WO2016158001A1 - 情報処理装置、情報処理方法、プログラム及び記録媒体 - Google Patents

情報処理装置、情報処理方法、プログラム及び記録媒体 Download PDF

Info

Publication number
WO2016158001A1
WO2016158001A1 PCT/JP2016/053140 JP2016053140W WO2016158001A1 WO 2016158001 A1 WO2016158001 A1 WO 2016158001A1 JP 2016053140 W JP2016053140 W JP 2016053140W WO 2016158001 A1 WO2016158001 A1 WO 2016158001A1
Authority
WO
WIPO (PCT)
Prior art keywords
video
information
gaze target
quality
target area
Prior art date
Application number
PCT/JP2016/053140
Other languages
English (en)
French (fr)
Inventor
青司 木村
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2017509341A priority Critical patent/JPWO2016158001A1/ja
Priority to US15/560,173 priority patent/US10531040B2/en
Publication of WO2016158001A1 publication Critical patent/WO2016158001A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/14Systems for two-way working
    • H04N7/141Systems for two-way working between two video terminals, e.g. videophone
    • H04N7/147Communication arrangements, e.g. identifying the communication as a video-communication, intermediate storage of the signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • G09G5/026Control of mixing and/or overlay of colours in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/14Display of multiple viewports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/422Input-only peripherals, i.e. input devices connected to specially adapted client devices, e.g. global positioning system [GPS]
    • H04N21/42202Input-only peripherals, i.e. input devices connected to specially adapted client devices, e.g. global positioning system [GPS] environmental sensors, e.g. for detecting temperature, luminosity, pressure, earthquakes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs
    • H04N21/4402Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream or rendering scenes according to encoded video stream scene graphs involving reformatting operations of video signals for household redistribution, storage or real-time display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/442Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
    • H04N21/44213Monitoring of end-user related data
    • H04N21/44218Detecting physical presence or behaviour of the user, e.g. using sensors to detect if the user is leaving the room or changes his face expression during a TV program
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/01Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level
    • H04N7/0117Conversion of standards, e.g. involving analogue television standards or digital television standards processed at pixel level involving conversion of the spatial resolution of the incoming video signal
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/10Mixing of images, i.e. displayed pixel being the result of an operation, e.g. adding, on the corresponding input pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/12Overlay of images, i.e. displayed pixel being the result of switching between the corresponding input pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/12Overlay of images, i.e. displayed pixel being the result of switching between the corresponding input pixels
    • G09G2340/125Overlay of images, i.e. displayed pixel being the result of switching between the corresponding input pixels wherein one of the images is motion video
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10527Audio or video recording; Data buffering arrangements
    • G11B2020/10537Audio or video recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/144Movement detection

Definitions

  • the present disclosure relates to an information processing apparatus, an information processing method, a program, and a recording medium.
  • Patent Document 1 when switching viewpoints by interactive operation, an image is displayed on a large screen display while being relatively suppressed with respect to the movement of the small screen display on the controller.
  • Patent Document 2 discloses a technique for reducing video sickness by reducing the quality of the entire video based on motion information in the video.
  • Non-Patent Document 1 discloses a system for projecting a wide-field image with a wide viewing angle on a large screen and displaying the image by projecting onto a plurality of planes.
  • Non-Patent Document 2 discloses a technique for actually converting a video shot at a narrow angle of view into a video with a wide angle of view using information such as motion. In this way, when an image is displayed on a large screen with a wide viewing angle, an immersive image can be provided to the viewer.
  • Patent Document 1 it is possible to reduce motion sickness in the situation shown in FIG. 55, but when displayed on a large screen display, it seems that the operation sensitivity of viewpoint switching and zooming has deteriorated. There is a possibility that.
  • Patent Document 2 it is possible to reduce motion sickness by lowering the quality of the entire image, but the image quality of the entire screen is lowered, so that the visibility is deteriorated and the viewer may be frustrated. There is also sex.
  • a region Z0 including motion that causes motion sickness such as video Z including motion flowing at high speed
  • a region Z0 including motion that causes motion sickness is erroneously operated and enlarged and displayed. If the user views the video Z1 in which the area Z0 is enlarged on the entire screen by this operation, the viewer may cause video sickness.
  • the generated wide-angle video is an original video as shown in FIG. 6o and an extrapolated prediction video 6e generated by estimating the original video 6o.
  • the extrapolation prediction image 6e may include artifacts and unnatural movements, thereby reducing the immersiveness of viewers of wide-angle video and inducing video sickness. You can also think about that.
  • a new and improved information processing apparatus, information processing method, program, and recording medium capable of comfortably and widely viewing wide-field images with a large screen and a wide viewing angle. Propose.
  • a quality analysis unit that generates video viewing quality information indicating the degree of appreciation of the video viewing state of the viewer, and gaze target region information that represents a gaze target region to be watched from the video that the viewer views
  • An information processing apparatus includes a gaze target area information generation unit that performs and a quality improvement processing unit that improves the viewing quality of the gaze target area based on video viewing quality information.
  • generating video viewing quality information indicating the degree of appreciation of the viewer's video viewing state, and generating gaze target region information representing a target region to be watched from a video that the viewer views An information processing method is provided that includes improving the viewing quality of the gaze target area based on the video viewing quality information.
  • the computer analyzes a quality analysis unit that generates video viewing quality information indicating the degree of goodness of the video viewing state of the viewer, and a gaze that represents a gaze target region to be watched from the video that the viewer is viewing.
  • a program for functioning as an information processing apparatus comprising: a gaze target area information generation unit that generates target area information; and a quality improvement processing unit that improves the viewing quality of the gaze target area based on video viewing quality information Provided.
  • a quality analysis unit that generates video viewing quality information indicating the degree of goodness of a viewer's video viewing state on a computer, and a gaze that represents a gaze target region to be watched from a video that the viewer views
  • a program for functioning as an information processing apparatus comprising: a gaze target area information generation unit that generates target area information; and a quality improvement processing unit that improves the viewing quality of the gaze target area based on video viewing quality information
  • a recorded computer-readable recording medium is provided.
  • FIG. 2 is a functional block diagram illustrating a schematic configuration of an information processing apparatus according to a first embodiment of the present disclosure.
  • FIG. 4 is a flowchart illustrating an overview of image signal processing by the information processing apparatus according to the embodiment. It is a functional block diagram which shows the function structure of the gaze object area
  • First embodiment (display of pseudo wide-angle video) 1.1. Schematic configuration of information processing apparatus 1.2. Gaze target area information generation processing 1.3. Video viewing quality analysis processing 1.4. Video viewing quality improvement processing 1.5. Summary 2.
  • Second embodiment (display of wide viewing angle video) 2.1. Schematic configuration of information processing apparatus 2.2. Gaze target area information generation processing 2.3. Video viewing quality analysis process 2.4. Video appreciation quality improvement processing section 2.5.
  • Third embodiment (display of wide viewing angle video: video sickness alarm information) 3.1. Schematic configuration of information processing apparatus 3.3. Video viewing quality analysis process 3.3. Gaze target area information generation process 3.4. Video viewing quality improvement processing 3.5.
  • Summary 4. Fourth embodiment (display of pseudo wide-angle image by projector projection) 4.1. Schematic configuration of information processing apparatus 4.2. Gaze target area information generation processing 4.3. Video appreciation quality analysis processing 4.4. Video viewing quality improvement processing 4.5.
  • the present disclosure can be applied to images produced with a wide angle of view (panorama, all-sky circle, omnidirectional ball, free viewpoint image, game content, etc.), and a pseudo-expanded image (peripheral extrapolated image,
  • the present invention relates to an information processing apparatus that provides wide-field images such as mosaic images.
  • wide-field images such as mosaic images.
  • an information processing device When viewing a wide-field image with a wide viewing angle on a large screen, such an information processing device firstly generates a deterioration in image quality or image sickness depending on the display environment and video signal for displaying the image. To obtain the quality of video appreciation. Then, the information processing apparatus performs video signal processing so that the analyzed viewing quality is improved based on the information on the area that the viewer should watch in the video. This provides comfortable and high-quality video viewing when viewing with a large screen and a wide viewing angle.
  • FIG. 1 is a functional block diagram illustrating a schematic configuration of the information processing apparatus 100 according to the present embodiment.
  • FIG. 2 is a flowchart showing an overview of image signal processing by the information processing apparatus 100 according to the present embodiment.
  • the information processing apparatus 100 includes a gaze target area information generation unit 110, a quality analysis unit 120, and a quality improvement processing unit 130, as shown in FIG.
  • the gaze target area information generation unit 110 estimates an area (hereinafter also referred to as a “gaze target area”) that the viewer will gaze at (gaze at) based on the input video signal and the external signal. In this case, it is set as gaze target area information.
  • the input video signal is a signal representing video displayed on the display screen.
  • the video based on the input video signal is a pseudo wide-angle video that is pseudo-expanded to a wide angle of view, and before being pseudo-expanded to a wide angle of view as shown in FIG. This is an image composed of an original image and an extrapolated prediction image.
  • the external signal is a control signal for identifying an original signal representing an original image and an extrapolation prediction signal representing an extrapolated prediction image.
  • the gaze target area information generation unit 110 detects a characteristic subject area that is estimated to be watched by the viewer from the input video signal, and generates a saliency map representing the detected subject area in the video. In addition, the gaze target area information generation unit 110 generates a signal identification map that identifies the original signal and the extrapolation prediction signal based on the external signal. Then, the gaze target area information generation unit 110 generates a gaze target map ( gaze target area information) indicating a region to be watched by the viewer from the saliency map and the signal identification map.
  • a gaze target map gaze target area information
  • the quality analysis unit 120 generates video viewing quality information indicating the degree of goodness of the video viewing state of the viewer based on the input video signal and the video viewing environment information.
  • the video viewing environment information is information including, for example, the display size on which the video is displayed, the viewing distance of the viewer with respect to the display, display brightness information, indoor brightness information, and the like.
  • the quality analysis unit 120 analyzes the degree of influence on the viewing quality of the video from the state of the environment for viewing the video, and generates video viewing quality information.
  • the quality improvement processing unit 130 performs video signal processing based on the input video signal, the external signal, the gaze target area information, and the video viewing quality information so as to improve the video viewing state of the viewer, thereby improving the viewing quality improved video. Generate a signal. For example, when it is analyzed that the video induces video sickness, the quality improvement processing unit 130 makes the video motion sick by making the original video part more conspicuous than the extrapolated prediction video by image quality adjustment or pattern superposition. An image quality improvement video signal that suppresses and improves the image quality is generated.
  • the information processing apparatus 100 first estimates the gaze target area from the input video signal and the external signal input from the outside in the gaze target area information generation unit 110, and the gaze target area information is Is generated (S100).
  • the gaze target area information generation unit 110 outputs the generated gaze target area information to the quality improvement processing unit 130.
  • the quality analysis unit 120 generates video viewing quality information indicating the degree of goodness of the video viewing state of the viewer from the externally input video signal and video viewing environment information (S110).
  • the quality analysis unit 120 outputs the generated video viewing quality information to the quality improvement processing unit 130.
  • the quality improvement processing unit 130 performs video signal processing from the input video signal and external signal input from the outside, the gaze target area information, and the video viewing quality information so that the viewer can enjoy the video viewing state. This is done, and finally an appreciation quality improved video signal is generated (S120).
  • FIG. 3 is a functional block diagram illustrating a functional configuration of the gaze target area information generation unit 110 according to the present embodiment.
  • FIG. 4 is a flowchart showing gaze target area information generation processing by the gaze target area information generation unit 110 according to the present embodiment.
  • FIG. 5 is a flowchart showing a gaze target map generation process.
  • FIG. 6 is an example of a saliency map, and is an explanatory diagram for explaining a process for generating a gaze target map from the saliency map.
  • FIG. 7 is an explanatory diagram showing an example of the smoothing filter strength control signal.
  • FIG. 8 is an explanatory diagram illustrating examples of an input video, a saliency map, a signal identification map, and a gaze target map.
  • FIG. 9 is a functional block diagram illustrating a configuration of the gaze target region information generation unit 110 when the depth map is used.
  • the gaze target area information generation unit 110 includes a saliency map generation unit 111, a signal identification map generation unit 113, and a gaze target map generation unit 115, as shown in FIG. Become.
  • the saliency map generation unit 111 detects a characteristic subject area that is easily attracted by humans from the input video signal, and generates a saliency map representing the detected subject area in the video.
  • the saliency map generation unit 111 detects the subject area by a subject detection function that detects the position and size of the subject area from the video.
  • a well-known technique can be applied to the subject detection function. For example, the technique described in Japanese Patent Application Laid-Open No. 2010-262506 may be applied.
  • the saliency map generation unit 111 outputs a saliency map created from the detected subject area to the gaze target map generation unit 115 as a saliency map signal.
  • the signal identification map generator 113 generates a signal identification map for identifying the original signal and the extrapolated prediction signal based on the external signal.
  • the signal identification map generation unit 113 generates an identification signal map representing an original video region and an extrapolated prediction video region in the video from the external signal, and outputs the identification signal map to the gaze target map generation unit 115 as a signal identification map signal.
  • the gaze target map generation unit 115 generates a gaze target map ( gaze target area information) indicating an area to be watched by the viewer based on the saliency map and the signal identification map.
  • the gaze target map generation unit 115 includes a smoothing filter strength control unit 115a and a smoothing processing unit 115b as shown in FIG.
  • the smoothing filter strength control unit 115a Based on the saliency map, the smoothing filter strength control unit 115a generates a smoothing filter having a characteristic that enhances the smoothness of a portion having high saliency (that is, a high possibility of being a subject region).
  • the smoothing processing unit 115b generates a gaze target map indicating a region to be watched by the viewer based on the smoothing filter generated by the smoothing filter strength control unit 115a and the signal identification map.
  • the gaze target area information generation unit 110 illustrated in FIG. 3 starts the process illustrated in FIG. 4 when an input video signal is input.
  • the saliency map generation unit 111 detects a subject area that is likely to catch a human eye from the input video signal (S101).
  • the saliency map generation unit 111 detects the position and size of the subject area, and generates a saliency map based on these values and their probabilities (S103).
  • the saliency map is, for example, an image in which each pixel is represented by a value of 0 to 255, and the larger the value, the higher the possibility that the subject area exists at that spatial position.
  • a saliency map 12 shown in FIG. 6 indicates an area where a subject area exists in an image, and is black as the pixel signal value is close to 0 and white as the pixel signal value is close to 255. That is, in the saliency map 12 shown in FIG. 6, the black area is an area 12b where no subject exists, and the white area is an area 12a where an object exists. The blurred boundary between the region 12a and the region 12b indicates that the presence or absence of the subject cannot be determined.
  • the saliency map generation unit 111 outputs the generated saliency map to the gaze target map generation unit 115 as a saliency map signal.
  • the signal identification map generator 113 generates a signal identification map for identifying the original pseudo wide-angle video and the extrapolated prediction video from the external signal (S105).
  • the signal identification map may be represented by a binary signal in which the original signal representing the original video is 1 and the extrapolated prediction signal representing the extrapolated predicted video is 0, and at the boundary between the original signal and the extrapolated predicted signal. It may be expressed by a continuous value of 0-255 having a transition region.
  • the signal identification map is expressed as a continuous value, the boundary between the original signal and the extrapolated prediction signal is 128, and as the distance from the boundary in the original signal becomes closer to 255, the boundary in the extrapolated prediction signal becomes closer to 0. It may be expressed as a value.
  • the signal identification map generation unit 113 outputs the generated signal identification map to the gaze target map generation unit 115 as a signal identification map signal.
  • the gaze target map generation unit 115 generates a gaze target map based on the saliency map and the signal identification map (S107).
  • a smoothing filter is first generated by the smoothing filter strength control unit 115a (S1071).
  • the smoothing filter strength control unit 115a generates a smoothing filter having a characteristic that enhances smoothing of a portion having high saliency (that is, a high possibility of being a subject region).
  • the smoothing filter strength control unit 115 a when generating a smoothing filter from the saliency map 12 shown in FIG. 6, the smoothing filter strength control unit 115 a sets a determination region W having each pixel as the center C for each pixel of the saliency map 12. Then, the cumulative value of the signal values of the pixels in the determination area W is calculated. Then, the smoothing filter strength control unit 115a generates a smoothing filter such that the smoothing performed by the smoothing processing unit 115b described later becomes stronger as the cumulative value becomes larger. For example, when the smoothing filter has a tap length of a low-pass filter, the smoothing filter is set with characteristics as shown in FIG.
  • the smoothing processing unit 115b performs a smoothing process on the signal identification map based on the smoothing filter to generate a gaze target map (gaze target area information) (S1073).
  • the smoothing process may be performed using, for example, an FIR (Finite Impulse Response) low-pass filter.
  • the smoothed signal identification map becomes a gaze target map indicating a region to be watched by the viewer, and is output to the quality improvement processing unit 130 as gaze target region information.
  • FIG. 1 An example of the saliency map, the signal identification map, and the gaze target map generated from the input video signal by the gaze target area information generation process as described above is shown in FIG.
  • the input video signal 10A of Case 1 shown on the left side of FIG. 8 includes an original video 10Ao having a characteristic subject at the center and an extrapolated predicted video 10Ae extrapolated around the original video 10Ao. That is, the original image 10Ao is in the center of the image 10A that is a pseudo wide-angle image.
  • the saliency map 12A of the video 10A has a region 12Aa where the subject exists in the center due to detection of a characteristic subject in the center of the video, and a region 12Ab where no subject exists around it. It will be a thing.
  • the signal identification map 14A has an area 14Ao for the original video at the center and an area for the extrapolated prediction video 14Ae around it from the external signal.
  • the value of the saliency map 12A is low in the vicinity of the boundary between the area 14Ao of the original image and the area 14Ae of the extrapolated prediction image in the signal identification map 14A. Therefore, the gaze target map 16A generated in Case 1 is almost the same as the signal identification map 14A.
  • the input video signal 10B of Case 2 shown on the right side of FIG. 8 has a characteristic subject in the central portion from the lower left of the video, and the original video 10Bo in the central portion and the surroundings of the original video 10Bo are outside. It consists of inserted extrapolated prediction video 10Be.
  • the saliency map 12B of the video 10B when a characteristic subject is detected from the lower left to the center of the video, there is a region 12Ba where the subject exists from the lower left to the center, and a region 12Bb where there is no subject exists around it. There will be something.
  • the signal identification map 14B has an area 14Bo for the original video at the center and an area for the extrapolated prediction video 14Be around it from the external signal.
  • the gaze target map 16B generated in Case 2 includes a lower left portion 16Bg having a high value of the saliency map 12B at the boundary between the original video region 14Bo and the extrapolated prediction video region 14Be in the signal identification map 14B. It will be blurry.
  • the region 16a indicating the region to be watched spreads in the staring target map 16B, which is different from the signal identification map 14B.
  • the gaze target area information generation unit 110 generates gaze target area information using a saliency map.
  • the gaze target area information may be generated using a map. That is, as shown in FIG. 9, the gaze target area information generation unit 110 may include a depth map generation unit 111A, a signal identification map generation unit 113, and a gaze target map generation unit 115.
  • the depth map generator 111A detects the depth information of the video from the input video signal and generates a depth map.
  • the depth map is, for example, an image having a value of 0-255, and the larger the value, the closer the depth at that spatial position is.
  • the depth map can be generated by detecting the parallax between the left and right images.
  • a depth map can be generated using a well-known depth estimation technique (see, for example, JP 2013-172214 A).
  • the signal identification map generation unit 113 and the gaze target map generation unit 115 perform the same processing as described above.
  • FIG. 10 is a functional block diagram showing a functional configuration of the quality analysis unit 120 according to the present embodiment.
  • FIG. 11 is a flowchart showing video viewing quality analysis processing by the quality analysis unit 120 according to the present embodiment.
  • FIG. 12 is an explanatory diagram of the generation process of the in-field visual sickness induction degree signal.
  • FIG. 13 is an explanatory diagram showing a relationship between relative display brightness information and brightness induction gain.
  • the quality analysis unit 120 includes a video sickness induction environment information generation unit 121, a video sickness induction motion component analysis unit 123, and a video sickness induction degree generation unit 125. It consists of.
  • the video sickness induction environment information generation unit 121 generates relative display brightness information and viewing angle information based on the video environment information.
  • the video viewing environment information is information including, for example, the display size on which the video is displayed, the viewing distance of the viewer with respect to the display, display brightness information, indoor brightness information, and the like.
  • the video sickness induction environment information generation unit 121 analyzes the degree of influence on the video viewing quality from the state of the video viewing environment, and generates video viewing quality information.
  • the motion sickness induction environment information generation unit 121 outputs the generated relative display brightness information and viewing angle information to the motion sickness induction degree generation unit 125.
  • the motion sickness-inducing motion component analysis unit 123 analyzes the feature of the motion vector of the video and generates a motion sickness-inducing motion component map.
  • the motion sickness-inducing motion component analysis unit 123 detects a motion sickness-inducing region including motion that causes motion sickness from the video, and represents the position of the motion sickness-inducing region in the video as a motion sickness-inducing motion component map.
  • the motion sickness-inducing motion component analyzing unit 123 outputs the generated motion sickness-inducing motion component map to the motion sickness inducing degree generating unit 125.
  • the video sickness induction level generation unit 125 generates video viewing quality information indicating whether the video has viewing quality that induces video sickness. As shown in FIG. 10, the video sickness induction level generation unit 125 includes an in-view video motion sickness induction motion component accumulation unit 125 a and an image motion sickness induction level generation unit 125 b in the viewing environment.
  • the visual field motion sickness induction motion component accumulating unit 125a generates a visual field motion sickness induction level signal based on the viewing angle information and the video motion sickness induced motion component map.
  • the visual motion sickness-inducing motion component accumulating unit 125a discretely maps the video motion sickness-inducing motion component map in the video range corresponding to the viewing angle of view, and calculates a weighted cumulative value of the information in the video motion sickness-inducing motion component map.
  • the visual motion sickness induction motion component accumulating unit 125a normalizes the calculated cumulative value, and outputs it to the visual motion sickness induction degree generation unit 125b under the viewing environment as a visual field motion sickness induction degree signal.
  • the viewing motion picture motion sickness induction level generation unit 125b generates video viewing quality information based on the relative display brightness information and the visual motion sickness induction level signal.
  • the viewing motion sickness induction degree generation unit 125b sets a brightness induction gain from the relative display brightness information, and outputs a signal obtained by inverting the value obtained by multiplying the brightness induction gain and the in-field video sickness induction signal. Appreciation quality information.
  • the quality analysis unit 120 illustrated in FIG. 10 starts the processing illustrated in FIG. As shown in FIG. 11, first, the video sickness induction environment information generation unit 121 generates relative display brightness information and viewing angle information from the video viewing environment information (S111).
  • the video viewing environment information is information including the display size, the viewing distance of the viewer with respect to the display, display brightness information, indoor brightness information, and the like.
  • the display size and display brightness information are obtained from, for example, a display.
  • the viewing distance of the viewer with respect to the display is acquired by, for example, a distance sensor provided near the display screen of the display. When there are a plurality of viewers, the average value of the viewing distance of each viewer, the intermediate value, or the value of the viewer closest to the display may be used.
  • the indoor brightness information is acquired by, for example, an illuminance sensor installed in the room.
  • the video sickness induction environment information generation unit 121 generates relative display brightness information indicating the ratio of the display brightness to the room brightness from the display brightness information and the room brightness information. That is, the darker the room and the brighter the display, the greater the relative display brightness information value.
  • the motion sickness-inducing environment information generation unit 121 calculates a range in which an image within a visual field that can be perceived by a human being is perceived from the display size and the viewing distance of the viewer with respect to the display, and sets the viewing angle information. .
  • the generated relative display brightness information and viewing angle information are output to the video sickness induction level generation unit 125.
  • the motion sickness-inducing motion component analyzing unit 123 analyzes the feature of the motion vector for the video represented by the input video signal, and generates a motion sickness-inducing motion component map (S113).
  • the motion sickness-inducing motion component map is, for example, an image in which the signal value of each pixel is normalized to a value of 0-255, and the larger the value, the more the feature that the motion of the spatial position induces motion sickness. Represents that.
  • the motion sickness-inducing motion component map can be generated using an existing method (for example, Japanese Patent Application Laid-Open No. 2013-21455).
  • the motion sickness-inducing motion component analyzing unit 123 outputs the generated motion sickness-inducing motion component map to the motion sickness inducing degree generating unit 125.
  • the video motion sickness induction level generation unit 125 generates video video quality information indicating whether the video motion sickness is an appreciation quality that induces video motion sickness based on the relative display brightness information, viewing angle information, and the video motion sickness motion component map. It is generated (S115).
  • step S115 the in-field image motion sickness induction motion component accumulating unit 125a generates the in-field image motion sickness induction degree signal based on the viewing angle information and the image motion sickness induction motion component map. More specifically, based on FIG. 12, the in-field motion sickness-inducing motion component accumulating unit 125a can be perceived by humans from viewing angle information including two types of information in the horizontal and vertical directions of the screen.
  • a range E in which an image within the field of view is perceived is calculated.
  • the perceptible video range E is the range E 2 on the central visual field side when the viewing angle is small with respect to the entire visual field range E 0 that can be perceived by humans, and when the viewing angle is large. the range E 1 that has spread to the periphery of the visual field side.
  • the in-view image motion sickness induced motion component accumulating unit 125a discretely maps the image motion sickness induced motion component map information to the image range corresponding to the viewing angle of view, and the motion sickness induced motion component map information Find the weighted cumulative value of. That is, as shown in FIG. 12, first, discrete data samples of the motion sickness-inducing motion component map are set in the horizontal direction and the vertical direction with a preset resolution with respect to the entire viewing angle (for example, 180 °). The motion sickness-inducing motion component map is scaled according to the resolution corresponding to the viewing angle.
  • the in-view image motion sickness induced motion component accumulating unit 125a sets the values of the discrete data samples mapped in the range corresponding to the viewing angle of view so that the weight is higher toward the center view in the horizontal and vertical directions. Multiplied by the weighting factor. Then, the visual field motion sickness induction motion component accumulating unit 125a accumulates the values of the weighted discrete data samples in the range corresponding to the viewing angle of view.
  • the visual motion sickness induction degree signal calculated in this way takes a larger value as the viewing angle of view increases in the case of the same motion sickness induction motion component map.
  • the visual motion sickness induction motion component accumulating unit 125a normalizes the cumulative value of the weighted discrete data samples, and outputs the normalized value to the visual motion sickness induction degree generation unit 125b in the viewing environment as a visual field motion sickness induction degree signal.
  • the accumulated value normalization process is performed, for example, so that the accumulated value becomes a value of 0.0 to 1.0.
  • the under-view image motion sickness induction level generating unit 125b receives the relative display brightness information, the in-view image motion sickness induction level signal, Based on the above, the video viewing quality information is generated.
  • the motion sickness induction degree generation unit 125b in the viewing environment sets a brightness induction gain (LumGain) from the relative display brightness information.
  • the brightness induction gain is a positive coefficient that increases as the relative display brightness value increases.
  • the brightness inducing gain is multiplied by the in-view image motion sickness induction level signal, and the ease of inducing image intoxication in accordance with the relative display brightness is reflected in the in-view image motion sickness induction level signal. For example, when the room is dark and the display is bright, the viewer is more likely to get sick, so the brightness induction gain is set to a large coefficient of 1.0 or more. On the other hand, when the room is bright but the display is dark, the image itself cannot be seen well, and the viewer is less likely to get sick, so the brightness-induced gain is set to a small coefficient of less than 1.0. .
  • the brightness induction gain is set based on the relationship between the relative display brightness information and the brightness induction gain as shown in FIG. 13, for example.
  • the image motion sickness induction level generation unit 125b in the viewing environment outputs a signal obtained by inverting the value obtained by multiplying the set brightness induction gain and the visual field motion sickness induction level signal to the quality improvement processing unit 130 as video image quality information. To do.
  • FIG. 14 is a functional block diagram showing a functional configuration of the quality improvement processing unit 130 according to the present embodiment.
  • FIG. 15 is a flowchart showing video viewing quality improvement processing by the quality improvement processing unit 130 according to the present embodiment.
  • 16 and 17 are explanatory diagrams showing examples of gaze guidance pattern maps.
  • FIG. 18 is a functional block diagram illustrating a configuration example of the gaze target region relative saliency image processing unit 131.
  • FIG. 19 is a functional block diagram illustrating a configuration of each functional unit of the gaze target region relative saliency image processing unit 131.
  • FIG. 20 is an explanatory diagram illustrating an example of the relationship between the gaze target map signal and the image quality enhancement signal blend ratio.
  • FIG. 21 is a functional block diagram illustrating a configuration of the gaze target region relative saliency combining unit 135.
  • FIG. 22 is an explanatory diagram showing an example of the relationship between the video viewing quality information and the relative saliency processing video signal blend ratio.
  • FIG. 23 is an explanatory diagram showing an example of the relationship between the video viewing quality information and the gaze guidance pattern superimposed signal blend ratio.
  • the quality improvement processing unit 130 includes a gaze target area relative saliency image processing unit 131, a gaze guidance pattern map generation unit 133, and a gaze target area relative saliency. And a chemical synthesis unit 135.
  • the gaze target area relative saliency image processing unit 131 performs a relative saliency process in which image processing is performed so that the gaze target area becomes relatively prominent based on the input video signal and the gaze target area information (gaze target map). Generate a video signal. Detailed processing of the gaze target region relative saliency image processing unit 131 will be described later.
  • the gaze target area relative saliency image processing unit 131 outputs the generated relative saliency processing video signal to the gaze target area relative saliency synthesizing unit 135.
  • the gaze guidance pattern map generation unit 133 obtains an area of the original video for the pseudo wide-angle video based on the external signal, and generates a gaze guidance pattern map in which the gaze guidance pattern is set so as to include the area of the original video.
  • the gaze guidance pattern map is information indicating an area that the viewer wants to gaze at.
  • the gaze guidance pattern map generation unit 133 outputs the generated gaze guidance pattern map to the gaze target region relative saliency synthesis unit 135.
  • the gaze target area relative saliency synthesizing unit 135 is a viewing quality improvement video signal in which the saliency of the gaze target area is emphasized based on the relative saliency processing video signal, the gaze guidance pattern map, the input video signal, and the video viewing quality information. Is generated.
  • the viewing quality improved video signal is a video signal in which the motion sickness is suppressed with respect to the input video signal and the viewing quality is improved.
  • the gaze target area relative saliency synthesizing unit 135 generates an appreciation quality improved video signal in which the saliency of the gaze target area is emphasized as the value of the video appreciation quality information is smaller (that is, the scene is more prone to video sickness). To do.
  • the video signal for improving the viewing quality on the display the viewer can view a wide-field image comfortably and with high image quality with a wide viewing angle on a large screen.
  • the quality improvement processing unit 130 shown in FIG. 14 first generates a gaze guidance pattern map based on the external signal by the gaze guidance pattern map generation unit 133 (S121). ).
  • the gaze guidance pattern map generation unit 133 obtains an area of the original video represented by the original signal before being pseudo-expanded to a wide field angle from the external signal, and gaze is set with a gaze guidance pattern surrounding the area. Generate a guidance pattern map.
  • the gaze guidance pattern map 18 for example, when the original video area 18o is rectangular, as shown in FIG. 16, a rectangular pattern 18p surrounding the original video area 18o may be set. Alternatively, as shown in FIG. 17, an eye pattern 18p may be generated by setting an elliptic pattern 18p that surrounds the area 18o of the original video.
  • the map value of each pixel of the gaze guidance pattern map 18 may be set to take a value of 0-255, for example. At this time, the map value indicating the gaze target pattern 18p is a value close to 255.
  • the gaze target pattern 18p is represented by only 0 and 255, and when the gaze guidance pattern map 18 has gradation, the gaze target pattern 18p is represented by a value from 0 to 255. Is done.
  • the gaze guidance pattern map generation unit 133 outputs the generated gaze guidance pattern map 18 to the gaze target region relative saliency synthesis unit 135.
  • the gaze target area relative saliency image processing unit 131 is configured, for example, as shown in FIGS. 18 and 19, and image processing is performed on the pseudo wide-angle video input by the image quality adjustment units 1311 to 1314. Apply.
  • the internal configuration of the gaze target area relative saliency image processing unit 131 includes, for example, a sharpness adjustment unit 1311, a contrast adjustment unit 1312, a brightness adjustment unit 1313, and a saturation adjustment unit 1314.
  • the sharpness adjustment unit 1311, the contrast adjustment unit 1312, the brightness adjustment unit 1313, and the saturation adjustment unit 1314 are connected in cascade, and the output of each image quality adjustment unit is input to the subsequent image quality adjustment unit.
  • the image quality adjustment units may be processed in parallel and combined at a later stage.
  • each of the image quality adjustment units 1311 to 1314 can be generalized as, for example, an image quality adjustment unit 131X shown in FIG.
  • the image quality adjustment unit 131X includes an image quality enhancement unit 131X-1, an image quality suppression unit 131X-2, and a relative image quality adjustment unit 131X-3.
  • the sharpness adjustment unit 1311 that performs sharpness enhancement processing performs, for example, unsharp mask processing or super-resolution processing in the image quality enhancement unit 131X-1, and generates an image quality enhancement signal. Further, the image quality suppression unit 131X-2 performs a smoothing process using a low-pass filter to generate an image quality suppression signal.
  • the contrast adjustment unit 1312 that performs the contrast enhancement processing for example, performs the contrast enhancement processing by expanding the dynamic range of the histogram in the image quality enhancement unit 131X-1, and generates an image quality enhancement signal. Further, the image quality suppression unit 131X-2 performs contrast suppression processing by reducing the dynamic range of the histogram, and generates an image quality suppression signal.
  • the brightness adjustment unit 1313 that performs brightness enhancement processing, for example, increases the Y signal of the YUV signal or the V signal of the HSV space in the image quality enhancement unit 131X-1, and generates an image quality enhancement signal. Further, the image quality suppression unit 131X-2 performs a process of reducing the Y signal of the YUV signal or the V signal of the HSV space to generate an image quality suppression signal.
  • the saturation adjustment unit 1314 that performs saturation enhancement processing, for example, performs an S signal increase process in the HSV space in the image quality enhancement unit 131X-1 to generate an image quality enhancement signal.
  • the image quality suppression unit 131X-2 performs an S signal reduction process in the HSV space to generate an image quality suppression signal.
  • the relative image quality adjustment unit 131X-3 of each image quality adjustment unit 131X includes an image quality enhancement signal generated by the image quality enhancement unit 131X-1, an image quality suppression signal generated by the image quality suppression unit 131X-2, and a gaze target. Area information (gazing target map) is input.
  • alpha blend processing of the image quality enhancement signal and the image quality suppression signal is executed.
  • the relative image quality adjustment unit 131X-3 performs alpha blend processing of the image quality enhancement signal and the image quality suppression signal based on the relationship between the gaze target map signal and the blend ratio (EnhBlend) of the image quality enhancement signal as illustrated in FIG. .
  • the blend ratio of the image quality enhancement signal is set to be higher as the signal value of the gaze target area information (gaze target map) is larger.
  • the gaze target map value Mth at which the blend ratio (EnhBlend) is 0.5 is set to 128, for example.
  • the image quality for example, the contrast is increased in the region where the value of the gaze target map is large (for example, the white regions 16Aa and 16Ba in the gaze target maps 16A and 16B in FIG. 8). Sharpness, saturation, brightness, etc.).
  • the image quality is suppressed in the region where the value of the gaze target map is smaller (the black regions 16Ab and 16Bb in the gaze target maps 16A and 16B in FIG. 8).
  • either the image quality enhancement signal or the image quality suppression signal may pass through the input signal from the previous image quality adjustment unit 131X and be used as an output signal as it is.
  • the relative saliency processing video signal generated by the gaze target region relative saliency image processing unit 131 as described above is output to the gaze target region relative saliency synthesis unit 135.
  • the gaze target region relative saliency synthesizer 135 performs relative saliency processing video signal, gaze guidance pattern map, input video signal, and video viewing quality information.
  • a viewing quality improved video signal in which the saliency of the gaze target area is emphasized is generated (S125).
  • the gaze target area relative saliency combining unit 135 includes a gaze target area relative saliency image intensity adjusting unit 1351 and a gaze guidance pattern intensity adjusting unit 1353 as shown in FIG.
  • the gaze target area relative saliency image intensity adjustment unit 1351 performs alpha blend processing based on the input video signal, the relative saliency processing video signal, and the video viewing quality information, and generates a gaze target area relative saliency image intensity adjustment signal. Generate.
  • the gaze target region relative saliency image intensity adjustment unit 1351 is based on the relationship between the video viewing quality information and the relative saliency processing video signal blend ratio (SalBlend) as shown in FIG. Perform alpha blending with the processed video signal. In FIG. 22, the blend ratio of the relative saliency processing video signal is set to be higher as the value of the video viewing quality information is smaller.
  • the gaze target area relative saliency image intensity adjustment unit 1351 outputs the gaze target area relative saliency image intensity adjustment signal generated by the alpha blending process to the gaze guidance pattern intensity adjustment unit 1353.
  • the gaze guidance pattern intensity adjustment unit 1353 includes a gaze guidance pattern superimposing unit 1353a and a gaze guidance pattern appreciation quality improvement unit 1353b.
  • the gaze guidance pattern superimposing unit 1353a generates a gaze guidance pattern superimposition signal based on the gaze target region relative saliency image intensity adjustment signal and the gaze guidance pattern map.
  • the gaze guidance pattern superimposition signal is a video signal in which the gaze guidance pattern indicated by the gaze guidance pattern map is superimposed on the video of the gaze target region relative saliency image intensity adjustment signal.
  • the gaze guidance pattern superimposing unit 1353a sets the gaze guidance pattern map to 0 for the pixel value of the drawing color (for example, red) of the gaze target pattern specified in advance and the pixel value of the gaze target area relative conspicuous image intensity adjustment signal.
  • Alpha blend processing is performed with a value normalized to 0.0 to 1.0 as a blend ratio.
  • the R, G, and B values of the drawing color of the gaze target pattern are Rp, Gp, and Bp
  • the R, G, and B values of the pixel having the gaze target region relative saliency image intensity adjustment signal are Re
  • Ge and Be it is assumed that Ge and Be.
  • the value of the gaze guidance pattern map corresponding to the spatially same position as the pixel of the gaze target region relative saliency image intensity adjustment signal is 0.9
  • the values Rs, Gs, and Bs of G and B are calculated as follows.
  • Rs 0.9 ⁇ Rp + 0.1 ⁇ Re
  • Gs 0.9 ⁇ Gp + 0.1 ⁇
  • Ge Bs 0.9 ⁇ Bp + 0.1 ⁇ Be
  • the gaze guidance pattern superimposing unit 1353a outputs the image generated by the alpha blend process to the gaze guidance pattern appreciation quality improving unit 1353b as a gaze guidance pattern superimposition signal.
  • the gaze guidance pattern appreciation quality improvement unit 1353b performs alpha blend processing of the gaze guidance pattern superimposed signal and the gaze target region relative saliency image intensity adjustment signal to generate an appreciation quality improved video signal.
  • the gaze guidance pattern appreciation quality improvement unit 1353b for example, based on the relationship between the video appreciation quality information and the blend ratio (PtBlend) of the gaze guidance pattern superimposed signal as shown in FIG. Alpha blend processing with the normalized image intensity adjustment signal is performed. In FIG. 23, the blend ratio of the gaze guidance pattern superimposed signal is set to be higher as the value of the video viewing quality information is smaller.
  • the gaze guidance pattern superimposed on the gaze target region becomes more conspicuous as the value of the video appreciation quality information is smaller (that is, the scene is more prone to video sickness). Specifically, the gaze guidance pattern superimposed on the gaze target region becomes conspicuous by increasing the color of the gaze guidance pattern superimposed on the gaze target region.
  • the pseudo wide-angle video includes a video that induces video sickness
  • the image quality adjustment and pattern superposition are performed on the original video area, so that the extrapolated prediction video area is larger than the extrapolated prediction video area. Make the area of the original video stand out. As a result, it is possible to provide a pseudo wide-angle image with suppressed image sickness and improved viewing quality.
  • the information processing apparatus 100 for the pseudo wide-angle video to be viewed, the viewing environment and the video signal are analyzed, and when the pseudo wide-angle video includes a video that induces video sickness, the region of the original video is displayed. On the other hand, image quality adjustment and pattern superimposition are performed so that they are more conspicuous than the extrapolated prediction video area.
  • the video signal for improving the viewing quality generated in this manner on the display, the viewer can view the wide-field video comfortably and with high image quality with a wide viewing angle on a large screen.
  • the input video signal is a video produced with a wide angle of view (video of wide-angle shot video, panorama, all-sky, omnidirectional, free viewpoint video, game content, etc., hereinafter “wide-field video”.
  • the external signal includes, for wide-field video data, cropping coordinate information for designating an area displayed on the display by the user interaction operation and gaze target area information in the display designated by the user interaction operation. Yes.
  • an information processing apparatus 200 that generates a viewing quality improved video signal that suppresses the occurrence of video sickness and provides a good video viewing state for a wide-field video, and image signal processing performed thereby will be described.
  • FIG. 24 is a functional block diagram illustrating a schematic configuration of the information processing apparatus 200 according to the present embodiment.
  • FIG. 25 is a flowchart showing an overview of image signal processing by the information processing apparatus 200 according to the present embodiment. In the following, detailed description of the same configuration and the same function as those of the information processing apparatus 100 according to the first embodiment will be omitted.
  • the information processing apparatus 200 includes a gaze target area information generation unit 210, a quality analysis unit 220, and a quality improvement processing unit 230, as shown in FIG.
  • the gaze target area information generation unit 210 gazes (watches) the cropped video signal indicating the area displayed on the display in the wide-field video based on the input video signal and the external signal.
  • the gaze target area that is likely to be estimated is used as gaze target area information.
  • the generated gaze target area information is output to the quality improvement processing unit 230.
  • the quality analysis unit 220 generates video viewing quality information indicating the degree of goodness of the viewer's video viewing state based on the external signal and the video viewing environment information.
  • the quality analysis unit 220 analyzes the degree of influence on the viewing quality of the video from the state of the environment for viewing the video, and generates video viewing quality information.
  • the video viewing quality information represents the viewing quality that induces video sickness.
  • the quality improvement processing unit 230 performs video signal processing on the basis of the cropped video signal, the external signal, the gaze target area information, and the video viewing quality information so that the video viewing state of the viewer is good, thereby improving the viewing quality improved video. Generate a signal.
  • the gaze target area information generation unit 210 In the information processing apparatus 200, first, the gaze target area information generation unit 210 generates a cropping video signal and gaze target area information from an externally input video signal and an external signal, as shown in FIG. (S200). Details of the process for generating such information will be described later.
  • the gaze target area information generation unit 210 outputs the generated cropping video signal and gaze target area information to the quality improvement processing unit 230.
  • the quality analysis unit 220 generates video viewing quality information indicating the degree of goodness of the video viewing state of the viewer from the externally input video signal and the video viewing environment information (S210).
  • the quality analysis unit 220 outputs the generated video viewing quality information to the quality improvement processing unit 230.
  • the quality improvement processing unit 230 performs video signal processing from the cropped video signal, the external signal, the gaze target area information, and the video viewing quality information so that the video viewing state of the viewer is good.
  • a quality improved video signal is generated (S220).
  • the gaze target area in the display display can be made conspicuous by image quality adjustment or pattern superposition. As a result, it is possible to suppress the motion sickness of the viewer who has not performed the user interaction operation and to improve the viewing quality.
  • each function will be described in detail.
  • FIG. 26 is a functional block diagram illustrating a functional configuration of the gaze target area information generation unit 210 according to the present embodiment.
  • FIG. 27 is a flowchart showing gaze target area information generation processing by the gaze target area information generation unit 210 according to the present embodiment.
  • the gaze target area information generation unit 210 includes an external signal decoder 211, a cropped video generation unit 213, a saliency map generation unit 215, and a gaze target.
  • a map generation unit 217 is a map generation unit 217.
  • the external signal decoder 211 acquires cropping coordinate information and a display display gaze target area map that is gaze target area information in the display from an external signal, and sends them to the cropped video generation unit 213 or the gaze target map generation unit 217. Output.
  • the cropping coordinate information and the gaze target area information in the display are information included in the external signal.
  • the cropping video generation unit 213 generates partial image data trimmed from the input video signal based on the cropping coordinate information.
  • the cropping video generation unit 213 performs predetermined processing on the partial image data, generates a cropping video signal, and outputs it to the saliency map generation unit 215.
  • the saliency map generation unit 215 detects a characteristic subject area that is easily caught by a human eye from the cropped video signal, and generates a saliency map representing the detected subject area in the video.
  • the saliency map generation unit 215 operates in the same manner as the saliency map generation unit 111 according to the first embodiment except that a saliency map is generated from the cropped video signal instead of the input video signal.
  • the saliency map generation unit 215 outputs a saliency map created from the detected subject area to the gaze target map generation unit 217 as a saliency map signal.
  • the gaze target map generation unit 217 generates a gaze target map ( gaze target area information) indicating an area to be watched by the viewer based on the saliency map and the gaze target area information in the display.
  • the gaze target map generation unit 217 operates in the same manner as the gaze target map generation unit 115 according to the first embodiment except that the gaze target map is generated from the gaze target area information in the display instead of the signal identification map signal. .
  • the gaze target area information generation unit 210 shown in FIG. 26 first displays the cropping coordinate information and the gaze target area information in the display from the external signal input by the external signal decoder 211.
  • An in-display gaze target area map is acquired (S201).
  • the gaze target area map in the display display may be, for example, a binary signal represented by 1, 0 or a continuous value of 0-255.
  • the external signal decoder 211 outputs the cropping coordinate information to the cropped video generation unit 213, and outputs the gaze target area map in the display display to the gaze target map generation unit 217.
  • a cropping video signal is generated by the cropping video generation unit 213 based on the input video signal and the cropping coordinate information (S203).
  • the cropping video generation unit 213 trims a region specified by the cropping coordinate information as partial image data from the wide-field video represented by the input video signal.
  • the cropping video generation unit 213 performs a scaling process on the partial image data according to the resolution of the display to generate a cropping video signal.
  • the scaling process may be performed according to a preset resolution in a system in which, for example, a scaler that outputs the display resolution at the subsequent stage is connected.
  • the cropping video signal generated by the cropping video generation unit 213 is output to the saliency map generation unit 215.
  • the saliency map generation unit 215 detects a subject area that is easily caught by the human eye from the cropped video signal, and generates a saliency map (S205). Similar to the first embodiment, the saliency map generation unit 215 detects the position and size of the subject region, and generates a saliency map based on these values and their probabilities. The saliency map generation unit 215 outputs the generated saliency map to the gaze target map generation unit 217 as a saliency map signal.
  • the gaze target map is generated by the gaze target map generation unit 217 based on the saliency map and the display target gaze target area map (S207).
  • the gaze target map generation unit 217 generates a smoothing filter and performs a smoothing process on the gaze target area map in the display display, as in the first embodiment, thereby creating a gaze target map.
  • the gaze target area map generated in the present embodiment is a gaze target area map in the display designated by the user interaction operation, and therefore does not necessarily have to be in the center of the display, and the size is also designated by the user. It shall be possible. Accordingly, when the gaze target area map in the display display is the same as the signal identification map signal of FIG. 8, the gaze target area information (gaze target map) is like the gaze target map shown in FIG.
  • FIG. 28 is a functional block diagram showing a functional configuration of the quality analysis unit 220 according to the present embodiment.
  • FIG. 29 is a flowchart showing video appreciation quality analysis processing by the quality analysis unit 220 according to the present embodiment.
  • FIG. 30 is an explanatory diagram for explaining the conversion process from time variation of the cropping coordinate information to the global motion vector field.
  • the quality analysis unit 220 includes a video sickness induction environment information generation unit 221, a video sickness induction interaction operation component analysis unit 223, and a video sickness induction degree generation unit. 225.
  • the video sickness induction environment information generation unit 221 generates relative display brightness information and viewing angle information based on the video environment information.
  • the motion sickness induction environment information generation unit 221 operates in the same manner as the motion sickness induction environment information generation unit 121 according to the first embodiment.
  • the motion sickness induction environment information generation unit 221 outputs the generated relative display brightness information and viewing angle information to the motion sickness induction degree generation unit 225.
  • the motion sickness induction interaction operation component analysis unit 223 analyzes the feature of the motion vector of the video from the control signal of the interaction operation based on the external signal, and generates a motion sickness induction motion component map. As shown in FIG. 28, the motion sickness induction interaction operation component analysis unit 223 includes an external signal decoder unit 223a, a global motion vector conversion unit 223b, and a motion sickness induction motion component analysis unit 223c.
  • the external signal decoder unit 223a acquires cropping coordinate information from the external signal.
  • the external signal decoder unit 223a operates in the same manner as the external signal decoder unit 211 of the gaze target area information generation unit 210 illustrated in FIG.
  • the global motion vector conversion unit 223b converts the time variation of the cropping coordinate information into a global motion vector field.
  • the global motion vector conversion unit 223b regards the time variation of the cropping coordinate information as the motion of the entire screen with respect to the cropped video signal (that is, global motion), and calculates the motion vector at each position in the display display screen.
  • a global motion vector field is generated from this motion vector.
  • the motion sickness induction motion component analysis unit 223c generates a motion sickness induction motion component map based on the global motion vector field generated by the global motion vector conversion unit 223b.
  • the video sickness-inducing motion component analyzing unit 223c outputs the generated video motion sickness-inducing motion component map to the video sickness inducing degree generating unit 225.
  • the video sickness induction degree generation unit 225 generates video appreciation quality information indicating whether the video has appreciation quality that induces video sickness.
  • the video sickness induction degree generation unit 225 operates in the same manner as the video sickness induction degree generation unit 125 according to the first embodiment.
  • the quality analysis unit 220 shown in FIG. 28 first uses the video sickness induction environment information generation unit 221 to detect relative display brightness information and viewing images from the video viewing environment information. Corner information is generated (S211). The process of step S211 is performed similarly to step S111 of FIG.
  • the motion sickness induction environment information generation unit 221 outputs the generated relative display brightness information and viewing angle information to the motion sickness induction degree generation unit 225.
  • a motion sickness-inducing motion component map is generated by the motion sickness-inducing interaction operation component analysis unit 223.
  • the motion sickness induction interaction operation component analysis unit 223 acquires cropping coordinate information from the external signal by the external signal decoder unit 223a (S213).
  • the global motion vector conversion unit 223b converts the time variation of the cropping coordinate information into a global motion vector field (S215).
  • the global motion vector conversion unit 223b regards the time variation of the cropping coordinate information as the motion of the entire screen with respect to the cropped video signal (that is, global motion), and calculates the motion vector at each position in the display display screen.
  • the global motion vector conversion unit 223b performs affine transformation and projection from temporal variation of the cropping coordinate information (corresponding relationship of mapping of the four vertices of the rectangle Sg A and the rectangle Sg B in FIG. 30).
  • a motion parameter is determined using conversion or the like, and a motion vector at each position in the display display screen is calculated.
  • a global motion vector field is generated from this motion vector.
  • the motion sickness induced motion component analysis unit 223c When the global motion vector field is generated in step S215, the motion sickness induced motion component analysis unit 223c generates a motion sickness induced motion component map based on the global motion vector field (S217).
  • the motion sickness-inducing motion component analysis unit 223c may generate a motion sickness-inducing motion component map in the same manner as the motion sickness-inducing motion component analysis unit 123 according to the first embodiment, for example.
  • the processing in the motion sickness-inducing motion component analysis unit 223c corresponds to processing in which the motion vector detection portion from the video signal is excluded from the processing in the motion sickness-inducing motion component analysis unit 123 according to the first embodiment.
  • the motion sickness-inducing motion component analysis unit 223c obtains the motion vector from the control signal of the interaction operation instead of the video signal.
  • the video sickness-inducing motion component analyzing unit 223c outputs the generated video motion sickness-inducing motion component map to the video sickness inducing degree generating unit 225.
  • the video sickness induction degree generation unit 225 generates video appreciation quality information indicating whether it is appreciation quality that induces video sickness based on the relative display brightness information, viewing angle information, and video motion inducement motion component map. It is generated (S219).
  • the process of step S219 is performed similarly to step S115 of FIG.
  • the quality improvement processing unit 230 can be configured as shown in FIG. 14 as in the first embodiment.
  • the gaze target area in the display display of the present embodiment is an area showing the original image of the gaze guidance pattern map 18 of the first embodiment (gaze shown in FIGS. 16 and 17). It differs in that it corresponds to the dotted line area 18o) showing the original image of the guide pattern map 18.
  • Other processes are performed in the same manner as in the first embodiment.
  • the information processing apparatus 200 when viewing a wide-field video with a user interaction operation, the viewing environment or the user interaction operation is analyzed, and in the case of inducing video sickness, the gaze target area in the display display is set. Make it stand out by adjusting image quality and superimposing patterns. As a result, video sickness for a viewer who has not performed a user interaction operation can be suppressed, and the viewing quality can be improved.
  • the information on the user interaction operation may be generated in advance by the content creator, or may be generated in advance by analyzing the line of sight of another viewer (for example, non-patent document: “Gaze-driven Video”). Re-editing ", Eakta Jain, Yaser Sheikh, Ariel Shamir, Jessica Hodgins. ACM Transactions on Graphics (TOG), 2014).
  • information generated by an external video analysis block that realizes automatic camera work may be used as user interaction operation information (for example, non-patent document: “Video retargeting: automating pan and scan”, MULTIMEDIA '06 Proceedings of the 14th annual ACM international conference on Multimedia Pages 241-250).
  • user interaction operation information for example, non-patent document: “Video retargeting: automating pan and scan”, MULTIMEDIA '06 Proceedings of the 14th annual ACM international conference on Multimedia Pages 241-250.
  • it can be realized by adding this information as metadata to the wide-field video.
  • the input video signal is a video produced with a wide angle of view (wide-angle shot video, panorama, whole sky, omnidirectional ball, free viewpoint video, game content video, etc.
  • wide-field video a video produced with a wide angle of view
  • the external signal includes cropping coordinate information for designating an area displayed on the display by the user interaction operation, and gaze target area information in the display designated by the user interaction operation for the wide-field video data. It is out.
  • the video when there is a possibility of inducing video sickness when displayed according to the user interaction operation of the viewer with respect to the wide-field video, the video is not displayed in accordance with the user interaction operation and is not induced in the video motion sickness. A case where the sickness prevention process is executed will be described.
  • FIG. 31 is a functional block diagram illustrating a schematic configuration of the information processing apparatus 300 according to the present embodiment.
  • FIG. 32 is a flowchart showing an overview of image signal processing by the information processing apparatus 300 according to the present embodiment. In the following, detailed description of the same configurations and functions as those of the information processing apparatuses 100 and 200 according to the first and second embodiments will be omitted.
  • the information processing apparatus 300 includes a gaze target area information generation unit 310, a quality analysis unit 320, and a quality improvement processing unit 330, as shown in FIG.
  • the gaze target area information generation unit 310 indicates an area to be displayed on the display in the wide-field video based on the input video signal and the external signal and the video sickness induction degree map generated by the quality analysis unit 320 described later. A cropping video signal and gaze target area information are output. The gaze target area information generation unit 310 outputs the generated cropping video signal and gaze target area information to the quality improvement processing unit 330.
  • the quality analysis unit 320 determines the likelihood of inducing video sickness in each area in the video portion displayed on the display by the user interaction operation of the viewer. Generate a motion sickness induction map shown. The quality analysis unit 320 outputs the generated video sickness induction degree map to the gaze target region information generation unit 310.
  • the quality improvement processing unit 330 executes video sickness prevention processing based on the cropping video signal and the gaze target area information so as not to induce video sickness, and generates a viewing quality improved video signal.
  • video sickness prevention processing for example, forced mask display that forcibly masks video areas that are prone to video sickness, or alarm display that indicates that the video displayed on the screen is a scene that induces video sickness, etc. To do.
  • the quality analysis unit 320 In the information processing apparatus 300, as shown in FIG. 32, first, the quality analysis unit 320 generates a video sickness induction map based on the input video signal, the external signal, and the video viewing environment information (S300). The quality analysis unit 320 outputs the generated video sickness induction degree map to the gaze target region information generation unit 310. As described above, the video sickness induction degree map is an image indicating the ease of video sickness induction in each region in the video portion displayed on the display by the user interaction operation of the viewer.
  • the gaze target area information generation unit 310 generates a cropping video signal and gaze target area information based on the input video signal and the external signal and the video sickness induction degree map (S310).
  • the gaze target area information generation unit 310 outputs the generated cropping video signal and gaze target area information to the quality improvement processing unit 330.
  • the quality improvement processing unit 330 executes video sickness prevention processing and generates a viewing quality improved video signal (S320).
  • FIG. 33 is a functional block diagram illustrating a functional configuration of the quality analysis unit 320 according to the present embodiment.
  • FIG. 34 is a flowchart showing video viewing quality analysis processing by the quality analysis unit 320 according to this embodiment.
  • the quality analysis unit 320 includes a video sickness induction environment information generation unit 321, a video sickness induction motion component analysis unit 322, an external signal decoder unit 323, A cropping video generation unit 323-2 and a video sickness induction level generation unit 324 are included.
  • the video sickness induction environment information generation unit 321 generates relative display brightness information and viewing angle information based on the video environment information.
  • the motion sickness induction environment information generation unit 321 operates in the same manner as the motion sickness induction environment information generation unit 121 according to the first embodiment.
  • the motion sickness induction environment information generation unit 321 outputs the generated relative display brightness information and viewing angle information to the motion sickness induction degree generation unit 324.
  • the motion sickness-inducing motion component analyzing unit 322 analyzes the characteristics of the motion vector of the video based on the cropped video signal generated by the external signal decoder unit 323 and the cropped video generating unit 323-2, which will be described later, and the motion sickness-inducing motion. Generate a component map.
  • the motion sickness-induced motion component analysis unit 322 operates in the same manner as the motion sickness-induced motion component analysis unit 123 according to the first embodiment, except that the analysis target is not an input video signal but a cropping video signal. To do.
  • the motion sickness induction motion component analysis unit 322 outputs the generated motion sickness induction motion component map to the motion sickness induction level generation unit 324.
  • the external signal decoder unit 323 acquires cropping coordinate information from the external signal, and the cropping video generation unit 323-2 generates a cropping video signal based on the input video signal and the cropping coordinate information.
  • the external signal decoder unit 323 and the cropped video generation unit 323-3 operate in the same manner as in the second embodiment shown in FIG.
  • the motion sickness induction level generation unit 324 generates a video motion sickness induction level map indicating ease of inducing video motion sickness in each area in the video portion displayed on the display as video viewing quality information. As shown in FIG. 33, the video sickness induction level generation unit 324 includes a visual motion sickness induction level map generation unit 324a and a video motion sickness induction level map generation unit 324b under the viewing environment.
  • the visual field motion sickness induction degree map generation unit 324a generates a visual field motion sickness induction degree map based on the viewing angle information and the video motion sickness induction motion component map.
  • the in-field video sickness induction degree map is generated by weighting the video motion sickness induction motion component map discretely mapped to the video range corresponding to the viewing angle of view. That is, the visual field motion sickness induction degree map generation unit 324a operates in the same manner as the visual field motion sickness induction motion component accumulation unit 125a according to the first embodiment.
  • the viewing motion sickness induction degree map generation unit 324b generates a motion sickness induction degree map based on the relative display brightness information and the visual motion sickness induction degree map.
  • the quality analysis unit 320 shown in FIG. 33 first uses the video sickness induction environment information generation unit 321 to calculate relative display brightness information and viewing images from the video viewing environment information. Corner information is generated (S301). The process of step S301 is performed similarly to step S111 of FIG.
  • the motion sickness induction environment information generation unit 321 outputs the generated relative display brightness information and viewing angle information to the motion sickness induction degree generation unit 324.
  • cropping coordinate information is acquired from the external signal by the external signal decoder unit 323, and a cropping video signal is generated by the cropping video generation unit 313 based on the input video signal and the cropping coordinate information (S303).
  • the motion sickness-inducing motion component analyzing unit 322 analyzes the characteristics of the motion vector for the video represented by the input cropped video signal, and generates a motion video sickness-inducing motion component map (S305). The process of step S305 is performed similarly to step S113 of FIG.
  • the motion sickness induced motion component analysis unit 322 outputs the generated motion image motion sickness induced motion component map to the motion sickness induction degree generation unit 324.
  • the visual field motion sickness induction degree map generation unit 324a generates a visual field motion sickness induction degree map based on the viewing angle information and the video motion sickness induction motion component map (S307).
  • the in-view motion sickness induction degree map generation process is similar to the in-view motion sickness induction motion component accumulating unit 125a according to the first embodiment.
  • the motion sickness is discretely mapped to the image range corresponding to the viewing angle.
  • the induced motion component map is weighted by multiplying a weighting factor that increases the weight of the central visual field as shown in FIG.
  • the motion sickness induction degree map generation unit 324b under the viewing environment generates a motion sickness induction degree map based on the relative display brightness information and the visual motion sickness induction degree map in the visual field (S309).
  • the video sickness induction degree map generation unit 324b under the viewing environment sets the brightness induction gain (LumGain) from the relative display brightness information in accordance with, for example, characteristics as shown in FIG.
  • the image motion sickness induction degree map generation unit 324b under the viewing environment generates a video motion sickness induction degree map obtained by multiplying the in-view image motion sickness induction degree map by the set brightness induction gain.
  • the map value of the video sickness induction degree map is set to take a value from 0 to 255, for example, and is set to a larger value for a region where video sickness is easily induced.
  • FIG. 35 is a functional block diagram illustrating a functional configuration of the gaze target area information generation unit 310 according to the present embodiment.
  • FIG. 36 is a flowchart showing gaze target area information generation processing by the gaze target area information generation unit 310 according to the present embodiment.
  • FIG. 37 is an explanatory diagram showing an example of a video sickness induction degree map and a map obtained by inverting this.
  • the gaze target area information generation unit 310 includes an external signal decoder unit 311, a cropped video generation unit 313, and a gaze target map generation unit 315 as shown in FIG.
  • the external signal decoder 311 and the cropped video generation unit 313 operate in the same manner as in the second embodiment shown in FIG.
  • the gaze target map generation unit 315 generates gaze target area information (gaze target map) based on the video sickness induction degree map that is the input video viewing quality information.
  • a gaze target map is generated from a video sickness induction map that indicates a region where video sickness is likely not to be watched.
  • the gaze target area information generation unit 310 shown in FIG. 35 receives the cropping coordinate information and the gaze target area information in the display from the external signal input by the external signal decoder 311.
  • An in-display gaze target area map is acquired (S311).
  • the process of step S311 is performed similarly to step S201 shown in FIG.
  • the external signal decoder unit 311 outputs the cropping coordinate information to the cropped video generation unit 313.
  • the cropping video generation unit 313 generates a cropping video signal based on the input video signal and the cropping coordinate information (S313).
  • the process of step S313 is performed similarly to step S203 shown in FIG.
  • the cropping video signal generated by the cropping video generation unit 313 is output to the quality improvement processing unit 330 in FIG.
  • the gaze target map generation unit 315 generates a gaze target map from the video sickness induction degree map (S315).
  • the gaze target map generation unit 315 generates a reverse map 36R by inverting the video sickness induction map 36 as shown in FIG. 37, for example, and uses this as a gaze target map.
  • a reverse map 36R in FIG. 37 shows a region where the black portion is more likely to get sick. That is, the gaze target map is generated from the video sickness induction degree map 36 by converting the gaze target map generation unit 315 into gaze target area information indicated as a region where the viewer does not gaze.
  • FIG. 38 is a functional block diagram showing a functional configuration of the quality improvement processing unit 330 according to the present embodiment.
  • FIG. 39 is a flowchart showing video viewing quality improvement processing by the quality improvement processing unit 330 according to this embodiment.
  • FIG. 40 is an explanatory diagram of an example of video sickness alarm information.
  • the quality improvement processing unit 330 includes a gaze target region relative saliency image processing unit 331 and a gaze target region relative saliency combining unit 333.
  • the gaze target area relative saliency image processing unit 331 performs a relative saliency process in which image processing is performed so that the gaze target area becomes relatively prominent based on the cropped video signal and the gaze target area information (gaze target map). Generate a video signal.
  • the gaze target region relative saliency image processing unit 331 operates in the same manner as the gaze target region relative saliency image processing unit 131 shown in FIG. In this embodiment, a cropping video signal is input instead of the input video signal.
  • the gaze target region relative saliency image processing unit 331 outputs the generated relative saliency processing video signal to the gaze target region relative saliency combining unit 333.
  • the gaze target area relative saliency synthesizing unit 333 generates an appreciation quality improved video signal based on the relative saliency processing video signal and the gaze target area information (gaze target map). As shown in FIG. 38, the gaze target area relative saliency combining unit 333 includes a video sickness alarm determination unit 333a and a video sickness alarm display superimposing unit 333b.
  • the video sickness alarm determination unit 333a determines whether or not to perform video sickness alarm display based on gaze target area information (gaze target map), and the video displayed on the display is a scene that induces video sickness
  • the video sickness alarm information is output to the video sickness alarm display superimposing unit 333b.
  • the video sickness alarm display superimposing unit 333b superimposes the alarm display on the relative saliency processing video signal based on the video sickness alarm information when there is an instruction to display the video sickness alarm in the control information, so as to improve the viewing quality improvement video signal. Output.
  • the quality improvement processing unit 330 shown in FIG. 38 first performs cropping video signal and gaze target region information (gaze target map) by the gaze target region relative saliency image processing unit 331. ) To generate a relative saliency-processed video signal that has been subjected to image processing so that the gaze target region becomes relatively prominent (S321).
  • the process of step S321 is performed similarly to step S123 of FIG. That is, image quality suppression processing is performed such that the black portion of the reverse map 36R shown in FIG. 37 is blurred, the contrast is lowered, the image is darkened, or the saturation is lowered.
  • a signal obtained by performing such image processing on the cropping video signal is output to the gaze target region relative saliency synthesizing unit 333 as a relative saliency processing video signal.
  • the video sickness alarm determination unit 333a determines whether video sickness alarm display is to be performed on the wide-field video based on the gaze target area information (gaze target map).
  • the video sickness alarm determination unit 333a performs an inversion process on the input gaze target area information (gaze target map) to return to the state of the video motion sickness induction map 36 shown in FIG.
  • the map values of the map 36 are integrated over the entire screen to obtain an integrated value.
  • this integrated value is a predetermined threshold value (S323). This threshold is used to determine the number of regions that are likely to cause video sickness in a wide-field video, and is set to an appropriate value empirically, for example.
  • the video sickness alarm determination unit 333a determines that there are few regions where video sickness is likely to occur in the wide-field video, and that the viewer is less likely to cause video sickness. finish.
  • the video sickness alarm determination unit 333a has many regions that are prone to video sickness in the wide-field video, and the video displayed on the display is a scene that induces video sickness. Determined.
  • the video sickness alarm determination unit 333a determines to perform the video sickness prevention process on the wide-field video (S325).
  • Examples of video sickness prevention processing include video motion sickness alarm information display processing for displaying video motion sickness alarm information on a wide-field video, and forced masking display processing for forcibly masking video.
  • the motion sickness alarm determination unit 333a generates control information indicating whether or not the motion sickness prevention process is performed, and outputs the control information to the motion sickness alarm display superimposing unit 333b together with the motion sickness alarm information indicating the content of the alarm.
  • the video sickness alarm display superimposing unit 333b superimposes the alarm display on the relative saliency processing video signal based on the video sickness alarm information when there is an instruction to display the video sickness alarm in the control information, thereby improving the viewing quality improvement video. It outputs as a signal (S327).
  • video sickness alarm information 30W is displayed in a region where the motion sickness of the wide-field video 30 is likely to be induced so as not to watch the region where the motion sickness is likely to be induced.
  • the information processing apparatus 300 when viewing a wide-field video while operating a user interaction, even if a scene that causes video sickness is erroneously displayed, the viewing environment and the cropped video signal can be analyzed to analyze the display.
  • An image quality suppression mask display for an area that induces video sickness in the display, an alarm display for warning of video sickness, and the like are performed. Thereby, it is possible to suppress motion sickness for the viewer and improve the viewing quality.
  • a pseudo wide-angle video composed of an original video and an extrapolated prediction video displayed around the original video is displayed as in Non-Patent Document 2.
  • the external signal is a control signal that can distinguish the original signal representing the original image before being pseudo-expanded to a wide angle of view and the extrapolated prediction signal.
  • a pseudo wide-angle image is projected using the projector 50.
  • a screen on which the pseudo wide-angle image is projected not only a single flat screen 52A as shown in FIG. 41, but also a plurality of flat surfaces 521, 522, and 523 surrounding the projector 50 as shown in FIG. A projection onto the multi-plane screen 52B is also assumed.
  • the original video Ao is displayed at the center portion, and the extrapolated prediction video Ae is displayed on both sides (outer peripheral portions).
  • FIG. 43 is a functional block diagram illustrating a schematic configuration of the information processing apparatus 400 according to the present embodiment.
  • FIG. 44 is a flowchart illustrating an overview of image signal processing by the information processing apparatus 400 according to the present embodiment.
  • the information processing apparatus 400 according to the present embodiment includes a gaze target area information generation unit 410, a quality analysis unit 420, and a quality improvement processing unit 430, as shown in FIG.
  • the information processing apparatus 400 according to the present embodiment is different from the information processing apparatus 100 according to the first embodiment illustrated in FIG. 1 in that an input video signal is not input to the gaze target area information generation unit 410.
  • the gaze target area information generation unit 410 estimates the gaze target area to be watched by the viewer based on the external signal and sets it as gaze target area information. Based on the input video signal and the video viewing environment information, the quality analysis unit 420 generates video viewing quality information indicating the degree of goodness of the viewer in the video viewing state. The quality improvement processing unit 430 performs video signal processing on the basis of the input video signal, the external signal, the gaze target area information, and the video viewing quality information so that the video viewing state of the viewer is good, thereby improving the viewing quality improved video. Generate a signal.
  • the gaze target area information generation unit 110 estimates the gaze target area from the external signal, and generates gaze target area information (S400).
  • the gaze target area information generation unit 410 outputs the generated gaze target area information to the quality improvement processing unit 430.
  • the quality analysis unit 420 generates video viewing quality information indicating the degree of goodness of the viewer's video viewing state from the externally input video signal and the video viewing environment information (S410).
  • the quality analysis unit 420 outputs the generated video viewing quality information to the quality improvement processing unit 430.
  • the quality improvement processing unit 430 performs video signal processing from the input video signal and external signal input from the outside, the gaze target area information and the video viewing quality information so that the viewer can enjoy the video viewing state. This is done, and finally an appreciation quality improved video signal is generated (S420).
  • FIG. 45 is a functional block diagram illustrating a functional configuration of the gaze target area information generation unit 410 according to the present embodiment.
  • the gaze target region information generation unit 410 includes only a signal identification map generation unit 411 as shown in FIG. That is, the signal identification map generation unit 411 outputs the signal identification map signal input as an external signal as it is as gaze target area information ( gaze target map).
  • FIG. 46 is a functional block diagram showing a functional configuration of the quality analysis unit 420 according to the present embodiment.
  • FIG. 47 is a flowchart showing video viewing quality analysis processing by the quality analysis unit 420 according to this embodiment.
  • FIG. 48 is an explanatory diagram showing an example of video viewing environment information according to the present embodiment.
  • FIG. 49 is an explanatory diagram showing the relationship between the dynamic range reduction width and the mutual reflection induction environment information.
  • FIG. 50 is an explanatory diagram showing the relationship between the extrapolated area average brightness and the video environment quality information.
  • the quality analysis unit 420 includes a mutual reflection induction environment information generation unit 421, an extrapolated area average brightness calculation unit 423, and a mutual reflection induction degree generation unit. 425.
  • the mutual reflection induction environment information generation unit 421 generates mutual reflection induction environment information based on the video environment information.
  • the mutual reflection inducing environment information is information indicating how much the influence of the mutual reflection caused by the display of the extrapolated prediction video inserted around the original video affects the display of the central video. The calculation process of the mutual reflection induction environment information will be described later.
  • the mutual reflection induction environment information generation unit 421 outputs the generated mutual reflection induction environment information to the mutual reflection induction degree generation unit 425.
  • the extrapolation area average brightness calculation unit 423 averages the extrapolated prediction video 6e inserted around the original video 6o shown in FIG. 58 with respect to the input video signal.
  • Brightness luminance, brightness
  • the mutual reflection induction level generation unit 425 is calculated and output to the mutual reflection induction level generation unit 425 as the extrapolated area average brightness.
  • the mutual reflection induction degree generation unit 425 outputs video viewing quality information indicating the display image quality affected by the mutual reflection based on the mutual reflection induction environment information and the extrapolated area average brightness.
  • the quality analysis unit 420 shown in FIG. 46 first generates the mutual reflection induction environment information based on the video environment information by the mutual reflection induction environment information generation unit 421. (S411).
  • the mutual reflection inducing environment information is information indicating how much the influence of the mutual reflection caused by the display of the extrapolated prediction video inserted around the original video affects the display of the central video.
  • the environment appreciation environment information is, for example, as shown in FIG. 48, a peripheral image 40eB in which the display test pattern 40o and the peripheral extrapolated prediction video part are represented in all black in a part corresponding to the original video in the central part. And two types of images obtained by photographing the central portion when an image consisting of the display test pattern 40o and an image consisting of the peripheral image 40eW representing the extrapolated prediction video portion in all white are displayed. It is data. These image data are acquired in advance when performing projector projection.
  • the mutual reflection induction environment information generation unit 421 measures the dynamic range of each of the two types of image data, and obtains a decrease range (or brightness increase value) of the dynamic range. Then, for example, a mutual reflection induction environment coefficient (MRF) is set from the reduction range of the dynamic range according to the characteristics shown in FIG. As another implementation example, for example, average brightness (luminance, brightness) is calculated for the two types of image data shown in FIG. 48, and the difference (brightness increase value) is used as the mutual reflection induction environment information. It may be set.
  • MRF mutual reflection induction environment coefficient
  • the extrapolation area average brightness calculation unit 423 performs the average brightness (luminance, luminance) of the extrapolated prediction video inserted around the original video with respect to the input video signal based on the input video signal and the external signal. Lightness) is calculated (S413).
  • the extrapolation area average brightness calculation unit 423 outputs the calculated value as the extrapolation area average brightness to the mutual reflection induction degree generation unit 425.
  • the mutual reflection induction degree generation unit 425 outputs video viewing quality information indicating the display image quality affected by the mutual reflection (S415). For example, as shown in FIG. 50, the mutual reflection inducing degree generation unit 425 sets the video viewing quality information (that is, display image quality) so as to approach 0 as the peripheral extrapolation area average brightness increases.
  • FIG. 51 is a functional block diagram showing a functional configuration of the quality improvement processing unit 430 according to the present embodiment.
  • FIG. 52 is a flowchart showing video viewing quality improvement processing by the quality improvement processing unit 430 according to the present embodiment.
  • FIG. 53 is an explanatory diagram for explaining the blending process between the input video signal and the relative saliency processing video signal.
  • the quality improvement processing unit 430 includes a gaze target region relative saliency image processing unit 431 and a gaze target region relative saliency combining unit 433.
  • the gaze target area relative saliency image processing unit 431 generates a relative saliency processing video signal based on the input video signal and the gaze target area information (gaze target map). As shown in FIG. 51, the gaze target region relative saliency image processing unit 431 according to the present embodiment includes only a brightness adjustment unit 431a.
  • the brightness adjustment unit 431a operates only the brightness suppression process of the surrounding extrapolation prediction area (non-gaze target area), and generates a relative saliency processing video signal.
  • the gaze target area relative saliency synthesizing unit 433 generates a viewing quality improved video signal based on the relative saliency processing video signal, the input video signal, the external signal, and the video viewing quality information.
  • the gaze target area relative saliency synthesizing unit 433 extrapolates the input video signal and the relative saliency processed video signal by using the video viewing quality information indicating the display image quality affected by the mutual reflection and the external signal. Blending processing is performed based on the boundary information of the original signal, and a video signal with improved viewing quality is generated.
  • the quality improvement processing unit 430 shown in FIG. 51 first uses the brightness adjustment unit 431a of the gaze target region relative saliency image processing unit 431 to perform a surrounding extrapolation prediction region. Brightness suppression processing of (non-gazing target region) is performed, and a relative saliency processing video signal is generated (S421).
  • the gaze target area relative saliency synthesizing unit 433 generates a viewing quality improved video signal based on the relative saliency processing video signal, the input video signal, the external signal, and the video viewing quality information (S423).
  • the gaze target area relative saliency synthesizing unit 433 extrapolates the video viewing quality information indicating the display image quality affected by the mutual reflection with respect to the input video signal and the relative saliency processing video signal, and the extrapolation obtained from the external signal. / Blend processing based on boundary information of original signal.
  • the blend ratio of the input video signal is set so that the higher the value of the video viewing quality information (display image quality) is, the more the input video signal is displayed to the periphery of the displayed video. Make it high.
  • the video appreciation quality information value display image quality
  • the peripheral portion is darkened, so that the blending process is performed so that the blend ratio of the relative saliency processing video signal becomes high.
  • the gaze target area relative saliency synthesizing unit 433 outputs a signal generated by blending the input video signal and the relative saliency processed video signal as a final viewing quality improved video signal.
  • the information processing apparatus 400 according to the fourth embodiment of the present disclosure and the image signal processing performed thereby have been described above. According to the present embodiment, even when viewing a pseudo wide-angle image to be viewed by projecting it onto a plurality of planes and displaying the image, the phenomenon of contrast reduction of the original signal portion due to mutual reflection is suppressed, and the viewing quality is improved. It becomes possible to do.
  • a video produced with a wide angle of view (wide-angle shot video, panorama, whole sky, omnidirectional ball, free viewpoint video, game content, etc.) or a pseudo-wide angle of view is expanded.
  • Motion sickness induced by the movement of the video signal and the movement of the user interaction when viewing a so-called wide-field video such as a captured video (peripheral extrapolation image, mosaicing image), etc., on a large screen with a wide viewing angle
  • it is possible to provide a high-quality video appreciation by suppressing a reduction in contrast due to mutual reflection when projected onto a plurality of planes.
  • FIG. 54 is a hardware configuration diagram illustrating a hardware configuration of the information processing apparatus according to the embodiment.
  • the information processing apparatus can be realized by a processing apparatus such as a computer as described above.
  • the information processing apparatus includes a CPU (Central Processing Unit) 901, a ROM (Read Only Memory) 902, a RAM (Random Access Memory) 903, and a host bus 904a.
  • the information processing apparatus includes a bridge 904, an external bus 904 b, an interface 905, an input device 906, an output device 907, a storage device 908, a drive 909, a connection port 911, and a communication device 913. .
  • the CPU 901 functions as an arithmetic processing device and a control device, and controls the overall operation in the information processing device according to various programs. Further, the CPU 901 may be a microprocessor.
  • the ROM 902 stores programs used by the CPU 901, calculation parameters, and the like.
  • the RAM 903 temporarily stores programs used in the execution of the CPU 901, parameters that change as appropriate during the execution, and the like. These are connected to each other by a host bus 904a including a CPU bus.
  • the host bus 904a is connected to an external bus 904b such as a PCI (Peripheral Component Interconnect / Interface) bus via a bridge 904.
  • an external bus 904b such as a PCI (Peripheral Component Interconnect / Interface) bus
  • PCI Peripheral Component Interconnect / Interface
  • the host bus 904a, the bridge 904, and the external bus 904b do not necessarily have to be configured separately, and these functions may be mounted on one bus.
  • the input device 906 includes an input means for inputting information by the user such as a mouse, keyboard, touch panel, button, microphone, switch, and lever, and an input control circuit that generates an input signal based on the input by the user and outputs the input signal to the CPU 901. Etc.
  • the output device 907 includes, for example, a liquid crystal display (LCD) device, an OLED (Organic Light Emitting Diode) device and a display device such as a lamp, and an audio output device such as a speaker.
  • LCD liquid crystal display
  • OLED Organic Light Emitting Diode
  • the storage device 908 is an example of a storage unit of the information processing device, and is a device for storing data.
  • the storage device 908 may include a storage medium, a recording device that records data on the storage medium, a reading device that reads data from the storage medium, a deletion device that deletes data recorded on the storage medium, and the like.
  • the storage device 908 drives a hard disk and stores programs executed by the CPU 901 and various data.
  • the drive 909 is a storage medium reader / writer, and is built in or externally attached to the information processing apparatus.
  • the drive 909 reads information recorded on a mounted removable recording medium such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, and outputs the information to the RAM 903.
  • the connection port 911 is an interface connected to an external device, and is a connection port with an external device capable of transmitting data by USB (Universal Serial Bus), for example.
  • the communication device 913 is a communication interface configured by a communication device or the like for connecting to the communication network 5, for example.
  • the communication device 913 may be a wireless LAN (Local Area Network) compatible communication device, a wireless USB compatible communication device, or a wire communication device that performs wired communication.
  • a quality analysis unit that generates video viewing quality information indicating the level of appreciation of the viewer's video viewing state;
  • a gaze target area information generating unit that generates gaze target area information representing a gaze target area to be watched from the video that the viewer appreciates;
  • a quality improvement processing unit that improves the viewing quality of the gaze target area;
  • An information processing apparatus comprising: (2) The information processing apparatus according to (1), wherein the video viewing quality information is information indicating ease of inducing video sickness by a video signal.
  • the quality analysis unit determines a scene that induces video sickness from the video signal based on distribution information of the motion of the video within the viewer's field of view, and generates the video appreciation quality information. ).
  • the information processing apparatus wherein the video viewing quality information is information indicating deterioration in image quality due to mutual reflection from a projection-projected display screen.
  • the quality analysis unit analyzes the image quality in the gaze target area of each captured image signal for the case where only the gaze target area is displayed and the full screen display, and the video viewing quality information is obtained.
  • the information processing apparatus according to (4) which is generated.
  • the quality analysis unit generates viewing environment determination information that determines whether the video is a video viewing environment that induces video sickness.
  • the quality analysis unit generates the viewing environment determination information based on a viewing angle determined from a display size for displaying the video and a viewing distance from the viewer to the display, according to (6).
  • Information processing device (8) The information processing unit according to (6), wherein the quality analysis unit generates the viewing environment determination information based on a relationship between display on the display for displaying the video and brightness of a room where the video is being viewed. apparatus. (9) The information processing apparatus according to any one of (1) to (8), wherein the gaze target area information generation unit generates the gaze target area information based on a control signal generated by the viewer's interaction operation. . (10) The gaze target area is an area where a video based on the original signal of the input video is displayed, The non-gaze target area is an information processing apparatus according to any one of (1) to (8), wherein the video based on a signal extrapolated and predicted based on the original signal of the input video is displayed. apparatus.
  • the information processing apparatus according to any one of (1) to (8), wherein the gaze target area information generation unit generates the gaze target area information based on a saliency map generated from an input video. (12) The information processing apparatus according to any one of (1) to (8), wherein the gaze target area information generation unit generates the gaze target area information based on a depth map generated from an input video. (13) The information processing apparatus according to any one of (1) to (8), wherein the gaze target area information generation unit generates the gaze target area information based on metadata added to an input video. . (14) The information processing apparatus according to any one of (1) to (8), wherein the gaze target area information generation unit generates the gaze target area information based on a gaze analysis result of the viewer.
  • the quality improvement processing unit performs processing for relatively enhancing the saliency of the gaze target region in the video based on the video viewing quality information.
  • the quality improvement processing unit performs relative processing on the video by performing at least one of contrast enhancement processing, resolution enhancement processing, saturation enhancement processing, and brightness enhancement processing on the gaze target region.
  • the quality improvement processing unit performs at least one of contrast suppression processing, smoothing processing, saturation suppression processing, and brightness suppression processing on a non-gaze target region other than the gaze target region,
  • the information processing apparatus according to (16) wherein the saliency of the gaze target area is relatively emphasized in the video.
  • the quality improvement processing unit displays a mask image for masking the gaze target area when the video viewing quality of the gaze target area is lower than a reference value.
  • (22) Generating video viewing quality information indicating the level of appreciation of the viewer ’s video viewing status; Generating gaze target area information representing a gaze target area to be watched from the video that the viewer appreciates; Improving the viewing quality of the gaze target area based on the video viewing quality information; And an information processing method.
  • (23) Computer A quality analysis unit that generates video viewing quality information indicating the level of appreciation of the viewer's video viewing state; A gaze target area information generating unit that generates gaze target area information representing a gaze target area to be watched from the video that the viewer appreciates; Based on the video viewing quality information, a quality improvement processing unit that improves the viewing quality of the gaze target area; A program for causing an information processing apparatus to function.
  • a quality analysis unit that generates video viewing quality information indicating the level of appreciation of the viewer's video viewing state
  • a gaze target area information generating unit that generates gaze target area information representing a gaze target area to be watched from the video that the viewer appreciates
  • a quality improvement processing unit that improves the viewing quality of the gaze target area
  • a computer-readable recording medium having recorded thereon a program for causing it to function as an information processing apparatus.
  • Gaze target region information generation unit 111 Saliency map generation unit 113 Signal identification map generation unit 115 Gaze target map generation unit 120 Quality analysis unit 121 Induced environment information generation unit 123 Component analysis unit 125 Induction degree generation unit 130 quality improvement processing unit 131 gaze target region relative saliency image processing unit 133 gaze guidance pattern map generation unit 135 gaze target region relative saliency synthesis unit 210 gaze target region information generation unit 211 external signal decoder unit 213 cropping video generation unit 215 Gender map generation unit 217 gaze target map generation unit 220 quality analysis unit 221 induction environment information generation unit 223 induction interaction operation component analysis unit 225 induction degree generation unit 230 quality improvement processing unit 310 gaze target area information generation unit 311 external signal decoder unit 313 cropping video generation unit 315 gaze target map generation unit 320 quality analysis unit 321 induction environment information generation unit 322 component analysis unit 323 external signal decoder unit 324 induction degree generation unit 325 induction degree Generation unit 330 Quality improvement processing unit 331 Gaze target region relative

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Social Psychology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Remote Sensing (AREA)
  • Business, Economics & Management (AREA)
  • Ecology (AREA)
  • Emergency Management (AREA)
  • Computer Graphics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

【課題】大画面で広い観視画角で、広視野映像を快適にかつ高画質で鑑賞することが可能な情報処理装置を提供する。 【解決手段】鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する品質解析部と、鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成する注視対象領域情報生成部と、映像鑑賞品質情報に基づいて、注視対象領域の鑑賞品質を改善する品質改善処理部と、を備える、情報処理装置が提供される。

Description

情報処理装置、情報処理方法、プログラム及び記録媒体
 本開示は、情報処理装置、情報処理方法、プログラム及び記録媒体に関する。
 近年、広画角で製作された映像(例えば広角撮影映像、パノラマ、全天周、全天球、自由視点映像、ゲームコンテンツ等)や、擬似的に広画角に拡張された映像(周辺外挿画像、モザイキング画像)等の、いわゆる広視野映像を、大画面で広い観視画角で鑑賞する機会が増えてきている。例えば、鑑賞者がマウス、リモコン等のコントローラを用いて、画面中の見たい領域をスクロールしたりズームさせたりしてインタラクティブに見ることができる。しかし、例えば図55のように、大画面に表示された映像2を複数人で鑑賞する際、鑑賞者の一人(鑑賞者P1)がコントローラ4を操作して映像のスクロールやズームを行うと、コントローラ4を操作していない人(鑑賞者P2~P4)は、映像の動きを予測しにくいため、映像酔いを引き起こすことがある。
 これに対して、例えば特許文献1には、インタラクティブな操作による視点切り替え時、コントローラ上の小画面表示の動きに対して相対的に抑制した状態で映像を大画面ディスプレイに表示することで、鑑賞者の映像酔いを低減させる技術が開示されている。また、特許文献2には、映像中の動き情報に基づいて、映像全体の品質を低下させることで映像酔いを低減させる技術が開示されている。
 一方、広視野映像を大画面で広い観視画角で鑑賞する形態として、例えば非特許文献1には、複数平面にプロジェクタ投影して映像を表示させるシステムが開示されている。また、非特許文献2には、実際は狭い画角で撮影された映像を動き等の情報を用いて擬似的に広画角の映像に変換する技術が開示されている。このように、映像を大画面で広い観視画角で表示すると、没入感のある映像を鑑賞者に提供することができる。
特開2013-12181号公報 特開2010-50645号公報
"凸面鏡を用いた室内広視野投影システムの開発"、映像情報メディア学会誌、Vol. 64 (2010) No. 4 P 594-601 "奥行きモデルを用いた擬似広視野映像の実時間生成"、映像情報メディア学会誌 : 映像情報メディア 62(4), 550-557, 2008-04-01
 しかし、上記特許文献1では、図55に示したような状況において、映像酔いを軽減させることはできるが、大画面ディスプレイに表示すると、視点切り替えやズーミングの操作感度が悪くなったように感じられてしまう可能性がある。また、上記特許文献2では、映像全体の品質を低下させることで映像酔いを低減させることはできるが、画面全体の画質が低下するため、視認性が悪くなり、鑑賞者がフラストレーションを引き起こす可能性もある。
 さらに、例えば図56のように、高速で流れる動きを含む映像Z等の、映像酔いを引き起こすような動きを含んだ領域Z0を、誤ってコントローラ4を操作して拡大表示させたとする。この操作により画面全体に領域Z0が拡大された映像Z1を鑑賞してしまうと、鑑賞者は映像酔いを引き起こすことがある。上記特許文献1、2では、このように誤って表示された映像酔いを誘発させる領域の表示を事前に防止することはできない。
 また、上記非特許文献1の技術を用いて、例えば図57のように、室内空間Vの壁S1~S5をスクリーンとして広視野映像をプロジェクタ投影した場合、投影される映像が明るくなり過ぎたり、コントラストが低下したりする。これは、各平面(壁S1~S5や柱C1、C2)の材質や、平面間の相互反射の影響を受けるためである。
 さらに、上記非特許文献2の技術を用いて現映像を変換し、擬似的に広画角の映像を生成した場合、生成された広画角の映像は、図58に示すように、原映像6oと、原映像6oを推定して生成された外挿予測映像6eとから構成される。このとき、外挿予測映像6e中にはアーティファクトや不自然な動きが含まれる可能性もあり、これによって広画角の映像の鑑賞者の没入感を低下させたり、映像酔いを誘発したりすることも考え得る。
 そこで、本開示では、大画面で広い観視画角で、広視野映像を快適にかつ高画質で鑑賞することが可能な、新規かつ改良された情報処理装置、情報処理方法、プログラム及び記録媒体を提案する。
 本開示によれば、鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する品質解析部と、鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成する注視対象領域情報生成部と、映像鑑賞品質情報に基づいて、注視対象領域の鑑賞品質を改善する品質改善処理部と、を備える、情報処理装置が提供される。
 また、本開示によれば、鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成すること、鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成すること、映像鑑賞品質情報に基づいて、注視対象領域の鑑賞品質を改善すること、とを含む、情報処理方法が提供される。
 さらに、本開示によれば、コンピュータを、鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する品質解析部と、鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成する注視対象領域情報生成部と、映像鑑賞品質情報に基づいて、注視対象領域の鑑賞品質を改善する品質改善処理部と、を備える、情報処理装置として機能させるためのプログラムが提供される。
 また、本開示によれば、コンピュータに、鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する品質解析部と、鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成する注視対象領域情報生成部と、映像鑑賞品質情報に基づいて、注視対象領域の鑑賞品質を改善する品質改善処理部と、を備える、情報処理装置として機能させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体が提供される。
 以上説明したように本開示によれば、大画面で広い観視画角で、広視野映像を快適にかつ高画質で鑑賞することが可能となる。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の第1の実施形態に係る情報処理装置の概略構成を示す機能ブロック図である。 同実施形態に係る情報処理装置による画像信号処理の概要を示すフローチャートである。 本実施形態に係る注視対象領域情報生成部の機能構成を示す機能ブロック図である。 本実施形態に係る注視対象領域情報生成部による注視対象領域情報生成処理を示すフローチャートである。 注視対象マップの生成処理を示すフローチャートである。 顕著性マップの一例であって、顕著性マップから注視対象マップを生成するための処理を説明するための説明図である。 平滑化フィルタ強度制御信号の一例を示す説明図である。 入力映像、顕著性マップ、信号識別マップ、及び注視対象マップの例を示す説明図である。 、奥行マップを用いる場合の注視対象領域情報生成部の構成を示す機能ブロック図である。 同実施形態に係る品質解析部の機能構成を示す機能ブロック図である。 同実施形態に係る品質解析部による映像鑑賞品質解析処理を示すフローチャートである。 視野内映像酔い誘発度信号の生成処理の説明図である。 相対ディスプレイ明るさ情報と明るさ誘発ゲインとの関係を示す説明図である。 同実施形態に係る品質改善処理部の機能構成を示す機能ブロック図である。 同実施形態に係る品質改善処理部による映像鑑賞品質改善処理を示すフローチャートである。 注視誘導パターンマップの例を示す説明図である。 注視誘導パターンマップの他の例を示す説明図である。 注視対象領域相対顕著化画像処理部の一構成例を示す機能ブロック図である。 注視対象領域相対顕著化画像処理部の各機能部の構成を示す機能ブロック図である。 注視対象マップ信号と画質強調信号ブレンド比との関係の一例を示す説明図である。 注視対象領域相対顕著化合成部の構成を示す機能ブロック図である。 映像鑑賞品質情報と相対顕著化処理映像信号ブレンド比との関係の一例を示す説明図である。 映像鑑賞品質情報と注視誘導パターン重畳信号ブレンド比との関係の一例を示す説明図である。 本開示の第2の実施形態に係る情報処理装置の概略構成を示す機能ブロック図である。 同実施形態に係る情報処理装置による画像信号処理の概要を示すフローチャートである。 同実施形態に係る注視対象領域情報生成部の機能構成を示す機能ブロック図である。 同実施形態に係る注視対象領域情報生成部による注視対象領域情報生成処理を示すフローチャートである。 同実施形態に係る品質解析部の機能構成を示す機能ブロック図である。 同実施形態に係る品質解析部による映像鑑賞品質解析処理を示すフローチャートである。 クロッピング座標情報の時間変動からグローバルモーションベクトル場への変換処理を説明する説明図である。 本開示の第3の実施形態に係る情報処理装置の概略構成を示す機能ブロック図である。 同実施形態に係る情報処理装置による画像信号処理の概要を示すフローチャートである。 同実施形態に係る品質解析部の機能構成を示す機能ブロック図である。 同実施形態に係る品質解析部による映像鑑賞品質解析処理を示すフローチャートである。 同実施形態に係る注視対象領域情報生成部の機能構成を示す機能ブロック図である。 同実施形態に係る注視対象領域情報生成部による注視対象領域情報生成処理を示すフローチャートである。 映像酔い誘発度マップと、これを反転したマップの例を示す説明図である。 同実施形態に係る品質改善処理部の機能構成を示す機能ブロック図である。 同実施形態に係る品質改善処理部による映像鑑賞品質改善処理を示すフローチャートである。 映像酔いアラーム情報の一例を示す説明図である。 単一平面スクリーンへプロジェクタ投影したときの状況を示す説明図である。 複数平面スクリーンへプロジェクタ投影したときの状況を示す説明図である。 本開示の第4の実施形態に係る情報処理装置の概略構成を示す機能ブロック図である。 同実施形態に係る情報処理装置による画像信号処理の概要を示すフローチャートである。 同実施形態に係る注視対象領域情報生成部の機能構成を示す機能ブロック図である。 同実施形態に係る品質解析部の機能構成を示す機能ブロック図である。 同実施形態に係る品質解析部による映像鑑賞品質解析処理を示すフローチャートである。 同実施形態に係る映像鑑賞環境情報の一例を示す説明図である。 ダイナミックレンジ減少幅と相互反射誘発環境情報との関係を示す説明図である。 外挿領域平均明るさと映像環境品質情報との関係を示す説明図である。 同実施形態に係る品質改善処理部の機能構成を示す機能ブロック図である。 同実施形態に係る品質改善処理部による映像鑑賞品質改善処理を示すフローチャートである。 入力映像信号と相対顕著化処理映像信号とのブレンド処理について説明する説明図である。 上記実施形態に係る情報処理装置のハードウェア構成を示すハードウェア構成図である。 大画面に表示された映像を複数人で鑑賞しているときに、鑑賞者の一人がコントローラを操作して映像を操作した状況を示す説明図である。 映像酔いを引き起こすような動きを含んだ領域を、誤って拡大表示させた状況を示す説明図である。 室内空間の壁をスクリーンとして広視野映像をプロジェクタ投影した状況を示す説明図である。 現映像を変換して擬似的に生成された広画角の映像の構成を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.第1の実施の形態(疑似広画角映像の表示)
  1.1.情報処理装置の概略構成
  1.2.注視対象領域情報生成処理
  1.3.映像鑑賞品質解析処理
  1.4.映像鑑賞品質改善処理
  1.5.まとめ
 2.第2の実施形態(広視野角映像の表示)
  2.1.情報処理装置の概略構成
  2.2.注視対象領域情報生成処理
  2.3.映像鑑賞品質解析処理
  2.4.映像鑑賞品質改善処理部
  2.5.まとめ
 3.第3の実施形態(広視野角映像の表示:映像酔いアラーム情報)
  3.1.情報処理装置の概略構成
  3.3.映像鑑賞品質解析処理
  3.3.注視対象領域情報生成処理
  3.4.映像鑑賞品質改善処理
  3.5.まとめ
 4.第4の実施形態(プロジェクタ投影による疑似広画角映像の表示)
  4.1.情報処理装置の概略構成
  4.2.注視対象領域情報生成処理
  4.3.映像鑑賞品質解析処理
  4.4.映像鑑賞品質改善処理
  4.5.まとめ
 5.まとめ
 6.ハードウェア構成
 本開示は、広画角で製作された映像(パノラマ、全天周、全天球、自由視点映像、ゲームコンテンツ等)や、擬似的に広画角に拡張された映像(周辺外挿画像、モザイキング画像)等の広視野映像を提供する情報処理装置に関するものである。かかる情報処理装置は、広視野映像を、大画面で広い観視画角で鑑賞をする際に、まず、映像を表示する表示環境と映像信号とに依存した画質低下や映像酔い等の発生状況を解析し、映像鑑賞の品質を取得する。そして、情報処理装置は、映像において鑑賞者が注視すべき領域の情報に基づいて、解析した鑑賞品質が改善されるように映像信号処理を行う。これにより、大画面で広い観視画角で鑑賞をする際に、快適で高画質な映像の鑑賞を提供する。
 以下、本実施形態に係る情報処理装置とこれによる画像信号処理について、詳細に説明する。
 <1.第1の実施形態>
 まず、図1~図23に基づいて、本開示の第1の実施形態に係る情報処理装置とこれによる画像信号処理について説明する。本実施形態では、上記非特許文献2のように、原映像と当該原映像の周囲に表示される外挿予測映像とからなる擬似的な広画角の映像を、広い観視画角で大画面に表示する場合について説明する。
 [1.1.情報処理装置の概略構成]
 まず、図1及び図2を参照して、本開示の第1の実施形態に係る情報処理装置の概略構成について説明する。なお、図1は、本実施形態に係る情報処理装置100の概略構成を示す機能ブロック図である。図2は、本実施形態に係る情報処理装置100による画像信号処理の概要を示すフローチャートである。
 本実施形態に係る情報処理装置100は、図1に示すように、注視対象領域情報生成部110と、品質解析部120と、品質改善処理部130とから構成される。
 注視対象領域情報生成部110は、入力映像信号と、外部信号とに基づいて、鑑賞者が注視する(注視している)であろう領域(以下、「注視対象領域」ともいう。)を推定し、注視対象領域情報とする。ここで、入力映像信号は、表示画面に表示される映像を表す信号である。本実施形態では、入力映像信号に基づく映像は、擬似的に広画角に拡張された疑似広画角映像であり、図58に示したように擬似的に広画角に拡張される前の原映像と外挿予測映像とからなる映像である。また、外部信号は、原映像を表す原信号と、外挿予測映像を表す外挿予測信号とを識別するための制御信号である。
 注視対象領域情報生成部110は、入力映像信号から、鑑賞者が注視していると推定される特徴的な被写体領域を検出し、映像において検出された被写体領域を表す顕著性マップを生成する。また、注視対象領域情報生成部110は、外部信号に基づき、原信号と外挿予測信号を識別する信号識別マップを生成する。そして、注視対象領域情報生成部110は、顕著性マップと信号識別マップとから、鑑賞者が注視すべき領域を示す注視対象マップ(注視対象領域情報)を生成する。
 品質解析部120は、入力映像信号と、映像鑑賞環境情報とに基づいて、鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する。映像鑑賞環境情報は、例えば、映像が表示されるディスプレイサイズや、ディスプレイに対する鑑賞者の視距離、ディスプレイの明るさ情報、室内の明るさ情報等を含む情報である。品質解析部120は、映像を鑑賞する環境の状態から、映像の鑑賞品質に影響を与える度合を解析し、映像鑑賞品質情報を生成する。
 品質改善処理部130は、入力映像信号、外部信号、注視対象領域情報、及び映像鑑賞品質情報に基づいて、鑑賞者の映像鑑賞状態が良好になるように映像信号処理を行い、鑑賞品質改善映像信号を生成する。例えば、品質改善処理部130は、映像が映像酔いを誘発すると解析された場合には、原映像部分を画質調整やパターンの重畳により外挿予測映像よりも目立たせるようにすることで映像酔いを抑制し、鑑賞品質を改善した鑑賞品質改善映像信号を生成する。
 かかる情報処理装置100は、図2に示すように、まず、注視対象領域情報生成部110において、外部から入力された入力映像信号及び外部信号から、注視対象領域を推定し、注視対象領域情報が生成される(S100)。注視対象領域情報生成部110は、生成した注視対象領域情報を品質改善処理部130に出力する。
 一方、品質解析部120により、外部から入力された入力映像信号及び映像鑑賞環境情報から、鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報が生成される(S110)。品質解析部120は、生成した映像鑑賞品質情報を品質改善処理部130に出力する。
 そして、品質改善処理部130により、外部から入力された入力映像信号及び外部信号と、注視対象領域情報及び映像鑑賞品質情報とから、鑑賞者の映像鑑賞状態が良好になるように映像信号処理が行われ、最終的に鑑賞品質改善映像信号が生成される(S120)。
 このような画像信号処理を行うことで、原映像の周囲に外挿予測映像が外挿された擬似広画角映像を鑑賞する際、鑑賞環境や映像信号を解析し、擬似広画角映像が映像酔いを誘発するような場合には、外挿予測映像より原映像を目立たせることで、映像酔いを抑制し、鑑賞品質を改善することが可能となる。以下、各機能について、詳細に説明する。
 [1.2.注視対象領域情報生成処理]
 まず、図3~図9に基づいて、本実施形態の情報処理装置100の注視対象領域情報生成部110の構成とこれによる処理について説明する。なお、図3は、本実施形態に係る注視対象領域情報生成部110の機能構成を示す機能ブロック図である。図4は、本実施形態に係る注視対象領域情報生成部110による注視対象領域情報生成処理を示すフローチャートである。図5は、注視対象マップの生成処理を示すフローチャートである。図6は、顕著性マップの一例であって、顕著性マップから注視対象マップを生成するための処理を説明するための説明図である。図7は、平滑化フィルタ強度制御信号の一例を示す説明図である。図8は、入力映像、顕著性マップ、信号識別マップ、及び注視対象マップの例を示す説明図である。図9は、奥行マップを用いる場合の注視対象領域情報生成部110の構成を示す機能ブロック図である。
(1)機能構成
 本実施形態に係る注視対象領域情報生成部110は、図3に示すように、顕著性マップ生成部111と、信号識別マップ生成部113と、注視対象マップ生成部115とからなる。
 顕著性マップ生成部111は、入力映像信号から人間が目を引きやすい特徴的な被写体領域を検出し、映像において検出された被写体領域を表す顕著性マップを生成する。顕著性マップ生成部111は、映像から被写体領域の位置や大きさを検出する被写体検出機能により被写体領域を検出する。被写体検出機能は、周知の技術を適用することができ、例えば特開2010-262506号公報に記載の技術を適用してもよい。顕著性マップ生成部111は、検出した被写体領域から作成した顕著性マップを、顕著性マップ信号として注視対象マップ生成部115に出力する。
 信号識別マップ生成部113は、外部信号に基づき、原信号と外挿予測信号とを識別する信号識別マップを生成する。信号識別マップ生成部113は、外部信号から、映像における原映像の領域と外挿予測映像の領域とを表す識別信号マップを生成し、信号識別マップ信号として注視対象マップ生成部115に出力する。
 注視対象マップ生成部115は、顕著性マップと信号識別マップとに基づいて、鑑賞者が注視すべき領域を示す注視対象マップ(注視対象領域情報)を生成する。注視対象マップ生成部115は、図3に示すように、平滑化フィルタ強度制御部115aと、平滑化処理部115bとからなる。
 平滑化フィルタ強度制御部115aは、顕著性マップに基づいて、顕著性の高い(すなわち、被写体領域である可能性が高い)部分の平滑化を強くする特性の平滑化フィルタを生成する。平滑化処理部115bは、平滑化フィルタ強度制御部115aにより生成された平滑化フィルタと信号識別マップとに基づいて、鑑賞者が注視すべき領域を示す注視対象マップを生成する。
(2)処理内容
 図3に示した注視対象領域情報生成部110は、入力映像信号が入力されると、図4に示す処理を開始する。図4に示すように、まず、顕著性マップ生成部111により、入力映像信号から、人間が目を引きやすい被写体領域を検出する(S101)。顕著性マップ生成部111は、被写体領域の位置及び大きさを検出し、これらの値とその確からしさとに基づき顕著性マップを生成する(S103)。顕著性マップは、例えば各画素が0-255の値で表された画像であり、値が大きいほどその空間位置で被写体領域が存在する可能性が高いことを表す。
 顕著性マップの一例を図6に示す。図6に示す顕著性マップ12は、映像において、被写体領域が存在する領域を示しており、画素の信号値が0に近いほど黒く、画素の信号値が255に近いほど白く表されている。すなわち、図6に示す顕著性マップ12では、黒い領域は被写体が存在しない領域12bであり、白い領域は被写体が存在する領域12aであることを示している。領域12aと領域12bとの境界がぼやけているのは、被写体の有無が確定できないことを示す。顕著性マップ生成部111は、生成した顕著性マップを、顕著性マップ信号として、注視対象マップ生成部115に出力する。
 次いで、信号識別マップ生成部113により、外部信号から、擬似広画角映像の原映像と外挿予測映像とを識別する信号識別マップを生成する(S105)。信号識別マップは、例えば、原映像を表す原信号を1、外挿予測映像を表す外挿予測信号を0としたバイナリ信号で表してもよく、原信号と外挿予測信号との境界部で遷移域を持つような0-255の連続値で表してもよい。信号識別マップを連続値で表す場合、原信号と外挿予測信号との境界は128となり、原信号で境界から離れるほど255に近く、外挿予測信号で境界から離れるほど0に近くなるような値で表してもよい。信号識別マップ生成部113は、生成した信号識別マップを信号識別マップ信号として、注視対象マップ生成部115に出力する。
 そして、注視対象マップ生成部115により、顕著性マップと信号識別マップとに基づいて、注視対象マップが生成される(S107)。注視対象マップの生成処理では、まず、図5に示すように、平滑化フィルタ強度制御部115aにより、平滑化フィルタが生成される(S1071)。平滑化フィルタ強度制御部115aは、顕著性の高い(すなわち、被写体領域である可能性が高い)部分の平滑化を強くする特性の平滑化フィルタを生成する。
 例えば、図6に示す顕著性マップ12から平滑化フィルタを生成する場合、平滑化フィルタ強度制御部115aは、顕著性マップ12の各画素について、各画素を中心Cとする判定領域Wをそれぞれ設定し、判定領域W内の画素の信号値の累計値を演算する。そして、平滑化フィルタ強度制御部115aは、その累計値が大きいほど、後述の平滑化処理部115bで行われる平滑化が強くなるような平滑化フィルタを生成する。平滑化フィルタは、例えば、ローパスフィルタのタップ長である場合には、図7のような特性で設定される。
 次いで、平滑化処理部115bにより、平滑化フィルタに基づいて、信号識別マップに対し平滑化処理を行い、注視対象マップ(注視対象領域情報)を生成する(S1073)。平滑化処理は、例えばFIR(Finite Impulse Response)ローパスフィルタ等を用いて行ってもよい。平滑化された信号識別マップは、鑑賞者が注視すべき領域を示す注視対象マップとなり、注視対象領域情報として品質改善処理部130に出力される。
 ここで、以上のような注視対象領域情報生成処理により入力映像信号から生成される、顕著性マップ、信号識別マップ及び注視対象マップの例を図8に示す。
 図8左側に示すケース1の入力映像信号10Aは、中央に特徴的な被写体が存在する原映像10Aoと、原映像10Aoの周囲に外挿された外挿予測映像10Aeとからなる。すなわち、疑似広画角映像である映像10Aの中央部に原映像10Aoがある。この映像10Aの顕著性マップ12Aは、映像の中央部にある特徴的な被写体が検出されたことにより、中央部に被写体が存在する領域12Aaがあり、その周囲に被写体が存在しない領域12Abがあるものとなる。一方、信号識別マップ14Aは、外部信号より、中央部に原映像の領域14Aoがあり、その周囲に外挿予測映像14Aeの領域があるものとなる。
 顕著性マップ12Aと信号識別マップ14Aとを比較すると、信号識別マップ14Aにおける原映像の領域14Aoと外挿予測映像の領域14Aeとの境界付近では、顕著性マップ12Aの値が低くなっている。したがって、ケース1で生成される注視対象マップ16Aは、信号識別マップ14Aとほぼ同一となる。
 これに対して、図8右側に示すケース2の入力映像信号10Bは、映像左下から中央部に特徴的な被写体が存在しており、中央部の原映像10Boと、原映像10Boの周囲に外挿された外挿予測映像10Beとからなる。この映像10Bの顕著性マップ12Bは、映像の左下から中央にかけて特徴的な被写体が検出されたことにより、左下から中央にわたって被写体が存在する領域12Baがあり、その周囲に被写体が存在しない領域12Bbがあるものとなる。一方、信号識別マップ14Bは、外部信号より、中央部に原映像の領域14Boがあり、その周囲に外挿予測映像14Beの領域があるものとなる。
 顕著性マップ12Bと信号識別マップ14Bとを比較すると、信号識別マップ14Bにおける原映像の領域14Boと外挿予測映像の領域14Beとの一部の境界付近では、顕著性マップ12Bの値が高くなっている。このため、ケース2で生成される注視対象マップ16Bは、信号識別マップ14Bにおいて、原映像の領域14Boと外挿予測映像の領域14Beとの境界において顕著性マップ12Bの値が高い左下部分16Bgがぼやけたものとなる。このように、注視対象マップ16Bにおいて注視対象領域を示す領域16aが広がり、信号識別マップ14Bとは異なるものとなる。
(3)奥行マップを用いた注視対象領域情報生成処理
 上述の説明では、注視対象領域情報生成部110では、顕著性マップを用いて注視対象領域情報を生成したが、顕著性マップの代わりに奥行マップを用いて注視対象領域情報を生成してもよい。すなわち、図9に示すように、注視対象領域情報生成部110を、奥行きマップ生成部111Aと、信号識別マップ生成部113と、注視対象マップ生成部115とから構成してもよい。
 奥行きマップ生成部111Aでは、入力映像信号から、映像の奥行き情報を検出し、奥行きマップを生成する。奥行きマップは、例えば、0-255の値をもった画像であり、値が大きいほどその空間位置での奥行きが手前であることを示す。例えば入力映像信号が3Dのステレオ映像信号である場合には、左右の画像の視差を検出して奥行きマップを生成することができる。また、2Dの単眼映像信号である場合には、周知の奥行き推定技術を用いて奥行きマップを生成することができる(例えば、特開2013-172214号公報参照)。
 なお、信号識別マップ生成部113と、注視対象マップ生成部115では、上述と同様の処理が行われる。
 以上、本実施形態に係る注視対象領域情報生成部110の構成とこれによる処理について説明した。
 [1.3.映像鑑賞品質解析処理]
 次に、図10~図13に基づいて、本実施形態の情報処理装置100の品質解析部120の構成とこれによる処理について説明する。なお、図10は、本実施形態に係る品質解析部120の機能構成を示す機能ブロック図である。図11は、本実施形態に係る品質解析部120による映像鑑賞品質解析処理を示すフローチャートである。図12は、視野内映像酔い誘発度信号の生成処理の説明図である。図13は、相対ディスプレイ明るさ情報と明るさ誘発ゲインとの関係を示す説明図である。
(1)機能構成
 本実施形態に係る品質解析部120は、図10に示すように、映像酔い誘発環境情報生成部121と、映像酔い誘発動き成分解析部123と、映像酔い誘発度生成部125とからなる。
 映像酔い誘発環境情報生成部121は、映像環境情報に基づいて、相対ディスプレイ明るさ情報と観視画角情報とを生成する。映像鑑賞環境情報は、例えば、映像が表示されるディスプレイサイズや、ディスプレイに対する鑑賞者の視距離、ディスプレイの明るさ情報、室内の明るさ情報等を含む情報である。映像酔い誘発環境情報生成部121は、映像を鑑賞する環境の状態から、映像の鑑賞品質に影響を与える度合を解析し、映像鑑賞品質情報を生成する。映像酔い誘発環境情報生成部121は、生成した相対ディスプレイ明るさ情報及び観視画角情報を映像酔い誘発度生成部125に出力する。
 映像酔い誘発動き成分解析部123は、映像の動きベクトルの特徴を解析し、映像酔い誘発動き成分マップを生成する。映像酔い誘発動き成分解析部123では、映像酔いを引き起こすような動きを含む映像酔い誘発領域を映像から検出し、映像中の映像酔い誘発領域の位置を映像酔い誘発動き成分マップとして表す。映像酔い誘発動き成分解析部123は、生成した映像酔い誘発動き成分マップを映像酔い誘発度生成部125に出力する。
 映像酔い誘発度生成部125は、映像が映像酔いを誘発させる鑑賞品質であるかを示す映像鑑賞品質情報を生成する。映像酔い誘発度生成部125は、図10に示すように、視野内映像酔い誘発動き成分累積部125aと、鑑賞環境下映像酔い誘発度生成部125bとからなる。
 視野内映像酔い誘発動き成分累積部125aは、観視画角情報と映像酔い誘発動き成分マップとに基づいて、視野内映像酔い誘発度信号を生成する。視野内映像酔い誘発動き成分累積部125aは、観視画角に応じた映像範囲に、映像酔い誘発動き成分マップを離散的にマッピングし、映像酔い誘発動き成分マップの情報の重み付き累積値を求める。視野内映像酔い誘発動き成分累積部125aは、算出された累積値を正規化し、視野内映像酔い誘発度信号として鑑賞環境下映像酔い誘発度生成部125bに出力する。
 鑑賞環境下映像酔い誘発度生成部125bは、相対ディスプレイ明るさ情報と視野内映像酔い誘発度信号とに基づいて、映像鑑賞品質情報を生成する。鑑賞環境下映像酔い誘発度生成部125bは、相対ディスプレイ明るさ情報から明るさ誘発ゲインを設定し、明るさ誘発ゲインと視野内映像酔い誘発度信号とを乗じた値を反転させた信号を映像鑑賞品質情報とする。
(2)処理内容
 図10に示した品質解析部120は、映像鑑賞環境情報が入力されると、図11に示す処理を開始する。図11に示すように、まず、映像酔い誘発環境情報生成部121により、映像鑑賞環境情報から、相対ディスプレイ明るさ情報及び観視画角情報が生成される(S111)。映像鑑賞環境情報は、ディスプレイサイズ、ディスプレイに対する鑑賞者の視距離、ディスプレイの明るさ情報、室内の明るさ情報等を含む情報である。ディスプレイサイズ及びディスプレイの明るさ情報は、例えばディスプレイから取得される。ディスプレイに対する鑑賞者の視距離は、例えばディスプレイの表示画面近傍に設けられた距離センサ等により取得される。なお、鑑賞者が複数存在する場合は、各鑑賞者の視距離の平均値や、中間値、最もディスプレイに近い鑑賞者の値としてもよい。また、室内の明るさ情報は、例えば室内に設置されている照度センサ等により取得される。
 映像酔い誘発環境情報生成部121は、ディスプレイの明るさ情報と室内の明るさ情報とから、室内の明るさに対するディスプレイの明るさの比を示す相対ディスプレイ明るさ情報を生成する。すなわち、室内は暗いほど、ディスプレイは明るいほど、相対ディスプレイ明るさ情報の値は大きくなる。また、映像酔い誘発環境情報生成部121は、ディスプレイサイズとディスプレイに対する鑑賞者の視距離とから、人間が知覚できる視野内での映像が知覚される範囲を算出し、観視画角情報とする。生成された相対ディスプレイ明るさ情報及び観視画角情報は、映像酔い誘発度生成部125へ出力される。
 次いで、映像酔い誘発動き成分解析部123は、入力された入力映像信号が表す映像について動きベクトルの特徴を解析し、映像酔い誘発動き成分マップを生成する(S113)。映像酔い誘発動き成分マップは、例えば各画素の信号値が0-255の値に正規化された画像であり、値が大きいほど、その空間位置の動きが映像酔いを誘発させる特徴を含んでいることを表している。映像酔い誘発動き成分マップは、既存の手法を用いて生成することができる(例えば、特開2013-21455号公報)。映像酔い誘発動き成分解析部123は、生成した映像酔い誘発動き成分マップを、映像酔い誘発度生成部125へ出力する。
 その後、映像酔い誘発度生成部125により、相対ディスプレイ明るさ情報、観視画角情報及び映像酔い誘発動き成分マップに基づいて、映像酔いを誘発させる鑑賞品質であるかを示す映像鑑賞品質情報が生成される(S115)。
 ステップS115では、まず、視野内映像酔い誘発動き成分累積部125aにより、観視画角情報と映像酔い誘発動き成分マップとに基づいて、視野内映像酔い誘発度信号を生成が生成される。図12に基づいて具体的に説明すると、視野内映像酔い誘発動き成分累積部125aは、まず、画面の水平方向及び垂直方向の2種類の情報を含む観視画角情報から、人間が知覚できる視野内での映像が知覚される範囲Eを算出する。例えば、この知覚可能な映像範囲Eは、人間が知覚できる全視野の範囲Eに対して、観視画角が小さいときは中心視野側の範囲Eとなり、観視画角が大きいときは周辺視野側まで広がった範囲Eとなる。
 そして、視野内映像酔い誘発動き成分累積部125aは、観視画角に応じた映像範囲に対して、映像酔い誘発動き成分マップの情報を離散的にマッピングし、映像酔い誘発動き成分マップの情報の重み付き累積値を求める。すなわち、図12に示すように、まず、全視野角(例えば、180°)に対して予め設定された解像度の水平方向及び垂直方向に映像酔い誘発動き成分マップの離散データサンプルを設定し、観視画角に対応する解像度に合わせて映像酔い誘発動き成分マップをスケーリング処理する。次いで、視野内映像酔い誘発動き成分累積部125aは、観視画角に対応する範囲にマッピングされた離散データサンプルの値に、水平方向及び垂直方向においてそれぞれ中心視野ほど重みが高くなるように設定された重み係数を乗じる。そして、視野内映像酔い誘発動き成分累積部125aは、観視画角に対応する範囲の重み付けされた離散データサンプルの値を累積する。このように算出された視野内映像酔い誘発度信号は、同一の映像酔い誘発動き成分マップの場合、観視画角が大きいほど大きな値を取るようになる。
 その後、視野内映像酔い誘発動き成分累積部125aは、重み付けされた離散データサンプルの累積値を正規化し、視野内映像酔い誘発度信号として鑑賞環境下映像酔い誘発度生成部125bに出力する。累積値の正規化処理は、例えば、累積値が0.0~1.0の値となるように行われる。
 視野内映像酔い誘発動き成分累積部125aにより視野内映像酔い誘発度信号が生成されると、鑑賞環境下映像酔い誘発度生成部125bは、相対ディスプレイ明るさ情報と視野内映像酔い誘発度信号とに基づいて、映像鑑賞品質情報を生成する。鑑賞環境下映像酔い誘発度生成部125bは、まず、相対ディスプレイ明るさ情報から明るさ誘発ゲイン(LumGain)を設定する。明るさ誘発ゲインは、相対ディスプレイ明るさの値が大きくなるほど大きな値となる正の係数である。明るさ誘発ゲインは、視野内映像酔い誘発度信号に乗じられ、相対ディスプレイ明るさの応じた映像酔いの誘発させやすさを視野内映像酔い誘発度信号に反映させる。例えば、室内が暗く、ディスプレイが明るいときは、鑑賞者は映像酔いしやすくなるので、明るさ誘発ゲインは1.0以上の大きな係数に設定される。反対に、室内が明るいのに、ディスプレイが暗いときは、映像自体がよく見えず、鑑賞者は映像酔いしにくい状況になるので、明るさ誘発ゲインは1.0未満の小さい係数に設定される。明るさ誘発ゲインは、例えば図13に示すような、相対ディスプレイ明るさ情報と明るさ誘発ゲインとの関係に基づき設定される。
 鑑賞環境下映像酔い誘発度生成部125bは、設定した明るさ誘発ゲインと視野内映像酔い誘発度信号とを乗じた値を反転させた信号を映像鑑賞品質情報として、品質改善処理部130へ出力する。
 以上、本実施形態に係る品質解析部120の構成とこれによる処理について説明した。
 [1.4.映像鑑賞品質改善処理]
 次に、図14~図23に基づいて、本実施形態の情報処理装置100の品質改善処理部130の構成とこれによる処理について説明する。なお、図14は、本実施形態に係る品質改善処理部130の機能構成を示す機能ブロック図である。図15は、本実施形態に係る品質改善処理部130による映像鑑賞品質改善処理を示すフローチャートである。図16及び図17は、注視誘導パターンマップの例を示す説明図である。図18は、注視対象領域相対顕著化画像処理部131の一構成例を示す機能ブロック図である。図19は、注視対象領域相対顕著化画像処理部131の各機能部の構成を示す機能ブロック図である。図20は、注視対象マップ信号と画質強調信号ブレンド比との関係の一例を示す説明図である。図21は、注視対象領域相対顕著化合成部135の構成を示す機能ブロック図である。図22は、映像鑑賞品質情報と相対顕著化処理映像信号ブレンド比との関係の一例を示す説明図である。図23は、映像鑑賞品質情報と注視誘導パターン重畳信号ブレンド比との関係の一例を示す説明図である。
(1)機能構成
 本実施形態に係る品質改善処理部130は、図14に示すように、注視対象領域相対顕著化画像処理部131と、注視誘導パターンマップ生成部133と、注視対象領域相対顕著化合成部135とからなる。
 注視対象領域相対顕著化画像処理部131は、入力映像信号及び注視対象領域情報(注視対象マップ)に基づいて、注視対象領域が相対的に顕著化するように画像処理を施した相対顕著化処理映像信号を生成する。注視対象領域相対顕著化画像処理部131の詳細な処理については後述する。注視対象領域相対顕著化画像処理部131は、生成した相対顕著化処理映像信号を注視対象領域相対顕著化合成部135に出力する。
 注視誘導パターンマップ生成部133は、外部信号に基づいて、擬似広画角映像に対する原映像の領域を求め、原映像の領域を含むように注視誘導パターンを設定した注視誘導パターンマップを生成する。注視誘導パターンマップは、鑑賞者に注視させたい領域を示す情報である。注視誘導パターンマップ生成部133は、生成した注視誘導パターンマップを注視対象領域相対顕著化合成部135に出力する。
 注視対象領域相対顕著化合成部135は、相対顕著化処理映像信号、注視誘導パターンマップ、入力映像信号及び映像鑑賞品質情報に基づいて、注視対象領域の顕著性が強調された鑑賞品質改善映像信号を生成する。鑑賞品質改善映像信号は、入力映像信号に対して映像酔いを抑制し、鑑賞品質を改善した映像信号である。例えば、注視対象領域相対顕著化合成部135は、映像鑑賞品質情報の値が小さいほど(すなわち、映像酔いしやすいシーンほど)、注視対象領域の顕著性が強調された鑑賞品質改善映像信号を生成する。この鑑賞品質改善映像信号をディスプレイに表示させることで、鑑賞者は大画面で広い観視画角で、広視野映像を快適にかつ高画質で鑑賞することが可能となる。
(2)処理内容
 図14に示した品質改善処理部130は、図15に示すように、まず、注視誘導パターンマップ生成部133により、外部信号に基づいて、注視誘導パターンマップを生成する(S121)。注視誘導パターンマップ生成部133では、外部信号から擬似的に広画角に拡張される前の原信号により表される原映像の領域を求め、それを囲むような注視誘導パターンが設定された注視誘導パターンマップを生成する。
 注視誘導パターンマップ18では、例えば原映像の領域18oが矩形であるとき、図16に示すように、原映像の領域18oを囲むような矩形パターン18pを設定してもよい。あるいは、図17に示すように、原映像の領域18oを囲むような楕円パターン18pを設定し、注視誘導パターンマップ18を生成してもよい。注視誘導パターンマップ18の各画素のマップ値は、例えば0-255の値をとるように設定してもよい。このとき、注視対象パターン18pを示すマップ値は255に近い値になる。なお、注視誘導パターンマップ18がバイナリマップのときは、注視対象パターン18pは0と255のみで表され、注視誘導パターンマップ18にグラデーションがあるときには、注視対象パターン18pは0~255の値で表される。
 注視誘導パターンマップ生成部133は、生成した注視誘導パターンマップ18を注視対象領域相対顕著化合成部135に出力する。
 次いで、注視対象領域相対顕著化画像処理部131により、入力映像信号及び注視対象領域情報(注視対象マップ)に基づいて、注視対象領域が相対的に顕著化するように画像処理を施した相対顕著化処理映像信号が生成される(S123)。注視対象領域相対顕著化画像処理部131は、例えば、図18及び図19に示すように構成されており、各画質調整部1311~1314により、入力された疑似広画角映像に対して画像処理を施す。
 注視対象領域相対顕著化画像処理部131の内部構成は、図18に示すように、例えば鮮鋭感調整部1311と、コントラスト調整部1312と、明るさ調整部1313と、彩度調整部1314とからなる。鮮鋭感調整部1311、コントラスト調整部1312、明るさ調整部1313及び彩度調整部1314はカスケードに接続され、各画質調整部の出力は後段の画質調整部に入力される。もちろん、各画質調整部が並列に処理され、後段で合成するような形態でもよい。
 各画質調整部1311~1314の内部構成は、例えば図19に示す画質調整部131Xとして一般化して表現できる。画質調整部131Xは、画質強調部131X-1と、画質抑制部131X-2と、相対画質調整部131X-3とからなる。
 すなわち、鮮鋭感強調処理を行う鮮鋭感調整部1311は、例えば、画質強調部131X-1においてアンシャープマスク処理や超解像処理を行い、画質強調信号を生成する。また、画質抑制部131X-2においてローパスフィルタによる平滑化処理を行い、画質抑制信号を生成する。
 コントラスト強調処理を行うコントラスト調整部1312は、例えば、画質強調部131X-1においてヒストグラムのダイナミックレンジ拡大によるコントラスト強調処理を行い、画質強調信号を生成する。また、画質抑制部131X-2においてヒストグラムのダイナミックレンジ縮小によるコントラスト抑制処理を行い、画質抑制信号を生成する。
 明るさ強調処理を行う明るさ調整部1313は、例えば、画質強調部131X-1においてYUV信号のY信号、または、HSV空間のV信号の増大処理を行い、画質強調信号を生成する。また、画質抑制部131X-2においてYUV信号のY信号または、HSV空間のV信号の低下処理を行い、画質抑制信号を生成する。
 彩度強調処理を行う彩度調整部1314は、例えば、画質強調部131X-1においてHSV空間上でのS信号の増大処理を行い、画質強調信号を生成する。また、画質抑制部131X-2においてHSV空間上でのS信号の低下処理を行い、画質抑制信号を生成する。
 そして、各画質調整部131Xの相対画質調整部131X-3には、画質強調部131X-1において生成された画質強調信号と、画質抑制部131X-2において生成された画質抑制信号と、注視対象領域情報(注視対象マップ)とが入力される。相対画質調整部131X-3では、画質強調信号と画質抑制信号とのアルファブレンド処理が実行される。相対画質調整部131X-3は、例えば図20に示すような注視対象マップ信号と画質強調信号のブレンド比(EnhBlend)との関係に基づき、画質強調信号と画質抑制信号とのアルファブレンド処理を行う。
 図20では、注視対象領域情報(注視対象マップ)の信号値が大きいほど画質強調信号のブレンド比が高くなるように設定されている。例えば、注視対象領域情報(注視対象マップ)が0から255の値に設定されている場合、ブレンド比(EnhBlend)が0.5になる注視対象マップの値Mthは、例えば128に設定される。
 このようなブレンド比を用いてアルファブレンド処理を行うことにより、注視対象マップの値が大きい領域(例えば、図8の注視対象マップ16A、16Bにおける白い領域16Aa、16Ba)ほど、画質(例えば、コントラスト、鮮鋭感、彩度、明るさ等)が強調される。一方、注視対象マップの値が小さい領域(図8の注視対象マップ16A、16Bにおける黒い領域16Ab、16Bb)ほど、画質が抑制される。
 なお、図19に示した画質調整部131Xの構成において、画質強調信号と画質抑制信号とのうちいずれかが、前段の画質調整部131Xからの入力信号をスルーさせ、そのまま出力信号としてもよい。
 上述のように注視対象領域相対顕著化画像処理部131により生成された相対顕著化処理映像信号は、注視対象領域相対顕著化合成部135に出力される。
 図15の説明に戻り、ステップS121、S123の処理を終えると、注視対象領域相対顕著化合成部135により、相対顕著化処理映像信号、注視誘導パターンマップ、入力映像信号及び映像鑑賞品質情報に基づいて、注視対象領域の顕著性が強調された鑑賞品質改善映像信号が生成される(S125)。
 具体的に説明すると、注視対象領域相対顕著化合成部135は、例えば図21に示すように、注視対象領域相対顕著化画像強度調整部1351と、注視誘導パターン強度調整部1353とからなる。
 注視対象領域相対顕著化画像強度調整部1351は、入力映像信号、相対顕著化処理映像信号、及び映像鑑賞品質情報に基づいて、アルファブレンド処理を行い、注視対象領域相対顕著化画像強度調整信号を生成する。注視対象領域相対顕著化画像強度調整部1351は、例えば図22に示すような映像鑑賞品質情報と相対顕著化処理映像信号のブレンド比(SalBlend)との関係に基づき、入力映像信号と相対顕著化処理映像信号とのアルファブレンド処理を行う。図22では、映像鑑賞品質情報の値が小さいほど相対顕著化処理映像信号のブレンド比が高くなるように設定されている。注視対象領域相対顕著化画像強度調整部1351は、アルファブレンド処理により生成した注視対象領域相対顕著化画像強度調整信号を、注視誘導パターン強度調整部1353に出力する。
 注視誘導パターン強度調整部1353は、図21に示すように、注視誘導パターン重畳部1353aと、注視誘導パターン鑑賞品質改善部1353bとからなる。注視誘導パターン重畳部1353aは、注視対象領域相対顕著化画像強度調整信号と注視誘導パターンマップとに基づいて、注視誘導パターン重畳信号を生成する。注視誘導パターン重畳信号は、注視対象領域相対顕著化画像強度調整信号の映像上に、注視誘導パターンマップで示された注視誘導パターンが重畳された映像信号である。注視誘導パターン重畳部1353aは、予め指定された注視対象パターンの描画色(例えば、赤)の画素値と注視対象領域相対顕著化画像強度調整信号の画素値とに対し、注視誘導パターンマップを0.0~1.0に正規化した値をブレンド比としてアルファブレンド処理する。
 例えば、注視対象パターンの描画色のR、G、Bの各値をRp、Gp、Bpであり、注視対象領域相対顕著化画像強度調整信号のある画素のR、G、Bの値がRe、Ge、Beであるとする。このとき、例えば、注視対象領域相対顕著化画像強度調整信号の当該画素と空間的に同一位置に対応する注視誘導パターンマップの値が0.9であるとすると、注視誘導パターン重畳信号のR、G、Bの値Rs、Gs、Bsは、それぞれ以下のように算出される。
  Rs=0.9×Rp+0.1×Re
  Gs=0.9×Gp+0.1×Ge
  Bs=0.9×Bp+0.1×Be
 注視誘導パターン重畳部1353aは、このアルファブレンド処理により生成された画像を、注視誘導パターン重畳信号として、注視誘導パターン鑑賞品質改善部1353bに出力する。
 注視誘導パターン鑑賞品質改善部1353bは、注視誘導パターン重畳信号と注視対象領域相対顕著化画像強度調整信号とのアルファブレンド処理を行い、鑑賞品質改善映像信号を生成する。注視誘導パターン鑑賞品質改善部1353bは、例えば図23に示すような映像鑑賞品質情報と注視誘導パターン重畳信号のブレンド比(PtBlend)との関係に基づき、注視誘導パターン重畳信号と注視対象領域相対顕著化画像強度調整信号とのアルファブレンド処理を行う。図23では、映像鑑賞品質情報の値が小さいほど注視誘導パターン重畳信号のブレンド比が高くなるように設定されている。このようなアルファブレンド処理を行うことにより、映像鑑賞品質情報の値が小さいほど(すなわち、映像酔いしやすいシーンほど)、注視対象領域に重畳される注視誘導パターンが目立つようになる。具体的には、注視対象領域に重畳される注視誘導パターンの色が濃くされることで、注視対象領域に重畳される注視誘導パターンが目立つようになる。
 このように、疑似広画角映像が映像酔いを誘発するような映像を含む場合には、原映像の領域に対して画質調整やパターンの重畳を行うことで、外挿予測映像の領域よりも原映像の領域を目立たせる。これにより、映像酔いを抑制し、鑑賞品質が改善された疑似広画角映像を提供することが可能となる。
 以上、本実施形態に係る品質改善処理部130の構成とこれによる処理について説明した。
 [1.5.まとめ]
 以上、本開示の第1の実施形態に係る情報処理装置100とこれによる画像信号処理について説明した。本実施形態によれば、鑑賞する疑似広画角映像について、鑑賞環境や映像信号を解析し、疑似広画角映像が映像酔いを誘発するような映像を含む場合には、原映像の領域に対して画質調整やパターンの重畳を行い、外挿予測映像の領域よりも目立たせるようにする。このように生成された鑑賞品質改善映像信号をディスプレイに表示させることで、鑑賞者は大画面で広い観視画角で、広視野映像を快適にかつ高画質で鑑賞することが可能となる。
 <2.第2の実施形態>
 次に、図24~図30に基づいて、本開示の第2の実施形態に係る情報処理装置とこれによる画像信号処理について説明する。本実施形態では、入力映像信号は、広画角で製作された映像(広角撮影映像、パノラマ、全天周、全天球、自由視点映像、ゲームコンテンツ等の映像。以下、「広視野映像」とする。)であるとする。また、外部信号は、広視野映像データについて、ユーザインタラクション操作によりディスプレイに表示される領域を指定するためのクロッピング座標情報と、ユーザインタラクション操作で指定されたディスプレイ内の注視対象領域情報とを含んでいる。以下、広視野映像に対して、映像酔いの発生が抑制され、映像鑑賞状態が良好となる鑑賞品質改善映像信号を生成する情報処理装置200とこれによる画像信号処理について説明する。
 [2.1.情報処理装置の概略構成]
 まず、図24及び図25を参照して、本開示の第2の実施形態に係る情報処理装置の概略構成について説明する。なお、図24は、本実施形態に係る情報処理装置200の概略構成を示す機能ブロック図である。図25は、本実施形態に係る情報処理装置200による画像信号処理の概要を示すフローチャートである。以下において、第1の実施形態に係る情報処理装置100と同一の構成及び同一の機能については、詳細な説明を省略する。
 本実施形態に係る情報処理装置200は、図24に示すように、注視対象領域情報生成部210と、品質解析部220と、品質改善処理部230とから構成される。
 注視対象領域情報生成部210は、入力映像信号と、外部信号とに基づいて、広視野映像のうちディスプレイに表示される領域を示すクロッピング映像信号と、鑑賞者が注視する(注視している)であろう注視対象領域を推定し、注視対象領域情報とする。生成された注視対象領域情報は、品質改善処理部230へ出力される。
 品質解析部220は、外部信号と映像鑑賞環境情報とに基づいて、鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する。品質解析部220は、映像を鑑賞する環境の状態から、映像の鑑賞品質に影響を与える度合を解析し、映像鑑賞品質情報を生成する。映像鑑賞品質情報は、本実施形態においても、映像酔いを誘発させる鑑賞品質を表すものとする。
 品質改善処理部230は、クロッピング映像信号、外部信号、注視対象領域情報、及び映像鑑賞品質情報に基づいて、鑑賞者の映像鑑賞状態が良好になるように映像信号処理を行い、鑑賞品質改善映像信号を生成する。
 かかる情報処理装置200は、図25に示すように、まず、注視対象領域情報生成部210において、外部から入力された入力映像信号及び外部信号から、クロッピング映像信号及び注視対象領域情報が生成される(S200)。なお、これらの情報を生成する処理の詳細については後述する。注視対象領域情報生成部210は、生成したクロッピング映像信号及び注視対象領域情報を品質改善処理部230に出力する。
 一方、品質解析部220により、外部から入力された入力映像信号及び映像鑑賞環境情報から、鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報が生成される(S210)。品質解析部220は、生成した映像鑑賞品質情報を品質改善処理部230に出力する。
 そして、品質改善処理部230により、クロッピング映像信号、外部信号、注視対象領域情報及び映像鑑賞品質情報から、鑑賞者の映像鑑賞状態が良好になるように映像信号処理が行われ、最終的に鑑賞品質改善映像信号が生成される(S220)。
 このような画像信号処理を行うことで、広視野映像を、ユーザインタラクション操作を伴って鑑賞する際、鑑賞環境やユーザインタラクション操作を解析し、広視野映像が映像酔いを誘発するような場合には、ディスプレイ表示内注視対象領域を画質調整やパターンの重畳により目立たせることができる。これにより、ユーザインタラクション操作を行っていない鑑賞者の映像酔いを抑制し、鑑賞品質を改善することが可能となる。以下、各機能について、詳細に説明する。
 [2.2.注視対象領域情報生成処理]
 まず、図26及び図27に基づいて、本実施形態の情報処理装置200の注視対象領域情報生成部210の構成とこれによる処理について説明する。なお、図26は、本実施形態に係る注視対象領域情報生成部210の機能構成を示す機能ブロック図である。図27は、本実施形態に係る注視対象領域情報生成部210による注視対象領域情報生成処理を示すフローチャートである。
(1)機能構成
 本実施形態に係る注視対象領域情報生成部210は、図26に示すように、外部信号デコーダ部211と、クロッピング映像生成部213と、顕著性マップ生成部215と、注視対象マップ生成部217とからなる。
 外部信号デコーダ部211は、外部信号より、クロッピング座標情報と、ディスプレイ内の注視対象領域情報であるディスプレイ表示内注視対象領域マップとを取得し、クロッピング映像生成部213あるいは注視対象マップ生成部217に出力する。クロッピング座標情報とディスプレイ内の注視対象領域情報とは、外部信号に含まれた情報である。
 クロッピング映像生成部213は、入力映像信号からクロッピング座標情報に基づきトリミングされた部分画像データを生成する。クロッピング映像生成部213は、部分画像データに所定の処理を行い、クロッピング映像信号を生成し、顕著性マップ生成部215へ出力する。
 顕著性マップ生成部215は、クロッピング映像信号から人間が目を引きやすい特徴的な被写体領域を検出し、映像において検出された被写体領域を表す顕著性マップを生成する。顕著性マップ生成部215は、入力映像信号の代わりにクロッピング映像信号から顕著性マップを生成する以外は、第1の実施形態に係る顕著性マップ生成部111と同様に動作する。顕著性マップ生成部215は、検出した被写体領域から作成した顕著性マップを、顕著性マップ信号として注視対象マップ生成部217に出力する。
 注視対象マップ生成部217は、顕著性マップとディスプレイ内の注視対象領域情報とに基づいて、鑑賞者が注視すべき領域を示す注視対象マップ(注視対象領域情報)を生成する。注視対象マップ生成部217は、信号識別マップ信号の代わりにディスプレイ内の注視対象領域情報から注視対象マップを生成する以外は、第1の実施形態に係る注視対象マップ生成部115と同様に動作する。
(2)処理内容
 図26に示した注視対象領域情報生成部210は、まず、外部信号デコーダ部211により、入力された外部信号から、クロッピング座標情報と、ディスプレイ内の注視対象領域情報であるディスプレイ表示内注視対象領域マップとを取得する(S201)。ディスプレイ表示内注視対象領域マップは、例えば、1、0で表されるバイナリ信号であってもよく、0-255の連続値であってもよい。外部信号デコーダ部211は、クロッピング座標情報をクロッピング映像生成部213に出力し、ディスプレイ表示内注視対象領域マップを注視対象マップ生成部217に出力する。
 次いで、クロッピング映像生成部213により、入力映像信号とクロッピング座標情報とに基づいて、クロッピング映像信号が生成される(S203)。クロッピング映像生成部213は、入力映像信号が表す広視野映像から、クロッピング座標情報により特定される領域を、部分画像データとしてトリミングする。クロッピング映像生成部213は、部分画像データに対して、ディスプレイの解像度に合わせてスケーリング処理を行い、クロッピング映像信号を生成する。なお、スケーリング処理は、ディスプレイの解像度以外にも、例えば、後段にディスプレイの解像度で出力するスケーラーが接続されているようなシステムにおいては、予め設定された解像度に合わせて実施すればよい。クロッピング映像生成部213により生成されたクロッピング映像信号は、顕著性マップ生成部215に出力される。
 さらに、顕著性マップ生成部215により、クロッピング映像信号から、人間が目を引きやすい被写体領域を検出し、顕著性マップを生成する(S205)。顕著性マップ生成部215は、第1の実施形態と同様、被写体領域の位置及び大きさを検出し、これらの値とその確からしさとに基づき顕著性マップを生成する。顕著性マップ生成部215は、生成した顕著性マップを、顕著性マップ信号として、注視対象マップ生成部217に出力する。
 その後、注視対象マップ生成部217により、顕著性マップとディスプレイ表示内注視対象領域マップとに基づいて、注視対象マップが生成される(S207)。注視対象マップ生成部217は、第1の実施形態と同等に、平滑化フィルタを生成し、ディスプレイ表示内注視対象領域マップに対して平滑化処理を行うことにより、注視対象マップを作成する。なお、本実施形態にて生成される注視対象領域マップは、ユーザインタラクション操作で指定されたディスプレイ内の注視対象領域マップであるので、必ずしもディスプレイの中央にある必要はなく、その大きさもユーザが指定可能であるものとする。したがって、ディスプレイ表示内注視対象領域マップが図8の信号識別マップ信号と同一であるとき、注視対象領域情報(注視対象マップ)は図8に示す注視対象マップのようになる。
 以上、本実施形態に係る注視対象領域情報生成部210の構成とこれによる処理について説明した。
 [2.3.映像鑑賞品質解析処理]
 次に、図28~図30に基づいて、本実施形態の情報処理装置200の品質解析部220の構成とこれによる処理について説明する。なお、図28は、本実施形態に係る品質解析部220の機能構成を示す機能ブロック図である。図29は、本実施形態に係る品質解析部220による映像鑑賞品質解析処理を示すフローチャートである。図30は、クロッピング座標情報の時間変動からグローバルモーションベクトル場への変換処理を説明する説明図である。
(1)機能構成
 本実施形態に係る品質解析部220は、図28に示すように、映像酔い誘発環境情報生成部221と、映像酔い誘発インタラクション操作成分解析部223と、映像酔い誘発度生成部225とからなる。
 映像酔い誘発環境情報生成部221は、映像環境情報に基づいて、相対ディスプレイ明るさ情報と観視画角情報とを生成する。映像酔い誘発環境情報生成部221は、第1の実施形態に係る映像酔い誘発環境情報生成部121と同様に動作する。映像酔い誘発環境情報生成部221は、生成した相対ディスプレイ明るさ情報及び観視画角情報を映像酔い誘発度生成部225に出力する。
 映像酔い誘発インタラクション操作成分解析部223は、外部信号に基づいて、インタラクション操作の制御信号から映像の動きベクトルの特徴を解析し、映像酔い誘発動き成分マップを生成する。映像酔い誘発インタラクション操作成分解析部223は、図28に示すように、外部信号デコーダ部223aと、グローバルモーションベクトル変換部223bと、映像酔い誘発動き成分解析部223cとからなる。
 外部信号デコーダ部223aは、外部信号からクロッピング座標情報を取得する。外部信号デコーダ部223aは、図26に示した注視対象領域情報生成部210の外部信号デコーダ部211と同様に動作する。
 グローバルモーションベクトル変換部223bは、クロッピング座標情報の時間変動を、グローバルモーションベクトル場に変換する。グローバルモーションベクトル変換部223bでは、クロッピング座標情報の時間変動を、クロッピング映像信号に対する画面全体の動き(すなわち、グローバルモーション)とみなし、ディスプレイ表示画面内の各位置での動きベクトルを算出している。この動きベクトルよりグローバルモーションベクトル場が生成される。
 映像酔い誘発動き成分解析部223cは、グローバルモーションベクトル変換部223bにより生成されたグローバルモーションベクトル場に基づいて、映像酔い誘発動き成分マップを生成する。映像酔い誘発動き成分解析部223cは、生成した映像酔い誘発動き成分マップを映像酔い誘発度生成部225に出力する。
 映像酔い誘発度生成部225は、映像が映像酔いを誘発させる鑑賞品質であるかを示す映像鑑賞品質情報を生成する。映像酔い誘発度生成部225は、第1の実施形態に係る映像酔い誘発度生成部125と同様に動作する。
(2)処理内容
 図28に示した品質解析部220は、図29に示すように、まず、映像酔い誘発環境情報生成部221により、映像鑑賞環境情報から、相対ディスプレイ明るさ情報及び観視画角情報を生成する(S211)。ステップS211の処理は、図11のステップS111と同様に行われる。映像酔い誘発環境情報生成部221は、生成した相対ディスプレイ明るさ情報及び観視画角情報を、映像酔い誘発度生成部225へ出力する。
 次いで、映像酔い誘発インタラクション操作成分解析部223より、映像酔い誘発動き成分マップが生成される。映像酔い誘発インタラクション操作成分解析部223は、まず、外部信号デコーダ部223aにより、外部信号からクロッピング座標情報を取得する(S213)。そして、グローバルモーションベクトル変換部223bにより、クロッピング座標情報の時間変動がグローバルモーションベクトル場に変換される(S215)。グローバルモーションベクトル変換部223bでは、クロッピング座標情報の時間変動を、クロッピング映像信号に対する画面全体の動き(すなわち、グローバルモーション)とみなし、ディスプレイ表示画面内の各位置での動きベクトルを算出している。
 例えば、グローバルモーションベクトル変換部223bは、図30に示すように、クロッピング座標情報の時間変動(図30の矩形Sgと矩形Sgとの4頂点のマッピングの対応関係)から、アフィン変換、射影変換等を用いてモーションパラメータを決定し、ディスプレイ表示画面内の各位置での動きベクトルを算出する。この動きベクトルよりグローバルモーションベクトル場が生成される。
 ステップS215にてグローバルモーションベクトル場が生成されると、映像酔い誘発動き成分解析部223cは、グローバルモーションベクトル場に基づいて、映像酔い誘発動き成分マップを生成する(S217)。映像酔い誘発動き成分解析部223cは、例えば第1の実施形態に係る映像酔い誘発動き成分解析部123と同様に映像酔い誘発動き成分マップを生成してもよい。なお、映像酔い誘発動き成分解析部223cでの処理は、第1の実施形態に係る映像酔い誘発動き成分解析部123の処理から、映像信号からの動きベクトル検出部分を除いた処理に相当する。すなわち、映像酔い誘発動き成分解析部223cは、動きベクトルを、映像信号の代わりに、インタラクション操作の制御信号から求めている。映像酔い誘発動き成分解析部223cは、生成した映像酔い誘発動き成分マップを映像酔い誘発度生成部225に出力する。
 その後、映像酔い誘発度生成部225により、相対ディスプレイ明るさ情報、観視画角情報及び映像酔い誘発動き成分マップに基づいて、映像酔いを誘発させる鑑賞品質であるかを示す映像鑑賞品質情報が生成される(S219)。ステップS219の処理は、図11のステップS115と同様に行われる。
 以上、本実施形態に係る品質解析部220の構成とこれによる処理について説明した。
 [2.4.映像鑑賞品質改善処理部]
 次に、本実施形態の情報処理装置200の品質改善処理部230について説明する。本実施形態に係る品質改善処理部230は、第1の実施形態と同様、図14のように構成することができる。ただし、注視誘導パターンマップ生成部133において、本実施形態のディスプレイ表示内注視対象領域が、第1の実施形態の注視誘導パターンマップ18の原映像を示す領域(図16及び図17に示した注視誘導パターンマップ18の原映像を示す点線領域18o)に対応する点で相違する。その他の処理は、第1の実施形態と同様に行われる。
 以上、本実施形態に係る品質改善処理部230の構成とこれによる処理について説明した。
 [2.5.まとめ]
 以上、本開示の第2の実施形態に係る情報処理装置200とこれによる画像信号処理について説明した。本実施形態によれば、広視野映像を、ユーザインタラクション操作を伴って鑑賞する際、鑑賞環境やユーザインタラクション操作を解析し、映像酔いを誘発するような場合には、ディスプレイ表示内注視対象領域を画質調整やパターンの重畳により目立たせるようにする。これにより、ユーザインタラクション操作をしていない鑑賞者に対する映像酔いを抑制し、鑑賞品質を改善することが可能となる。
 なお、上述の説明では、広視野映像を、ユーザインタラクション操作による鑑賞する場合を想定したが、本開示はかかる例に限定されない。例えば、ユーザインタラクション操作の情報が、予めコンテンツ製作者によって生成されてもよく、事前に他の鑑賞者の視線を解析して生成されたものでもよい(例えば、非特許文献:"Gaze-driven Video Re-editing", Eakta Jain, Yaser Sheikh,
Ariel Shamir, Jessica Hodgins. ACM Transactions on Graphics (TOG), 2014)。あるいは、自動カメラワークを実現するような外部映像解析ブロックで生成されたものをユーザインタラクション操作の情報としてもよい(例えば、非特許文献:"Video retargeting: automating pan and scan", MULTIMEDIA
'06 Proceedings of the 14th annual ACM international conference on Multimedia
Pages 241-250)。この場合、この情報を広視野映像にメタデータとして付加することで実現することが可能である。
 <3.第3の実施形態>
 次に、図31~図40に基づいて、本開示の第3の実施形態に係る情報処理装置とこれによる画像信号処理について説明する。本実施形態において、入力映像信号は、第2の実施形態と同様、広画角で製作された映像(広角撮影映像、パノラマ、全天周、全天球、自由視点映像、ゲームコンテンツ等の映像。以下、「広視野映像」とする。)であるとする。また、外部信号には、広視野映像データについて、ユーザインタラクション操作によりディスプレイに表示される領域を指定するためのクロッピング座標情報と、ユーザインタラクション操作で指定されたディスプレイ内の注視対象領域情報とを含んでいる。本実施形態では、広視野映像に対して、鑑賞者のユーザインタラクション操作どおりに表示すると映像酔いを誘発させる可能性がある場合、ユーザインタラクション操作どおりの表示ではなく、映像酔いを誘発させないように映像酔い防止処理を実行する場合について説明する。
 [3.1.情報処理装置の概略構成]
 まず、図31及び図32を参照して、本開示の第3の実施形態に係る情報処理装置の概略構成について説明する。なお、図31は、本実施形態に係る情報処理装置300の概略構成を示す機能ブロック図である。図32は、本実施形態に係る情報処理装置300による画像信号処理の概要を示すフローチャートである。以下において、第1、第2の実施形態に係る情報処理装置100、200と同一の構成及び同一の機能については、詳細な説明を省略する。
 本実施形態に係る情報処理装置300は、図31に示すように、注視対象領域情報生成部310と、品質解析部320と、品質改善処理部330とから構成される。
 注視対象領域情報生成部310は、入力映像信号及び外部信号と、後述する品質解析部320により生成された映像酔い誘発度マップとに基づいて、広視野映像のうちディスプレイに表示される領域を示すクロッピング映像信号と注視対象領域情報とを出力する。注視対象領域情報生成部310は、生成したクロッピング映像信号及び注視対象領域情報を、品質改善処理部330へ出力する。
 品質解析部320は、入力映像信号、外部信号、映像鑑賞環境情報に基づいて、鑑賞者のユーザインタラクション操作により、ディスプレイに表示される映像部分の中で、各領域の映像酔い誘発しやすさを示す映像酔い誘発度マップを生成する。品質解析部320は、生成した映像酔い誘発度マップを注視対象領域情報生成部310へ出力する。
 品質改善処理部330は、クロッピング映像信号及び注視対象領域情報に基づいて、映像酔いを誘発させないように映像酔い防止処理を実行し、鑑賞品質改善映像信号を生成する。映像酔い防止処理では、例えば、映像酔いを誘発させやすい映像領域を強制的にマスキングする強制マスク表示をしたり、ディスプレイ表示する映像が映像酔いを誘発させるシーンであることを示すアラーム表示をしたりする。
 かかる情報処理装置300は、図32に示すように、まず、品質解析部320により、入力映像信号、外部信号、映像鑑賞環境情報に基づいて、映像酔い誘発度マップが生成される(S300)。品質解析部320は、生成した映像酔い誘発度マップを注視対象領域情報生成部310へ出力する。映像酔い誘発度マップは、上述したように、鑑賞者のユーザインタラクション操作により、ディスプレイに表示される映像部分の中で各領域の映像酔い誘発しやすさを示す画像である。
 次いで、注視対象領域情報生成部310により、入力映像信号及び外部信号と、映像酔い誘発度マップとに基づいて、クロッピング映像信号と注視対象領域情報とを生成する(S310)。注視対象領域情報生成部310は、生成したクロッピング映像信号及び注視対象領域情報を、品質改善処理部330へ出力する。
 そして、品質改善処理部330により、クロッピング映像信号及び注視対象領域情報に基づいて、映像酔い防止処理が実行され、鑑賞品質改善映像信号が生成される(S320)。
 このような画像信号処理を行うことで、広視野映像に対して、鑑賞者のユーザインタラクション操作どおりに表示すると映像酔いを誘発させる可能性がある場合、ユーザインタラクション操作どおりの表示ではなく、映像酔いを誘発させないようにする映像酔い防止処理が実行される。これにより、ユーザインタラクション操作の誤操作等によって発生する鑑賞者の映像酔いを抑制し、鑑賞品質を改善することが可能となる。以下、各機能について、詳細に説明する。
 [3.3.映像鑑賞品質解析処理]
 次に、図33及び図34に基づいて、本実施形態の情報処理装置300の品質解析部320の構成とこれによる処理について説明する。なお、図33は、本実施形態に係る品質解析部320の機能構成を示す機能ブロック図である。図34は、本実施形態に係る品質解析部320による映像鑑賞品質解析処理を示すフローチャートである。
(1)機能構成
 本実施形態に係る品質解析部320は、図33に示すように、映像酔い誘発環境情報生成部321と、映像酔い誘発動き成分解析部322と、外部信号デコーダ部323と、クロッピング映像生成部323-2と、映像酔い誘発度生成部324とからなる。
 映像酔い誘発環境情報生成部321は、映像環境情報に基づいて、相対ディスプレイ明るさ情報と観視画角情報とを生成する。映像酔い誘発環境情報生成部321は、第1の実施形態に係る映像酔い誘発環境情報生成部121と同様に動作する。映像酔い誘発環境情報生成部321は、生成した相対ディスプレイ明るさ情報及び観視画角情報を映像酔い誘発度生成部324に出力する。
 映像酔い誘発動き成分解析部322は、後述する外部信号デコーダ部323、クロッピング映像生成部323-2で生成されたクロッピング映像信号に基づいて、映像の動きベクトルの特徴を解析し、映像酔い誘発動き成分マップを生成する。映像酔い誘発動き成分解析部322は、第1の実施形態に係る映像酔い誘発動き成分解析部123と同様に動作するが、解析対象が、入力映像信号ではなく、クロッピング映像信号である点のみ相違する。映像酔い誘発動き成分解析部322は、生成した映像酔い誘発動き成分マップを映像酔い誘発度生成部324に出力する。
 外部信号デコーダ部323は、外部信号からクロッピング座標情報を取得し、クロッピング映像生成部323-2により、入力映像信号とクロッピング座標情報とに基づいて、クロッピング映像信号が生成される。外部信号デコーダ部323及びクロッピング映像生成部323-3は、図26に示す第2の実施形態と同様に動作する。
 映像酔い誘発度生成部324は、映像鑑賞品質情報として、ディスプレイに表示される映像部分で、各領域での映像酔いの誘発しやすさを示す映像酔い誘発度マップを生成する。映像酔い誘発度生成部324は、図33に示すように、視野内映像酔い誘発度マップ生成部324aと、鑑賞環境下映像酔い誘発度マップ生成部324bとからなる。
 視野内映像酔い誘発度マップ生成部324aは、観視画角情報及び映像酔い誘発動き成分マップに基づいて、視野内映像酔い誘発度マップを生成する。視野内映像酔い誘発度マップは、観視画角に応じた映像範囲に、離散的にマッピングした映像酔い誘発動き成分マップに対して重み付けをして生成されるものである。すなわち、視野内映像酔い誘発度マップ生成部324aは、第1の実施形態に係る視野内映像酔い誘発動き成分累積部125aと同様に動作する。
 鑑賞環境下映像酔い誘発度マップ生成部324bは、相対ディスプレイ明るさ情報及び視野内映像酔い誘発度マップに基づいて、映像酔い誘発度マップを生成する。
(2)処理内容
 図33に示した品質解析部320は、図33に示すように、まず、映像酔い誘発環境情報生成部321により、映像鑑賞環境情報から、相対ディスプレイ明るさ情報及び観視画角情報を生成する(S301)。ステップS301の処理は、図11のステップS111と同様に行われる。映像酔い誘発環境情報生成部321は、生成した相対ディスプレイ明るさ情報及び観視画角情報を、映像酔い誘発度生成部324へ出力する。
 次いで、外部信号デコーダ部323により、外部信号からクロッピング座標情報が取得され、クロッピング映像生成部313により、入力映像信号とクロッピング座標情報とに基づいて、クロッピング映像信号が生成される(S303)。さらに、映像酔い誘発動き成分解析部322より、入力されたクロッピング映像信号が表す映像について動きベクトルの特徴を解析し、映映像酔い誘発動き成分マップが生成される(S305)。ステップS305の処理は、図11のステップS113と同様に行われる。映像酔い誘発動き成分解析部322は、生成した映映像酔い誘発動き成分マップを、映像酔い誘発度生成部324へ出力する。
 そして、視野内映像酔い誘発度マップ生成部324aにより、観視画角情報及び映像酔い誘発動き成分マップに基づいて、視野内映像酔い誘発度マップが生成される(S307)。視野内映像酔い誘発度マップの生成処理は、第1の実施形態に係る視野内映像酔い誘発動き成分累積部125aと同様に、観視画角に応じた映像範囲に離散的にマッピングした映像酔い誘発動き成分マップに対して、例えば図12に示したような中心視野ほど重みが高くなる重み係数を乗じ、重み付けして行われる。
 その後、鑑賞環境下映像酔い誘発度マップ生成部324bにより、相対ディスプレイ明るさ情報及び視野内映像酔い誘発度マップに基づいて、映像酔い誘発度マップが生成される(S309)。鑑賞環境下映像酔い誘発度マップ生成部324bは、例えば図13に示したような特性に従って、相対ディスプレイ明るさ情報から明るさ誘発ゲイン(LumGain)を設定する。そして、鑑賞環境下映像酔い誘発度マップ生成部324bは、設定した明るさ誘発ゲインを視野内映像酔い誘発度マップに乗じたものを、映像酔い誘発度マップとして生成する。なお、この映像酔い誘発度マップのマップ値は、例えば、0から255の値をとるように設定され、映像酔い誘発しやすい領域ほど大きな値に設定される。
 以上、本実施形態に係る品質解析部320の構成とこれによる処理について説明した。
 [3.3.注視対象領域情報生成処理]
 次に、図35~図37に基づいて、本実施形態の情報処理装置300の注視対象領域情報生成部310の構成とこれによる処理について説明する。なお、図35は、本実施形態に係る注視対象領域情報生成部310の機能構成を示す機能ブロック図である。図36は、本実施形態に係る注視対象領域情報生成部310による注視対象領域情報生成処理を示すフローチャートである。図37は、映像酔い誘発度マップと、これを反転したマップの例を示す説明図である。
(1)機能構成
 本実施形態に係る注視対象領域情報生成部310は、図35に示すように、外部信号デコーダ部311と、クロッピング映像生成部313と、注視対象マップ生成部315とからなる。外部信号デコーダ部311及びクロッピング映像生成部313は、図26に示す第2の実施形態と同様に動作する。
 注視対象マップ生成部315は、入力された映像鑑賞品質情報である映像酔い誘発度マップに基づいて、注視対象領域情報(注視対象マップ)を生成する。本実施形態では、映像酔い誘発度マップから、映像酔いしやすい領域を注視しない領域として示した注視対象マップを生成する。
(2)処理内容
 図35に示した注視対象領域情報生成部310は、まず、外部信号デコーダ部311により、入力された外部信号から、クロッピング座標情報と、ディスプレイ内の注視対象領域情報であるディスプレイ表示内注視対象領域マップとを取得する(S311)。ステップS311の処理は、図27に示すステップS201と同様に行われる。外部信号デコーダ部311は、クロッピング座標情報をクロッピング映像生成部313に出力する。
 次いで、クロッピング映像生成部313により、入力映像信号とクロッピング座標情報とに基づいて、クロッピング映像信号が生成される(S313)。ステップS313の処理は、図27に示すステップS203と同様に行われる。クロッピング映像生成部313により生成されたクロッピング映像信号は、図31の品質改善処理部330に出力される。
 その後、注視対象マップ生成部315により、映像酔い誘発度マップから注視対象マップが生成される(S315)。注視対象マップ生成部315は、例えば図37に示すような、映像酔い誘発度マップ36を反転させて反転マップ36Rを生成し、これを注視対象マップとする。図37の反転マップ36Rは、黒い部分ほど映像酔いしやすい領域を示している。すなわち、映像酔い誘発度マップ36から、注視対象マップ生成部315で映像酔いしやすい領域を鑑賞者に注視させない領域として示した注視対象領域情報に変換することで、注視対象マップを生成する。
 以上、本実施形態に係る注視対象領域情報生成部310の構成とこれによる処理について説明した。
 [3.4.映像鑑賞品質改善処理]
 次に、図38~図40に基づいて、本実施形態の情報処理装置300の品質改善処理部330の構成とこれによる処理について説明する。なお、図38は、本実施形態に係る品質改善処理部330の機能構成を示す機能ブロック図である。図39は、本実施形態に係る品質改善処理部330による映像鑑賞品質改善処理を示すフローチャートである。図40は、映像酔いアラーム情報の一例を示す説明図である。
(1)機能構成
 本実施形態に係る品質改善処理部330は、図38に示すように、注視対象領域相対顕著化画像処理部331と、注視対象領域相対顕著化合成部333とからなる。
 注視対象領域相対顕著化画像処理部331は、クロッピング映像信号及び注視対象領域情報(注視対象マップ)に基づいて、注視対象領域が相対的に顕著化するように画像処理を施した相対顕著化処理映像信号を生成する。注視対象領域相対顕著化画像処理部331は、図14に示す注視対象領域相対顕著化画像処理部131と同様に動作する。なお、本実施形態では、入力映像信号の代わりにクロッピング映像信号が入力されている。注視対象領域相対顕著化画像処理部331は、生成した相対顕著化処理映像信号を注視対象領域相対顕著化合成部333に出力する。
 注視対象領域相対顕著化合成部333は、相対顕著化処理映像信号及び注視対象領域情報(注視対象マップ)に基づいて、鑑賞品質改善映像信号を生成する。注視対象領域相対顕著化合成部333は、図38に示すように、映像酔いアラーム判定部333aと、映像酔いアラーム表示重畳部333bとからなる。
 映像酔いアラーム判定部333aは、注視対象領域情報(注視対象マップ)に基づいて、映像酔いアラーム表示を行うか否かを判定し、ディスプレイに表示される映像が映像酔いを誘発するシーンである場合には、映像酔いアラーム情報を映像酔いアラーム表示重畳部333bに出力する。
 映像酔いアラーム表示重畳部333bは、制御情報に映像酔いアラーム表示を行う指示がある場合に、映像酔いアラーム情報に基づいて相対顕著化処理映像信号にアラーム表示を重畳し、鑑賞品質改善映像信号として出力する。
(2)処理内容
 図38に示した品質改善処理部330は、図39に示すように、まず、注視対象領域相対顕著化画像処理部331により、クロッピング映像信号及び注視対象領域情報(注視対象マップ)に基づいて、注視対象領域が相対的に顕著化するように画像処理を施した相対顕著化処理映像信号が生成される(S321)。ステップS321の処理は、図15のステップS123と同様に行われる。すなわち、図37に示す反転マップ36Rの黒い部分ほど、ぼかしたり、コントラストを低くさせたり、暗くしたり、彩度を低くするような画質抑制処理が行われる。クロッピング映像信号に対してこのような画像処理を施したものが、相対顕著化処理映像信号として注視対象領域相対顕著化合成部333に出力される。
 次いで、映像酔いアラーム判定部333aは、注視対象領域情報(注視対象マップ)に基づいて、広視野映像に映像酔いアラーム表示を行うか否かを判定する。まず、映像酔いアラーム判定部333aは、入力された注視対象領域情報(注視対象マップ)に対して、反転処理を行い、図37に示す映像酔い誘発度マップ36の状態に戻し、映像酔い誘発度マップ36のマップ値を画面全体で積算し、積算値を得る。そして、この積算値が所定の閾値かどうかを判定する(S323)。この閾値は、広視野映像中に映像酔いを起こしやすい領域の多さを判定するものであり、例えば経験的に適切な値に設定される。
 映像酔いアラーム判定部333aは、累積値が閾値より小さい場合には、広視野映像中に映像酔いを起こしやすい領域は少なく、鑑賞者が映像酔いを起こす可能性は低いとして、図39の処理を終了する。一方、映像酔いアラーム判定部333aは、累積値が閾値以上の場合には、広視野映像中に映像酔いを起こしやすい領域が多く、ディスプレイに表示される映像が映像酔いを誘発するシーンであると判定される。このとき、映像酔いアラーム判定部333aは、広視野映像に対して映像酔い防止処理を行わせることを決定する(S325)。
 映像酔い防止処理としては、例えば、広視野映像に映像酔いアラーム情報を表示させる映像酔いアラーム情報表示処理や、強制的に映像をマスキングする強制マスキング表示処理等がある。映像酔いアラーム判定部333aは、映像酔い防止処理の実施の有無を表す制御情報を生成し、アラームの内容を示す映像酔いアラーム情報とともに、映像酔いアラーム表示重畳部333bへ出力する。
 その後、映像酔いアラーム表示重畳部333bは、制御情報に映像酔いアラーム表示を行う指示がある場合に、映像酔いアラーム情報に基づいて相対顕著化処理映像信号にアラーム表示を重畳し、鑑賞品質改善映像信号として出力する(S327)。これにより、例えば図40に示すように、広視野映像30の映像酔いを誘発しやすい領域には、映像酔いを誘発しやすい領域を注視しないように、映像酔いアラーム情報30Wが表示される。
 以上、本実施形態に係る品質改善処理部330の構成とこれによる処理について説明した。
 [3.5.まとめ]
 以上、本開示の第3の実施形態に係る情報処理装置300とこれによる画像信号処理について説明した。本実施形態によれば、広視野映像をユーザインタラクション操作しながら鑑賞する際、誤って映像酔いを誘発させるようなシーンを表示させてしまったとしても、鑑賞環境やクロッピング映像信号の解析により、ディスプレイ表示内で映像酔いを誘発させる領域に対する画質抑制マスク表示や、映像酔いを警告するアラーム表示等が行われる。これにより、鑑賞者に対する映像酔いを抑制し、鑑賞品質を改善することが可能となる。
 <4.第4の実施形態>
 次に、図41~図53に基づいて、本開示の第4の実施形態に係る情報処理装置とこれによる画像信号処理について説明する。本実施形態では、第1の実施形態と同様、上記非特許文献2のように、原映像と当該原映像の周囲に表示される外挿予測映像とからなる擬似的な広画角の映像を、広い観視画角で大画面に表示する場合について説明する。なお、外部信号は、擬似的に広画角に拡張される前の原映像を表す原信号と外挿予測信号を識別することが可能な制御信号である。
 本実施形態では、疑似広画角映像を、プロジェクタ50を使って投影することを想定している。疑似広画角映像が投影されるスクリーンとしては、例えば図41のように、単一平面スクリーン52Aだけでなく、図42に示すような、プロジェクタ50を囲むような複数平面521、522、523からなる複数平面スクリーン52Bへの投影も想定する。このとき、単一平面スクリーン52A及び複数平面スクリーン52Bには、それぞれ中央部分に原映像Aoが表示され、その両側(外周部分)に外挿予測映像Aeが表示される。
 [4.1.情報処理装置の概略構成]
 まず、図43及び図44を参照して、本開示の第4の実施形態に係る情報処理装置の概略構成について説明する。なお、図43は、本実施形態に係る情報処理装置400の概略構成を示す機能ブロック図である。図44は、本実施形態に係る情報処理装置400による画像信号処理の概要を示すフローチャートである。
 本実施形態に係る情報処理装置400は、図43に示すように、注視対象領域情報生成部410と、品質解析部420と、品質改善処理部430とから構成される。本実施形態に係る情報処理装置400は、図1に示した第1の実施形態の情報処理装置100と比較して、入力映像信号が注視対象領域情報生成部410に入力されない点で相違する。
 注視対象領域情報生成部410は、外部信号に基づいて、鑑賞者が注視する注視対象領域を推定し、注視対象領域情報とする。品質解析部420は、入力映像信号と、映像鑑賞環境情報とに基づいて、鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する。品質改善処理部430は、入力映像信号、外部信号、注視対象領域情報、及び映像鑑賞品質情報に基づいて、鑑賞者の映像鑑賞状態が良好になるように映像信号処理を行い、鑑賞品質改善映像信号を生成する。
 かかる情報処理装置400は、図44に示すように、まず、注視対象領域情報生成部110において、外部信号から注視対象領域を推定し、注視対象領域情報を生成する(S400)。注視対象領域情報生成部410は、生成した注視対象領域情報を品質改善処理部430に出力する。
 一方、品質解析部420により、外部から入力された入力映像信号及び映像鑑賞環境情報から、鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報が生成される(S410)。品質解析部420は、生成した映像鑑賞品質情報を品質改善処理部430に出力する。
 そして、品質改善処理部430により、外部から入力された入力映像信号及び外部信号と、注視対象領域情報及び映像鑑賞品質情報とから、鑑賞者の映像鑑賞状態が良好になるように映像信号処理が行われ、最終的に鑑賞品質改善映像信号が生成される(S420)。
 このような画像信号処理を行うことで、原映像の周囲に外挿予測映像が外挿された擬似広画角映像を鑑賞する際、鑑賞環境や映像信号を解析し、擬似広画角映像が映像酔いを誘発するような場合には、外挿予測映像より原映像を目立たせることで、映像酔いを抑制し、鑑賞品質を改善することが可能となる。また、疑似広画角映像を複数平面にプロジェクタ投影して表示させて鑑賞する場合でも、相互反射による原信号部分のコントラスト低下の現象を抑制することができる。以下、各機能について、詳細に説明する。
 [4.2.注視対象領域情報生成処理]
 まず、図45に基づいて、本実施形態の情報処理装置400の注視対象領域情報生成部410の構成とこれによる処理について説明する。なお、図45は、本実施形態に係る注視対象領域情報生成部410の機能構成を示す機能ブロック図である。
 本実施形態に係る注視対象領域情報生成部410は、図45に示すように、信号識別マップ生成部411のみからなる。すなわち、信号識別マップ生成部411は、外部信号として入力された信号識別マップ信号をそのまま注視対象領域情報(注視対象マップ)として出力する。
 [4.3.映像鑑賞品質解析処理]
 次に、図46~図50に基づいて、本実施形態の情報処理装置400の品質解析部420の構成とこれによる処理について説明する。なお、図46は、本実施形態に係る品質解析部420の機能構成を示す機能ブロック図である。図47は、本実施形態に係る品質解析部420による映像鑑賞品質解析処理を示すフローチャートである。図48は、本実施形態に係る映像鑑賞環境情報の一例を示す説明図である。図49は、ダイナミックレンジ減少幅と相互反射誘発環境情報との関係を示す説明図である。図50は、外挿領域平均明るさと映像環境品質情報との関係を示す説明図である。
(1)機能構成
 本実施形態に係る品質解析部420は、図46に示すように、相互反射誘発環境情報生成部421と、外挿領域平均明るさ算出部423と、相互反射誘発度生成部425とからなる。
 相互反射誘発環境情報生成部421は、映像環境情報に基づいて、相互反射誘発環境情報を生成する。相互反射誘発環境情報は、原映像の周辺に挿入された外挿予測映像の表示による相互反射の影響が、中央部の原映像の表示にどの程度影響を与えているかを示す情報である。相互反射誘発環境情報の算出処理については後述する。相互反射誘発環境情報生成部421は、生成した相互反射誘発環境情報を、相互反射誘発度生成部425に出力する。
 外挿領域平均明るさ算出部423は、入力映像信号と外部信号とに基づいて、入力映像信号に対して、図58に示した原映像6oの周辺に挿入された外挿予測映像6eの平均明るさ(輝度、明度)を算出し、外挿領域平均明るさとして相互反射誘発度生成部425に出力する。
 相互反射誘発度生成部425は、相互反射誘発環境情報と外挿領域平均明るさとに基づいて、相互反射の影響を受けた表示画質を示す映像鑑賞品質情報を出力する。
(2)処理内容
 図46に示した品質解析部420は、図47に示すように、まず、相互反射誘発環境情報生成部421により、映像環境情報に基づいて、相互反射誘発環境情報が生成される(S411)。相互反射誘発環境情報は、原映像の周辺に挿入された外挿予測映像の表示による相互反射の影響が、中央部の原映像の表示にどの程度影響を与えているかを示す情報である。
 本実施形態において、環境鑑賞環境情報は、例えば図48に示すように、中央部の原映像に対応する部分に表示テストパターン40oと周辺の外挿予測映像部分を全黒で表した周辺画像40eBとからなる画像と、表示テストパターン40oと外挿予測映像部分を全白で表した周辺画像40eWとからなる画像とをそれぞれ表示させたときに、中央部を撮影して得られる2種類の画像データである。これらの画像データは、プロジェクタ投影を行うに際して事前に取得される。
 相互反射誘発環境情報生成部421は、2種類の画像データについて、それぞれのダイナミックレンジを計測し、ダイナミックレンジの減少幅(あるいは明るさ上昇値)を求める。そして、例えば図49に示すような特性に従ってダイナミックレンジの減少幅から相互反射誘発環境係数(MRF)を設定し、相互反射誘発環境情報とする。なお、別の実現例として、例えば図48に示した2種類の画像データに対し、平均の明るさ(輝度、明度)を算出し、その差(明るさ上昇値)を相互反射誘発環境情報として設定してもよい。
 次いで、外挿領域平均明るさ算出部423により、入力映像信号と外部信号とに基づいて、入力映像信号に対して、原映像の周辺に挿入された外挿予測映像の平均明るさ(輝度、明度)が算出される(S413)。外挿領域平均明るさ算出部423は、算出した値を外挿領域平均明るさとして、相互反射誘発度生成部425に出力する。
 そして、相互反射誘発度生成部425は、相互反射誘発環境情報と外挿領域平均明るさとに基づいて、相互反射の影響を受けた表示画質を示す映像鑑賞品質情報を出力する(S415)。相互反射誘発度生成部425は、例えば図50に示すように、周辺外挿領域平均明るさが大きければ大きいほど、0に近づくように映像鑑賞品質情報(すなわち表示画質)を設定する。
 以上、本実施形態に係る品質解析部420の構成とこれによる処理について説明した。
 [4.4.映像鑑賞品質改善処理]
 次に、図51~図53に基づいて、本実施形態の情報処理装置400の品質改善処理部430の構成とこれによる処理について説明する。なお、図51は、本実施形態に係る品質改善処理部430の機能構成を示す機能ブロック図である。図52は、本実施形態に係る品質改善処理部430による映像鑑賞品質改善処理を示すフローチャートである。図53は、入力映像信号と相対顕著化処理映像信号とのブレンド処理について説明する説明図である。
(1)機能構成
 本実施形態に係る品質改善処理部430は、図51に示すように、注視対象領域相対顕著化画像処理部431と、注視対象領域相対顕著化合成部433とからなる。
 注視対象領域相対顕著化画像処理部431は、入力映像信号及び注視対象領域情報(注視対象マップ)に基づいて、相対顕著化処理映像信号を生成する。本実施形態に係る注視対象領域相対顕著化画像処理部431は、図51に示すように、明るさ調整部431aのみからなる。明るさ調整部431aは、周辺の外挿予測領域(非注視対象領域)の明るさ抑制処理のみを動作させ、相対顕著化処理映像信号を生成する。
 注視対象領域相対顕著化合成部433は、相対顕著化処理映像信号、入力映像信号、外部信号及び映像鑑賞品質情報に基づいて、鑑賞品質改善映像信号を生成する。注視対象領域相対顕著化合成部433では、入力映像信号と相対顕著化処理映像信号とを、相互反射の影響を受けた表示画質を示す映像鑑賞品質情報と外部信号とにより得られた外挿/原信号の境界情報に基づいてブレンド処理し、鑑賞品質改善映像信号を生成する。
(2)処理内容
 図51に示した品質改善処理部430は、図52に示すように、まず、注視対象領域相対顕著化画像処理部431の明るさ調整部431aにより、周辺の外挿予測領域(非注視対象領域)の明るさ抑制処理を行い、相対顕著化処理映像信号を生成する(S421)。
 次いで、注視対象領域相対顕著化合成部433により、相対顕著化処理映像信号、入力映像信号、外部信号及び映像鑑賞品質情報に基づいて、鑑賞品質改善映像信号が生成される(S423)。注視対象領域相対顕著化合成部433は、入力映像信号と相対顕著化処理映像信号とに対し、相互反射の影響を受けた表示画質を示す映像鑑賞品質情報と、外部信号により得られた外挿/原信号の境界情報に基づいてブレンド処理する。
 具体的には、図53に示すように、映像鑑賞品質情報の値(表示画質)が高いほど、表示される映像の周辺まで入力映像信号が表示されるように、入力映像信号のブレンド比を高くする。一方、映像鑑賞品質情報の値(表示画質)が低い場合、周辺部分が暗くするため、相対顕著化処理映像信号のブレンド比が高くなるようにブレンド処理される。注視対象領域相対顕著化合成部433は、このような入力映像信号と相対顕著化処理映像信号とのブレンド処理により生成した信号を、最終的な鑑賞品質改善映像信号として出力する。
 以上、本実施形態に係る品質改善処理部430の構成とこれによる処理について説明した。
 [4.5.まとめ]
 以上、本開示の第4の実施形態に係る情報処理装置400とこれによる画像信号処理について説明した。本実施形態によれば、鑑賞する疑似広画角映像について、複数平面にプロジェクタ投影して表示させて鑑賞する場合でも、相互反射による原信号部分のコントラスト低下の現象が抑制し、鑑賞品質を改善することが可能となる。
 <5.まとめ>
 上述の各実施形態によれば、広画角で製作された映像(広角撮影映像、パノラマ、全天周、全天球、自由視点映像、ゲームコンテンツなど)や、擬似的に広画角に拡張された映像(周辺外挿画像、モザイキング画像)等の、いわゆる広視野映像を、大画面で広い観視画角で鑑賞する際に、映像信号の動きやユーザインタラクションの動きで誘発される映像酔いや、複数平面にプロジェクタ投影した際の相互反射によるコントラスト低下などが抑制され、高品質な状態での映像鑑賞を提供することができる。
 <6.ハードウェア構成>
 最後に、上記実施形態に係る情報処理装置のハードウェア構成例について説明する。図54は、上記実施形態に係る情報処理装置のハードウェア構成を示すハードウェア構成図である。
 本実施形態に係る情報処理装置は、上述したように、コンピュータ等の処理装置により実現することができる。情報処理装置は、図54に示すように、CPU(Central Processing Unit)901と、ROM(Read Only Memory)902と、RAM(Random Access Memory)903と、ホストバス904aとを備える。また、情報処理装置は、ブリッジ904と、外部バス904bと、インタフェース905と、入力装置906と、出力装置907と、ストレージ装置908と、ドライブ909と、接続ポート911と、通信装置913とを備える。
 CPU901は、演算処理装置および制御装置として機能し、各種プログラムに従って情報処理装置内の動作全般を制御する。また、CPU901は、マイクロプロセッサであってもよい。ROM902は、CPU901が使用するプログラムや演算パラメータ等を記憶する。RAM903は、CPU901の実行において使用するプログラムや、その実行において適宜変化するパラメータ等を一時記憶する。これらはCPUバスなどから構成されるホストバス904aにより相互に接続されている。
 ホストバス904aは、ブリッジ904を介して、PCI(Peripheral Component Interconnect/Interface)バスなどの外部バス904bに接続されている。なお、必ずしもホストバス904a、ブリッジ904および外部バス904bを分離構成する必要はなく、1つのバスにこれらの機能を実装してもよい。
 入力装置906は、マウス、キーボード、タッチパネル、ボタン、マイク、スイッチおよびレバーなどユーザが情報を入力するための入力手段と、ユーザによる入力に基づいて入力信号を生成し、CPU901に出力する入力制御回路などから構成されている。出力装置907は、例えば、液晶ディスプレイ(LCD)装置、OLED(Organic Light Emitting Diode)装置およびランプなどの表示装置や、スピーカなどの音声出力装置を含む。
 ストレージ装置908は、情報処理装置の記憶部の一例であり、データ格納用の装置である。ストレージ装置908は、記憶媒体、記憶媒体にデータを記録する記録装置、記憶媒体からデータを読み出す読出し装置および記憶媒体に記録されたデータを削除する削除装置などを含んでもよい。このストレージ装置908は、ハードディスクを駆動し、CPU901が実行するプログラムや各種データを格納する。
 ドライブ909は、記憶媒体用リーダライタであり、情報処理装置に内蔵、あるいは外付けされる。ドライブ909は、装着されている磁気ディスク、光ディスク、光磁気ディスク、または半導体メモリ等のリムーバブル記録媒体に記録されている情報を読み出して、RAM903に出力する。
 接続ポート911は、外部機器と接続されるインタフェースであって、例えばUSB(Universal Serial Bus)などによりデータ伝送可能な外部機器との接続口である。また、通信装置913は、例えば、通信網5に接続するための通信デバイス等で構成された通信インタフェースである。また、通信装置913は、無線LAN(Local Area Network)対応通信装置であっても、ワイヤレスUSB対応通信装置であっても、有線による通信を行うワイヤー通信装置であってもよい。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する品質解析部と、
 前記鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成する注視対象領域情報生成部と、
 前記映像鑑賞品質情報に基づいて、前記注視対象領域の鑑賞品質を改善する品質改善処理部と、
を備える、情報処理装置。
(2)
 前記映像鑑賞品質情報は、映像信号による映像酔いの誘発させやすさを示す情報である、前記(1)に記載の情報処理装置。
(3)
 前記品質解析部は、前記鑑賞者の視野内における前記映像の動きの分布情報に基づいて、前記映像信号から映像酔いを誘発するシーンを判定し、前記映像鑑賞品質情報を生成する、前記(2)に記載の情報処理装置。
(4)
 前記映像鑑賞品質情報は、プロジェクション投影された表示画面からの相互反射による画質低下を示す情報である、前記(1)に記載の情報処理装置。
(5)
 前記品質解析部は、前記注視対象領域のみを表示させた場合と全画面表示とした場合とについて、撮影された各画像信号の前記注視対象領域内の画質を解析し、前記映像鑑賞品質情報を生成する、前記(4)に記載の情報処理装置。
(6)
 前記品質解析部は、前記映像が映像酔いを誘発する映像鑑賞環境であるかを判定した鑑賞環境判定情報を生成する、前記(1)に記載の情報処理装置。
(7)
 前記品質解析部は、前記映像を表示するディスプレイサイズと前記鑑賞者からディスプレイまでの視距離とから決定される視画角に基づいて、前記鑑賞環境判定情報を生成する、前記(6)に記載の情報処理装置。
(8)
 前記品質解析部は、前記映像を表示するディスプレイの表示と前記映像を鑑賞している室内の明るさとの関係に基づいて、前記鑑賞環境判定情報を生成する、前記(6)に記載の情報処理装置。
(9)
 前記注視対象領域情報生成部は、前記鑑賞者のインタラクション操作による制御信号に基づいて、前記注視対象領域情報を生成する、前記(1)~(8)のいずれか1項に記載の情報処理装置。
(10)
 前記注視対象領域は、入力映像の原信号に基づく映像が表示されている領域であり、
 非注視対象領域は、前記入力映像の原信号に基づき外挿予測された信号に基づく映像が表示されている領域である、前記(1)~(8)のいずれか1項に記載の情報処理装置。
(11)
 前記注視対象領域情報生成部は、入力映像から生成した顕著度マップに基づいて、前記注視対象領域情報を生成する、前記(1)~(8)のいずれか1項に記載の情報処理装置。
(12)
 前記注視対象領域情報生成部は、入力映像から生成した奥行マップに基づいて、前記注視対象領域情報を生成する、前記(1)~(8)のいずれか1項に記載の情報処理装置。
(13)
 前記注視対象領域情報生成部は、入力映像に付加されているメタデータに基づいて、前記注視対象領域情報を生成する、前記(1)~(8)のいずれか1項に記載の情報処理装置。
(14)
 前記注視対象領域情報生成部は、前記鑑賞者の視線解析結果に基づいて、前記注視対象領域情報を生成する、前記(1)~(8)のいずれか1項に記載の情報処理装置。
(15)
 前記注視対象領域情報は、連続的な値のマップで示されている、前記(1)~(8)のいずれか1項に記載の情報処理装置。
(16)
 前記品質改善処理部は、前記映像鑑賞品質情報に基づいて、前記映像において相対的に前記注視対象領域の顕著性を強調させる処理を行う、前記(1)~(15)のいずれか1項に記載の情報処理装置。
(17)
 前記品質改善処理部は、前記注視対象領域に参照パターンを重畳し、前記映像において相対的に前記注視対象領域の顕著性を強調させる、前記(16)に記載の情報処理装置。
(18)
 前記品質改善処理部は、前記注視対象領域に対して、コントラスト強調処理、解像感強調処理、彩度強調処理、明るさ強調処理のうち少なくともいずれか1つを行うことにより、前記映像において相対的に前記注視対象領域の顕著性を強調させる、前記(16)に記載の情報処理装置。
(19)
 前記品質改善処理部は、前記注視対象領域以外の非注視対象領域に対して、コントラスト抑制処理、平滑化処理、彩度抑制処理、明るさ抑制処理のうち少なくともいずれか1つを行うことにより、前記映像において相対的に前記注視対象領域の顕著性を強調させる、前記(16)に記載の情報処理装置。
(20)
 前記品質改善処理部は、前記注視対象領域の映像鑑賞品質が基準値より低い状態になっている場合に、前記鑑賞者に対してアラームを通知する、前記(1)~(19)のいずれか1項に記載の情報処理装置。
(21)
 前記品質改善処理部は、前記注視対象領域の映像鑑賞品質が基準値より低い状態になっている場合に、前記注視対象領域をマスクするマスク画像を表示する、前記(1)~(19)のいずれか1項に記載の情報処理装置。
(22)
 鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成すること、
 前記鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成することと、
 前記映像鑑賞品質情報に基づいて、前記注視対象領域の鑑賞品質を改善すること、
とを含む、情報処理方法。
(23)
 コンピュータを、
 鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する品質解析部と、
 前記鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成する注視対象領域情報生成部と、
 前記映像鑑賞品質情報に基づいて、前記注視対象領域の鑑賞品質を改善する品質改善処理部と、
を備える、情報処理装置として機能させるためのプログラム。
(24)
 コンピュータに、
 鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する品質解析部と、
 前記鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成する注視対象領域情報生成部と、
 前記映像鑑賞品質情報に基づいて、前記注視対象領域の鑑賞品質を改善する品質改善処理部と、
を備える、情報処理装置として機能させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
 100~400 情報処理装置
 110     注視対象領域情報生成部
 111     顕著性マップ生成部
 113     信号識別マップ生成部
 115     注視対象マップ生成部
 120     品質解析部
 121     誘発環境情報生成部
 123     成分解析部
 125     誘発度生成部
 130     品質改善処理部
 131     注視対象領域相対顕著化画像処理部
 133     注視誘導パターンマップ生成部
 135     注視対象領域相対顕著化合成部
 210     注視対象領域情報生成部
 211     外部信号デコーダ部
 213     クロッピング映像生成部
 215     顕著性マップ生成部
 217     注視対象マップ生成部
 220     品質解析部
 221     誘発環境情報生成部
 223     誘発インタラクション操作成分解析部
 225     誘発度生成部
 230     品質改善処理部
 310     注視対象領域情報生成部
 311     外部信号デコーダ部
 313     クロッピング映像生成部
 315     注視対象マップ生成部
 320     品質解析部
 321     誘発環境情報生成部
 322     成分解析部
 323     外部信号デコーダ部
 324     誘発度生成部
 325     誘発度生成部
 330     品質改善処理部
 331     注視対象領域相対顕著化画像処理部
 333     注視対象領域相対顕著化合成部
 410     注視対象領域情報生成部
 411     信号識別マップ生成部
 420     品質解析部
 421     相互反射誘発環境情報生成部
 423     外挿領域平均明るさ算出部
 425     相互反射誘発度生成部
 430     品質改善処理部
 431     注視対象領域相対顕著化画像処理部
 433     注視対象領域相対顕著化合成部

Claims (21)

  1.  鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する品質解析部と、
     前記鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成する注視対象領域情報生成部と、
     前記映像鑑賞品質情報に基づいて、前記注視対象領域の鑑賞品質を改善する品質改善処理部と、
    を備える、情報処理装置。
  2.  前記映像鑑賞品質情報は、映像信号による映像酔いの誘発させやすさを示す情報である、請求項1に記載の情報処理装置。
  3.  前記品質解析部は、前記鑑賞者の視野内における前記映像の動きの分布情報に基づいて、前記映像信号から映像酔いを誘発するシーンを判定し、前記映像鑑賞品質情報を生成する、請求項2に記載の情報処理装置。
  4.  前記映像鑑賞品質情報は、プロジェクション投影された表示画面からの相互反射による画質低下を示す情報である、請求項1に記載の情報処理装置。
  5.  前記品質解析部は、前記注視対象領域のみを表示させた場合と全画面表示とした場合とについて、撮影された各画像信号の前記注視対象領域内の画質を解析し、前記映像鑑賞品質情報を生成する、請求項4に記載の情報処理装置。
  6.  前記品質解析部は、前記映像が映像酔いを誘発する映像鑑賞環境であるかを判定した鑑賞環境判定情報を生成する、請求項1に記載の情報処理装置。
  7.  前記品質解析部は、前記映像を表示するディスプレイサイズと前記鑑賞者からディスプレイまでの視距離とから決定される視画角に基づいて、前記鑑賞環境判定情報を生成する、請求項6に記載の情報処理装置。
  8.  前記品質解析部は、前記映像を表示するディスプレイの表示と前記映像を鑑賞している室内の明るさとの関係に基づいて、前記鑑賞環境判定情報を生成する、請求項6に記載の情報処理装置。
  9.  前記注視対象領域情報生成部は、前記鑑賞者のインタラクション操作による制御信号に基づいて、前記注視対象領域情報を生成する、請求項1に記載の情報処理装置。
  10.  前記注視対象領域は、入力映像の原信号に基づく映像が表示されている領域であり、
     非注視対象領域は、前記入力映像の原信号に基づき外挿予測された信号に基づく映像が表示されている領域である、請求項1に記載の情報処理装置。
  11.  前記注視対象領域情報生成部は、入力映像から生成した顕著度マップに基づいて、前記注視対象領域情報を生成する、請求項1に記載の情報処理装置。
  12.  前記注視対象領域情報生成部は、入力映像から生成した奥行マップに基づいて、前記注視対象領域情報を生成する、請求項1に記載の情報処理装置。
  13.  前記品質改善処理部は、前記映像鑑賞品質情報に基づいて、前記映像において相対的に前記注視対象領域の顕著性を強調させる処理を行う、請求項1に記載の情報処理装置。
  14.  前記品質改善処理部は、前記注視対象領域に参照パターンを重畳し、前記映像において相対的に前記注視対象領域の顕著性を強調させる、請求項13に記載の情報処理装置。
  15.  前記品質改善処理部は、前記注視対象領域に対して、コントラスト強調処理、解像感強調処理、彩度強調処理、明るさ強調処理のうち少なくともいずれか1つを行うことにより、前記映像において相対的に前記注視対象領域の顕著性を強調させる、請求項13に記載の情報処理装置。
  16.  前記品質改善処理部は、前記注視対象領域以外の非注視対象領域に対して、コントラスト抑制処理、平滑化処理、彩度抑制処理、明るさ抑制処理のうち少なくともいずれか1つを行うことにより、前記映像において相対的に前記注視対象領域の顕著性を強調させる、請求項13に記載の情報処理装置。
  17.  前記品質改善処理部は、前記注視対象領域の映像鑑賞品質が基準値より低い状態になっている場合に、前記鑑賞者に対してアラームを通知する、請求項1に記載の情報処理装置。
  18.  前記品質改善処理部は、前記注視対象領域の映像鑑賞品質が基準値より低い状態になっている場合に、前記注視対象領域をマスクするマスク画像を表示する、請求項1に記載の情報処理装置。
  19.  鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成すること、
     前記鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成すること、
     前記映像鑑賞品質情報に基づいて、前記注視対象領域の鑑賞品質を改善すること、
    とを含む、情報処理方法。
  20.  コンピュータを、
     鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する品質解析部と、
     前記鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成する注視対象領域情報生成部と、
     前記映像鑑賞品質情報に基づいて、前記注視対象領域の鑑賞品質を改善する品質改善処理部と、
    を備える、情報処理装置として機能させるためのプログラム。
  21.  コンピュータに、
     鑑賞者の映像鑑賞状態の良好度を示す映像鑑賞品質情報を生成する品質解析部と、
     前記鑑賞者が鑑賞する映像から注視すべき注視対象領域を表す注視対象領域情報を生成する注視対象領域情報生成部と、
     前記映像鑑賞品質情報に基づいて、前記注視対象領域の鑑賞品質を改善する品質改善処理部と、
    を備える、情報処理装置として機能させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2016/053140 2015-03-30 2016-02-03 情報処理装置、情報処理方法、プログラム及び記録媒体 WO2016158001A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017509341A JPWO2016158001A1 (ja) 2015-03-30 2016-02-03 情報処理装置、情報処理方法、プログラム及び記録媒体
US15/560,173 US10531040B2 (en) 2015-03-30 2016-02-03 Information processing device and information processing method to improve image quality on a large screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015068691 2015-03-30
JP2015-068691 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158001A1 true WO2016158001A1 (ja) 2016-10-06

Family

ID=57006684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053140 WO2016158001A1 (ja) 2015-03-30 2016-02-03 情報処理装置、情報処理方法、プログラム及び記録媒体

Country Status (3)

Country Link
US (1) US10531040B2 (ja)
JP (1) JPWO2016158001A1 (ja)
WO (1) WO2016158001A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527300A (ja) * 2017-09-25 2020-09-03 中興通訊股▲ふん▼有限公司Zte Corporation ビデオ伝送方法、サーバ、vr再生端末及びコンピュータ読み取り可能な記憶媒体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016158001A1 (ja) * 2015-03-30 2018-01-25 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び記録媒体
US10169843B1 (en) * 2017-11-20 2019-01-01 Advanced Micro Devices, Inc. Temporal foveated rendering using motion estimation
US10529079B2 (en) * 2018-02-04 2020-01-07 Applied Research, LLC Target detection, tracking, and classification in compressive measurement domain
CN113327234B (zh) * 2021-05-31 2022-11-08 广西大学 基于空时显著性分类和融合的视频重定向质量评价方法
CN113361463B (zh) * 2021-06-30 2024-02-02 深圳万兴软件有限公司 最优显著区确定方法、装置、计算机设备及存储介质
CN116248895B (zh) * 2023-05-06 2023-07-21 上海扬谷网络科技有限公司 虚拟现实全景漫游的视频云转码方法及***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259149A (ja) * 2006-03-23 2007-10-04 Sanyo Electric Co Ltd 符号化方法
JP2010050645A (ja) * 2008-08-20 2010-03-04 Olympus Corp 画像処理装置、画像処理方法及び画像処理プログラム
US20110081132A1 (en) * 2009-03-26 2011-04-07 Yoshiaki Iwata Video processor, video processing method, integrated circuit for video processing, video playback device
JP2012019387A (ja) * 2010-07-08 2012-01-26 Kddi Corp 画像レイアウト設定方法および装置
JP2012063547A (ja) * 2010-09-15 2012-03-29 Canon Inc 画像処理装置、画像処理方法
US20140363043A1 (en) * 2013-06-06 2014-12-11 Xerox Corporation Automated vision-based clutter detector and notifier

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100110069A1 (en) * 2008-10-31 2010-05-06 Sharp Laboratories Of America, Inc. System for rendering virtual see-through scenes
US9298985B2 (en) * 2011-05-16 2016-03-29 Wesley W. O. Krueger Physiological biosensor system and method for controlling a vehicle or powered equipment
US8948467B2 (en) * 2010-08-06 2015-02-03 Honeywell International Inc. Ocular and iris processing system and method
US8831278B2 (en) * 2010-11-30 2014-09-09 Eastman Kodak Company Method of identifying motion sickness
JP5918618B2 (ja) 2011-06-03 2016-05-18 任天堂株式会社 情報処理プログラム、情報処理装置、情報処理システム、および情報処理方法
US8938100B2 (en) * 2011-10-28 2015-01-20 Intellectual Ventures Fund 83 Llc Image recomposition from face detection and facial features
US9298980B1 (en) * 2013-03-07 2016-03-29 Amazon Technologies, Inc. Image preprocessing for character recognition
US10353460B2 (en) * 2014-01-29 2019-07-16 Tarek A Shazly Eye and head tracking device
JPWO2016158001A1 (ja) * 2015-03-30 2018-01-25 ソニー株式会社 情報処理装置、情報処理方法、プログラム及び記録媒体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259149A (ja) * 2006-03-23 2007-10-04 Sanyo Electric Co Ltd 符号化方法
JP2010050645A (ja) * 2008-08-20 2010-03-04 Olympus Corp 画像処理装置、画像処理方法及び画像処理プログラム
US20110081132A1 (en) * 2009-03-26 2011-04-07 Yoshiaki Iwata Video processor, video processing method, integrated circuit for video processing, video playback device
JP2012019387A (ja) * 2010-07-08 2012-01-26 Kddi Corp 画像レイアウト設定方法および装置
JP2012063547A (ja) * 2010-09-15 2012-03-29 Canon Inc 画像処理装置、画像処理方法
US20140363043A1 (en) * 2013-06-06 2014-12-11 Xerox Corporation Automated vision-based clutter detector and notifier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527300A (ja) * 2017-09-25 2020-09-03 中興通訊股▲ふん▼有限公司Zte Corporation ビデオ伝送方法、サーバ、vr再生端末及びコンピュータ読み取り可能な記憶媒体
EP3691280A4 (en) * 2017-09-25 2021-01-27 ZTE Corporation VIDEO TRANSFER PROCESS, SERVER, VR PLAYBACK DEVICE AND COMPUTER-READABLE STORAGE MEDIUM

Also Published As

Publication number Publication date
US20180115745A1 (en) 2018-04-26
US10531040B2 (en) 2020-01-07
JPWO2016158001A1 (ja) 2018-01-25

Similar Documents

Publication Publication Date Title
WO2016158001A1 (ja) 情報処理装置、情報処理方法、プログラム及び記録媒体
US11514657B2 (en) Replica graphic causing reduced visibility of an image artifact in a direct-view of a real-world scene
US9661239B2 (en) System and method for online processing of video images in real time
CN110675310B (zh) 视频处理方法、装置、电子设备及存储介质
JP6747504B2 (ja) 情報処理装置、情報処理方法、及びプログラム
WO2018103244A1 (zh) 直播视频处理方法、装置及电子设备
US8007110B2 (en) Projector system employing depth perception to detect speaker position and gestures
Banterle et al. Inverse tone mapping
US9767612B2 (en) Method, system and apparatus for removing a marker projected in a scene
WO2018176925A1 (zh) Hdr图像的生成方法及装置
US10540791B2 (en) Image processing apparatus, and image processing method for performing scaling processing based on image characteristics
TWI767985B (zh) 用於處理影像性質圖的方法及裝置
CN108965847B (zh) 一种全景视频数据的处理方法及装置
US20170345165A1 (en) Correcting Short Term Three-Dimensional Tracking Results
CN107111866B (zh) 用于基于对象检测生成外推图像的方法和装置
US20090303247A1 (en) Method and System for Color Correction Using Thre-Dimensional Information
CN109741289B (zh) 一种图像融合方法和vr设备
CN105264567A (zh) 用于图像稳定化的图像融合方法
WO2015156149A1 (ja) 画像処理装置および画像処理方法
CN113284220A (zh) 基于来自物理环境的环境光修改经渲染的图像数据
CN113741839A (zh) 基于修改的环境光亮度值生成显示数据
JP4876058B2 (ja) 色処理装置およびその方法
JP2020123280A (ja) 画像処理装置、画像処理方法、およびプログラム
US20230171300A1 (en) Securing image data from unintended disclosure at a videoconferencing endpoint
Chamaret et al. Video retargeting for stereoscopic content under 3D viewing constraints

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509341

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560173

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771885

Country of ref document: EP

Kind code of ref document: A1