WO2016158224A1 - 有機溶剤の容器および管用帯電防止性樹脂組成物並びにポリオレフィン系帯電防止性繊維 - Google Patents

有機溶剤の容器および管用帯電防止性樹脂組成物並びにポリオレフィン系帯電防止性繊維 Download PDF

Info

Publication number
WO2016158224A1
WO2016158224A1 PCT/JP2016/057029 JP2016057029W WO2016158224A1 WO 2016158224 A1 WO2016158224 A1 WO 2016158224A1 JP 2016057029 W JP2016057029 W JP 2016057029W WO 2016158224 A1 WO2016158224 A1 WO 2016158224A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
acid
antistatic
polymer
resin composition
Prior art date
Application number
PCT/JP2016/057029
Other languages
English (en)
French (fr)
Inventor
達人 中村
椿 崔
和清 野村
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015069062A external-priority patent/JP2016188312A/ja
Priority claimed from JP2015071350A external-priority patent/JP2016191165A/ja
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to US15/563,395 priority Critical patent/US10308852B2/en
Priority to EP16772108.3A priority patent/EP3279269B1/en
Publication of WO2016158224A1 publication Critical patent/WO2016158224A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/16Anti-static materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/04Antistatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/12Applications used for fibers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Definitions

  • the present invention relates to an antistatic resin composition (hereinafter also simply referred to as “resin composition”) used in a thermoplastic resin container for containing an organic solvent and a thermoplastic resin tube in contact with the organic solvent. ), And containers and tubes using the same, in particular, have a sufficient and durable antistatic property, and the antistatic performance is not impaired even if it is in contact with an organic solvent for a long time.
  • resin composition used in a thermoplastic resin container for containing an organic solvent and a thermoplastic resin tube in contact with the organic solvent.
  • containers and tubes using the same in particular, have a sufficient and durable antistatic property, and the antistatic performance is not impaired even if it is in contact with an organic solvent for a long time.
  • the present invention relates to an antistatic resin composition from which molded articles such as containers and tubes can be obtained, and containers and tubes using the same.
  • the present invention also relates to a polyolefin-based antistatic fiber (hereinafter, also simply referred to as “antistatic fiber”) and a fabric using the same, and more specifically, a polyolefin having antistatic properties excellent in durability and water resistance.
  • antistatic fiber also simply referred to as “antistatic fiber”
  • the present invention relates to a system antistatic fiber and a fabric using the same.
  • Thermoplastic resins are used for containers and tubes of various shapes because they are lightweight and easy to process.
  • polyolefin resins are used in containers for containing organic solvents, pipes for passing organic solvents, and the like.
  • thermoplastic resin has a characteristic of being easily charged due to friction or the like because of its high electrical insulation. Due to this electrification, there is a risk of igniting or exploding organic solvents and flammable gases that are stored inside the container or that pass through the inside of the tube. Further, in the case of medical containers and tubes such as containers for disinfecting alcohol, dust is attached due to electrification, which is not preferable from the viewpoint of hygiene.
  • Patent Documents 1 and 2 describe that polyhydric alcohol esters such as glycerin monostearate are used as an antistatic agent in a polyolefin resin container.
  • polyolefin resin as a fiber or filament
  • a nonwoven fabric is also produced from the fiber.
  • the polyolefin-based resin has electrical insulation, it is easily charged by friction or the like, and has a problem of attracting surrounding dust and dust. In particular, in the case of work clothes using these, dust and the like are attracted.
  • non-woven fabrics are used for transporting materials and packaging materials for electrical / electronic parts and electrical / electronic equipment.
  • static electricity is a major problem because it causes failure and attracts fine dust.
  • Patent Document 3 proposes a nonwoven fabric imparted with antistatic properties by previously mixing a surfactant in the raw material to impart hydrophilicity.
  • Patent Document 4 proposes a polyolefin-based nonwoven fabric containing a modified polyolefin and a surfactant as an antistatic agent.
  • Patent Document 5 proposes the use of a polymer-type antistatic agent such as polyetheresteramide for a nonwoven fabric.
  • antistatic agents exhibit antistatic performance by bleeding after molding of the resin composition
  • antistatic agents are not suitable for use in contact with organic solvents such as containers and tubes for organic solvents. In some cases, the effect may be lost due to elution, and there is a problem of resistance to organic solvents. Furthermore, there is a problem that antistatic components are mixed into the contents, which has been a big problem particularly in medical applications.
  • an object of the present invention is to provide an organic solvent container and a tube antistatic resin that have sufficient antistatic properties that are durable and that do not impair the antistatic performance even when they are in contact with the organic solvent for a long time. It is to provide a composition and a container and a tube for an organic solvent using the composition.
  • Patent Documents 3 and 4 when a surfactant is used as in Patent Documents 3 and 4, there is a problem in that the antistatic performance is poor and the antistatic performance is lost by washing or the like. Moreover, even if a polymer antistatic agent is used as in Patent Document 5, sufficient antistatic performance cannot be obtained unless a large amount of polymer antistatic agent is added to the resin. Furthermore, the nonwoven fabric using polymer type antistatic agent such as polyether ester amide proposed in Patent Document 5 has insufficient antistatic performance and water resistance.
  • another object of the present invention is to provide a polyolefin-based antistatic fiber having antistatic properties excellent in durability and water resistance, and a fabric using the same.
  • the organic solvent container and the tube antistatic resin composition of the present invention contain 3 to 25 parts by mass of one or more polymer compounds (E) per 100 parts by mass of the thermoplastic resin.
  • a resin composition comprising: Compound (B) in which the polymer compound (E) has a diol, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, one or more groups represented by the following general formula (1), and a hydroxyl group at both ends.
  • an epoxy compound (D) having two or more epoxy groups have a structure formed by bonding via an ester bond.
  • the polymer compound (E) is a polyester (A) composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, the compound (B), and the epoxy compound ( D) preferably has a structure formed by bonding via an ester bond.
  • the polymer compound (E) has a block composed of the polyester (A) and a block composed of the compound (B) alternately and alternately via an ester bond. It is preferable that the block polymer (C) having a carboxyl group at both ends formed by bonding and the epoxy compound (D) have a structure formed by bonding through an ester bond.
  • the polyester (A) constituting the polymer compound (E) preferably has a structure having carboxyl groups at both ends.
  • the number average molecular weight of the block composed of the polyester (A) in the polymer compound (E) is 800 to 8,000 in terms of polystyrene
  • the compound ( The number average molecular weight of the block composed of B) is 400 to 6,000 in terms of polystyrene
  • the number average molecular weight of the block polymer (C) is 5,000 to 25,000 in terms of polystyrene. Is preferred.
  • the compound (B) constituting the polymer compound (E) is polyethylene glycol.
  • the resin composition of the present invention further contains at least one selected from the group consisting of an alkali metal salt (F) and a group 2 element salt with respect to 100 parts by mass of the thermoplastic resin. It is preferable to contain 1 to 5 parts by mass.
  • thermoplastic resin is a polyolefin resin.
  • the organic solvent container and the organic solvent tube of the present invention are characterized in that the resin composition of the present invention is molded.
  • the present inventors have found that if the fiber is made of a resin composition to which a predetermined amount of a chargeable polymer compound having a specific structure is added, the above problems As a result, the present invention has been completed.
  • the polyolefin antistatic fiber of the present invention is a polyolefin antistatic fiber comprising a resin composition containing 1 to 40 parts by mass of one or more polymer compounds (L) with respect to 100 parts by mass of a polyolefin resin.
  • a compound (K) having a reactive functional group have a structure formed by bonding via an ester bond.
  • the polymer compound (L) is a polyester (H) composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, the compound (I), It is preferable that the compound (K) having a reactive functional group has a structure formed by bonding via an ester bond.
  • the polymer compound (L) is composed of a block composed of the polyester (H) and a block composed of the compound (I) via an ester bond. It is preferable to have a structure in which a block polymer (J) having a carboxyl group at both ends, which are alternately and repeatedly bonded, and a compound (K) having the reactive functional group are bonded via an ester bond. .
  • the polyester (H) constituting the polymer compound (L) has a structure having carboxyl groups at both ends.
  • the number average molecular weight of the block composed of the polyester (H) in the polymer compound (L) is 800 to 8,000 in terms of polystyrene
  • the number average molecular weight of the block composed of the compound (I) is 400 to 6,000 in terms of polystyrene
  • the number average molecular weight of the block polymer (J) is 5,000 to 25,000 in terms of polystyrene. It is preferable that
  • the compound (I) constituting the polymer compound (L) is polyethylene glycol.
  • one or more selected from the group consisting of an alkali metal salt and a group 2 element salt (M) is further added to 100 parts by mass of the polyolefin-based resin.
  • the content is preferably 0.1 to 15 parts by mass.
  • the compound (K) having a reactive functional group an epoxy compound (K-1) having two or more epoxy groups as reactive functional groups? Or, it is preferably a polyhydric alcohol compound (K-2) having 3 or more hydroxyl groups as reactive functional groups.
  • the fabric of the present invention is characterized by comprising the polyolefin-based antistatic fiber of the present invention, and a nonwoven fabric is particularly suitable.
  • a container for an organic solvent and a tube for obtaining a molded article that has sufficient antistatic properties with durability and that does not impair the antistatic performance even if it is in contact with the organic solvent for a long time.
  • An antistatic resin composition can be provided.
  • a container and a tube for an organic solvent that have sufficient antistatic properties that are durable and that do not impair the antistatic performance even when contacted with an organic solvent for a long time. be able to.
  • the resin composition of the present invention contains 3 to 25 parts by mass of one or more polymer compounds (E) with respect to 100 parts by mass of the thermoplastic resin.
  • the polymer compound (E) has a diol, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and at least one group represented by the following general formula (1).
  • the compound (B) having a hydroxyl group and the epoxy compound (D) having two or more epoxy groups are bonded via an ester bond.
  • the thermoplastic resin used in the present invention will be described.
  • the resin to be used is not limited as long as it is a thermoplastic resin, but a polyolefin resin is particularly preferable from the viewpoint of durability of antistatic performance and resistance to organic solvents.
  • polystyrene resin examples include polyethylene, low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, homopolypropylene, random copolymer polypropylene, block copolymer polypropylene, isotactic polypropylene, syndiotactic polypropylene, hemiiso ⁇ -olefin polymers such as tactic polypropylene, polybutene, cycloolefin polymer, stereoblock polypropylene, poly-3-methyl-1-butene, poly-3-methyl-1-pentene, poly-4-methyl-1-pentene , Ethylene-propylene block or random copolymer, impact copolymer polypropylene, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylic And ⁇ -olefin copolymers such as ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, ethylene-vinyl acetate
  • thermoplastic resin other than the polyolefin resin examples include a polystyrene resin.
  • polystyrene resin examples include a vinyl group-containing aromatic hydrocarbon alone and a vinyl group-containing aromatic. Copolymers of hydrocarbons and other monomers (for example, maleic anhydride, phenylmaleimide, (meth) acrylic acid ester, butadiene, (meth) acrylonitrile, etc.) may be mentioned.
  • polystyrene (PS) resin Impact-resistant polystyrene (HIPS), acrylonitrile-styrene (AS) resin, acrylonitrile-butadiene-styrene (ABS) resin, methyl methacrylate-butadiene-styrene (MBS) resin, heat-resistant ABS resin, acrylonitrile-acrylate-styrene (AAS) ) Resin, styrene-anhydrous Rain acid (SMA) resin, methacrylate-styrene (MS) resin, styrene-isoprene-styrene (SIS) resin, acrylonitrile-ethylenepropylene rubber-styrene (AES) resin, styrene-butadiene-butylene-styrene (SBBS) resin, methyl Thermoplastic resins such as methacrylate-acrylonitrile-butadiene-styren
  • thermoplastic resins include, for example, polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, chlorinated polypropylene, polyvinylidene fluoride, chlorinated rubber, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer.
  • Polymer vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylic acid ester copolymer, vinyl chloride-maleic acid ester copolymer, vinyl chloride-cyclohexyl maleimide Halogen-containing resins such as copolymers; petroleum resin, coumarone resin, polyvinyl acetate, acrylic resin, polymethyl methacrylate, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral; polyethylene terephthalate, polybutylene terephthalate, polycyclohexa Aromatic polyesters such as polyalkylene terephthalates such as dimethylene terephthalate, polyethylene naphthalates, polyalkylene naphthalates such as polybutylene naphthalate, and linear polyesters such as polytetramethylene terephthalate; polyhydroxybutyrate, polycaprolactone, polybuty
  • isoprene rubber butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluorine rubber, silicone rubber, polyester elastomer, nitrile elastomer, nylon elastomer, vinyl chloride elastomer, polyamide elastomer, An elastomer such as a polyurethane elastomer may be used.
  • thermoplastic resins may be used alone or in combination of two or more. Moreover, it may be alloyed. These thermoplastic resins include molecular weight, degree of polymerization, density, softening point, proportion of insoluble matter in the solvent, degree of stereoregularity, presence or absence of catalyst residues, type and blending ratio of raw material monomers, polymerization catalyst Can be used regardless of the type (eg, Ziegler catalyst, metallocene catalyst, etc.).
  • the polymer compound (E) used in the present invention will be described.
  • the polymer compound (E) is blended to impart antistatic properties to the resin composition of the present invention.
  • the polymer compound (E) used in the present invention has a diol, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and at least one group represented by the following general formula (1).
  • the compound (B) having a hydroxyl group and the epoxy compound (D) having two or more epoxy groups are bonded via an ester bond.
  • the polymer compound (E) includes a diol, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and a compound (B) having one or more groups represented by the general formula (1) and having hydroxyl groups at both ends.
  • the epoxy compound (D) having two or more epoxy groups can be obtained by an esterification reaction.
  • diol used for the polymer compound (E) in the present invention will be described.
  • the diol used in the present invention include aliphatic diols and aromatic group-containing diols.
  • the diol may be a mixture of two or more.
  • the aliphatic diol include 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1,2-butanediol, and 1,3-butanediol.
  • 1,4-cyclohexanedimethanol and hydrogenated bisphenol A are preferable from the viewpoint of durability of antistatic performance and organic solvent resistance, and 1,4-cyclohexanedimethanol is more preferable.
  • the aliphatic diol preferably has hydrophobicity, among the aliphatic diols, polyethylene glycol having hydrophilicity is not preferable. However, this is not the case when used with other diols.
  • aromatic group-containing diol examples include bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, 1,4-benzenedimethanol, an ethylene oxide adduct of bisphenol A, Examples thereof include propylene oxide adducts of bisphenol A, polyhydroxyethyl adducts of mononuclear dihydric phenol compounds such as 1,4-bis (2-hydroxyethoxy) benzene, resorcin, and pyrocatechol.
  • diols having an aromatic group ethylene oxide adduct of bisphenol A and 1,4-bis ( ⁇ -hydroxyethoxy) benzene are preferable from the viewpoint of durability of antistatic performance and resistance to organic solvents.
  • the aliphatic dicarboxylic acid used for the polymer compound (E) in the present invention may be a derivative of an aliphatic dicarboxylic acid (for example, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.).
  • the aliphatic dicarboxylic acid and its derivative may be a mixture of two or more.
  • the aliphatic dicarboxylic acid is preferably an aliphatic dicarboxylic acid having 2 to 20 carbon atoms, such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, Examples include sebacic acid, 1,10-decanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, maleic acid, and fumaric acid.
  • oxalic acid such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid
  • Examples include sebacic acid, 1,10-decanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, dimer acid, maleic acid, and fumaric acid.
  • a dicarboxylic acid having 4 to 16 carbon atoms is preferable and a dicarboxylic acid having 6 to 12 carbon atoms is more preferable from the viewpoint of melting point and heat resistance.
  • the aromatic dicarboxylic acid used for the polymer compound (E) in the present invention may be a derivative of an aromatic dicarboxylic acid (for example, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.). Moreover, 2 or more types of mixtures may be sufficient as aromatic dicarboxylic acid and its derivative (s).
  • an aromatic dicarboxylic acid for example, acid anhydride, alkyl ester, alkali metal salt, acid halide, etc.
  • 2 or more types of mixtures may be sufficient as aromatic dicarboxylic acid and its derivative (s).
  • the aromatic dicarboxylic acid is preferably an aromatic dicarboxylic acid having 8 to 20 carbon atoms.
  • a hydrophilic compound is preferable, and a polysiloxane having a group represented by the general formula (1) is preferable.
  • Ether is more preferable, and polyethylene glycol represented by the following general formula (2) is particularly preferable.
  • m represents a number of 5 to 250. m is preferably 20 to 150 from the viewpoint of heat resistance and compatibility.
  • the compound (B) in addition to polyethylene glycol obtained by addition reaction of ethylene oxide, ethylene oxide and other alkylene oxides (for example, propylene oxide, 1,2-, 1,4-, 2,3- or And a polyether obtained by addition reaction with one or more of 1,3-butylene oxide and the like.
  • the polyether may be random or block.
  • the compound (B) include compounds having a structure in which ethylene oxide is added to an active hydrogen atom-containing compound, ethylene oxide and other alkylene oxides (for example, propylene oxide, 1,2-, 1,4-, 2,3- or 1,3-butylene oxide, etc.). These may be either random addition or block addition.
  • the active hydrogen atom-containing compound include glycol, dihydric phenol, primary monoamine, secondary diamine, and dicarboxylic acid.
  • glycol aliphatic glycols having 2 to 20 carbon atoms, alicyclic glycols having 5 to 12 carbon atoms, aromatic glycols having 8 to 26 carbon atoms, and the like can be used.
  • Examples of the aliphatic glycol include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,3- Hexanediol, 1,4-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,2-octanediol, 1,8-octanediol, 1,10-decanediol, 1,18-octadecane Examples thereof include diol, 1,20-eicosanediol, diethylene glycol, triethylene glycol, and thiodiethylene glycol.
  • Examples of the alicyclic glycol include 1-hydroxymethyl-1-cyclobutanol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, and 1-methyl-3,4-cyclohexanediol. 2-hydroxymethylcyclohexanol, 4-hydroxymethylcyclohexanol, 1,4-cyclohexanedimethanol, 1,1′-dihydroxy-1,1′-dicyclohexyl and the like.
  • aromatic glycol examples include dihydroxymethylbenzene, 1,4-bis ( ⁇ -hydroxyethoxy) benzene, 2-phenyl-1,3-propanediol, 2-phenyl-1,4-butanediol, and 2-benzyl. 1,3-propanediol, triphenylethylene glycol, tetraphenylethylene glycol, benzopinacol and the like.
  • phenol having 6 to 30 carbon atoms can be used.
  • alkyls (having 1 to 10 carbon atoms) or halogen-substituted products thereof can be used.
  • Examples of primary monoamines include aliphatic primary monoamines having 1 to 20 carbon atoms, such as methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, s-butylamine, isobutylamine, n- Examples thereof include amylamine, isoamylamine, n-hexylamine, n-heptylamine, n-octylamine, n-decylamine, n-octadecylamine and n-icosylamine.
  • Secondary diamines include aliphatic secondary diamines having 4 to 18 carbon atoms, heterocyclic secondary diamines having 4 to 13 carbon atoms, alicyclic secondary diamines having 6 to 14 carbon atoms, and carbon numbers 8 -14 aromatic secondary diamines and secondary alkanol diamines having 3 to 22 carbon atoms can be used.
  • Examples of the aliphatic secondary diamine include N, N′-dimethylethylenediamine, N, N′-diethylethylenediamine, N, N′-dibutylethylenediamine, N, N′-dimethylpropylenediamine, and N, N′-diethylpropylene.
  • N, N'-dibutylpropylenediamine N, N'-dimethyltetramethylenediamine, N, N'-diethyltetramethylenediamine, N, N'-dibutyltetramethylenediamine, N, N'-dimethylhexamethylenediamine N, N'-diethylhexamethylenediamine, N, N'-dibutylhexamethylenediamine, N, N'-dimethyldecamethylenediamine, N, N'-diethyldecamethylenediamine and N, N'-dibutyldecamethylenediamine Etc.
  • heterocyclic secondary diamine examples include piperazine and 1-aminopiperidine.
  • Examples of the alicyclic secondary diamine include N, N′-dimethyl-1,2-cyclobutanediamine, N, N′-diethyl-1,2-cyclobutanediamine, N, N′-dibutyl-1,2- Cyclobutanediamine, N, N'-dimethyl-1,4-cyclohexanediamine, N, N'-diethyl-1,4-cyclohexanediamine, N, N'-dibutyl-1,4-cyclohexanediamine, N, N'- Examples thereof include dimethyl-1,3-cyclohexanediamine, N, N′-diethyl-1,3-cyclohexanediamine, and N, N′-dibutyl-1,3-cyclohexanediamine.
  • aromatic secondary diamines include N, N′-dimethyl-phenylenediamine, N, N′-dimethyl-xylylenediamine, N, N′-dimethyl-diphenylmethanediamine, and N, N′-dimethyl-diphenyletherdiamine.
  • Examples of the secondary alkanoldiamine include N-methyldiethanolamine, N-octyldiethanolamine, N-stearyldiethanolamine, and N-methyldipropanolamine.
  • dicarboxylic acids having 2 to 20 carbon atoms can be used.
  • dicarboxylic acids having 2 to 20 carbon atoms can be used.
  • aliphatic dicarboxylic acids, aromatic dicarboxylic acids, and alicyclic dicarboxylic acids are used.
  • Examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, methyl succinic acid, dimethyl malonic acid, ⁇ -methyl glutaric acid, ethyl succinic acid, isopropyl malonic acid, adipic acid, pimelic acid, suberic acid, Azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanediic acid, tetradecanediic acid, hexadecanediic acid, octadecanediic acid and icosandiic acid.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, phenylmalonic acid, homophthalic acid, phenylsuccinic acid, ⁇ -phenylglutaric acid, ⁇ -phenyladipic acid, ⁇ -phenyladipic acid, biphenyl-2 2,2'-dicarboxylic acid, biphenyl-4,4'-dicarboxylic acid, naphthalenedicarboxylic acid, sodium 3-sulfoisophthalate and potassium 3-sulfoisophthalate.
  • Examples of the alicyclic dicarboxylic acid include 1,3-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, and 1,3-cyclohexanedicarboxylic acid.
  • Examples include acids, 1,4-cyclohexanediacetic acid, 1,3-cyclohexanediacetic acid, 1,2-cyclohexanediacetic acid and dicyclohexyl-4,4′-dicarboxylic acid.
  • active hydrogen atom-containing compounds can be used singly or in a mixture of two or more.
  • epoxy compound (D) having two or more epoxy groups used in the present invention will be described.
  • the epoxy compound (D) used in the present invention is not particularly limited as long as it has two or more epoxy groups, and examples thereof include mononuclear polyhydric phenol compounds such as hydroquinone, resorcin, pyrocatechol, and phloroglucinol.
  • Polyglycidyl ether compounds dihydroxynaphthalene, biphenol, methylene bisphenol (bisphenol F), methylene bis (orthocresol), ethylidene bisphenol, isopropylidene bisphenol (bisphenol A), isopropylidene bis (orthocresol), tetrabromobisphenol A, 1,3 -Bis (4-hydroxycumylbenzene), 1,4-bis (4-hydroxycumylbenzene), 1,1,3-tris (4-hydroxyphenyl) butane, 1,1,2,2-tetra ( 4 Polyglycidyl ether compounds of polynuclear polyhydric phenol compounds such as hydroxyphenyl) ethane, thiobisphenol, sulfobisphenol, oxybisphenol, phenol novolak, orthocresol novolak, ethylphenol novolak, butylphenol novolak, octylphenol novolak, resorcin novolak, ter
  • epoxy compounds are made high molecular weight by using those internally crosslinked by terminal isocyanate prepolymers or polyvalent active hydrogen compounds (polyhydric phenols, polyamines, carbonyl group-containing compounds, polyphosphate esters, etc.). It may be what you did. Two or more of such epoxy compounds (D) may be used.
  • the polymer compound (E) includes a polyester (A) composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and the above compound (from the viewpoint of durability of antistatic performance and resistance to organic solvents. It is preferable that B) and the epoxy compound (D) have a structure formed by bonding via an ester bond.
  • the polymer compound (E) is a block composed of a polyester (A) composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, from the viewpoint of durability of antistatic performance and resistance to organic solvents.
  • the polyester (A) according to the present invention is only required to be composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid.
  • the removed residue has a structure bonded via an ester bond, and the residue obtained by removing the hydroxyl group of the diol and the residue obtained by removing the carboxyl group of the aromatic dicarboxylic acid are linked via an ester bond. Structure.
  • the polyester (A) preferably has a structure having carboxyl groups at both ends. Further, the degree of polymerization of the polyester (A) is preferably in the range of 2-50.
  • the polyester (A) having carboxyl groups at both ends can be obtained, for example, by subjecting the aliphatic dicarboxylic acid and the aromatic dicarboxylic acid to a polycondensation reaction with the diol.
  • the aliphatic dicarboxylic acid may be a derivative of an aliphatic dicarboxylic acid (for example, an acid anhydride, an alkyl ester, an alkali metal salt, an acid halide, etc.).
  • an aliphatic dicarboxylic acid for example, an acid anhydride, an alkyl ester, an alkali metal salt, an acid halide, etc.
  • the aliphatic dicarboxylic acid and its derivative may be a mixture of two or more.
  • the aromatic dicarboxylic acid may be a derivative of an aromatic dicarboxylic acid (for example, an acid anhydride, an alkyl ester, an alkali metal salt, an acid halide, etc.). It is sufficient that the both ends are treated to form carboxyl groups, and the reaction for proceeding to the next block polymer (C) having a structure having carboxyl groups at both ends may be proceeded as it is. Moreover, 2 or more types of mixtures may be sufficient as aromatic dicarboxylic acid and its derivative (s).
  • an aromatic dicarboxylic acid for example, an acid anhydride, an alkyl ester, an alkali metal salt, an acid halide, etc.
  • the ratio of the residue excluding the carboxyl group of the aliphatic dicarboxylic acid to the residue excluding the carboxyl group of the aromatic dicarboxylic acid is 90:10 to 99.9: 0. 1 is preferable, and 93: 7 to 99.9: 0.1 is more preferable.
  • the polyester (A) having carboxyl groups at both ends can be obtained, for example, by subjecting the aliphatic dicarboxylic acid or derivative thereof and the aromatic dicarboxylic acid or derivative thereof to a polycondensation reaction with the diol.
  • the reaction ratio of the aliphatic dicarboxylic acid or derivative thereof and the aromatic dicarboxylic acid or derivative thereof to the diol is such that the aliphatic dicarboxylic acid or derivative thereof and the aromatic dicarboxylic acid or derivative thereof are adjusted so that both ends are carboxyl groups. It is preferable to use in excess, and it is preferable to use 1 molar excess with respect to diol by molar ratio.
  • the molar ratio of the aliphatic dicarboxylic acid or derivative thereof and the aromatic dicarboxylic acid or derivative thereof during the polycondensation reaction is preferably 90:10 to 99.9: 0.1, and 93: 7 to 99.9. : 0.1 is more preferable.
  • a polyester composed only of a diol and an aliphatic dicarboxylic acid or a polyester composed only of a diol and an aromatic dicarboxylic acid may be produced. They may be mixed in A), or they may be directly reacted with the component (B) to obtain the block polymer (C).
  • a catalyst that promotes the esterification reaction may be used.
  • the catalyst conventionally known ones such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used.
  • aliphatic dicarboxylic acids and aromatic dicarboxylic acids can be obtained by reacting them with a diol when a derivative such as a carboxylic acid ester, a carboxylic acid metal salt, or a carboxylic acid halide is used instead of the dicarboxylic acid.
  • the terminal may be treated to form a dicarboxylic acid, or the reaction may proceed to the next reaction for obtaining a block polymer (C) having a structure having a carboxyl group at both ends.
  • a suitable polyester (A) comprising a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid and having carboxyl groups at both ends forms an ester bond by reacting with the component (B), and the structure of the block polymer (C) And the carboxyl groups at both ends may be protected, modified, or in the form of a precursor.
  • antioxidants such as a phenolic antioxidant
  • the compound (B) having hydroxyl groups at both ends only needs to form an ester bond by reacting with the component (A) to form the structure of the block polymer (C), and the hydroxyl groups at both ends are protected. It may be modified, modified, or in the form of a precursor.
  • the block polymer (C) having a structure having a carboxyl group at both ends has a block composed of the polyester (A) and a block composed of the compound (B).
  • the block has a structure in which the block is repeatedly and alternately bonded through an ester bond formed by a carboxyl group and a hydroxyl group.
  • An example of such a block polymer (C) is, for example, one having a structure represented by the following general formula (3).
  • (A) represents a block composed of the polyester (A) having carboxyl groups at both ends
  • (B) is from the compound (B) having hydroxyl groups at both ends.
  • t is the number of repeating units, and preferably represents a number of 1 to 10.
  • t is more preferably a number of 1 to 7, and most preferably a number of 1 to 5.
  • a part of the block composed of the polyester (A) in the block polymer (C) is composed of a polyester composed only of a diol and an aliphatic dicarboxylic acid, or composed only of a diol and an aromatic dicarboxylic acid. It may be replaced with a block made of polyester.
  • the block polymer (C) having a structure having carboxyl groups at both ends is a polycondensation reaction between the polyester (A) having carboxyl groups at both ends and the compound (B) having hydroxyl groups at both ends.
  • a block polymer (C) having the following can be preferably obtained.
  • the compound (B) may be added to the reaction system and reacted as it is without isolating the polyester (A).
  • a catalyst that promotes the esterification reaction may be used.
  • the catalyst conventionally known ones such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used.
  • antioxidants such as a phenolic antioxidant
  • the polyester (A) may be mixed with a polyester composed only of a diol and an aliphatic dicarboxylic acid, or a polyester composed only of a diol and an aromatic dicarboxylic acid. To obtain a block polymer (C).
  • the block polymer (C) includes a block composed of a polyester composed only of a diol and an aliphatic dicarboxylic acid, a block composed of a polyester (A), and a block composed of a compound (B), A block composed of polyester composed only of aromatic dicarboxylic acid may be included in the structure.
  • the block polymer (C) having a structure having a carboxyl group at both ends and the epoxy compound (D) having two or more epoxy groups are preferably a block polymer. It has a structure formed by bonding via an ester bond formed by the terminal carboxyl group of (C) and the epoxy group of epoxy compound (D).
  • the polymer compound (E) may further contain an ester bond formed by the carboxyl group of the polyester (A) and the epoxy group of the epoxy compound (D).
  • the carboxyl group of the block polymer (C) and the epoxy group of the epoxy compound (D) may be reacted.
  • the number of epoxy groups in the epoxy compound is preferably 0.5 to 5 equivalents, more preferably 0.5 to 1.5 equivalents, of the number of carboxyl groups in the block polymer (C) to be reacted.
  • the said reaction may be performed in various solvents and may be performed in a molten state.
  • the epoxy compound (D) having two or more epoxy groups to be reacted is preferably 0.1 to 2.0 equivalents, preferably 0.2 to 1.5 equivalents of the number of carboxyl groups of the block polymer (C) to be reacted. More preferred.
  • the epoxy compound (D) may be added to the reaction system without isolation of the block polymer (C) and reacted as it is.
  • the carboxyl group of the unreacted polyester (A) used excessively when synthesizing the block polymer (C) reacts with some epoxy groups of the epoxy compound (D) to form an ester bond. May be.
  • a preferred polymer compound (E) of the present invention comprises a block polymer (C) having a structure having carboxyl groups at both ends and an epoxy compound (D) having two or more epoxy groups, each having a carboxyl group and an epoxy group. It is not always necessary to synthesize from the block polymer (C) and the epoxy compound (D) as long as it has a structure equivalent to that having a structure bonded through an ester bond formed by
  • the number average molecular weight of the block composed of the polyester (A) in the polymer compound (E) is preferably 800 to 8,000, more preferably 1,000 to 6,000 in terms of polystyrene. More preferably, it is 2,000 to 4,000.
  • the number average molecular weight of the block composed of the compound (B) having hydroxyl groups at both ends in the polymer compound (E) is preferably 400 to 6,000, more preferably 1,000 in terms of polystyrene. 5,000 to 5,000, more preferably 2,000 to 4,000.
  • the number average molecular weight of the block composed of the block polymer (C) having a structure having carboxyl groups at both ends in the polymer compound (E) is preferably 5,000 to 25,000 in terms of polystyrene. More preferably, it is 7,000 to 17,000, and more preferably 9,000 to 13,000.
  • the polymer compound (E) of the present invention is obtained by obtaining the polyester (A) from a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and then isolating the polyester (A) without isolating the polyester (A). Or you may make it react with an epoxy compound (D).
  • the compounding amount of the polymer compound (E) is 3 to 25 parts by mass with respect to 100 parts by mass of the thermoplastic resin, and 5 to 22 parts by mass from the viewpoint of durability of antistatic performance and resistance to organic solvents. 7 to 20 parts by mass is more preferable. If the blending amount is less than 3 parts by mass, sufficient antistatic properties cannot be obtained, and if it exceeds 25 parts by mass, the mechanical properties of the resin may be adversely affected.
  • the resin composition of the present invention preferably further contains one or more alkali metal salts (F) from the viewpoint of antistatic properties and durability.
  • metal salts when used in containers and tubes for medical and food applications, the inclusion of metal salts may not be preferable when obtaining approvals necessary for use in medical or food applications.
  • alkali metal salt (F) examples include salts of organic acids or inorganic acids.
  • alkali metal examples include lithium, sodium, potassium, cesium, rubidium and the like.
  • organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc.
  • Aliphatic dicarboxylic acids having 1 to 12 carbon atoms aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, trifluoromethane
  • aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid
  • sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids.
  • inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid, perchloric acid and the
  • lithium, sodium, and potassium are more preferable from the viewpoint of antistatic properties, and lithium and sodium are most preferable.
  • acetic acid salts, perchloric acid salts, p-toluenesulfonic acid salts, and dodecylbenzenesulfonic acid salts are preferred.
  • alkali metal salt examples include, for example, lithium acetate, sodium acetate, potassium acetate, lithium chloride, sodium chloride, potassium chloride, lithium phosphate, sodium phosphate, potassium phosphate, lithium sulfate, sodium sulfate, perchlorine.
  • Lithium acid, sodium perchlorate, potassium perchlorate, lithium p-toluenesulfonate, sodium p-toluenesulfonate, potassium p-toluenesulfonate, lithium dodecylbenzenesulfonate, sodium dodecylbenzenesulfonate, dodecylbenzenesulfonic acid Potassium etc. are mentioned.
  • lithium acetate, potassium acetate, lithium p-toluenesulfonate, sodium p-toluenesulfonate, lithium dodecylbenzenesulfonate, sodium dodecylbenzenesulfonate, lithium chloride and the like are preferable.
  • the blending amount of the alkali metal salt (F) can be 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin from the viewpoint of durability of antistatic performance and resistance to organic solvents. 0.3 to 2 parts by mass is preferable, and 0.4 to 1 part by mass is more preferable. If the amount of the alkali metal salt is less than 0.1 parts by mass, the antistatic property is not sufficient, and if it exceeds 5 parts by mass, the physical properties of the resin may be affected.
  • the resin composition of the present invention may further contain one or more Group 2 element salts as long as the effects of the present invention are not impaired.
  • the salt of the Group 2 element is contained when obtaining permission required for use in medical use or food use. There is also.
  • Examples of the salt of the Group 2 element include salts of organic acids or inorganic acids, and examples of the Group 2 element include beryllium, magnesium, calcium, strontium, barium and the like.
  • Examples of organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc.
  • Aliphatic dicarboxylic acids having 1 to 12 carbon atoms aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, trifluoromethane
  • aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid
  • sulfonic acids having 1 to 20 carbon atoms such as sulfonic acids.
  • inorganic acids include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid, perchloric acid and the
  • the blending amount of the group 2 element salt can also be 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin from the viewpoint of durability of antistatic performance and resistance to organic solvents. 0.3 to 2 parts by mass is preferable, and 0.4 to 1 part by mass is more preferable.
  • the amount of the salt of the Group 2 element is less than 0.1 parts by mass, the antistatic property is not sufficient, and when it exceeds 5 parts by mass, the physical properties of the resin may be affected.
  • the alkali metal salt (F) and the salt of Group 2 element are used in combination, the total amount of these can be 0.1 to 5 parts by mass, preferably 100 parts by mass of the thermoplastic resin. 0.3 to 2 parts by mass, more preferably 0.4 to 1 part by mass.
  • a surfactant may be blended within a range not impairing the effects of the present invention.
  • the surfactant nonionic, anionic, cationic or amphoteric surfactants can be used.
  • Nonionic surfactants include polyethylene glycol type nonionic surfactants such as higher alcohol ethylene oxide adducts, fatty acid ethylene oxide adducts, higher alkylamine ethylene oxide adducts, and polypropylene glycol ethylene oxide adducts; polyethylene oxide, fatty acid esters of glycerin And polyvalent alcohol type nonionic surfactants such as fatty acid esters of pentaerythritol, fatty acid esters of sorbit or sorbitan, alkyl ethers of polyhydric alcohols, aliphatic amides of alkanolamines, and the like.
  • anionic surfactant examples include carboxylates such as alkali metal salts of higher fatty acids; sulfates such as higher alcohol sulfates and higher alkyl ether sulfates, alkylbenzene sulfonates, alkyl sulfonates, Examples thereof include sulfonates such as paraffin sulfonates; phosphate esters such as higher alcohol phosphates.
  • cationic surfactant examples include quaternary ammonium salts such as alkyltrimethylammonium salts.
  • amphoteric surfactants include amino acid-type amphoteric surfactants such as higher alkylaminopropionates, betaine-type amphoteric surfactants such as higher alkyldimethylbetaines and higher alkyldihydroxyethylbetaines, and these are used alone or Two or more types can be used in combination.
  • the amount of the surfactant added is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • a polymer type antistatic agent may be blended in the resin composition of the present invention.
  • a polymer type antistatic agent such as a known polyether ester amide can be used.
  • a polyether ester amide for example, JP-A-7-10989 And polyether ester amides comprising a polyoxyalkylene adduct of bisphenol A described in 1.
  • a block polymer having a repeating structure having 2 to 50 bonding units between a polyolefin block and a hydrophilic polymer block can be used, and examples thereof include a block polymer described in US Pat. No. 6,552,131.
  • the blending amount when the polymer type antistatic agent is blended is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the resin composition of the present invention may contain an ionic liquid as long as the effects of the present invention are not impaired.
  • the ionic liquid are those having a melting point of room temperature or lower and at least one of cations or anions constituting the ionic liquid is an organic ion, and the initial conductivity is preferably 1 to 200 ms / cm, more preferably A room temperature molten salt of 10 to 200 ms / cm, for example, a room temperature molten salt described in International Publication No. 95/15572.
  • Examples of cations constituting the ionic liquid include cations selected from the group consisting of amidinium, pyridinium, pyrazolium and guanidinium cations. Among these, the following are mentioned as an amidinium cation.
  • Imidazolinium cation Examples include those having 5 to 15 carbon atoms, such as 1,2,3,4-tetramethylimidazolinium and 1,3-dimethylimidazolinium; (2) Imidazolium cation Examples include those having 5 to 15 carbon atoms, such as 1,3-dimethylimidazolium, 1-ethyl-3-methylimidazolium; (3) Tetrahydropyrimidinium cation Examples include those having 6 to 15 carbon atoms, such as 1,3-dimethyl-1,4,5,6-tetrahydropyrimidinium, 1,2,3,4-tetra.
  • Methyl-1,4,5,6-tetrahydropyrimidinium (4) Dihydropyrimidinium cation C6-20, for example, 1,3-dimethyl-1,4-dihydropyrimidinium, 1,3-dimethyl-1,6-dihydropyrimidi Ni, 8-methyl-1,8-diazabicyclo [5,4,0] -7,9-undecadienium, 8-methyl-1,8-diazabicyclo [5,4,0] -7,10-un Decadienium.
  • 1,3-dimethyl-1,4-dihydropyrimidinium 1,3-dimethyl-1,6-dihydropyrimidi Ni
  • 8-methyl-1,8-diazabicyclo [5,4,0] -7,9-undecadienium 8-methyl-1,8-diazabicyclo [5,4,0] -7,10-un Decadienium.
  • Examples of the pyridinium cation include those having 6 to 20 carbon atoms, such as 3-methyl-1-propylpyridinium and 1-butyl-3,4-dimethylpyridinium.
  • Examples of the pyrazolium cation include those having 5 to 15 carbon atoms, such as 1,2-dimethylpyrazolium and 1-n-butyl-2-methylpyrazolium.
  • Guanidinium cation having an imidazolinium skeleton One having 8 to 15 carbon atoms includes, for example, 2-dimethylamino-1,3,4-trimethylimidazolinium, 2-diethylamino-1,3 , 4-trimethylimidazolinium;
  • the above cations may be used alone or in combination of two or more. Of these, from the viewpoint of antistatic properties, an amidinium cation is preferable, an imidazolium cation is more preferable, and a 1-ethyl-3-methylimidazolium cation is particularly preferable.
  • examples of the organic acid or inorganic acid constituting the anion include the following.
  • examples of the organic acid include carboxylic acid, sulfuric acid ester, sulfonic acid and phosphoric acid ester;
  • examples of the inorganic acid include super strong acid (for example, borofluoric acid, tetrafluoroboric acid, perchloric acid, phosphorus hexafluoride). Acid, hexafluoroantimonic acid and hexafluoroarsenic acid), phosphoric acid and boric acid.
  • the organic acid and inorganic acid may be used singly or in combination of two or more.
  • a super strong acid conjugate in which the Hammett acidity function ( ⁇ H 0 ) of the anion constituting the ionic liquid is 12 to 100 is preferable.
  • Bases acids that form anions other than conjugate bases of super strong acids, and mixtures thereof.
  • halogen eg, fluorine, chlorine and bromine
  • alkyl having 1 to 12 carbon atoms
  • benzenesulfonic acid eg, p-toluenesulfonic acid and dodecylbenzenesulfonic acid.
  • examples of super strong acids include those derived from proton acids, combinations of proton acids and Lewis acids, and mixtures thereof.
  • borofluoric acid trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) imidic acid and bis (pentafluoroethylsulfonyl) imidic acid are preferable from the viewpoint of ease of synthesis.
  • Examples of the protonic acid used in combination with the Lewis acid include hydrogen halide (for example, hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide), perchloric acid, fluorosulfonic acid, methanesulfonic acid, and trifluoromethane.
  • Examples include sulfonic acid, pentafluoroethanesulfonic acid, nonafluorobutanesulfonic acid, undecafluoropentanesulfonic acid, tridecafluorohexanesulfonic acid, and mixtures thereof.
  • hydrogen fluoride is preferred from the viewpoint of the initial conductivity of the ionic liquid.
  • Lewis acid examples include boron trifluoride, phosphorus pentafluoride, antimony pentafluoride, arsenic pentafluoride, tantalum pentafluoride, and mixtures thereof.
  • boron trifluoride and phosphorus pentafluoride are preferable from the viewpoint of the initial conductivity of the ionic liquid.
  • the combination of the protonic acid and the Lewis acid is arbitrary, but examples of the super strong acid composed of these combinations include tetrafluoroboric acid, hexafluorophosphoric acid, hexafluorotantalic acid, hexafluoroantimonic acid, hexafluoride. Tantalum sulfonate, tetrafluoroboronic acid, hexafluorophosphoric acid, chloroboron trifluoride, arsenic hexafluoride and mixtures thereof.
  • a conjugate base of a super strong acid (a super strong acid comprising a proton acid and a super strong acid comprising a combination of a proton acid and a Lewis acid), and more preferred.
  • a conjugate base of a super strong acid composed of a proton acid and a super strong acid composed of a proton acid and boron trifluoride and / or phosphorus pentafluoride is particularly preferred.
  • the ionic liquid having an amidinium cation is preferable from the viewpoint of antistatic properties, the ionic liquid having a 1-ethyl-3-methylimidazolium cation is more preferable, and particularly preferable.
  • 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl) imide is more preferable, and particularly preferable.
  • the blending amount is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the resin composition of the present invention may contain a compatibilizing agent as long as the effects of the present invention are not impaired.
  • blending a compatibilizing agent By mix
  • the compatibilizer include a modified vinyl polymer having at least one functional group (polar group) selected from the group consisting of a carboxyl group, an epoxy group, an amino group, a hydroxyl group, and a polyoxyalkylene group. -258850 polymer, modified vinyl polymer having a sulfonyl group described in JP-A-6-345927, or block polymer having a polyolefin portion and an aromatic vinyl polymer portion. .
  • the blending amount is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • the resin composition of the present invention includes phenolic antioxidants, phosphorus antioxidants, thioether antioxidants, ultraviolet absorbers, hindered amines, as necessary, as long as the effects of the present invention are not impaired.
  • Various additives such as a light stabilizer can be further added, whereby the resin composition of the present invention can be stabilized.
  • phenolic antioxidant examples include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, distearyl (3,5-ditert-butyl-4). -Hydroxybenzyl) phosphonate, 1,6-hexamethylenebis [(3,5-ditert-butyl-4-hydroxyphenyl) propionic acid amide], 4,4'-thiobis (6-tert-butyl-m-cresol ), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 4,4′-butylidenebis (6-tert-butyl) -M-cresol), 2,2′-ethylidenebis (4,6-ditert-butylphenol), 2,2′-ethylidenebis (4-secondarybutyl-6-tert-butyl) Eno
  • Examples of the phosphorus antioxidant include trisnonylphenyl phosphite, tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl].
  • Phosphite tridecyl phosphite, octyl diphenyl phosphite, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-di Tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-ditert-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,4,6-tritert-butylphenyl) pentaerythritol diphosphite Phosphite, bis (2,4-dicumylphenyl) pe Taerythritol diphosphite, tetra (tridecyl) isopropylidene diphenol diphosphit
  • thioether-based antioxidant examples include dialkylthiodipropionates such as dilauryl thiodipropionate, dimyristyl thiodipropionate, distearyl thiodipropionate, and pentaerythritol tetra ( ⁇ -alkylthiopropionic acid). Examples include esters.
  • the addition amount of these thioether-based antioxidants is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the thermoplastic resin.
  • Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-Hydroxybenzophenones such as 2- (2′-hydroxy-5′-methylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-ditert-butylphenyl) -5-chloro Benzotriazole, 2- (2′-hydroxy-3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy-5′-tert.
  • Octylphenyl) benzotriazole 2- (2′-hydroxy-3 ′, 5′-dicumylphenyl) benzotriazole, 2 2- (methylenebis (4-tert-octyl-6- (benzotriazolyl) phenol), 2- (2′-hydroxy-3′-tert-butyl-5′-carboxyphenyl) benzotriazole and the like 2- ( 2'-hydroxyphenyl) benzotriazoles; phenyl salicylate, resorcinol monobenzoate, 2,4-ditertiarybutylphenyl-3,5-ditertiarybutyl-4-hydroxybenzoate, 2,4-ditertiary amylphenyl Benzoates such as 3,5-ditert-butyl-4-hydroxybenzoate and hexadecyl-3,5-ditert-butyl-4-hydroxybenzoate; 2-ethyl-2′-ethoxyoxanilide, 2-ethoxy Substitute
  • hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate Bis (1-octoxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4 Butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2, , 6,6-tetramethyl-4-piperidyl) -di (tridecyl)
  • a known neutralizing agent as necessary in order to neutralize the residual catalyst in the thermoplastic resin such as polyolefin resin.
  • the neutralizing agent include fatty acid metal salts such as calcium stearate, lithium stearate, and sodium stearate, or fatty acid amides such as ethylene bis (stearamide), ethylene bis (12-hydroxystearamide), and stearic acid amide. Compounds, and these neutralizing agents may be used in combination.
  • the resin composition of the present invention may further include an aromatic carboxylic acid metal salt, an alicyclic alkyl carboxylic acid metal salt, an aluminum p-tert-butylbenzoate, an aromatic phosphate metal salt, if necessary.
  • Nucleating agents such as dibenzylidene sorbitol, metal soap, hydrotalcite, triazine ring-containing compound, metal hydroxide, phosphate ester flame retardant, condensed phosphate ester flame retardant, phosphate flame retardant, inorganic phosphorus Flame retardants, (poly) phosphate flame retardants, halogen flame retardants, silicon flame retardants, antimony oxides such as antimony trioxide, other inorganic flame retardant aids, other organic flame retardant aids, Fillers, pigments, lubricants, foaming agents and the like may be added.
  • triazine ring-containing compound examples include melamine, ammelin, benzguanamine, acetoguanamine, phthalodiguanamine, melamine cyanurate, melamine pyrophosphate, butylenediguanamine, norbornene diguanamine, methylene diguanamine, ethylene dimelamine, trimethylene Dimelamine, tetramethylene dimelamine, hexamethylene dimelamine, 1,3-hexylene dimelamine and the like can be mentioned.
  • metal hydroxide examples include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, barium hydroxide, zinc hydroxide, Kismer 5A (magnesium hydroxide: manufactured by Kyowa Chemical Industry Co., Ltd.) and the like.
  • phosphate ester flame retardant examples include, for example, trimethyl phosphate, triethyl phosphate, tributyl phosphate, tributoxyethyl phosphate, trischloroethyl phosphate, trisdichloropropyl phosphate, triphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, Trixylenyl phosphate, octyl diphenyl phosphate, xylenyl diphenyl phosphate, trisisopropylphenyl phosphate, 2-ethylhexyl diphenyl phosphate, t-butylphenyl diphenyl phosphate, bis- (t-butylphenyl) phenyl phosphate, tris- (t-butyl Phenyl) phosphate, isopropylphenyldiphenylphosphate, bis- ( Isopropy
  • condensed phosphate ester flame retardant examples include 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate), and the like.
  • Examples of the (poly) phosphate flame retardant include ammonium salts and amine salts of (poly) phosphoric acid such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, melamine pyrophosphate, and piperazine pyrophosphate. .
  • Examples of other inorganic flame retardant aids include inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talc, montmorillonite, and surface-treated products thereof.
  • inorganic compounds such as titanium oxide, aluminum oxide, magnesium oxide, hydrotalcite, talc, montmorillonite, and surface-treated products thereof.
  • TIPAQUE R-680 Titanium oxide: manufactured by Ishihara Sangyo Co., Ltd.
  • Kyowa Mag 150 magnesium oxide: manufactured by Kyowa Chemical Industry Co., Ltd.
  • DHT-4A hydrotalcite: manufactured by Kyowa Chemical Industry Co., Ltd.
  • Alkamizer 4 zinc modified hydro
  • talcite manufactured by Kyowa Chemical Industry Co., Ltd.
  • examples of other organic flame retardant aids include pentaerythritol.
  • the resin composition of the present invention contains additives that are usually used in thermoplastic resins as necessary, for example, crosslinking agents, antifogging agents, plate-out preventing agents, surface treatment agents, plasticizers, lubricants, difficult additives.
  • additives that are usually used in thermoplastic resins as necessary, for example, crosslinking agents, antifogging agents, plate-out preventing agents, surface treatment agents, plasticizers, lubricants, difficult additives.
  • Blends flame retardants, fluorescent agents, fungicides, bactericides, foaming agents, metal deactivators, mold release agents, pigments, processing aids, antioxidants, light stabilizers, etc. within the range that does not impair the effects of the present invention. can do.
  • the method for producing the resin composition of the present invention is not particularly limited, and the polymer compound (E), the alkali metal salt (F), and other optional components may be blended in the thermoplastic resin. Any method used can be used. For example, they may be mixed and kneaded by roll kneading, bumper kneading, an extruder, a kneader or the like.
  • the polymer compound (E) may be added as it is, but if necessary, it may be added after impregnating the support.
  • the carrier In order to impregnate the carrier, it may be heated and mixed as it is, or if necessary, it may be diluted with an organic solvent, impregnated into the carrier, and then the solvent is removed.
  • a carrier those known as fillers and fillers of synthetic resins, or flame retardants and light stabilizers that are solid at room temperature can be used.
  • fillers and fillers of synthetic resins, or flame retardants and light stabilizers that are solid at room temperature can be used.
  • titanium oxide powder those obtained by chemically modifying the surface of these carriers, solid ones among the flame retardants and antioxidants listed below, and the like can be mentioned.
  • these carriers those obtained by chemically modifying the surface of the carrier are preferred, and those obtained by chemically modifying the surface of the silica powder are more preferred.
  • These carriers preferably have an average particle size of 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m.
  • the polymer compound (E) is synthesized and blended while kneading the block polymer (C) and the epoxy compound (D) into the resin component.
  • the alkali metal salt (F) may be kneaded at the same time, if necessary, and at the time of molding such as injection molding, the polymer compound (E) and the resin component, and if necessary, the alkali metal It may be blended by a method of obtaining a molded product by mixing the salt (F), and further, a master batch of a thermoplastic resin and, if necessary, an alkali metal salt (F) is produced in advance. You may mix
  • the organic solvent container and tube of the present invention are formed by molding the resin composition of the present invention.
  • a resin molded body having antistatic properties can be obtained.
  • the molding method is not particularly limited, and examples thereof include extrusion processing, calendar processing, injection molding, roll, compression molding, blow molding, rotational molding, and the like. Resin plate, sheet, film, bottle, fiber, irregular shape product Various shaped products such as these can be manufactured.
  • the molded product obtained from the resin composition of the present invention is excellent in antistatic performance and its sustainability. It also has resistance to wiping.
  • the molded product obtained by the resin composition of the present invention has a long-lasting antistatic property and a long-lasting antistatic property without elution of the antistatic component even when in contact with an organic solvent for a long time. Has performance.
  • Examples of the organic solvent that can be used in the container and pipe of the present invention include known organic solvents, and flammable and ignitable ones are particularly preferable.
  • organic solvents examples include alcohol solvents, diol solvents, ketone solvents, ester solvents, ether solvents, aliphatic or alicyclic hydrocarbon solvents, aromatic hydrocarbon solvents, carbons having a cyano group.
  • organic solvents include hydrogen solvents, petroleum solvents, halogen solvents, and other solvents.
  • alcohol solvents examples include methanol, ethanol, propanol, isopropanol, 1-butanol, isobutanol, 2-butanol, tertiary butanol, pentanol, isopentanol, 2-pentanol, neopentanol, and third pen.
  • diol solvent examples include ethylene glycol, propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, neopentyl glycol, isoprene glycol (3 -Methyl-1,3-butanediol), 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, octanediol (2-ethyl- 1,3-hexanediol), 2-butyl-2-ethyl-1,3-propanediol, 2,5-dimethyl-2,5-hexanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, Examples include 1,4-cyclohexan
  • ketone solvent examples include acetone, ethyl methyl ketone, methyl butyl ketone, methyl isobutyl ketone, ethyl butyl ketone, dipropyl ketone, diisobutyl ketone, methyl amyl ketone, cyclohexanone, and methylcyclohexanone.
  • ester solvent examples include methyl formate, ethyl formate, methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, sec-butyl acetate, sec-butyl acetate, amyl acetate, isoamyl acetate, triamyl acetate, Phenyl acetate, methyl propionate, ethyl propionate, isopropyl propionate, butyl propionate, isobutyl propionate, butyl propionate, tert-butyl propionate, amyl propionate, isoamyl propionate, 3 amyl propionate, propionate Acid phenyl, methyl 2-ethylhexanoate, ethyl 2-ethylhexanoate, propyl 2-ethylhexanoate, isopropyl 2-ethylhex
  • ether solvent examples include tetrahydrofuran, tetrahydropyran, morpholine, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, dibutyl ether, diethyl ether, dioxane and the like.
  • Examples of the aliphatic or alicyclic hydrocarbon solvent include pentane, hexane, cyclohexane, methylcyclohexane, dimethylcyclohexane, ethylcyclohexane, heptane, octane, decalin, and solvent naphtha.
  • aromatic hydrocarbon solvent examples include benzene, toluene, ethylbenzene, xylene, mesitylene, diethylbenzene, cumene, isobutylbenzene, cymene, and tetralin.
  • Examples of petroleum solvents include mineral spirits, kerosene and thinner.
  • halogen solvents include methylene chloride, chloroform, 1,2-dichloroethane, trichloroethylene, tetrachloroethylene, and the like.
  • hydrocarbon solvents having a cyano group examples include acetonitrile, 1-cyanopropane, 1-cyanobutane, 1-cyanohexane, cyanocyclohexane, cyanobenzene, 1,3-dicyanopropane, 1,4-dicyanobutane, 1,6- Examples include dicyanohexane, 1,4-dicyanocyclohexane, 1,4-dicyanobenzene, and the like.
  • organic solvents include N-methyl-2-pyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, sulfolane, acetic acid, acetic anhydride, and glacial acetic acid.
  • liquid fuel is also included in the organic solvent, and it is also preferable to use these fuel containers and tubes.
  • Examples of fuels include petroleum, shale oil, kerosene, gasoline, light oil, heavy oil, jet fuel, naphtha, benzine, liquefied natural gas, liquefied petroleum gas, liquefied propane gas, and liquefied shale gas.
  • oils such as vegetable oils and animal oils are also included in the organic solvent.
  • oils include edible and industrial ones.
  • edible oils include canola oil, coconut oil, corn oil, cottonseed oil, olive oil, palm oil, palm kernel oil, peanut oil, rapeseed oil, safflower oil, sesame oil, soybean oil, sunflower oil, almond oil, flaxseed Oil, grape seed oil, perilla oil, rice bran oil, beef tallow, lard, fish oil and the like
  • industrial use include tung oil, linseed oil, castor oil and the like.
  • organic solvents may be one kind or a mixture of two or more kinds. Moreover, components other than the organic solvent may be dissolved or mixed. Furthermore, water may be mixed.
  • the container and pipe of the present invention can also be used for combustible gas piping such as natural gas, propane gas, city gas, and shale gas.
  • combustible gas piping such as natural gas, propane gas, city gas, and shale gas.
  • the shape and size of the container of the present invention are not particularly limited as long as an organic solvent can be added.
  • the container may have a bottle shape or a bag shape.
  • the container may have a lid obtained by the resin composition of the present invention.
  • containers include fuel tanks, fuel containers, chemical containers, disinfectant containers, disinfecting alcohol containers, spray containers, cosmetic containers, edible oil containers, food containers, and the like.
  • the tube of the present invention is not particularly limited as long as it has a hollow shape and can pass an organic solvent.
  • Examples of the tube include a tube, a tube, a hose, and a pipe.
  • tubes include medical tubes, food tubes, industrial pipes, fuel hoses, fuel pipes, and the like.
  • the polyolefin antistatic fiber of the present invention comprises a resin composition containing 1 to 40 parts by mass of one or more polymer compounds (L) with respect to 100 parts by mass of a polyolefin resin.
  • the polymer compound (L) has both a diol, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and one or more groups represented by the following general formula (1).
  • the compound (I) having a hydroxyl group at the terminal and the compound (K) having a reactive functional group have a structure formed by bonding via an ester bond.
  • the polyolefin resin used in the present invention is not particularly limited.
  • low density polyethylene linear low density polyethylene, high density polyethylene, homopolypropylene, random copolymer polypropylene, block copolymer polypropylene, isotactic polypropylene, syndiotactic polypropylene, hemiisotactic polypropylene, polybutene, cycloolefin polymer, ⁇ -olefin polymers such as stereoblock polypropylene, poly-3-methyl-1-butene, poly-3-methyl-1-pentene, poly-4-methyl-1-pentene, block or random copolymerization of ethylene-propylene Polymer, impact copolymer polypropylene, ethylene-methyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copo
  • polyolefin resins include molecular weight, degree of polymerization, density, softening point, ratio of insoluble matter in solvent, degree of stereoregularity, presence or absence of catalyst residues, types and ratios of monomers used as raw materials, types of polymerization catalyst (For example, Ziegler catalyst, metallocene catalyst, etc.) can be used.
  • the polymer compound (L) used in the present invention will be described.
  • the polymer compound (L) is blended in order to impart antistatic properties to the antistatic fiber of the present invention.
  • the polymer compound (L) used in the present invention has a diol, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and at least one group represented by the following general formula (1). And a compound (I) having a hydroxyl group and a compound (K) having a reactive functional group are bonded via an ester bond.
  • the polymer compound (L) includes a diol, an aliphatic dicarboxylic acid, an aromatic dicarboxylic acid, and a compound (I) having one or more groups represented by the general formula (1) and having hydroxyl groups at both ends.
  • the compound (K) having a reactive functional group can be obtained by an esterification reaction.
  • diol used for the polymer compound (L) in the present invention will be described.
  • the diol used in the present invention include aliphatic diols and aromatic group-containing diols.
  • the diol may be a mixture of two or more.
  • the aliphatic diol include 1,2-ethanediol (ethylene glycol), 1,2-propanediol (propylene glycol), 1,3-propanediol, 1,2-butanediol, and 1,3-butanediol.
  • 1,4-cyclohexanedimethanol and hydrogenated bisphenol A are preferable from the viewpoint of antistatic properties and suppression of ion elution, and 1,4-cyclohexanedimethanol is more preferable.
  • the aliphatic diol preferably has hydrophobicity, among the aliphatic diols, polyethylene glycol having hydrophilicity is not preferable. However, this is not the case when used with other diols.
  • aromatic group-containing diol examples include bisphenol A, 1,2-hydroxybenzene, 1,3-hydroxybenzene, 1,4-hydroxybenzene, 1,4-benzenedimethanol, an ethylene oxide adduct of bisphenol A, Examples thereof include propylene oxide adducts of bisphenol A, polyhydroxyethyl adducts of mononuclear dihydric phenol compounds such as 1,4-bis (2-hydroxyethoxy) benzene, resorcin, and pyrocatechol.
  • diols having an aromatic group ethylene oxide adduct of bisphenol A, 1,4-bis ( ⁇ -hydroxyethoxy) benzene is preferable.
  • the aliphatic dicarboxylic acid and aromatic dicarboxylic acid used for the polymer compound (L) in the present invention can be the same as those used for the polymer compound (E).
  • the compound (I) having one or more groups represented by the above general formula (1) and having hydroxyl groups at both ends used in the present invention
  • the compound (B) used for the polymer compound (E) is used.
  • the compound (K) having a reactive functional group is not particularly limited as long as it has a reactive functional group, and examples thereof include compounds having a carboxyl group, a hydroxyl group, an amino group, an amide group, and an epoxy group.
  • an epoxy compound (K-1) having two or more epoxy groups as a reactive functional group and a polyhydric alcohol compound having three or more hydroxyl groups as a reactive functional group ( K-2) is preferred.
  • epoxy compound (K-1) used in the present invention the same compound (D) as that used for the polymer compound (E) can be used.
  • the polyhydric alcohol compound (K-2) used in the present invention is not particularly limited as long as it has three or more hydroxyl groups.
  • the molecular weight of the polyhydric alcohol compound is not particularly limited, and high molecular weight polyhydric alcohols such as polypentaerythritol and polyvinyl alcohol can be used, and synthetic polyhydric alcohols such as polyester polyols can also be used. Two or more kinds of such polyhydric alcohol compounds (K-2) may be used.
  • the polymer compound (L) includes a polyester (H) composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and the above compound (I) from the viewpoint of durability of antistatic performance and water resistance.
  • the compound having a reactive functional group (K) preferably has a structure formed by bonding via an ester bond.
  • the polymer compound (L) includes a block composed of a polyester (H) composed of a diol, an aliphatic dicarboxylic acid and an aromatic dicarboxylic acid, and the above compound from the viewpoint of durability of antistatic performance and water resistance.
  • a block polymer (J) having carboxyl groups at both ends, in which the block composed of (I) is alternately and repeatedly bonded via an ester bond, and the compound (K) having the reactive functional group are esters. It preferably has a structure formed by bonding via a bond.
  • polyester (H) As the polyester (H) according to the present invention, the same polyester (A) can be used.
  • the compound (I) having hydroxyl groups at both ends may be any compound that forms an ester bond by reacting with the polyester (H) and forms the structure of the block polymer (J). It may be modified, modified, or in the form of a precursor.
  • the block polymer (J) having a structure having a carboxyl group at both ends has a block composed of the polyester (H) and a block composed of the compound (I).
  • the block has a structure in which the block is repeatedly and alternately bonded through an ester bond formed by a carboxyl group and a hydroxyl group.
  • this block polymer (J) the thing similar to the block polymer (C) used for polyester (A) can be used.
  • a block polymer (J) having the following can be preferably obtained.
  • the compound (I) may be added to the reaction system and reacted as it is without isolating the polyester (H).
  • a catalyst that promotes the esterification reaction may be used.
  • the catalyst conventionally known ones such as dibutyltin oxide, tetraalkyl titanate, zirconium acetate, and zinc acetate can be used.
  • antioxidants such as a phenolic antioxidant
  • the polyester (H) may be mixed with a polyester composed only of a diol and an aliphatic dicarboxylic acid, or a polyester composed only of a diol and an aromatic dicarboxylic acid. To obtain a block polymer (J).
  • the block polymer (J) includes, in addition to a block composed of polyester (H) and a block composed of compound (I), a block composed of a polyester composed only of diol and aliphatic dicarboxylic acid, A block composed of a polyester composed only of an aromatic dicarboxylic acid may be included in the structure.
  • the polymer compound (L) according to the present invention is preferably a block polymer (J) having a block polymer (J) having a structure having carboxyl groups at both ends and a compound (K) having a reactive functional group.
  • the terminal carboxyl group and the reactive functional group of the compound (K) having a reactive functional group are bonded via an ester bond.
  • the polymer compound (L) may further contain an ester bond formed by the carboxyl group of the polyester (H) and the reactive functional group of the compound (K) having the reactive functional group. Good.
  • the polymer compound (L) is composed of two block polymers (J) having a structure having carboxyl groups at both ends, The epoxy compound (K-1) having the above epoxy group is bonded through an ester bond formed by the carboxyl group at the terminal of the block polymer (J) and the epoxy group of the epoxy compound (K-1). It has the structure which becomes.
  • the polymer compound (L) may further contain an ester bond formed by the carboxyl group of the polyester (H) and the epoxy group of the epoxy compound (K-1).
  • the carboxyl group of the block polymer (J) may be reacted with the epoxy group of the epoxy compound (K-1).
  • the number of epoxy groups in the epoxy compound is preferably 0.5 to 5 equivalents, more preferably 0.5 to 1.5 equivalents, of the number of carboxyl groups in the block polymer (J) to be reacted.
  • the said reaction may be performed in various solvents and may be performed in a molten state.
  • the epoxy compound (K-1) having two or more epoxy groups to be reacted is preferably 0.1 to 2.0 equivalent of the number of carboxyl groups of the block polymer (J) to be reacted, 0.2 to 1.5 The equivalent is more preferable.
  • the epoxy compound (K-1) may be added to the reaction system and the reaction may be performed as it is without isolating the block polymer (J).
  • the carboxyl group of the unreacted polyester (H) used excessively when synthesizing the block polymer (J) reacts with a part of the epoxy group of the epoxy compound (K-1) to form an ester bond. May be formed.
  • a preferred polymer compound (L) of the present invention includes a block polymer (J) having a structure having carboxyl groups at both ends and an epoxy compound (K-1) having two or more epoxy groups, If it has a structure equivalent to that having an ester bond formed with an epoxy group, it must be synthesized from the block polymer (J) and the epoxy compound (K-1). There is no.
  • the polymer compound (L) includes a block polymer (J) having a structure having carboxyl groups at both ends, The polyhydric alcohol compound (K-2) having three or more hydroxyl groups is linked via an ester bond formed by the terminal carboxyl group of the block polymer (J) and the hydroxyl group of the polyhydric alcohol compound (K-2). And have a structure formed by bonding.
  • the polymer compound (L) may further contain an ester bond formed by the carboxyl group of the polyester (H) and the hydroxyl group of the polyhydric alcohol compound (K-2). .
  • the carboxyl group of the block polymer (J) may be reacted with the hydroxyl group of the polyhydric alcohol compound (K-2).
  • the number of hydroxyl groups of the polyhydric alcohol compound to be reacted is preferably 0.5 to 5.0 equivalents, more preferably 0.5 to 2.0 equivalents of the number of carboxyl groups of the block polymer (J) to be reacted.
  • the said reaction may be performed in various solvents and may be performed in a molten state.
  • the polyhydric alcohol compound (K-2) having 3 or more hydroxyl groups to be reacted is preferably 0.1 to 2.0 equivalents of the number of carboxyl groups of the block polymer (J) to be reacted, and 0.2 to 1. 5 equivalents are more preferred.
  • the polyhydric alcohol compound (K-2) may be added to the reaction system without isolation of the block polymer (J) and reacted as it is. .
  • the carboxyl group of the unreacted polyester (H) used excessively when synthesizing the block polymer (J) reacts with a part of the hydroxyl groups of the polyhydric alcohol compound (K-2) to form an ester. A bond may be formed.
  • a preferred polymer compound (L) of the present invention includes a block polymer (J) having a structure having carboxyl groups at both ends and a polyhydric alcohol compound (K-2) having three or more hydroxyl groups, each having a carboxyl group. As long as it has a structure equivalent to that having an ester bond formed by an ester bond formed with a hydroxyl group, it is not necessarily synthesized from the block polymer (J) and the polyhydric alcohol compound (K-2). do not have to.
  • the number average molecular weight of the block composed of the polyester (H) in the polymer compound (L) is preferably 800 to 8,000 in terms of polystyrene, More preferably, it is 1,000 to 6,000, and still more preferably 2,000 to 4,000.
  • the number average molecular weight of the block composed of the compound (I) having a hydroxyl group at both ends in the polymer compound (L) is preferably 400 to 6,000, more preferably 1,000 in terms of polystyrene. 5,000 to 5,000, more preferably 2,000 to 4,000.
  • the number average molecular weight of the block composed of the block polymer (J) having a structure having carboxyl groups at both ends in the polymer compound (L) is preferably 5,000 to 25,000 in terms of polystyrene. More preferably, it is 7,000 to 17,000, and more preferably 9,000 to 13,000.
  • the polymer compound (L) is obtained by obtaining the polyester (H) from the diol, the aliphatic dicarboxylic acid and the aromatic dicarboxylic acid and then isolating the polyester (H) without isolating the polyester (H). You may make it react with the compound (K) which has a functional group.
  • the content of the polymer compound (L) is 1 to 40 parts by mass with respect to 100 parts by mass of the polyolefin-based resin, and preferably 3 to 20 parts by mass from the viewpoint of antistatic properties, its durability, and water resistance. 5 to 15 parts by mass is more preferable.
  • the resin composition according to the antistatic fiber of the present invention further comprises at least one selected from the group consisting of an alkali metal salt and a group 2 element salt (M). It is also preferable to contain.
  • alkali metal salts and Group 2 element salts include organic acid or inorganic acid salts.
  • alkali metals include lithium, sodium, potassium, cesium, rubidium, and the like.
  • examples of are beryllium, magnesium, calcium, strontium, barium and the like.
  • organic acids include aliphatic monocarboxylic acids having 1 to 18 carbon atoms such as formic acid, acetic acid, propionic acid, butyric acid, lactic acid; oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, etc.
  • Aliphatic dicarboxylic acids having 1 to 12 carbon atoms aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid; methanesulfonic acid, p-toluenesulfonic acid, dodecylbenzenesulfonic acid, trifluoromethane
  • aromatic carboxylic acids such as benzoic acid, phthalic acid, isophthalic acid, terephthalic acid, salicylic acid
  • the inorganic acid include hydrochloric acid, hydrobromic acid, sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, polyphosphoric acid, nitric acid, perchlorine. An acid etc. are mentioned.
  • alkali metal salts are preferable, lithium, sodium, and potassium are more preferable, and lithium or sodium is more preferable.
  • acetic acid salts, perchloric acid salts, p-toluenesulfonic acid salts, and dodecylbenzenesulfonic acid salts are preferred.
  • alkali metal salt and the group 2 element salt include, for example, lithium acetate, sodium acetate, potassium acetate, lithium chloride, sodium chloride, potassium chloride, magnesium chloride, calcium chloride, lithium phosphate, and sodium phosphate.
  • the content of the alkali metal salt and / or Group 2 element salt is 0.1 to 15 parts by mass with respect to 100 parts by mass of the polyolefin-based resin from the viewpoint of antistatic properties, durability and water resistance. Part, preferably 0.5 to 10 parts by weight, more preferably 1 to 5 parts by weight.
  • a surfactant may be blended as long as the effects of the present invention are not impaired.
  • the surfactant nonionic, anionic, cationic or amphoteric surfactants can be used.
  • the nonionic surfactant the anionic surfactant, the cationic surfactant and the amphoteric surfactant, the same organic solvent containers and antistatic resin compositions for tubes can be used.
  • the blending amount is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the polyolefin resin.
  • a polymer type antistatic agent may be blended in the resin composition according to the antistatic fiber of the present invention.
  • the polymer type antistatic agent the same organic solvent containers and antistatic resin compositions for tubes can be used.
  • the blending amount of the polymer type antistatic agent is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the blending amount is preferably 0.01 to 5 parts by mass and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the resin composition according to the antistatic fiber of the present invention may contain a compatibilizing agent as long as the effects of the present invention are not impaired.
  • blending a compatibilizing agent By mix
  • the compatibilizing agent include the same organic solvent containers and antistatic resin compositions for tubes.
  • the blending amount is preferably 0.01 to 5 parts by mass, more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • the resin composition according to the antistatic fiber of the present invention may be blended with other thermoplastic resins other than the polyolefin resin as long as the effects of the present invention are not impaired.
  • thermoplastic resins examples include polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, chlorinated polypropylene, polyvinylidene fluoride, chlorinated rubber, vinyl chloride-vinyl acetate copolymer, vinyl chloride-ethylene copolymer, Vinyl chloride-vinylidene chloride copolymer, vinyl chloride-vinylidene chloride-vinyl acetate terpolymer, vinyl chloride-acrylic acid ester copolymer, vinyl chloride-maleic acid ester copolymer, vinyl chloride-cyclohexyl maleimide copolymer Halogen-containing resins such as coalescence; petroleum resin, coumarone resin, polystyrene, polyvinyl acetate, acrylic resin, styrene and / or ⁇ -methylstyrene and other monomers (for example, maleic anhydride, phenylmaleimide, methyl methacrylate, Copolymer with but
  • Aromatic polyesters such as polyalkylene naphthalates such as polyalkylene terephthalate, polyethylene naphthalate, polybutylene naphthalate and linear polyesters such as polytetramethylene terephthalate; polyhydroxybutyrate, polycaprolactone, polybutylene succinate, polyethylene succinate , Polylactic acid, polymalic acid, polyglycolic acid, polydioxane, poly (2-oxetanone) and other degradable fats Polyamides: Polyphenylene oxide, polycaprolactam, polyhexamethylene adipamide and other polyamides, polycarbonate, polycarbonate / ABS resin, branched polycarbonate, polyacetal, polyphenylene sulfide, polyurethane, fiber-based resin, polyimide resin, polysulfone, polyphenylene ether, poly Examples thereof include thermoplastic resins such as ether ketone, polyether ether ketone, and liquid crystal polymer, and blends thereof
  • thermoplastic resin examples include isoprene rubber, butadiene rubber, acrylonitrile-butadiene copolymer rubber, styrene-butadiene copolymer rubber, fluorine rubber, and silicone rubber.
  • a thermoplastic elastomer is also exemplified, and examples thereof include a polystyrene-based thermoplastic elastomer, a polyvinyl chloride-based thermoplastic elastomer, a polyester-based thermoplastic elastomer, a polyamide-based thermoplastic elastomer, and a polyurethane-based thermoplastic elastomer. .
  • thermoplastic resins may be used alone or in combination of two or more. Further, the thermoplastic resin may be alloyed.
  • the method for producing the resin composition according to the antistatic fiber of the present invention is not particularly limited, and the polyolefin resin component includes a polymer compound (L), an alkali metal salt and / or a Group 2 element as necessary. What is necessary is just to mix
  • the arbitrary methods normally used can be used for the method. For example, they may be mixed and kneaded by roll kneading, bumper kneading, an extruder, a kneader or the like.
  • the polymer compound (L) may be added as it is, but it may be added after impregnating the support, if necessary.
  • the carrier In order to impregnate the carrier, it may be heated and mixed as it is, or if necessary, it may be diluted with an organic solvent, impregnated into the carrier, and then the solvent is removed.
  • a carrier those known as fillers and fillers of synthetic resins, or flame retardants and light stabilizers that are solid at room temperature can be used.
  • fillers and fillers of synthetic resins, or flame retardants and light stabilizers that are solid at room temperature can be used.
  • titanium oxide powder those obtained by chemically modifying the surface of these carriers, solid ones among the flame retardants and antioxidants listed below, and the like can be mentioned.
  • these carriers those obtained by chemically modifying the surface of the carrier are preferred, and those obtained by chemically modifying the surface of the silica powder are more preferred.
  • These carriers preferably have an average particle size of 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m.
  • the polymer compound (L) is kneaded together with the polyolefin resin and the block polymer (J) and the compound (K) having a reactive functional group.
  • the polymer compound (L) is kneaded together with the polyolefin resin and the block polymer (J) and the compound (K) having a reactive functional group.
  • one or more selected from the group consisting of alkali metal salts and Group 2 element salts may be kneaded at the same time, and fiber formation may be performed.
  • the polymer compound (L), and if necessary, one or more selected from the group consisting of alkali metal salts and Group 2 element salts and a polyolefin resin may be mixed and blended.
  • a master batch with a polyolefin-based resin may be manufactured in advance, and this master batch may be blended.
  • At least one selected from the group consisting of the polymer compound (L), an alkali metal salt and a group 2 element salt may be mixed in advance and then blended into the polyolefin resin.
  • the polymer compound (L) synthesized by adding a salt during the reaction may be added to the polyolefin resin.
  • a phenol-based antioxidant In the resin composition according to the antistatic fiber of the present invention, a phenol-based antioxidant, a phosphorus-based antioxidant, a thioether-based antioxidant, an ultraviolet absorber, if necessary, within a range not impairing the effects of the present invention.
  • Various additives such as an agent and a hindered amine light stabilizer can be further added, whereby the resin composition according to the antistatic fiber of the present invention can be stabilized.
  • phenolic antioxidant examples include the same organic solvent containers and antistatic resin compositions for tubes.
  • the amount of these phenolic antioxidants added is preferably 0.001 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • Examples of the phosphorus-based antioxidant include organic solvent containers and the same antistatic resin compositions for tubes.
  • the addition amount of these phosphorus antioxidants is preferably 0.001 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • thioether-based antioxidant examples include those similar to organic solvent containers and antistatic resin compositions for tubes.
  • the addition amount of these thioether-based antioxidants is preferably 0.001 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • Examples of the ultraviolet absorber include those similar to organic solvent containers and antistatic resin compositions for tubes.
  • the addition amount of these ultraviolet absorbers is preferably 0.001 to 30 parts by mass, more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • hindered amine light stabilizer examples include those similar to organic solvent containers and antistatic resin compositions for tubes.
  • the amount of these hindered amine light stabilizers added is preferably 0.001 to 30 parts by mass, more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of the polyolefin resin.
  • a known neutralizing agent as necessary in order to neutralize the residual catalyst in the synthetic resin of polyolefin resin.
  • the neutralizing agent include fatty acid metal salts such as calcium stearate, lithium stearate, and sodium stearate, or fatty acid amides such as ethylene bis (stearamide), ethylene bis (12-hydroxystearamide), and stearic acid amide. Compounds, and these neutralizing agents may be used in combination.
  • the resin composition according to the antistatic fiber of the present invention may further include an aromatic carboxylic acid metal salt, an alicyclic alkyl carboxylic acid metal salt, p-tert-butylaluminum benzoate, Nucleating agents such as aromatic phosphate metal salts, dibenzylidene sorbitols, metal soaps, hydrotalcite, triazine ring-containing compounds, metal hydroxides, phosphate ester flame retardants, condensed phosphate ester flame retardants, phosphates Flame retardant, inorganic phosphorus flame retardant, (poly) phosphate flame retardant, halogen flame retardant, silicon flame retardant, antimony oxide such as antimony trioxide, other inorganic flame retardant aids, other organic System flame retardant aids, fillers, pigments, lubricants, foaming agents and the like may be added.
  • Nucleating agents such as aromatic phosphate metal salts, dibenzylidene sorbitols, metal soaps, hydrotal
  • the organic flame retardant aid include those similar to organic solvent containers and antistatic resin compositions for tubes.
  • the resin composition according to the antistatic fiber of the present invention if necessary, additives that are usually used in synthetic resins, for example, crosslinking agents, antifogging agents, plate-out preventing agents, surface treatment agents, Effects of the present invention include plasticizers, lubricants, flame retardants, fluorescent agents, antifungal agents, bactericides, foaming agents, metal deactivators, mold release agents, pigments, processing aids, antioxidants, light stabilizers, etc. It can mix
  • the antistatic fiber of the present invention can be produced by using a conventionally known method such as a melt spinning method or an extrusion spinning method for the resin composition according to the present invention. Moreover, as a structure of a fiber, the single composition fiber obtained from the said resin composition concerning this invention may be sufficient, and a composite fiber with another polymer may be sufficient.
  • the form of the fiber is not particularly limited.
  • the fiber form is a monofilament having a diameter of 0.1 to 1 mm and an indefinite length, and a large number of thin continuous filaments or strands. Examples include multifilaments and the like.
  • the fabric of the present invention can be produced by a conventionally known method using the antistatic fiber of the present invention, and the antistatic fiber of the present invention is particularly preferably used for a nonwoven fabric.
  • the method for producing the nonwoven fabric is not particularly limited, and is a known method, for example, a spinning-type nonwoven fabric production method (spread fiber method, spunbond method, split fiber method, mesh method, etc.), mechanically bonded nonwoven fabric production method (needle punch).
  • the nonwoven fabric of the present invention may be composed only of the antistatic fiber of the present invention, but may be composed of a mixture of the antistatic fiber of the present invention and other fibers.
  • the mixing ratio of the antistatic fiber of the present invention and other fibers may be appropriately selected within the range of 95/5 to 10/90 depending on the application.
  • the air permeability is usually 60 cc / cm 2 / sec or more, preferably 80 to 120 cc / cm 2 / sec, and the bulk density is usually 0.08 to 0.2 g / cm 3. It is preferably 0.1 to 0.15 g / cm 3 .
  • the use of the fabric of the present invention is not particularly limited, and examples thereof include clothes and work clothes.
  • the use of nonwoven fabric which is a particularly preferred application, is not particularly limited, and is for clothing (interlining, adhesive interlining, etc.), protective (protective clothing, safety mask, etc.), medical (surgical clothing, sheets, artificial skin, etc.) ), Construction (carpet base fabric, soundproof floor, vibration-proof material, curing sheet, etc.), vehicle (automobile interior materials, sound-absorbing materials, etc.), hygiene (diapers, sanitary products, etc.), filters (air filters, bugs) Filters, wastewater treatment mats, etc.), agricultural, leather (artificial leather base fabric, synthetic leather base fabric, PVC leather base fabric, etc.), electrical and electronic parts (conveying materials, packaging materials), It can be widely used for electronic devices (conveying materials, packaging materials) and other industrial materials (oil absorbing materials, electromagnetic shielding materials, synthetic paper, OA equipment, AV equipment, packaging materials, etc.), filter cloths and the like.
  • a polymer compound (E) used in the present invention was produced.
  • the number average molecular weight was measured by the following molecular weight measurement method.
  • Mn number average molecular weight
  • GPC gel permeation chromatography
  • a block polymer (C) -3 having a structure having carboxyl groups at both ends The acid value of the block polymer (C) -3 having a structure having a carboxyl group at both ends was 10, and the number average molecular weight Mn was 10,100 in terms of polystyrene.
  • Examples 1-1 to 1-14, Comparative Examples 1-1 to 1-6 Using a resin composition blended based on the blending amounts (parts by mass) described in Tables 1 and 2 below, test pieces were obtained according to the test piece preparation conditions shown below. Using the obtained test piece, the surface resistivity (SR value) measurement and the organic solvent resistance evaluation test were performed according to the following. Similarly, a resin composition of a comparative example was prepared with the formulation shown in Table 3 below, and evaluated.
  • ⁇ Test specimen preparation conditions The resin composition blended based on the blending amounts shown in the following Tables 1 to 3 was used under the conditions of 230 ° C. and 6 kg / hour using a twin screw extruder (PCM30, 60 mesh) made by Ikegai Co., Ltd. Granulation gave pellets. The obtained pellets were molded using a horizontal injection molding machine (NEX80: manufactured by Nissei Plastic Industry Co., Ltd.) under processing conditions of a resin temperature of 230 ° C. and a mold temperature of 40 ° C. A test piece for organic solvent evaluation (100 mm ⁇ 100 mm ⁇ 3 mm) was obtained.
  • NEX80 manufactured by Nissei Plastic Industry Co., Ltd.
  • SR value ⁇ Method for measuring surface resistivity (SR value)>
  • the obtained specimen for measuring surface resistivity (100 mm ⁇ 100 mm ⁇ 3 mm) was stored immediately after molding under conditions of temperature 25 ° C. and humidity 60% RH, and after 1 day and 30 days of molding. Under the same atmosphere, the surface resistivity ( ⁇ / ⁇ ) was measured using an R8340 resistance meter manufactured by Advantest Corporation under the conditions of an applied voltage of 100 V and an applied time of 1 minute. The measurement was performed for 5 points, and the average value was obtained.
  • the resin composition of the present invention has sufficient antistatic property with durability, and its performance is not impaired even when immersed in various organic solvents for a long time. Therefore, the resin composition of the present invention is suitable for containers such as bottles and tanks that come into contact with organic solvents, pipes, and the like.
  • Example 2 Hereinafter, although the antistatic fiber of this invention is demonstrated still in detail using an Example, this invention is not limited to these. In the following examples and comparative examples, “%” is based on mass unless otherwise specified.
  • the polymer compound (E) used in the present invention was produced.
  • the number average molecular weight was measured in the same manner as in Production Example 1-1.
  • a block polymer (J) -2 having a structure having carboxyl groups at both ends was charged and polymerized at 220 ° C. under reduced pressure for 6 hours to obtain a block polymer (J) -2 having a structure having carboxyl groups at both ends.
  • the block polymer (J) -2 having a structure having a carboxyl group at both ends had an acid value of 9 and a number average molecular weight Mn of 11,500 in terms of polystyrene.
  • Nonwoven fabrics of Examples 2-1 to 2-16 were obtained using the resin compositions blended based on the blending amounts (parts by mass) described in Tables 4 and 5 below, according to the nonwoven fabric production conditions shown below. Using the obtained non-woven fabric, according to the following, the half-life was measured as an antistatic property evaluation, and a water washing resistance evaluation test was conducted. Similarly, the resin compositions of Comparative Examples 2-1 to 2-8 were prepared with the formulations shown in Table 6 below, and the nonwoven fabrics of Comparative Examples 2-1 to 2-8 were produced and evaluated. .
  • Nonwoven fabric manufacturing conditions The resin composition blended based on the blending amounts shown in the following Tables 4 to 6 is used with a single screw extruder (equipment: Labo Plast Mill Micro manufactured by Toyo Seiki Seisakusho Co., Ltd., extrusion temperature 250 ° C., screw rotation speed 50 rpm). Kneaded and spun by melt-blowing method using a spinning machine (nozzle 0.45 mm ⁇ , nozzle 30 holes, discharge rate 1.0 g / min, air supply pressure: 0.7 kg / cm 2 ), 30 g / m 2 non-woven fabric Manufactured.
  • a single screw extruder equipment: Labo Plast Mill Micro manufactured by Toyo Seiki Seisakusho Co., Ltd., extrusion temperature 250 ° C., screw rotation speed 50 rpm. Kneaded and spun by melt-blowing method using a spinning machine (nozzle 0.45 mm ⁇ , nozzle 30 holes, discharge rate 1.0 g / min, air supply pressure: 0.7 kg / cm 2 ), 30
  • the obtained non-woven fabric was measured in accordance with JIS-L-1094 using a charged charge decay rate measuring device (STATIC HONESTETER H-0110) manufactured by Sicid Electrostatic Co., Ltd.
  • the nonwoven fabric was charged with air ions generated by corona discharge and charged, and after the irradiation of air ions was stopped, the time (half-life) until the charged voltage was attenuated to 1/2 was measured.
  • the measurement was performed 5 times at a temperature of 25 ° C. and a humidity of 50% for each nonwoven fabric after 1 day and 30 days after the production of the nonwoven fabric, and the average value was obtained. The shorter the half-life, the better the antistatic property.
  • ⁇ Washing resistance evaluation test> The obtained nonwoven fabric was exposed to running water for 1 minute, and then water on the surface was removed with an air-cooled dryer. After standing at a temperature of 25 ° C. and a humidity of 50% for 1 day, the half-life was measured. The measurement was performed 5 times for each nonwoven fabric, and the average value was obtained. The shorter the half-life, the better the antistatic property.
  • Glycerin monostearate * 2-7 Polyetheresteramide antistatic agent, manufactured by BASF, trade name irgastat P-22
  • the antistatic fiber of the present invention has antistatic performance that lasts for a long time and is excellent in water resistance.
  • glycerin monostearate bleeds out to the surface of the nonwoven fabric, and the surface of the nonwoven fabric becomes sticky.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 持続性を有する充分な帯電防止性を有し、かつ、有機溶剤に長時間接触しても帯電防止性能が損なわれることのない有機溶剤の容器および管用帯電防止性樹脂組成物、並びに、これを用いた有機溶剤の容器および管を提供する。 熱可塑性樹脂100質量部に対して、1種以上の高分子化合物(E)3~25質量部を含有する帯電防止性樹脂組成物であって、高分子化合物(E)が、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(B)と、エポキシ基を2個以上有するエポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有する有機溶剤の容器および管用帯電防止性樹脂組成物である。―CH2-CH2-O― (1)

Description

有機溶剤の容器および管用帯電防止性樹脂組成物並びにポリオレフィン系帯電防止性繊維
 本発明は、有機溶剤を入れるための熱可塑性樹脂製の容器、および、有機溶剤が接触する熱可塑性樹脂製の管に用いられる帯電防止性樹脂組成物(以下、単に「樹脂組成物」とも称する)、並びに、これを用いた容器および管に関し、詳しくは、持続性のある充分な帯電防止性を有し、かつ、有機溶剤に長期に接触していても帯電防止性能が損なわれることのない容器や管等の成形体が得られる帯電防止性樹脂組成物、並びに、これを用いた容器および管に関する。
 また、本発明は、ポリオレフィン系帯電防止性繊維(以下、単に「帯電防止性繊維」とも称す)およびそれを用いた布帛に関し、詳しくは、持続性および耐水性に優れた帯電防止性を有するポリオレフィン系帯電防止性繊維およびそれを用いた布帛に関する。
 熱可塑性樹脂は、軽量で加工が容易であるため、様々な形状の容器や管などに使用されている。特に、ポリオレフィン系樹脂は、有機溶剤を入れる容器や有機溶剤を通す管などに使用されている。
 しかし、熱可塑性樹脂は電気絶縁性が高いため、摩擦等により帯電しやすいという特徴がある。この帯電により、容器内部に保管したり、管の内部を通している有機溶剤や可燃性ガスに、引火や爆発する危険性がある。また、消毒用アルコールを入れる容器などの医療用の容器や管などの場合、帯電により埃が付いてしまうなど、衛生面からも好ましくなかった。
 これら容器や管の帯電を防ぐために、帯電防止剤が使用されている。例えば、ポリオレフィン系樹脂製の容器に、グリセリンモノステアレート等の多価アルコールエステルなどを帯電防止剤として使用していることが、特許文献1および2に記載されている。
 また、ポリオレフィン系樹脂を繊維、フィラメントにすることは一般に知られており、その繊維から不織布を製造することも行われている。しかし、ポリオレフィン系樹脂は電気絶縁性を有するため、摩擦等により帯電しやすく、周囲のチリや埃を引き付けるという問題があった。特に、これらを用いた作業着等の場合、粉塵等を引き付け問題となる。また、電気・電子部品や電気・電子機器の搬送材や包装材に不織布が使用されているが、静電気の発生は、故障の原因や、微細な埃等を引き付けるため大きな問題となる。
 このような問題に対し、特許文献3では、原料中に界面活性剤を予め混入して親水性を付与することで帯電防止性を付与した不織布が提案されている。また、特許文献4では、変性ポリオレフィンおよび帯電防止剤として界面活性剤を含有させたポリオレフィン系不織布が提案されている。さらに、特許文献5では、ポリエーテルエステルアミド等の高分子型帯電防止剤の不織布への使用が提案されている。
特公平7-116329号公報 特開2013-253028号公報 特開昭63-211350号公報 特開平6-41858号公報 特開2003-313724号公報
 しかしながら、これら従来の帯電防止剤は、樹脂組成物の成形後にブリードすることで帯電防止性能を発現するため、有機溶剤用の容器や管など、有機溶剤に接触する用途においては、帯電防止剤が溶出して効果が消失してしまう場合があり、また、耐有機溶剤性の問題もあった。さらに、内容物に帯電防止成分が混入する問題があり、これは特に、医療用途などにおいては大きな問題となっていた。
 そこで本発明の目的は、持続性を有する充分な帯電防止性を有し、かつ、有機溶剤に長時間接触しても帯電防止性能が損なわれることのない有機溶剤の容器および管用帯電防止性樹脂組成物、並びに、これを用いた有機溶剤の容器および管を提供することにある。
 また、特許文献3および4のように界面活性剤を使用した場合、帯電防止性能の持続性に乏しく、また、水洗等によりその帯電防止性能が失われるという問題があった。また、特許文献5のように、高分子型帯電防止剤を用いたとしても、樹脂に対して高分子型帯電防止剤を多量に添加しないと、充分な帯電防止性能を得ることができない。さらに、特許文献5で提案されている、ポリエーテルエステルアミド等の高分子型帯電防止剤を用いた不織布は、帯電防止性能の持続性や耐水性等も不十分であった。
 そこで、本発明の他の目的は、持続性および耐水性に優れた帯電防止性を有するポリオレフィン系帯電防止性繊維、および、これを用いた布帛を提供することにある。
 本発明者らは、上記課題を解消するために鋭意検討をした結果、特定の構造を有する帯電防止性の高分子化合物を使用することで、上記課題を解消できることを見出し、本発明を完成するに至った。
 すなわち、本発明の有機溶剤の容器および管用帯電防止性樹脂組成物は、熱可塑性樹脂100質量部に対して、1種以上の高分子化合物(E)3~25質量部を含有する帯電防止性樹脂組成物であって、
 前記高分子化合物(E)が、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(B)と、エポキシ基を2個以上有するエポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有することを特徴とするものである。
Figure JPOXMLDOC01-appb-I000003
 本発明の樹脂組成物においては、前記高分子化合物(E)が、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸から構成されるポリエステル(A)と、前記化合物(B)と、前記エポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有することが好ましい。
 また、本発明の樹脂組成物においては、前記高分子化合物(E)が、前記ポリエステル(A)から構成されたブロックおよび前記化合物(B)から構成されたブロックがエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(C)と、前記エポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有することが好ましい。
 さらに、本発明の樹脂組成物においては、前記高分子化合物(E)を構成する前記ポリエステル(A)が、両末端にカルボキシル基を有する構造を有することが好ましい。
 さらにまた、本発明の樹脂組成物においては、前記高分子化合物(E)における、前記ポリエステル(A)から構成されたブロックの数平均分子量がポリスチレン換算で800~8,000であり、前記化合物(B)から構成されたブロックの数平均分子量がポリスチレン換算で400~6,000であり、かつ、前記ブロックポリマー(C)の数平均分子量が、ポリスチレン換算で5,000~25,000であることが好ましい。
 さらにまた、本発明の樹脂組成物においては、前記高分子化合物(E)を構成する前記化合物(B)が、ポリエチレングリコールであることが好ましい。
 さらにまた、本発明の樹脂組成物は、さらに、アルカリ金属の塩(F)および第2族元素の塩からなる群から選択される1種以上を、前記熱可塑性樹脂100質量部に対し、0.1~5質量部含有することが好ましい。
 さらにまた、本発明の樹脂組成物においては、前記熱可塑性樹脂が、ポリオレフィン系樹脂であることが好ましい。
 また、本発明の有機溶剤用容器および有機溶剤用管は、上記本発明の樹脂組成物が成形されてなることを特徴とするものである。
 また、本発明者らは、上記課題を解決するために鋭意検討をした結果、特定の構造を有する帯電性の高分子化合物が所定量添加された樹脂組成物からなる繊維であれば、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明のポリオレフィン系帯電防止性繊維は、ポリオレフィン系樹脂100質量部に対して、高分子化合物(L)の1種以上を1~40質量部含有する樹脂組成物からなるポリオレフィン系帯電防止性繊維であって、
 前記高分子化合物(L)が、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(I)と、反応性官能基を有する化合物(K)とが、エステル結合を介して結合してなる構造を有することを特徴とするものである。
Figure JPOXMLDOC01-appb-I000004
 本発明のポリオレフィン系帯電防止性繊維においては、前記高分子化合物(L)が、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸から構成されるポリエステル(H)と、前記化合物(I)と、前記反応性官能基を有する化合物(K)とが、エステル結合を介して結合してなる構造を有することが好ましい。
 また、本発明のポリオレフィン系帯電防止性繊維においては、前記高分子化合物(L)が、前記ポリエステル(H)から構成されたブロックおよび前記化合物(I)から構成されたブロックがエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(J)と、前記反応性官能基を有する化合物(K)とが、エステル結合を介して結合してなる構造を有することが好ましい。
 さらに、本発明のポリオレフィン系帯電防止性繊維においては、前記高分子化合物(L)を構成する前記ポリエステル(H)が、両末端にカルボキシル基を有する構造を有することが好ましい。
 さらにまた、本発明のポリオレフィン系帯電防止性繊維においては、前記高分子化合物(L)における、前記ポリエステル(H)から構成されたブロックの数平均分子量がポリスチレン換算で800~8,000であり、前記化合物(I)から構成されたブロックの数平均分子量がポリスチレン換算で400~6,000であり、かつ、前記ブロックポリマー(J)の数平均分子量が、ポリスチレン換算で5,000~25,000であることが好ましい。
 さらにまた、本発明のポリオレフィン系帯電防止性繊維においては、前記高分子化合物(L)を構成する前記化合物(I)が、ポリエチレングリコールであることが好ましい。
 さらにまた、本発明のポリオレフィン系帯電防止性繊維においては、さらに、アルカリ金属の塩および第2族元素の塩(M)からなる群から選択される1種以上を、前記ポリオレフィン系樹脂100質量部に対して、0.1~15質量部含有することが好ましい。
 さらにまた、本発明のポリオレフィン系帯電防止性繊維においては、前記反応性官能基を有する化合物(K)が、反応性官能基としてエポキシ基を2個以上有するエポキシ化合物(K-1)であるか、または、反応性官能基として水酸基を3個以上有する多価アルコール化合物(K-2)であることが好ましい。
 また、本発明の布帛は、本発明のポリオレフィン系帯電防止性繊維からなることを特徴とするものであり、特に不織布が好適である。
 本発明によれば、持続性を有する充分な帯電防止性を有し、かつ、有機溶剤に長時間接触しても帯電防止性能が損なわれることのない成形体が得られる有機溶剤の容器および管用帯電防止性樹脂組成物を提供することができる。また、本発明によれば、持続性を有する充分な帯電防止性を有し、かつ、有機溶剤に長時間接触しても帯電防止性能が損なわれることのない有機溶剤用容器および管を提供することができる。
 また、本発明によれば、持続性と耐水性に優れた帯電防止性を有するポリオレフィン系帯電防止性繊維およびこれを用いた布帛を提供することができる。
 以下、本発明について、詳細に説明する。
[有機溶剤の容器および管用帯電防止性樹脂組成物]
 まず、本発明の有機溶剤の容器および管用帯電防止性樹脂組成物について説明する。
 本発明の樹脂組成物は、熱可塑性樹脂100質量部に対して、1種以上の高分子化合物(E)3~25質量部を含有するものである。本発明の樹脂組成物においては、高分子化合物(E)が、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(B)と、エポキシ基を2個以上有するエポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有する。
Figure JPOXMLDOC01-appb-I000005
 まず、本発明で使用される熱可塑性樹脂について説明する。
 本発明の樹脂組成物において、使用する樹脂については、熱可塑性樹脂であれば制限はないが、特に、帯電防止性能の持続性と、耐有機溶剤性の点から、ポリオレフィン系樹脂が好ましい。
 ポリオレフィン系樹脂としては、例えば、ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ホモポリプロピレン、ランダムコポリマーポリプロピレン、ブロックコポリマーポリプロピレン、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ヘミアイソタクチックポリプロピレン、ポリブテン、シクロオレフィンポリマー、ステレオブロックポリプロピレン、ポリ-3-メチル-1-ブテン、ポリ-3-メチル-1-ペンテン、ポリ-4-メチル-1-ペンテン等のα-オレフィン重合体、エチレン-プロピレンのブロックまたはランダム共重合体、インパクトコポリマーポリプロピレン、エチレン-メチルメタクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体等のα-オレフィン共重合体、さらにポリオレフィン系熱可塑性エラストマーが挙げられ、これらの2種以上の共重合体でもよい。これらのポリオレフィン系樹脂は、2種以上を使用してもよい。
 本発明の樹脂組成物においては、ポリオレフィン系樹脂以外の熱可塑性樹脂として、ポリスチレン系樹脂が挙げられ、ポリスチレン系樹脂としては、例えば、ビニル基含有芳香族炭化水素単独、および、ビニル基含有芳香族炭化水素と、他の単量体(例えば、無水マレイン酸、フェニルマレイミド、(メタ)アクリル酸エステル、ブタジエン、(メタ)アクリロニトリル等)との共重合体が挙げられ、例えば、ポリスチレン(PS)樹脂、耐衝撃性ポリスチレン(HIPS)、アクリロニトリル-スチレン(AS)樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、メタクリル酸メチル-ブタジエン-スチレン(MBS)樹脂、耐熱ABS樹脂、アクリロニトリル-アクリレート-スチレン(AAS)樹脂、スチレン-無水マレイン酸(SMA)樹脂、メタクリレート-スチレン(MS)樹脂、スチレン-イソプレン-スチレン(SIS)樹脂、アクリロニトリル-エチレンプロピレンゴム-スチレン(AES)樹脂、スチレン-ブタジエン-ブチレン-スチレン(SBBS)樹脂、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン(MABS)樹脂等の熱可塑性樹脂、並びに、これらのブタジエンあるいはイソプレンの二重結合を水素添加したスチレン-エチレン-ブチレン-スチレン(SEBS)樹脂、スチレン-エチレン-プロピレン-スチレン(SEPS)樹脂、スチレン-エチレン-プロピレン(SEP)樹脂、スチレン-エチレン-エチレン-プロピレン-スチレン(SEEPS)樹脂等の水素添加スチレン系エラストマー樹脂が挙げられる。
 さらに熱可塑性樹脂の例を挙げると、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂;石油樹脂、クマロン樹脂、ポリ酢酸ビニル、アクリル樹脂、ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステルおよびポリテトラメチレンテレフタレート等の直鎖ポリエステル;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;ポリフェニレンオキサイド、ポリカプロラクタムおよびポリヘキサメチレンアジパミド等のポリアミド、ポリカーボネート、ポリカーボネート/ABS樹脂、分岐ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を用いることができる。さらには、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、フッ素ゴム、シリコーンゴム、ポリエステル系エラストマー、ニトリル系エラストマー、ナイロン系エラストマー、塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー等のエラストマーを用いてもよい。
 本発明の樹脂組成物においては、これらの熱可塑性樹脂は、単独で使用してもよく、2種以上を併せて使用してもよい。また、アロイ化されていてもよい。なお、これらの熱可塑性樹脂は、分子量、重合度、密度、軟化点、溶媒への不溶分の割合、立体規則性の程度、触媒残渣の有無、原料となるモノマーの種類や配合比率、重合触媒の種類(例えば、チーグラー触媒、メタロセン触媒等)等に関わらず使用することができる。
 次に、本発明で使用される高分子化合物(E)について説明する。
 高分子化合物(E)は、本発明の樹脂組成物に帯電防止性を付与するために配合される。
 本発明で用いる高分子化合物(E)は、前述したように、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(B)と、エポキシ基を2個以上有するエポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有する。
Figure JPOXMLDOC01-appb-I000006
 高分子化合物(E)は、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、上記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(B)と、エポキシ基を2個以上有するエポキシ化合物(D)とを、エステル化反応させることにより、得ることができる。
 まず、本発明で高分子化合物(E)について用いられるジオールについて説明する。
 本発明で用いられるジオールとしては、脂肪族ジオール、芳香族基含有ジオールが挙げられる。また、ジオールは、2種以上の混合物でもよい。脂肪族ジオールとしては、例えば、1,2-エタンジオール(エチレングリコール)、1,2-プロパンジオール(プロピレングリコール)、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールA、1,2-、1,3-または1,4-シクロヘキサンジオール、シクロドデカンジオール、ダイマージオール、水添ダイマージオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール等が挙げられる。これら脂肪族ジオールの中でも、1,4-シクロヘキサンジメタノール、水添ビスフェノールAが、帯電防止性能の持続性と、耐有機溶剤性の点から好ましく、1,4-シクロヘキサンジメタノールがより好ましい。
 また、脂肪族ジオールは、疎水性を有することが好ましいので、脂肪族ジオールのうち、親水性を有するポリエチレングリコールは好ましくない。但し、これら以外のジオールとともに使用する場合はその限りではない。
 芳香族基含有ジオールとしては、例えば、ビスフェノールA、1,2-ヒドロキシベンゼン、1,3-ヒドロキシベンゼン、1,4-ヒドロキシベンゼン、1,4-ベンゼンジメタノール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、レゾルシン、ピロカテコール等の単核2価フェノール化合物のポリヒドロキシエチル付加物等が挙げられる。これら芳香族基を有するジオールの中でも、帯電防止性能の持続性と、耐有機溶剤性の点から、ビスフェノールAのエチレンオキサイド付加物、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンが好ましい。
 次に、本発明で高分子化合物(E)について用いられる脂肪族ジカルボン酸について説明する。
 本発明で用いられる脂肪族ジカルボン酸は、脂肪族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよい。脂肪族ジカルボン酸およびその誘導体は、2種以上の混合物でもよい。
 脂肪族ジカルボン酸としては、好ましくは炭素原子数2~20の脂肪族ジカルボン酸が挙げられ、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10-デカンジカルボン酸、1,4-シクロヘキサンジカルボン酸、ダイマー酸、マレイン酸、フマル酸等が挙げられる。これら脂肪族ジカルボン酸の中でも、融点や耐熱性の点から、炭素原子数4~16のジカルボン酸が好ましく、炭素原子数6~12のジカルボン酸がより好ましい。
 次に、本発明で高分子化合物(E)について用いられる芳香族ジカルボン酸について説明する。
 本発明で用いられる芳香族ジカルボン酸は、芳香族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよい。また、芳香族ジカルボン酸およびその誘導体は、2種以上の混合物でもよい。
 芳香族ジカルボン酸としては、好ましくは炭素原子数8~20の芳香族ジカルボン酸が挙げられ、例えば、テレフタル酸、イソフタル酸、フタル酸、フェニルマロン酸、ホモフタル酸、フェニルコハク酸、β-フェニルグルタル酸、α-フェニルアジピン酸、β-フェニルアジピン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ナフタレンジカルボン酸、3-スルホイソフタル酸ナトリウムおよび3-スルホイソフタル酸カリウム等が挙げられる。
 次に、本発明で用いられる上記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(B)について説明する。
 上記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(B)としては、親水性を有する化合物が好ましく、上記一般式(1)で示される基を有するポリエーテルがより好ましく、下記一般式(2)で表されるポリエチレングリコールが特に好ましい。
Figure JPOXMLDOC01-appb-I000007
 上記一般式(2)中、mは5~250の数を表す。mは、耐熱性や相溶性の点から、好ましくは20~150である。
 化合物(B)としては、エチレンオキサイドを付加反応させて得られるポリエチレングリコール以外に、エチレンオキサイドと、他のアルキレンオキサイド(例えば、プロピレンオキサイド、1,2-、1,4-、2,3-または1,3-ブチレンオキサイド等)の1種以上とを付加反応させたポリエーテルが挙げられ、このポリエーテルはランダムでもブロックでもいずれでもよい。
 化合物(B)の例をさらに挙げると、活性水素原子含有化合物にエチレンオキサイドが付加した構造の化合物や、エチレンオキサイドおよび他のアルキレンオキサイド(例えば、プロピレンオキサイド、1,2-、1,4-、2,3-または1,3-ブチレンオキサイド等)の1種以上が付加した構造の化合物が挙げられる。これらはランダム付加およびブロック付加のいずれでもよい。
 活性水素原子含有化合物としては、グリコール、2価フェノール、1級モノアミン、2級ジアミンおよびジカルボン酸等が挙げられる。
 グリコールとしては、炭素原子数2~20の脂肪族グリコール、炭素原子数5~12の脂環式グリコールおよび炭素原子数8~26の芳香族グリコール等が使用できる。
 脂肪族グリコールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,3-ヘキサンジオール、1,4-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,10-デカンジオール、1,18-オクタデカンジオール、1,20-エイコサンジオール、ジエチレングリコール、トリエチレングリコールおよびチオジエチレングリコール等が挙げられる。
 脂環式グリコールとしては、例えば、1-ヒドロキシメチル-1-シクロブタノール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1-メチル-3,4-シクロヘキサンジオール、2-ヒドロキシメチルシクロヘキサノール、4-ヒドロキシメチルシクロヘキサノール、1,4-シクロヘキサンジメタノールおよび1,1’-ジヒドロキシ-1,1’-ジシクロヘキシル等が挙げられる。
 芳香族グリコールとしては、例えば、ジヒドロキシメチルベンゼン、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、2-フェニル-1,3-プロパンジオール、2-フェニル-1,4-ブタンジオール、2-ベンジル-1,3-プロパンジオール、トリフェニルエチレングリコール、テトラフェニルエチレングリコールおよびベンゾピナコール等が挙げられる。
 2価フェノールとしては、炭素原子数6~30のフェノールが使用でき、例えば、カテコール、レゾルシノール、1,4-ジヒドロキシベンゼン、ハイドロキノン、ビスフェノールA、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルエーテル、ジヒドロキシジフェニルチオエーテル、ビナフトールおよびこれらのアルキル(炭素原子数1~10)またはハロゲン置換体等が挙げられる。
 1級モノアミンとしては、炭素原子数1~20の脂肪族1級モノアミンが挙げられ、例えば、メチルアミン、エチルアミン、n-プロピルアミン、イソプロピルアミン、n-ブチルアミン、s-ブチルアミン、イソブチルアミン、n-アミルアミン、イソアミルアミン、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-デシルアミン、n-オクタデシルアミンおよびn-イコシルアミン等が挙げられる。
 2級ジアミンとしては、炭素原子数4~18の脂肪族2級ジアミン、炭素原子数4~13の複素環式2級ジアミン、炭素原子数6~14の脂環式2級ジアミン、炭素数8~14の芳香族2級ジアミンおよび炭素原子数3~22の2級アルカノールジアミン等が使用できる。
 脂肪族2級ジアミンとしては、例えば、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N’-ジブチルエチレンジアミン、N,N’-ジメチルプロピレンジアミン、N,N’-ジエチルプロピレンジアミン、N,N’-ジブチルプロピレンジアミン、N,N’-ジメチルテトラメチレンジアミン、N,N’-ジエチルテトラメチレンジアミン、N,N’-ジブチルテトラメチレンジアミン、N,N’-ジメチルヘキサメチレンジアミン、N,N’-ジエチルヘキサメチレンジアミン、N,N’-ジブチルヘキサメチレンジアミン、N,N’-ジメチルデカメチレンジアミン、N,N’-ジエチルデカメチレンジアミンおよびN,N’-ジブチルデカメチレンジアミン等が挙げられる。
 複素環式2級ジアミンとしては、例えば、ピペラジン、1-アミノピペリジン等が挙げられる。
 脂環式2級ジアミンとしては、例えば、N,N’-ジメチル-1,2-シクロブタンジアミン、N,N’-ジエチル-1,2-シクロブタンジアミン、N,N’-ジブチル-1,2-シクロブタンジアミン、N,N’-ジメチル-1,4-シクロヘキサンジアミン、N,N’-ジエチル-1,4-シクロヘキサンジアミン、N,N’-ジブチル-1,4-シクロヘキサンジアミン、N,N’-ジメチル-1,3-シクロヘキサンジアミン、N,N’-ジエチル-1,3-シクロヘキサンジアミン、N,N’-ジブチル-1,3-シクロヘキサンジアミン等が挙げられる。
 芳香族2級ジアミンとしては、例えば、N,N’-ジメチル-フェニレンジアミン、N,N’-ジメチル-キシリレンジアミン、N,N’-ジメチル-ジフェニルメタンジアミン、N,N’-ジメチル-ジフェニルエーテルジアミン、N,N’-ジメチル-ベンジジンおよびN,N’-ジメチル-1,4-ナフタレンジアミン等が挙げられる。
 2級アルカノールジアミンとしては、例えば、N-メチルジエタノールアミン、N-オクチルジエタノールアミン、N-ステアリルジエタノールアミンおよびN-メチルジプロパノールアミン等が挙げられる。
 ジカルボン酸としては、炭素数2~20のジカルボン酸が使用でき、例えば、脂肪族ジカルボン酸、芳香族ジカルボン酸および脂環式ジカルボン酸等が用いられる。
 脂肪族ジカルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、メチルコハク酸、ジメチルマロン酸、β-メチルグルタル酸、エチルコハク酸、イソプロピルマロン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジ酸、ドデカンジ酸、トリデカンジ酸、テトラデカンジ酸、ヘキサデカンジ酸、オクタデカンジ酸およびイコサンジ酸が挙げられる。
 芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、フタル酸、フェニルマロン酸、ホモフタル酸、フェニルコハク酸、β-フェニルグルタル酸、α-フェニルアジピン酸、β-フェニルアジピン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ナフタレンジカルボン酸、3-スルホイソフタル酸ナトリウムおよび3-スルホイソフタル酸カリウム等が挙げられる。
 脂環式ジカルボン酸としては、例えば、1,3-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジ酢酸、1,3-シクロヘキサンジ酢酸、1,2-シクロヘキサンジ酢酸およびジシクロヘキシル-4、4’-ジカルボン酸等が挙げられる。
 これらの活性水素原子含有化合物は、1種でも2種以上の混合物でも使用することができる。
 次に、本発明で用いられるエポキシ基を2個以上有するエポキシ化合物(D)について説明する。
 本発明に用いるエポキシ化合物(D)としては、エポキシ基を2個以上有するものであれば特に制限されず、例えば、ハイドロキノン、レゾルシン、ピロカテコール、フロログルクシノール等の単核多価フェノール化合物のポリグリシジルエーテル化合物;ジヒドロキシナフタレン、ビフェノール、メチレンビスフェノール(ビスフェノールF)、メチレンビス(オルトクレゾール)、エチリデンビスフェノール、イソプロピリデンビスフェノール(ビスフェノールA)、イソプロピリデンビス(オルトクレゾール)、テトラブロモビスフェノールA、1,3-ビス(4-ヒドロキシクミルベンゼン)、1,4-ビス(4-ヒドロキシクミルベンゼン)、1,1,3-トリス(4-ヒドロキシフェニル)ブタン、1,1,2,2-テトラ(4-ヒドロキシフェニル)エタン、チオビスフェノール、スルホビスフェノール、オキシビスフェノール、フェノールノボラック、オルソクレゾールノボラック、エチルフェノールノボラック、ブチルフェノールノボラック、オクチルフェノールノボラック、レゾルシンノボラック、テルペンフェノール等の多核多価フェノール化合物のポリグリシジルエーテル化合物;エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキサンジオール、ポリエチレングリコール、ポリグリコール、チオジグリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ビスフェノールA-エチレンオキシド付加物等の多価アルコール類のポリグリシジルエーテル;マレイン酸、フマル酸、イタコン酸、コハク酸、グルタル酸、スベリン酸、アジピン酸、アゼライン酸、セバシン酸、ダイマー酸、トリマー酸、フタル酸、イソフタル酸、テレフタル酸、トリメリット酸、トリメシン酸、ピロメリット酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸等の脂肪族、芳香族または脂環族多塩基酸のグリシジルエステル類およびグリシジルメタクリレートの単独重合体または共重合体;N,N-ジグリシジルアニリン、ビス(4-(N-メチル-N-グリシジルアミノ)フェニル)メタン、ジグリシジルオルトトルイジン等のグリシジルアミノ基を有するエポキシ化合物;ビニルシクロヘキセンジエポキシド、ジシクロペンタジエンジエポキサイド、3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシ-6-メチルシクロヘキシルメチル-6-メチルシクロヘキサンカルボキシレート、ビス(3,4-エポキシ-6-メチルシクロヘキシルメチル)アジペート等の環状オレフィン化合物のエポキシ化物;エポキシ化ポリブタジエン、エポキシ化スチレン-ブタジエン共重合物等のエポキシ化共役ジエン重合体、トリグリシジルイソシアヌレート等の複素環化合物、エポキシ化大豆油等が挙げられる。また、これらのエポキシ化合物は、末端イソシアネートのプレポリマーによって内部架橋されたもの、あるいは多価の活性水素化合物(多価フェノール、ポリアミン、カルボニル基含有化合物、ポリリン酸エステル等)を用いて高分子量化したものであってもよい。
 かかるエポキシ化合物(D)は、2種以上を使用してもよい。
 また、高分子化合物(E)は、帯電防止性能の持続性と、耐有機溶剤性の点から、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸から構成されるポリエステル(A)と、上記化合物(B)と、上記エポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有することが好ましい。
 さらに、高分子化合物(E)は、帯電防止性能の持続性と、耐有機溶剤性の点から、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸から構成されるポリエステル(A)から構成されたブロック、および、上記化合物(B)から構成されたブロックがエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(C)と、上記エポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有することが好ましい。
 本発明に係るポリエステル(A)は、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸からなるものであればよく、好ましくは、ジオールの水酸基を除いた残基と、脂肪族ジカルボン酸のカルボキシル基を除いた残基とが、エステル結合を介して結合する構造を有し、かつ、ジオールの水酸基を除いた残基と、芳香族ジカルボン酸のカルボキシル基を除いた残基とが、エステル結合を介して結合する構造を有する。
 また、ポリエステル(A)は、両末端にカルボキシル基を有する構造のものが好ましい。さらに、ポリエステル(A)の重合度は、好適には2~50の範囲である。
 両末端にカルボキシル基を有するポリエステル(A)は、例えば、上記脂肪族ジカルボン酸および上記芳香族ジカルボン酸と、上記ジオールとを重縮合反応させることにより得ることができる。
 脂肪族ジカルボン酸は、脂肪族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよく、誘導体を使用してポリエステル(A)を得た場合は、最終的に両末端を処理してカルボキシル基にすればよく、そのままの状態で、次の、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を得るための反応に進んでもよい。また、脂肪族ジカルボン酸およびその誘導体は、2種以上の混合物であってもよい。
 芳香族ジカルボン酸は、芳香族ジカルボン酸の誘導体(例えば、酸無水物、アルキルエステル、アルカリ金属塩、酸ハライド等)であってもよく、誘導体を使用してポリエステルを得た場合は、最終的に両末端を処理してカルボキシル基にすればよく、そのままの状態で、次の、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を得るための反応に進んでもよい。また、芳香族ジカルボン酸およびその誘導体は、2種以上の混合物であってもよい。
 ポリエステル(A)中の、脂肪族ジカルボンのカルボキシル基を除いた残基と、芳香族ジカルボン酸のカルボキシル基を除いた残基との比は、モル比で90:10~99.9:0.1が好ましく、93:7~99.9:0.1がより好ましい。
 両末端にカルボキシル基を有するポリエステル(A)は、例えば、上記脂肪族ジカルボン酸またはその誘導体および上記芳香族ジカルボン酸またはその誘導体と、上記ジオールとを重縮合反応させることにより得ることができる。
 脂肪族ジカルボン酸またはその誘導体および芳香族ジカルボン酸またはその誘導体と、ジオールとの反応比は、両末端がカルボキシル基となるように、脂肪族ジカルボン酸またはその誘導体および芳香族ジカルボン酸またはその誘導体を過剰に使用することが好ましく、モル比で、ジオールに対して1モル過剰に使用することが好ましい。
 重縮合反応時の脂肪族ジカルボン酸またはその誘導体と芳香族ジカルボン酸またはその誘導体との配合比は、モル比で90:10~99.9:0.1が好ましく、93:7~99.9:0.1がより好ましい。
 また、配合比や反応条件によっては、ジオールおよび脂肪族ジカルボン酸のみから構成されるポリエステルや、ジオールおよび芳香族ジカルボン酸のみから構成されるポリエステルが生成する場合もあるが、本発明では、ポリエステル(A)に、それらが混入していてもよく、そのままそれらを(B)成分と反応させて、ブロックポリマー(C)を得てもよい。
 重縮合反応には、エステル化反応を促進する触媒を使用してもよく、触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。
 また、脂肪族ジカルボン酸および芳香族ジカルボン酸は、ジカルボン酸の代わりに、カルボン酸エステル、カルボン酸金属塩、カルボン酸ハライド等の誘導体を使用した場合には、それらとジオールとの反応後に、両末端を処理してジカルボン酸としてもよく、そのままの状態で、次の、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)を得るための反応に進んでもよい。
 ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸からなり両末端にカルボキシル基を有する好適なポリエステル(A)は、(B)成分と反応することでエステル結合を形成し、ブロックポリマー(C)の構造を形成するものであればよく、両末端のカルボキシル基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。また、反応時に生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。
 両末端に水酸基を有する化合物(B)は、(A)成分と反応することでエステル結合を形成し、ブロックポリマー(C)の構造を形成するものであればよく、両末端の水酸基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。
 本発明に係る両末端にカルボキシル基を有する構造を有するブロックポリマー(C)は、上記ポリエステル(A)から構成されたブロックと、上記化合物(B)から構成されたブロックとを有し、これらのブロックが、カルボキシル基と水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる構造を有する。かかるブロックポリマー(C)の一例を挙げると、例えば、下記一般式(3)で表される構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-I000008
 上記一般式(3)中、(A)は、上記両末端にカルボキシル基を有するポリエステル(A)から構成されたブロックを表し、(B)は、上記両末端に水酸基を有する化合物(B)から構成されたブロックを表し、tは繰り返し単位の繰り返しの数であり、好ましくは1~10の数を表す。tは、より好ましくは1~7の数であり、最も好ましくは1~5の数である。
 ブロックポリマー(C)中の、ポリエステル(A)から構成されたブロックの一部は、ジオールおよび脂肪族ジカルボン酸のみから構成されたポリエステルからなるブロック、または、ジオールおよび芳香族ジカルボン酸のみから構成されたポリエステルからなるブロックに置き換えられていてもよい。
 両末端にカルボキシル基を有する構造を有するブロックポリマー(C)は、上記両末端にカルボキシル基を有するポリエステル(A)と、上記両末端に水酸基を有する化合物(B)とを、重縮合反応させることによって得ることができるが、上記ポリエステル(A)と上記化合物(B)とが、カルボキシル基と水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる構造を有するものと同等の構造を有するものであれば、必ずしも上記ポリエステル(A)と上記化合物(B)とから合成する必要はない。
 上記ポリエステル(A)と上記化合物(B)との反応比は、上記化合物(B)がXモルに対して、上記ポリエステル(A)がX+1モルとなるように調整すれば、両末端にカルボキシル基を有するブロックポリマー(C)を好ましく得ることができる。
 反応に際しては、上記ポリエステル(A)の合成反応の完結後に、上記ポリエステル(A)を単離せずに、上記化合物(B)を反応系に加えて、そのまま反応させてもよい。
 重縮合反応には、エステル化反応を促進する触媒を使用してもよく、触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。また、反応時に生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。
 また、ポリエステル(A)には、ジオールおよび脂肪族ジカルボン酸のみから構成されるポリエステルや、ジオールおよび芳香族ジカルボン酸からのみ構成されるポリエステルが混入していてもよく、それらをそのまま化合物(B)と反応させ、ブロックポリマー(C)を得てもよい。
 ブロックポリマー(C)は、ポリエステル(A)から構成されるブロックと化合物(B)から構成されるブロック以外に、ジオールと脂肪族ジカルボン酸のみから構成されるポリエステルから構成されるブロックや、ジオールと芳香族ジカルボン酸からのみ構成されるポリエステルから構成されるブロックが構造中に含まれていてもよい。
 本発明に係る高分子化合物(E)は、好ましくは、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)と、2個以上のエポキシ基を有するエポキシ化合物(D)とが、ブロックポリマー(C)の末端のカルボキシル基とエポキシ化合物(D)のエポキシ基とにより形成されたエステル結合を介して結合してなる構造を有する。また、かかる高分子化合物(E)は、さらに、上記ポリエステル(A)のカルボキシル基と上記エポキシ化合物(D)のエポキシ基とにより形成されたエステル結合を含んでいてもよい。
 高分子化合物(E)を得るためには、上記ブロックポリマー(C)のカルボキシル基と、上記エポキシ化合物(D)のエポキシ基とを反応させればよい。エポキシ化合物のエポキシ基の数は、反応させるブロックポリマー(C)のカルボキシル基の数の、0.5~5当量が好ましく、0.5~1.5当量がより好ましい。また、上記反応は、各種溶媒中で行ってもよく、溶融状態で行ってもよい。
 反応させるエポキシ基を2個以上有するエポキシ化合物(D)は、反応させるブロックポリマー(C)のカルボキシル基の数の、0.1~2.0当量が好ましく、0.2~1.5当量がより好ましい。
 反応に際しては、上記ブロックポリマー(C)の合成反応の完結後に、ブロックポリマー(C)を単離せずに、反応系にエポキシ化合物(D)を加えて、そのまま反応させてもよい。その場合、ブロックポリマー(C)を合成するときに過剰に使用した未反応のポリエステル(A)のカルボキシル基と、エポキシ化合物(D)の一部のエポキシ基とが反応して、エステル結合を形成してもよい。
 本発明の好ましい高分子化合物(E)は、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)とエポキシ基を2個以上有するエポキシ化合物(D)とが、それぞれのカルボキシル基とエポキシ基とにより形成されたエステル結合を介して結合した構造を有するものと同等の構造を有するものであれば、必ずしも上記ブロックポリマー(C)と上記エポキシ化合物(D)とから合成する必要はない。
 本発明において、高分子化合物(E)における、ポリエステル(A)から構成されるブロックの数平均分子量は、好ましくはポリスチレン換算で800~8,000であり、より好ましくは1,000~6,000であり、さらに好ましくは2,000~4,000である。また、高分子化合物(E)における、両末端に水酸基を有する化合物(B)から構成されるブロックの数平均分子量は、好ましくはポリスチレン換算で400~6,000であり、より好ましくは1,000~5,000であり、さらに好ましくは2,000~4,000である。さらに、高分子化合物(E)における、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)から構成されるブロックの数平均分子量は、好ましくはポリスチレン換算で5,000~25,000であり、より好ましくは7,000~17,000であり、より好ましくは9,000~13,000である。
 また、本発明の高分子化合物(E)は、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸からポリエステル(A)を得たのち、ポリエステル(A)を単離せずに、化合物(B)および/またはエポキシ化合物(D)と反応させてもよい。
 高分子化合物(E)の配合量は、熱可塑性樹脂100質量部に対して、3~25質量部であり、帯電防止性能の持続性と、耐有機溶剤性の点から、5~22質量部が好ましく、7~20質量部がより好ましい。配合量が3質量部未満だと、充分な帯電防止性が得られず、25質量部を超えると、樹脂の力学特性に悪影響が出る場合がある。
 本発明の樹脂組成物は、さらに、帯電防止性とその持続性の点から、1種以上のアルカリ金属の塩(F)を含有することも好ましい。
 但し、医療用途や食品用途の容器および管に使用する場合は、金属塩が含まれていると医療用途や食品用途に使用する場合に必要な許認可を取得する場合に好ましくない場合もある。
 アルカリ金属の塩(F)としては、有機酸または無機酸の塩が挙げられる。
 アルカリ金属の例としては、リチウム、ナトリウム、カリウム、セシウム、ルビジウム等が挙げられる。有機酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等の炭素原子数1~18の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の炭素原子数1~12の脂肪族ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸等の芳香族カルボン酸;メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸等の炭素原子数1~20のスルホン酸等が挙げられる。無機酸の例としては、塩酸、臭化水素酸、硫酸、亜硫酸、リン酸、亜リン酸、ポリリン酸、硝酸、過塩素酸等が挙げられる。中でも、帯電防止性の点から、リチウム、ナトリウム、カリウムがより好ましく、リチウム、ナトリウムが最も好ましい。また、帯電防止性の点から、酢酸の塩、過塩素酸の塩、p-トルエンスルホン酸の塩、ドデシルベンゼンスルホン酸の塩が好ましい。
 アルカリ金属の塩の具体例としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、リン酸リチウム、リン酸ナトリウム、リン酸カリウム、硫酸リチウム、硫酸ナトリウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、p-トルエンスルホン酸カリウム、ドデシルベンゼンスルホン酸リチウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム等が挙げられる。これらの中で好ましいのは、酢酸リチウム、酢酸カリウム、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸リチウム、ドデシルベンゼンスルホン酸ナトリウム、塩化リチウム等である。
 アルカリ金属の塩(F)の配合量は、帯電防止性能の持続性と、耐有機溶剤性の点から、熱可塑性樹脂100質量部に対して、0.1~5質量部とすることができ、0.3~2質量部が好ましく、0.4~1質量部がより好ましい。アルカリ金属の塩の量が、0.1質量部未満だと帯電防止性が充分ではなく、5質量部を超えると、樹脂の物性に影響を及ぼす場合がある。
 本発明の樹脂組成物には、本発明の効果を損なわない範囲で、さらに1種以上の第2族元素の塩を含有してもよい。
 但し、医療用途や食品用途の容器および管に使用する場合は、第2族元素の塩が含まれていると医療用途や食品用途に使用する場合に必要な許認可を取得する場合に好ましくない場合もある。
 第2族元素の塩としては、有機酸または無機酸の塩が挙げられ、第2族元素の例としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。有機酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等の炭素原子数1~18の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の炭素原子数1~12の脂肪族ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸等の芳香族カルボン酸;メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸等の炭素原子数1~20のスルホン酸等が挙げられる。無機酸の例としては、塩酸、臭化水素酸、硫酸、亜硫酸、リン酸、亜リン酸、ポリリン酸、硝酸、過塩素酸等が挙げられる。
 第2族元素の塩の配合量についても、帯電防止性能の持続性と、耐有機溶剤性の点から、熱可塑性樹脂100質量部に対して、0.1~5質量部とすることができ、0.3~2質量部が好ましく、0.4~1質量部がより好ましい。第2族元素の塩の量が、0.1質量部未満だと帯電防止性が充分ではなく、5質量部を超えると、樹脂の物性に影響を及ぼす場合がある。アルカリ金属の塩(F)および第2族元素の塩を併用する場合には、これらの総量を、熱可塑性樹脂100質量部に対し、0.1~5質量部とすることができ、好ましくは0.3~2質量部、より好ましくは0.4~1質量部とする。
 また、本発明の樹脂組成物には、本発明の効果を損なわない範囲で、界面活性剤を配合してもよい。界面活性剤としては、非イオン性、アニオン性、カチオン性または両性の界面活性剤を使用することができる。
 非イオン性界面活性剤としては、高級アルコールエチレンオキシド付加物、脂肪酸エチレンオキシド付加物、高級アルキルアミンエチレンオキシド付加物、ポリプロピレングリコールエチレンオキシド付加物等のポリエチレングリコール型非イオン界面活性剤;ポリエチレンオキシド、グリセリンの脂肪酸エステル、ペンタエリスリットの脂肪酸エステル、ソルビット若しくはソルビタンの脂肪酸エステル、多価アルコールのアルキルエーテル、アルカノールアミンの脂肪族アミド等の多価アルコール型非イオン界面活性剤等が挙げられる。
 アニオン性界面活性剤としては、例えば、高級脂肪酸のアルカリ金属塩等のカルボン酸塩;高級アルコール硫酸エステル塩、高級アルキルエーテル硫酸エステル塩等の硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルスルホン酸塩、パラフィンスルホン酸塩等のスルホン酸塩;高級アルコールリン酸エステル塩等のリン酸エステル塩等が挙げられる。
 カチオン性界面活性剤としては、アルキルトリメチルアンモニウム塩等の第4級アンモニウム塩等が挙げられる。
 両性界面活性剤としては、高級アルキルアミノプロピオン酸塩等のアミノ酸型両性界面活性剤、高級アルキルジメチルベタイン、高級アルキルジヒドロキシエチルベタイン等のベタイン型両性界面活性剤等が挙げられ、これらは単独でまたは2種以上組み合わせて使用することができる。
 界面活性剤を配合する場合の配合量は、熱可塑性樹脂100質量部に対して、0.1~5質量部が好ましく、0.5~2質量部がより好ましい。
 さらに、本発明の樹脂組成物には、高分子型帯電防止剤を配合してもよい。高分子型帯電防止剤としては、例えば、公知のポリエーテルエステルアミド等の高分子型帯電防止剤を使用することができ、公知のポリエーテルエステルアミドとしては、例えば、特開平7-10989号公報に記載のビスフェノールAのポリオキシアルキレン付加物からなるポリエーテルエステルアミドが挙げられる。また、ポリオレフィンブロックと親水性ポリマーブロックとの結合単位が2~50の繰り返し構造を有するブロックポリマーを使用することができ、例えば、米国特許第6552131号明細書記載のブロックポリマーを挙げることができる。
 高分子型帯電防止剤を配合する場合の配合量は、熱可塑性樹脂100質量部に対して、0.1~10質量部が好ましく、0.5~5質量部がより好ましい。
 さらにまた、本発明の樹脂組成物は、本発明の効果を損なわない範囲で、イオン性液体を配合してもよい。イオン性液体の例としては、室温以下の融点を有し、イオン性液体を構成するカチオンまたはアニオンのうち少なくとも一つが有機物イオンであり、初期電導度が好ましくは1~200ms/cm、より好ましくは10~200ms/cmである常温溶融塩であって、例えば、国際公開第95/15572号に記載の常温溶融塩が挙げられる。
 イオン性液体を構成するカチオンとしては、アミジニウム、ピリジニウム、ピラゾリウムおよびグアニジニウムカチオンからなる群から選ばれるカチオンが挙げられる。このうち、アミジニウムカチオンとしては、下記のものが挙げられる。
(1)イミダゾリニウムカチオン
 炭素原子数5~15のものが挙げられ、例えば、1,2,3,4-テトラメチルイミダゾリニウム、1,3-ジメチルイミダゾリニウム;
(2)イミダゾリウムカチオン
 炭素原子数5~15のものが挙げられ、例えば、1,3-ジメチルイミダゾリウム、1-エチル-3-メチルイミダゾリウム;
(3)テトラヒドロピリミジニウムカチオン
 炭素原子数6~15のものが挙げられ、例えば、1,3-ジメチル-1,4,5,6-テトラヒドロピリミジニウム、1,2,3,4-テトラメチル-1,4,5,6-テトラヒドロピリミジニウム;
(4)ジヒドロピリミジニウムカチオン
 炭素原子数6~20のものが挙げられ、例えば、1,3-ジメチル-1,4-ジヒドロピリミジニウム、1,3-ジメチル-1,6-ジヒドロピリミジニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,9-ウンデカジエニウム、8-メチル-1,8-ジアザビシクロ[5,4,0]-7,10-ウンデカジエニウム。
 ピリジニウムカチオンとしては、炭素原子数6~20のものが挙げられ、例えば、3-メチル-1-プロピルピリジニウム、1-ブチル-3,4-ジメチルピリジニウムが挙げられる。
 ピラゾリウムカチオンとしては、炭素原子数5~15のものが挙げられ、例えば、1、2-ジメチルピラゾリウム、1-n-ブチル-2-メチルピラゾリウムが挙げられる。
 グアニジニウムカチオンとしては、下記のものが挙げられる。
(1)イミダゾリニウム骨格を有するグアニジニウムカチオン
 炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリニウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリニウム;
(2)イミダゾリウム骨格を有するグアニジニウムカチオン
 炭素原子数8~15のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチルイミダゾリウム、2-ジエチルアミノ-1,3,4-トリメチルイミダゾリウム;
(3)テトラヒドロピリミジニウム骨格を有するグアニジニウムカチオン
 炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4,5,6-テトラヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4,5,6-テトラヒドロピリミジニウム;
(4)ジヒドロピリミジニウム骨格を有するグアニジニウムカチオン
 炭素原子数10~20のものが挙げられ、例えば、2-ジメチルアミノ-1,3,4-トリメチル-1,4-ジヒドロピリミジニウム、2-ジメチルアミノ-1,3,4-トリメチル-1,6-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,4-ジヒドロピリミジニウム、2-ジエチルアミノ-1,3-ジメチル-4-エチル-1,6-ジヒドロピリミジニウム。
 上記カチオンは1種を単独で用いても、また、2種以上を併用しても、いずれでもよい。これらのうち、帯電防止性の観点から好ましくはアミジニウムカチオン、より好ましくはイミダゾリウムカチオン、特に好ましくは1-エチル-3-メチルイミダゾリウムカチオンである。
 イオン性液体において、アニオンを構成する有機酸または無機酸としては、下記のものが挙げられる。有機酸としては、例えば、カルボン酸、硫酸エステル、スルホン酸およびリン酸エステル;無機酸としては、例えば、超強酸(例えば、ホウフッ素酸、四フッ化ホウ素酸、過塩素酸、六フッ化リン酸、六フッ化アンチモン酸および六フッ化ヒ素酸)、リン酸およびホウ酸が挙げられる。上記有機酸および無機酸は、1種を単独で用いても、また、2種以上を併用しても、いずれでもよい。
 上記有機酸および無機酸のうち、イオン性液体の帯電防止性の観点から好ましいのは、イオン性液体を構成するアニオンのHammett酸度関数(-H)が12~100である、超強酸の共役塩基、超強酸の共役塩基以外のアニオンを形成する酸およびこれらの混合物である。
 超強酸の共役塩基以外のアニオンとしては、例えば、ハロゲン(例えば、フッ素、塩素および臭素)イオン、アルキル(炭素原子数1~12)ベンゼンスルホン酸(例えば、p-トルエンスルホン酸およびドデシルベンゼンスルホン酸)イオンおよびポリ(n=1~25)フルオロアルカンスルホン酸(例えば、ウンデカフルオロペンタンスルホン酸)イオンが挙げられる。
 また、超強酸としては、プロトン酸およびプロトン酸とルイス酸との組み合わせから誘導されるもの、およびこれらの混合物が挙げられる。超強酸としてのプロトン酸としては、例えば、ビス(トリフルオロメチルスルホニル)イミド酸、ビス(ペンタフルオロエチルスルホニル)イミド酸、トリス(トリフルオロメチルスルホニル)メタン、過塩素酸、フルオロスルホン酸、アルカン(炭素原子数1~30)スルホン酸(例えば、メタンスルホン酸、ドデカンスルホン酸等)、ポリ(n=1~30)フルオロアルカン(炭素原子数1~30)スルホン酸(例えば、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ヘプタフルオロプロパンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸およびトリデカフルオロヘキサンスルホン酸)、ホウフッ素酸および四フッ化ホウ素酸が挙げられる。これらのうち、合成の容易さの観点から好ましいのはホウフッ素酸、トリフルオロメタンスルホン酸、ビス(トリフルオロメタンスルホニル)イミド酸およびビス(ペンタフルオロエチルスルホニル)イミド酸である。
 ルイス酸と組合せて用いられるプロトン酸としては、例えば、ハロゲン化水素(例えば、フッ化水素、塩化水素、臭化水素およびヨウ化水素)、過塩素酸、フルオロスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、ペンタフルオロエタンスルホン酸、ノナフルオロブタンスルホン酸、ウンデカフルオロペンタンスルホン酸、トリデカフルオロヘキサンスルホン酸およびこれらの混合物が挙げられる。これらのうち、イオン性液体の初期電導度の観点から好ましいのはフッ化水素である。
 ルイス酸としては、例えば、三フッ化ホウ素、五フッ化リン、五フッ化アンチモン、五フッ化ヒ素、五フッ化タンタルおよびこれらの混合物が挙げられる。これらのうちでも、イオン性液体の初期電導度の観点から好ましいのは三フッ化ホウ素および五フッ化リンである。
 プロトン酸とルイス酸との組み合わせは任意であるが、これらの組み合わせからなる超強酸としては、例えば、テトラフルオロホウ酸、ヘキサフルオロリン酸、六フッ化タンタル酸、六フッ化アンチモン酸、六フッ化タンタルスルホン酸、四フッ化ホウ素酸、六フッ化リン酸、塩化三フッ化ホウ素酸、六フッ化ヒ素酸およびこれらの混合物が挙げられる。
 上記のアニオンのうち、イオン性液体の帯電防止性の観点から好ましいのは超強酸の共役塩基(プロトン酸からなる超強酸およびプロトン酸とルイス酸との組合せからなる超強酸)であり、さらに好ましいのはプロトン酸からなる超強酸およびプロトン酸と、三フッ化ホウ素および/または五フッ化リンとからなる超強酸の共役塩基である。
 イオン性液体のうち、帯電防止性の観点から好ましいのは、アミジニウムカチオンを有するイオン性液体、より好ましいのは1-エチル-3-メチルイミダゾリウムカチオンを有するイオン性液体、特に好ましいのは1-エチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミドである。
 イオン性液体を配合する場合の配合量は、熱可塑性樹脂100質量部に対して、0.01~5質量部が好ましく、0.1~3質量部がより好ましい。
 さらにまた、本発明の樹脂組成物は、本発明の効果を損なわない範囲で、相溶化剤を配合してもよい。相溶化剤を配合することで、帯電防止成分と他成分や樹脂成分との相溶性を向上させることができる。相溶化剤としては、カルボキシル基、エポキシ基、アミノ基、ヒドロキシル基およびポリオキシアルキレン基からなる群から選ばれる少なくとも1種の官能基(極性基)を有する変性ビニル重合体、例えば、特開平3-258850号公報に記載の重合体や、特開平6-345927号公報に記載のスルホニル基を有する変性ビニル重合体、あるいはポリオレフィン部分と芳香族ビニル重合体部分とを有するブロック重合体等が挙げられる。
 相溶化剤を配合する場合の配合量は、熱可塑性樹脂100質量部に対して、0.01~5質量部が好ましく、0.1~3質量部がより好ましい。
 また、本発明の樹脂組成物には、本発明の効果を損なわない範囲で、必要に応じて、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤等の各種添加剤をさらに添加することができ、これにより、本発明の樹脂組成物を安定化させることができる。
 上記フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸アミド〕、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6―ジ第三ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、2-第三ブチル-4-メチル-6-(2-アクリロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス〔3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオン酸メチル〕メタン、チオジエチレングリコールビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、1,6-ヘキサメチレンビス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート〕、ビス〔3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド〕グリコールエステル、ビス〔2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル〕テレフタレート、1,3,5-トリス〔(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル〕イソシアヌレート、3,9-ビス〔1,1-ジメチル-2-{(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコールビス〔(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート〕等が挙げられる。これらのフェノール系酸化防止剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記リン系酸化防止剤としては、例えば、トリスノニルフェニルホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。これらのリン系酸化防止剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記チオエーテル系酸化防止剤としては、例えば、チオジプロピオン酸ジラウリル、チオジプロピオン酸ジミリスチル、チオジプロピオン酸ジステアリル等のジアルキルチオジプロピオネート類、および、ペンタエリスリトールテトラ(β-アルキルチオプロピオン酸)エステル類が挙げられる。これらのチオエーテル系酸化防止剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾ-ル、2-(2’-ヒドロキシ-5’-第三オクチルフェニル)ベンゾトリアゾ-ル、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾ-ル、2,2’-メチレンビス(4-第三オクチル-6-(ベンゾトリアゾリル)フェノール)、2-(2’-ヒドロキシ-3’-第三ブチル-5’-カルボキシフェニル)ベンゾトリアゾール等の2-(2’-ヒドロキシフェニル)ベンゾトリアゾール類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ第三アミルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β、β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン、2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-s-トリアジン、2-(2-ヒドロキシ-4-プロポキシ-5-メチルフェニル)-4,6-ビス(2,4-ジ第三ブチルフェニル)-s-トリアジン等のトリアリールトリアジン類が挙げられる。これらの紫外線吸収剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。
 上記ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン等のヒンダードアミン化合物が挙げられる。これらのヒンダードアミン系光安定剤の添加量は、熱可塑性樹脂100質量部に対して、0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。
 さらに、必要に応じてさらに、ポリオレフィン系樹脂等の熱可塑性樹脂中の残渣触媒を中和するために、公知の中和剤を添加することが好ましい。中和剤としては、例えば、ステアリン酸カルシウム、ステアリン酸リチウム、ステアリン酸ナトリウム等の脂肪酸金属塩、または、エチレンビス(ステアロアミド)、エチレンビス(12-ヒドロキシステアロアミド)、ステアリン酸アミド等の脂肪酸アミド化合物が挙げられ、これら中和剤は混合して用いてもよい。
 さらにまた、本発明の樹脂組成物には、必要に応じてさらに、芳香族カルボン酸金属塩、脂環式アルキルカルボン酸金属塩、p-第三ブチル安息香酸アルミニウム、芳香族リン酸エステル金属塩、ジベンジリデンソルビトール類等の造核剤、金属石鹸、ハイドロタルサイト、トリアジン環含有化合物、金属水酸化物、リン酸エステル系難燃剤、縮合リン酸エステル系難燃剤、ホスフェート系難燃剤、無機リン系難燃剤、(ポリ)リン酸塩系難燃剤、ハロゲン系難燃剤、シリコン系難燃剤、三酸化アンチモン等の酸化アンチモン、その他の無機系難燃助剤、その他の有機系難燃助剤、充填剤、顔料、滑剤、発泡剤等を添加してもよい。
 上記トリアジン環含有化合物としては、例えば、メラミン、アンメリン、ベンズグアナミン、アセトグアナミン、フタロジグアナミン、メラミンシアヌレート、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3-ヘキシレンジメラミン等が挙げられる。
 上記金属水酸化物としては、例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、水酸化バリウム、水酸化亜鉛、キスマー5A(水酸化マグネシウム:協和化学工業(株)製)等が挙げられる。
 上記リン酸エステル系難燃剤としては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリブトキシエチルホスフェート、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、オクチルジフェニルホスフェート、キシレニルジフェニルホスフェート、トリスイソプロピルフェニルホスフェート、2-エチルヘキシルジフェニルホスフェート、t-ブチルフェニルジフェニルホスフェート、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート等が挙げられる。
 上記縮合リン酸エステル系難燃剤の例としては、1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジキシレニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)等が挙げられる。
 上記(ポリ)リン酸塩系難燃剤の例としては、ポリリン酸アンモニウム、ポリリン酸メラミン、ポリリン酸ピペラジン、ピロリン酸メラミン、ピロリン酸ピペラジン等の(ポリ)リン酸のアンモニウム塩やアミン塩が挙げられる。
 その他の無機系難燃助剤としては、例えば、酸化チタン、酸化アルミニウム、酸化マグネシウム、ハイドロタルサイト、タルク、モンモリロナイト等の無機化合物、およびその表面処理品が挙げられ、例えば、TIPAQUE R-680(酸化チタン:石原産業(株)製)、キョーワマグ150(酸化マグネシウム:協和化学工業(株)製)、DHT-4A(ハイドロタルサイト:協和化学工業(株)製)、アルカマイザー4(亜鉛変性ハイドロタルサイト:協和化学工業(株)製)、等の種々の市販品を用いることができる。また、その他の有機系難燃助剤としては、例えば、ペンタエリスリトールが挙げられる。
 また、本発明の樹脂組成物には、必要に応じて通常熱可塑性樹脂に使用される添加剤、例えば、架橋剤、防曇剤、プレートアウト防止剤、表面処理剤、可塑剤、滑剤、難燃剤、蛍光剤、防黴剤、殺菌剤、発泡剤、金属不活性剤、離型剤、顔料、加工助剤、酸化防止剤、光安定剤等を、本発明の効果を損なわない範囲で配合することができる。
 本発明の樹脂組成物の製造方法は特に限定されず、熱可塑性樹脂に、高分子化合物(E)、アルカリ金属の塩(F)およびその他の任意成分を配合すればよく、その方法は、通常使用されている任意の方法を用いることができる。例えば、ロール混練り、バンパー混練り、押し出し機、ニーダー等により混合、練り込みして配合すればよい。
 また、高分子化合物(E)は、そのまま添加してもよいが、必要に応じて、担体に含浸させてから添加してもよい。担体に含浸させるには、そのまま加熱混合してもよいし、必要に応じて、有機溶媒で希釈してから担体に含浸させ、その後に溶媒を除去する方法でもよい。こうした担体としては、合成樹脂のフィラーや充填剤として知られているもの、または、常温で固体の難燃剤や光安定剤が使用でき、例えば、ケイ酸カルシウム粉末、シリカ粉末、タルク粉末、アルミナ粉末、酸化チタン粉末、または、これら担体の表面を化学修飾したもの、下記に挙げる難燃剤や酸化防止剤の中で固体のもの等が挙げられる。これらの担体の中でも担体の表面を化学修飾したものが好ましく、シリカ粉末の表面を化学修飾したものがより好ましい。これらの担体は、平均粒径が0.1~100μmのものが好ましく、0.5~50μmのものがより好ましい。
 さらに、高分子化合物(E)の樹脂成分への配合方法としては、ブロックポリマー(C)と、エポキシ化合物(D)とを樹脂成分に練り込みながら高分子化合物(E)を合成して配合してもよく、そのときに必要に応じてアルカリ金属の塩(F)を同時に練り込んでもよく、また、射出成型等の成型時に高分子化合物(E)と樹脂成分と、必要に応じてアルカリ金属の塩(F)とを混合して成形品を得る方法で配合してもよく、さらに、あらかじめ熱可塑性樹脂と、必要に応じてアルカリ金属塩(F)とのマスターバッチを製造しておき、このマスターバッチを配合してもよい。
 次に、本発明の有機溶剤用の容器および管について説明する。
 本発明の有機溶剤の容器および管は、本発明の樹脂組成物が成形されてなるものである。本発明の樹脂組成物を成形することにより、帯電防止性を有する樹脂成形体を得ることができる。成形方法としては、特に限定されるものではなく、押出加工、カレンダー加工、射出成形、ロール、圧縮成形、ブロー成形、回転成形等が挙げられ、樹脂板、シート、フィルム、ボトル、繊維、異形品等の種々の形状の成形品が製造できる。本発明の樹脂組成物により得られる成形体は、帯電防止性能およびその持続性に優れるものである。また、拭き取りに対する耐性も有する。
 また、本発明の樹脂組成物により得られる成形体は、持続性の有る帯電防止性と、有機溶剤に長時間接触していても、帯電防止成分が溶出することなく、持続性の有る帯電防止性能を有する。
 本発明の容器および管で使用できる有機溶剤とは、公知の有機溶剤が挙げられ、特に可燃性や発火性のものが好ましい。
 有機溶剤の例としては、アルコール系溶剤、ジオール系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤、脂肪族または脂環族炭化水素系溶剤、芳香族炭化水素系溶剤、シアノ基を有する炭化水素溶剤、石油系溶剤、ハロゲン系溶剤、その他の溶剤等が挙げられる。
 アルコール系溶剤としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、1-ブタノール、イソブタノール、2-ブタノール、第3ブタノール、ペンタノール、イソペンタノール、2-ペンタノール、ネオペンタノール、第3ペンタノール、ヘキサノール、2-ヘキサノール、ヘプタノール、2-ヘプタノール、オクタノール、2-エチルヘキサノール、2-オクタノール、シクロペンタノール、シクロヘキサノール、シクロヘプタノール、メチルシクロペンタノール、メチルシクロヘキサノール、メチルシクロヘプタノール、ベンジルアルコール、エチレングリコールモノアセタート、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングルコールモノエチルエーテル、ジエチレングルコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、2-(2-メトキシエトキシ)エタノール、2-(N,N-ジメチルアミノ)エタノール、3-(N,N-ジメチルアミノ)プロパノール等が挙げられ、また消毒用アルコールなども挙げられる。
 ジオール系溶剤としては、例えば、エチレングリコール、プロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、イソプレングリコール(3-メチル-1,3-ブタンジオール)、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、オクタンジオール(2-エチル-1,3-ヘキサンジオール)、2-ブチル-2-エチル-1,3-プロパンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。
 ケトン系溶剤としては、例えば、アセトン、エチルメチルケトン、メチルブチルケトン、メチルイソブチルケトン、エチルブチルケトン、ジプロピルケトン、ジイソブチルケトン、メチルアミルケトン、シクロヘキサノン、メチルシクロヘキサノン等が挙げられる。
 エステル系溶剤としては、例えば、ギ酸メチル、ギ酸エチル、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸第2ブチル、酢酸第3ブチル、酢酸アミル、酢酸イソアミル、酢酸第3アミル、酢酸フェニル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸イソブチル、プロピオン酸第2ブチル、プロピオン酸第3ブチル、プロピオン酸アミル、プロピオン酸イソアミル、プロピオン酸第3アミル、プロピオン酸フェニル、2-エチルヘキサン酸メチル、2-エチルヘキサン酸エチル、2-エチルヘキサン酸プロピル、2-エチルヘキサン酸イソプロピル、2-エチルヘキサン酸ブチル、乳酸メチル、乳酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸エチル、エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノイソプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノ第2ブチルエーテルアセテート、エチレングリコールモノイソブチルエーテルアセテート、エチレングリコールモノ第3ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノイソプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノ第2ブチルエーテルアセテート、プロピレングリコールモノイソブチルエーテルアセテート、プロピレングリコールモノ第3ブチルエーテルアセテート、ブチレングリコールモノメチルエーテルアセテート、ブチレングリコールモノエチルエーテルアセテート、ブチレングリコールモノプロピルエーテルアセテート、ブチレングリコールモノイソプロピルエーテルアセテート、ブチレングリコールモノブチルエーテルアセテート、ブチレングリコールモノ第2ブチルエーテルアセテート、ブチレングリコールモノイソブチルエーテルアセテート、ブチレングリコールモノ第3ブチルエーテルアセテート、アセト酢酸メチル、アセト酢酸エチル、オキソブタン酸メチル、オキソブタン酸エチル、γ-ラクトン、δ-ラクトン等が挙げられる。
 エーテル系溶剤としては、例えば、テトラヒドロフラン、テトラヒドロピラン、モルホリン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジブチルエーテル、ジエチルエーテル、ジオキサン等が挙げられる。
 脂肪族または脂環族炭化水素系溶剤としては、ペンタン、ヘキサン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、エチルシクロヘキサン、ヘプタン、オクタン、デカリン、ソルベントナフサ等が挙げられる。
 芳香族炭化水素系溶剤としては、ベンゼン、トルエン、エチルベンゼン、キシレン、メシチレン、ジエチルベンゼン、クメン、イソブチルベンゼン、シメン、テトラリンが挙げられる。
 石油系溶剤としては、ミネラルスピリット、ケロシン、シンナー等が挙げられる。
 ハロゲン系溶剤としては、塩化メチレン、クロロホルム、1,2-ジクロロエタン、トリクロロエチレン、テトラクロロエチレン等が挙げられる。
 シアノ基を有する炭化水素溶剤としては、アセトニトリル、1-シアノプロパン、1-シアノブタン、1-シアノヘキサン、シアノシクロヘキサン、シアノベンゼン、1,3-ジシアノプロパン、1,4-ジシアノブタン、1,6-ジシアノヘキサン、1,4-ジシアノシクロヘキサン、1,4-ジシアノベンゼン等が挙げられる。
 その他の有機溶剤としては、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、スルホラン、酢酸、無水酢酸、氷酢酸が挙げられる。
 また、本発明では、液体である燃料も有機溶剤に含むこととし、これら燃料の容器および管に使用することも好ましい。
 燃料の例を挙げると、石油、シェールオイル、灯油、ガソリン、軽油、重油、ジェット燃料、ナフサ、ベンジン、液化天然ガス、液化石油ガス、液化プロパンガス、液化シェールガス等が挙げられる。
 また、本発明では、植物油や動物油など、天然由来の油も有機溶剤に含むこととする。これらの油は食用のものも工業用のものも含まれる。食用油の例を挙げると、キャノーラ油、ココナッツオイル、コーン油、綿実油、オリーブオイル、パーム油、パーム核油、ピーナッツオイル、菜種油、サフラワー油、ごま油、大豆油、ひまわり油、アーモンド油、アマニ油、グレープシードオイル、シソ油、こめ油、牛脂、ラード、魚油等が挙げられ、工業用としては桐油、アマニ油、ひまし油等が挙げられる。
 これら有機溶剤は1種でも、2種以上の混合物でもよい。また、有機溶剤以外の成分が溶解していたり、混合していてもよい。さらに、水が混合していてもよい。
 また、本発明の容器および管は、天然ガス、プロパンガス、都市ガス、シェールガス等の可燃性のガスの配管にも使用できる。
 本発明の容器の形状や大きさは、有機溶剤を入れることができれば特に限定されない。容器は瓶の形状でもよく、袋状でもよい。容器には、本発明の樹脂組成物によって得られた蓋が付いていてもよい。
 具体的な容器の例としては、燃料タンク、燃料容器、薬品容器、消毒薬容器、消毒用アルコール容器、スプレー容器、化粧品容器、食用油容器、食品容器等が挙げられる。
 本発明の管は、中空の形状で、有機溶剤を通すことができれば特に限定されない。管は、チューブ、筒、ホース、パイプなどが挙げられる。
 具体的な管の例としては、医療用チューブ、食品用チューブ、工業用パイプ、燃料用ホース、燃料用パイプ等が挙げられる。
[帯電防止性繊維]
 次に、本発明のポリオレフィン系帯電防止性繊維およびこれを用いた布帛について、詳細に説明する。
 まず、本発明のポリオレフィン系帯電防止性繊維について説明する。本発明のポリオレフィン系帯電防止性繊維は、ポリオレフィン系樹脂100質量部に対して、高分子化合物(L)の1種以上を1~40質量部含有する樹脂組成物からなるものである。本発明の帯電防止性繊維においては、高分子化合物(L)が、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(I)と、反応性官能基を有する化合物(K)とが、エステル結合を介して結合してなる構造を有する。
Figure JPOXMLDOC01-appb-I000009
 まず、本発明で使用されるポリオレフィン系樹脂について説明する。
 本発明の帯電防止性繊維に係る樹脂組成物において、使用するポリオレフィン系樹脂については、特に制限はない。例えば、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ホモポリプロピレン、ランダムコポリマーポリプロピレン、ブロックコポリマーポリプロピレン、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ヘミアイソタクチックポリプロピレン、ポリブテン、シクロオレフィンポリマー、ステレオブロックポリプロピレン、ポリ-3-メチル-1-ブテン、ポリ-3-メチル-1-ペンテン、ポリ-4-メチル-1-ペンテン等のα-オレフィン重合体、エチレン-プロピレンのブロックまたはランダム共重合体、インパクトコポリマーポリプロピレン、エチレン-メチルメタクリレート共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体等のα-オレフィン共重合体、さらにポリオレフィン系熱可塑性エラストマーが挙げられ、これらの2種以上の共重合体でもよい。これらのポリオレフィン系樹脂は2種以上を使用してもよい。本発明においては、特にポリプロピレンまたはポリエチレンが好ましい。
 これらのポリオレフィン系樹脂は、分子量、重合度、密度、軟化点、溶媒への不溶分の割合、立体規則性の程度、触媒残渣の有無、原料となるモノマーの種類や配合比率、重合触媒の種類(例えば、チーグラー触媒、メタロセン触媒等)等に関わらず使用することができる。
 次に、本発明で使用される高分子化合物(L)について説明する。高分子化合物(L)は、本発明の帯電防止性繊維に帯電防止性を付与するために配合される。
 本発明で用いる高分子化合物(L)は、前述したように、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(I)と、反応性官能基を有する化合物(K)とが、エステル結合を介して結合してなる構造を有する。
Figure JPOXMLDOC01-appb-I000010
 高分子化合物(L)は、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、上記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(I)と、反応性官能基を有する化合物(K)とを、エステル化反応させることにより、得ることができる。
 まず、本発明で高分子化合物(L)について用いられるジオールについて説明する。
 本発明で用いられるジオールとしては、脂肪族ジオール、芳香族基含有ジオールが挙げられる。また、ジオールは、2種以上の混合物でもよい。脂肪族ジオールとしては、例えば、1,2-エタンジオール(エチレングリコール)、1,2-プロパンジオール(プロピレングリコール)、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール)、2,2-ジエチル-1,3-プロパンジオール(3,3-ジメチロールペンタン)、2-n-ブチル-2-エチル-1,3プロパンジオール(3,3-ジメチロールヘプタン)、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,12-オクタデカンジオール、1,4-シクロヘキサンジメタノール、水添ビスフェノールA、1,2-、1,3-または1,4-シクロヘキサンジオール、シクロドデカンジオール、ダイマージオール、水添ダイマージオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、ポリエチレングリコール等が挙げられる。これら脂肪族ジオールの中でも、1,4-シクロヘキサンジメタノール、水添ビスフェノールAが、帯電防止性とイオン溶出抑制の点から好ましく、1,4-シクロヘキサンジメタノールがより好ましい。
 また、脂肪族ジオールは、疎水性を有することが好ましいので、脂肪族ジオールのうち、親水性を有するポリエチレングリコールは好ましくない。但し、これら以外のジオールとともに使用する場合はその限りではない。
 芳香族基含有ジオールとしては、例えば、ビスフェノールA、1,2-ヒドロキシベンゼン、1,3-ヒドロキシベンゼン、1,4-ヒドロキシベンゼン、1,4-ベンゼンジメタノール、ビスフェノールAのエチレンオキサイド付加物、ビスフェノールAのプロピレンオキサイド付加物、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、レゾルシン、ピロカテコール等の単核2価フェノール化合物のポリヒドロキシエチル付加物等が挙げられる。これら芳香族基を有するジオールの中でも、ビスフェノールAのエチレンオキサイド付加物、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンが好ましい。
 次に、本発明で高分子化合物(L)について用いられる脂肪族ジカルボン酸および芳香族ジカルボン酸としては、高分子化合物(E)について用いられるのと同様のものを用いることができる。
 次に、本発明で用いられる上記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(I)としては、高分子化合物(E)について用いられる上記化合物(B)と同様のものを用いることができる。
 次に、反応性官能基を有する化合物(K)について説明する。反応性官能基を有する化合物(K)としては、反応性官能基を有するものであれば特に制限はなく、例えば、カルボキシル基、水酸基、アミノ基、アミド基およびエポキシ基等を有するものが挙げられるが、本発明の帯電防止性繊維においては、反応性官能基としてエポキシ基を2個以上有するエポキシ化合物(K-1)、および、反応性官能基として水酸基を3個以上有する多価アルコール化合物(K-2)が好ましい。
 本発明に用いるエポキシ化合物(K-1)としては、高分子化合物(E)について用いられる上記化合物(D)と同様のものを用いることができる。
 本発明に用いる多価アルコール化合物(K-2)としては、水酸基を3個以上有するものであれば特に制限されず、例えば、グリセリン、1,2,3-ブタントリオール、1,2,4-ブタントリオール、2-メチル-1,2,3-プロパントリオール、1,2,3-ペンタントリオール、1,2,4-ペンタントリオール、1,3,5-ペンタントリオール、2,3,4-ペンタントリオール、2-メチル-2,3,4-ブタントリオール、トリメチロールエタン、2,3,4-ヘキサントリオール、2-エチル-1,2,3-ブタントリオール、トリメチロールプロパン、4-プロピル-3,4,5-ヘプタントリオール、2,4-ジメチル-2,3,4-ペンタントリオール、トリエタノールアミン、トリイソプロパノールアミン、1,3,5-トリス(2-ヒドロキシエチル)イソシアヌレート等の3価アルコール;ペンタエリスリトール、1,2,3,4-ペンタンテトロール、2,3,4,5-ヘキサンテトロール、1,2,4,5-ペンタンテトロール、1,3,4,5-ヘキサンテトロール、ジグリセリン、ジトリメチロールプロパン、ソルビタン、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’-テトラキス(2-ヒドロキシエチル)エチレンジアミン等の4価アルコール;アドニトール、アラビトール、キシリトール、トリグリセリン等の5価アルコール;ジペンタエリスリトール、ソルビトール、マンニトール、イジトール、イノシトール、ダルシトール、タロース、アロース等の6価アルコール;さらには、トリペンタエリスリトールが挙げられる。また、多価アルコール化合物の分子量には特に制限はなく、ポリペンタエリスリトールやポリビニルアルコールなどの高分子量の多価アルコールも使用でき、ポリエステルポリオール等の合成多価アルコールも使用できる。かかる多価アルコール化合物(K-2)は、2種以上を使用してもよい。
 また、高分子化合物(L)は、帯電防止性能の持続性と耐水性の点から、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸から構成されるポリエステル(H)と、上記化合物(I)と、上記反応性官能基を有する化合物(K)とが、エステル結合を介して結合してなる構造を有することが好ましい。
 さらに、高分子化合物(L)は、帯電防止性能の持続性と耐水性の点から、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸から構成されるポリエステル(H)から構成されたブロックおよび上記化合物(I)から構成されたブロックがエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(J)と、上記反応性官能基を有する化合物(K)とが、エステル結合を介して結合してなる構造を有することが好ましい。
 本発明に係るポリエステル(H)としては、ポリエステル(A)と同様のものを用いることができる。
 両末端に水酸基を有する化合物(I)は、ポリエステル(H)と反応することでエステル結合を形成し、ブロックポリマー(J)の構造を形成するものであればよく、両末端の水酸基は、保護されていてもよく、修飾されていてもよく、また、前駆体の形であってもよい。
 本発明に係る両末端にカルボキシル基を有する構造を有するブロックポリマー(J)は、上記ポリエステル(H)から構成されたブロックと、上記化合物(I)から構成されたブロックとを有し、これらのブロックが、カルボキシル基と水酸基とにより形成されたエステル結合を介して繰り返し交互に結合してなる構造を有する。かかるブロックポリマー(J)としては、ポリエステル(A)に用いられるブロックポリマー(C)と同様のものを用いることができる。
 上記ポリエステル(H)と上記化合物(I)との反応比は、上記化合物(I)がXモルに対して、上記ポリエステル(H)がX+1モルとなるように調整すれば、両末端にカルボキシル基を有するブロックポリマー(J)を好ましく得ることができる。
 反応に際しては、上記ポリエステル(H)の合成反応の完結後に、上記ポリエステル(H)を単離せずに、上記化合物(I)を反応系に加えて、そのまま反応させてもよい。
 重縮合反応には、エステル化反応を促進する触媒を使用してもよく、触媒としては、ジブチル錫オキサイド、テトラアルキルチタネート、酢酸ジルコニウム、酢酸亜鉛等、従来公知のものが使用できる。また、反応時に生成物の酸化を抑えるために、反応系にフェノール系酸化防止剤等の酸化防止剤を添加してもよい。
 また、ポリエステル(H)には、ジオールおよび脂肪族ジカルボン酸のみから構成されるポリエステルや、ジオールおよび芳香族ジカルボン酸のみから構成されるポリエステルが混入していてもよく、それらをそのまま化合物(I)と反応させ、ブロックポリマー(J)を得てもよい。
 ブロックポリマー(J)は、ポリエステル(H)から構成されるブロックと化合物(I)から構成されるブロック以外に、ジオールと脂肪族ジカルボン酸のみから構成されるポリエステルから構成されるブロックや、ジオールと芳香族ジカルボン酸のみから構成されるポリエステルから構成されるブロックが構造中に含まれていてもよい。
 本発明に係る高分子化合物(L)は、好ましくは、両末端にカルボキシル基を有する構造を有するブロックポリマー(J)と、反応性官能基を有する化合物(K)とが、ブロックポリマー(J)の末端のカルボキシル基と反応性官能基を有する化合物(K)の反応性官能基とにより形成されたエステル結合を介して結合してなる構造を有する。また、かかる高分子化合物(L)は、さらに、上記ポリエステル(H)のカルボキシル基と上記反応性官能基を有する化合物(K)の反応性官能基とにより形成されたエステル結合を含んでいてもよい。
 反応性官能基を有する化合物(K)としてエポキシ化合物(K-1)を使用した場合、高分子化合物(L)は、両末端にカルボキシル基を有する構造を有するブロックポリマー(J)と、2個以上のエポキシ基を有するエポキシ化合物(K-1)とが、ブロックポリマー(J)の末端のカルボキシル基とエポキシ化合物(K-1)のエポキシ基とにより形成されたエステル結合を介して結合してなる構造を有する。なお、上述のとおり、高分子化合物(L)は、さらに、上記ポリエステル(H)のカルボキシル基と上記エポキシ化合物(K-1)のエポキシ基とにより形成されたエステル結合を含んでいてもよい。
 高分子化合物(E)を得るためには、上記ブロックポリマー(J)のカルボキシル基と、上記エポキシ化合物(K-1)のエポキシ基とを反応させればよい。エポキシ化合物のエポキシ基の数は、反応させるブロックポリマー(J)のカルボキシル基の数の、0.5~5当量が好ましく、0.5~1.5当量がより好ましい。また、上記反応は、各種溶媒中で行ってもよく、溶融状態で行ってもよい。
 反応させるエポキシ基を2個以上有するエポキシ化合物(K-1)は、反応させるブロックポリマー(J)のカルボキシル基の数の、0.1~2.0当量が好ましく、0.2~1.5当量がより好ましい。
 反応に際しては、上記ブロックポリマー(J)の合成反応の完結後に、ブロックポリマー(J)を単離せずに、反応系にエポキシ化合物(K-1)を加えて、そのまま反応させてもよい。その場合、ブロックポリマー(J)を合成するときに過剰に使用した未反応のポリエステル(H)のカルボキシル基と、エポキシ化合物(K-1)の一部のエポキシ基とが反応して、エステル結合を形成してもよい。
 本発明の好ましい高分子化合物(L)は、両末端にカルボキシル基を有する構造を有するブロックポリマー(J)とエポキシ基を2個以上有するエポキシ化合物(K-1)とが、それぞれのカルボキシル基とエポキシ基とにより形成されたエステル結合を介して結合した構造を有するものと同等の構造を有するものであれば、必ずしも上記ブロックポリマー(J)と上記エポキシ化合物(K-1)とから合成する必要はない。
 反応性官能基を有する化合物(K)として多価アルコール化合物(K-2)を使用した場合、高分子化合物(L)は、両末端にカルボキシル基を有する構造を有するブロックポリマー(J)と、3個以上の水酸基を有する多価アルコール化合物(K-2)とが、ブロックポリマー(J)の末端のカルボキシル基と多価アルコール化合物(K-2)の水酸基とにより形成されたエステル結合を介して結合してなる構造を有する。なお、上述のとおり、高分子化合物(L)は、さらに、上記ポリエステル(H)のカルボキシル基と上記多価アルコール化合物(K-2)の水酸基とにより形成されたエステル結合を含んでいてもよい。
 高分子化合物(L)を得るためには、上記ブロックポリマー(J)のカルボキシル基と、上記多価アルコール化合物(K-2)の水酸基とを反応させればよい。反応させる多価アルコール化合物の水酸基の数は、反応させるブロックポリマー(J)のカルボキシル基の数の、0.5~5.0当量が好ましく、0.5~2.0当量がより好ましい。また、上記反応は、各種溶媒中で行ってもよく、溶融状態で行ってもよい。
 反応させる水酸基を3個以上有する多価アルコール化合物(K-2)は、反応させるブロックポリマー(J)のカルボキシル基の数の、0.1~2.0当量が好ましく、0.2~1.5当量がより好ましい。
 反応に際しては、上記ブロックポリマー(J)の合成反応の完結後に、ブロックポリマー(J)を単離せずに、反応系に多価アルコール化合物(K-2)を加えて、そのまま反応させてもよい。その場合、ブロックポリマー(J)を合成するときに過剰に使用した未反応のポリエステル(H)のカルボキシル基と、多価アルコール化合物(K-2)の一部の水酸基とが反応して、エステル結合を形成してもよい。
 本発明の好ましい高分子化合物(L)は、両末端にカルボキシル基を有する構造を有するブロックポリマー(J)と水酸基を3個以上有する多価アルコール化合物(K-2)とが、それぞれのカルボキシル基と水酸基とにより形成されたエステル結合を介して結合した構造を有するものと同等の構造を有するものであれば、必ずしも上記ブロックポリマー(J)と上記多価アルコール化合物(K-2)とから合成する必要はない。
 本発明の帯電防止性繊維に係る樹脂組成物において、高分子化合物(L)における、ポリエステル(H)から構成されるブロックの数平均分子量は、好ましくはポリスチレン換算で800~8,000であり、より好ましくは1,000~6,000であり、さらに好ましくは2,000~4,000である。また、高分子化合物(L)における、両末端に水酸基を有する化合物(I)から構成されるブロックの数平均分子量は、好ましくはポリスチレン換算で400~6,000であり、より好ましくは1,000~5,000であり、さらに好ましくは2,000~4,000である。さらに、高分子化合物(L)における、両末端にカルボキシル基を有する構造を有するブロックポリマー(J)から構成されるブロックの数平均分子量は、好ましくはポリスチレン換算で5,000~25,000であり、より好ましくは7,000~17,000であり、より好ましくは9,000~13,000である。
 また、高分子化合物(L)は、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸からポリエステル(H)を得たのち、ポリエステル(H)を単離せずに、化合物(I)および/または反応性官能基を有する化合物(K)と反応させてもよい。
 高分子化合物(L)の含有量は、ポリオレフィン系樹脂100質量部に対して、1~40質量部であり、帯電防止性とその持続性と耐水性の点から、3~20質量部が好ましく、5~15質量部がより好ましい。
 本発明の帯電防止性繊維に係る樹脂組成物は、帯電防止性能の向上のために、さらに、アルカリ金属の塩および第2族元素の塩(M)からなる群から選択される1種以上を含有することも好ましい。
 アルカリ金属の塩および第2族元素の塩としては、有機酸または無機酸の塩が挙げられ、アルカリ金属の例としては、リチウム、ナトリウム、カリウム、セシウム、ルビジウム等が挙げられ、第2族元素の例としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等が挙げられる。
 有機酸の例としては、ギ酸、酢酸、プロピオン酸、酪酸、乳酸等の炭素原子数1~18の脂肪族モノカルボン酸;シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の炭素原子数1~12の脂肪族ジカルボン酸;安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸等の芳香族カルボン酸;メタンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸、トリフルオロメタンスルホン酸等の炭素原子数1~20のスルホン酸等が挙げられ、無機酸の例としては、塩酸、臭化水素酸、硫酸、亜硫酸、リン酸、亜リン酸、ポリリン酸、硝酸、過塩素酸等が挙げられる。中でも、帯電防止性の点から、アルカリ金属の塩が好ましく、リチウム、ナトリウム、カリウムがより好ましく、リチウムまたはナトリウムがより好ましい。また、帯電防止性の点から、酢酸の塩、過塩素酸の塩、p-トルエンスルホン酸の塩、ドデシルベンゼンスルホン酸の塩が好ましい。
 アルカリ金属の塩および第2族元素の塩の具体例としては、例えば、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化マグネシウム、塩化カルシウム、リン酸リチウム、リン酸ナトリウム、リン酸カリウム、硫酸リチウム、硫酸ナトリウム、硫酸マグネシウム、硫酸カルシウム、過塩素酸リチウム、過塩素酸ナトリウム、過塩素酸カリウム、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、p-トルエンスルホン酸カリウム、ドデシルベンゼンスルホン酸リチウム、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸カリウム等が挙げられる。これらの中で好ましいのは、酢酸リチウム、酢酸カリウム、p-トルエンスルホン酸リチウム、p-トルエンスルホン酸ナトリウム、塩化リチウム等である。
 アルカリ金属の塩および/または第2族元素の塩の含有量は、帯電防止性と、その持続性および耐水性の点から、上記ポリオレフィン系樹脂100質量部に対して、0.1~15質量部が好ましく、0.5~10質量部がより好ましく、1~5質量部がさらに好ましい。
 本発明の帯電防止性繊維に係る樹脂組成物には、本発明の効果を損なわない範囲で、界面活性剤を配合してもよい。界面活性剤としては、非イオン性、アニオン性、カチオン性または両性の界面活性剤を使用することができる。
 非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤および両性界面活性剤としては、有機溶剤の容器および管用帯電防止性樹脂組成物と同様のものを用いることができる。
 界面活性剤を配合する場合の配合量は、ポリオレフィン系樹脂100質量部に対して、0.1~10質量部が好ましく、0.5~5質量部がより好ましい。
 さらに、本発明の帯電防止性繊維に係る樹脂組成物には、高分子型帯電防止剤を配合してもよい。高分子型帯電防止剤としては、有機溶剤の容器および管用帯電防止性樹脂組成物と同様のものを用いることができる。
 高分子型帯電防止剤を配合する場合の配合量は、ポリオレフィン系樹脂100質量部に対して、0.1~10質量部が好ましく、0.5~5質量部がより好ましい。
 さらにまた、本発明の帯電防止性繊維に係る樹脂組成物には、本発明の効果を損なわない範囲で、イオン性液体を配合してもよい。イオン性液体の例としては、有機溶剤の容器および管用帯電防止性樹脂組成物と同様のものを挙げることができる。
 イオン性液体を配合する場合の配合量は、ポリオレフィン系樹脂100質量部に対して、0.01~5質量部が好ましく、0.1~3質量部がより好ましい。
 さらにまた、本発明の帯電防止性繊維に係る樹脂組成物は、本発明の効果を損なわない範囲で、相溶化剤を配合してもよい。相溶化剤を配合することで、帯電防止成分と他成分や樹脂成分との相溶性を向上させることができる。相溶化剤としては、有機溶剤の容器および管用帯電防止性樹脂組成物と同様のものを挙げることができる。
 相溶化剤を配合する場合の配合量は、ポリオレフィン系樹脂100質量部に対して、0.01~5質量部が好ましく、0.1~3質量部がより好ましい。
 本発明の帯電防止性繊維に係る樹脂組成物には、本発明の効果を損なわない範囲で、上記ポリオレフィン系樹脂以外の、他の熱可塑性樹脂が配合されていてもよい。
 他の熱可塑性樹脂の例としては、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等の含ハロゲン樹脂;石油樹脂、クマロン樹脂、ポリスチレン、ポリ酢酸ビニル、アクリル樹脂、スチレンおよび/またはα-メチルスチレンと他の単量体(例えば、無水マレイン酸、フェニルマレイミド、メタクリル酸メチル、ブタジエン、アクリロニトリル等)との共重合体(例えば、AS樹脂、ABS樹脂、ACS樹脂、SBS樹脂、MBS樹脂、耐熱ABS樹脂等);ポリメチルメタクリレート、ポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステルおよびポリテトラメチレンテレフタレート等の直鎖ポリエステル;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;ポリフェニレンオキサイド、ポリカプロラクタムおよびポリヘキサメチレンアジパミド等のポリアミド、ポリカーボネート、ポリカーボネート/ABS樹脂、分岐ポリカーボネート、ポリアセタール、ポリフェニレンサルファイド、ポリウレタン、繊維素系樹脂、ポリイミド樹脂、ポリサルフォン、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、液晶ポリマー等の熱可塑性樹脂およびこれらのブレンド物を挙げることができる。更には、熱可塑性樹脂としては、イソプレンゴム、ブタジエンゴム、アクリロニトリル-ブタジエン共重合ゴム、スチレン-ブタジエン共重合ゴム、フッ素ゴム、シリコーンゴム等も挙げられる。更には、熱可塑性エラストマーも挙げられ、その例としては、ポリスチレン系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー等が挙げられる。これらの熱可塑性樹脂は、単独で使用してもよく、2種以上を併せて使用してもよい。また、熱可塑性樹脂はアロイ化されていてもよい。
 本発明の帯電防止性繊維に係る樹脂組成物の製造方法は特に限定されず、ポリオレフィン系樹脂成分に、高分子化合物(L)、必要に応じてアルカリ金属の塩および/または第2族元素の塩、その他の任意成分を配合すればよく、その方法は、通常使用されている任意の方法を用いることができる。例えば、ロール混練り、バンパー混練り、押し出し機、ニーダー等により混合、練り込みして配合すればよい。
 また、高分子化合物(L)は、そのまま添加してもよいが、必要に応じて、担体に含浸させてから添加してもよい。担体に含浸させるには、そのまま加熱混合してもよいし、必要に応じて、有機溶媒で希釈してから担体に含浸させ、その後に溶媒を除去する方法でもよい。こうした担体としては、合成樹脂のフィラーや充填剤として知られているもの、または、常温で固体の難燃剤や光安定剤が使用でき、例えば、ケイ酸カルシウム粉末、シリカ粉末、タルク粉末、アルミナ粉末、酸化チタン粉末、または、これら担体の表面を化学修飾したもの、下記に挙げる難燃剤や酸化防止剤の中で固体のもの等が挙げられる。これらの担体の中でも担体の表面を化学修飾したものが好ましく、シリカ粉末の表面を化学修飾したものがより好ましい。これらの担体は、平均粒径が0.1~100μmのものが好ましく、0.5~50μmのものがより好ましい。
 さらに、高分子化合物(L)のポリオレフィン系樹脂への配合方法としては、ブロックポリマー(J)と反応性官能基を有する化合物(K)とをポリオレフィン系樹脂と同時に練り込みながら高分子化合物(L)を合成して配合してもよく、そのときに必要に応じてアルカリ金属の塩および第2族元素の塩からなる群から選択される1種以上を同時に練り込んでもよく、また、繊維形成時に高分子化合物(L)と、必要に応じてアルカリ金属の塩および第2族元素の塩からなる群から選択される1種以上と、ポリオレフィン系樹脂とを混合して配合してもよく、さらに、あらかじめポリオレフィン系樹脂とのマスターバッチを製造しておき、このマスターバッチを配合してもよい。
 さらにまた、高分子化合物(L)とアルカリ金属の塩および第2族元素の塩からなる群から選択される1種以上は、あらかじめ混合しておいてからポリオレフィン系樹脂に配合してもよく、反応中に塩を添加して合成した高分子化合物(L)をポリオレフィン系樹脂に配合してもよい。
 本発明の帯電防止性繊維に係る樹脂組成物には、本発明の効果を損なわない範囲で、必要に応じて、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン系光安定剤等の各種添加剤をさらに添加することができ、これにより、本発明の帯電防止性繊維に係る樹脂組成物を安定化させることができる。
 上記フェノール系酸化防止剤としては、有機溶剤の容器および管用帯電防止性樹脂組成物と同様のものを挙げることができる。これらのフェノール系酸化防止剤の添加量は、ポリオレフィン系樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記リン系酸化防止剤としては、有機溶剤の容器および管用帯電防止性樹脂組成物と同様のものを挙げることができる。これらのリン系酸化防止剤の添加量は、ポリオレフィン系樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記チオエーテル系酸化防止剤としては、有機溶剤の容器および管用帯電防止性樹脂組成物と同様のものを挙げることができる。これらのチオエーテル系酸化防止剤の添加量は、ポリオレフィン系樹脂100質量部に対して、0.001~10質量部であることが好ましく、0.05~5質量部であることがより好ましい。
 上記紫外線吸収剤としては、有機溶剤の容器および管用帯電防止性樹脂組成物と同様のものを挙げることができる。これらの紫外線吸収剤の添加量は、ポリオレフィン系樹脂100質量部に対して、0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。
 上記ヒンダードアミン系光安定剤としては、有機溶剤の容器および管用帯電防止性樹脂組成物と同様のものを挙げることができる。これらのヒンダードアミン系光安定剤の添加量は、ポリオレフィン系樹脂100質量部に対して、0.001~30質量部であることが好ましく、0.05~10質量部であることがより好ましい。
 また、必要に応じてさらに、ポリオレフィン系樹脂の合成樹脂中の残渣触媒を中和するために、公知の中和剤を添加することが好ましい。中和剤としては、例えば、ステアリン酸カルシウム、ステアリン酸リチウム、ステアリン酸ナトリウム等の脂肪酸金属塩、または、エチレンビス(ステアロアミド)、エチレンビス(12-ヒドロキシステアロアミド)、ステアリン酸アミド等の脂肪酸アミド化合物が挙げられ、これら中和剤は混合して用いてもよい。
 さらにまた、本発明の帯電防止性繊維に係る樹脂組成物には、必要に応じてさらに、芳香族カルボン酸金属塩、脂環式アルキルカルボン酸金属塩、p-第三ブチル安息香酸アルミニウム、芳香族リン酸エステル金属塩、ジベンジリデンソルビトール類等の造核剤、金属石鹸、ハイドロタルサイト、トリアジン環含有化合物、金属水酸化物、リン酸エステル系難燃剤、縮合リン酸エステル系難燃剤、ホスフェート系難燃剤、無機リン系難燃剤、(ポリ)リン酸塩系難燃剤、ハロゲン系難燃剤、シリコン系難燃剤、三酸化アンチモン等の酸化アンチモン、その他の無機系難燃助剤、その他の有機系難燃助剤、充填剤、顔料、滑剤、発泡剤等を添加してもよい。
 上記トリアジン環含有化合物、上記金属水酸化物、上記リン酸エステル系難燃剤、上記縮合リン酸エステル系難燃剤、上記(ポリ)リン酸塩系難燃剤、その他の無機系難燃助剤、その他の有機系難燃助剤としては、有機溶剤の容器および管用帯電防止性樹脂組成物と同様のものを挙げることができる。
 また、本発明の帯電防止性繊維に係る樹脂組成物には、必要に応じて、通常合成樹脂に使用される添加剤、例えば、架橋剤、防曇剤、プレートアウト防止剤、表面処理剤、可塑剤、滑剤、難燃剤、蛍光剤、防黴剤、殺菌剤、発泡剤、金属不活性剤、離型剤、顔料、加工助剤、酸化防止剤、光安定剤等を、本発明の効果を損なわない範囲で配合することができる。
 本発明の帯電防止性繊維は、本発明に係る上記樹脂組成物を溶融紡糸法、押出紡糸法等、従来公知の方法を用いて製造することができる。また繊維の構成としては、本発明に係る上記樹脂組成物から得られる単一組成繊維でもいいし、さらに他のポリマーとの複合繊維であってもよい。
 本発明の帯電防止性繊維においては、繊維の形態は、特に限定されないが、例えば、直径0.1~1mm、長さ不定の単一ストランドであるモノフィラメント、および、多数の細い連続フィラメントまたはストランドから構成されるマルチフィラメント等が挙げられる。
 次に、本発明の布帛について説明する。
 本発明の布帛は、本発明の帯電防止性繊維を用いて、従来知られた方法で製造することができるが、本発明の帯電防止性繊維は、特に不織布の用途が好ましい。不織布の製法としては、特に限定はなく、公知の方法、例えば、紡糸型不織布製造方法(スプレイドファイバー法、スパンボンド法、スプリットファイバー法、網状法等)、機械接合型不織布製造方法(ニードルパンチ法、スティッチ法等)および接着剤[水溶型接着剤(デンプンのり、ポリビニルアルコール、カゼイン、カルボキシメチルセルロース、アルギン酸塩等)、乳化型接着剤(ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、天然ゴム、SBR、NBR等)、溶剤型接着剤等]型不織布製造方法が挙げられる。これらのうち好ましいのは紡糸型不織布製造方法、さらに好ましいのはスパンボンド法である。
 本発明の不織布は、本発明の帯電防止性繊維のみで構成されてもよいが、本発明の帯電防止性繊維と他の繊維との混成により構成されるものであってもよい。この場合、本発明の帯電防止性繊維と他の繊維の混成の割合は、用途に応じて、95/5~10/90の範囲で適宜選択すればよい。
 本発明の不織布においては、通気度は、通常、60cc/cm/sec以上、好ましくは80~120cc/cm/secであり、また、かさ密度は通常0.08~0.2g/cm、好ましくは0.1~0.15g/cmである。
 本発明の布帛の用途は特に限定されず、例えば、衣服、作業着等が挙げられる。特に好ましい用途である不織布の用途としては、特に限定されず、衣料用(芯地、接着芯地等)、防護用(保護着、安全マスク等)、医療用(手術着、シーツ、人工皮膚等)、建築用(カーペット基布、防音床、防振材、養生シート等)、車両用(自動車内装材、吸音材等)、衛生用(おむつ、生理用品等)、フィルター用(空気フィルター、バグフィルター、排水処理用マット等)、農業用、皮革用(人工皮革用基布、合成皮革用基布、塩ビレザー用基布等)、電気・電子部品用(搬送材、包装材)、電気・電子機器用(搬送材、包装材)およびその他工業資材用(吸油材、電磁波シールド材、合成紙、OA機器、AV機器、包材等)、濾布等に幅広く用いることができる。
[実施例1]
 以下、本発明を実施例により、具体的に説明する。なお、以下の実施例等において、「%」および「ppm」は、特に記載がない限り、質量基準である。
 下記の製造例に従い、本発明で用いられる高分子化合物(E)を製造した。また、下記の製造例において数平均分子量は、下記分子量測定方法で測定した。
<分子量測定方法>
 数平均分子量(以下、「Mn」と称する)は、ゲルパーミエーションクロマトグラフィー(GPC)法によって測定した。Mnの測定条件は以下の通りである。
装置     :日本分光(株)製GPC装置
溶媒     :テトラヒドロフラン
基準物質   :ポリスチレン
検出器    :示差屈折計(RI検出器)
カラム固定相 :昭和電工(株)製Shodex KF-804L
カラム温度  :40℃
サンプル濃度 :1mg/1mL
流量     :0.8mL/min.
注入量    :100μL
〔製造例1-1〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを656g、アジピン酸を708g(4.85モル)、無水フタル酸を0.7g(0.01モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60(株)ADEKA製)を0.7g仕込み、160℃から210℃まで徐々に昇温しながら常圧で5時間、その後210℃、減圧下で3時間重合して、ポリエステル(A)-1を得た。ポリエステル(A)-1の酸価は28、数平均分子量Mnはポリスチレン換算で5,400であった。
 次に、得られたポリエステル(A)-1を600g、両末端に水酸基を有する化合物(B)-1として数平均分子量4,000のポリエチレングリコールを300g、酸化防止剤(アデカスタブAO-60)0.5g、オクチル酸ジルコニウム0.8gを仕込み、210℃で7時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1を得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1の酸価は9、数平均分子量Mnはポリスチレン換算で12,000であった。
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-1の360gにエポキシ化合物(D)-1としてビスフェノールFジグリシジルエーテル6gを仕込み、240℃で3時間、減圧下で重合して、本発明で用いる高分子化合物(E)-1を得た。
〔製造例1-2〕
 セパラブルフラスコに、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンを370g、アジピン酸を289g(1.98モル)、イソフタル酸を8g(0.05モル)、酸化防止剤(アデカスタブAO-60)を0.5g仕込み、180℃から220℃まで徐々に昇温しながら常圧で5時間重合した。その後テトライソプロポキシチタネートを0.5g仕込み、220℃、減圧下で5時間重合してポリエステル(A)-2を得た。ポリエステル(A)-2の酸価は56、数平均分子量Mnはポリスチレン換算で4,900であった。
 次に、得られたポリエステル(A)-2を300g、両末端に水酸基を有する化合物(B)-1として数平均分子量4,000のポリエチレングリコールを150g、酸化防止剤(アデカスタブAO-60)0.5g、酢酸ジルコニウム0.5gを仕込み、220℃で7時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2を得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-2の酸価は11、数平均分子量Mnはポリスチレン換算で12,300であった。
 得られたブロックポリマー(C)-2の300gにエポキシ化合物(D)-2としてジシクロペンタジエンメタノールジグリシジルエーテルを11g仕込み、240℃で4時間、減圧下で重合して、本発明で用いる高分子化合物(E)-2を得た。
〔製造例1-3〕
 セパラブルフラスコに、ビスフェノールAのエチレンオキサイド付加物を591g、セバシン酸を235g(1.16モル)、イソフタル酸を8g(0.05モル)、両末端に水酸基を有する化合物(B)-2として数平均分子量2,000のポリエチレングリコールを300g、酸化防止剤(アデカスタブAO-60)を0.8g仕込み、180℃から220℃まで徐々に昇温しながら常圧で5時間重合した。その後テトライソプロポキシチタネートを0.6g仕込み、220℃、減圧下で7時間重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-3を得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-3の酸価は10、数平均分子量Mnはポリスチレン換算で10,100であった。
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(C)-3の300gにエポキシ化合物(D)-3としてエポキシ化大豆油を7g、酢酸ジルコニウムを0.5g仕込み、240℃で5時間、減圧下で重合して、本発明で用いる高分子化合物(E)-3を得た。
〔実施例1-1~1-14、比較例1-1~1-6〕
 下記の表1、2に記載した配合量(質量部)に基づいてブレンドした樹脂組成物を用いて、下記に示す試験片作製条件に従い、試験片を得た。得られた試験片を用いて、下記に従い、表面固有抵抗値(SR値)の測定および耐有機溶剤性評価試験を行った。同様にして、下記の表3に示す配合で、比較例の樹脂組成物を調製し、それぞれ評価を行った。
<試験片作製条件>
 下記の表1~3中に示す配合量に基づいてブレンドした樹脂組成物を、(株)池貝製の2軸押出機(PCM30,60mesh入り)を用いて、230℃、6kg/時間の条件で造粒し、ペレットを得た。得られたペレットを、横型射出成形機(NEX80:日精樹脂工業(株)製)を用いて、樹脂温度230℃、金型温度40℃の加工条件で成形し、表面固有抵抗値測定用および耐有機溶剤性評価用試験片(100mm×100mm×3mm)を得た。
<表面固有抵抗値(SR値)測定方法>
 得られた表面固有抵抗値測定用試験片(100mm×100mm×3mm)を、成形加工後直ちに、温度25℃、湿度60%RHの条件下に保存し、成形加工の1日および30日保存後に、同雰囲気下で、アドバンテスト社製のR8340抵抗計を用いて、印加電圧100V、印加時間1分の条件で、表面固有抵抗値(Ω/□)を測定した。測定は5点について行い、その平均値を求めた。
<耐有機溶剤性評価試験>
 得られた耐有機溶剤性評価用試験片(100mm×100mm×3mm)を80%エタノール水溶液、オクタン、トルエン中に浸漬させた。14日後に試験片を各有機溶剤から取り出し、60℃の送風乾燥オーブンにて試験片を乾燥させた。乾燥後の試験片を温度25℃、湿度60%に調整された恒温恒湿槽内に24時間静置した後、同雰囲気下にて、アドバンテスト社製、R8340抵抗計を用いて、印加電圧100V、印加時間1分の条件で、表面固有抵抗値(Ω/□)を測定した。測定は5点で行い、その平均値を求めた。
Figure JPOXMLDOC01-appb-T000011
*1-1:高密度ポリエチレン、日本ポリエチレン(株)製、商品名 ノバテックHD HJ560(メルトフローレート=7g/10min)
*1-2:ドデシルベンゼンスルホン酸ナトリウム
*1-3:p-トルエンスルホン酸リチウム
Figure JPOXMLDOC01-appb-T000012
*1-4:ホモポリプロピレン、(メルトフローレート(ISO1133,230℃×2.16kg)=8g/10min)
Figure JPOXMLDOC01-appb-T000013
*1-5:グリセリンモノステアレート
 上記表中に示す、比較例1-3,1-6のグリセリンモノステアレートを10質量部配合したものは、グリセリンモノステアレートが試験片の表面にブリードアウトしてしまい、試験片の表面がべたついてしまった。
 以上より、本発明の樹脂組成物においては、持続性を有した充分な帯電防止性を有し、かつ、各種有機溶剤中に長期間浸漬してもその性能が損なわれないことがわかる。したがって、本発明の樹脂組成物は、有機溶剤と接触するボトル、タンク等の容器や、パイプ等に適している。
[実施例2]
 以下、本発明の帯電防止繊維を、実施例を用いてさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例および比較例において、「%」は、特に記載がない限り、質量基準である。
 下記の製造例2-1~2-4に従い、本発明で用いられる高分子化合物(E)を製造した。また、下記の製造例2-1~2-4において数平均分子量は、上記製造例1-1等と同様に測定した。
〔製造例2-1〕
 セパラブルフラスコに、1,4-シクロヘキサンジメタノールを765g、アジピン酸を826g(5.65モル)、無水フタル酸を0.8g(0.01モル)、酸化防止剤(テトラキス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシメチル]メタン、アデカスタブAO-60、(株)ADEKA製)を0.2g仕込み、160℃から210℃まで徐々に昇温しながら常圧で6時間、その後210℃、減圧下で3時間重合して、ポリエステル(H)-1を得た。ポリエステル(H)-1の酸価は28、数平均分子量Mnはポリスチレン換算で5,400であった。
 次に、得られたポリエステル(H)-1を700g、両末端に水酸基を有する化合物(I)-1として数平均分子量4,000のポリエチレングリコールを350g、酸化防止剤(アデカスタブAO-60)を0.5g、オクチル酸ジルコニウムを0.9g仕込み、210℃で8時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(J)-1を得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(J)-1の酸価は9、数平均分子量Mnはポリスチレン換算で12,000であった。
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(J)-1の360gに、エポキシ化合物(K-1)-1としてビスフェノールFジグリシジルエーテル6gを仕込み、240℃で3時間、減圧下で重合して、本発明で用いる高分子化合物(L)-1を得た。
〔製造例2-2〕
 セパラブルフラスコに、1,4-ビス(β-ヒドロキシエトキシ)ベンゼンを601g、アジピン酸を472g(3.23モル)、2,6-ナフタレンジカルボン酸を3.8g(0.02モル)、両末端に水酸基を有する化合物(I)-1として数平均分子量4,000のポリエチレングリコールを600g、酸化防止剤(アデカスタブAO-60)を0.2g仕込み、180℃から220℃まで徐々に昇温しながら常圧で6時間重合した。その後、テトライソプロポキシチタネートを0.8g仕込み、220℃、減圧下で6時間重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(J)-2を得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(J)-2の酸価は9、数平均分子量Mnはポリスチレン換算で11,500であった。
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(J)-2の300gに、エポキシ化合物(K-1)-2としてo-クレゾールノボラック型エポキシ樹脂を3g、酢酸ジルコニウムを0.5g仕込み、240℃で2時間、減圧下で重合して、本発明で用いる高分子化合物(L)-2を得た。
〔製造例2-3〕
 セパラブルフラスコに、製造例1に記載の方法で得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(J)-1を300g、多価アルコール化合物(K-2)-1としてペンタエリスリトールを5.1g仕込み、220℃で4時間、減圧下で重合して、本発明で用いる高分子化合物(L)-3を得た。
〔製造例2-4〕
 セパラブルフラスコに、ビスフェノールAのエチレンオキサイド付加物を591g、セバシン酸を235g(1.16モル)、イソフタル酸を8g(0.05モル)、酸化防止剤(アデカスタブAO-60)を0.5g仕込み、160℃から220℃まで徐々に昇温しながら常圧で4時間重合した。その後、テトライソプロポキシチタネートを0.5g仕込み、220℃、減圧下で5時間重合して、ポリエステル(H)-2を得た。ポリエステル(H)-2の酸価は56、数平均分子量Mnはポリスチレン換算で2,300であった。
 次に、得られたポリエステル(H)-2を300g、両末端に水酸基を有する化合物(I)-2として数平均分子量2,000のポリエチレングリコールを200g、酸化防止剤(アデカスタブAO-60)を0.5g、酢酸ジルコニウムを0.5g仕込み、220℃で8時間、減圧下で重合して、両末端にカルボキシル基を有する構造を有するブロックポリマー(J)-3を得た。この両末端にカルボキシル基を有する構造を有するブロックポリマー(J)-3の酸価は11、数平均分子量Mnはポリスチレン換算で10,500であった。
 得られた両末端にカルボキシル基を有する構造を有するブロックポリマー(J)-3の300gに、多価アルコール化合物(K-2)-2としてソルビトールを10.2g仕込み、240℃で7時間、減圧下で重合して、本発明で用いる高分子化合物(L)-4を得た。
〔実施例2-1~2-16、比較例2-1~2-8〕
 下記の表4、5に記載した配合量(質量部)に基づいてブレンドした樹脂組成物を用いて、下記に示す不織布製造条件に従い、実施例2-1~2-16の不織布を得た。得られた不織布を用いて、下記に従い、帯電防止性の評価として半減期を測定し、また、耐水洗性評価試験を行った。同様にして、下記の表6に示す配合で、比較例2-1~2-8の樹脂組成物を調製して比較例2-1~2-8の不織布を製造し、それぞれ評価を行った。
<不織布製造条件>
 下記の表4~6中に示す配合量に基づいてブレンドした樹脂組成物を単軸押出機(装置:株式会社東洋精機製作所製のラボプラストミルマイクロ、押出温度250℃、スクリュー回転速度50rpm)で混練し、紡糸機(ノズル0.45mmφ、ノズル30ホール、吐出量1.0g/min、エアー供給圧:0.7kg/cm)を用いてメルトブロー法により紡糸し、30g/m目付の不織布を製造した。
<半減期測定方法>
 得られた不織布をシシド静電気株式会社製の帯電電荷減衰度測定器(STATIC HONESTMETER H-0110)を用い、JIS-L-1094に準拠して測定した。不織布にコロナ放電で生成した空気イオンを照射して帯電させ、空気イオンの照射を停止した後、帯電圧が1/2に減衰するまでの時間(半減期)を測定した。測定は不織布製造の1日後、30日後にそれぞれの不織布について、温度25℃、湿度50%にて5回行い、その平均値を求めた。半減期が短いほど、帯電防止性に優れている。
<耐水洗性評価試験>
 得られた不織布を流水に1分間さらし、その後、空冷ドライヤーにて表面の水分を除去した。温度25℃、湿度50%にて1日静置した後に、半減期を測定した。測定はそれぞれの不織布について5回行い、その平均値を求めた。半減期が短いほど、帯電防止性に優れている。
Figure JPOXMLDOC01-appb-T000014
*2-1:ホモポリプロピレン、日本ポリプロ株式会社製、商品名 MA1B(メルトフローレート=21g/10min)
*2-2:高密度ポリエチレン、Dow Chemical Company製、商品名 DMDA-8940(メルトフローレート=44g/10min)
*2-3:ドデシルベンゼンスルホン酸ナトリウム
*2-4:p-トルエンスルホン酸リチウム
*2-5:酢酸カリウム
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
*2-6:グリセリンモノステアレート
*2-7:ポリエーテルエステルアミド系帯電防止剤、BASF社製、商品名イルガスタットP-22
 上記表4~6より、本発明の帯電防止性繊維は、帯電防止性能が長期にわたり持続し、かつ、耐水性にも優れていることがわかる。なお、比較例2-4および比較例2-6のグリセリンモノステアレートを10質量部配合したものは、グリセリンモノステアレートが不織布の表面にブリードアウトしてしまい、不織布の表面がべたついてしまうという欠点がみられた。

Claims (21)

  1.  熱可塑性樹脂100質量部に対して、1種以上の高分子化合物(E)3~25質量部を含有する帯電防止性樹脂組成物であって、
     前記高分子化合物(E)が、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(B)と、エポキシ基を2個以上有するエポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有することを特徴とする有機溶剤の容器および管用帯電防止性樹脂組成物。
    Figure JPOXMLDOC01-appb-I000001
  2.  前記高分子化合物(E)が、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸から構成されるポリエステル(A)と、前記化合物(B)と、前記エポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有する請求項1記載の有機溶剤の容器および管用帯電防止性樹脂組成物。
  3.  前記高分子化合物(E)が、前記ポリエステル(A)から構成されたブロックおよび前記化合物(B)から構成されたブロックがエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(C)と、前記エポキシ化合物(D)とが、エステル結合を介して結合してなる構造を有する請求項2記載の有機溶剤の容器および管用帯電防止性樹脂組成物。
  4.  前記高分子化合物(E)を構成する前記ポリエステル(A)が、両末端にカルボキシル基を有する構造を有する請求項2記載の有機溶剤の容器および管用帯電防止性樹脂組成物。
  5.  前記高分子化合物(E)における、前記ポリエステル(A)から構成されたブロックの数平均分子量がポリスチレン換算で800~8,000であり、前記化合物(B)から構成されたブロックの数平均分子量がポリスチレン換算で400~6,000であり、かつ、前記ブロックポリマー(C)の数平均分子量が、ポリスチレン換算で5,000~25,000である請求項3記載の有機溶剤の容器および管用帯電防止性樹脂組成物。
  6.  前記高分子化合物(E)を構成する前記化合物(B)が、ポリエチレングリコールである請求項1記載の有機溶剤の容器および管用帯電防止性樹脂組成物。
  7.  さらに、アルカリ金属の塩(F)および第2族元素の塩からなる群から選択される1種以上を、前記熱可塑性樹脂100質量部に対し、0.1~5質量部含有する請求項1記載の有機溶剤の容器および管用帯電防止性樹脂組成物。
  8.  前記熱可塑性樹脂が、ポリオレフィン系樹脂である請求項1記載の有機溶剤の容器および管用帯電防止性樹脂組成物。
  9.  請求項1記載の有機溶剤の容器および管用帯電防止性樹脂組成物が成形されてなることを特徴とする有機溶剤用容器。
  10.  請求項1記載の有機溶剤の容器および管用帯電防止性樹脂組成物が成形されてなることを特徴とする有機溶剤用管。
  11.  ポリオレフィン系樹脂100質量部に対して、高分子化合物(L)の1種以上を1~40質量部含有する樹脂組成物からなるポリオレフィン系帯電防止性繊維であって、
     前記高分子化合物(L)が、ジオールと、脂肪族ジカルボン酸と、芳香族ジカルボン酸と、下記一般式(1)で示される基を一つ以上有し両末端に水酸基を有する化合物(I)と、反応性官能基を有する化合物(K)とが、エステル結合を介して結合してなる構造を有することを特徴とするポリオレフィン系帯電防止性繊維。
    Figure JPOXMLDOC01-appb-I000002
  12.  前記高分子化合物(L)が、ジオール、脂肪族ジカルボン酸および芳香族ジカルボン酸から構成されるポリエステル(H)と、前記化合物(I)と、前記反応性官能基を有する化合物(K)とが、エステル結合を介して結合してなる構造を有する請求項11記載のポリオレフィン系帯電防止性繊維。
  13.  前記高分子化合物(L)が、前記ポリエステル(H)から構成されたブロックおよび前記化合物(I)から構成されたブロックがエステル結合を介して繰り返し交互に結合してなる両末端にカルボキシル基を有するブロックポリマー(J)と、前記反応性官能基を有する化合物(K)とが、エステル結合を介して結合してなる構造を有する請求項12記載のポリオレフィン系帯電防止性繊維。
  14.  前記高分子化合物(L)を構成する前記ポリエステル(H)が、両末端にカルボキシル基を有する構造を有する請求項12記載のポリオレフィン系帯電防止性繊維。
  15.  前記高分子化合物(L)における、前記ポリエステル(H)から構成されたブロックの数平均分子量がポリスチレン換算で800~8,000であり、前記化合物(I)から構成されたブロックの数平均分子量がポリスチレン換算で400~6,000であり、かつ、前記ブロックポリマー(J)の数平均分子量が、ポリスチレン換算で5,000~25,000である請求項13記載のポリオレフィン系帯電防止性繊維。
  16.  前記高分子化合物(L)を構成する前記化合物(I)が、ポリエチレングリコールである請求項11記載のポリオレフィン系帯電防止性繊維。
  17.  さらに、アルカリ金属の塩および第2族元素の塩(M)からなる群から選択される1種以上を、前記ポリオレフィン系樹脂100質量部に対して、0.1~15質量部含有する請求項11記載のポリオレフィン系帯電防止性繊維。
  18.  前記反応性官能基を有する化合物(K)が、反応性官能基としてエポキシ基を2個以上有するエポキシ化合物(K-1)である請求項11記載のポリオレフィン系帯電防止性繊維。
  19.  前記反応性官能基を有する化合物(K)が、反応性官能基として水酸基を3個以上有する多価アルコール化合物(K-2)である請求項11記載のポリオレフィン系帯電防止性繊維。
  20.  請求項11記載のポリオレフィン系帯電防止性繊維からなることを特徴とする布帛。
  21.  不織布である請求項20記載の布帛。
PCT/JP2016/057029 2015-03-30 2016-03-07 有機溶剤の容器および管用帯電防止性樹脂組成物並びにポリオレフィン系帯電防止性繊維 WO2016158224A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/563,395 US10308852B2 (en) 2015-03-30 2016-03-07 Antistatic resin composition and polyolefin antistatic fiber for container and pipe for organic solvent
EP16772108.3A EP3279269B1 (en) 2015-03-30 2016-03-07 Antistatic resin composition and polyolefin antistatic fiber for container and pipe for organic solvent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-069062 2015-03-30
JP2015069062A JP2016188312A (ja) 2015-03-30 2015-03-30 有機溶剤の容器および管用帯電防止性樹脂組成物、並びに、これを用いた容器および管
JP2015-071350 2015-03-31
JP2015071350A JP2016191165A (ja) 2015-03-31 2015-03-31 ポリオレフィン系帯電防止性繊維およびそれを用いた布帛

Publications (1)

Publication Number Publication Date
WO2016158224A1 true WO2016158224A1 (ja) 2016-10-06

Family

ID=57004232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057029 WO2016158224A1 (ja) 2015-03-30 2016-03-07 有機溶剤の容器および管用帯電防止性樹脂組成物並びにポリオレフィン系帯電防止性繊維

Country Status (4)

Country Link
US (1) US10308852B2 (ja)
EP (1) EP3279269B1 (ja)
TW (1) TWI684625B (ja)
WO (1) WO2016158224A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193646A (ja) * 2016-04-21 2017-10-26 株式会社Adeka 熱可塑性樹脂組成物およびそれを用いた成形体
WO2020203618A1 (ja) * 2019-03-29 2020-10-08 株式会社Adeka 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
WO2024048524A1 (ja) * 2022-09-02 2024-03-07 株式会社Adeka 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273526A (ja) * 1997-03-31 1998-10-13 Nippon Zeon Co Ltd ポリエステル系帯電防止剤及びそれを含むポリマー組成物
JPH10287738A (ja) * 1997-04-15 1998-10-27 Asahi Chem Ind Co Ltd 帯電防止用ポリエーテルエステル
JPH11172090A (ja) * 1997-10-08 1999-06-29 Toppan Printing Co Ltd ポリエステル系樹脂組成物およびその成形物
WO2014115745A1 (ja) * 2013-01-23 2014-07-31 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
WO2014148454A1 (ja) * 2013-03-21 2014-09-25 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2016023254A (ja) * 2014-07-22 2016-02-08 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2016060784A (ja) * 2014-09-17 2016-04-25 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1596552A (ja) * 1967-08-17 1970-06-22
FR1596522A (ja) 1968-07-22 1970-06-22
JPH07116329B2 (ja) 1987-01-22 1995-12-13 三井東圧化学株式会社 食品包装容器
JPS63211350A (ja) 1987-02-26 1988-09-02 三井化学株式会社 親水性不織布の製造方法
JPH0784695B2 (ja) 1992-07-01 1995-09-13 三洋化成工業株式会社 ポリオレフィン系不織布
JP2003313724A (ja) 2002-02-22 2003-11-06 Sanyo Chem Ind Ltd ポリオレフィン系不織布
JP5370390B2 (ja) 2011-02-14 2013-12-18 Jnc株式会社 ポリオレフィン系帯電防止繊維およびそれからなる不織布
JP5948153B2 (ja) 2012-06-06 2016-07-06 ライオン株式会社 化粧料含有物品
JP6619930B2 (ja) * 2014-12-19 2019-12-11 株式会社Adeka ポリオレフィン系樹脂組成物
CN107109072A (zh) * 2015-01-19 2017-08-29 株式会社Adeka 抗静电性树脂组合物以及使用了其的容器和包装材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273526A (ja) * 1997-03-31 1998-10-13 Nippon Zeon Co Ltd ポリエステル系帯電防止剤及びそれを含むポリマー組成物
JPH10287738A (ja) * 1997-04-15 1998-10-27 Asahi Chem Ind Co Ltd 帯電防止用ポリエーテルエステル
JPH11172090A (ja) * 1997-10-08 1999-06-29 Toppan Printing Co Ltd ポリエステル系樹脂組成物およびその成形物
WO2014115745A1 (ja) * 2013-01-23 2014-07-31 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
WO2014148454A1 (ja) * 2013-03-21 2014-09-25 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2016023254A (ja) * 2014-07-22 2016-02-08 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP2016060784A (ja) * 2014-09-17 2016-04-25 株式会社Adeka 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279269A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017193646A (ja) * 2016-04-21 2017-10-26 株式会社Adeka 熱可塑性樹脂組成物およびそれを用いた成形体
WO2020203618A1 (ja) * 2019-03-29 2020-10-08 株式会社Adeka 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
WO2024048524A1 (ja) * 2022-09-02 2024-03-07 株式会社Adeka 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム

Also Published As

Publication number Publication date
TW201710373A (zh) 2017-03-16
EP3279269A1 (en) 2018-02-07
EP3279269A4 (en) 2018-10-03
TWI684625B (zh) 2020-02-11
EP3279269B1 (en) 2020-07-22
US10308852B2 (en) 2019-06-04
US20180086958A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
JP6377437B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6275654B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6649363B2 (ja) 樹脂添加剤組成物および帯電防止性熱可塑性樹脂組成物
JP6309506B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP6453003B2 (ja) 帯電防止剤、帯電防止剤組成物、帯電防止性樹脂組成物および成形体
JP7339331B2 (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体
WO2016117233A1 (ja) 帯電防止性樹脂組成物ならびにこれを用いた容器および包装材
WO2016098524A1 (ja) ポリオレフィン系樹脂組成物
JP6652830B2 (ja) 帯電防止性樹脂組成物
WO2016158224A1 (ja) 有機溶剤の容器および管用帯電防止性樹脂組成物並びにポリオレフィン系帯電防止性繊維
JP6654911B2 (ja) 帯電防止性熱可塑性樹脂組成物およびそれを用いた成形体
JP2016191165A (ja) ポリオレフィン系帯電防止性繊維およびそれを用いた布帛
JP6652842B2 (ja) 帯電防止性熱可塑性樹脂組成物およびそれを成形してなる成形体
WO2021065727A1 (ja) 帯電防止剤、これを含有する帯電防止剤組成物、これらを含有する帯電防止性樹脂組成物、およびその成形体
JP2016188312A (ja) 有機溶剤の容器および管用帯電防止性樹脂組成物、並びに、これを用いた容器および管
JP2019183085A (ja) 制電性熱可塑性樹脂組成物およびその成形体
JP2019006951A (ja) ブロックポリマー、これを含む組成物、これらを含む樹脂組成物およびその成型体
JP2023045169A (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体
JP2023059110A (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、およびその成形体
WO2020203618A1 (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
WO2020203619A1 (ja) 帯電防止剤、これを含む帯電防止剤組成物、これらを含む帯電防止性樹脂組成物、その成形体およびフィルム
JP2019006950A (ja) 高分子化合物、これを含む組成物、これらを含む樹脂組成物およびその成型体
JP2021102683A (ja) 帯電防止性樹脂組成物、及びこれを用いた電気電子機器筐体
JP2024024429A (ja) 親水性付与剤、これを含む親水性付与剤組成物、これらを含む親水性樹脂組成物およびその成形体
JP2021102685A (ja) 帯電防止性樹脂組成物、およびその成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772108

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15563395

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE