WO2016161598A1 - 一种数字信号处理器、发送器和*** - Google Patents

一种数字信号处理器、发送器和*** Download PDF

Info

Publication number
WO2016161598A1
WO2016161598A1 PCT/CN2015/076167 CN2015076167W WO2016161598A1 WO 2016161598 A1 WO2016161598 A1 WO 2016161598A1 CN 2015076167 W CN2015076167 W CN 2015076167W WO 2016161598 A1 WO2016161598 A1 WO 2016161598A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital signal
signal
digital
modulator
single sideband
Prior art date
Application number
PCT/CN2015/076167
Other languages
English (en)
French (fr)
Inventor
张亮
左天健
周恩波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/076167 priority Critical patent/WO2016161598A1/zh
Priority to ES15888155T priority patent/ES2725441T3/es
Priority to CN201580078481.0A priority patent/CN107466459B/zh
Priority to EP15888155.7A priority patent/EP3270557B1/en
Publication of WO2016161598A1 publication Critical patent/WO2016161598A1/zh
Priority to US15/722,369 priority patent/US10389462B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/04Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a digital signal processor, a transmitter, and a system.
  • short-range optical communication has grown at a rate of 30% per year, and this speed will be further accelerated with the continuous development of the mobile Internet. It is precisely because of the huge potential of short-range optical communication that more and more eyes have shifted from long-distance optical communication to short-range optical communication.
  • people are turning their attention to IM/DD (Intensity Modulation/Direct Detection) technology.
  • IM/DD Intensity Modulation/Direct Detection
  • upgrading from 25 Gbps to 100 Gbps is also an inevitable trend for IM/DD.
  • the currently available device bandwidth is only 25 GHz, so to achieve a transmission rate of 100 Gb/s, its spectral efficiency must be improved.
  • FIG. 1 is a commonly used left and right sideband modulation method.
  • the first path modulates the digital signal A into a single sideband digital signal a, and the carrier frequency is f m .
  • the second B channel digital signals into a single sideband modulated digital signal B, to the carrier frequency f m;
  • the digital signals a and b are modulated onto the optical carrier by phase shift and digital-to-analog conversion to obtain left and right sideband digital signals of the optical domain, as shown in FIG. 2, wherein the left sideband carries a information and the right side carries b information. It can be seen that the spectrum waste of this scheme is serious and the spectrum efficiency is not high.
  • Embodiments of the present invention provide a digital signal processor that separately generates a left sideband independent optical signal by generating two different signals, thereby doubling the spectrum utilization rate and the device broadband usage rate. Increased the capacity of the optical transmission system.
  • a digital signal processor comprising:
  • a signal generating unit configured to generate a first digital signal and a second digital signal
  • a first modulating unit configured to modulate the first digital signal to obtain a third digital signal
  • a second modulating unit configured to modulate the second digital signal to obtain a fourth digital signal
  • a first phase shifting unit configured to phase shift the third digital signal, output the third digital signal and a fifth digital signal, wherein the fifth digital signal is a phase shifted signal of the third digital signal ;
  • a second phase shifting unit configured to phase shift the fourth digital signal, output the fourth digital signal and a sixth digital signal thereof, wherein the sixth digital signal is phase shifted by the fourth digital signal signal;
  • An adder for summing the third digital signal and the fourth digital signal to obtain a seventh digital signal, wherein the seventh digital signal is a first driving signal for driving the single sideband modulator;
  • a subtracter for subtracting the sixth digital signal from the fifth digital signal to obtain an eighth digital signal, wherein the eighth digital signal is a second driving signal for driving the single sideband modulator.
  • first modulation unit when the first modulation unit modulates the first digital signal, preset a plurality of subcarriers in a zero frequency to a low frequency portion of the first digital signal. a guard band; when the second modulation unit modulates the second digital signal, a guard band of several subcarriers is also preset at a zero frequency to a low frequency portion of the second digital signal.
  • the signal generating unit specifically includes:
  • a pseudo-random sequence generating unit for generating a pseudo-random sequence
  • serial to parallel conversion unit configured to convert the pseudo random sequence to obtain the first digital signal and the second digital signal.
  • the pseudo random sequence generating unit is pseudo-random A binary sequence generation unit.
  • an embodiment of the present invention provides a transmitter, including the above digital signal processor, a first digital-to-analog converter, a second digital-to-analog converter, a light source, and a single sideband modulator;
  • the first digital-to-analog converter is configured to convert the seventh digital signal into an analog signal; the second digital-to-analog converter is configured to convert the eighth digital signal into an analog signal; and the light source is used to generate a continuous optical carrier; the single sideband modulator modulating the optical carrier based on an analog signal of the seventh digital signal and an analog signal of the eighth digital signal to generate left and right sideband independent optical signals.
  • the single sideband modulator includes a first tone And a second modulator, the first modulator having a first RF port and a first bias port, the second modulator having a second RF port and a second bias port, the first RF port Receiving an analog signal of the seventh digital signal, the second RF port receiving an analog signal of the eighth digital signal.
  • the single sideband modulator further includes a third bias port, the first modulator and The phase difference between the second modulators is controlled by a third bias port.
  • the first bias port and the second The offset angle of the bias port is 135°, and the offset angle of the third bias port is 90°.
  • an embodiment of the present invention provides an optical transmission system, including the foregoing transmitter.
  • an embodiment of the present invention provides a method for processing a digital signal, including the steps of:
  • Phase shifting the fourth digital signal outputting the fourth digital signal and a sixth digital signal thereof, wherein the sixth digital signal is a phase shifted signal of the fourth digital signal;
  • Subtracting the sixth digital signal from the fifth digital signal results in an eighth digital signal, the eighth digital signal being a second drive signal for driving a single sideband modulator.
  • the method further includes the following steps:
  • a guard band of a plurality of subcarriers is preset at a zero frequency to a low frequency portion of the second digital signal.
  • an embodiment of the present invention provides a data communication apparatus, where the apparatus includes a processor, a memory, and a bus system, where the processor and the memory are connected by the bus system, and the memory is used to store an instruction.
  • the processor is configured to execute the instructions stored by the memory,
  • the processor is configured to: modulate the first digital signal to obtain a second digital signal;
  • Modulating the third digital signal to obtain a fourth digital signal phase shifting the second digital signal, outputting the second digital signal and the fifth digital signal, the fifth digital signal being the second digital a phase-shifted signal; phase shifting the fourth digital signal, outputting the fourth digital signal and a sixth digital signal thereof, wherein the sixth digital signal is a phase-shifted signal of the fourth digital signal
  • summing the first digital signal and the second digital signal to obtain a seventh digital signal, wherein the seventh digital signal is a first driving signal for driving the single sideband modulator; and subtracting the fifth digital signal Determining the sixth digital signal results in an eighth digital signal, the eighth digital signal being a second drive signal for driving the single sideband modulator.
  • the digital signal processor of the embodiment of the present invention generates a first digital signal and a second digital signal; modulating the first digital signal to obtain a third digital signal; and modulating the second digital signal Obtaining a fourth digital signal; performing phase shift on the third digital signal, outputting the third digital signal and a fifth digital signal, wherein the fifth digital signal is a phase-shifted signal of the third digital signal; Phase shifting the fourth digital signal, outputting the fourth digital signal and a sixth digital signal thereof, the sixth digital signal being a phase shifted signal of the fourth digital signal; And summing the signal and the fourth digital signal to obtain a seventh digital signal, the seventh digital signal being a first driving signal for driving the single sideband modulator; subtracting the sixth digital signal from the fifth digital signal An eighth digital signal is obtained, the eighth digital signal being a second drive signal for driving the single sideband modulator.
  • the embodiment of the invention can double the spectrum utilization rate and the device broadband utilization rate, and improve the capacity of the optical transmission system.
  • FIG. 1 is a schematic block diagram of a transmitter for generating left and right sideband signals in the prior art
  • FIG. 2 is a schematic diagram of a frequency spectrum of left and right sideband signals generated by the transmitter shown in FIG. 1;
  • FIG. 3 is a schematic block diagram of a transmitter of an optical transmission system according to an embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a digital signal processor of a transmitter in accordance with an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a frequency spectrum of left and right sideband signals generated by the transmitter shown in FIG. 3;
  • FIG. 6 is a schematic block diagram of an optical transmission system according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a digital signal processing method according to an embodiment of the present invention.
  • FIG. 8 is a schematic block diagram of a data communication apparatus according to an embodiment of the present invention.
  • the invention is applied to an optical transmission system, the system comprising a transmitter and a receiver, and the signal transmitted by the transmitter is transmitted to the receiver through the optical fiber.
  • the transmitter comprises a digital signal generator and a single sideband modulator.
  • the improvement of the present invention lies in the digital signal generator.
  • the digital signal generator generates two different signals through different circuit designs.
  • the single sideband modulators are separately driven to generate independent optical signals for the left and right sidebands, which doubles the spectrum utilization and device bandwidth usage compared to the prior art, thereby increasing the capacity of the transmission system.
  • the digital signal generator 11 includes a signal generating unit 111 for generating a first digital signal and a second digital signal.
  • the first modulation unit 112 modulates the first digital signal to obtain a third digital signal.
  • the second modulation unit 113 modulates the second digital signal to obtain a fourth digital signal.
  • a first phase shifting unit 114 configured to phase shift the third digital signal, output the third digital signal and a fifth digital signal, wherein the fifth digital signal is phase shifted by the third digital signal signal.
  • a second phase shifting unit 115 configured to phase shift the fourth digital signal, output the fourth digital signal and a sixth digital signal thereof, where the sixth digital signal is after the phase shift of the fourth digital signal signal of.
  • the adder 116 sums the first digital signal and the second digital signal to obtain a seventh digital signal, the seventh digital signal being a first driving signal for driving the single sideband modulator.
  • the subtracter 117 subtracts the sixth digital signal from the fifth digital signal to obtain an eighth digital signal, the eighth digital signal being a second driving signal for driving the single sideband modulator.
  • the signal generating unit 111 specifically includes: a pseudo random sequence generating unit, configured to generate a pseudo random sequence. And a serial-to-parallel conversion unit, configured to perform serial-to-parallel conversion on the pseudo-random sequence, and divide the pseudo-random sequence into two signals, that is, a first digital signal and a second digital signal.
  • the pseudo random sequence generating unit is a pseudo random binary sequence generating unit, and the first digital signal and the second digital signal are binary Digital signal.
  • the first modulation unit 111 and the second modulation unit 112 can be modulated in various manners, for example, CAP (Carrierless Amplitude/Phase Modulation) or DMT (Discrete Multi-Tone) modulation. the way.
  • CAP Carrierless Amplitude/Phase Modulation
  • DMT Discrete Multi-Tone
  • the first digital signal and the second digital signal when the first digital signal and the second digital signal are modulated, the first is still The zero-frequency to low-frequency portions of the digital signal and the second digital signal respectively preset guard bands of several subcarriers.
  • the number of subcarriers depends on the actual optimal situation.
  • the first phase shifting unit 113 and the second phase shifting unit 114 are Hilbert transformers, and the fifth digital signal is a signal after the third digital signal is phase-shifted by 90°.
  • the sixth digital signal is a signal after the fourth digital signal is phase shifted by 90°.
  • an embodiment of the present invention further discloses a transmitter.
  • the transmitter 100 includes a signal generator 11, a first digital-to-analog converter 12, a second digital-to-analog converter 13, a light source 14, and a single side.
  • a band modulator (SSB Modulator) 15 is used in which the signal generator 11 is used to generate the seventh digital signal and the eighth digital signal described in the previous embodiments.
  • the first digital to analog converter 12 is configured to convert the seventh digital signal into an analog signal.
  • the second digital-to-analog converter 13 is configured to convert the eighth digital signal into an analog signal.
  • Light source 14 outputs a continuous stream of light into the optical input port of single sideband modulator 15.
  • the single sideband modulator 15 modulates the optical carrier based on the analog signal of the seventh digital signal and the analog signal of the eighth digital signal to generate left and right sideband independent optical signals.
  • the fifth signal is The sixth signal is among them Is the 90° phase shift signal of the fourth digital signal A
  • the fifth digital signal is a 90° phase shift signal of B
  • the seventh digital signal is equal to A+B
  • the eighth signal is equal to
  • the single sideband modulator 150 includes a first MZM (Mach-Zehnder Modulator) and a second MZM in parallel, the first MZM having a first RF port and a first bias port
  • the second MZM has a second RF port and a second bias port, and a phase difference between the first MZM and the second MZM is controlled by the third bias port.
  • the analog signal of the seventh digital signal is input to the first RF port of the first MZM, and the analog signal of the eighth digital signal is input to the second RF port of the second MZM.
  • the output light field intensity E out may be Expressed as:
  • E in is the intensity of the light field of the light source 14 outputting the light signal.
  • the output light includes a DC carrier component 1 and a digital signal on the right side.
  • the left side has a digital signal (B+j*B), where A is the real part with a digital signal on the right side. It is the imaginary part of the digital signal on the right.
  • B is the real part with a digital signal on the left. It is the imaginary part of the digital signal on the left.
  • the left and right sidebands respectively carry independent digital signals A and B.
  • the spectrum utilization rate and the device bandwidth usage rate are doubled, thereby increasing the capacity of the transmission system and supporting the single-wave 100G rate.
  • the present invention also discloses an optical transmission system.
  • the transmitter includes the transmitter and the receiver, and the digital signal output by the transmitter is transmitted to the receiver through the optical fiber.
  • the present invention also discloses a digital signal processing method, including the steps:
  • Step 701 The signal generating unit generates a first digital signal and a second digital signal.
  • the signal generating unit first generates a pseudo-random sequence, and then performs serial-to-parallel conversion on the pseudo-random sequence, and divides the pseudo-random sequence into two signals, that is, a first digital signal and a second digital signal.
  • the pseudo random sequence generating unit is a pseudo random binary sequence generating unit, and the first digital signal and the second digital signal are binary digital signals.
  • Step 702 The first modulation unit modulates the first digital signal to obtain a third digital signal.
  • CAP Carrierless Amplitude/Phase Modulation
  • DMT Discrete Multi-Tone modulation
  • Step 703 The second modulation unit modulates the second digital signal to obtain a fourth digital signal.
  • CAP Carrierless Amplitude/Phase Modulation
  • DMT Discrete Multi-Tone modulation
  • the zero frequency to the low frequency part of the first digital signal and the second digital signal are pre-predicted.
  • Step 704 the first phase shifting unit phase shifts the third digital signal, and outputs the third digital signal and the fifth digital signal, wherein the fifth digital signal is after the phase shift of the third digital signal signal of.
  • the fifth digital signal is a signal after the third digital signal is phase shifted by 90°.
  • Step 705 The second phase shifting unit performs phase shifting on the fourth digital signal, and outputs the fourth digital signal and the sixth digital signal thereof.
  • the sixth digital signal is phase shifted by the fourth digital signal. signal.
  • the sixth digital signal is a signal after the fourth digital signal is phase shifted by 90°.
  • Step 706 The adder sums the third digital signal and the fourth digital signal to obtain a seventh digital signal, where the seventh digital signal is a first driving signal for driving the single sideband modulator.
  • Step 707 the subtractor subtracts the sixth digital signal from the fifth digital signal to obtain an eighth digital signal, where the eighth digital signal is a second driving signal for driving the single sideband modulator.
  • the embodiment of the present invention can double the spectrum utilization rate and the device bandwidth usage rate, thereby improving the capacity of the transmission system and supporting the single-wave 100G rate.
  • an embodiment of the present invention further discloses a data communication apparatus 800.
  • the apparatus includes a processor 810, a memory 820, and a bus system 830, and the processor 810 and the memory 820.
  • the bus system 830 Connected by the bus system 830, the memory 820 is used to store instructions, and the processor 810 is configured to execute instructions stored by the memory 820,
  • the processor 810 is configured to: modulate a first digital signal to obtain a second digital signal; modulate the third digital signal to obtain a fourth digital signal; perform phase shifting on the second digital signal, and output The second digital signal and the fifth digital signal, the fifth digital signal is a phase-shifted signal of the second digital signal; phase shifting the fourth digital signal, outputting the fourth digital signal and a sixth digital signal, wherein the sixth digital signal is a phase-shifted signal of the fourth digital signal; summing the third digital signal and the fourth digital signal to obtain a seventh digital signal, the seventh digital
  • the signal is a first driving signal for driving the single sideband modulator; subtracting the sixth digital signal from the fifth digital signal to obtain an eighth digital signal, the eighth digital signal being used for driving a single sideband The second drive signal of the modulator.
  • the present invention can double the spectrum utilization rate and the device bandwidth usage rate, thereby increasing the capacity of the transmission system and supporting the single-wave 100G rate.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种数字信号处理器,包括:信号发生单元,产生第一数字信号和第二数字信号;第一调制单元,对第一数字信号进行调制,得到第三数字信号;第二调制单元,对第二数字信号进行调制,得到第四数字信号;第一相移单元,对第三数字信号进行相移,输出第三数字信号、第五数字信号;第二相移单元,对第四数字信号进行相移,输出第四数字信号、第六数字信号;加法器,将第三数字信号和第四数字信号求和得到第七数字信号,第七数字信号为用于驱动单边带调制器的第一驱动信号;减法器,将第五数字信号减去第六数字信号得到第八数字信号,第八数字信号为用于驱动单边带调制器的第二驱动信号。本发明实施例使频谱利用率和器件宽带使用率提升一倍。

Description

一种数字信号处理器、发送器和*** 技术领域
本发明涉及通信技术领域,尤其涉及一种数字信号处理器、发送器和***。
背景技术
近年来,短距离光通信以每年30%的速度增长,并且这一速度随着移动互联网不断的发展还会进一步加快。正是由于短距离光通信的巨大潜力,越来越多的目光从长距离光通信转向了短距离光通信。在短距离应用中,人们把目光更多地投向IM/DD(强度调制/直接检测,Intensity Modulation/Direct Detection)技术。随着短距离***的速率不断提高,从25Gbps升级到100Gbps也是IM/DD势在必行的趋势。但是,目前可用的器件带宽只有25GHz,因此要达到100Gb/s的传输速率,必须提高其频谱效率。
如图1所示,图1是目前常用的一种左右边带调制方法,第一路把数字信号A调制成单边带数字信号a,载频为fm
Figure PCTCN2015076167-appb-000001
同理,第二路把数字信号B调制成单边带数字信号b,载频为fm
Figure PCTCN2015076167-appb-000002
通过相移和数模转换把数字信号a、b调制到光载波上,得到光域的左右边带数字信号,如图2所示,其中左边带携带a信息,右边带携带b信息。可以看出,该方案频谱浪费严重,频谱效率不高。
发明内容
本发明实施例提供了一种数字信号处理器,通过产生两种不同的信号分别驱动单边带调制器,产生左右边带独立的光信号,使频谱利用率和器件宽带使用率提升一倍,提高了光传输***的容量。
第一方面,提供了一种数字信号处理器,包括:
信号发生单元,用于产生第一数字信号和第二数字信号;
第一调制单元,用于对所述第一数字信号进行调制,得到第三数字信号;
第二调制单元,用于对所述第二数字信号进行调制,得到第四数字信号;
第一相移单元,用于对所述第三数字信号进行相移,输出所述第三数字信号以及第五数字信号,所述第五数字信号是所述第三数字信号相移后的信号;
第二相移单元,用于对所述第四数字信号进行相移,输出所述第四数字信号及其第六数字信号,所述第六数字信号是所述第四数字信号相移后的信号;
加法器,用于将所述第三数字信号和第四数字信号求和得到第七数字信号,所述第七数字信号为用于驱动单边带调制器的第一驱动信号;
减法器,用于将所述第五数字信号减去所述第六数字信号得到第八数字信号,所述第八数字信号为用于驱动单边带调制器的第二驱动信号。
在第一方面的第一种可能的实现方式中,所述第一调制单元对所述第一数字信号进行调制时,还在所述第一数字信号的零频至低频部分预设若干子载波的保护带;所述第二调制单元对所述第二数字信号进行调制时,还在所述第二数字信号的零频至低频部分预设若干子载波的保护带。
结合第一方面,或第一方面的第一种可能的实现方式中,在第二种可能实现的方式中,所述信号发生单元具体包括:
伪随机序列产生单元,用于产生伪随机序列;
串并转换单元,用于对所述伪随机序列进行转换,得到所述第一数字信号和第二数字信号。
结合第一方面、第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式中,在第三种可能实现的方式中,所述伪随机序列产生单元为伪随机二进制序列产生单元。
第二方面,本发明实施例提供一种发送器,包括上述的数字信号处理器、第一数模转换器、第二数模转换器、光源以及单边带调制器;其中,
所述第一数模转换器,用于将所述第七数字信号转化为模拟信号;所述第二数模转换器,用于将所述第八数字信号转化为模拟信号;光源用于产生连续的光载波;所述单边带调制器根据所述第七数字信号的模拟信号以及所述第八数字信号的模拟信号调制所述光载波生成左右边带独立的光信号。
在第二方面的第一种可能的实现方式中,所述单边带调制器包括第一调 制器和第二调制器,所述第一调制器具有第一射频端口和第一偏置端口,所述第二调制器具有第二射频端口和第二偏置端口,所述第一射频端口接收所述第七数字信号的模拟信号,所述第二射频端口接收所述第八数字信号的模拟信号。
结合第二方面,第二方面的第一种可能的实现方式中,在第二种可能实现的方式中,所述单边带调制器还包括第三偏置端口,所述第一调制器和第二调制器之间的相位差通过第三偏置端口控制。
结合第二方面、第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式中,在第三种可能实现的方式中,所述第一偏置端口和第二偏置端口的偏置角度为135°,所述第三偏置端口的偏置角度为90°。
第三方面,本发明实施例提供一种光传输***,包括上述的发送器。
第四方面,本发明实施例提供一种数字信号的处理方法,包括步骤:
产生第一数字信号和第二数字信号;
对所述第一数字信号进行调制,得到第三数字信号;
对所述第二数字信号进行调制,得到第四数字信号;
对所述第三数字信号进行相移,输出所述第三数字信号以及第五数字信号,所述第五数字信号是所述第三数字信号相移后的信号;
对所述第四数字信号进行相移,输出所述第四数字信号及其第六数字信号,所述第六数字信号是所述第四数字信号相移后的信号;
将所述第三数字信号和第四数字信号求和得到第七数字信号,所述第七数字信号为用于驱动单边带调制器的第一驱动信号;
将所述第五数字信号减去所述第六数字信号得到第八数字信号,所述第八数字信号为用于驱动单边带调制器的第二驱动信号。
在第二方面的第一种可能的实现方式中,还进一步包括步骤:
在所述第一数字信号的零频至低频部分预设若干子载波的保护带;
在所述第二数字信号的零频至低频部分预设若干子载波的保护带。
第五方面,本发明实施例提供一种数据通信装置,所述装置包括处理器、存储器和总线***,所述处理器和所述存储器通过所述总线***相连,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,
其中,所述处理器用于:对第一数字信号进行调制,得到第二数字信号;
对第三数字信号进行调制,得到第四数字信号;对所述第二数字信号进行相移,输出所述第二数字信号以及第五数字信号,所述第五数字信号是所述第二数字信号相移后的信号;对所述第四数字信号进行相移,输出所述第四数字信号及其第六数字信号,所述第六数字信号是所述第四数字信号相移后的信号;将所述第一数字信号和第二数字信号求和得到第七数字信号,所述第七数字信号为用于驱动单边带调制器的第一驱动信号;将所述第五数字信号减去所述第六数字信号得到第八数字信号,所述第八数字信号为用于驱动单边带调制器的第二驱动信号。
基于上述技术方案,本发明实施例的数字信号处理器产生第一数字信号和第二数字信号;对所述第一数字信号进行调制,得到第三数字信号;对所述第二数字信号进行调制,得到第四数字信号;对所述第三数字信号进行相移,输出所述第三数字信号以及第五数字信号,所述第五数字信号是所述第三数字信号相移后的信号;对所述第四数字信号进行相移,输出所述第四数字信号及其第六数字信号,所述第六数字信号是所述第四数字信号相移后的信号;将所述第三数字信号和第四数字信号求和得到第七数字信号,所述第七数字信号为用于驱动单边带调制器的第一驱动信号;将所述第五数字信号减去所述第六数字信号得到第八数字信号,所述第八数字信号为用于驱动单边带调制器的第二驱动信号。本发明实施例可以使频谱利用率和器件宽带使用率提升一倍,提高了光传输***的容量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中一种产生左右边带信号的发送器的原理框图;
图2是图1所示的发送器产生的左右边带信号的频谱示意图;
图3是本发明实施例提供的一种光传输***的发送器的原理框图;
图4是根据本发明实施例的一种发送器的数字信号处理器的原理框图;
图5是图3所示的发送器产生的左右边带信号的频谱示意图;
图6是本发明实施例的提供的一种光传输***的原理框图;
图7是本发明实施例提供的一种数字信号处理方法的流程图;
图8是本发明实施例提供的一种数据通信装置的原理框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明应用于光传输***,***包括发送器和接收器,发送器发送的信号通过光纤传输至接收器。其中,发送器包括数字信号发生器和单边带调制器,如图3所示,本发明的改进之处在于数字信号发生器,通过不同的电路设计,数字信号发生器产生两种不同的信号分别驱动单边带调制器,进而产生左右边带独立的光信号,跟现有技术相比,使频谱利用率和器件带宽使用率提升一倍,进而提高了传输***的容量。
如图4所示,本发明实施例提供的数字信号发生器11包括:信号发生单元111,用于产生第一数字信号和第二数字信号。第一调制单元112,对所述第一数字信号进行调制,得到第三数字信号。第二调制单元113,对所述第二数字信号进行调制,得到第四数字信号。第一相移单元114,用于对所述第三数字信号进行相移,输出所述第三数字信号以及第五数字信号,所述第五数字信号是所述第三数字信号相移后的信号。第二相移单元115,用于对所述第四数字信号进行相移,输出所述第四数字信号及其第六数字信号,所述第六数字信号是所述第四数字信号相移后的信号。加法器116,将所述第一数字信号和第二数字信号求和得到第七数字信号,所述第七数字信号为用于驱动单边带调制器的第一驱动信号。减法器117,将所述第五数字信号减去所述第六数字信号得到第八数字信号,所述第八数字信号为用于驱动单边带调制器的第二驱动信号。
所述信号发生单元111具体包括:伪随机序列产生单元,用于产生伪随机序列。串并转换单元,用于对所述伪随机序列进行串并转换,将伪随机序列分成两路信号即第一数字信号和第二数字信号。所述伪随机序列产生单元为伪随机二进制序列产生单元,所述第一数字信号和第二数字信号为二进制 数字信号。
其中,第一调制单元111、第二调制单元112调制的方式有多种,比如可以是CAP(Carrierless Amplitude/Phase Modulation,无载波幅相调制)或DMT(Discrete Multi-Tone,离散多音调)调制方式。
需要说明的是,为了防止得到的左右边带信号的左右边带在零频附近有较大的串扰,本实施例中,对第一数字信号和第二数字信号进行调制时,还在第一数字信号和第二数字信号的零频至低频部分分别预设若干子载波的保护带。子载波的数量根据实际最优情况而定。
优选地,本实施例中第一相移单元113和第二相移单元114均为希尔伯特变换器,第五数字信号是第三数字信号相移90°后的信号。第六数字信号是第四数字信号相移90°后的信号。
如图2所示,本发明实施例还公开了一种发送器,该发送器100包括:信号发生器11、第一数模转换器12、第二数模转换器13、光源14以及单边带调制器(SSB Modulator)15,其中信号发生器11用于生成前面实施例介绍的第七数字信号和第八数字信号。第一数模转换器12,用于将所述第七数字信号转化为模拟信号。第二数模转换器13,用于将所述第八数字信号转化为模拟信号。光源14输出一路连续光进入单边带调制器15的光输入端口。单边带调制器15根据所述第七数字信号的模拟信号以及所述第八数字信号的模拟信号调制所述光载波生成左右边带独立的光信号。
假设第三数字信号为A,第四数字信号为B,则第五信号为
Figure PCTCN2015076167-appb-000003
第六信号为
Figure PCTCN2015076167-appb-000004
其中
Figure PCTCN2015076167-appb-000005
为第四数字信号A的90°相移信号,
Figure PCTCN2015076167-appb-000006
为第五数字信号为B的90°相移信号,则第七数字信号等于A+B,则第八信号等于
Figure PCTCN2015076167-appb-000007
一实施例中,单边带调制器150包括上下并行的第一MZM(Mach-Zehnder Modulator,马赫-曾德尔调制器)和第二MZM,第一MZM具有第一射频端口和第一偏置端口,第二MZM具有第二射频端口和第二偏置端口,第一MZM和第二MZM之间的相位差通过第三偏置端口控制。
第七数字信号的模拟信号输入到第一MZM的第一射频端口,第八数字信号的模拟信号输入到第二MZM的第二射频端口。当控制单边带调制器150的第一偏置端口bias1、第二偏置端口bias2、第三偏置端口bias3分别偏置在135°、135°和90°时,输出光场强度Eout可以表示为:
Figure PCTCN2015076167-appb-000008
其中,Ein为光源14输出光信号的光场强度,从上式中可以看出,输出光包含了直流载波分量1,右边带数字信号
Figure PCTCN2015076167-appb-000009
和左边带数字信号(B+j*B),其中,A是右边带数字信号的实部,
Figure PCTCN2015076167-appb-000010
是右边带数字信号的虚部。B是左边带数字信号的实部,
Figure PCTCN2015076167-appb-000011
是左边带数字信号的虚部。左右边带分别携带独立的数字信号A和B,本发明实施例可使频谱利用率和器件带宽使用率提升一倍,从而提升了传输***的容量,可支持单波100G的速率。
基于上述公开的发送器,本发明还公开了一种光传输***,如图6所示,包括上述的发送器,以及接收器,发送器输出的数字信号经过光纤传输输出到接收器。
如图7所示,本发明还公开了一种数字信号处理方法,包括步骤:
步骤701,信号发生单元产生第一数字信号和第二数字信号。
一实施例中,信号发生单元先产生伪随机序列,然后对所述伪随机序列进行串并转换,将伪随机序列分成两路信号即第一数字信号和第二数字信号。优选地,所述伪随机序列产生单元为伪随机二进制序列产生单元,所述第一数字信号和第二数字信号为二进制数字信号。
步骤702,第一调制单元对所述第一数字信号进行调制,得到第三数字信号。
调制的方式有多种,比如可以是CAP(Carrierless Amplitude/Phase Modulation,无载波幅相调制)或DMT(Discrete Multi-Tone,离散多音调)调制方式。
步骤703,第二调制单元对所述第二数字信号进行调制,得到第四数字信号。
调制的方式有多种,比如可以是CAP(Carrierless Amplitude/Phase Modulation,无载波幅相调制)或DMT(Discrete Multi-Tone,离散多音调)调制方式。
上述步骤702和703中,为了防止得到的左右边带信号的左右边带在零频附近有较大的串扰,在所述第一数字信号和所述第二数字信号的零频至低频部分预设若干子载波的保护带。
步骤704,第一相移单元对所述第三数字信号进行相移,输出所述第三数字信号以及第五数字信号,所述第五数字信号是所述第三数字信号相移后 的信号。
优选地,第五数字信号是第三数字信号相移90°后的信号。
步骤705,第二相移单元对所述第四数字信号进行相移,输出所述第四数字信号及其第六数字信号,所述第六数字信号是所述第四数字信号相移后的信号。
优选地,第六数字信号是第四数字信号相移90°后的信号。
步骤706,加法器将所述第三数字信号和第四数字信号求和得到第七数字信号,所述第七数字信号为用于驱动单边带调制器的第一驱动信号。
步骤707,减法器将所述第五数字信号减去所述第六数字信号得到第八数字信号,所述第八数字信号为用于驱动单边带调制器的第二驱动信号。
通过以上步骤,本发明实施例可使频谱利用率和器件带宽使用率提升一倍,进而提升了传输***的容量,可支持单波100G的速率。
根据以上实施例,本发明实施例还公开了一种数据通信装置800,如图8所示,所述装置包括处理器810、存储器820和总线***830,所述处理器810和所述存储器820通过所述总线***830相连,所述存储器820用于存储指令,所述处理器810用于执行所述存储器820存储的指令,
其中,所述处理器810用于:对第一数字信号进行调制,得到第二数字信号;对第三数字信号进行调制,得到第四数字信号;对所述第二数字信号进行相移,输出所述第二数字信号以及第五数字信号,所述第五数字信号是所述第二数字信号相移后的信号;对所述第四数字信号进行相移,输出所述第四数字信号及其第六数字信号,所述第六数字信号是所述第四数字信号相移后的信号;将所述第三数字信号和第四数字信号求和得到第七数字信号,所述第七数字信号为用于驱动单边带调制器的第一驱动信号;将所述第五数字信号减去所述第六数字信号得到第八数字信号,所述第八数字信号为用于驱动单边带调制器的第二驱动信号。
通过以上实施例,本发明可使频谱利用率和器件带宽使用率提升一倍,从而提升了传输***的容量,可支持单波100G的速率。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (12)

  1. 一种数字信号处理器,其特征在于,包括:
    信号发生单元,用于产生第一数字信号和第二数字信号;
    第一调制单元,用于对所述第一数字信号进行调制,得到第三数字信号;
    第二调制单元,用于对所述第二数字信号进行调制,得到第四数字信号;
    第一相移单元,用于对所述第三数字信号进行相移,输出所述第三数字信号以及第五数字信号,所述第五数字信号是所述第三数字信号相移后的信号;
    第二相移单元,用于对所述第四数字信号进行相移,输出所述第四数字信号及其第六数字信号,所述第六数字信号是所述第四数字信号相移后的信号;
    加法器,用于将所述第三数字信号和第四数字信号求和得到第七数字信号,所述第七数字信号为用于驱动单边带调制器的第一驱动信号;
    减法器,用于将所述第五数字信号减去所述第六数字信号得到第八数字信号,所述第八数字信号为用于驱动单边带调制器的第二驱动信号。
  2. 根据权利要求1所述的数字信号处理器,其特征在于,所述第一调制单元对所述第一数字信号进行调制时,还在所述第一数字信号的零频至低频部分预设若干子载波的保护带;所述第二调制单元对所述第二数字信号进行调制时,还在所述第二数字信号的零频至低频部分预设若干子载波的保护带。
  3. 根据权利要求1所述的数字信号处理器,其特征在于,所述信号发生单元具体包括:
    伪随机序列产生单元,用于产生伪随机序列;
    串并转换单元,用于对所述伪随机序列进行转换,得到所述第一数字信号和第二数字信号。
  4. 根据权利要求1所述的数字信号处理器,其特征在于,所述伪随机序列产生单元为伪随机二进制序列产生单元。
  5. 一种发送器,其特征在于,包括权利要求1-4任一项所述的数字信号处理器、第一数模转换器、第二数模转换器、光源以及单边带调制器;其中,
    所述第一数模转换器,用于将所述第七数字信号转化为模拟信号;所述 第二数模转换器,用于将所述第八数字信号转化为模拟信号;光源用于产生连续的光载波;所述单边带调制器根据所述第七数字信号的模拟信号以及所述第八数字信号的模拟信号调制所述光载波生成左右边带独立的光信号。
  6. 根据权利要求5所述的发送器,其特征在于,所述单边带调制器包括第一调制器和第二调制器,所述第一调制器具有第一射频端口和第一偏置端口,所述第二调制器具有第二射频端口和第二偏置端口,所述第一射频端口接收所述第七数字信号的模拟信号,所述第二射频端口接收所述第八数字信号的模拟信号。
  7. 根据权利要求6所述的发送器,其特征在于,所述单边带调制器还包括第三偏置端口,所述第一调制器和第二调制器之间的相位差通过第三偏置端口控制。
  8. 根据权利要求7所述的发送器,其特征在于,所述第一偏置端口和第二偏置端口的偏置角度为135°,所述第三偏置端口的偏置角度为90°。
  9. 一种光传输***,其特征在于,包括权利要求5-8任一项所述的发送器。
  10. 一种数字信号的处理方法,其特征在于,包括步骤:
    产生第一数字信号和第二数字信号;
    对所述第一数字信号进行调制,得到第三数字信号;
    对所述第二数字信号进行调制,得到第四数字信号;
    对所述第三数字信号进行相移,输出所述第三数字信号以及第五数字信号,所述第五数字信号是所述第三数字信号相移后的信号;
    对所述第四数字信号进行相移,输出所述第四数字信号及其第六数字信号,所述第六数字信号是所述第四数字信号相移后的信号;
    将所述第三数字信号和第四数字信号求和得到第七数字信号,所述第七数字信号为用于驱动单边带调制器的第一驱动信号;
    将所述第五数字信号减去所述第六数字信号得到第八数字信号,所述第八数字信号为用于驱动单边带调制器的第二驱动信号。
  11. 据权利要求10所述的方法,其特征在于,还进一步包括步骤:
    在所述第一数字信号的零频至低频部分预设若干子载波的保护带;
    在所述第二数字信号的零频至低频部分预设若干子载波的保护带。
  12. 一种数据通信装置,其特征在于,所述装置包括处理器、存储器和总线***,所述处理器和所述存储器通过所述总线***相连,所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令,
    其中,所述处理器用于:对第一数字信号进行调制,得到第二数字信号;对第三数字信号进行调制,得到第四数字信号;对所述第二数字信号进行相移,输出所述第二数字信号以及第五数字信号,所述第五数字信号是所述第二数字信号相移后的信号;对所述第四数字信号进行相移,输出所述第四数字信号及其第六数字信号,所述第六数字信号是所述第四数字信号相移后的信号;将所述第一数字信号和第二数字信号求和得到第七数字信号,所述第七数字信号为用于驱动单边带调制器的第一驱动信号;将所述第五数字信号减去所述第六数字信号得到第八数字信号,所述第八数字信号为用于驱动单边带调制器的第二驱动信号。
PCT/CN2015/076167 2015-04-09 2015-04-09 一种数字信号处理器、发送器和*** WO2016161598A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2015/076167 WO2016161598A1 (zh) 2015-04-09 2015-04-09 一种数字信号处理器、发送器和***
ES15888155T ES2725441T3 (es) 2015-04-09 2015-04-09 Procesador de señales digitales, emisor y sistema
CN201580078481.0A CN107466459B (zh) 2015-04-09 2015-04-09 一种数字信号处理器、发送器和***
EP15888155.7A EP3270557B1 (en) 2015-04-09 2015-04-09 Digital signal processor, sender and system
US15/722,369 US10389462B2 (en) 2015-04-09 2017-10-02 Digital signal processor, transmitter, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076167 WO2016161598A1 (zh) 2015-04-09 2015-04-09 一种数字信号处理器、发送器和***

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/722,369 Continuation US10389462B2 (en) 2015-04-09 2017-10-02 Digital signal processor, transmitter, and system

Publications (1)

Publication Number Publication Date
WO2016161598A1 true WO2016161598A1 (zh) 2016-10-13

Family

ID=57072963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076167 WO2016161598A1 (zh) 2015-04-09 2015-04-09 一种数字信号处理器、发送器和***

Country Status (5)

Country Link
US (1) US10389462B2 (zh)
EP (1) EP3270557B1 (zh)
CN (1) CN107466459B (zh)
ES (1) ES2725441T3 (zh)
WO (1) WO2016161598A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1086062A (zh) * 1993-08-14 1994-04-27 华南理工大学 中波单边带调幅立体声广播制式
CN102307066A (zh) * 2011-09-05 2012-01-04 北京邮电大学 基于FSK-D8PSK-ASK-PolMUX的高速光传输***和方法
US8270058B1 (en) * 2007-12-06 2012-09-18 The Boeing Company Coherence length controller

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724832B1 (en) * 1999-01-29 2004-04-20 Adc Broadband Wireless Group, Inc. Vestigial sideband generator particularly for digital television
JP3975810B2 (ja) * 2002-04-05 2007-09-12 株式会社日立製作所 光片側サイドバンド送信器
JP2008187223A (ja) 2007-01-26 2008-08-14 Hitachi Communication Technologies Ltd 光位相変調器の制御法
EP2134047A1 (en) * 2007-04-06 2009-12-16 Panasonic Corporation Transmitter and ssb signal generation method
CN101110650B (zh) * 2007-07-12 2010-05-19 上海交通大学 集成三重播放业务的无源光网络传输方法
US8165232B2 (en) * 2008-10-01 2012-04-24 Harris Corporation Low peak-to-average power ratio (PAPR) preamble for orthogonal frequency division multiplexing (OFDM) communications
US9059879B2 (en) * 2011-07-08 2015-06-16 Infineon Technologies Ag Test signal generation and application in receivers
US8909687B2 (en) 2012-01-19 2014-12-09 Mediatek Singapore Pte. Ltd. Efficient FIR filters
EP2782270A1 (en) * 2013-03-20 2014-09-24 Xieon Networks S.à.r.l. Optical IQ modulator control
CN103414514B (zh) 2013-08-07 2015-09-16 武汉邮电科学研究院 基于ofdm调制编码和分频接收的可见光通信***及方法
CN103457902B (zh) * 2013-09-13 2016-06-01 北京邮电大学 一种wdm-pon有线/无线可选择接入***和方法
CN104019836B (zh) * 2014-06-23 2016-03-30 哈尔滨工业大学 基于相干双脉冲对序列技术布里渊光时域分析仪及利用该分析仪抑制共模噪声的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1086062A (zh) * 1993-08-14 1994-04-27 华南理工大学 中波单边带调幅立体声广播制式
US8270058B1 (en) * 2007-12-06 2012-09-18 The Boeing Company Coherence length controller
CN102307066A (zh) * 2011-09-05 2012-01-04 北京邮电大学 基于FSK-D8PSK-ASK-PolMUX的高速光传输***和方法

Also Published As

Publication number Publication date
EP3270557B1 (en) 2019-03-06
EP3270557A4 (en) 2018-04-04
US20180026734A1 (en) 2018-01-25
EP3270557A1 (en) 2018-01-17
US10389462B2 (en) 2019-08-20
ES2725441T3 (es) 2019-09-24
CN107466459B (zh) 2020-01-17
CN107466459A (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
US8582979B2 (en) Method and arrangement for transmitting an optical OFDM-signal
JP6059678B2 (ja) 光変調装置、及び光変調方法
JP5467686B2 (ja) 光通信装置及び光通信方法
US9831956B2 (en) Signal processing device and signal processing method
WO2017079871A1 (zh) 一种调制器、调制***以及实现高阶调制的方法
JP5585589B2 (ja) 光変調装置及び光変調方法
US9960846B2 (en) Free-space optical communication system and method in scattering environments
WO2018132950A1 (zh) 信号发射方法及装置、发射机、信号传输***
US20150063813A1 (en) Clock recovery method for ultra dense wdm systems
US8655177B2 (en) Optical transmitter
WO2014155775A1 (ja) 信号処理装置、光通信システム、及び信号処理方法
JP4905951B2 (ja) 光変調回路および光伝送システム
CN108141284B (zh) 光通信***中处理信号的装置和方法
Wang et al. A scheme to generate 16QAM-OFDM vector mm-wave signal based on a single MZM without optical filter and precoding
US11108468B2 (en) Optical transmitter, optical receiver and communication system
WO2016161598A1 (zh) 一种数字信号处理器、发送器和***
JP6609864B2 (ja) 高周波変調信号発生装置及び位相揺らぎ抑制方法
US8169683B2 (en) Optical signal generation with D/A converters and optical clock pulse stream
JP6363933B2 (ja) 光送受信装置、光受信器及び光送受信方法
Schmogrow et al. Pulse-shaping for spectrally-efficient coherent optical networks: OFDM, Nyquist signaling, and DFT-spread OFDM
JP7273382B2 (ja) 光送信機および光送信方法
JP2010136146A (ja) 光受信装置
JP2021057845A (ja) 光変調器及び光送信装置
Tang et al. Key Technologies for Optical OFDM in Optical Long-Haul System Using Direct-Detection
Hemalatha et al. Comparison of Optical Vector Signal Generation with oSSB Technique using Duo-Binary Modulation, oSSB Technique using EDFA and oVSB format based on SPM effect without using SOA.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015888155

Country of ref document: EP