p.
  • the modulation time is 2 times higher than that of 21.8 ⁇ s, and the modulation rate of the light source can be reduced.
  • the R light laser off and the B light laser on are realized in this time, which is the least significant bit in this embodiment.
  • the segment modulation duration is 8 times that of Embodiment 1, and the red laser and the blue laser have sufficient time to turn on and off during this period of time, so the first light-emitting component for the least significant bit segment (LSB) in this embodiment is
  • the first half is opened, and the second lighting assembly is turned on in the second half to achieve the laser in the first half of the first segment Modulation, the fluorescence being modulated in the second half of the first bit segment.
  • the projection system includes light sources 501 and 502, a dichroic mirror 503, and a collection lens 504. And 506, color wheel 505, square bar 507, optical relay system 508, TIR prism 509, DMD chip 510 and its control device 511, projection lens 512.
  • the light source 501 is a 445 nm blue laser
  • 502 is a 638 nm red laser module
  • the blue laser emitted by the blue laser 501 and the red laser emitted by the red laser module 502 are combined at the dichroic mirror 503 to transmit blue light and reflect red light.
  • the light beam after the light is focused by the collecting lens 504 onto the color wheel 505.
  • the color wheel 505 is a four-stage color wheel as shown in FIG. 7, wherein the blue segment, the green segment and the orange segment are respectively coated with scattering powder and green phosphor. , orange phosphor, the diffuser segment is direct transmission, the blue laser is excited to generate blue, green and orange fluorescence in the blue, green and orange segments respectively.
  • the blue laser 501 is turned off, the red laser module 502 is opened, and the collimator lens 504 is focused to the diffuser and transmitted.
  • the time-series light emitted from the color wheel 505 passes through the collecting lens 506 and enters the square bar 507. After the light is dimmed, it reaches the TIR prism 509 via the optical relay system 508, and reaches the DMD after reflection.
  • the chip 510 under the control of the DMD control system 511, modulates the incident light by the DMD, transmits the TIR prism 509 after exiting, and finally images the projection lens 512.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Projection Apparatus (AREA)

Abstract

为解决将不同颜色在时序上进行合光,以使两种颜色的光融合,从而提高显示亮度同时降低散斑的技术问题,提供了一种空间光调制器调制数据的方法,包括以下步骤:将待调制数据的每一帧转换为n个位区段,每个位区段赋予位权重;把至少一个位区段至少分为第一子位区段和第二子位区段,将转换为位区段的待调制数据帧载入空间光调制器;至少一种待调制的基色光,该基色光包括激光和荧光,所述调制单元的至少一个位区段的第一子位区段调制所述激光,第二子位区段调制所述荧光。通过将两个色光在时序上合光,提高了显示亮度同时也降低了散斑。

Description

一种空间光调制器调制数据的方法及投影*** 技术领域
本发明涉及一种显示数据处理的方法,尤其是设计一种空间光调制器调制数据的方法及投影***。
背景技术
目前,空间光调制器(数字微镜DMD)在投影显示领域获得广泛应用,其中DMD以其响应速度快的特点,可以用时序切换的基色光来实现彩色投影显示,由此使得单片式DMD投影***成为一种较为成熟的技术。单片式DMD投影***以其结构简单,成本较低,在中低端市场广泛应用。美国专利US7547114B2提供了一种半导体激光器激发色轮上不同荧光粉色段以形成不同基色光的方法,该方法具有光效高,光学扩展量小的优势,因此发展迅速,成为投影仪光源的理想选择。在现有的激光激发荧光粉光源中,由于产生红光的红光荧光粉或者橙光荧光粉激发效率较低,同时产生的荧光还需配合相应的滤光片滤除短波长光使得红光更纯,这导致最终得到的红光荧光效率很低。因此对于***而言,红光亮度在总体亮度中所占比例较低,即Red content较低。同时色坐标与色域标准比如REC.709或者DCI存在差距。
针对该问题,可以改进光源***,通过添加激光,与荧光合光,使得荧光效率、亮度以及色坐标均得到改善,同时激光的散斑也在可以接受的范围内,这是一种比较可行的方案。为此通过在时序上将橙色荧光和红激光进行混合,能够高效地利用红激光和橙色荧光发光,有效节省成本。基于该光源,与之相对应的DMD控制装置成为投影***中重要的一部分。然而现有的DMD控制***中,四段式色轮对应四基色,如果应用到上述光源中,会使得红激光与橙色荧光成为两种基色光,此时***的红光均由红激光提供,不仅亮度不够,同时散斑现象会非常严重,失去了激光和荧光时序合光的初衷。因此,如何实现一种针对激光和荧光时序合光的控制方法,以使两种颜色的光融合,从而提高显示亮度同时降低散斑,成为影响该光源能否应用于实际投影***的最关键问题。
发明内容
为解决上述问题,本发明提供了一种空间光调制器调制数据的方法,包括以下步骤:
将待调制数据的每一帧转换为n个位区段,每个位区段赋予不同的位权重;
把至少一个位区段至少分为第一子位区段和第二子位区段,将转换为位区段的待调制数据帧载入空间光调制器;
至少一种待调制的基色光,该基色光包括第一光和第二光,所述调制单元的至少一个位区段的第一子位区段调制所述第一光,第二子位区段调制所述第二光。
进一步的,所述第一光为激光,所述第二光为荧光。
进一步的,所述待调制的基色光的光强恒定,将一帧待调制数据的最低有效位设为第一位区段,其位权重设为1,对应的调制时长设为t,第n位区段的位权重为2n-1,第n位区段调制时长为2n-1t。
进一步的,将各位区段平均划分为偶数个子位区段,所述各位区段的调制时长平均分配在各自的子位区段上。
进一步的,把位权重较高的位区段划分的子位区段数多于位权重较低的位区段划分的子区段数。
进一步的,将一帧待调制数据的最低有效位设为第一位区段,其位权重为1,对应的调制时长为t,所述待调制的基色光的光强设定如下:m个低位区段中第m位的光强为2m-1p,p为第一位区段对应的基色光光强值,m个低位区段中从第二位区段起的调制时长为均设置为2t,所述各位区段的调制时长平均分配在各自的子位区段上;k个高位区段中各区段对应的基色光光强均为8p,p为第一位区段对应的基色光光强值,k个高位区段中第k高位调制时长为2k-n/2t;上述m个低位区段中m的取值为1至n/2之间的整数,k个高位区段中k的取值为n/2至n之间的整数,以位区段对应的位权重划分高低位区段。
进一步的,将各位区段平均划分为偶数个子位区段,所述各位区段的调制时长平均分配在各自的子位区段上。
进一步的,所述待调制的基色光的光强设定步骤还包括,产生所述基色光的光源包括m+1组,m个低位区段配置有m组光源,m组光源的开启根据各位区段的光强进行组合,以达到各位区段的相应光强;k个高位区段共用1组光源,根据k个高位区段中的调制时长值以达到各位区段的相应光强。
进一步的,每组光源中包括发射激光的第一发光组件和发射荧光的第二发光组件;在至少一个位区段的第一子位区段开启第一发光组件,第二子位区段开启第二发光组件。
进一步的,其特征在于,所述待调制数据在所述第一位区段上调制过程为:发射所述激光的第一发光组件在关闭的同时发射所述第二成分色的第二发光组件打开。
进一步的,其特征在于,所述激光在所述第一位区段的前半部分调制,所述荧光在所述第一位区段的后半部分调制。
进一步的,所述激光的亮度与所述荧光的亮度之和等于所述基色光的亮度,所述激光与所述荧光混合之后的色坐标等于所述基色光的色坐标。
进一步的,发射所述激光和所述荧光的光源包括发光组件和色轮,所述发光组件包括第一发光元件和所述第二发光元件,所述色轮上至少设有一荧光粉和一散射段,所述第一发元件发射的光通过所述散射段后形成激光,所述第二发光元件发射光通过荧光粉后转换为荧光。
进一步的,所述第一发光元件为红光激光器,所述激光为红激光,所述第二发光元件为激发光,所述荧光粉为橙色荧光粉,所述荧光为激发光经橙荧光粉转换后的橙荧光。
进一步的,所述第一发光元件为绿光激光器,所述激光为绿激光,所述第二发光元件为蓝激光器,所述荧光粉为绿荧光粉,所述荧光为蓝激光器发出的蓝激光经绿荧光粉转换后的绿荧光。
进一步的,所述激光和荧光混合后的色坐标与所述待调制数据中对应基色光的色坐标相同,所述激光和荧光混合后的亮度与所述待调制数据中对应基色光的亮度相同。
本发明通过将待调制的数据帧划分为位区段,对位区段进一步的划分为更小的子位区段,在每个不同的位区段的各子位区段分别加载激光和荧光,如此将两个色光在时序上合光,提高了显示亮度同时也降低了散斑。
本发明的另一个方面提供了一种投影***,空间光调制器采用上述方法调制待投影的数据,得到一种光利用率均较高的投影***。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本发明实施例1处理数据的示意图;
图2为本发明实施例1处理最低有效位时的光源开闭示意图;
图3为本发明实施例2处理数据的示意图;
图4为本发明实施例3处理数据的示意图;
图5为本发明实施例3处理最低有效位时的光源开闭示意图
图6为本发明实施例4的投影***图;
图7为本发明实施例4投影***的色轮结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。对于本发明投影***色域的控制方法在实施方式中结合投影***的进行阐述,为节省篇幅不再另行说明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
出于举例本实施方式选用n=8位灰度值的投影***说明本发明的控制方法,将本发明保护方案中的待调制数据每一帧单色图像调制周期划分为8个位区段,位区段的划分以每个像素的灰度值可以用多少位二进制数据来表达为依据,例如有256个灰度值的像素可以用8位二进制表达,假设以每秒60帧的速率发送图像,基色光选取3种,以下以其中一种为例进行说明,至少有一种基色光包括2种成分的色光,则一帧单色数据持续时长为5555.6微秒,为了便于说明本实施方式以红基色光为例,其包含的成分色光分别为红激光R和橙荧光O,(当然也可以是其他基色光,例如可以是绿激光和绿荧光,本实施方式出于举例并不限定各位区段上的调制颜色)以下将以R代表红激光,O代表橙荧光进行表述。
对一帧待调制数据的8个位区段赋予位权重,按照位权重从低到高依次赋予的位权重为、20、21、22、23、24、25、26、27,各位区段赋予的位权重值对应于8位灰度值,可以实现1至255的灰阶,为了各位区段在时序上能够对红激光和橙荧光合光,对各位区段进一步细分,各位区段在划分为子位区段时优选各位区段划分为2a个均匀的子位区段,(0<a<n的整数)。便于说明本实施方式,除了位权重为20的第一位区段也就是最低有效位之外其余的7位区段各自均划分为2个相同的子位区段,按照调制需要也可以按照其他方式划分子位区段。
本实施方式中红激光R和橙荧光O光强恒定,在每个位区段的第一子位区段调制红激光R,在该位区段的第二子位区段调制橙荧光O,由于光强恒定,则每位区段上的灰度值仅与该位区段的调制时长相关,因此按照位权重分配相应与各位区段位权重的调制时间,假设最低有效位即第一位区段的调制的时长为t,则各位区段的调制时间依次为:20t、21t、22t、23t、24t、25t、26t、27t,例如第8位区段的调制时长是27t=128t,将其平均分成两个子位区段之后,第八位区段的第一子位区段和第二子位区段调制时长均为64t,以此类推。
提供红激光R和橙荧光O的光源分别为红激光器和色轮,色轮上设有橙色荧光粉段和散射段,激发光源激励橙色荧光粉产生橙荧光O,红色激光器发出的红激光经过散射段后形成红激光R,优选的红激光R和橙荧光O的亮度之和等于红基色光的亮度,红激光R和橙荧光O混合后色坐标等于红基色光的色坐标。激发光优选445nm的蓝光激光器。通过色轮提供红激光R和橙荧光O,光源结构简单,而且红激光R和橙荧光O优点互补,可以保证图像亮度高散斑少。
受限于目前空间光调制器的极限翻转速度,最低有效位区段(LSB)即第一位区段没有再进行细分,在第一位区段,R光占一半时间(t/2),O光占一半时间(t/2)。在一帧单色图像中,最低有效位一般持续时长为106/(60*3*255)=21.8μs,也即是图1中的t=21.8μs,在如此短的时间内要做到红激光器的关闭和蓝激光器的打开,对光源要求相当高,因此可以采取如图2的方式,在红激光器开始关闭的时候,打开蓝激光器,二者在t时段内有重叠,达到混光的效果,这样对光源的开关时长要求降低,更容易实现。
实施例2
本实施方式与实施例1不同之处仅在于,在实施例一的基础上,为了提高光切换的频率,避免长时间段内人眼接收不到光而产生flicker效应(Flicker效应指的是人眼收到明暗光信号的时间间隔较长导致的闪烁的现象),把位区段进行更大程度的均分,将权重值较高的位区段划分为更多的子位区段,如图3所示,将权重值为27的第8位区段平均分成8份,R光与O光各分配4份,每个子位区段上的调制时长为16t;将位权重为26的第7位区段平均分成4份,R光与O光各分配2份,每个子位区段上的调制时长也为16t,与实施例一相比,R光与O光的切换频次加大,避免flicker效应。
实施3
主要思想是利用比较大的光强减小位权重大的位区段的调制时间占比,增加位权重值比较的小的位区段时间占比,这样就可以使得最低有效位有比较充裕的时间进行调制,适应激光器的开闭时间。
在实施例1的基础上,同样选用8位灰度值的投影***说明本实施方式的控制方法,将8个位区段按照位权重分为两组,如图4所述,第一组为位权重较小的4个位区段,分别是位权重值为20的最低有效位即第一位区段,位权重值为21的第二位区段,位权重值为22的第三位区段和位权重为23的第四位区段;第二组为位权重较大的4个位区段,分别是位权重值为24即第五位区段,位权重值为25的第六位区段,位权重值为26的第七位区段和位权重值为27的第八位区段。第一组各个位区段的光强配置为:第一位区段光强为p,第二位区段光强为2p,第三位区段光强为4p第四位区段光强为8p;第一组每个位区段的调制时长均为2t,t为最低有效位区段的调制时长。第二组每个位区段的光强均配置为8p,调制时间配置如下:第五位区段的调制时长为2t,第六位区段的调制时长为4t,第七位区段的调制时长为8t,第八位区段的调制时长为16t。其中将第二位区段至第八位区段,每个位区段各自均分为2个子位区段,则第八位区段的每个子位区段分配到的调制时长为8t,则第七位区段的每个子位区段分配到的调制时长为4t,……第四位区段的每个子位区段分配到的调制时长为t,以此类推。
对于第一组四个位区段的强度配置采用四组光源组合的方式实现,具体为每组光源包括发射激光的第一发光组件和用于发射荧光的第二发光组件,其中有三组光源L1、L2和L3的中第一发光组件和第二发光组件发出的激光和荧光的强度均为p,第四组光源L4中的第一发光组件和第二发光组件发出的激光和荧光的强度均为2p;在第一位区段上述光源组L1开启,在第二位区段光源组L2开启,在第三位区段光源组L2和L3同时开启,在第四位区段光源组L2、L3和L4同时开启。为了节省光源,第一位区段和第二可区段以共用一组光源,通过控制第一发光组件和第二发光组件的发光时间可以满足第一位区段和第二位区段的要求。
第二组4个位区段共用一组光源,同样包括用于发射激光的第一发光组件和用于发射荧光的第二发光组件,发出的激光和荧光的强度均为8p。
如此以来一帧红光图像持续的时长为(8t+4t+2t+t*4)*2+t=33t,则t=5555.6/33=168.4μs,与实施例1中最低有效位(LSB)的调制时长21.8μs相比,提高了8倍,可以降低光源的调制速率,如图5所述,在此时间内实现R光激光关闭和B光激光打开,在本实施方式中由于最低有效位区段调制时长为实施例1的8倍,红激光器和蓝激光器在该段时间内有足够的时间开启和关闭,因此对于本实施方式中的最低有效位区段(LSB)第一发光组件在前半段开启,第二发光组件在后半段开启,以实现所述激光在所述第一位区段的前半部分 调制,所述荧光在所述第一位区段的后半部分调制。在整个最低有效位区段也会有激光和荧光。
实施例4
本发明的另一个方面提供了一种投影***,空间光调制器采用上述方法调制待投影的数据,如图6所示,该投影***包括光源501和502,二向色镜503,收集透镜504和506,色轮505,方棒507,光中继***508,TIR棱镜509,DMD芯片510及其控制装置511,投影镜头512。
光源501为445nm蓝激光器,502为638nm红激光器模组,蓝激光器501发出的蓝激光与红激光器模组502发出的红激光在二向色镜503处合光,透射蓝光,反射红光,合光后的光束经收集透镜504聚焦到色轮505上,色轮505为如图7所示的四段式色轮,其中蓝段、绿段、橙段,分别涂有散射粉、绿色荧光粉、橙色荧光粉,diffuser段为直接透射,蓝光激光在蓝段、绿段和橙段分别激发产生蓝光、绿色荧光、橙色荧光后透射,在透射式diffuser段,蓝激光器501关闭,红激光器模组502打开,经准直透镜504聚焦到diffuser后透射,色轮505出射的时序光经收集透镜506后进入方棒507,匀光后经光中继***508到达TIR棱镜509处,反射后到达DMD芯片510,在DMD控制***511的控制下,DMD对入射光进行调制,出射后透射TIR棱镜509,最终经投影镜头512成像。
通过实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (16)

  1. 一种空间光调制器调制数据的方法,其特征在于,包括以下步骤:
    将待调制数据的每一帧单色图像调制周期转换为n个位区段,每个位区段赋予位权重;
    把至少一个位区段至少分为第一子位区段和第二子位区段,将转换为位区段的待调制数据帧载入空间光调制器;
    至少一种待调制的基色光,该基色光包括第一光和第二光,所述调制单元的至少一个位区段的第一子位区段调制所述第一光,第二子位区段调制所述第二光,所述第一光和所述第二光的光谱部分重叠。
  2. 根据权利要求1所述空间光调制器调制数据的方法,其特征在于,所述第一光为激光,所述第二光为荧光。
  3. 根据权利要求2所述空间光调制器调制数据的方法,其特征在于,所述待调制的基色光的光强恒定,将一帧待调制数据的最低有效位设为第一位区段,其位权重设为1,对应的调制时长设为t,第n位区段的位权重为2n-1,第n位区段调制时长为2n-1t。
  4. 根据权利要求3所述空间光调制器调制数据的方法,其特征在于,将各位区段平均划分为偶数个子位区段,所述各位区段的调制时长平均分配在各自的子位区段上。
  5. 根据权利要求4所述空间光调制器调制数据的方法,其特征在于,把位权重较高的位区段划分的子位区段数多于位权重较低的位区段划分的子区段数。
  6. 根据权利要求2所述空间光调制器调制数据的方法,其特征在于,将一帧待调制数据的最低有效位设为第一位区段,其位权重为1,对应的调制时长为t,所述待调制的基色光的光强设定如下:m个低位区段中第m位的光强为2m-1p,p为第一位区段对应的基色光光强值,m个低位区段中从第二位区段起的调制时长为均设置为2t,所述各位区段的调制时长平均分配在各自的子位区段上;k个高位区段中各区段对应的基色光光强均为8p,p为第一位区段对应的基色光光强值,k个高位区段中第k高位调制时长为2k-n/2t;上述m个低位区段中m的取值为1至n/2之间的整数,k个高位区段中k的取值为n/2至n之间的整数,以位区段对应的位权重划分高低位区段。
  7. 根据权利要求6所述空间光调制器调制数据的方法,其特征在于,将各位区段平均划分为偶数个子位区段,所述各位区段的调制时长平均分配在各自的子位区段上。
  8. 根据权利要求6所述空间光调制器调制数据的方法,其特征在于,所述待调制的基色光的光强设定步骤还包括,产生所述基色光的光源包括m+1组,m个低位区段配置有 m组光源,m组光源的开启根据各位区段的光强进行组合,以达到各位区段的相应光强;k个高位区段共用1组光源。
  9. 根据权利要求8所述空间光调制器调制数据的方法,其特征在于,每组光源中包括发射激光的第一发光组件和发射荧光的第二发光组件;在至少一个位区段的第一子位区段开启第一发光组件,第二子位区段开启第二发光组件。
  10. 根据权利要求3至5任一项所述空间光调制器调制数据的方法,其特征在于,所述待调制数据在所述第一位区段上调制过程为:发射所述激光的第一发光组件在关闭的同时发射所述第二成分色的第二发光组件打开。
  11. 根据权利要求6至9任一项所述空间光调制器调制数据的方法,其特征在于,所述激光在所述第一位区段的前半部分调制,所述荧光在所述第一位区段的后半部分调制。
  12. 根据权利要求2所述空间光调制器调制数据的方法,其特征在于,所述激光的亮度与所述荧光的亮度之和等于所述基色光的亮度,所述激光与所述荧光混合之后的色坐标与所述基色光的色坐标相同。
  13. 根据权利要求12所述空间光调制器调制数据的方法,其特征在于,发射所述激光和所述荧光的光源包括发光组件和色轮,所述发光组件包括第一发光元件和所述第二发光元件,所述色轮上至少设有一荧光粉段和一散射段,所述第一发元件发射的光通过所述散射段后形成激光,所述第二发光元件发射光通过荧光粉后转换为荧光。
  14. 根据权利要求13所述空间光调制器调制数据的方法,其特征在于,所述第一发光元件为红光激光器,所述激光为红激光,所述第二发光元件为蓝激光器,所述荧光粉为橙荧光粉,所述荧光为蓝激光器发出的蓝激光经橙荧光粉转换后的橙荧光。
  15. 根据权利要求13所述空间光调制器调制数据的方法,其特征在于,所述第一发光元件为绿光激光器,所述激光为绿激光,所述第二发光元件为蓝激光器,所述荧光粉为绿荧光粉,所述荧光为蓝激光器发出的蓝激光经绿荧光粉转换后的绿荧光。
  16. 一种投影***,包括光源、光中继***、空间光调制器和投影镜头,所述光中继***将光源出射的光引导至空间光调制器处理,经空间光调制器处理后的光出射,通过投影镜头最终成像,其特征在于,空间光调制器采用上述任一项空间光调制器调制数据的方法对待投影的数据进行调制。
PCT/CN2016/078562 2015-04-09 2016-04-06 一种空间光调制器调制数据的方法及投影*** WO2016161935A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510166920.5 2015-04-09
CN201510166920.5A CN106154714B (zh) 2015-04-09 2015-04-09 一种空间光调制器调制数据的方法及投影***

Publications (1)

Publication Number Publication Date
WO2016161935A1 true WO2016161935A1 (zh) 2016-10-13

Family

ID=57072179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078562 WO2016161935A1 (zh) 2015-04-09 2016-04-06 一种空间光调制器调制数据的方法及投影***

Country Status (2)

Country Link
CN (1) CN106154714B (zh)
WO (1) WO2016161935A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11580435B2 (en) 2018-11-13 2023-02-14 Atom Computing Inc. Scalable neutral atom based quantum computing
US11797873B2 (en) 2020-03-02 2023-10-24 Atom Computing Inc. Scalable neutral atom based quantum computing
US11875227B2 (en) 2022-05-19 2024-01-16 Atom Computing Inc. Devices and methods for forming optical traps for scalable trapped atom computing
US11995512B2 (en) 2018-11-13 2024-05-28 Atom Computing Inc. Scalable neutral atom based quantum computing

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108227355B (zh) 2016-12-15 2019-10-25 深圳光峰科技股份有限公司 光源***及投影装置
CN111818317B (zh) * 2017-03-23 2021-12-14 深圳光峰科技股份有限公司 一种显示***
CN109426052B (zh) * 2017-08-24 2021-04-06 深圳光峰科技股份有限公司 投影***
CN111491144B (zh) * 2019-01-28 2023-04-07 深圳光峰科技股份有限公司 显示方法、显示***及计算机存储介质
CN110177262B (zh) * 2019-05-24 2020-08-04 华中科技大学 一种基于位深度分割的投影加速方法、***及装置
CN111770244B (zh) * 2020-07-30 2022-10-04 哈尔滨方聚科技发展有限公司 一种非调制式dmd空间光调制器成像方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020021303A1 (en) * 2000-07-27 2002-02-21 Sony Corporation Display control apparatus and display control method
US20020145585A1 (en) * 2000-05-03 2002-10-10 Richards Peter E. Monochrome and color digital display systems and methods for implementing the same
CN101251645A (zh) * 2007-02-20 2008-08-27 明锐有限公司 用快速响应光源提高对比度
CN101490736A (zh) * 2006-07-12 2009-07-22 硅探索株式会社 用于减少各彩色像素之间的伪色的彩色显示***
US20100073568A1 (en) * 2008-09-22 2010-03-25 Uni-Pixel Displays, Inc. Field Sequential Color Encoding For Displays
CN102418905A (zh) * 2010-12-30 2012-04-18 绎立锐光科技开发(深圳)有限公司 多色发光装置
CN202615106U (zh) * 2012-01-14 2012-12-19 深圳市光峰光电技术有限公司 发光装置及投影***

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020145585A1 (en) * 2000-05-03 2002-10-10 Richards Peter E. Monochrome and color digital display systems and methods for implementing the same
US20020021303A1 (en) * 2000-07-27 2002-02-21 Sony Corporation Display control apparatus and display control method
CN101490736A (zh) * 2006-07-12 2009-07-22 硅探索株式会社 用于减少各彩色像素之间的伪色的彩色显示***
CN101251645A (zh) * 2007-02-20 2008-08-27 明锐有限公司 用快速响应光源提高对比度
US20100073568A1 (en) * 2008-09-22 2010-03-25 Uni-Pixel Displays, Inc. Field Sequential Color Encoding For Displays
CN102418905A (zh) * 2010-12-30 2012-04-18 绎立锐光科技开发(深圳)有限公司 多色发光装置
CN202615106U (zh) * 2012-01-14 2012-12-19 深圳市光峰光电技术有限公司 发光装置及投影***

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11580435B2 (en) 2018-11-13 2023-02-14 Atom Computing Inc. Scalable neutral atom based quantum computing
US11995512B2 (en) 2018-11-13 2024-05-28 Atom Computing Inc. Scalable neutral atom based quantum computing
US11797873B2 (en) 2020-03-02 2023-10-24 Atom Computing Inc. Scalable neutral atom based quantum computing
US11875227B2 (en) 2022-05-19 2024-01-16 Atom Computing Inc. Devices and methods for forming optical traps for scalable trapped atom computing

Also Published As

Publication number Publication date
CN106154714A (zh) 2016-11-23
CN106154714B (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2016161935A1 (zh) 一种空间光调制器调制数据的方法及投影***
WO2016161934A1 (zh) 一种投影***及其色域控制方法
CN101600120B (zh) 降低功耗的图像显示方法及装置
US8021001B2 (en) Projector and method of controlling a light source for use with the projector
JP4245563B2 (ja) 投写型映像表示装置
JP4900428B2 (ja) 投影装置及び投影方法
US7916939B2 (en) High brightness wide gamut display
KR101181886B1 (ko) 광원 장치, 투영 장치 및 투영 방법
TWI584049B (zh) 合光控制系統
US20050243282A1 (en) Method and apparatus for sequencing light emitting devices in projection systems
US10965919B2 (en) Projector and image display method
US9064443B2 (en) Projection apparatus, projection method, and storage medium storing program, for reducing energy consumption by shortening color mixing period
US20180192013A1 (en) Image display device and image display method
WO2024001921A1 (zh) 投影设备及其光源的驱动方法
CN110187597B (zh) 光源装置和激光投影仪
CN106462041B (zh) 图像显示装置和图像生成方法
US11404010B2 (en) Display apparatus, method for controlling same, and computer-readable storage medium
JP2008181116A (ja) カラー画像を表示するための画像化システム、画像化システムを制御するためのコントローラ、カラー画像を画像化するための画像化セットアップ、およびカラー画像を画像化するための方法
JP2014142524A (ja) 光源装置および投写型映像表示装置
JP4060162B2 (ja) 映像投影装置
JP2012084542A (ja) 投影装置及び投影方法
CN110837199B (zh) 显示设备
WO2021008333A1 (zh) 一种照明***的颜色校正方法及照明***
CN113885281A (zh) 光源以及投影装置
CN115767055A (zh) 激光投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776110

Country of ref document: EP

Kind code of ref document: A1